OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [exp_pakd.adb] - Blame information for rev 281

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             E X P _ P A K D                              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Checks;   use Checks;
28
with Einfo;    use Einfo;
29
with Errout;   use Errout;
30
with Exp_Dbug; use Exp_Dbug;
31
with Exp_Util; use Exp_Util;
32
with Layout;   use Layout;
33
with Namet;    use Namet;
34
with Nlists;   use Nlists;
35
with Nmake;    use Nmake;
36
with Opt;      use Opt;
37
with Rtsfind;  use Rtsfind;
38
with Sem;      use Sem;
39
with Sem_Aux;  use Sem_Aux;
40
with Sem_Ch3;  use Sem_Ch3;
41
with Sem_Ch8;  use Sem_Ch8;
42
with Sem_Ch13; use Sem_Ch13;
43
with Sem_Eval; use Sem_Eval;
44
with Sem_Res;  use Sem_Res;
45
with Sem_Util; use Sem_Util;
46
with Sinfo;    use Sinfo;
47
with Snames;   use Snames;
48
with Stand;    use Stand;
49
with Targparm; use Targparm;
50
with Tbuild;   use Tbuild;
51
with Ttypes;   use Ttypes;
52
with Uintp;    use Uintp;
53
 
54
package body Exp_Pakd is
55
 
56
   ---------------------------
57
   -- Endian Considerations --
58
   ---------------------------
59
 
60
   --  As described in the specification, bit numbering in a packed array
61
   --  is consistent with bit numbering in a record representation clause,
62
   --  and hence dependent on the endianness of the machine:
63
 
64
   --    For little-endian machines, element zero is at the right hand end
65
   --    (low order end) of a bit field.
66
 
67
   --    For big-endian machines, element zero is at the left hand end
68
   --    (high order end) of a bit field.
69
 
70
   --  The shifts that are used to right justify a field therefore differ
71
   --  in the two cases. For the little-endian case, we can simply use the
72
   --  bit number (i.e. the element number * element size) as the count for
73
   --  a right shift. For the big-endian case, we have to subtract the shift
74
   --  count from an appropriate constant to use in the right shift. We use
75
   --  rotates instead of shifts (which is necessary in the store case to
76
   --  preserve other fields), and we expect that the backend will be able
77
   --  to change the right rotate into a left rotate, avoiding the subtract,
78
   --  if the architecture provides such an instruction.
79
 
80
   ----------------------------------------------
81
   -- Entity Tables for Packed Access Routines --
82
   ----------------------------------------------
83
 
84
   --  For the cases of component size = 3,5-7,9-15,17-31,33-63 we call
85
   --  library routines. This table is used to obtain the entity for the
86
   --  proper routine.
87
 
88
   type E_Array is array (Int range 01 .. 63) of RE_Id;
89
 
90
   --  Array of Bits_nn entities. Note that we do not use library routines
91
   --  for the 8-bit and 16-bit cases, but we still fill in the table, using
92
   --  entries from System.Unsigned, because we also use this table for
93
   --  certain special unchecked conversions in the big-endian case.
94
 
95
   Bits_Id : constant E_Array :=
96
     (01 => RE_Bits_1,
97
      02 => RE_Bits_2,
98
      03 => RE_Bits_03,
99
      04 => RE_Bits_4,
100
      05 => RE_Bits_05,
101
      06 => RE_Bits_06,
102
      07 => RE_Bits_07,
103
      08 => RE_Unsigned_8,
104
      09 => RE_Bits_09,
105
      10 => RE_Bits_10,
106
      11 => RE_Bits_11,
107
      12 => RE_Bits_12,
108
      13 => RE_Bits_13,
109
      14 => RE_Bits_14,
110
      15 => RE_Bits_15,
111
      16 => RE_Unsigned_16,
112
      17 => RE_Bits_17,
113
      18 => RE_Bits_18,
114
      19 => RE_Bits_19,
115
      20 => RE_Bits_20,
116
      21 => RE_Bits_21,
117
      22 => RE_Bits_22,
118
      23 => RE_Bits_23,
119
      24 => RE_Bits_24,
120
      25 => RE_Bits_25,
121
      26 => RE_Bits_26,
122
      27 => RE_Bits_27,
123
      28 => RE_Bits_28,
124
      29 => RE_Bits_29,
125
      30 => RE_Bits_30,
126
      31 => RE_Bits_31,
127
      32 => RE_Unsigned_32,
128
      33 => RE_Bits_33,
129
      34 => RE_Bits_34,
130
      35 => RE_Bits_35,
131
      36 => RE_Bits_36,
132
      37 => RE_Bits_37,
133
      38 => RE_Bits_38,
134
      39 => RE_Bits_39,
135
      40 => RE_Bits_40,
136
      41 => RE_Bits_41,
137
      42 => RE_Bits_42,
138
      43 => RE_Bits_43,
139
      44 => RE_Bits_44,
140
      45 => RE_Bits_45,
141
      46 => RE_Bits_46,
142
      47 => RE_Bits_47,
143
      48 => RE_Bits_48,
144
      49 => RE_Bits_49,
145
      50 => RE_Bits_50,
146
      51 => RE_Bits_51,
147
      52 => RE_Bits_52,
148
      53 => RE_Bits_53,
149
      54 => RE_Bits_54,
150
      55 => RE_Bits_55,
151
      56 => RE_Bits_56,
152
      57 => RE_Bits_57,
153
      58 => RE_Bits_58,
154
      59 => RE_Bits_59,
155
      60 => RE_Bits_60,
156
      61 => RE_Bits_61,
157
      62 => RE_Bits_62,
158
      63 => RE_Bits_63);
159
 
160
   --  Array of Get routine entities. These are used to obtain an element
161
   --  from a packed array. The N'th entry is used to obtain elements from
162
   --  a packed array whose component size is N. RE_Null is used as a null
163
   --  entry, for the cases where a library routine is not used.
164
 
165
   Get_Id : constant E_Array :=
166
     (01 => RE_Null,
167
      02 => RE_Null,
168
      03 => RE_Get_03,
169
      04 => RE_Null,
170
      05 => RE_Get_05,
171
      06 => RE_Get_06,
172
      07 => RE_Get_07,
173
      08 => RE_Null,
174
      09 => RE_Get_09,
175
      10 => RE_Get_10,
176
      11 => RE_Get_11,
177
      12 => RE_Get_12,
178
      13 => RE_Get_13,
179
      14 => RE_Get_14,
180
      15 => RE_Get_15,
181
      16 => RE_Null,
182
      17 => RE_Get_17,
183
      18 => RE_Get_18,
184
      19 => RE_Get_19,
185
      20 => RE_Get_20,
186
      21 => RE_Get_21,
187
      22 => RE_Get_22,
188
      23 => RE_Get_23,
189
      24 => RE_Get_24,
190
      25 => RE_Get_25,
191
      26 => RE_Get_26,
192
      27 => RE_Get_27,
193
      28 => RE_Get_28,
194
      29 => RE_Get_29,
195
      30 => RE_Get_30,
196
      31 => RE_Get_31,
197
      32 => RE_Null,
198
      33 => RE_Get_33,
199
      34 => RE_Get_34,
200
      35 => RE_Get_35,
201
      36 => RE_Get_36,
202
      37 => RE_Get_37,
203
      38 => RE_Get_38,
204
      39 => RE_Get_39,
205
      40 => RE_Get_40,
206
      41 => RE_Get_41,
207
      42 => RE_Get_42,
208
      43 => RE_Get_43,
209
      44 => RE_Get_44,
210
      45 => RE_Get_45,
211
      46 => RE_Get_46,
212
      47 => RE_Get_47,
213
      48 => RE_Get_48,
214
      49 => RE_Get_49,
215
      50 => RE_Get_50,
216
      51 => RE_Get_51,
217
      52 => RE_Get_52,
218
      53 => RE_Get_53,
219
      54 => RE_Get_54,
220
      55 => RE_Get_55,
221
      56 => RE_Get_56,
222
      57 => RE_Get_57,
223
      58 => RE_Get_58,
224
      59 => RE_Get_59,
225
      60 => RE_Get_60,
226
      61 => RE_Get_61,
227
      62 => RE_Get_62,
228
      63 => RE_Get_63);
229
 
230
   --  Array of Get routine entities to be used in the case where the packed
231
   --  array is itself a component of a packed structure, and therefore may
232
   --  not be fully aligned. This only affects the even sizes, since for the
233
   --  odd sizes, we do not get any fixed alignment in any case.
234
 
235
   GetU_Id : constant E_Array :=
236
     (01 => RE_Null,
237
      02 => RE_Null,
238
      03 => RE_Get_03,
239
      04 => RE_Null,
240
      05 => RE_Get_05,
241
      06 => RE_GetU_06,
242
      07 => RE_Get_07,
243
      08 => RE_Null,
244
      09 => RE_Get_09,
245
      10 => RE_GetU_10,
246
      11 => RE_Get_11,
247
      12 => RE_GetU_12,
248
      13 => RE_Get_13,
249
      14 => RE_GetU_14,
250
      15 => RE_Get_15,
251
      16 => RE_Null,
252
      17 => RE_Get_17,
253
      18 => RE_GetU_18,
254
      19 => RE_Get_19,
255
      20 => RE_GetU_20,
256
      21 => RE_Get_21,
257
      22 => RE_GetU_22,
258
      23 => RE_Get_23,
259
      24 => RE_GetU_24,
260
      25 => RE_Get_25,
261
      26 => RE_GetU_26,
262
      27 => RE_Get_27,
263
      28 => RE_GetU_28,
264
      29 => RE_Get_29,
265
      30 => RE_GetU_30,
266
      31 => RE_Get_31,
267
      32 => RE_Null,
268
      33 => RE_Get_33,
269
      34 => RE_GetU_34,
270
      35 => RE_Get_35,
271
      36 => RE_GetU_36,
272
      37 => RE_Get_37,
273
      38 => RE_GetU_38,
274
      39 => RE_Get_39,
275
      40 => RE_GetU_40,
276
      41 => RE_Get_41,
277
      42 => RE_GetU_42,
278
      43 => RE_Get_43,
279
      44 => RE_GetU_44,
280
      45 => RE_Get_45,
281
      46 => RE_GetU_46,
282
      47 => RE_Get_47,
283
      48 => RE_GetU_48,
284
      49 => RE_Get_49,
285
      50 => RE_GetU_50,
286
      51 => RE_Get_51,
287
      52 => RE_GetU_52,
288
      53 => RE_Get_53,
289
      54 => RE_GetU_54,
290
      55 => RE_Get_55,
291
      56 => RE_GetU_56,
292
      57 => RE_Get_57,
293
      58 => RE_GetU_58,
294
      59 => RE_Get_59,
295
      60 => RE_GetU_60,
296
      61 => RE_Get_61,
297
      62 => RE_GetU_62,
298
      63 => RE_Get_63);
299
 
300
   --  Array of Set routine entities. These are used to assign an element
301
   --  of a packed array. The N'th entry is used to assign elements for
302
   --  a packed array whose component size is N. RE_Null is used as a null
303
   --  entry, for the cases where a library routine is not used.
304
 
