1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ U T I L --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Exp_Aggr; use Exp_Aggr;
|
33 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
34 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
35 |
|
|
with Inline; use Inline;
|
36 |
|
|
with Itypes; use Itypes;
|
37 |
|
|
with Lib; use Lib;
|
38 |
|
|
with Nlists; use Nlists;
|
39 |
|
|
with Nmake; use Nmake;
|
40 |
|
|
with Opt; use Opt;
|
41 |
|
|
with Restrict; use Restrict;
|
42 |
|
|
with Rident; use Rident;
|
43 |
|
|
with Sem; use Sem;
|
44 |
|
|
with Sem_Aux; use Sem_Aux;
|
45 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
46 |
|
|
with Sem_SCIL; use Sem_SCIL;
|
47 |
|
|
with Sem_Eval; use Sem_Eval;
|
48 |
|
|
with Sem_Res; use Sem_Res;
|
49 |
|
|
with Sem_Type; use Sem_Type;
|
50 |
|
|
with Sem_Util; use Sem_Util;
|
51 |
|
|
with Snames; use Snames;
|
52 |
|
|
with Stand; use Stand;
|
53 |
|
|
with Stringt; use Stringt;
|
54 |
|
|
with Targparm; use Targparm;
|
55 |
|
|
with Tbuild; use Tbuild;
|
56 |
|
|
with Ttypes; use Ttypes;
|
57 |
|
|
with Uintp; use Uintp;
|
58 |
|
|
with Urealp; use Urealp;
|
59 |
|
|
with Validsw; use Validsw;
|
60 |
|
|
|
61 |
|
|
package body Exp_Util is
|
62 |
|
|
|
63 |
|
|
-----------------------
|
64 |
|
|
-- Local Subprograms --
|
65 |
|
|
-----------------------
|
66 |
|
|
|
67 |
|
|
function Build_Task_Array_Image
|
68 |
|
|
(Loc : Source_Ptr;
|
69 |
|
|
Id_Ref : Node_Id;
|
70 |
|
|
A_Type : Entity_Id;
|
71 |
|
|
Dyn : Boolean := False) return Node_Id;
|
72 |
|
|
-- Build function to generate the image string for a task that is an
|
73 |
|
|
-- array component, concatenating the images of each index. To avoid
|
74 |
|
|
-- storage leaks, the string is built with successive slice assignments.
|
75 |
|
|
-- The flag Dyn indicates whether this is called for the initialization
|
76 |
|
|
-- procedure of an array of tasks, or for the name of a dynamically
|
77 |
|
|
-- created task that is assigned to an indexed component.
|
78 |
|
|
|
79 |
|
|
function Build_Task_Image_Function
|
80 |
|
|
(Loc : Source_Ptr;
|
81 |
|
|
Decls : List_Id;
|
82 |
|
|
Stats : List_Id;
|
83 |
|
|
Res : Entity_Id) return Node_Id;
|
84 |
|
|
-- Common processing for Task_Array_Image and Task_Record_Image.
|
85 |
|
|
-- Build function body that computes image.
|
86 |
|
|
|
87 |
|
|
procedure Build_Task_Image_Prefix
|
88 |
|
|
(Loc : Source_Ptr;
|
89 |
|
|
Len : out Entity_Id;
|
90 |
|
|
Res : out Entity_Id;
|
91 |
|
|
Pos : out Entity_Id;
|
92 |
|
|
Prefix : Entity_Id;
|
93 |
|
|
Sum : Node_Id;
|
94 |
|
|
Decls : List_Id;
|
95 |
|
|
Stats : List_Id);
|
96 |
|
|
-- Common processing for Task_Array_Image and Task_Record_Image.
|
97 |
|
|
-- Create local variables and assign prefix of name to result string.
|
98 |
|
|
|
99 |
|
|
function Build_Task_Record_Image
|
100 |
|
|
(Loc : Source_Ptr;
|
101 |
|
|
Id_Ref : Node_Id;
|
102 |
|
|
Dyn : Boolean := False) return Node_Id;
|
103 |
|
|
-- Build function to generate the image string for a task that is a
|
104 |
|
|
-- record component. Concatenate name of variable with that of selector.
|
105 |
|
|
-- The flag Dyn indicates whether this is called for the initialization
|
106 |
|
|
-- procedure of record with task components, or for a dynamically
|
107 |
|
|
-- created task that is assigned to a selected component.
|
108 |
|
|
|
109 |
|
|
function Make_CW_Equivalent_Type
|
110 |
|
|
(T : Entity_Id;
|
111 |
|
|
E : Node_Id) return Entity_Id;
|
112 |
|
|
-- T is a class-wide type entity, E is the initial expression node that
|
113 |
|
|
-- constrains T in case such as: " X: T := E" or "new T'(E)"
|
114 |
|
|
-- This function returns the entity of the Equivalent type and inserts
|
115 |
|
|
-- on the fly the necessary declaration such as:
|
116 |
|
|
--
|
117 |
|
|
-- type anon is record
|
118 |
|
|
-- _parent : Root_Type (T); constrained with E discriminants (if any)
|
119 |
|
|
-- Extension : String (1 .. expr to match size of E);
|
120 |
|
|
-- end record;
|
121 |
|
|
--
|
122 |
|
|
-- This record is compatible with any object of the class of T thanks
|
123 |
|
|
-- to the first field and has the same size as E thanks to the second.
|
124 |
|
|
|
125 |
|
|
function Make_Literal_Range
|
126 |
|
|
(Loc : Source_Ptr;
|
127 |
|
|
Literal_Typ : Entity_Id) return Node_Id;
|
128 |
|
|
-- Produce a Range node whose bounds are:
|
129 |
|
|
-- Low_Bound (Literal_Type) ..
|
130 |
|
|
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
|
131 |
|
|
-- this is used for expanding declarations like X : String := "sdfgdfg";
|
132 |
|
|
--
|
133 |
|
|
-- If the index type of the target array is not integer, we generate:
|
134 |
|
|
-- Low_Bound (Literal_Type) ..
|
135 |
|
|
-- Literal_Type'Val
|
136 |
|
|
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
|
137 |
|
|
-- + (Length (Literal_Typ) -1))
|
138 |
|
|
|
139 |
|
|
function Make_Non_Empty_Check
|
140 |
|
|
(Loc : Source_Ptr;
|
141 |
|
|
N : Node_Id) return Node_Id;
|
142 |
|
|
-- Produce a boolean expression checking that the unidimensional array
|
143 |
|
|
-- node N is not empty.
|
144 |
|
|
|
145 |
|
|
function New_Class_Wide_Subtype
|
146 |
|
|
(CW_Typ : Entity_Id;
|
147 |
|
|
N : Node_Id) return Entity_Id;
|
148 |
|
|
-- Create an implicit subtype of CW_Typ attached to node N
|
149 |
|
|
|
150 |
|
|
----------------------
|
151 |
|
|
-- Adjust_Condition --
|
152 |
|
|
----------------------
|
153 |
|
|
|
154 |
|
|
procedure Adjust_Condition (N : Node_Id) is
|
155 |
|
|
begin
|
156 |
|
|
if No (N) then
|
157 |
|
|
return;
|
158 |
|
|
end if;
|
159 |
|
|
|
160 |
|
|
declare
|
161 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
162 |
|
|
T : constant Entity_Id := Etype (N);
|
163 |
|
|
Ti : Entity_Id;
|
164 |
|
|
|
165 |
|
|
begin
|
166 |
|
|
-- For now, we simply ignore a call where the argument has no
|
167 |
|
|
-- type (probably case of unanalyzed condition), or has a type
|
168 |
|
|
-- that is not Boolean. This is because this is a pretty marginal
|
169 |
|
|
-- piece of functionality, and violations of these rules are
|
170 |
|
|
-- likely to be truly marginal (how much code uses Fortran Logical
|
171 |
|
|
-- as the barrier to a protected entry?) and we do not want to
|
172 |
|
|
-- blow up existing programs. We can change this to an assertion
|
173 |
|
|
-- after 3.12a is released ???
|
174 |
|
|
|
175 |
|
|
if No (T) or else not Is_Boolean_Type (T) then
|
176 |
|
|
return;
|
177 |
|
|
end if;
|
178 |
|
|
|
179 |
|
|
-- Apply validity checking if needed
|
180 |
|
|
|
181 |
|
|
if Validity_Checks_On and Validity_Check_Tests then
|
182 |
|
|
Ensure_Valid (N);
|
183 |
|
|
end if;
|
184 |
|
|
|
185 |
|
|
-- Immediate return if standard boolean, the most common case,
|
186 |
|
|
-- where nothing needs to be done.
|
187 |
|
|
|
188 |
|
|
if Base_Type (T) = Standard_Boolean then
|
189 |
|
|
return;
|
190 |
|
|
end if;
|
191 |
|
|
|
192 |
|
|
-- Case of zero/non-zero semantics or non-standard enumeration
|
193 |
|
|
-- representation. In each case, we rewrite the node as:
|
194 |
|
|
|
195 |
|
|
-- ityp!(N) /= False'Enum_Rep
|
196 |
|
|
|
197 |
|
|
-- where ityp is an integer type with large enough size to hold
|
198 |
|
|
-- any value of type T.
|
199 |
|
|
|
200 |
|
|
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
|
201 |
|
|
if Esize (T) <= Esize (Standard_Integer) then
|
202 |
|
|
Ti := Standard_Integer;
|
203 |
|
|
else
|
204 |
|
|
Ti := Standard_Long_Long_Integer;
|
205 |
|
|
end if;
|
206 |
|
|
|
207 |
|
|
Rewrite (N,
|
208 |
|
|
Make_Op_Ne (Loc,
|
209 |
|
|
Left_Opnd => Unchecked_Convert_To (Ti, N),
|
210 |
|
|
Right_Opnd =>
|
211 |
|
|
Make_Attribute_Reference (Loc,
|
212 |
|
|
Attribute_Name => Name_Enum_Rep,
|
213 |
|
|
Prefix =>
|
214 |
|
|
New_Occurrence_Of (First_Literal (T), Loc))));
|
215 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
216 |
|
|
|
217 |
|
|
else
|
218 |
|
|
Rewrite (N, Convert_To (Standard_Boolean, N));
|
219 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
220 |
|
|
end if;
|
221 |
|
|
end;
|
222 |
|
|
end Adjust_Condition;
|
223 |
|
|
|
224 |
|
|
------------------------
|
225 |
|
|
-- Adjust_Result_Type --
|
226 |
|
|
------------------------
|
227 |
|
|
|
228 |
|
|
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
|
229 |
|
|
begin
|
230 |
|
|
-- Ignore call if current type is not Standard.Boolean
|
231 |
|
|
|
232 |
|
|
if Etype (N) /= Standard_Boolean then
|
233 |
|
|
return;
|
234 |
|
|
end if;
|
235 |
|
|
|
236 |
|
|
-- If result is already of correct type, nothing to do. Note that
|
237 |
|
|
-- this will get the most common case where everything has a type
|
238 |
|
|
-- of Standard.Boolean.
|
239 |
|
|
|
240 |
|
|
if Base_Type (T) = Standard_Boolean then
|
241 |
|
|
return;
|
242 |
|
|
|
243 |
|
|
else
|
244 |
|
|
declare
|
245 |
|
|
KP : constant Node_Kind := Nkind (Parent (N));
|
246 |
|
|
|
247 |
|
|
begin
|
248 |
|
|
-- If result is to be used as a Condition in the syntax, no need
|
249 |
|
|
-- to convert it back, since if it was changed to Standard.Boolean
|
250 |
|
|
-- using Adjust_Condition, that is just fine for this usage.
|
251 |
|
|
|
252 |
|
|
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
|
253 |
|
|
return;
|
254 |
|
|
|
255 |
|
|
-- If result is an operand of another logical operation, no need
|
256 |
|
|
-- to reset its type, since Standard.Boolean is just fine, and
|
257 |
|
|
-- such operations always do Adjust_Condition on their operands.
|
258 |
|
|
|
259 |
|
|
elsif KP in N_Op_Boolean
|
260 |
|
|
or else KP in N_Short_Circuit
|
261 |
|
|
or else KP = N_Op_Not
|
262 |
|
|
then
|
263 |
|
|
return;
|
264 |
|
|
|
265 |
|
|
-- Otherwise we perform a conversion from the current type,
|
266 |
|
|
-- which must be Standard.Boolean, to the desired type.
|
267 |
|
|
|
268 |
|
|
else
|
269 |
|
|
Set_Analyzed (N);
|
270 |
|
|
Rewrite (N, Convert_To (T, N));
|
271 |
|
|
Analyze_And_Resolve (N, T);
|
272 |
|
|
end if;
|
273 |
|
|
end;
|
274 |
|
|
end if;
|
275 |
|
|
end Adjust_Result_Type;
|
276 |
|
|
|
277 |
|
|
--------------------------
|
278 |
|
|
-- Append_Freeze_Action --
|
279 |
|
|
--------------------------
|
280 |
|
|
|
281 |
|
|
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
|
282 |
|
|
Fnode : Node_Id;
|
283 |
|
|
|
284 |
|
|
begin
|
285 |
|
|
Ensure_Freeze_Node (T);
|
286 |
|
|
Fnode := Freeze_Node (T);
|
287 |
|
|
|
288 |
|
|
if No (Actions (Fnode)) then
|
289 |
|
|
Set_Actions (Fnode, New_List);
|
290 |
|
|
end if;
|
291 |
|
|
|
292 |
|
|
Append (N, Actions (Fnode));
|
293 |
|
|
end Append_Freeze_Action;
|
294 |
|
|
|
295 |
|
|
---------------------------
|
296 |
|
|
-- Append_Freeze_Actions --
|
297 |
|
|
---------------------------
|
298 |
|
|
|
299 |
|
|
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
|
300 |
|
|
Fnode : constant Node_Id := Freeze_Node (T);
|
301 |
|
|
|
302 |
|
|
begin
|
303 |
|
|
if No (L) then
|
304 |
|
|
return;
|
305 |
|
|
|
306 |
|
|
else
|
307 |
|
|
if No (Actions (Fnode)) then
|
308 |
|
|
Set_Actions (Fnode, L);
|
309 |
|
|
|
310 |
|
|
else
|
311 |
|
|
Append_List (L, Actions (Fnode));
|
312 |
|
|
end if;
|
313 |
|
|
|
314 |
|
|
end if;
|
315 |
|
|
end Append_Freeze_Actions;
|
316 |
|
|
|
317 |
|
|
------------------------
|
318 |
|
|
-- Build_Runtime_Call --
|
319 |
|
|
------------------------
|
320 |
|
|
|
321 |
|
|
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
|
322 |
|
|
begin
|
323 |
|
|
-- If entity is not available, we can skip making the call (this avoids
|
324 |
|
|
-- junk duplicated error messages in a number of cases).
|
325 |
|
|
|
326 |
|
|
if not RTE_Available (RE) then
|
327 |
|
|
return Make_Null_Statement (Loc);
|
328 |
|
|
else
|
329 |
|
|
return
|
330 |
|
|
Make_Procedure_Call_Statement (Loc,
|
331 |
|
|
Name => New_Reference_To (RTE (RE), Loc));
|
332 |
|
|
end if;
|
333 |
|
|
end Build_Runtime_Call;
|
334 |
|
|
|
335 |
|
|
----------------------------
|
336 |
|
|
-- Build_Task_Array_Image --
|
337 |
|
|
----------------------------
|
338 |
|
|
|
339 |
|
|
-- This function generates the body for a function that constructs the
|
340 |
|
|
-- image string for a task that is an array component. The function is
|
341 |
|
|
-- local to the init proc for the array type, and is called for each one
|
342 |
|
|
-- of the components. The constructed image has the form of an indexed
|
343 |
|
|
-- component, whose prefix is the outer variable of the array type.
|
344 |
|
|
-- The n-dimensional array type has known indices Index, Index2...
|
345 |
|
|
-- Id_Ref is an indexed component form created by the enclosing init proc.
|
346 |
|
|
-- Its successive indices are Val1, Val2, ... which are the loop variables
|
347 |
|
|
-- in the loops that call the individual task init proc on each component.
|
348 |
|
|
|
349 |
|
|
-- The generated function has the following structure:
|
350 |
|
|
|
351 |
|
|
-- function F return String is
|
352 |
|
|
-- Pref : string renames Task_Name;
|
353 |
|
|
-- T1 : String := Index1'Image (Val1);
|
354 |
|
|
-- ...
|
355 |
|
|
-- Tn : String := indexn'image (Valn);
|
356 |
|
|
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
|
357 |
|
|
-- -- Len includes commas and the end parentheses.
|
358 |
|
|
-- Res : String (1..Len);
|
359 |
|
|
-- Pos : Integer := Pref'Length;
|
360 |
|
|
--
|
361 |
|
|
-- begin
|
362 |
|
|
-- Res (1 .. Pos) := Pref;
|
363 |
|
|
-- Pos := Pos + 1;
|
364 |
|
|
-- Res (Pos) := '(';
|
365 |
|
|
-- Pos := Pos + 1;
|
366 |
|
|
-- Res (Pos .. Pos + T1'Length - 1) := T1;
|
367 |
|
|
-- Pos := Pos + T1'Length;
|
368 |
|
|
-- Res (Pos) := '.';
|
369 |
|
|
-- Pos := Pos + 1;
|
370 |
|
|
-- ...
|
371 |
|
|
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
|
372 |
|
|
-- Res (Len) := ')';
|
373 |
|
|
--
|
374 |
|
|
-- return Res;
|
375 |
|
|
-- end F;
|
376 |
|
|
--
|
377 |
|
|
-- Needless to say, multidimensional arrays of tasks are rare enough
|
378 |
|
|
-- that the bulkiness of this code is not really a concern.
|
379 |
|
|
|
380 |
|
|
function Build_Task_Array_Image
|
381 |
|
|
(Loc : Source_Ptr;
|
382 |
|
|
Id_Ref : Node_Id;
|
383 |
|
|
A_Type : Entity_Id;
|
384 |
|
|
Dyn : Boolean := False) return Node_Id
|
385 |
|
|
is
|
386 |
|
|
Dims : constant Nat := Number_Dimensions (A_Type);
|
387 |
|
|
-- Number of dimensions for array of tasks
|
388 |
|
|
|
389 |
|
|
Temps : array (1 .. Dims) of Entity_Id;
|
390 |
|
|
-- Array of temporaries to hold string for each index
|
391 |
|
|
|
392 |
|
|
Indx : Node_Id;
|
393 |
|
|
-- Index expression
|
394 |
|
|
|
395 |
|
|
Len : Entity_Id;
|
396 |
|
|
-- Total length of generated name
|
397 |
|
|
|
398 |
|
|
Pos : Entity_Id;
|
399 |
|
|
-- Running index for substring assignments
|
400 |
|
|
|
401 |
|
|
Pref : Entity_Id;
|
402 |
|
|
-- Name of enclosing variable, prefix of resulting name
|
403 |
|
|
|
404 |
|
|
Res : Entity_Id;
|
405 |
|
|
-- String to hold result
|
406 |
|
|
|
407 |
|
|
Val : Node_Id;
|
408 |
|
|
-- Value of successive indices
|
409 |
|
|
|
410 |
|
|
Sum : Node_Id;
|
411 |
|
|
-- Expression to compute total size of string
|
412 |
|
|
|
413 |
|
|
T : Entity_Id;
|
414 |
|
|
-- Entity for name at one index position
|
415 |
|
|
|
416 |
|
|
Decls : constant List_Id := New_List;
|
417 |
|
|
Stats : constant List_Id := New_List;
|
418 |
|
|
|
419 |
|
|
begin
|
420 |
|
|
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
421 |
|
|
|
422 |
|
|
-- For a dynamic task, the name comes from the target variable.
|
423 |
|
|
-- For a static one it is a formal of the enclosing init proc.
|
424 |
|
|
|
425 |
|
|
if Dyn then
|
426 |
|
|
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
|
427 |
|
|
Append_To (Decls,
|
428 |
|
|
Make_Object_Declaration (Loc,
|
429 |
|
|
Defining_Identifier => Pref,
|
430 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
431 |
|
|
Expression =>
|
432 |
|
|
Make_String_Literal (Loc,
|
433 |
|
|
Strval => String_From_Name_Buffer)));
|
434 |
|
|
|
435 |
|
|
else
|
436 |
|
|
Append_To (Decls,
|
437 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
438 |
|
|
Defining_Identifier => Pref,
|
439 |
|
|
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
|
440 |
|
|
Name => Make_Identifier (Loc, Name_uTask_Name)));
|
441 |
|
|
end if;
|
442 |
|
|
|
443 |
|
|
Indx := First_Index (A_Type);
|
444 |
|
|
Val := First (Expressions (Id_Ref));
|
445 |
|
|
|
446 |
|
|
for J in 1 .. Dims loop
|
447 |
|
|
T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
448 |
|
|
Temps (J) := T;
|
449 |
|
|
|
450 |
|
|
Append_To (Decls,
|
451 |
|
|
Make_Object_Declaration (Loc,
|
452 |
|
|
Defining_Identifier => T,
|
453 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
454 |
|
|
Expression =>
|
455 |
|
|
Make_Attribute_Reference (Loc,
|
456 |
|
|
Attribute_Name => Name_Image,
|
457 |
|
|
Prefix =>
|
458 |
|
|
New_Occurrence_Of (Etype (Indx), Loc),
|
459 |
|
|
Expressions => New_List (
|
460 |
|
|
New_Copy_Tree (Val)))));
|
461 |
|
|
|
462 |
|
|
Next_Index (Indx);
|
463 |
|
|
Next (Val);
|
464 |
|
|
end loop;
|
465 |
|
|
|
466 |
|
|
Sum := Make_Integer_Literal (Loc, Dims + 1);
|
467 |
|
|
|
468 |
|
|
Sum :=
|
469 |
|
|
Make_Op_Add (Loc,
|
470 |
|
|
Left_Opnd => Sum,
|
471 |
|
|
Right_Opnd =>
|
472 |
|
|
Make_Attribute_Reference (Loc,
|
473 |
|
|
Attribute_Name => Name_Length,
|
474 |
|
|
Prefix =>
|
475 |
|
|
New_Occurrence_Of (Pref, Loc),
|
476 |
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
477 |
|
|
|
478 |
|
|
for J in 1 .. Dims loop
|
479 |
|
|
Sum :=
|
480 |
|
|
Make_Op_Add (Loc,
|
481 |
|
|
Left_Opnd => Sum,
|
482 |
|
|
Right_Opnd =>
|
483 |
|
|
Make_Attribute_Reference (Loc,
|
484 |
|
|
Attribute_Name => Name_Length,
|
485 |
|
|
Prefix =>
|
486 |
|
|
New_Occurrence_Of (Temps (J), Loc),
|
487 |
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
488 |
|
|
end loop;
|
489 |
|
|
|
490 |
|
|
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
|
491 |
|
|
|
492 |
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
|
493 |
|
|
|
494 |
|
|
Append_To (Stats,
|
495 |
|
|
Make_Assignment_Statement (Loc,
|
496 |
|
|
Name => Make_Indexed_Component (Loc,
|
497 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
498 |
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
499 |
|
|
Expression =>
|
500 |
|
|
Make_Character_Literal (Loc,
|
501 |
|
|
Chars => Name_Find,
|
502 |
|
|
Char_Literal_Value =>
|
503 |
|
|
UI_From_Int (Character'Pos ('(')))));
|
504 |
|
|
|
505 |
|
|
Append_To (Stats,
|
506 |
|
|
Make_Assignment_Statement (Loc,
|
507 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
508 |
|
|
Expression =>
|
509 |
|
|
Make_Op_Add (Loc,
|
510 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
511 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
512 |
|
|
|
513 |
|
|
for J in 1 .. Dims loop
|
514 |
|
|
|
515 |
|
|
Append_To (Stats,
|
516 |
|
|
Make_Assignment_Statement (Loc,
|
517 |
|
|
Name => Make_Slice (Loc,
|
518 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
519 |
|
|
Discrete_Range =>
|
520 |
|
|
Make_Range (Loc,
|
521 |
|
|
Low_Bound => New_Occurrence_Of (Pos, Loc),
|
522 |
|
|
High_Bound => Make_Op_Subtract (Loc,
|
523 |
|
|
Left_Opnd =>
|
524 |
|
|
Make_Op_Add (Loc,
|
525 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
526 |
|
|
Right_Opnd =>
|
527 |
|
|
Make_Attribute_Reference (Loc,
|
528 |
|
|
Attribute_Name => Name_Length,
|
529 |
|
|
Prefix =>
|
530 |
|
|
New_Occurrence_Of (Temps (J), Loc),
|
531 |
|
|
Expressions =>
|
532 |
|
|
New_List (Make_Integer_Literal (Loc, 1)))),
|
533 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
|
534 |
|
|
|
535 |
|
|
Expression => New_Occurrence_Of (Temps (J), Loc)));
|
536 |
|
|
|
537 |
|
|
if J < Dims then
|
538 |
|
|
Append_To (Stats,
|
539 |
|
|
Make_Assignment_Statement (Loc,
|
540 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
541 |
|
|
Expression =>
|
542 |
|
|
Make_Op_Add (Loc,
|
543 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
544 |
|
|
Right_Opnd =>
|
545 |
|
|
Make_Attribute_Reference (Loc,
|
546 |
|
|
Attribute_Name => Name_Length,
|
547 |
|
|
Prefix => New_Occurrence_Of (Temps (J), Loc),
|
548 |
|
|
Expressions =>
|
549 |
|
|
New_List (Make_Integer_Literal (Loc, 1))))));
|
550 |
|
|
|
551 |
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
|
552 |
|
|
|
553 |
|
|
Append_To (Stats,
|
554 |
|
|
Make_Assignment_Statement (Loc,
|
555 |
|
|
Name => Make_Indexed_Component (Loc,
|
556 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
557 |
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
558 |
|
|
Expression =>
|
559 |
|
|
Make_Character_Literal (Loc,
|
560 |
|
|
Chars => Name_Find,
|
561 |
|
|
Char_Literal_Value =>
|
562 |
|
|
UI_From_Int (Character'Pos (',')))));
|
563 |
|
|
|
564 |
|
|
Append_To (Stats,
|
565 |
|
|
Make_Assignment_Statement (Loc,
|
566 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
567 |
|
|
Expression =>
|
568 |
|
|
Make_Op_Add (Loc,
|
569 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
570 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
571 |
|
|
end if;
|
572 |
|
|
end loop;
|
573 |
|
|
|
574 |
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
|
575 |
|
|
|
576 |
|
|
Append_To (Stats,
|
577 |
|
|
Make_Assignment_Statement (Loc,
|
578 |
|
|
Name => Make_Indexed_Component (Loc,
|
579 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
580 |
|
|
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
|
581 |
|
|
Expression =>
|
582 |
|
|
Make_Character_Literal (Loc,
|
583 |
|
|
Chars => Name_Find,
|
584 |
|
|
Char_Literal_Value =>
|
585 |
|
|
UI_From_Int (Character'Pos (')')))));
|
586 |
|
|
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
|
587 |
|
|
end Build_Task_Array_Image;
|
588 |
|
|
|
589 |
|
|
----------------------------
|
590 |
|
|
-- Build_Task_Image_Decls --
|
591 |
|
|
----------------------------
|
592 |
|
|
|
593 |
|
|
function Build_Task_Image_Decls
|
594 |
|
|
(Loc : Source_Ptr;
|
595 |
|
|
Id_Ref : Node_Id;
|
596 |
|
|
A_Type : Entity_Id;
|
597 |
|
|
In_Init_Proc : Boolean := False) return List_Id
|
598 |
|
|
is
|
599 |
|
|
Decls : constant List_Id := New_List;
|
600 |
|
|
T_Id : Entity_Id := Empty;
|
601 |
|
|
Decl : Node_Id;
|
602 |
|
|
Expr : Node_Id := Empty;
|
603 |
|
|
Fun : Node_Id := Empty;
|
604 |
|
|
Is_Dyn : constant Boolean :=
|
605 |
|
|
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
|
606 |
|
|
and then
|
607 |
|
|
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
|
608 |
|
|
|
609 |
|
|
begin
|
610 |
|
|
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
|
611 |
|
|
-- generate a dummy declaration only.
|
612 |
|
|
|
613 |
|
|
if Restriction_Active (No_Implicit_Heap_Allocations)
|
614 |
|
|
or else Global_Discard_Names
|
615 |
|
|
then
|
616 |
|
|
T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
|
617 |
|
|
Name_Len := 0;
|
618 |
|
|
|
619 |
|
|
return
|
620 |
|
|
New_List (
|
621 |
|
|
Make_Object_Declaration (Loc,
|
622 |
|
|
Defining_Identifier => T_Id,
|
623 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
624 |
|
|
Expression =>
|
625 |
|
|
Make_String_Literal (Loc,
|
626 |
|
|
Strval => String_From_Name_Buffer)));
|
627 |
|
|
|
628 |
|
|
else
|
629 |
|
|
if Nkind (Id_Ref) = N_Identifier
|
630 |
|
|
or else Nkind (Id_Ref) = N_Defining_Identifier
|
631 |
|
|
then
|
632 |
|
|
-- For a simple variable, the image of the task is built from
|
633 |
|
|
-- the name of the variable. To avoid possible conflict with
|
634 |
|
|
-- the anonymous type created for a single protected object,
|
635 |
|
|
-- add a numeric suffix.