305
   Set_Id : constant E_Array :=
306
     (01 => RE_Null,
307
      02 => RE_Null,
308
      03 => RE_Set_03,
309
      04 => RE_Null,
310
      05 => RE_Set_05,
311
      06 => RE_Set_06,
312
      07 => RE_Set_07,
313
      08 => RE_Null,
314
      09 => RE_Set_09,
315
      10 => RE_Set_10,
316
      11 => RE_Set_11,
317
      12 => RE_Set_12,
318
      13 => RE_Set_13,
319
      14 => RE_Set_14,
320
      15 => RE_Set_15,
321
      16 => RE_Null,
322
      17 => RE_Set_17,
323
      18 => RE_Set_18,
324
      19 => RE_Set_19,
325
      20 => RE_Set_20,
326
      21 => RE_Set_21,
327
      22 => RE_Set_22,
328
      23 => RE_Set_23,
329
      24 => RE_Set_24,
330
      25 => RE_Set_25,
331
      26 => RE_Set_26,
332
      27 => RE_Set_27,
333
      28 => RE_Set_28,
334
      29 => RE_Set_29,
335
      30 => RE_Set_30,
336
      31 => RE_Set_31,
337
      32 => RE_Null,
338
      33 => RE_Set_33,
339
      34 => RE_Set_34,
340
      35 => RE_Set_35,
341
      36 => RE_Set_36,
342
      37 => RE_Set_37,
343
      38 => RE_Set_38,
344
      39 => RE_Set_39,
345
      40 => RE_Set_40,
346
      41 => RE_Set_41,
347
      42 => RE_Set_42,
348
      43 => RE_Set_43,
349
      44 => RE_Set_44,
350
      45 => RE_Set_45,
351
      46 => RE_Set_46,
352
      47 => RE_Set_47,
353
      48 => RE_Set_48,
354
      49 => RE_Set_49,
355
      50 => RE_Set_50,
356
      51 => RE_Set_51,
357
      52 => RE_Set_52,
358
      53 => RE_Set_53,
359
      54 => RE_Set_54,
360
      55 => RE_Set_55,
361
      56 => RE_Set_56,
362
      57 => RE_Set_57,
363
      58 => RE_Set_58,
364
      59 => RE_Set_59,
365
      60 => RE_Set_60,
366
      61 => RE_Set_61,
367
      62 => RE_Set_62,
368
      63 => RE_Set_63);
369
 
370
   --  Array of Set routine entities to be used in the case where the packed
371
   --  array is itself a component of a packed structure, and therefore may
372
   --  not be fully aligned. This only affects the even sizes, since for the
373
   --  odd sizes, we do not get any fixed alignment in any case.
374
 
375
   SetU_Id : constant E_Array :=
376
     (01 => RE_Null,
377
      02 => RE_Null,
378
      03 => RE_Set_03,
379
      04 => RE_Null,
380
      05 => RE_Set_05,
381
      06 => RE_SetU_06,
382
      07 => RE_Set_07,
383
      08 => RE_Null,
384
      09 => RE_Set_09,
385
      10 => RE_SetU_10,
386
      11 => RE_Set_11,
387
      12 => RE_SetU_12,
388
      13 => RE_Set_13,
389
      14 => RE_SetU_14,
390
      15 => RE_Set_15,
391
      16 => RE_Null,
392
      17 => RE_Set_17,
393
      18 => RE_SetU_18,
394
      19 => RE_Set_19,
395
      20 => RE_SetU_20,
396
      21 => RE_Set_21,
397
      22 => RE_SetU_22,
398
      23 => RE_Set_23,
399
      24 => RE_SetU_24,
400
      25 => RE_Set_25,
401
      26 => RE_SetU_26,
402
      27 => RE_Set_27,
403
      28 => RE_SetU_28,
404
      29 => RE_Set_29,
405
      30 => RE_SetU_30,
406
      31 => RE_Set_31,
407
      32 => RE_Null,
408
      33 => RE_Set_33,
409
      34 => RE_SetU_34,
410
      35 => RE_Set_35,
411
      36 => RE_SetU_36,
412
      37 => RE_Set_37,
413
      38 => RE_SetU_38,
414
      39 => RE_Set_39,
415
      40 => RE_SetU_40,
416
      41 => RE_Set_41,
417
      42 => RE_SetU_42,
418
      43 => RE_Set_43,
419
      44 => RE_SetU_44,
420
      45 => RE_Set_45,
421
      46 => RE_SetU_46,
422
      47 => RE_Set_47,
423
      48 => RE_SetU_48,
424
      49 => RE_Set_49,
425
      50 => RE_SetU_50,
426
      51 => RE_Set_51,
427
      52 => RE_SetU_52,
428
      53 => RE_Set_53,
429
      54 => RE_SetU_54,
430
      55 => RE_Set_55,
431
      56 => RE_SetU_56,
432
      57 => RE_Set_57,
433
      58 => RE_SetU_58,
434
      59 => RE_Set_59,
435
      60 => RE_SetU_60,
436
      61 => RE_Set_61,
437
      62 => RE_SetU_62,
438
      63 => RE_Set_63);
439
 
440
   -----------------------
441
   -- Local Subprograms --
442
   -----------------------
443
 
444
   procedure Compute_Linear_Subscript
445
     (Atyp   : Entity_Id;
446
      N      : Node_Id;
447
      Subscr : out Node_Id);
448
   --  Given a constrained array type Atyp, and an indexed component node
449
   --  N referencing an array object of this type, build an expression of
450
   --  type Standard.Integer representing the zero-based linear subscript
451
   --  value. This expression includes any required range checks.
452
 
453
   procedure Convert_To_PAT_Type (Aexp : Node_Id);
454
   --  Given an expression of a packed array type, builds a corresponding
455
   --  expression whose type is the implementation type used to represent
456
   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
457
 
458
   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
459
   --  There are two versions of the Set routines, the ones used when the
460
   --  object is known to be sufficiently well aligned given the number of
461
   --  bits, and the ones used when the object is not known to be aligned.
462
   --  This routine is used to determine which set to use. Obj is a reference
463
   --  to the object, and Csiz is the component size of the packed array.
464
   --  True is returned if the alignment of object is known to be sufficient,
465
   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
466
   --  2 otherwise.
467
 
468
   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
469
   --  Build a left shift node, checking for the case of a shift count of zero
470
 
471
   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
472
   --  Build a right shift node, checking for the case of a shift count of zero
473
 
474
   function RJ_Unchecked_Convert_To
475
     (Typ  : Entity_Id;
476
      Expr : Node_Id) return Node_Id;
477
   --  The packed array code does unchecked conversions which in some cases
478
   --  may involve non-discrete types with differing sizes. The semantics of
479
   --  such conversions is potentially endian dependent, and the effect we
480
   --  want here for such a conversion is to do the conversion in size as
481
   --  though numeric items are involved, and we extend or truncate on the
482
   --  left side. This happens naturally in the little-endian case, but in
483
   --  the big endian case we can get left justification, when what we want
484
   --  is right justification. This routine does the unchecked conversion in
485
   --  a stepwise manner to ensure that it gives the expected result. Hence
486
   --  the name (RJ = Right justified). The parameters Typ and Expr are as
487
   --  for the case of a normal Unchecked_Convert_To call.
488
 
489
   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
490
   --  This routine is called in the Get and Set case for arrays that are
491
   --  packed but not bit-packed, meaning that they have at least one
492
   --  subscript that is of an enumeration type with a non-standard
493
   --  representation. This routine modifies the given node to properly
494
   --  reference the corresponding packed array type.
495
 
496
   procedure Setup_Inline_Packed_Array_Reference
497
     (N      : Node_Id;
498
      Atyp   : Entity_Id;
499
      Obj    : in out Node_Id;
500
      Cmask  : out Uint;
501
      Shift  : out Node_Id);
502
   --  This procedure performs common processing on the N_Indexed_Component
503
   --  parameter given as N, whose prefix is a reference to a packed array.
504
   --  This is used for the get and set when the component size is 1,2,4
505
   --  or for other component sizes when the packed array type is a modular
506
   --  type (i.e. the cases that are handled with inline code).
507
   --
508
   --  On entry:
509
   --
510
   --    N is the N_Indexed_Component node for the packed array reference
511
   --
512
   --    Atyp is the constrained array type (the actual subtype has been
513
   --    computed if necessary to obtain the constraints, but this is still
514
   --    the original array type, not the Packed_Array_Type value).
515
   --
516
   --    Obj is the object which is to be indexed. It is always of type Atyp.
517
   --
518
   --  On return:
519
   --
520
   --    Obj is the object containing the desired bit field. It is of type
521
   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
522
   --    entire value, for the small static case, or the proper selected byte
523
   --    from the array in the large or dynamic case. This node is analyzed
524
   --    and resolved on return.
525
   --
526
   --    Shift is a node representing the shift count to be used in the
527
   --    rotate right instruction that positions the field for access.
528
   --    This node is analyzed and resolved on return.
529
   --
530
   --    Cmask is a mask corresponding to the width of the component field.
531
   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
532
   --
533
   --  Note: in some cases the call to this routine may generate actions
534
   --  (for handling multi-use references and the generation of the packed
535
   --  array type on the fly). Such actions are inserted into the tree
536
   --  directly using Insert_Action.
537
 
538
   ------------------------------
539
   -- Compute_Linear_Subscript --
540
   ------------------------------
541
 
542
   procedure Compute_Linear_Subscript
543
     (Atyp   : Entity_Id;
544
      N      : Node_Id;
545
      Subscr : out Node_Id)
546
   is
547
      Loc    : constant Source_Ptr := Sloc (N);
548
      Oldsub : Node_Id;
549
      Newsub : Node_Id;
550
      Indx   : Node_Id;
551
      Styp   : Entity_Id;
552
 
553
   begin
554
      Subscr := Empty;
555
 
556
      --  Loop through dimensions
557
 
558
      Indx   := First_Index (Atyp);
559
      Oldsub := First (Expressions (N));
560
 
561
      while Present (Indx) loop
562
         Styp := Etype (Indx);
563
         Newsub := Relocate_Node (Oldsub);
564
 
565
         --  Get expression for the subscript value. First, if Do_Range_Check
566
         --  is set on a subscript, then we must do a range check against the
567
         --  original bounds (not the bounds of the packed array type). We do
568
         --  this by introducing a subtype conversion.
569
 
570
         if Do_Range_Check (Newsub)
571
           and then Etype (Newsub) /= Styp
572
         then
573
            Newsub := Convert_To (Styp, Newsub);
574
         end if;
575
 
576
         --  Now evolve the expression for the subscript. First convert
577
         --  the subscript to be zero based and of an integer type.
578
 
579
         --  Case of integer type, where we just subtract to get lower bound
580
 
581
         if Is_Integer_Type (Styp) then
582
 
583
            --  If length of integer type is smaller than standard integer,
584
            --  then we convert to integer first, then do the subtract
585
 
586
            --  Integer (subscript) - Integer (Styp'First)
587
 
588
            if Esize (Styp) < Esize (Standard_Integer) then
589
               Newsub :=
590
                 Make_Op_Subtract (Loc,
591
                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
592
                 Right_Opnd =>
593
                   Convert_To (Standard_Integer,
594
                     Make_Attribute_Reference (Loc,
595
                       Prefix         => New_Occurrence_Of (Styp, Loc),
596
                       Attribute_Name => Name_First)));
597
 
598
            --  For larger integer types, subtract first, then convert to
599
            --  integer, this deals with strange long long integer bounds.
600
 
601
            --    Integer (subscript - Styp'First)
602
 
603
            else
604
               Newsub :=
605
                 Convert_To (Standard_Integer,
606
                   Make_Op_Subtract (Loc,
607
                     Left_Opnd => Newsub,
608
                   Right_Opnd =>
609
                     Make_Attribute_Reference (Loc,
610
                       Prefix         => New_Occurrence_Of (Styp, Loc),
611
                       Attribute_Name => Name_First)));
612
            end if;
613
 
614
         --  For the enumeration case, we have to use 'Pos to get the value
615
         --  to work with before subtracting the lower bound.
616
 
617
         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
618
 
619
         --  This is not quite right for bizarre cases where the size of the
620
         --  enumeration type is > Integer'Size bits due to rep clause ???
621
 
622
         else
623
            pragma Assert (Is_Enumeration_Type (Styp));
624
 
625
            Newsub :=
626
              Make_Op_Subtract (Loc,
627
                Left_Opnd => Convert_To (Standard_Integer,
628
                  Make_Attribute_Reference (Loc,
629
                    Prefix         => New_Occurrence_Of (Styp, Loc),
630
                    Attribute_Name => Name_Pos,
631
                    Expressions    => New_List (Newsub))),
632
 
633
                Right_Opnd =>
634
                  Convert_To (Standard_Integer,
635
                    Make_Attribute_Reference (Loc,
636
                      Prefix         => New_Occurrence_Of (Styp, Loc),
637
                      Attribute_Name => Name_Pos,
638
                      Expressions    => New_List (
639
                        Make_Attribute_Reference (Loc,
640
                          Prefix         => New_Occurrence_Of (Styp, Loc),
641
                          Attribute_Name => Name_First)))));
642
         end if;
643
 