|
636 |
|
|
|
637 |
|
|
T_Id :=
|
638 |
|
|
Make_Defining_Identifier (Loc,
|
639 |
|
|
New_External_Name (Chars (Id_Ref), 'T', 1));
|
640 |
|
|
|
641 |
|
|
Get_Name_String (Chars (Id_Ref));
|
642 |
|
|
|
643 |
|
|
Expr :=
|
644 |
|
|
Make_String_Literal (Loc,
|
645 |
|
|
Strval => String_From_Name_Buffer);
|
646 |
|
|
|
647 |
|
|
elsif Nkind (Id_Ref) = N_Selected_Component then
|
648 |
|
|
T_Id :=
|
649 |
|
|
Make_Defining_Identifier (Loc,
|
650 |
|
|
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
|
651 |
|
|
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
|
652 |
|
|
|
653 |
|
|
elsif Nkind (Id_Ref) = N_Indexed_Component then
|
654 |
|
|
T_Id :=
|
655 |
|
|
Make_Defining_Identifier (Loc,
|
656 |
|
|
New_External_Name (Chars (A_Type), 'N'));
|
657 |
|
|
|
658 |
|
|
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
|
659 |
|
|
end if;
|
660 |
|
|
end if;
|
661 |
|
|
|
662 |
|
|
if Present (Fun) then
|
663 |
|
|
Append (Fun, Decls);
|
664 |
|
|
Expr := Make_Function_Call (Loc,
|
665 |
|
|
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
|
666 |
|
|
|
667 |
|
|
if not In_Init_Proc and then VM_Target = No_VM then
|
668 |
|
|
Set_Uses_Sec_Stack (Defining_Entity (Fun));
|
669 |
|
|
end if;
|
670 |
|
|
end if;
|
671 |
|
|
|
672 |
|
|
Decl := Make_Object_Declaration (Loc,
|
673 |
|
|
Defining_Identifier => T_Id,
|
674 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
675 |
|
|
Constant_Present => True,
|
676 |
|
|
Expression => Expr);
|
677 |
|
|
|
678 |
|
|
Append (Decl, Decls);
|
679 |
|
|
return Decls;
|
680 |
|
|
end Build_Task_Image_Decls;
|
681 |
|
|
|
682 |
|
|
-------------------------------
|
683 |
|
|
-- Build_Task_Image_Function --
|
684 |
|
|
-------------------------------
|
685 |
|
|
|
686 |
|
|
function Build_Task_Image_Function
|
687 |
|
|
(Loc : Source_Ptr;
|
688 |
|
|
Decls : List_Id;
|
689 |
|
|
Stats : List_Id;
|
690 |
|
|
Res : Entity_Id) return Node_Id
|
691 |
|
|
is
|
692 |
|
|
Spec : Node_Id;
|
693 |
|
|
|
694 |
|
|
begin
|
695 |
|
|
Append_To (Stats,
|
696 |
|
|
Make_Simple_Return_Statement (Loc,
|
697 |
|
|
Expression => New_Occurrence_Of (Res, Loc)));
|
698 |
|
|
|
699 |
|
|
Spec := Make_Function_Specification (Loc,
|
700 |
|
|
Defining_Unit_Name =>
|
701 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
|
702 |
|
|
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
|
703 |
|
|
|
704 |
|
|
-- Calls to 'Image use the secondary stack, which must be cleaned
|
705 |
|
|
-- up after the task name is built.
|
706 |
|
|
|
707 |
|
|
return Make_Subprogram_Body (Loc,
|
708 |
|
|
Specification => Spec,
|
709 |
|
|
Declarations => Decls,
|
710 |
|
|
Handled_Statement_Sequence =>
|
711 |
|
|
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
|
712 |
|
|
end Build_Task_Image_Function;
|
713 |
|
|
|
714 |
|
|
-----------------------------
|
715 |
|
|
-- Build_Task_Image_Prefix --
|
716 |
|
|
-----------------------------
|
717 |
|
|
|
718 |
|
|
procedure Build_Task_Image_Prefix
|
719 |
|
|
(Loc : Source_Ptr;
|
720 |
|
|
Len : out Entity_Id;
|
721 |
|
|
Res : out Entity_Id;
|
722 |
|
|
Pos : out Entity_Id;
|
723 |
|
|
Prefix : Entity_Id;
|
724 |
|
|
Sum : Node_Id;
|
725 |
|
|
Decls : List_Id;
|
726 |
|
|
Stats : List_Id)
|
727 |
|
|
is
|
728 |
|
|
begin
|
729 |
|
|
Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
|
730 |
|
|
|
731 |
|
|
Append_To (Decls,
|
732 |
|
|
Make_Object_Declaration (Loc,
|
733 |
|
|
Defining_Identifier => Len,
|
734 |
|
|
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
|
735 |
|
|
Expression => Sum));
|
736 |
|
|
|
737 |
|
|
Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
738 |
|
|
|
739 |
|
|
Append_To (Decls,
|
740 |
|
|
Make_Object_Declaration (Loc,
|
741 |
|
|
Defining_Identifier => Res,
|
742 |
|
|
Object_Definition =>
|
743 |
|
|
Make_Subtype_Indication (Loc,
|
744 |
|
|
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
|
745 |
|
|
Constraint =>
|
746 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
747 |
|
|
Constraints =>
|
748 |
|
|
New_List (
|
749 |
|
|
Make_Range (Loc,
|
750 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
751 |
|
|
High_Bound => New_Occurrence_Of (Len, Loc)))))));
|
752 |
|
|
|
753 |
|
|
Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
754 |
|
|
|
755 |
|
|
Append_To (Decls,
|
756 |
|
|
Make_Object_Declaration (Loc,
|
757 |
|
|
Defining_Identifier => Pos,
|
758 |
|
|
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
|
759 |
|
|
|
760 |
|
|
-- Pos := Prefix'Length;
|
761 |
|
|
|
762 |
|
|
Append_To (Stats,
|
763 |
|
|
Make_Assignment_Statement (Loc,
|
764 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
765 |
|
|
Expression =>
|
766 |
|
|
Make_Attribute_Reference (Loc,
|
767 |
|
|
Attribute_Name => Name_Length,
|
768 |
|
|
Prefix => New_Occurrence_Of (Prefix, Loc),
|
769 |
|
|
Expressions =>
|
770 |
|
|
New_List (Make_Integer_Literal (Loc, 1)))));
|
771 |
|
|
|
772 |
|
|
-- Res (1 .. Pos) := Prefix;
|
773 |
|
|
|
774 |
|
|
Append_To (Stats,
|
775 |
|
|
Make_Assignment_Statement (Loc,
|
776 |
|
|
Name => Make_Slice (Loc,
|
777 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
778 |
|
|
Discrete_Range =>
|
779 |
|
|
Make_Range (Loc,
|
780 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
781 |
|
|
High_Bound => New_Occurrence_Of (Pos, Loc))),
|
782 |
|
|
|
783 |
|
|
Expression => New_Occurrence_Of (Prefix, Loc)));
|
784 |
|
|
|
785 |
|
|
Append_To (Stats,
|
786 |
|
|
Make_Assignment_Statement (Loc,
|
787 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
788 |
|
|
Expression =>
|
789 |
|
|
Make_Op_Add (Loc,
|
790 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
791 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
792 |
|
|
end Build_Task_Image_Prefix;
|
793 |
|
|
|
794 |
|
|
-----------------------------
|
795 |
|
|
-- Build_Task_Record_Image --
|
796 |
|
|
-----------------------------
|
797 |
|
|
|
798 |
|
|
function Build_Task_Record_Image
|
799 |
|
|
(Loc : Source_Ptr;
|
800 |
|
|
Id_Ref : Node_Id;
|
801 |
|
|
Dyn : Boolean := False) return Node_Id
|
802 |
|
|
is
|
803 |
|
|
Len : Entity_Id;
|
804 |
|
|
-- Total length of generated name
|
805 |
|
|
|
806 |
|
|
Pos : Entity_Id;
|
807 |
|
|
-- Index into result
|
808 |
|
|
|
809 |
|
|
Res : Entity_Id;
|
810 |
|
|
-- String to hold result
|
811 |
|
|
|
812 |
|
|
Pref : Entity_Id;
|
813 |
|
|
-- Name of enclosing variable, prefix of resulting name
|
814 |
|
|
|
815 |
|
|
Sum : Node_Id;
|
816 |
|
|
-- Expression to compute total size of string
|
817 |
|
|
|
818 |
|
|
Sel : Entity_Id;
|
819 |
|
|
-- Entity for selector name
|
820 |
|
|
|
821 |
|
|
Decls : constant List_Id := New_List;
|
822 |
|
|
Stats : constant List_Id := New_List;
|
823 |
|
|
|
824 |
|
|
begin
|
825 |
|
|
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
826 |
|
|
|
827 |
|
|
-- For a dynamic task, the name comes from the target variable.
|
828 |
|
|
-- For a static one it is a formal of the enclosing init proc.
|
829 |
|
|
|
830 |
|
|
if Dyn then
|
831 |
|
|
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
|
832 |
|
|
Append_To (Decls,
|
833 |
|
|
Make_Object_Declaration (Loc,
|
834 |
|
|
Defining_Identifier => Pref,
|
835 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
836 |
|
|
Expression =>
|
837 |
|
|
Make_String_Literal (Loc,
|
838 |
|
|
Strval => String_From_Name_Buffer)));
|
839 |
|
|
|
840 |
|
|
else
|
841 |
|
|
Append_To (Decls,
|
842 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
843 |
|
|
Defining_Identifier => Pref,
|
844 |
|
|
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
|
845 |
|
|
Name => Make_Identifier (Loc, Name_uTask_Name)));
|
846 |
|
|
end if;
|
847 |
|
|
|
848 |
|
|
Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
849 |
|
|
|
850 |
|
|
Get_Name_String (Chars (Selector_Name (Id_Ref)));
|
851 |
|
|
|
852 |
|
|
Append_To (Decls,
|
853 |
|
|
Make_Object_Declaration (Loc,
|
854 |
|
|
Defining_Identifier => Sel,
|
855 |
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
856 |
|
|
Expression =>
|
857 |
|
|
Make_String_Literal (Loc,
|
858 |
|
|
Strval => String_From_Name_Buffer)));
|
859 |
|
|
|
860 |
|
|
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
|
861 |
|
|
|
862 |
|
|
Sum :=
|
863 |
|
|
Make_Op_Add (Loc,
|
864 |
|
|
Left_Opnd => Sum,
|
865 |
|
|
Right_Opnd =>
|
866 |
|
|
Make_Attribute_Reference (Loc,
|
867 |
|
|
Attribute_Name => Name_Length,
|
868 |
|
|
Prefix =>
|
869 |
|
|
New_Occurrence_Of (Pref, Loc),
|
870 |
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
871 |
|
|
|
872 |
|
|
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
|
873 |
|
|
|
874 |
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
|
875 |
|
|
|
876 |
|
|
-- Res (Pos) := '.';
|
877 |
|
|
|
878 |
|
|
Append_To (Stats,
|
879 |
|
|
Make_Assignment_Statement (Loc,
|
880 |
|
|
Name => Make_Indexed_Component (Loc,
|
881 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
882 |
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
883 |
|
|
Expression =>
|
884 |
|
|
Make_Character_Literal (Loc,
|
885 |
|
|
Chars => Name_Find,
|
886 |
|
|
Char_Literal_Value =>
|
887 |
|
|
UI_From_Int (Character'Pos ('.')))));
|
888 |
|
|
|
889 |
|
|
Append_To (Stats,
|
890 |
|
|
Make_Assignment_Statement (Loc,
|
891 |
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
892 |
|
|
Expression =>
|
893 |
|
|
Make_Op_Add (Loc,
|
894 |
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
895 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
896 |
|
|
|
897 |
|
|
-- Res (Pos .. Len) := Selector;
|
898 |
|
|
|
899 |
|
|
Append_To (Stats,
|
900 |
|
|
Make_Assignment_Statement (Loc,
|
901 |
|
|
Name => Make_Slice (Loc,
|
902 |
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
903 |
|
|
Discrete_Range =>
|
904 |
|
|
Make_Range (Loc,
|
905 |
|
|
Low_Bound => New_Occurrence_Of (Pos, Loc),
|
906 |
|
|
High_Bound => New_Occurrence_Of (Len, Loc))),
|
907 |
|
|
Expression => New_Occurrence_Of (Sel, Loc)));
|
908 |
|
|
|
909 |
|
|
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
|
910 |
|
|
end Build_Task_Record_Image;
|
911 |
|
|
|
912 |
|
|
----------------------------------
|
913 |
|
|
-- Component_May_Be_Bit_Aligned --
|
914 |
|
|
----------------------------------
|
915 |
|
|
|
916 |
|
|
function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
|
917 |
|
|
UT : constant Entity_Id := Underlying_Type (Etype (Comp));
|
918 |
|
|
|
919 |
|
|
begin
|
920 |
|
|
-- If no component clause, then everything is fine, since the back end
|
921 |
|
|
-- never bit-misaligns by default, even if there is a pragma Packed for
|
922 |
|
|
-- the record.
|
923 |
|
|
|
924 |
|
|
if No (Component_Clause (Comp)) then
|
925 |
|
|
return False;
|
926 |
|
|
end if;
|
927 |
|
|
|
928 |
|
|
-- It is only array and record types that cause trouble
|
929 |
|
|
|
930 |
|
|
if not Is_Record_Type (UT)
|
931 |
|
|
and then not Is_Array_Type (UT)
|
932 |
|
|
then
|
933 |
|
|
return False;
|
934 |
|
|
|
935 |
|
|
-- If we know that we have a small (64 bits or less) record or small
|
936 |
|
|
-- bit-packed array, then everything is fine, since the back end can
|
937 |
|
|
-- handle these cases correctly.
|
938 |
|
|
|
939 |
|
|
elsif Esize (Comp) <= 64
|
940 |
|
|
and then (Is_Record_Type (UT)
|
941 |
|
|
or else Is_Bit_Packed_Array (UT))
|
942 |
|
|
then
|
943 |
|
|
return False;
|
944 |
|
|
|
945 |
|
|
-- Otherwise if the component is not byte aligned, we know we have the
|
946 |
|
|
-- nasty unaligned case.
|
947 |
|
|
|
948 |
|
|
elsif Normalized_First_Bit (Comp) /= Uint_0
|
949 |
|
|
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
|
950 |
|
|
then
|
951 |
|
|
return True;
|
952 |
|
|
|
953 |
|
|
-- If we are large and byte aligned, then OK at this level
|
954 |
|
|
|
955 |
|
|
else
|
956 |
|
|
return False;
|
957 |
|
|
end if;
|
958 |
|
|
end Component_May_Be_Bit_Aligned;
|
959 |
|
|
|
960 |
|
|
-----------------------------------
|
961 |
|
|
-- Corresponding_Runtime_Package --
|
962 |
|
|
-----------------------------------
|
963 |
|
|
|
964 |
|
|
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
|
965 |
|
|
Pkg_Id : RTU_Id := RTU_Null;
|
966 |
|
|
|
967 |
|
|
begin
|
968 |
|
|
pragma Assert (Is_Concurrent_Type (Typ));
|
969 |
|
|
|
970 |
|
|
if Ekind (Typ) in Protected_Kind then
|
971 |
|
|
if Has_Entries (Typ)
|
972 |
|
|
or else Has_Interrupt_Handler (Typ)
|
973 |
|
|
or else (Has_Attach_Handler (Typ)
|
974 |
|
|
and then not Restricted_Profile)
|
975 |
|
|
|
976 |
|
|
-- A protected type without entries that covers an interface and
|
977 |
|
|
-- overrides the abstract routines with protected procedures is
|
978 |
|
|
-- considered equivalent to a protected type with entries in the
|
979 |
|
|
-- context of dispatching select statements. It is sufficient to
|
980 |
|
|
-- check for the presence of an interface list in the declaration
|
981 |
|
|
-- node to recognize this case.
|
982 |
|
|
|
983 |
|
|
or else Present (Interface_List (Parent (Typ)))
|
984 |
|
|
then
|
985 |
|
|
if Abort_Allowed
|
986 |
|
|
or else Restriction_Active (No_Entry_Queue) = False
|
987 |
|
|
or else Number_Entries (Typ) > 1
|
988 |
|
|
or else (Has_Attach_Handler (Typ)
|
989 |
|
|
and then not Restricted_Profile)
|
990 |
|
|
then
|
991 |
|
|
Pkg_Id := System_Tasking_Protected_Objects_Entries;
|
992 |
|
|
else
|
993 |
|
|
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
|
994 |
|
|
end if;
|
995 |
|
|
|
996 |
|
|
else
|
997 |
|
|
Pkg_Id := System_Tasking_Protected_Objects;
|
998 |
|
|
end if;
|
999 |
|
|
end if;
|
1000 |
|
|
|
1001 |
|
|
return Pkg_Id;
|
1002 |
|
|
end Corresponding_Runtime_Package;
|
1003 |
|
|
|
1004 |
|
|
-------------------------------
|
1005 |
|
|
-- Convert_To_Actual_Subtype --
|
1006 |
|
|
-------------------------------
|
1007 |
|
|
|
1008 |
|
|
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
|
1009 |
|
|
Act_ST : Entity_Id;
|
1010 |
|
|
|
1011 |
|
|
begin
|
1012 |
|
|
Act_ST := Get_Actual_Subtype (Exp);
|
1013 |
|
|
|
1014 |
|
|
if Act_ST = Etype (Exp) then
|
1015 |
|
|
return;
|
1016 |
|
|
|
1017 |
|
|
else
|
1018 |
|
|
Rewrite (Exp,
|
1019 |
|
|
Convert_To (Act_ST, Relocate_Node (Exp)));
|
1020 |
|
|
Analyze_And_Resolve (Exp, Act_ST);
|
1021 |
|
|
end if;
|
1022 |
|
|
end Convert_To_Actual_Subtype;
|
1023 |
|
|
|
1024 |
|
|
-----------------------------------
|
1025 |
|
|
-- Current_Sem_Unit_Declarations --
|
1026 |
|
|
-----------------------------------
|
1027 |
|
|
|
1028 |
|
|
function Current_Sem_Unit_Declarations return List_Id is
|
1029 |
|
|
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
|
1030 |
|
|
Decls : List_Id;
|
1031 |
|
|
|
1032 |
|
|
begin
|
1033 |
|
|
-- If the current unit is a package body, locate the visible
|
1034 |
|
|
-- declarations of the package spec.
|
1035 |
|
|
|
1036 |
|
|
if Nkind (U) = N_Package_Body then
|
1037 |
|
|
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
|
1038 |
|
|
end if;
|
1039 |
|
|
|
1040 |
|
|
if Nkind (U) = N_Package_Declaration then
|
1041 |
|
|
U := Specification (U);
|
1042 |
|
|
Decls := Visible_Declarations (U);
|
1043 |
|
|
|
1044 |
|
|
if No (Decls) then
|
1045 |
|
|
Decls := New_List;
|
1046 |
|
|
Set_Visible_Declarations (U, Decls);
|
1047 |
|
|
end if;
|
1048 |
|
|
|
1049 |
|
|
else
|
1050 |
|
|
Decls := Declarations (U);
|
1051 |
|
|
|
1052 |
|
|
if No (Decls) then
|
1053 |
|
|
Decls := New_List;
|
1054 |
|
|
Set_Declarations (U, Decls);
|
1055 |
|
|
end if;
|
1056 |
|
|
end if;
|
1057 |
|
|
|
1058 |
|
|
return Decls;
|
1059 |
|
|
end Current_Sem_Unit_Declarations;
|
1060 |
|
|
|
1061 |
|
|
-----------------------
|
1062 |
|
|
-- Duplicate_Subexpr --
|
1063 |
|
|
-----------------------
|
1064 |
|
|
|
1065 |
|
|
function Duplicate_Subexpr
|
1066 |
|
|
(Exp : Node_Id;
|
1067 |
|
|
Name_Req : Boolean := False) return Node_Id
|
1068 |
|
|
is
|
1069 |
|
|
begin
|
1070 |
|
|
Remove_Side_Effects (Exp, Name_Req);
|
1071 |
|
|
return New_Copy_Tree (Exp);
|
1072 |
|
|
end Duplicate_Subexpr;
|
1073 |
|
|
|
1074 |
|
|
---------------------------------
|
1075 |
|
|
-- Duplicate_Subexpr_No_Checks --
|
1076 |
|
|
---------------------------------
|
1077 |
|
|
|
1078 |
|
|
function Duplicate_Subexpr_No_Checks
|
1079 |
|
|
(Exp : Node_Id;
|
1080 |
|
|
Name_Req : Boolean := False) return Node_Id
|
1081 |
|
|
is
|
1082 |
|
|
New_Exp : Node_Id;
|
1083 |
|
|
|
1084 |
|
|
begin
|
1085 |
|
|
Remove_Side_Effects (Exp, Name_Req);
|
1086 |
|
|
New_Exp := New_Copy_Tree (Exp);
|
1087 |
|
|
Remove_Checks (New_Exp);
|
1088 |
|
|
return New_Exp;
|
1089 |
|
|
end Duplicate_Subexpr_No_Checks;
|
1090 |
|
|
|
1091 |
|
|
-----------------------------------
|
1092 |
|
|
-- Duplicate_Subexpr_Move_Checks --
|
1093 |
|
|
-----------------------------------
|
1094 |
|
|
|
1095 |
|
|
function Duplicate_Subexpr_Move_Checks
|
1096 |
|
|
(Exp : Node_Id;
|
1097 |
|
|
Name_Req : Boolean := False) return Node_Id
|
1098 |
|
|
is
|
1099 |
|
|
New_Exp : Node_Id;
|
1100 |
|
|
|
1101 |
|
|
begin
|
1102 |
|
|
Remove_Side_Effects (Exp, Name_Req);
|
1103 |
|
|
New_Exp := New_Copy_Tree (Exp);
|
1104 |
|
|
Remove_Checks (Exp);
|
1105 |
|
|
return New_Exp;
|
1106 |
|
|
end Duplicate_Subexpr_Move_Checks;
|
1107 |
|
|
|
1108 |
|
|
--------------------
|
1109 |
|
|
-- Ensure_Defined --
|
1110 |
|
|
--------------------
|
1111 |
|
|
|
1112 |
|
|
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
|
1113 |
|
|
IR : Node_Id;
|
1114 |
|
|
|
1115 |
|
|
begin
|
1116 |
|
|
-- An itype reference must only be created if this is a local
|
1117 |
|
|
-- itype, so that gigi can elaborate it on the proper objstack.
|
1118 |
|
|
|
1119 |
|
|
if Is_Itype (Typ)
|
1120 |
|
|
and then Scope (Typ) = Current_Scope
|
1121 |
|
|
then
|
1122 |
|
|
IR := Make_Itype_Reference (Sloc (N));
|
1123 |
|
|
Set_Itype (IR, Typ);
|
1124 |
|
|
Insert_Action (N, IR);
|
1125 |
|
|
end if;
|
1126 |
|
|
end Ensure_Defined;
|
1127 |
|
|
|
1128 |
|
|
--------------------
|
1129 |
|
|
-- Entry_Names_OK --
|
1130 |
|
|
--------------------
|
1131 |
|
|
|
1132 |
|
|
function Entry_Names_OK return Boolean is
|
1133 |
|
|
begin
|
1134 |
|
|
return
|
1135 |
|
|
not Restricted_Profile
|
1136 |
|
|
and then not Global_Discard_Names
|
1137 |
|
|
and then not Restriction_Active (No_Implicit_Heap_Allocations)
|
1138 |
|
|
and then not Restriction_Active (No_Local_Allocators);
|
1139 |
|
|
end Entry_Names_OK;
|
1140 |
|
|
|
1141 |
|
|
---------------------
|
1142 |
|
|
-- Evolve_And_Then --
|
1143 |
|
|
---------------------
|
1144 |
|
|
|
1145 |
|
|
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
|
1146 |
|
|
begin
|
1147 |
|
|
if No (Cond) then
|
1148 |
|
|
Cond := Cond1;
|
1149 |
|
|
else
|
1150 |
|
|
Cond :=
|
1151 |
|
|
Make_And_Then (Sloc (Cond1),
|
1152 |
|
|
Left_Opnd => Cond,
|
1153 |
|
|
Right_Opnd => Cond1);
|
1154 |
|
|
end if;
|
1155 |
|
|
end Evolve_And_Then;
|
1156 |
|
|
|
1157 |
|
|
--------------------
|
1158 |
|
|
-- Evolve_Or_Else --
|
1159 |
|
|
--------------------
|
1160 |
|
|
|
1161 |
|
|
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
|
1162 |
|
|
begin
|
1163 |
|
|
if No (Cond) then
|
1164 |
|
|
Cond := Cond1;
|
1165 |
|
|
else
|
1166 |
|
|
Cond :=
|
1167 |
|
|
Make_Or_Else (Sloc (Cond1),
|
1168 |
|
|
Left_Opnd => Cond,
|
1169 |
|
|
Right_Opnd => Cond1);
|
1170 |
|
|
end if;
|
1171 |
|
|
end Evolve_Or_Else;
|
1172 |
|
|
|
1173 |
|
|
------------------------------
|
1174 |
|
|
-- Expand_Subtype_From_Expr --
|
1175 |
|
|
------------------------------
|
1176 |
|
|
|
1177 |
|
|
-- This function is applicable for both static and dynamic allocation of
|
1178 |
|
|
-- objects which are constrained by an initial expression. Basically it
|
1179 |
|
|
-- transforms an unconstrained subtype indication into a constrained one.
|
1180 |
|
|
-- The expression may also be transformed in certain cases in order to
|
1181 |
|
|
-- avoid multiple evaluation. In the static allocation case, the general
|
1182 |
|
|
-- scheme is:
|
1183 |
|
|
|
1184 |
|
|
-- Val : T := Expr;
|
1185 |
|
|
|
1186 |
|
|
-- is transformed into
|
1187 |
|
|
|
1188 |
|
|
-- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
|
1189 |
|
|
--
|
1190 |
|
|
-- Here are the main cases :
|
1191 |
|
|
--
|
1192 |
|
|
-- <if Expr is a Slice>
|
1193 |
|
|
-- Val : T ([Index_Subtype (Expr)]) := Expr;
|
1194 |
|
|
--
|
1195 |
|
|
-- <elsif Expr is a String Literal>
|
1196 |
|
|
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
|
1197 |
|
|
--
|
1198 |
|
|
-- <elsif Expr is Constrained>
|
1199 |
|
|
-- subtype T is Type_Of_Expr
|
1200 |
|
|
-- Val : T := Expr;
|
1201 |
|
|
--
|
1202 |
|
|
-- <elsif Expr is an entity_name>
|
1203 |
|
|
-- Val : T (constraints taken from Expr) := Expr;
|
1204 |
|
|
--
|
1205 |
|
|
-- <else>
|
1206 |
|
|
-- type Axxx is access all T;
|
1207 |
|
|
-- Rval : Axxx := Expr'ref;
|
1208 |
|
|
-- Val : T (constraints taken from Rval) := Rval.all;
|
1209 |
|
|
|
1210 |
|
|
-- ??? note: when the Expression is allocated in the secondary stack
|
1211 |
|
|
-- we could use it directly instead of copying it by declaring
|
1212 |
|
|
-- Val : T (...) renames Rval.all
|
1213 |
|
|
|
1214 |
|
|
procedure Expand_Subtype_From_Expr
|
1215 |
|
|
(N : Node_Id;
|
1216 |
|
|
Unc_Type : Entity_Id;
|
1217 |
|
|
Subtype_Indic : Node_Id;
|
1218 |
|
|
Exp : Node_Id)
|
1219 |
|
|
is
|
1220 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1221 |
|
|
Exp_Typ : constant Entity_Id := Etype (Exp);
|
1222 |
|
|
T : Entity_Id;
|
1223 |
|
|
|
1224 |
|
|
begin
|
1225 |
|
|
-- In general we cannot build the subtype if expansion is disabled,
|
1226 |
|
|
-- because internal entities may not have been defined. However, to
|
1227 |
|
|
-- avoid some cascaded errors, we try to continue when the expression
|
1228 |
|
|
-- is an array (or string), because it is safe to compute the bounds.
|
1229 |
|
|
-- It is in fact required to do so even in a generic context, because
|
1230 |
|
|
-- there may be constants that depend on bounds of string literal.
|
1231 |
|
|
|
1232 |
|
|
if not Expander_Active
|
1233 |
|
|
and then (No (Etype (Exp))
|
1234 |
|
|
or else Base_Type (Etype (Exp)) /= Standard_String)
|
1235 |
|
|
then
|
1236 |
|
|
return;
|
1237 |
|
|
end if;
|
1238 |
|
|
|
1239 |
|
|
if Nkind (Exp) = N_Slice then
|
1240 |
|
|
declare
|
1241 |
|
|
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
|
1242 |
|
|
|
1243 |
|
|
begin
|
1244 |
|
|
Rewrite (Subtype_Indic,
|
1245 |
|
|
Make_Subtype_Indication (Loc,
|
1246 |
|
|
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
|
1247 |
|
|
Constraint =>
|
1248 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
1249 |
|
|
Constraints => New_List
|
1250 |
|
|
(New_Reference_To (Slice_Type, Loc)))));
|
1251 |
|
|
|
1252 |
|
|
-- This subtype indication may be used later for constraint checks
|
1253 |
|
|
-- we better make sure that if a variable was used as a bound of
|
1254 |
|
|
-- of the original slice, its value is frozen.
|
1255 |
|
|
|
1256 |
|
|
Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
|
1257 |
|
|
Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
|
1258 |
|
|
end;
|
1259 |
|
|
|
1260 |
|
|
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
|
1261 |
|
|
Rewrite (Subtype_Indic,
|
1262 |
|
|
Make_Subtype_Indication (Loc,
|
1263 |
|
|
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
|
1264 |
|
|
Constraint =>
|
1265 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
1266 |
|
|
Constraints => New_List (
|
1267 |
|
|
Make_Literal_Range (Loc,
|
1268 |
|
|
Literal_Typ => Exp_Typ)))));
|
1269 |
|
|
|
1270 |
|
|
elsif Is_Constrained (Exp_Typ)
|
1271 |
|
|
and then not Is_Class_Wide_Type (Unc_Type)
|
1272 |
|
|
then
|
1273 |
|
|
if Is_Itype (Exp_Typ) then
|
1274 |
|
|
|
1275 |
|
|
-- Within an initialization procedure, a selected component
|
1276 |
|
|
-- denotes a component of the enclosing record, and it appears
|
1277 |
|
|
-- as an actual in a call to its own initialization procedure.
|
1278 |
|
|
-- If this component depends on the outer discriminant, we must
|
1279 |
|
|
-- generate the proper actual subtype for it.
|
1280 |
|
|
|
1281 |
|
|
if Nkind (Exp) = N_Selected_Component
|
1282 |
|
|
and then Within_Init_Proc
|
1283 |
|
|
then
|
1284 |
|
|
declare
|
1285 |
|
|
Decl : constant Node_Id :=
|
1286 |
|
|
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
|
1287 |
|
|
begin
|
1288 |
|
|
if Present (Decl) then
|
1289 |
|
|
Insert_Action (N, Decl);
|
1290 |
|
|
T := Defining_Identifier (Decl);
|
1291 |
|
|
else
|
1292 |
|
|
T := Exp_Typ;
|
1293 |
|
|
end if;
|
1294 |
|
|
end;
|
1295 |
|
|
|
1296 |
|
|
-- No need to generate a new one (new what???)