644
         Set_Paren_Count (Newsub, 1);
645
 
646
         --  For the first subscript, we just copy that subscript value
647
 
648
         if No (Subscr) then
649
            Subscr := Newsub;
650
 
651
         --  Otherwise, we must multiply what we already have by the current
652
         --  stride and then add in the new value to the evolving subscript.
653
 
654
         else
655
            Subscr :=
656
              Make_Op_Add (Loc,
657
                Left_Opnd =>
658
                  Make_Op_Multiply (Loc,
659
                    Left_Opnd  => Subscr,
660
                    Right_Opnd =>
661
                      Make_Attribute_Reference (Loc,
662
                        Attribute_Name => Name_Range_Length,
663
                        Prefix         => New_Occurrence_Of (Styp, Loc))),
664
                Right_Opnd => Newsub);
665
         end if;
666
 
667
         --  Move to next subscript
668
 
669
         Next_Index (Indx);
670
         Next (Oldsub);
671
      end loop;
672
   end Compute_Linear_Subscript;
673
 
674
   -------------------------
675
   -- Convert_To_PAT_Type --
676
   -------------------------
677
 
678
   --  The PAT is always obtained from the actual subtype
679
 
680
   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
681
      Act_ST : Entity_Id;
682
 
683
   begin
684
      Convert_To_Actual_Subtype (Aexp);
685
      Act_ST := Underlying_Type (Etype (Aexp));
686
      Create_Packed_Array_Type (Act_ST);
687
 
688
      --  Just replace the etype with the packed array type. This works because
689
      --  the expression will not be further analyzed, and Gigi considers the
690
      --  two types equivalent in any case.
691
 
692
      --  This is not strictly the case ??? If the reference is an actual in
693
      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
694
      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
695
      --  array reference, reanalysis can produce spurious type errors when the
696
      --  PAT type is replaced again with the original type of the array. Same
697
      --  for the case of a dereference. The following is correct and minimal,
698
      --  but the handling of more complex packed expressions in actuals is
699
      --  confused. Probably the problem only remains for actuals in calls.
700
 
701
      Set_Etype (Aexp, Packed_Array_Type (Act_ST));
702
 
703
      if Is_Entity_Name (Aexp)
704
        or else
705
           (Nkind (Aexp) = N_Indexed_Component
706
             and then Is_Entity_Name (Prefix (Aexp)))
707
        or else Nkind (Aexp) = N_Explicit_Dereference
708
      then
709
         Set_Analyzed (Aexp);
710
      end if;
711
   end Convert_To_PAT_Type;
712
 
713
   ------------------------------
714
   -- Create_Packed_Array_Type --
715
   ------------------------------
716
 
717
   procedure Create_Packed_Array_Type (Typ : Entity_Id) is
718
      Loc      : constant Source_Ptr := Sloc (Typ);
719
      Ctyp     : constant Entity_Id  := Component_Type (Typ);
720
      Csize    : constant Uint       := Component_Size (Typ);
721
 
722
      Ancest   : Entity_Id;
723
      PB_Type  : Entity_Id;
724
      PASize   : Uint;
725
      Decl     : Node_Id;
726
      PAT      : Entity_Id;
727
      Len_Dim  : Node_Id;
728
      Len_Expr : Node_Id;
729
      Len_Bits : Uint;
730
      Bits_U1  : Node_Id;
731
      PAT_High : Node_Id;
732
      Btyp     : Entity_Id;
733
      Lit      : Node_Id;
734
 
735
      procedure Install_PAT;
736
      --  This procedure is called with Decl set to the declaration for the
737
      --  packed array type. It creates the type and installs it as required.
738
 
739
      procedure Set_PB_Type;
740
      --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
741
      --  requirements (see documentation in the spec of this package).
742
 
743
      -----------------
744
      -- Install_PAT --
745
      -----------------
746
 
747
      procedure Install_PAT is
748
         Pushed_Scope : Boolean := False;
749
 
750
      begin
751
         --  We do not want to put the declaration we have created in the tree
752
         --  since it is often hard, and sometimes impossible to find a proper
753
         --  place for it (the impossible case arises for a packed array type
754
         --  with bounds depending on the discriminant, a declaration cannot
755
         --  be put inside the record, and the reference to the discriminant
756
         --  cannot be outside the record).
757
 
758
         --  The solution is to analyze the declaration while temporarily
759
         --  attached to the tree at an appropriate point, and then we install
760
         --  the resulting type as an Itype in the packed array type field of
761
         --  the original type, so that no explicit declaration is required.
762
 
763
         --  Note: the packed type is created in the scope of its parent
764
         --  type. There are at least some cases where the current scope
765
         --  is deeper, and so when this is the case, we temporarily reset
766
         --  the scope for the definition. This is clearly safe, since the
767
         --  first use of the packed array type will be the implicit
768
         --  reference from the corresponding unpacked type when it is
769
         --  elaborated.
770
 
771
         if Is_Itype (Typ) then
772
            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
773
         else
774
            Set_Parent (Decl, Declaration_Node (Typ));
775
         end if;
776
 
777
         if Scope (Typ) /= Current_Scope then
778
            Push_Scope (Scope (Typ));
779
            Pushed_Scope := True;
780
         end if;
781
 
782
         Set_Is_Itype (PAT, True);
783
         Set_Packed_Array_Type (Typ, PAT);
784
         Analyze (Decl, Suppress => All_Checks);
785
 
786
         if Pushed_Scope then
787
            Pop_Scope;
788
         end if;
789
 
790
         --  Set Esize and RM_Size to the actual size of the packed object
791
         --  Do not reset RM_Size if already set, as happens in the case of
792
         --  a modular type.
793
 
794
         if Unknown_Esize (PAT) then
795
            Set_Esize (PAT, PASize);
796
         end if;
797
 
798
         if Unknown_RM_Size (PAT) then
799
            Set_RM_Size (PAT, PASize);
800
         end if;
801
 
802
         Adjust_Esize_Alignment (PAT);
803
 
804
         --  Set remaining fields of packed array type
805
 
806
         Init_Alignment                (PAT);
807
         Set_Parent                    (PAT, Empty);
808
         Set_Associated_Node_For_Itype (PAT, Typ);
809
         Set_Is_Packed_Array_Type      (PAT, True);
810
         Set_Original_Array_Type       (PAT, Typ);
811
 
812
         --  We definitely do not want to delay freezing for packed array
813
         --  types. This is of particular importance for the itypes that
814
         --  are generated for record components depending on discriminants
815
         --  where there is no place to put the freeze node.
816
 
817
         Set_Has_Delayed_Freeze (PAT, False);
818
         Set_Has_Delayed_Freeze (Etype (PAT), False);
819
 
820
         --  If we did allocate a freeze node, then clear out the reference
821
         --  since it is obsolete (should we delete the freeze node???)
822
 
823
         Set_Freeze_Node (PAT, Empty);
824
         Set_Freeze_Node (Etype (PAT), Empty);
825
      end Install_PAT;
826
 
827
      -----------------
828
      -- Set_PB_Type --
829
      -----------------
830
 
831
      procedure Set_PB_Type is
832
      begin
833
         --  If the user has specified an explicit alignment for the
834
         --  type or component, take it into account.
835
 
836
         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
837
           or else Alignment (Typ) = 1
838
           or else Component_Alignment (Typ) = Calign_Storage_Unit
839
         then
840
            PB_Type := RTE (RE_Packed_Bytes1);
841
 
842
         elsif Csize mod 4 /= 0
843
           or else Alignment (Typ) = 2
844
         then
845
            PB_Type := RTE (RE_Packed_Bytes2);
846
 
847
         else
848
            PB_Type := RTE (RE_Packed_Bytes4);
849
         end if;
850
      end Set_PB_Type;
851
 
852
   --  Start of processing for Create_Packed_Array_Type
853
 
854
   begin
855
      --  If we already have a packed array type, nothing to do
856
 
857
      if Present (Packed_Array_Type (Typ)) then
858
         return;
859
      end if;
860
 
861
      --  If our immediate ancestor subtype is constrained, and it already
862
      --  has a packed array type, then just share the same type, since the
863
      --  bounds must be the same. If the ancestor is not an array type but
864
      --  a private type, as can happen with multiple instantiations, create
865
      --  a new packed type, to avoid privacy issues.
866
 
867
      if Ekind (Typ) = E_Array_Subtype then
868
         Ancest := Ancestor_Subtype (Typ);
869
 
870
         if Present (Ancest)
871
           and then Is_Array_Type (Ancest)
872
           and then Is_Constrained (Ancest)
873
           and then Present (Packed_Array_Type (Ancest))
874
         then
875
            Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
876
            return;
877
         end if;
878
      end if;
879
 
880
      --  We preset the result type size from the size of the original array
881
      --  type, since this size clearly belongs to the packed array type. The
882
      --  size of the conceptual unpacked type is always set to unknown.
883
 
884
      PASize := RM_Size (Typ);
885
 
886
      --  Case of an array where at least one index is of an enumeration
887
      --  type with a non-standard representation, but the component size
888
      --  is not appropriate for bit packing. This is the case where we
889
      --  have Is_Packed set (we would never be in this unit otherwise),
890
      --  but Is_Bit_Packed_Array is false.
891
 
892
      --  Note that if the component size is appropriate for bit packing,
893
      --  then the circuit for the computation of the subscript properly
894
      --  deals with the non-standard enumeration type case by taking the
895
      --  Pos anyway.
896
 
897
      if not Is_Bit_Packed_Array (Typ) then
898
 
899
         --  Here we build a declaration:
900
 
901
         --    type tttP is array (index1, index2, ...) of component_type
902
 
903
         --  where index1, index2, are the index types. These are the same
904
         --  as the index types of the original array, except for the non-
905
         --  standard representation enumeration type case, where we have
906
         --  two subcases.
907
 
908
         --  For the unconstrained array case, we use
909
 
910
         --    Natural range <>
911
 
912
         --  For the constrained case, we use
913
 
914
         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
915
         --                  Enum_Type'Pos (Enum_Type'Last);
916
 
917
         PAT :=
918
           Make_Defining_Identifier (Loc,
919
             Chars => New_External_Name (Chars (Typ), 'P'));
920
 
921
         Set_Packed_Array_Type (Typ, PAT);
922
 
923
         declare
924
            Indexes   : constant List_Id := New_List;
925
            Indx      : Node_Id;
926
            Indx_Typ  : Entity_Id;
927
            Enum_Case : Boolean;
928
            Typedef   : Node_Id;
929
 
930
         begin
931
            Indx := First_Index (Typ);
932
 
933
            while Present (Indx) loop
934
               Indx_Typ := Etype (Indx);
935
 
936
               Enum_Case := Is_Enumeration_Type (Indx_Typ)
937
                              and then Has_Non_Standard_Rep (Indx_Typ);
938
 
939
               --  Unconstrained case
940
 
941
               if not Is_Constrained (Typ) then
942
                  if Enum_Case then
943
                     Indx_Typ := Standard_Natural;
944
                  end if;
945
 
946
                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
947
 
948
               --  Constrained case
949
 
950
               else
951
                  if not Enum_Case then
952
                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
953
 
954
                  else
955
                     Append_To (Indexes,
956
                       Make_Subtype_Indication (Loc,
957
                         Subtype_Mark =>
958
                           New_Occurrence_Of (Standard_Natural, Loc),
959
                         Constraint =>
960
                           Make_Range_Constraint (Loc,
961
                             Range_Expression =>
962
                               Make_Range (Loc,
963
                                 Low_Bound =>
964
                                   Make_Attribute_Reference (Loc,
965
                                     Prefix         =>
966
                                       New_Occurrence_Of (Indx_Typ, Loc),
967
                                     Attribute_Name => Name_Pos,
968
                                     Expressions    => New_List (
969
                                       Make_Attribute_Reference (Loc,
970
                                         Prefix         =>
971
                                           New_Occurrence_Of (Indx_Typ, Loc),
972
                                         Attribute_Name => Name_First))),
973
 
974
                                 High_Bound =>
975
                                   Make_Attribute_Reference (Loc,
976
                                     Prefix         =>
977
                                       New_Occurrence_Of (Indx_Typ, Loc),
978
                                     Attribute_Name => Name_Pos,
979
                                     Expressions    => New_List (
980
                                       Make_Attribute_Reference (Loc,
981
                                         Prefix         =>
982
                                           New_Occurrence_Of (Indx_Typ, Loc),
983
                                         Attribute_Name => Name_Last)))))));
984
 
985
                  end if;
986
               end if;
987
 
988
               Next_Index (Indx);
989
            end loop;
990
 
991
            if not Is_Constrained (Typ) then
992
               Typedef :=
993
                 Make_Unconstrained_Array_Definition (Loc,
994
                   Subtype_Marks => Indexes,
995
                   Component_Definition =>
996
                     Make_Component_Definition (Loc,
997
                       Aliased_Present    => False,
998
                       Subtype_Indication =>
999
                          New_Occurrence_Of (Ctyp, Loc)));
1000
 
1001
            else
1002
               Typedef :=
1003
                  Make_Constrained_Array_Definition (Loc,
1004
                    Discrete_Subtype_Definitions => Indexes,
1005
                    Component_Definition =>
1006
                      Make_Component_Definition (Loc,
1007
                        Aliased_Present    => False,
1008
                        Subtype_Indication =>
1009
                          New_Occurrence_Of (Ctyp, Loc)));
1010
            end if;
1011
 
1012
            Decl :=
1013
              Make_Full_Type_Declaration (Loc,
1014
                Defining_Identifier => PAT,
1015
                Type_Definition => Typedef);
1016
         end;
1017
 
1018
         --  Set type as packed array type and install it
1019
 
1020
         Set_Is_Packed_Array_Type (PAT);
1021
         Install_PAT;
1022
         return;
1023
 
1024
      --  Case of bit-packing required for unconstrained array. We create
1025
      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1026
 
1027
      elsif not Is_Constrained (Typ) then
1028
         PAT :=
1029
           Make_Defining_Identifier (Loc,
1030
             Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1031
 
1032
         Set_Packed_Array_Type (Typ, PAT);
1033
         Set_PB_Type;
1034
 
1035
         Decl :=
1036
           Make_Subtype_Declaration (Loc,
1037
             Defining_Identifier => PAT,
1038
               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
1039
         Install_PAT;
1040
         return;
1041
 
1042
      --  Remaining code is for the case of bit-packing for constrained array
1043
 
1044
      --  The name of the packed array subtype is
1045
 
1046
      --    ttt___Xsss
1047
 
1048
      --  where sss is the component size in bits and ttt is the name of
1049
      --  the parent packed type.
1050
 
1051
      else
1052
         PAT :=
1053
           Make_Defining_Identifier (Loc,
1054
             Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1055
 
1056
         Set_Packed_Array_Type (Typ, PAT);
1057
 
1058
         --  Build an expression for the length of the array in bits.
1059
         --  This is the product of the length of each of the dimensions
1060
 
1061
         declare
1062
            J : Nat := 1;
1063
 
1064
         begin
1065
            Len_Expr := Empty; -- suppress junk warning
1066
 
1067
            loop
1068
               Len_Dim :=
1069
                 Make_Attribute_Reference (Loc,
1070
                   Attribute_Name => Name_Length,
1071
                   Prefix         => New_Occurrence_Of (Typ, Loc),
1072
                   Expressions    => New_List (
1073
                     Make_Integer_Literal (Loc, J)));
1074
 
1075
               if J = 1 then
1076
                  Len_Expr := Len_Dim;
1077
 
1078
               else
1079
                  Len_Expr :=
1080
                    Make_Op_Multiply (Loc,
1081
                      Left_Opnd  => Len_Expr,
1082
                      Right_Opnd => Len_Dim);
1083
               end if;
1084
 
1085
               J := J + 1;
1086
               exit when J > Number_Dimensions (Typ);
1087
            end loop;
1088
         end;
1089
 
1090
         --  Temporarily attach the length expression to the tree and analyze
1091
         --  and resolve it, so that we can test its value. We assume that the
1092
         --  total length fits in type Integer. This expression may involve
1093
         --  discriminants, so we treat it as a default/per-object expression.
1094
 
1095
         Set_Parent (Len_Expr, Typ);
1096
         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
1097
 
1098
         --  Use a modular type if possible. We can do this if we have
1099
         --  static bounds, and the length is small enough, and the length
1100
         --  is not zero. We exclude the zero length case because the size
1101
         --  of things is always at least one, and the zero length object
1102
         --  would have an anomalous size.
1103
 
1104
         if Compile_Time_Known_Value (Len_Expr) then
1105
            Len_Bits := Expr_Value (Len_Expr) * Csize;
1106
 
1107
            --  Check for size known to be too large
1108
 
1109
            if Len_Bits >
1110
              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
1111
            then
1112
               if System_Storage_Unit = 8 then
1113
                  Error_Msg_N
1114
                    ("packed array size cannot exceed " &
1115
                     "Integer''Last bytes", Typ);
1116
               else
1117
                  Error_Msg_N
1118
                    ("packed array size cannot exceed " &
1119
                     "Integer''Last storage units", Typ);
1120
               end if;
1121
 
1122
               --  Reset length to arbitrary not too high value to continue
1123
 
1124
               Len_Expr := Make_Integer_Literal (Loc, 65535);
1125
               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
1126
            end if;
1127
 
1128
            --  We normally consider small enough to mean no larger than the
1129
            --  value of System_Max_Binary_Modulus_Power, checking that in the
1130
            --  case of values longer than word size, we have long shifts.
1131
 
1132
            if Len_Bits > 0
1133
              and then
1134
                (Len_Bits <= System_Word_Size
1135
                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
1136
                              and then Support_Long_Shifts_On_Target))
1137
 
1138
            --  Also test for alignment given. If an alignment is given which
1139
            --  is smaller than the natural modular alignment, force the array
1140
            --  of bytes representation to accommodate the alignment.
1141
 
1142
              and then
1143
                (No (Alignment_Clause (Typ))
1144
                   or else
1145
                 Alignment (Typ) >= ((Len_Bits + System_Storage_Unit)
1146
                                             / System_Storage_Unit))
1147
            then
1148
               --  We can use the modular type, it has the form:
1149
 
1150
               --    subtype tttPn is btyp
1151
               --      range 0 .. 2 ** ((Typ'Length (1)
1152
               --                * ... * Typ'Length (n)) * Csize) - 1;
1153
 
1154
               --  The bounds are statically known, and btyp is one of the
1155
               --  unsigned types, depending on the length.
1156
 
1157
               if Len_Bits <= Standard_Short_Short_Integer_Size then
1158
                  Btyp := RTE (RE_Short_Short_Unsigned);
1159
 
1160
               elsif Len_Bits <= Standard_Short_Integer_Size then
1161
                  Btyp := RTE (RE_Short_Unsigned);
1162
 
1163
               elsif Len_Bits <= Standard_Integer_Size then
1164
                  Btyp := RTE (RE_Unsigned);
1165
 
1166
               elsif Len_Bits <= Standard_Long_Integer_Size then
1167
                  Btyp := RTE (RE_Long_Unsigned);
1168
 
1169
               else
1170
                  Btyp := RTE (RE_Long_Long_Unsigned);
1171
               end if;
1172
 
1173
               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
1174
               Set_Print_In_Hex (Lit);
1175
 
1176
               Decl :=
1177
                 Make_Subtype_Declaration (Loc,
1178
                   Defining_Identifier => PAT,
1179
                     Subtype_Indication =>
1180
                       Make_Subtype_Indication (Loc,
1181
                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
1182
 
1183
                         Constraint =>
1184
                           Make_Range_Constraint (Loc,
1185
                             Range_Expression =>
1186
                               Make_Range (Loc,
1187
                                 Low_Bound =>
1188
                                   Make_Integer_Literal (Loc, 0),
1189
                                 High_Bound => Lit))));
1190
 
1191
               if PASize = Uint_0 then
1192
                  PASize := Len_Bits;
1193
               end if;
1194
 
1195
               Install_PAT;
1196
               return;
1197
            end if;
1198
         end if;
1199
 
1200
         --  Could not use a modular type, for all other cases, we build
1201
         --  a packed array subtype:
1202
 
1203
         --    subtype tttPn is
1204
         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1205
 
1206
         --  Bits is the length of the array in bits
1207
 
1208
         Set_PB_Type;
1209
 
1210
         Bits_U1 :=
1211
           Make_Op_Add (Loc,
1212
             Left_Opnd =>
1213
               Make_Op_Multiply (Loc,
1214
                 Left_Opnd  =>
1215
                   Make_Integer_Literal (Loc, Csize),
1216
                 Right_Opnd => Len_Expr),
1217
 
1218
             Right_Opnd =>
1219
               Make_Integer_Literal (Loc, 7));
1220
 
1221
         Set_Paren_Count (Bits_U1, 1);
1222
 
1223
         PAT_High :=
1224
           Make_Op_Subtract (Loc,
1225
             Left_Opnd =>
1226
               Make_Op_Divide (Loc,
1227
                 Left_Opnd => Bits_U1,
1228
                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
1229
             Right_Opnd => Make_Integer_Literal (Loc, 1));
1230
 
1231
         Decl :=
1232
           Make_Subtype_Declaration (Loc,
1233
             Defining_Identifier => PAT,
1234
               Subtype_Indication =>
1235
                 Make_Subtype_Indication (Loc,
1236
                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1237
                   Constraint =>
1238
                     Make_Index_Or_Discriminant_Constraint (Loc,
1239
                       Constraints => New_List (
1240
                         Make_Range (Loc,
1241
                           Low_Bound =>
1242
                             Make_Integer_Literal (Loc, 0),
1243
                           High_Bound =>
1244
                             Convert_To (Standard_Integer, PAT_High))))));
1245
 
1246
         Install_PAT;
1247
 
1248
         --  Currently the code in this unit requires that packed arrays
1249
         --  represented by non-modular arrays of bytes be on a byte
1250
         --  boundary for bit sizes handled by System.Pack_nn units.
1251
         --  That's because these units assume the array being accessed
1252
         --  starts on a byte boundary.
1253
 
1254
         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1255
            Set_Must_Be_On_Byte_Boundary (Typ);
1256
         end if;
1257
      end if;
1258
   end Create_Packed_Array_Type;
1259
 
1260
   -----------------------------------
1261
   -- Expand_Bit_Packed_Element_Set --
1262
   -----------------------------------
1263
 
1264
   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1265
      Loc : constant Source_Ptr := Sloc (N);
1266
      Lhs : constant Node_Id    := Name (N);
1267
 
1268
      Ass_OK : constant Boolean := Assignment_OK (Lhs);
1269
      --  Used to preserve assignment OK status when assignment is rewritten
1270
 
1271
      Rhs : Node_Id := Expression (N);
1272
      --  Initially Rhs is the right hand side value, it will be replaced
1273
      --  later by an appropriate unchecked conversion for the assignment.
1274
 
1275
      Obj    : Node_Id;
1276
      Atyp   : Entity_Id;
1277
      PAT    : Entity_Id;
1278
      Ctyp   : Entity_Id;
1279
      Csiz   : Int;
1280
      Cmask  : Uint;
1281
 
1282
      Shift : Node_Id;
1283
      --  The expression for the shift value that is required
1284
 
1285
      Shift_Used : Boolean := False;
1286
      --  Set True if Shift has been used in the generated code at least
1287
      --  once, so that it must be duplicated if used again
1288
 
1289
      New_Lhs : Node_Id;
1290
      New_Rhs : Node_Id;
1291
 
1292
      Rhs_Val_Known : Boolean;
1293
      Rhs_Val       : Uint;
1294
      --  If the value of the right hand side as an integer constant is
1295
      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1296
      --  contains the value. Otherwise Rhs_Val_Known is set False, and
1297
      --  the Rhs_Val is undefined.
1298
 
1299
      function Get_Shift return Node_Id;
1300
      --  Function used to get the value of Shift, making sure that it
1301
      --  gets duplicated if the function is called more than once.
1302
 
1303
      ---------------
1304
      -- Get_Shift --
1305
      ---------------
1306
 
1307
      function Get_Shift return Node_Id is
1308
      begin
1309
         --  If we used the shift value already, then duplicate it. We
1310
         --  set a temporary parent in case actions have to be inserted.
1311
 