|
1297 |
|
|
|
1298 |
|
|
else
|
1299 |
|
|
T := Exp_Typ;
|
1300 |
|
|
end if;
|
1301 |
|
|
|
1302 |
|
|
else
|
1303 |
|
|
T :=
|
1304 |
|
|
Make_Defining_Identifier (Loc,
|
1305 |
|
|
Chars => New_Internal_Name ('T'));
|
1306 |
|
|
|
1307 |
|
|
Insert_Action (N,
|
1308 |
|
|
Make_Subtype_Declaration (Loc,
|
1309 |
|
|
Defining_Identifier => T,
|
1310 |
|
|
Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
|
1311 |
|
|
|
1312 |
|
|
-- This type is marked as an itype even though it has an
|
1313 |
|
|
-- explicit declaration because otherwise it can be marked
|
1314 |
|
|
-- with Is_Generic_Actual_Type and generate spurious errors.
|
1315 |
|
|
-- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
|
1316 |
|
|
|
1317 |
|
|
Set_Is_Itype (T);
|
1318 |
|
|
Set_Associated_Node_For_Itype (T, Exp);
|
1319 |
|
|
end if;
|
1320 |
|
|
|
1321 |
|
|
Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
|
1322 |
|
|
|
1323 |
|
|
-- Nothing needs to be done for private types with unknown discriminants
|
1324 |
|
|
-- if the underlying type is not an unconstrained composite type or it
|
1325 |
|
|
-- is an unchecked union.
|
1326 |
|
|
|
1327 |
|
|
elsif Is_Private_Type (Unc_Type)
|
1328 |
|
|
and then Has_Unknown_Discriminants (Unc_Type)
|
1329 |
|
|
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
|
1330 |
|
|
or else Is_Constrained (Underlying_Type (Unc_Type))
|
1331 |
|
|
or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
|
1332 |
|
|
then
|
1333 |
|
|
null;
|
1334 |
|
|
|
1335 |
|
|
-- Case of derived type with unknown discriminants where the parent type
|
1336 |
|
|
-- also has unknown discriminants.
|
1337 |
|
|
|
1338 |
|
|
elsif Is_Record_Type (Unc_Type)
|
1339 |
|
|
and then not Is_Class_Wide_Type (Unc_Type)
|
1340 |
|
|
and then Has_Unknown_Discriminants (Unc_Type)
|
1341 |
|
|
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
|
1342 |
|
|
then
|
1343 |
|
|
-- Nothing to be done if no underlying record view available
|
1344 |
|
|
|
1345 |
|
|
if No (Underlying_Record_View (Unc_Type)) then
|
1346 |
|
|
null;
|
1347 |
|
|
|
1348 |
|
|
-- Otherwise use the Underlying_Record_View to create the proper
|
1349 |
|
|
-- constrained subtype for an object of a derived type with unknown
|
1350 |
|
|
-- discriminants.
|
1351 |
|
|
|
1352 |
|
|
else
|
1353 |
|
|
Remove_Side_Effects (Exp);
|
1354 |
|
|
Rewrite (Subtype_Indic,
|
1355 |
|
|
Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
|
1356 |
|
|
end if;
|
1357 |
|
|
|
1358 |
|
|
-- Renamings of class-wide interface types require no equivalent
|
1359 |
|
|
-- constrained type declarations because we only need to reference
|
1360 |
|
|
-- the tag component associated with the interface.
|
1361 |
|
|
|
1362 |
|
|
elsif Present (N)
|
1363 |
|
|
and then Nkind (N) = N_Object_Renaming_Declaration
|
1364 |
|
|
and then Is_Interface (Unc_Type)
|
1365 |
|
|
then
|
1366 |
|
|
pragma Assert (Is_Class_Wide_Type (Unc_Type));
|
1367 |
|
|
null;
|
1368 |
|
|
|
1369 |
|
|
-- In Ada95, nothing to be done if the type of the expression is
|
1370 |
|
|
-- limited, because in this case the expression cannot be copied,
|
1371 |
|
|
-- and its use can only be by reference.
|
1372 |
|
|
|
1373 |
|
|
-- In Ada2005, the context can be an object declaration whose expression
|
1374 |
|
|
-- is a function that returns in place. If the nominal subtype has
|
1375 |
|
|
-- unknown discriminants, the call still provides constraints on the
|
1376 |
|
|
-- object, and we have to create an actual subtype from it.
|
1377 |
|
|
|
1378 |
|
|
-- If the type is class-wide, the expression is dynamically tagged and
|
1379 |
|
|
-- we do not create an actual subtype either. Ditto for an interface.
|
1380 |
|
|
|
1381 |
|
|
elsif Is_Limited_Type (Exp_Typ)
|
1382 |
|
|
and then
|
1383 |
|
|
(Is_Class_Wide_Type (Exp_Typ)
|
1384 |
|
|
or else Is_Interface (Exp_Typ)
|
1385 |
|
|
or else not Has_Unknown_Discriminants (Exp_Typ)
|
1386 |
|
|
or else not Is_Composite_Type (Unc_Type))
|
1387 |
|
|
then
|
1388 |
|
|
null;
|
1389 |
|
|
|
1390 |
|
|
-- For limited objects initialized with build in place function calls,
|
1391 |
|
|
-- nothing to be done; otherwise we prematurely introduce an N_Reference
|
1392 |
|
|
-- node in the expression initializing the object, which breaks the
|
1393 |
|
|
-- circuitry that detects and adds the additional arguments to the
|
1394 |
|
|
-- called function.
|
1395 |
|
|
|
1396 |
|
|
elsif Is_Build_In_Place_Function_Call (Exp) then
|
1397 |
|
|
null;
|
1398 |
|
|
|
1399 |
|
|
else
|
1400 |
|
|
Remove_Side_Effects (Exp);
|
1401 |
|
|
Rewrite (Subtype_Indic,
|
1402 |
|
|
Make_Subtype_From_Expr (Exp, Unc_Type));
|
1403 |
|
|
end if;
|
1404 |
|
|
end Expand_Subtype_From_Expr;
|
1405 |
|
|
|
1406 |
|
|
--------------------
|
1407 |
|
|
-- Find_Init_Call --
|
1408 |
|
|
--------------------
|
1409 |
|
|
|
1410 |
|
|
function Find_Init_Call
|
1411 |
|
|
(Var : Entity_Id;
|
1412 |
|
|
Rep_Clause : Node_Id) return Node_Id
|
1413 |
|
|
is
|
1414 |
|
|
Typ : constant Entity_Id := Etype (Var);
|
1415 |
|
|
|
1416 |
|
|
Init_Proc : Entity_Id;
|
1417 |
|
|
-- Initialization procedure for Typ
|
1418 |
|
|
|
1419 |
|
|
function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
|
1420 |
|
|
-- Look for init call for Var starting at From and scanning the
|
1421 |
|
|
-- enclosing list until Rep_Clause or the end of the list is reached.
|
1422 |
|
|
|
1423 |
|
|
----------------------------
|
1424 |
|
|
-- Find_Init_Call_In_List --
|
1425 |
|
|
----------------------------
|
1426 |
|
|
|
1427 |
|
|
function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
|
1428 |
|
|
Init_Call : Node_Id;
|
1429 |
|
|
begin
|
1430 |
|
|
Init_Call := From;
|
1431 |
|
|
|
1432 |
|
|
while Present (Init_Call) and then Init_Call /= Rep_Clause loop
|
1433 |
|
|
if Nkind (Init_Call) = N_Procedure_Call_Statement
|
1434 |
|
|
and then Is_Entity_Name (Name (Init_Call))
|
1435 |
|
|
and then Entity (Name (Init_Call)) = Init_Proc
|
1436 |
|
|
then
|
1437 |
|
|
return Init_Call;
|
1438 |
|
|
end if;
|
1439 |
|
|
Next (Init_Call);
|
1440 |
|
|
end loop;
|
1441 |
|
|
|
1442 |
|
|
return Empty;
|
1443 |
|
|
end Find_Init_Call_In_List;
|
1444 |
|
|
|
1445 |
|
|
Init_Call : Node_Id;
|
1446 |
|
|
|
1447 |
|
|
-- Start of processing for Find_Init_Call
|
1448 |
|
|
|
1449 |
|
|
begin
|
1450 |
|
|
if not Has_Non_Null_Base_Init_Proc (Typ) then
|
1451 |
|
|
-- No init proc for the type, so obviously no call to be found
|
1452 |
|
|
|
1453 |
|
|
return Empty;
|
1454 |
|
|
end if;
|
1455 |
|
|
|
1456 |
|
|
Init_Proc := Base_Init_Proc (Typ);
|
1457 |
|
|
|
1458 |
|
|
-- First scan the list containing the declaration of Var
|
1459 |
|
|
|
1460 |
|
|
Init_Call := Find_Init_Call_In_List (From => Next (Parent (Var)));
|
1461 |
|
|
|
1462 |
|
|
-- If not found, also look on Var's freeze actions list, if any, since
|
1463 |
|
|
-- the init call may have been moved there (case of an address clause
|
1464 |
|
|
-- applying to Var).
|
1465 |
|
|
|
1466 |
|
|
if No (Init_Call) and then Present (Freeze_Node (Var)) then
|
1467 |
|
|
Init_Call := Find_Init_Call_In_List
|
1468 |
|
|
(First (Actions (Freeze_Node (Var))));
|
1469 |
|
|
end if;
|
1470 |
|
|
|
1471 |
|
|
return Init_Call;
|
1472 |
|
|
end Find_Init_Call;
|
1473 |
|
|
|
1474 |
|
|
------------------------
|
1475 |
|
|
-- Find_Interface_ADT --
|
1476 |
|
|
------------------------
|
1477 |
|
|
|
1478 |
|
|
function Find_Interface_ADT
|
1479 |
|
|
(T : Entity_Id;
|
1480 |
|
|
Iface : Entity_Id) return Elmt_Id
|
1481 |
|
|
is
|
1482 |
|
|
ADT : Elmt_Id;
|
1483 |
|
|
Typ : Entity_Id := T;
|
1484 |
|
|
|
1485 |
|
|
begin
|
1486 |
|
|
pragma Assert (Is_Interface (Iface));
|
1487 |
|
|
|
1488 |
|
|
-- Handle private types
|
1489 |
|
|
|
1490 |
|
|
if Has_Private_Declaration (Typ)
|
1491 |
|
|
and then Present (Full_View (Typ))
|
1492 |
|
|
then
|
1493 |
|
|
Typ := Full_View (Typ);
|
1494 |
|
|
end if;
|
1495 |
|
|
|
1496 |
|
|
-- Handle access types
|
1497 |
|
|
|
1498 |
|
|
if Is_Access_Type (Typ) then
|
1499 |
|
|
Typ := Directly_Designated_Type (Typ);
|
1500 |
|
|
end if;
|
1501 |
|
|
|
1502 |
|
|
-- Handle task and protected types implementing interfaces
|
1503 |
|
|
|
1504 |
|
|
if Is_Concurrent_Type (Typ) then
|
1505 |
|
|
Typ := Corresponding_Record_Type (Typ);
|
1506 |
|
|
end if;
|
1507 |
|
|
|
1508 |
|
|
pragma Assert
|
1509 |
|
|
(not Is_Class_Wide_Type (Typ)
|
1510 |
|
|
and then Ekind (Typ) /= E_Incomplete_Type);
|
1511 |
|
|
|
1512 |
|
|
if Is_Ancestor (Iface, Typ) then
|
1513 |
|
|
return First_Elmt (Access_Disp_Table (Typ));
|
1514 |
|
|
|
1515 |
|
|
else
|
1516 |
|
|
ADT :=
|
1517 |
|
|
Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
|
1518 |
|
|
while Present (ADT)
|
1519 |
|
|
and then Present (Related_Type (Node (ADT)))
|
1520 |
|
|
and then Related_Type (Node (ADT)) /= Iface
|
1521 |
|
|
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
|
1522 |
|
|
loop
|
1523 |
|
|
Next_Elmt (ADT);
|
1524 |
|
|
end loop;
|
1525 |
|
|
|
1526 |
|
|
pragma Assert (Present (Related_Type (Node (ADT))));
|
1527 |
|
|
return ADT;
|
1528 |
|
|
end if;
|
1529 |
|
|
end Find_Interface_ADT;
|
1530 |
|
|
|
1531 |
|
|
------------------------
|
1532 |
|
|
-- Find_Interface_Tag --
|
1533 |
|
|
------------------------
|
1534 |
|
|
|
1535 |
|
|
function Find_Interface_Tag
|
1536 |
|
|
(T : Entity_Id;
|
1537 |
|
|
Iface : Entity_Id) return Entity_Id
|
1538 |
|
|
is
|
1539 |
|
|
AI_Tag : Entity_Id;
|
1540 |
|
|
Found : Boolean := False;
|
1541 |
|
|
Typ : Entity_Id := T;
|
1542 |
|
|
|
1543 |
|
|
procedure Find_Tag (Typ : Entity_Id);
|
1544 |
|
|
-- Internal subprogram used to recursively climb to the ancestors
|
1545 |
|
|
|
1546 |
|
|
--------------
|
1547 |
|
|
-- Find_Tag --
|
1548 |
|
|
--------------
|
1549 |
|
|
|
1550 |
|
|
procedure Find_Tag (Typ : Entity_Id) is
|
1551 |
|
|
AI_Elmt : Elmt_Id;
|
1552 |
|
|
AI : Node_Id;
|
1553 |
|
|
|
1554 |
|
|
begin
|
1555 |
|
|
-- This routine does not handle the case in which the interface is an
|
1556 |
|
|
-- ancestor of Typ. That case is handled by the enclosing subprogram.
|
1557 |
|
|
|
1558 |
|
|
pragma Assert (Typ /= Iface);
|
1559 |
|
|
|
1560 |
|
|
-- Climb to the root type handling private types
|
1561 |
|
|
|
1562 |
|
|
if Present (Full_View (Etype (Typ))) then
|
1563 |
|
|
if Full_View (Etype (Typ)) /= Typ then
|
1564 |
|
|
Find_Tag (Full_View (Etype (Typ)));
|
1565 |
|
|
end if;
|
1566 |
|
|
|
1567 |
|
|
elsif Etype (Typ) /= Typ then
|
1568 |
|
|
Find_Tag (Etype (Typ));
|
1569 |
|
|
end if;
|
1570 |
|
|
|
1571 |
|
|
-- Traverse the list of interfaces implemented by the type
|
1572 |
|
|
|
1573 |
|
|
if not Found
|
1574 |
|
|
and then Present (Interfaces (Typ))
|
1575 |
|
|
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
|
1576 |
|
|
then
|
1577 |
|
|
-- Skip the tag associated with the primary table
|
1578 |
|
|
|
1579 |
|
|
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
|
1580 |
|
|
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
|
1581 |
|
|
pragma Assert (Present (AI_Tag));
|
1582 |
|
|
|
1583 |
|
|
AI_Elmt := First_Elmt (Interfaces (Typ));
|
1584 |
|
|
while Present (AI_Elmt) loop
|
1585 |
|
|
AI := Node (AI_Elmt);
|
1586 |
|
|
|
1587 |
|
|
if AI = Iface or else Is_Ancestor (Iface, AI) then
|
1588 |
|
|
Found := True;
|
1589 |
|
|
return;
|
1590 |
|
|
end if;
|
1591 |
|
|
|
1592 |
|
|
AI_Tag := Next_Tag_Component (AI_Tag);
|
1593 |
|
|
Next_Elmt (AI_Elmt);
|
1594 |
|
|
end loop;
|
1595 |
|
|
end if;
|
1596 |
|
|
end Find_Tag;
|
1597 |
|
|
|
1598 |
|
|
-- Start of processing for Find_Interface_Tag
|
1599 |
|
|
|
1600 |
|
|
begin
|
1601 |
|
|
pragma Assert (Is_Interface (Iface));
|
1602 |
|
|
|
1603 |
|
|
-- Handle access types
|
1604 |
|
|
|
1605 |
|
|
if Is_Access_Type (Typ) then
|
1606 |
|
|
Typ := Directly_Designated_Type (Typ);
|
1607 |
|
|
end if;
|
1608 |
|
|
|
1609 |
|
|
-- Handle class-wide types
|
1610 |
|
|
|
1611 |
|
|
if Is_Class_Wide_Type (Typ) then
|
1612 |
|
|
Typ := Root_Type (Typ);
|
1613 |
|
|
end if;
|
1614 |
|
|
|
1615 |
|
|
-- Handle private types
|
1616 |
|
|
|
1617 |
|
|
if Has_Private_Declaration (Typ)
|
1618 |
|
|
and then Present (Full_View (Typ))
|
1619 |
|
|
then
|
1620 |
|
|
Typ := Full_View (Typ);
|
1621 |
|
|
end if;
|
1622 |
|
|
|
1623 |
|
|
-- Handle entities from the limited view
|
1624 |
|
|
|
1625 |
|
|
if Ekind (Typ) = E_Incomplete_Type then
|
1626 |
|
|
pragma Assert (Present (Non_Limited_View (Typ)));
|
1627 |
|
|
Typ := Non_Limited_View (Typ);
|
1628 |
|
|
end if;
|
1629 |
|
|
|
1630 |
|
|
-- Handle task and protected types implementing interfaces
|
1631 |
|
|
|
1632 |
|
|
if Is_Concurrent_Type (Typ) then
|
1633 |
|
|
Typ := Corresponding_Record_Type (Typ);
|
1634 |
|
|
end if;
|
1635 |
|
|
|
1636 |
|
|
-- If the interface is an ancestor of the type, then it shared the
|
1637 |
|
|
-- primary dispatch table.
|
1638 |
|
|
|
1639 |
|
|
if Is_Ancestor (Iface, Typ) then
|
1640 |
|
|
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
|
1641 |
|
|
return First_Tag_Component (Typ);
|
1642 |
|
|
|
1643 |
|
|
-- Otherwise we need to search for its associated tag component
|
1644 |
|
|
|
1645 |
|
|
else
|
1646 |
|
|
Find_Tag (Typ);
|
1647 |
|
|
pragma Assert (Found);
|
1648 |
|
|
return AI_Tag;
|
1649 |
|
|
end if;
|
1650 |
|
|
end Find_Interface_Tag;
|
1651 |
|
|
|
1652 |
|
|
------------------
|
1653 |
|
|
-- Find_Prim_Op --
|
1654 |
|
|
------------------
|
1655 |
|
|
|
1656 |
|
|
function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
|
1657 |
|
|
Prim : Elmt_Id;
|
1658 |
|
|
Typ : Entity_Id := T;
|
1659 |
|
|
Op : Entity_Id;
|
1660 |
|
|
|
1661 |
|
|
begin
|
1662 |
|
|
if Is_Class_Wide_Type (Typ) then
|
1663 |
|
|
Typ := Root_Type (Typ);
|
1664 |
|
|
end if;
|
1665 |
|
|
|
1666 |
|
|
Typ := Underlying_Type (Typ);
|
1667 |
|
|
|
1668 |
|
|
-- Loop through primitive operations
|
1669 |
|
|
|
1670 |
|
|
Prim := First_Elmt (Primitive_Operations (Typ));
|
1671 |
|
|
while Present (Prim) loop
|
1672 |
|
|
Op := Node (Prim);
|
1673 |
|
|
|
1674 |
|
|
-- We can retrieve primitive operations by name if it is an internal
|
1675 |
|
|
-- name. For equality we must check that both of its operands have
|
1676 |
|
|
-- the same type, to avoid confusion with user-defined equalities
|
1677 |
|
|
-- than may have a non-symmetric signature.
|
1678 |
|
|
|
1679 |
|
|
exit when Chars (Op) = Name
|
1680 |
|
|
and then
|
1681 |
|
|
(Name /= Name_Op_Eq
|
1682 |
|
|
or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
|
1683 |
|
|
|
1684 |
|
|
Next_Elmt (Prim);
|
1685 |
|
|
|
1686 |
|
|
-- Raise Program_Error if no primitive found
|
1687 |
|
|
|
1688 |
|
|
if No (Prim) then
|
1689 |
|
|
raise Program_Error;
|
1690 |
|
|
end if;
|
1691 |
|
|
end loop;
|
1692 |
|
|
|
1693 |
|
|
return Node (Prim);
|
1694 |
|
|
end Find_Prim_Op;
|
1695 |
|
|
|
1696 |
|
|
------------------
|
1697 |
|
|
-- Find_Prim_Op --
|
1698 |
|
|
------------------
|
1699 |
|
|
|
1700 |
|
|
function Find_Prim_Op
|
1701 |
|
|
(T : Entity_Id;
|
1702 |
|
|
Name : TSS_Name_Type) return Entity_Id
|
1703 |
|
|
is
|
1704 |
|
|
Prim : Elmt_Id;
|
1705 |
|
|
Typ : Entity_Id := T;
|
1706 |
|
|
|
1707 |
|
|
begin
|
1708 |
|
|
if Is_Class_Wide_Type (Typ) then
|
1709 |
|
|
Typ := Root_Type (Typ);
|
1710 |
|
|
end if;
|
1711 |
|
|
|
1712 |
|
|
Typ := Underlying_Type (Typ);
|
1713 |
|
|
|
1714 |
|
|
Prim := First_Elmt (Primitive_Operations (Typ));
|
1715 |
|
|
while not Is_TSS (Node (Prim), Name) loop
|
1716 |
|
|
Next_Elmt (Prim);
|
1717 |
|
|
|
1718 |
|
|
-- Raise program error if no primitive found
|
1719 |
|
|
|
1720 |
|
|
if No (Prim) then
|
1721 |
|
|
raise Program_Error;
|
1722 |
|
|
end if;
|
1723 |
|
|
end loop;
|
1724 |
|
|
|
1725 |
|
|
return Node (Prim);
|
1726 |
|
|
end Find_Prim_Op;
|
1727 |
|
|
|
1728 |
|
|
----------------------------
|
1729 |
|
|
-- Find_Protection_Object --
|
1730 |
|
|
----------------------------
|
1731 |
|
|
|
1732 |
|
|
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
|
1733 |
|
|
S : Entity_Id;
|
1734 |
|
|
|
1735 |
|
|
begin
|
1736 |
|
|
S := Scop;
|
1737 |
|
|
while Present (S) loop
|
1738 |
|
|
if (Ekind (S) = E_Entry
|
1739 |
|
|
or else Ekind (S) = E_Entry_Family
|
1740 |
|
|
or else Ekind (S) = E_Function
|
1741 |
|
|
or else Ekind (S) = E_Procedure)
|
1742 |
|
|
and then Present (Protection_Object (S))
|
1743 |
|
|
then
|
1744 |
|
|
return Protection_Object (S);
|
1745 |
|
|
end if;
|
1746 |
|
|
|
1747 |
|
|
S := Scope (S);
|
1748 |
|
|
end loop;
|
1749 |
|
|
|
1750 |
|
|
-- If we do not find a Protection object in the scope chain, then
|
1751 |
|
|
-- something has gone wrong, most likely the object was never created.
|
1752 |
|
|
|
1753 |
|
|
raise Program_Error;
|
1754 |
|
|
end Find_Protection_Object;
|
1755 |
|
|
|
1756 |
|
|
----------------------
|
1757 |
|
|
-- Force_Evaluation --
|
1758 |
|
|
----------------------
|
1759 |
|
|
|
1760 |
|
|
procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
|
1761 |
|
|
begin
|
1762 |
|
|
Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
|
1763 |
|
|
end Force_Evaluation;
|
1764 |
|
|
|
1765 |
|
|
------------------------
|
1766 |
|
|
-- Generate_Poll_Call --
|
1767 |
|
|
------------------------
|
1768 |
|
|
|
1769 |
|
|
procedure Generate_Poll_Call (N : Node_Id) is
|
1770 |
|
|
begin
|
1771 |
|
|
-- No poll call if polling not active
|
1772 |
|
|
|
1773 |
|
|
if not Polling_Required then
|
1774 |
|
|
return;
|
1775 |
|
|
|
1776 |
|
|
-- Otherwise generate require poll call
|
1777 |
|
|
|
1778 |
|
|
else
|
1779 |
|
|
Insert_Before_And_Analyze (N,
|
1780 |
|
|
Make_Procedure_Call_Statement (Sloc (N),
|
1781 |
|
|
Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
|
1782 |
|
|
end if;
|
1783 |
|
|
end Generate_Poll_Call;
|
1784 |
|
|
|
1785 |
|
|
---------------------------------
|
1786 |
|
|
-- Get_Current_Value_Condition --
|
1787 |
|
|
---------------------------------
|
1788 |
|
|
|
1789 |
|
|
-- Note: the implementation of this procedure is very closely tied to the
|
1790 |
|
|
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
|
1791 |
|
|
-- interpret Current_Value fields set by the Set procedure, so the two
|
1792 |
|
|
-- procedures need to be closely coordinated.
|
1793 |
|
|
|
1794 |
|
|
procedure Get_Current_Value_Condition
|
1795 |
|
|
(Var : Node_Id;
|
1796 |
|
|
Op : out Node_Kind;
|
1797 |
|
|
Val : out Node_Id)
|
1798 |
|
|
is
|
1799 |
|
|
Loc : constant Source_Ptr := Sloc (Var);
|
1800 |
|
|
Ent : constant Entity_Id := Entity (Var);
|
1801 |
|
|
|
1802 |
|
|
procedure Process_Current_Value_Condition
|
1803 |
|
|
(N : Node_Id;
|
1804 |
|
|
S : Boolean);
|
1805 |
|
|
-- N is an expression which holds either True (S = True) or False (S =
|
1806 |
|
|
-- False) in the condition. This procedure digs out the expression and
|
1807 |
|
|
-- if it refers to Ent, sets Op and Val appropriately.
|
1808 |
|
|
|
1809 |
|
|
-------------------------------------
|
1810 |
|
|
-- Process_Current_Value_Condition --
|
1811 |
|
|
-------------------------------------
|
1812 |
|
|
|
1813 |
|
|
procedure Process_Current_Value_Condition
|
1814 |
|
|
(N : Node_Id;
|
1815 |
|
|
S : Boolean)
|
1816 |
|
|
is
|
1817 |
|
|
Cond : Node_Id;
|
1818 |
|
|
Sens : Boolean;
|
1819 |
|
|
|
1820 |
|
|
begin
|
1821 |
|
|
Cond := N;
|
1822 |
|
|
Sens := S;
|
1823 |
|
|
|
1824 |
|
|
-- Deal with NOT operators, inverting sense
|
1825 |
|
|
|
1826 |
|
|
while Nkind (Cond) = N_Op_Not loop
|
1827 |
|
|
Cond := Right_Opnd (Cond);
|
1828 |
|
|
Sens := not Sens;
|
1829 |
|
|
end loop;
|
1830 |
|
|
|
1831 |
|
|
-- Deal with AND THEN and AND cases
|
1832 |
|
|
|
1833 |
|
|
if Nkind (Cond) = N_And_Then
|
1834 |
|
|
or else Nkind (Cond) = N_Op_And
|
1835 |
|
|
then
|
1836 |
|
|
-- Don't ever try to invert a condition that is of the form
|
1837 |
|
|
-- of an AND or AND THEN (since we are not doing sufficiently
|
1838 |
|
|
-- general processing to allow this).
|
1839 |
|
|
|
1840 |
|
|
if Sens = False then
|
1841 |
|
|
Op := N_Empty;
|
1842 |
|
|
Val := Empty;
|
1843 |
|
|
return;
|
1844 |
|
|
end if;
|
1845 |
|
|
|
1846 |
|
|
-- Recursively process AND and AND THEN branches
|
1847 |
|
|
|
1848 |
|
|
Process_Current_Value_Condition (Left_Opnd (Cond), True);
|
1849 |
|
|
|
1850 |
|
|
if Op /= N_Empty then
|
1851 |
|
|
return;
|
1852 |
|
|
end if;
|
1853 |
|
|
|
1854 |
|
|
Process_Current_Value_Condition (Right_Opnd (Cond), True);
|
1855 |
|
|
return;
|
1856 |
|
|
|
1857 |
|
|
-- Case of relational operator
|
1858 |
|
|
|
1859 |
|
|
elsif Nkind (Cond) in N_Op_Compare then
|
1860 |
|
|
Op := Nkind (Cond);
|
1861 |
|
|
|
1862 |
|
|
-- Invert sense of test if inverted test
|
1863 |
|
|
|
1864 |
|
|
if Sens = False then
|
1865 |
|
|
case Op is
|
1866 |
|
|
when N_Op_Eq => Op := N_Op_Ne;
|
1867 |
|
|
when N_Op_Ne => Op := N_Op_Eq;
|
1868 |
|
|
when N_Op_Lt => Op := N_Op_Ge;
|
1869 |
|
|
when N_Op_Gt => Op := N_Op_Le;
|
1870 |
|
|
when N_Op_Le => Op := N_Op_Gt;
|
1871 |
|
|
when N_Op_Ge => Op := N_Op_Lt;
|
1872 |
|
|
when others => raise Program_Error;
|
1873 |
|
|
end case;
|
1874 |
|
|
end if;
|
1875 |
|
|
|
1876 |
|
|
-- Case of entity op value
|
1877 |
|
|
|
1878 |
|
|
if Is_Entity_Name (Left_Opnd (Cond))
|
1879 |
|
|
and then Ent = Entity (Left_Opnd (Cond))
|
1880 |
|
|
and then Compile_Time_Known_Value (Right_Opnd (Cond))
|
1881 |
|
|
then
|
1882 |
|
|
Val := Right_Opnd (Cond);
|
1883 |
|
|
|
1884 |
|
|
-- Case of value op entity
|
1885 |
|
|
|
1886 |
|
|
elsif Is_Entity_Name (Right_Opnd (Cond))
|
1887 |
|
|
and then Ent = Entity (Right_Opnd (Cond))
|
1888 |
|
|
and then Compile_Time_Known_Value (Left_Opnd (Cond))
|
1889 |
|
|
then
|
1890 |
|
|
Val := Left_Opnd (Cond);
|
1891 |
|
|
|
1892 |
|
|
-- We are effectively swapping operands
|
1893 |
|
|
|
1894 |
|
|
case Op is
|
1895 |
|
|
when N_Op_Eq => null;
|
1896 |
|
|
when N_Op_Ne => null;
|
1897 |
|
|
when N_Op_Lt => Op := N_Op_Gt;
|
1898 |
|
|
when N_Op_Gt => Op := N_Op_Lt;
|
1899 |
|
|
when N_Op_Le => Op := N_Op_Ge;
|
1900 |
|
|
when N_Op_Ge => Op := N_Op_Le;
|
1901 |
|
|
when others => raise Program_Error;
|
1902 |
|
|
end case;
|
1903 |
|
|
|
1904 |
|
|
else
|
1905 |
|
|
Op := N_Empty;
|
1906 |
|
|
end if;
|
1907 |
|
|
|
1908 |
|
|
return;
|
1909 |
|
|
|
1910 |
|
|
-- Case of Boolean variable reference, return as though the
|
1911 |
|
|
-- reference had said var = True.