1312
         if Shift_Used then
1313
            Set_Parent (Shift, N);
1314
            return Duplicate_Subexpr_No_Checks (Shift);
1315
 
1316
         --  If first time, use Shift unchanged, and set flag for first use
1317
 
1318
         else
1319
            Shift_Used := True;
1320
            return Shift;
1321
         end if;
1322
      end Get_Shift;
1323
 
1324
   --  Start of processing for Expand_Bit_Packed_Element_Set
1325
 
1326
   begin
1327
      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1328
 
1329
      Obj := Relocate_Node (Prefix (Lhs));
1330
      Convert_To_Actual_Subtype (Obj);
1331
      Atyp := Etype (Obj);
1332
      PAT  := Packed_Array_Type (Atyp);
1333
      Ctyp := Component_Type (Atyp);
1334
      Csiz := UI_To_Int (Component_Size (Atyp));
1335
 
1336
      --  We convert the right hand side to the proper subtype to ensure
1337
      --  that an appropriate range check is made (since the normal range
1338
      --  check from assignment will be lost in the transformations). This
1339
      --  conversion is analyzed immediately so that subsequent processing
1340
      --  can work with an analyzed Rhs (and e.g. look at its Etype)
1341
 
1342
      --  If the right-hand side is a string literal, create a temporary for
1343
      --  it, constant-folding is not ready to wrap the bit representation
1344
      --  of a string literal.
1345
 
1346
      if Nkind (Rhs) = N_String_Literal then
1347
         declare
1348
            Decl : Node_Id;
1349
         begin
1350
            Decl :=
1351
              Make_Object_Declaration (Loc,
1352
                Defining_Identifier =>
1353
                  Make_Defining_Identifier (Loc,  New_Internal_Name ('T')),
1354
                Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1355
                Expression => New_Copy_Tree (Rhs));
1356
 
1357
            Insert_Actions (N, New_List (Decl));
1358
            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1359
         end;
1360
      end if;
1361
 
1362
      Rhs := Convert_To (Ctyp, Rhs);
1363
      Set_Parent (Rhs, N);
1364
 
1365
      --  If we are building the initialization procedure for a packed array,
1366
      --  and Initialize_Scalars is enabled, each component assignment is an
1367
      --  out-of-range value by design.  Compile this value without checks,
1368
      --  because a call to the array init_proc must not raise an exception.
1369
 
1370
      if Within_Init_Proc
1371
        and then Initialize_Scalars
1372
      then
1373
         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1374
      else
1375
         Analyze_And_Resolve (Rhs, Ctyp);
1376
      end if;
1377
 
1378
      --  Case of component size 1,2,4 or any component size for the modular
1379
      --  case. These are the cases for which we can inline the code.
1380
 
1381
      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1382
        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1383
      then
1384
         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1385
 
1386
         --  The statement to be generated is:
1387
 
1388
         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, shift)))
1389
 
1390
         --      where mask1 is obtained by shifting Cmask left Shift bits
1391
         --      and then complementing the result.
1392
 
1393
         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1394
 
1395
         --      the "or ..." is omitted if rhs is constant and all 0 bits
1396
 
1397
         --      rhs is converted to the appropriate type
1398
 
1399
         --      The result is converted back to the array type, since
1400
         --      otherwise we lose knowledge of the packed nature.
1401
 
1402
         --  Determine if right side is all 0 bits or all 1 bits
1403
 
1404
         if Compile_Time_Known_Value (Rhs) then
1405
            Rhs_Val       := Expr_Rep_Value (Rhs);
1406
            Rhs_Val_Known := True;
1407
 
1408
         --  The following test catches the case of an unchecked conversion
1409
         --  of an integer literal. This results from optimizing aggregates
1410
         --  of packed types.
1411
 
1412
         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1413
           and then Compile_Time_Known_Value (Expression (Rhs))
1414
         then
1415
            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1416
            Rhs_Val_Known := True;
1417
 
1418
         else
1419
            Rhs_Val       := No_Uint;
1420
            Rhs_Val_Known := False;
1421
         end if;
1422
 
1423
         --  Some special checks for the case where the right hand value
1424
         --  is known at compile time. Basically we have to take care of
1425
         --  the implicit conversion to the subtype of the component object.
1426
 
1427
         if Rhs_Val_Known then
1428
 
1429
            --  If we have a biased component type then we must manually do
1430
            --  the biasing, since we are taking responsibility in this case
1431
            --  for constructing the exact bit pattern to be used.
1432
 
1433
            if Has_Biased_Representation (Ctyp) then
1434
               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1435
            end if;
1436
 
1437
            --  For a negative value, we manually convert the twos complement
1438
            --  value to a corresponding unsigned value, so that the proper
1439
            --  field width is maintained. If we did not do this, we would
1440
            --  get too many leading sign bits later on.
1441
 
1442
            if Rhs_Val < 0 then
1443
               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1444
            end if;
1445
         end if;
1446
 
1447
         --  Now create copies removing side effects. Note that in some
1448
         --  complex cases, this may cause the fact that we have already
1449
         --  set a packed array type on Obj to get lost. So we save the
1450
         --  type of Obj, and make sure it is reset properly.
1451
 
1452
         declare
1453
            T : constant Entity_Id := Etype (Obj);
1454
         begin
1455
            New_Lhs := Duplicate_Subexpr (Obj, True);
1456
            New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1457
            Set_Etype (Obj, T);
1458
            Set_Etype (New_Lhs, T);
1459
            Set_Etype (New_Rhs, T);
1460
         end;
1461
 
1462
         --  First we deal with the "and"
1463
 
1464
         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1465
            declare
1466
               Mask1 : Node_Id;
1467
               Lit   : Node_Id;
1468
 
1469
            begin
1470
               if Compile_Time_Known_Value (Shift) then
1471
                  Mask1 :=
1472
                    Make_Integer_Literal (Loc,
1473
                      Modulus (Etype (Obj)) - 1 -
1474
                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
1475
                  Set_Print_In_Hex (Mask1);
1476
 
1477
               else
1478
                  Lit := Make_Integer_Literal (Loc, Cmask);
1479
                  Set_Print_In_Hex (Lit);
1480
                  Mask1 :=
1481
                    Make_Op_Not (Loc,
1482
                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1483
               end if;
1484
 
1485
               New_Rhs :=
1486
                 Make_Op_And (Loc,
1487
                   Left_Opnd  => New_Rhs,
1488
                   Right_Opnd => Mask1);
1489
            end;
1490
         end if;
1491
 
1492
         --  Then deal with the "or"
1493
 
1494
         if not Rhs_Val_Known or else Rhs_Val /= 0 then
1495
            declare
1496
               Or_Rhs : Node_Id;
1497
 
1498
               procedure Fixup_Rhs;
1499
               --  Adjust Rhs by bias if biased representation for components
1500
               --  or remove extraneous high order sign bits if signed.
1501
 
1502
               procedure Fixup_Rhs is
1503
                  Etyp : constant Entity_Id := Etype (Rhs);
1504
 
1505
               begin
1506
                  --  For biased case, do the required biasing by simply
1507
                  --  converting to the biased subtype (the conversion
1508
                  --  will generate the required bias).
1509
 
1510
                  if Has_Biased_Representation (Ctyp) then
1511
                     Rhs := Convert_To (Ctyp, Rhs);
1512
 
1513
                  --  For a signed integer type that is not biased, generate
1514
                  --  a conversion to unsigned to strip high order sign bits.
1515
 
1516
                  elsif Is_Signed_Integer_Type (Ctyp) then
1517
                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1518
                  end if;
1519
 
1520
                  --  Set Etype, since it can be referenced before the
1521
                  --  node is completely analyzed.
1522
 
1523
                  Set_Etype (Rhs, Etyp);
1524
 
1525
                  --  We now need to do an unchecked conversion of the
1526
                  --  result to the target type, but it is important that
1527
                  --  this conversion be a right justified conversion and
1528
                  --  not a left justified conversion.
1529
 
1530
                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1531
 
1532
               end Fixup_Rhs;
1533
 
1534
            begin
1535
               if Rhs_Val_Known
1536
                 and then Compile_Time_Known_Value (Get_Shift)
1537
               then
1538
                  Or_Rhs :=
1539
                    Make_Integer_Literal (Loc,
1540
                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1541
                  Set_Print_In_Hex (Or_Rhs);
1542
 
1543
               else
1544
                  --  We have to convert the right hand side to Etype (Obj).
1545
                  --  A special case arises if what we have now is a Val
1546
                  --  attribute reference whose expression type is Etype (Obj).
1547
                  --  This happens for assignments of fields from the same
1548
                  --  array. In this case we get the required right hand side
1549
                  --  by simply removing the inner attribute reference.
1550
 
1551
                  if Nkind (Rhs) = N_Attribute_Reference
1552
                    and then Attribute_Name (Rhs) = Name_Val
1553
                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1554
                  then
1555
                     Rhs := Relocate_Node (First (Expressions (Rhs)));
1556
                     Fixup_Rhs;
1557
 
1558
                  --  If the value of the right hand side is a known integer
1559
                  --  value, then just replace it by an untyped constant,
1560
                  --  which will be properly retyped when we analyze and
1561
                  --  resolve the expression.
1562
 
1563
                  elsif Rhs_Val_Known then
1564
 
1565
                     --  Note that Rhs_Val has already been normalized to
1566
                     --  be an unsigned value with the proper number of bits.
1567
 
1568
                     Rhs :=
1569
                       Make_Integer_Literal (Loc, Rhs_Val);
1570
 
1571
                  --  Otherwise we need an unchecked conversion
1572
 
1573
                  else
1574
                     Fixup_Rhs;
1575
                  end if;
1576
 
1577
                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1578
               end if;
1579
 
1580
               if Nkind (New_Rhs) = N_Op_And then
1581
                  Set_Paren_Count (New_Rhs, 1);
1582
               end if;
1583
 
1584
               New_Rhs :=
1585
                 Make_Op_Or (Loc,
1586
                   Left_Opnd  => New_Rhs,
1587
                   Right_Opnd => Or_Rhs);
1588
            end;
1589
         end if;
1590
 
1591
         --  Now do the rewrite
1592
 
1593
         Rewrite (N,
1594
           Make_Assignment_Statement (Loc,
1595
             Name       => New_Lhs,
1596
             Expression =>
1597
               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1598
         Set_Assignment_OK (Name (N), Ass_OK);
1599
 
1600
      --  All other component sizes for non-modular case
1601
 
1602
      else
1603
         --  We generate
1604
 
1605
         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1606
 
1607
         --  where Subscr is the computed linear subscript
1608
 
1609
         declare
1610
            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1611
            Set_nn  : Entity_Id;
1612
            Subscr  : Node_Id;
1613
            Atyp    : Entity_Id;
1614
 
1615
         begin
1616
            if No (Bits_nn) then
1617
 
1618
               --  Error, most likely High_Integrity_Mode restriction
1619
 
1620
               return;
1621
            end if;
1622
 
1623
            --  Acquire proper Set entity. We use the aligned or unaligned
1624
            --  case as appropriate.
1625
 
1626
            if Known_Aligned_Enough (Obj, Csiz) then
1627
               Set_nn := RTE (Set_Id (Csiz));
1628
            else
1629
               Set_nn := RTE (SetU_Id (Csiz));
1630
            end if;
1631
 
1632
            --  Now generate the set reference
1633
 
1634
            Obj := Relocate_Node (Prefix (Lhs));
1635
            Convert_To_Actual_Subtype (Obj);
1636
            Atyp := Etype (Obj);
1637
            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1638
 
1639
            --  Below we must make the assumption that Obj is
1640
            --  at least byte aligned, since otherwise its address
1641
            --  cannot be taken. The assumption holds since the
1642
            --  only arrays that can be misaligned are small packed
1643
            --  arrays which are implemented as a modular type, and
1644
            --  that is not the case here.
1645
 
1646
            Rewrite (N,
1647
              Make_Procedure_Call_Statement (Loc,
1648
                  Name => New_Occurrence_Of (Set_nn, Loc),
1649
                  Parameter_Associations => New_List (
1650
                    Make_Attribute_Reference (Loc,
1651
                      Prefix         => Obj,
1652
                      Attribute_Name => Name_Address),
1653
                    Subscr,
1654
                    Unchecked_Convert_To (Bits_nn,
1655
                      Convert_To (Ctyp, Rhs)))));
1656
 