|
1912 |
|
|
|
1913 |
|
|
else
|
1914 |
|
|
if Is_Entity_Name (Cond)
|
1915 |
|
|
and then Ent = Entity (Cond)
|
1916 |
|
|
then
|
1917 |
|
|
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
|
1918 |
|
|
|
1919 |
|
|
if Sens = False then
|
1920 |
|
|
Op := N_Op_Ne;
|
1921 |
|
|
else
|
1922 |
|
|
Op := N_Op_Eq;
|
1923 |
|
|
end if;
|
1924 |
|
|
end if;
|
1925 |
|
|
end if;
|
1926 |
|
|
end Process_Current_Value_Condition;
|
1927 |
|
|
|
1928 |
|
|
-- Start of processing for Get_Current_Value_Condition
|
1929 |
|
|
|
1930 |
|
|
begin
|
1931 |
|
|
Op := N_Empty;
|
1932 |
|
|
Val := Empty;
|
1933 |
|
|
|
1934 |
|
|
-- Immediate return, nothing doing, if this is not an object
|
1935 |
|
|
|
1936 |
|
|
if Ekind (Ent) not in Object_Kind then
|
1937 |
|
|
return;
|
1938 |
|
|
end if;
|
1939 |
|
|
|
1940 |
|
|
-- Otherwise examine current value
|
1941 |
|
|
|
1942 |
|
|
declare
|
1943 |
|
|
CV : constant Node_Id := Current_Value (Ent);
|
1944 |
|
|
Sens : Boolean;
|
1945 |
|
|
Stm : Node_Id;
|
1946 |
|
|
|
1947 |
|
|
begin
|
1948 |
|
|
-- If statement. Condition is known true in THEN section, known False
|
1949 |
|
|
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
|
1950 |
|
|
|
1951 |
|
|
if Nkind (CV) = N_If_Statement then
|
1952 |
|
|
|
1953 |
|
|
-- Before start of IF statement
|
1954 |
|
|
|
1955 |
|
|
if Loc < Sloc (CV) then
|
1956 |
|
|
return;
|
1957 |
|
|
|
1958 |
|
|
-- After end of IF statement
|
1959 |
|
|
|
1960 |
|
|
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
|
1961 |
|
|
return;
|
1962 |
|
|
end if;
|
1963 |
|
|
|
1964 |
|
|
-- At this stage we know that we are within the IF statement, but
|
1965 |
|
|
-- unfortunately, the tree does not record the SLOC of the ELSE so
|
1966 |
|
|
-- we cannot use a simple SLOC comparison to distinguish between
|
1967 |
|
|
-- the then/else statements, so we have to climb the tree.
|
1968 |
|
|
|
1969 |
|
|
declare
|
1970 |
|
|
N : Node_Id;
|
1971 |
|
|
|
1972 |
|
|
begin
|
1973 |
|
|
N := Parent (Var);
|
1974 |
|
|
while Parent (N) /= CV loop
|
1975 |
|
|
N := Parent (N);
|
1976 |
|
|
|
1977 |
|
|
-- If we fall off the top of the tree, then that's odd, but
|
1978 |
|
|
-- perhaps it could occur in some error situation, and the
|
1979 |
|
|
-- safest response is simply to assume that the outcome of
|
1980 |
|
|
-- the condition is unknown. No point in bombing during an
|
1981 |
|
|
-- attempt to optimize things.
|
1982 |
|
|
|
1983 |
|
|
if No (N) then
|
1984 |
|
|
return;
|
1985 |
|
|
end if;
|
1986 |
|
|
end loop;
|
1987 |
|
|
|
1988 |
|
|
-- Now we have N pointing to a node whose parent is the IF
|
1989 |
|
|
-- statement in question, so now we can tell if we are within
|
1990 |
|
|
-- the THEN statements.
|
1991 |
|
|
|
1992 |
|
|
if Is_List_Member (N)
|
1993 |
|
|
and then List_Containing (N) = Then_Statements (CV)
|
1994 |
|
|
then
|
1995 |
|
|
Sens := True;
|
1996 |
|
|
|
1997 |
|
|
-- If the variable reference does not come from source, we
|
1998 |
|
|
-- cannot reliably tell whether it appears in the else part.
|
1999 |
|
|
-- In particular, if it appears in generated code for a node
|
2000 |
|
|
-- that requires finalization, it may be attached to a list
|
2001 |
|
|
-- that has not been yet inserted into the code. For now,
|
2002 |
|
|
-- treat it as unknown.
|
2003 |
|
|
|
2004 |
|
|
elsif not Comes_From_Source (N) then
|
2005 |
|
|
return;
|
2006 |
|
|
|
2007 |
|
|
-- Otherwise we must be in ELSIF or ELSE part
|
2008 |
|
|
|
2009 |
|
|
else
|
2010 |
|
|
Sens := False;
|
2011 |
|
|
end if;
|
2012 |
|
|
end;
|
2013 |
|
|
|
2014 |
|
|
-- ELSIF part. Condition is known true within the referenced
|
2015 |
|
|
-- ELSIF, known False in any subsequent ELSIF or ELSE part, and
|
2016 |
|
|
-- unknown before the ELSE part or after the IF statement.
|
2017 |
|
|
|
2018 |
|
|
elsif Nkind (CV) = N_Elsif_Part then
|
2019 |
|
|
Stm := Parent (CV);
|
2020 |
|
|
|
2021 |
|
|
-- Before start of ELSIF part
|
2022 |
|
|
|
2023 |
|
|
if Loc < Sloc (CV) then
|
2024 |
|
|
return;
|
2025 |
|
|
|
2026 |
|
|
-- After end of IF statement
|
2027 |
|
|
|
2028 |
|
|
elsif Loc >= Sloc (Stm) +
|
2029 |
|
|
Text_Ptr (UI_To_Int (End_Span (Stm)))
|
2030 |
|
|
then
|
2031 |
|
|
return;
|
2032 |
|
|
end if;
|
2033 |
|
|
|
2034 |
|
|
-- Again we lack the SLOC of the ELSE, so we need to climb the
|
2035 |
|
|
-- tree to see if we are within the ELSIF part in question.
|
2036 |
|
|
|
2037 |
|
|
declare
|
2038 |
|
|
N : Node_Id;
|
2039 |
|
|
|
2040 |
|
|
begin
|
2041 |
|
|
N := Parent (Var);
|
2042 |
|
|
while Parent (N) /= Stm loop
|
2043 |
|
|
N := Parent (N);
|
2044 |
|
|
|
2045 |
|
|
-- If we fall off the top of the tree, then that's odd, but
|
2046 |
|
|
-- perhaps it could occur in some error situation, and the
|
2047 |
|
|
-- safest response is simply to assume that the outcome of
|
2048 |
|
|
-- the condition is unknown. No point in bombing during an
|
2049 |
|
|
-- attempt to optimize things.
|
2050 |
|
|
|
2051 |
|
|
if No (N) then
|
2052 |
|
|
return;
|
2053 |
|
|
end if;
|
2054 |
|
|
end loop;
|
2055 |
|
|
|
2056 |
|
|
-- Now we have N pointing to a node whose parent is the IF
|
2057 |
|
|
-- statement in question, so see if is the ELSIF part we want.
|
2058 |
|
|
-- the THEN statements.
|
2059 |
|
|
|
2060 |
|
|
if N = CV then
|
2061 |
|
|
Sens := True;
|
2062 |
|
|
|
2063 |
|
|
-- Otherwise we must be in subsequent ELSIF or ELSE part
|
2064 |
|
|
|
2065 |
|
|
else
|
2066 |
|
|
Sens := False;
|
2067 |
|
|
end if;
|
2068 |
|
|
end;
|
2069 |
|
|
|
2070 |
|
|
-- Iteration scheme of while loop. The condition is known to be
|
2071 |
|
|
-- true within the body of the loop.
|
2072 |
|
|
|
2073 |
|
|
elsif Nkind (CV) = N_Iteration_Scheme then
|
2074 |
|
|
declare
|
2075 |
|
|
Loop_Stmt : constant Node_Id := Parent (CV);
|
2076 |
|
|
|
2077 |
|
|
begin
|
2078 |
|
|
-- Before start of body of loop
|
2079 |
|
|
|
2080 |
|
|
if Loc < Sloc (Loop_Stmt) then
|
2081 |
|
|
return;
|
2082 |
|
|
|
2083 |
|
|
-- After end of LOOP statement
|
2084 |
|
|
|
2085 |
|
|
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
|
2086 |
|
|
return;
|
2087 |
|
|
|
2088 |
|
|
-- We are within the body of the loop
|
2089 |
|
|
|
2090 |
|
|
else
|
2091 |
|
|
Sens := True;
|
2092 |
|
|
end if;
|
2093 |
|
|
end;
|
2094 |
|
|
|
2095 |
|
|
-- All other cases of Current_Value settings
|
2096 |
|
|
|
2097 |
|
|
else
|
2098 |
|
|
return;
|
2099 |
|
|
end if;
|
2100 |
|
|
|
2101 |
|
|
-- If we fall through here, then we have a reportable condition, Sens
|
2102 |
|
|
-- is True if the condition is true and False if it needs inverting.
|
2103 |
|
|
|
2104 |
|
|
Process_Current_Value_Condition (Condition (CV), Sens);
|
2105 |
|
|
end;
|
2106 |
|
|
end Get_Current_Value_Condition;
|
2107 |
|
|
|
2108 |
|
|
---------------------------------
|
2109 |
|
|
-- Has_Controlled_Coextensions --
|
2110 |
|
|
---------------------------------
|
2111 |
|
|
|
2112 |
|
|
function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
|
2113 |
|
|
D_Typ : Entity_Id;
|
2114 |
|
|
Discr : Entity_Id;
|
2115 |
|
|
|
2116 |
|
|
begin
|
2117 |
|
|
-- Only consider record types
|
2118 |
|
|
|
2119 |
|
|
if Ekind (Typ) /= E_Record_Type
|
2120 |
|
|
and then Ekind (Typ) /= E_Record_Subtype
|
2121 |
|
|
then
|
2122 |
|
|
return False;
|
2123 |
|
|
end if;
|
2124 |
|
|
|
2125 |
|
|
if Has_Discriminants (Typ) then
|
2126 |
|
|
Discr := First_Discriminant (Typ);
|
2127 |
|
|
while Present (Discr) loop
|
2128 |
|
|
D_Typ := Etype (Discr);
|
2129 |
|
|
|
2130 |
|
|
if Ekind (D_Typ) = E_Anonymous_Access_Type
|
2131 |
|
|
and then
|
2132 |
|
|
(Is_Controlled (Directly_Designated_Type (D_Typ))
|
2133 |
|
|
or else
|
2134 |
|
|
Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
|
2135 |
|
|
then
|
2136 |
|
|
return True;
|
2137 |
|
|
end if;
|
2138 |
|
|
|
2139 |
|
|
Next_Discriminant (Discr);
|
2140 |
|
|
end loop;
|
2141 |
|
|
end if;
|
2142 |
|
|
|
2143 |
|
|
return False;
|
2144 |
|
|
end Has_Controlled_Coextensions;
|
2145 |
|
|
|
2146 |
|
|
--------------------
|
2147 |
|
|
-- Homonym_Number --
|
2148 |
|
|
--------------------
|
2149 |
|
|
|
2150 |
|
|
function Homonym_Number (Subp : Entity_Id) return Nat is
|
2151 |
|
|
Count : Nat;
|
2152 |
|
|
Hom : Entity_Id;
|
2153 |
|
|
|
2154 |
|
|
begin
|
2155 |
|
|
Count := 1;
|
2156 |
|
|
Hom := Homonym (Subp);
|
2157 |
|
|
while Present (Hom) loop
|
2158 |
|
|
if Scope (Hom) = Scope (Subp) then
|
2159 |
|
|
Count := Count + 1;
|
2160 |
|
|
end if;
|
2161 |
|
|
|
2162 |
|
|
Hom := Homonym (Hom);
|
2163 |
|
|
end loop;
|
2164 |
|
|
|
2165 |
|
|
return Count;
|
2166 |
|
|
end Homonym_Number;
|
2167 |
|
|
|
2168 |
|
|
------------------------------
|
2169 |
|
|
-- In_Unconditional_Context --
|
2170 |
|
|
------------------------------
|
2171 |
|
|
|
2172 |
|
|
function In_Unconditional_Context (Node : Node_Id) return Boolean is
|
2173 |
|
|
P : Node_Id;
|
2174 |
|
|
|
2175 |
|
|
begin
|
2176 |
|
|
P := Node;
|
2177 |
|
|
while Present (P) loop
|
2178 |
|
|
case Nkind (P) is
|
2179 |
|
|
when N_Subprogram_Body =>
|
2180 |
|
|
return True;
|
2181 |
|
|
|
2182 |
|
|
when N_If_Statement =>
|
2183 |
|
|
return False;
|
2184 |
|
|
|
2185 |
|
|
when N_Loop_Statement =>
|
2186 |
|
|
return False;
|
2187 |
|
|
|
2188 |
|
|
when N_Case_Statement =>
|
2189 |
|
|
return False;
|
2190 |
|
|
|
2191 |
|
|
when others =>
|
2192 |
|
|
P := Parent (P);
|
2193 |
|
|
end case;
|
2194 |
|
|
end loop;
|
2195 |
|
|
|
2196 |
|
|
return False;
|
2197 |
|
|
end In_Unconditional_Context;
|
2198 |
|
|
|
2199 |
|
|
-------------------
|
2200 |
|
|
-- Insert_Action --
|
2201 |
|
|
-------------------
|
2202 |
|
|
|
2203 |
|
|
procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
|
2204 |
|
|
begin
|
2205 |
|
|
if Present (Ins_Action) then
|
2206 |
|
|
Insert_Actions (Assoc_Node, New_List (Ins_Action));
|
2207 |
|
|
end if;
|
2208 |
|
|
end Insert_Action;
|
2209 |
|
|
|
2210 |
|
|
-- Version with check(s) suppressed
|
2211 |
|
|
|
2212 |
|
|
procedure Insert_Action
|
2213 |
|
|
(Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
|
2214 |
|
|
is
|
2215 |
|
|
begin
|
2216 |
|
|
Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
|
2217 |
|
|
end Insert_Action;
|
2218 |
|
|
|
2219 |
|
|
--------------------
|
2220 |
|
|
-- Insert_Actions --
|
2221 |
|
|
--------------------
|
2222 |
|
|
|
2223 |
|
|
procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
|
2224 |
|
|
N : Node_Id;
|
2225 |
|
|
P : Node_Id;
|
2226 |
|
|
|
2227 |
|
|
Wrapped_Node : Node_Id := Empty;
|
2228 |
|
|
|
2229 |
|
|
begin
|
2230 |
|
|
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
|
2231 |
|
|
return;
|
2232 |
|
|
end if;
|
2233 |
|
|
|
2234 |
|
|
-- Ignore insert of actions from inside default expression (or other
|
2235 |
|
|
-- similar "spec expression") in the special spec-expression analyze
|
2236 |
|
|
-- mode. Any insertions at this point have no relevance, since we are
|
2237 |
|
|
-- only doing the analyze to freeze the types of any static expressions.