1657
         end;
1658
      end if;
1659
 
1660
      Analyze (N, Suppress => All_Checks);
1661
   end Expand_Bit_Packed_Element_Set;
1662
 
1663
   -------------------------------------
1664
   -- Expand_Packed_Address_Reference --
1665
   -------------------------------------
1666
 
1667
   procedure Expand_Packed_Address_Reference (N : Node_Id) is
1668
      Loc    : constant Source_Ptr := Sloc (N);
1669
      Ploc   : Source_Ptr;
1670
      Pref   : Node_Id;
1671
      Expr   : Node_Id;
1672
      Term   : Node_Id;
1673
      Atyp   : Entity_Id;
1674
      Subscr : Node_Id;
1675
 
1676
   begin
1677
      Pref := Prefix (N);
1678
      Expr := Empty;
1679
 
1680
      --  We build up an expression serially that has the form
1681
 
1682
      --    outer_object'Address
1683
      --      + (linear-subscript * component_size  for each array reference
1684
      --      +  field'Bit_Position                 for each record field
1685
      --      +  ...
1686
      --      +  ...) / Storage_Unit;
1687
 
1688
      --  Some additional conversions are required to deal with the addition
1689
      --  operation, which is not normally visible to generated code.
1690
 
1691
      loop
1692
         Ploc := Sloc (Pref);
1693
 
1694
         if Nkind (Pref) = N_Indexed_Component then
1695
            Convert_To_Actual_Subtype (Prefix (Pref));
1696
            Atyp := Etype (Prefix (Pref));
1697
            Compute_Linear_Subscript (Atyp, Pref, Subscr);
1698
 
1699
            Term :=
1700
              Make_Op_Multiply (Ploc,
1701
                Left_Opnd => Subscr,
1702
                Right_Opnd =>
1703
                 Make_Attribute_Reference (Ploc,
1704
                   Prefix         => New_Occurrence_Of (Atyp, Ploc),
1705
                   Attribute_Name => Name_Component_Size));
1706
 
1707
         elsif Nkind (Pref) = N_Selected_Component then
1708
            Term :=
1709
              Make_Attribute_Reference (Ploc,
1710
                Prefix         => Selector_Name (Pref),
1711
                Attribute_Name => Name_Bit_Position);
1712
 
1713
         else
1714
            exit;
1715
         end if;
1716
 
1717
         Term := Convert_To (RTE (RE_Integer_Address), Term);
1718
 
1719
         if No (Expr) then
1720
            Expr := Term;
1721
 
1722
         else
1723
            Expr :=
1724
              Make_Op_Add (Ploc,
1725
                Left_Opnd  => Expr,
1726
                Right_Opnd => Term);
1727
         end if;
1728
 
1729
         Pref := Prefix (Pref);
1730
      end loop;
1731
 
1732
      Rewrite (N,
1733
        Unchecked_Convert_To (RTE (RE_Address),
1734
          Make_Op_Add (Loc,
1735
            Left_Opnd =>
1736
              Unchecked_Convert_To (RTE (RE_Integer_Address),
1737
                Make_Attribute_Reference (Loc,
1738
                  Prefix         => Pref,
1739
                  Attribute_Name => Name_Address)),
1740
 
1741
            Right_Opnd =>
1742
              Make_Op_Divide (Loc,
1743
                Left_Opnd => Expr,
1744
                Right_Opnd =>
1745
                  Make_Integer_Literal (Loc, System_Storage_Unit)))));
1746
 
1747
      Analyze_And_Resolve (N, RTE (RE_Address));
1748
   end Expand_Packed_Address_Reference;
1749
 
1750
   ------------------------------------
1751
   -- Expand_Packed_Boolean_Operator --
1752
   ------------------------------------
1753
 
1754
   --  This routine expands "a op b" for the packed cases
1755
 
1756
   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1757
      Loc : constant Source_Ptr := Sloc (N);
1758
      Typ : constant Entity_Id  := Etype (N);
1759
      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1760
      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1761
 
1762
      Ltyp : Entity_Id;
1763
      Rtyp : Entity_Id;
1764
      PAT  : Entity_Id;
1765
 
1766
   begin
1767
      Convert_To_Actual_Subtype (L);
1768
      Convert_To_Actual_Subtype (R);
1769
 
1770
      Ensure_Defined (Etype (L), N);
1771
      Ensure_Defined (Etype (R), N);
1772
 
1773
      Apply_Length_Check (R, Etype (L));
1774
 
1775
      Ltyp := Etype (L);
1776
      Rtyp := Etype (R);
1777
 
1778
      --  Deal with silly case of XOR where the subcomponent has a range
1779
      --  True .. True where an exception must be raised.
1780
 
1781
      if Nkind (N) = N_Op_Xor then
1782
         Silly_Boolean_Array_Xor_Test (N, Rtyp);
1783
      end if;
1784
 
1785
      --  Now that that silliness is taken care of, get packed array type
1786
 
1787
      Convert_To_PAT_Type (L);
1788
      Convert_To_PAT_Type (R);
1789
 
1790
      PAT := Etype (L);
1791
 
1792
      --  For the modular case, we expand a op b into
1793
 
1794
      --    rtyp!(pat!(a) op pat!(b))
1795
 
1796
      --  where rtyp is the Etype of the left operand. Note that we do not
1797
      --  convert to the base type, since this would be unconstrained, and
1798
      --  hence not have a corresponding packed array type set.
1799
 
1800
      --  Note that both operands must be modular for this code to be used
1801
 
1802
      if Is_Modular_Integer_Type (PAT)
1803
           and then
1804
         Is_Modular_Integer_Type (Etype (R))
1805
      then
1806
         declare
1807
            P : Node_Id;
1808
 
1809
         begin
1810
            if Nkind (N) = N_Op_And then
1811
               P := Make_Op_And (Loc, L, R);
1812
 
1813
            elsif Nkind (N) = N_Op_Or then
1814
               P := Make_Op_Or  (Loc, L, R);
1815
 
1816
            else -- Nkind (N) = N_Op_Xor
1817
               P := Make_Op_Xor (Loc, L, R);
1818
            end if;
1819
 
1820
            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1821
         end;
1822
 
1823
      --  For the array case, we insert the actions
1824
 
1825
      --    Result : Ltype;
1826
 
1827
      --    System.Bit_Ops.Bit_And/Or/Xor
1828
      --     (Left'Address,
1829
      --      Ltype'Length * Ltype'Component_Size;
1830
      --      Right'Address,
1831
      --      Rtype'Length * Rtype'Component_Size
1832
      --      Result'Address);
1833
 
1834
      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1835
      --  the second argument and fourth arguments are the lengths of the
1836
      --  operands in bits. Then we replace the expression by a reference
1837
      --  to Result.
1838
 
1839
      --  Note that if we are mixing a modular and array operand, everything
1840
      --  works fine, since we ensure that the modular representation has the
1841
      --  same physical layout as the array representation (that's what the
1842
      --  left justified modular stuff in the big-endian case is about).
1843
 
1844
      else
1845
         declare
1846
            Result_Ent : constant Entity_Id :=
1847
                           Make_Defining_Identifier (Loc,
1848
                             Chars => New_Internal_Name ('T'));
1849
 
1850
            E_Id : RE_Id;
1851
 
1852
         begin
1853
            if Nkind (N) = N_Op_And then
1854
               E_Id := RE_Bit_And;
1855
 
1856
            elsif Nkind (N) = N_Op_Or then
1857
               E_Id := RE_Bit_Or;
1858
 
1859
            else -- Nkind (N) = N_Op_Xor
1860
               E_Id := RE_Bit_Xor;
1861
            end if;
1862
 
1863
            Insert_Actions (N, New_List (
1864
 
1865
              Make_Object_Declaration (Loc,
1866
                Defining_Identifier => Result_Ent,
1867
                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1868
 
1869
              Make_Procedure_Call_Statement (Loc,
1870
                Name => New_Occurrence_Of (RTE (E_Id), Loc),
1871
                  Parameter_Associations => New_List (
1872
 
1873
                    Make_Byte_Aligned_Attribute_Reference (Loc,
1874
                      Prefix         => L,
1875
                      Attribute_Name => Name_Address),
1876
 
1877
                    Make_Op_Multiply (Loc,
1878
                      Left_Opnd =>
1879
                        Make_Attribute_Reference (Loc,
1880
                          Prefix         =>
1881
                            New_Occurrence_Of
1882
                              (Etype (First_Index (Ltyp)), Loc),
1883
                          Attribute_Name => Name_Range_Length),
1884
 
1885
                      Right_Opnd =>
1886
                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1887
 
1888
                    Make_Byte_Aligned_Attribute_Reference (Loc,
1889
                      Prefix         => R,
1890
                      Attribute_Name => Name_Address),
1891
 
1892
                    Make_Op_Multiply (Loc,
1893
                      Left_Opnd =>
1894
                        Make_Attribute_Reference (Loc,
1895
                          Prefix         =>
1896
                            New_Occurrence_Of
1897
                              (Etype (First_Index (Rtyp)), Loc),
1898
                          Attribute_Name => Name_Range_Length),
1899
 
1900
                      Right_Opnd =>
1901
                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1902
 
1903
                    Make_Byte_Aligned_Attribute_Reference (Loc,
1904
                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
1905
                      Attribute_Name => Name_Address)))));
1906
 
1907
            Rewrite (N,
1908
              New_Occurrence_Of (Result_Ent, Loc));
1909
         end;
1910
      end if;
1911
 
1912
      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1913
   end Expand_Packed_Boolean_Operator;
1914
 
1915
   -------------------------------------
1916
   -- Expand_Packed_Element_Reference --
1917
   -------------------------------------
1918
 
1919
   procedure Expand_Packed_Element_Reference (N : Node_Id) is
1920
      Loc   : constant Source_Ptr := Sloc (N);
1921
      Obj   : Node_Id;
1922
      Atyp  : Entity_Id;
1923
      PAT   : Entity_Id;
1924
      Ctyp  : Entity_Id;
1925
      Csiz  : Int;
1926
      Shift : Node_Id;
1927
      Cmask : Uint;
1928
      Lit   : Node_Id;
1929
      Arg   : Node_Id;
1930
 
1931
   begin
1932
      --  If not bit packed, we have the enumeration case, which is easily
1933
      --  dealt with (just adjust the subscripts of the indexed component)
1934
 
1935
      --  Note: this leaves the result as an indexed component, which is
1936
      --  still a variable, so can be used in the assignment case, as is
1937
      --  required in the enumeration case.
1938
 
1939
      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1940
         Setup_Enumeration_Packed_Array_Reference (N);
1941
         return;
1942
      end if;
1943
 
1944
      --  Remaining processing is for the bit-packed case
1945
 
1946
      Obj := Relocate_Node (Prefix (N));
1947
      Convert_To_Actual_Subtype (Obj);
1948
      Atyp := Etype (Obj);
1949
      PAT  := Packed_Array_Type (Atyp);
1950
      Ctyp := Component_Type (Atyp);
1951
      Csiz := UI_To_Int (Component_Size (Atyp));
1952
 
1953
      --  Case of component size 1,2,4 or any component size for the modular
1954
      --  case. These are the cases for which we can inline the code.
1955
 
1956
      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1957
        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1958
      then
1959
         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1960
         Lit := Make_Integer_Literal (Loc, Cmask);
1961
         Set_Print_In_Hex (Lit);
1962
 
1963
         --  We generate a shift right to position the field, followed by a
1964
         --  masking operation to extract the bit field, and we finally do an
1965
         --  unchecked conversion to convert the result to the required target.
1966
 
1967
         --  Note that the unchecked conversion automatically deals with the
1968
         --  bias if we are dealing with a biased representation. What will
1969
         --  happen is that we temporarily generate the biased representation,
1970
         --  but almost immediately that will be converted to the original
1971
         --  unbiased component type, and the bias will disappear.
1972
 
1973
         Arg :=
1974
           Make_Op_And (Loc,
1975
             Left_Opnd  => Make_Shift_Right (Obj, Shift),
1976
             Right_Opnd => Lit);
1977
 
1978
         --  We needed to analyze this before we do the unchecked convert
1979
         --  below, but we need it temporarily attached to the tree for
1980
         --  this analysis (hence the temporary Set_Parent call).
1981
 
1982
         Set_Parent (Arg, Parent (N));
1983
         Analyze_And_Resolve (Arg);
1984
 
1985
         Rewrite (N,
1986
           RJ_Unchecked_Convert_To (Ctyp, Arg));
1987
 
1988
      --  All other component sizes for non-modular case
1989
 
1990
      else
1991
         --  We generate
1992
 
1993
         --    Component_Type!(Get_nn (Arr'address, Subscr))
1994
 
1995
         --  where Subscr is the computed linear subscript
1996
 
1997
         declare
1998
            Get_nn : Entity_Id;
1999
            Subscr : Node_Id;
2000
 
2001
         begin
2002
            --  Acquire proper Get entity. We use the aligned or unaligned
2003
            --  case as appropriate.
2004
 
2005
            if Known_Aligned_Enough (Obj, Csiz) then
2006
               Get_nn := RTE (Get_Id (Csiz));
2007
            else
2008
               Get_nn := RTE (GetU_Id (Csiz));
2009
            end if;
2010
 
2011
            --  Now generate the get reference
2012
 
2013
            Compute_Linear_Subscript (Atyp, N, Subscr);
2014
 
2015
            --  Below we make the assumption that Obj is at least byte
2016
            --  aligned, since otherwise its address cannot be taken.
2017
            --  The assumption holds since the only arrays that can be
2018
            --  misaligned are small packed arrays which are implemented
2019
            --  as a modular type, and that is not the case here.
2020
 
2021
            Rewrite (N,
2022
              Unchecked_Convert_To (Ctyp,
2023
                Make_Function_Call (Loc,
2024
                  Name => New_Occurrence_Of (Get_nn, Loc),
2025
                  Parameter_Associations => New_List (
2026
                    Make_Attribute_Reference (Loc,
2027
                      Prefix         => Obj,
2028
                      Attribute_Name => Name_Address),
2029
                    Subscr))));
2030
         end;
2031
      end if;
2032
 
2033
      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
2034
 
2035
   end Expand_Packed_Element_Reference;
2036
 
2037
   ----------------------
2038
   -- Expand_Packed_Eq --
2039
   ----------------------
2040
 
2041
   --  Handles expansion of "=" on packed array types
2042
 
2043
   procedure Expand_Packed_Eq (N : Node_Id) is
2044
      Loc : constant Source_Ptr := Sloc (N);
2045
      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
2046
      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
2047
 
2048
      LLexpr : Node_Id;
2049
      RLexpr : Node_Id;
2050
 
2051
      Ltyp : Entity_Id;
2052
      Rtyp : Entity_Id;
2053
      PAT  : Entity_Id;
2054
 
2055
   begin
2056
      Convert_To_Actual_Subtype (L);
2057
      Convert_To_Actual_Subtype (R);
2058
      Ltyp := Underlying_Type (Etype (L));
2059
      Rtyp := Underlying_Type (Etype (R));
2060
 
2061
      Convert_To_PAT_Type (L);
2062
      Convert_To_PAT_Type (R);
2063
      PAT := Etype (L);
2064
 
2065
      LLexpr :=
2066
        Make_Op_Multiply (Loc,
2067
          Left_Opnd =>
2068
            Make_Attribute_Reference (Loc,
2069
              Prefix         => New_Occurrence_Of (Ltyp, Loc),
2070
              Attribute_Name => Name_Length),
2071
          Right_Opnd =>
2072
            Make_Integer_Literal (Loc, Component_Size (Ltyp)));
2073
 
2074
      RLexpr :=
2075
        Make_Op_Multiply (Loc,
2076
          Left_Opnd =>
2077
            Make_Attribute_Reference (Loc,
2078
              Prefix         => New_Occurrence_Of (Rtyp, Loc),
2079
              Attribute_Name => Name_Length),
2080
          Right_Opnd =>
2081
            Make_Integer_Literal (Loc, Component_Size (Rtyp)));
2082
 
2083
      --  For the modular case, we transform the comparison to:
2084
 
2085
      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2086
 
2087
      --  where PAT is the packed array type. This works fine, since in the
2088
      --  modular case we guarantee that the unused bits are always zeroes.
2089
      --  We do have to compare the lengths because we could be comparing
2090
      --  two different subtypes of the same base type.
2091
 
2092
      if Is_Modular_Integer_Type (PAT) then
2093
         Rewrite (N,
2094
           Make_And_Then (Loc,
2095
             Left_Opnd =>
2096
               Make_Op_Eq (Loc,
2097
                 Left_Opnd  => LLexpr,
2098
                 Right_Opnd => RLexpr),
2099
 
2100
             Right_Opnd =>
2101
               Make_Op_Eq (Loc,
2102
                 Left_Opnd => L,
2103
                 Right_Opnd => R)));
2104
 
2105
      --  For the non-modular case, we call a runtime routine
2106
 
2107
      --    System.Bit_Ops.Bit_Eq
2108
      --      (L'Address, L_Length, R'Address, R_Length)
2109
 
2110
      --  where PAT is the packed array type, and the lengths are the lengths
2111
      --  in bits of the original packed arrays. This routine takes care of
2112
      --  not comparing the unused bits in the last byte.
2113
 
2114
      else
2115
         Rewrite (N,
2116
           Make_Function_Call (Loc,
2117
             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
2118
             Parameter_Associations => New_List (
2119
               Make_Byte_Aligned_Attribute_Reference (Loc,
2120
                 Prefix         => L,
2121
                 Attribute_Name => Name_Address),
2122
 
2123
               LLexpr,
2124
 
2125
               Make_Byte_Aligned_Attribute_Reference (Loc,
2126
                 Prefix         => R,
2127
                 Attribute_Name => Name_Address),
2128
 
2129
               RLexpr)));
2130
      end if;
2131
 
2132
      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
2133
   end Expand_Packed_Eq;
2134
 
2135
   -----------------------
2136
   -- Expand_Packed_Not --
2137
   -----------------------
2138
 
2139
   --  Handles expansion of "not" on packed array types
2140
 
2141
   procedure Expand_Packed_Not (N : Node_Id) is
2142
      Loc  : constant Source_Ptr := Sloc (N);
2143
      Typ  : constant Entity_Id  := Etype (N);
2144
      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
2145
 
2146
      Rtyp : Entity_Id;
2147
      PAT  : Entity_Id;
2148
      Lit  : Node_Id;
2149
 
2150
   begin
2151
      Convert_To_Actual_Subtype (Opnd);
2152
      Rtyp := Etype (Opnd);
2153
 
2154
      --  Deal with silly False..False and True..True subtype case
2155
 
2156
      Silly_Boolean_Array_Not_Test (N, Rtyp);
2157
 
2158
      --  Now that the silliness is taken care of, get packed array type
2159
 
2160
      Convert_To_PAT_Type (Opnd);
2161
      PAT := Etype (Opnd);
2162
 
2163
      --  For the case where the packed array type is a modular type,
2164
      --  not A expands simply into:
2165
 
2166
      --     rtyp!(PAT!(A) xor mask)
2167
 
2168
      --  where PAT is the packed array type, and mask is a mask of all
2169
      --  one bits of length equal to the size of this packed type and
2170
      --  rtyp is the actual subtype of the operand
2171
 
2172
      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
2173
      Set_Print_In_Hex (Lit);
2174
 
2175
      if not Is_Array_Type (PAT) then
2176
         Rewrite (N,
2177
           Unchecked_Convert_To (Rtyp,
2178
             Make_Op_Xor (Loc,
2179
               Left_Opnd  => Opnd,
2180
               Right_Opnd => Lit)));
2181
 
2182
      --  For the array case, we insert the actions
2183
 
2184
      --    Result : Typ;
2185
 
2186
      --    System.Bit_Ops.Bit_Not
2187
      --     (Opnd'Address,
2188
      --      Typ'Length * Typ'Component_Size;
2189
      --      Result'Address);
2190
 
2191
      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second
2192
      --  argument is the length of the operand in bits. Then we replace
2193
      --  the expression by a reference to Result.
2194
 
2195
      else
2196
         declare
2197
            Result_Ent : constant Entity_Id :=
2198
                           Make_Defining_Identifier (Loc,
2199
                             Chars => New_Internal_Name ('T'));
2200
 
2201
         begin
2202
            Insert_Actions (N, New_List (
2203
 
2204
              Make_Object_Declaration (Loc,
2205
                Defining_Identifier => Result_Ent,
2206
                Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2207
 
2208
              Make_Procedure_Call_Statement (Loc,
2209
                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2210
                  Parameter_Associations => New_List (
2211
 
2212
                    Make_Byte_Aligned_Attribute_Reference (Loc,
2213
                      Prefix         => Opnd,
2214
                      Attribute_Name => Name_Address),
2215
 
2216
                    Make_Op_Multiply (Loc,
2217
                      Left_Opnd =>
2218
                        Make_Attribute_Reference (Loc,
2219
                          Prefix         =>
2220
                            New_Occurrence_Of
2221
                              (Etype (First_Index (Rtyp)), Loc),
2222
                          Attribute_Name => Name_Range_Length),
2223
 
2224
                      Right_Opnd =>
2225
                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2226
 
2227
                    Make_Byte_Aligned_Attribute_Reference (Loc,
2228
                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
2229
                      Attribute_Name => Name_Address)))));
2230
 
2231
            Rewrite (N,
2232
              New_Occurrence_Of (Result_Ent, Loc));
2233
         end;
2234
      end if;
2235
 
2236
      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2237
 
2238
   end Expand_Packed_Not;
2239
 
2240
   -------------------------------------
2241
   -- Involves_Packed_Array_Reference --
2242
   -------------------------------------
2243
 
2244
   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2245
   begin
2246
      if Nkind (N) = N_Indexed_Component
2247
        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2248
      then
2249
         return True;
2250
 
2251
      elsif Nkind (N) = N_Selected_Component then
2252
         return Involves_Packed_Array_Reference (Prefix (N));
2253
 
2254
      else
2255
         return False;
2256
      end if;
2257
   end Involves_Packed_Array_Reference;
2258
 
2259
   --------------------------
2260
   -- Known_Aligned_Enough --
2261
   --------------------------
2262
 
2263
   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2264
      Typ : constant Entity_Id := Etype (Obj);
2265
 
2266
      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2267
      --  If the component is in a record that contains previous packed
2268
      --  components, consider it unaligned because the back-end might
2269
      --  choose to pack the rest of the record. Lead to less efficient code,
2270
      --  but safer vis-a-vis of back-end choices.
2271
 
2272
      --------------------------------
2273
      -- In_Partially_Packed_Record --
2274
      --------------------------------
2275
 
2276
      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2277
         Rec_Type  : constant Entity_Id := Scope (Comp);
2278
         Prev_Comp : Entity_Id;
2279
 
2280
      begin
2281
         Prev_Comp := First_Entity (Rec_Type);
2282
         while Present (Prev_Comp) loop
2283
            if Is_Packed (Etype (Prev_Comp)) then
2284
               return True;
2285
 
2286
            elsif Prev_Comp = Comp then
2287
               return False;
2288
            end if;
2289
 
2290
            Next_Entity (Prev_Comp);
2291
         end loop;
2292
 
2293
         return False;
2294
      end  In_Partially_Packed_Record;
2295
 
2296
   --  Start of processing for Known_Aligned_Enough
2297
 
2298
   begin
2299
      --  Odd bit sizes don't need alignment anyway
2300
 
2301
      if Csiz mod 2 = 1 then
2302
         return True;
2303
 
2304
      --  If we have a specified alignment, see if it is sufficient, if not
2305
      --  then we can't possibly be aligned enough in any case.
2306
 
2307
      elsif Known_Alignment (Etype (Obj)) then
2308
         --  Alignment required is 4 if size is a multiple of 4, and
2309
         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2310
 
2311
         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2312
            return False;
2313
         end if;
2314
      end if;
2315
 
2316
      --  OK, alignment should be sufficient, if object is aligned
2317
 
2318
      --  If object is strictly aligned, then it is definitely aligned
2319
 
2320
      if Strict_Alignment (Typ) then
2321
         return True;
2322
 
2323
      --  Case of subscripted array reference
2324
 
2325
      elsif Nkind (Obj) = N_Indexed_Component then
2326
 
2327
         --  If we have a pointer to an array, then this is definitely
2328
         --  aligned, because pointers always point to aligned versions.
2329
 
2330
         if Is_Access_Type (Etype (Prefix (Obj))) then
2331
            return True;
2332
 
2333
         --  Otherwise, go look at the prefix
2334
 
2335
         else
2336
            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2337
         end if;
2338
 
2339
      --  Case of record field
2340
 
2341
      elsif Nkind (Obj) = N_Selected_Component then
2342
 
2343
         --  What is significant here is whether the record type is packed
2344
 
2345
         if Is_Record_Type (Etype (Prefix (Obj)))
2346
           and then Is_Packed (Etype (Prefix (Obj)))
2347
         then
2348
            return False;
2349
 
2350
         --  Or the component has a component clause which might cause
2351
         --  the component to become unaligned (we can't tell if the
2352
         --  backend is doing alignment computations).
2353
 
2354
         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2355
            return False;
2356
 
2357
         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2358
            return False;
2359
 
2360
         --  In all other cases, go look at prefix
2361
 
2362
         else
2363
            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2364
         end if;
2365
 
2366
      elsif Nkind (Obj) = N_Type_Conversion then
2367
         return Known_Aligned_Enough (Expression (Obj), Csiz);
2368
 
2369
      --  For a formal parameter, it is safer to assume that it is not
2370
      --  aligned, because the formal may be unconstrained while the actual
2371
      --  is constrained. In this situation, a small constrained packed
2372
      --  array, represented in modular form, may be unaligned.
2373
 
2374
      elsif Is_Entity_Name (Obj) then
2375
         return not Is_Formal (Entity (Obj));
2376
      else
2377
 
2378
      --  If none of the above, must be aligned
2379
         return True;
2380
      end if;
2381
   end Known_Aligned_Enough;
2382
 
2383
   ---------------------
2384
   -- Make_Shift_Left --
2385
   ---------------------
2386
 
2387
   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2388
      Nod : Node_Id;
2389
 
2390
   begin
2391
      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2392
         return N;
2393
      else
2394
         Nod :=
2395
           Make_Op_Shift_Left (Sloc (N),
2396
             Left_Opnd  => N,
2397
             Right_Opnd => S);
2398
         Set_Shift_Count_OK (Nod, True);
2399
         return Nod;
2400
      end if;
2401
   end Make_Shift_Left;
2402
 
2403
   ----------------------
2404
   -- Make_Shift_Right --
2405
   ----------------------
2406
 
2407
   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2408
      Nod : Node_Id;
2409
 
2410
   begin
2411
      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2412
         return N;
2413
      else
2414
         Nod :=
2415
           Make_Op_Shift_Right (Sloc (N),
2416
             Left_Opnd  => N,
2417
             Right_Opnd => S);
2418
         Set_Shift_Count_OK (Nod, True);
2419
         return Nod;
2420
      end if;
2421
   end Make_Shift_Right;
2422
 
2423
   -----------------------------
2424
   -- RJ_Unchecked_Convert_To --
2425
   -----------------------------
2426
 
2427
   function RJ_Unchecked_Convert_To
2428
     (Typ  : Entity_Id;
2429
      Expr : Node_Id) return Node_Id
2430
   is
2431
      Source_Typ : constant Entity_Id := Etype (Expr);
2432
      Target_Typ : constant Entity_Id := Typ;
2433
 
2434
      Src : Node_Id := Expr;
2435
 
2436
      Source_Siz : Nat;
2437
      Target_Siz : Nat;
2438
 
2439
   begin
2440
      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2441
      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2442
 
2443
      --  First step, if the source type is not a discrete type, then we
2444
      --  first convert to a modular type of the source length, since
2445
      --  otherwise, on a big-endian machine, we get left-justification.
2446
      --  We do it for little-endian machines as well, because there might
2447
      --  be junk bits that are not cleared if the type is not numeric.
2448
 
2449
      if Source_Siz /= Target_Siz
2450
        and then  not Is_Discrete_Type (Source_Typ)
2451
      then
2452
         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2453
      end if;
2454
 
2455
      --  In the big endian case, if the lengths of the two types differ,
2456
      --  then we must worry about possible left justification in the
2457
      --  conversion, and avoiding that is what this is all about.
2458
 
2459
      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2460
 
2461
         --  Next step. If the target is not a discrete type, then we first
2462
         --  convert to a modular type of the target length, since
2463
         --  otherwise, on a big-endian machine, we get left-justification.
2464
 
2465
         if not Is_Discrete_Type (Target_Typ) then
2466
            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2467
         end if;
2468
      end if;
2469
 
2470
      --  And now we can do the final conversion to the target type
2471
 
2472
      return Unchecked_Convert_To (Target_Typ, Src);
2473
   end RJ_Unchecked_Convert_To;
2474
 
2475
   ----------------------------------------------
2476
   -- Setup_Enumeration_Packed_Array_Reference --
2477
   ----------------------------------------------
2478
 
2479
   --  All we have to do here is to find the subscripts that correspond
2480
   --  to the index positions that have non-standard enumeration types
2481
   --  and insert a Pos attribute to get the proper subscript value.
2482
 
2483
   --  Finally the prefix must be uncheck converted to the corresponding
2484
   --  packed array type.
2485
 
2486
   --  Note that the component type is unchanged, so we do not need to
2487
   --  fiddle with the types (Gigi always automatically takes the packed
2488
   --  array type if it is set, as it will be in this case).
2489
 
2490
   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2491
      Pfx   : constant Node_Id   := Prefix (N);
2492
      Typ   : constant Entity_Id := Etype (N);
2493
      Exprs : constant List_Id   := Expressions (N);
2494
      Expr  : Node_Id;
2495
 
2496
   begin
2497
      --  If the array is unconstrained, then we replace the array
2498
      --  reference with its actual subtype. This actual subtype will
2499
      --  have a packed array type with appropriate bounds.
2500
 
2501
      if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
2502
         Convert_To_Actual_Subtype (Pfx);
2503
      end if;
2504
 
2505
      Expr := First (Exprs);
2506
      while Present (Expr) loop
2507
         declare
2508
            Loc      : constant Source_Ptr := Sloc (Expr);
2509
            Expr_Typ : constant Entity_Id := Etype (Expr);
2510
 
2511
         begin
2512
            if Is_Enumeration_Type (Expr_Typ)
2513
              and then Has_Non_Standard_Rep (Expr_Typ)
2514
            then
2515
               Rewrite (Expr,
2516
                 Make_Attribute_Reference (Loc,
2517
                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2518
                   Attribute_Name => Name_Pos,
2519
                   Expressions    => New_List (Relocate_Node (Expr))));
2520
               Analyze_And_Resolve (Expr, Standard_Natural);
2521
            end if;
2522
         end;
2523
 
2524
         Next (Expr);
2525
      end loop;
2526
 
2527
      Rewrite (N,
2528
        Make_Indexed_Component (Sloc (N),
2529
          Prefix      =>
2530
            Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
2531
          Expressions => Exprs));
2532
 
2533
      Analyze_And_Resolve (N, Typ);
2534
 
2535
   end Setup_Enumeration_Packed_Array_Reference;
2536
 
2537
   -----------------------------------------
2538
   -- Setup_Inline_Packed_Array_Reference --
2539
   -----------------------------------------
2540
 
2541
   procedure Setup_Inline_Packed_Array_Reference
2542
     (N      : Node_Id;
2543
      Atyp   : Entity_Id;
2544
      Obj    : in out Node_Id;
2545
      Cmask  : out Uint;
2546
      Shift  : out Node_Id)
2547
   is
2548
      Loc    : constant Source_Ptr := Sloc (N);
2549
      PAT    : Entity_Id;
2550
      Otyp   : Entity_Id;
2551
      Csiz   : Uint;
2552
      Osiz   : Uint;
2553
 
2554
   begin
2555
      Csiz := Component_Size (Atyp);
2556
 
2557
      Convert_To_PAT_Type (Obj);
2558
      PAT := Etype (Obj);
2559
 
2560
      Cmask := 2 ** Csiz - 1;
2561
 
2562
      if Is_Array_Type (PAT) then
2563
         Otyp := Component_Type (PAT);
2564
         Osiz := Component_Size (PAT);
2565
 
2566
      else
2567
         Otyp := PAT;
2568
 
2569
         --  In the case where the PAT is a modular type, we want the actual
2570
         --  size in bits of the modular value we use. This is neither the
2571
         --  Object_Size nor the Value_Size, either of which may have been
2572
         --  reset to strange values, but rather the minimum size. Note that
2573
         --  since this is a modular type with full range, the issue of
2574
         --  biased representation does not arise.
2575
 
2576
         Osiz := UI_From_Int (Minimum_Size (Otyp));
2577
      end if;
2578
 
2579
      Compute_Linear_Subscript (Atyp, N, Shift);
2580
 
2581
      --  If the component size is not 1, then the subscript must be
2582
      --  multiplied by the component size to get the shift count.
2583
 
2584
      if Csiz /= 1 then
2585
         Shift :=
2586
           Make_Op_Multiply (Loc,
2587
             Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2588
             Right_Opnd => Shift);
2589
      end if;
2590
 
2591
      --  If we have the array case, then this shift count must be broken
2592
      --  down into a byte subscript, and a shift within the byte.
2593
 
2594
      if Is_Array_Type (PAT) then
2595
 
2596
         declare
2597
            New_Shift : Node_Id;
2598
 
2599
         begin
2600
            --  We must analyze shift, since we will duplicate it
2601
 
2602
            Set_Parent (Shift, N);
2603
            Analyze_And_Resolve
2604
              (Shift, Standard_Integer, Suppress => All_Checks);
2605
 
2606
            --  The shift count within the word is
2607
            --    shift mod Osiz
2608
 
2609
            New_Shift :=
2610
              Make_Op_Mod (Loc,
2611
                Left_Opnd  => Duplicate_Subexpr (Shift),
2612
                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2613
 
2614
            --  The subscript to be used on the PAT array is
2615
            --    shift / Osiz
2616
 
2617
            Obj :=
2618
              Make_Indexed_Component (Loc,
2619
                Prefix => Obj,
2620
                Expressions => New_List (
2621
                  Make_Op_Divide (Loc,
2622
                    Left_Opnd => Duplicate_Subexpr (Shift),
2623
                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2624
 
2625
            Shift := New_Shift;
2626
         end;
2627
 
2628
      --  For the modular integer case, the object to be manipulated is
2629
      --  the entire array, so Obj is unchanged. Note that we will reset
2630
      --  its type to PAT before returning to the caller.
2631
 
2632
      else
2633
         null;
2634
      end if;
2635
 
2636
      --  The one remaining step is to modify the shift count for the
2637
      --  big-endian case. Consider the following example in a byte:
2638
 
2639
      --     xxxxxxxx  bits of byte
2640
      --     vvvvvvvv  bits of value
2641
      --     33221100  little-endian numbering
2642
      --     00112233  big-endian numbering
2643
 
2644
      --  Here we have the case of 2-bit fields
2645
 
2646
      --  For the little-endian case, we already have the proper shift
2647
      --  count set, e.g. for element 2, the shift count is 2*2 = 4.
2648
 
2649
      --  For the big endian case, we have to adjust the shift count,
2650
      --  computing it as (N - F) - shift, where N is the number of bits
2651
      --  in an element of the array used to implement the packed array,
2652
      --  F is the number of bits in a source level array element, and
2653
      --  shift is the count so far computed.
2654
 
2655
      if Bytes_Big_Endian then
2656
         Shift :=
2657
           Make_Op_Subtract (Loc,
2658
             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2659
             Right_Opnd => Shift);
2660
      end if;
2661
 
2662
      Set_Parent (Shift, N);
2663
      Set_Parent (Obj, N);
2664
      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2665
      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2666
 
2667
      --  Make sure final type of object is the appropriate packed type
2668
 
2669
      Set_Etype (Obj, Otyp);
2670
 
2671
   end Setup_Inline_Packed_Array_Reference;
2672
 
2673
end Exp_Pakd;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.