|
2238 |
|
|
-- See section "Handling of Default Expressions" in the spec of package
|
2239 |
|
|
-- Sem for further details.
|
2240 |
|
|
|
2241 |
|
|
if In_Spec_Expression then
|
2242 |
|
|
return;
|
2243 |
|
|
end if;
|
2244 |
|
|
|
2245 |
|
|
-- If the action derives from stuff inside a record, then the actions
|
2246 |
|
|
-- are attached to the current scope, to be inserted and analyzed on
|
2247 |
|
|
-- exit from the scope. The reason for this is that we may also
|
2248 |
|
|
-- be generating freeze actions at the same time, and they must
|
2249 |
|
|
-- eventually be elaborated in the correct order.
|
2250 |
|
|
|
2251 |
|
|
if Is_Record_Type (Current_Scope)
|
2252 |
|
|
and then not Is_Frozen (Current_Scope)
|
2253 |
|
|
then
|
2254 |
|
|
if No (Scope_Stack.Table
|
2255 |
|
|
(Scope_Stack.Last).Pending_Freeze_Actions)
|
2256 |
|
|
then
|
2257 |
|
|
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
|
2258 |
|
|
Ins_Actions;
|
2259 |
|
|
else
|
2260 |
|
|
Append_List
|
2261 |
|
|
(Ins_Actions,
|
2262 |
|
|
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
|
2263 |
|
|
end if;
|
2264 |
|
|
|
2265 |
|
|
return;
|
2266 |
|
|
end if;
|
2267 |
|
|
|
2268 |
|
|
-- We now intend to climb up the tree to find the right point to
|
2269 |
|
|
-- insert the actions. We start at Assoc_Node, unless this node is
|
2270 |
|
|
-- a subexpression in which case we start with its parent. We do this
|
2271 |
|
|
-- for two reasons. First it speeds things up. Second, if Assoc_Node
|
2272 |
|
|
-- is itself one of the special nodes like N_And_Then, then we assume
|
2273 |
|
|
-- that an initial request to insert actions for such a node does not
|
2274 |
|
|
-- expect the actions to get deposited in the node for later handling
|
2275 |
|
|
-- when the node is expanded, since clearly the node is being dealt
|
2276 |
|
|
-- with by the caller. Note that in the subexpression case, N is
|
2277 |
|
|
-- always the child we came from.
|
2278 |
|
|
|
2279 |
|
|
-- N_Raise_xxx_Error is an annoying special case, it is a statement
|
2280 |
|
|
-- if it has type Standard_Void_Type, and a subexpression otherwise.
|
2281 |
|
|
-- otherwise. Procedure attribute references are also statements.
|
2282 |
|
|
|
2283 |
|
|
if Nkind (Assoc_Node) in N_Subexpr
|
2284 |
|
|
and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
|
2285 |
|
|
or else Etype (Assoc_Node) /= Standard_Void_Type)
|
2286 |
|
|
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
|
2287 |
|
|
or else
|
2288 |
|
|
not Is_Procedure_Attribute_Name
|
2289 |
|
|
(Attribute_Name (Assoc_Node)))
|
2290 |
|
|
then
|
2291 |
|
|
P := Assoc_Node; -- ??? does not agree with above!
|
2292 |
|
|
N := Parent (Assoc_Node);
|
2293 |
|
|
|
2294 |
|
|
-- Non-subexpression case. Note that N is initially Empty in this
|
2295 |
|
|
-- case (N is only guaranteed Non-Empty in the subexpr case).
|
2296 |
|
|
|
2297 |
|
|
else
|
2298 |
|
|
P := Assoc_Node;
|
2299 |
|
|
N := Empty;
|
2300 |
|
|
end if;
|
2301 |
|
|
|
2302 |
|
|
-- Capture root of the transient scope
|
2303 |
|
|
|
2304 |
|
|
if Scope_Is_Transient then
|
2305 |
|
|
Wrapped_Node := Node_To_Be_Wrapped;
|
2306 |
|
|
end if;
|
2307 |
|
|
|
2308 |
|
|
loop
|
2309 |
|
|
pragma Assert (Present (P));
|
2310 |
|
|
|
2311 |
|
|
case Nkind (P) is
|
2312 |
|
|
|
2313 |
|
|
-- Case of right operand of AND THEN or OR ELSE. Put the actions
|
2314 |
|
|
-- in the Actions field of the right operand. They will be moved
|
2315 |
|
|
-- out further when the AND THEN or OR ELSE operator is expanded.
|
2316 |
|
|
-- Nothing special needs to be done for the left operand since
|
2317 |
|
|
-- in that case the actions are executed unconditionally.
|
2318 |
|
|
|
2319 |
|
|
when N_Short_Circuit =>
|
2320 |
|
|
if N = Right_Opnd (P) then
|
2321 |
|
|
|
2322 |
|
|
-- We are now going to either append the actions to the
|
2323 |
|
|
-- actions field of the short-circuit operation. We will
|
2324 |
|
|
-- also analyze the actions now.
|
2325 |
|
|
|
2326 |
|
|
-- This analysis is really too early, the proper thing would
|
2327 |
|
|
-- be to just park them there now, and only analyze them if
|
2328 |
|
|
-- we find we really need them, and to it at the proper
|
2329 |
|
|
-- final insertion point. However attempting to this proved
|
2330 |
|
|
-- tricky, so for now we just kill current values before and
|
2331 |
|
|
-- after the analyze call to make sure we avoid peculiar
|
2332 |
|
|
-- optimizations from this out of order insertion.
|
2333 |
|
|
|
2334 |
|
|
Kill_Current_Values;
|
2335 |
|
|
|
2336 |
|
|
if Present (Actions (P)) then
|
2337 |
|
|
Insert_List_After_And_Analyze
|
2338 |
|
|
(Last (Actions (P)), Ins_Actions);
|
2339 |
|
|
else
|
2340 |
|
|
Set_Actions (P, Ins_Actions);
|
2341 |
|
|
Analyze_List (Actions (P));
|
2342 |
|
|
end if;
|
2343 |
|
|
|
2344 |
|
|
Kill_Current_Values;
|
2345 |
|
|
|
2346 |
|
|
return;
|
2347 |
|
|
end if;
|
2348 |
|
|
|
2349 |
|
|
-- Then or Else operand of conditional expression. Add actions to
|
2350 |
|
|
-- Then_Actions or Else_Actions field as appropriate. The actions
|
2351 |
|
|
-- will be moved further out when the conditional is expanded.
|
2352 |
|
|
|
2353 |
|
|
when N_Conditional_Expression =>
|
2354 |
|
|
declare
|
2355 |
|
|
ThenX : constant Node_Id := Next (First (Expressions (P)));
|
2356 |
|
|
ElseX : constant Node_Id := Next (ThenX);
|
2357 |
|
|
|
2358 |
|
|
begin
|
2359 |
|
|
-- Actions belong to the then expression, temporarily
|
2360 |
|
|
-- place them as Then_Actions of the conditional expr.
|
2361 |
|
|
-- They will be moved to the proper place later when
|
2362 |
|
|
-- the conditional expression is expanded.
|
2363 |
|
|
|
2364 |
|
|
if N = ThenX then
|
2365 |
|
|
if Present (Then_Actions (P)) then
|
2366 |
|
|
Insert_List_After_And_Analyze
|
2367 |
|
|
(Last (Then_Actions (P)), Ins_Actions);
|
2368 |
|
|
else
|
2369 |
|
|
Set_Then_Actions (P, Ins_Actions);
|
2370 |
|
|
Analyze_List (Then_Actions (P));
|
2371 |
|
|
end if;
|
2372 |
|
|
|
2373 |
|
|
return;
|
2374 |
|
|
|
2375 |
|
|
-- Actions belong to the else expression, temporarily
|
2376 |
|
|
-- place them as Else_Actions of the conditional expr.
|
2377 |
|
|
-- They will be moved to the proper place later when
|
2378 |
|
|
-- the conditional expression is expanded.
|
2379 |
|
|
|
2380 |
|
|
elsif N = ElseX then
|
2381 |
|
|
if Present (Else_Actions (P)) then
|
2382 |
|
|
Insert_List_After_And_Analyze
|
2383 |
|
|
(Last (Else_Actions (P)), Ins_Actions);
|
2384 |
|
|
else
|
2385 |
|
|
Set_Else_Actions (P, Ins_Actions);
|
2386 |
|
|
Analyze_List (Else_Actions (P));
|
2387 |
|
|
end if;
|
2388 |
|
|
|
2389 |
|
|
return;
|
2390 |
|
|
|
2391 |
|
|
-- Actions belong to the condition. In this case they are
|
2392 |
|
|
-- unconditionally executed, and so we can continue the
|
2393 |
|
|
-- search for the proper insert point.
|
2394 |
|
|
|
2395 |
|
|
else
|
2396 |
|
|
null;
|
2397 |
|
|
end if;
|
2398 |
|
|
end;
|
2399 |
|
|
|
2400 |
|
|
-- Case of appearing in the condition of a while expression or
|
2401 |
|
|
-- elsif. We insert the actions into the Condition_Actions field.
|
2402 |
|
|
-- They will be moved further out when the while loop or elsif
|
2403 |
|
|
-- is analyzed.
|
2404 |
|
|
|
2405 |
|
|
when N_Iteration_Scheme |
|
2406 |
|
|
N_Elsif_Part
|
2407 |
|
|
=>
|
2408 |
|
|
if N = Condition (P) then
|
2409 |
|
|
if Present (Condition_Actions (P)) then
|
2410 |
|
|
Insert_List_After_And_Analyze
|
2411 |
|
|
(Last (Condition_Actions (P)), Ins_Actions);
|
2412 |
|
|
else
|
2413 |
|
|
Set_Condition_Actions (P, Ins_Actions);
|
2414 |
|
|
|
2415 |
|
|
-- Set the parent of the insert actions explicitly.
|
2416 |
|
|
-- This is not a syntactic field, but we need the
|
2417 |
|
|
-- parent field set, in particular so that freeze
|
2418 |
|
|
-- can understand that it is dealing with condition
|
2419 |
|
|
-- actions, and properly insert the freezing actions.
|
2420 |
|
|
|
2421 |
|
|
Set_Parent (Ins_Actions, P);
|
2422 |
|
|
Analyze_List (Condition_Actions (P));
|
2423 |
|
|
end if;
|
2424 |
|
|
|
2425 |
|
|
return;
|
2426 |
|
|
end if;
|
2427 |
|
|
|
2428 |
|
|
-- Statements, declarations, pragmas, representation clauses
|
2429 |
|
|
|
2430 |
|
|
when
|
2431 |
|
|
-- Statements
|
2432 |
|
|
|
2433 |
|
|
N_Procedure_Call_Statement |
|
2434 |
|
|
N_Statement_Other_Than_Procedure_Call |
|
2435 |
|
|
|
2436 |
|
|
-- Pragmas
|
2437 |
|
|
|
2438 |
|
|
N_Pragma |
|
2439 |
|
|
|
2440 |
|
|
-- Representation_Clause
|
2441 |
|
|
|
2442 |
|
|
N_At_Clause |
|
2443 |
|
|
N_Attribute_Definition_Clause |
|
2444 |
|
|
N_Enumeration_Representation_Clause |
|
2445 |
|
|
N_Record_Representation_Clause |
|
2446 |
|
|
|
2447 |
|
|
-- Declarations
|
2448 |
|
|
|
2449 |
|
|
N_Abstract_Subprogram_Declaration |
|
2450 |
|
|
N_Entry_Body |
|
2451 |
|
|
N_Exception_Declaration |
|
2452 |
|
|
N_Exception_Renaming_Declaration |
|
2453 |
|
|
N_Formal_Abstract_Subprogram_Declaration |
|
2454 |
|
|
N_Formal_Concrete_Subprogram_Declaration |
|
2455 |
|
|
N_Formal_Object_Declaration |
|
2456 |
|
|
N_Formal_Type_Declaration |
|
2457 |
|
|
N_Full_Type_Declaration |
|
2458 |
|
|
N_Function_Instantiation |
|
2459 |
|
|
N_Generic_Function_Renaming_Declaration |
|
2460 |
|
|
N_Generic_Package_Declaration |
|
2461 |
|
|
N_Generic_Package_Renaming_Declaration |
|
2462 |
|
|
N_Generic_Procedure_Renaming_Declaration |
|
2463 |
|
|
N_Generic_Subprogram_Declaration |
|
2464 |
|
|
N_Implicit_Label_Declaration |
|
2465 |
|
|
N_Incomplete_Type_Declaration |
|
2466 |
|
|
N_Number_Declaration |
|
2467 |
|
|
N_Object_Declaration |
|
2468 |
|
|
N_Object_Renaming_Declaration |
|
2469 |
|
|
N_Package_Body |
|
2470 |
|
|
N_Package_Body_Stub |
|
2471 |
|
|
N_Package_Declaration |
|
2472 |
|
|
N_Package_Instantiation |
|
2473 |
|
|
N_Package_Renaming_Declaration |
|
2474 |
|
|
N_Private_Extension_Declaration |
|
2475 |
|
|
N_Private_Type_Declaration |
|
2476 |
|
|
N_Procedure_Instantiation |
|
2477 |
|
|
N_Protected_Body |
|
2478 |
|
|
N_Protected_Body_Stub |
|
2479 |
|
|
N_Protected_Type_Declaration |
|
2480 |
|
|
N_Single_Task_Declaration |
|
2481 |
|
|
N_Subprogram_Body |
|
2482 |
|
|
N_Subprogram_Body_Stub |
|
2483 |
|
|
N_Subprogram_Declaration |
|
2484 |
|
|
N_Subprogram_Renaming_Declaration |
|
2485 |
|
|
N_Subtype_Declaration |
|
2486 |
|
|
N_Task_Body |
|
2487 |
|
|
N_Task_Body_Stub |
|
2488 |
|
|
N_Task_Type_Declaration |
|
2489 |
|
|
|
2490 |
|
|
-- Freeze entity behaves like a declaration or statement
|
2491 |
|
|
|
2492 |
|
|
N_Freeze_Entity
|
2493 |
|
|
=>
|
2494 |
|
|
-- Do not insert here if the item is not a list member (this
|
2495 |
|
|
-- happens for example with a triggering statement, and the
|
2496 |
|
|
-- proper approach is to insert before the entire select).
|
2497 |
|
|
|
2498 |
|
|
if not Is_List_Member (P) then
|
2499 |
|
|
null;
|
2500 |
|
|
|
2501 |
|
|
-- Do not insert if parent of P is an N_Component_Association
|
2502 |
|
|
-- node (i.e. we are in the context of an N_Aggregate or
|
2503 |
|
|
-- N_Extension_Aggregate node. In this case we want to insert
|
2504 |
|
|
-- before the entire aggregate.
|
2505 |
|
|
|
2506 |
|
|
elsif Nkind (Parent (P)) = N_Component_Association then
|
2507 |
|
|
null;
|
2508 |
|
|
|
2509 |
|
|
-- Do not insert if the parent of P is either an N_Variant
|
2510 |
|
|
-- node or an N_Record_Definition node, meaning in either
|
2511 |
|
|
-- case that P is a member of a component list, and that
|
2512 |
|
|
-- therefore the actions should be inserted outside the
|
2513 |
|
|
-- complete record declaration.
|
2514 |
|
|
|
2515 |
|
|
elsif Nkind (Parent (P)) = N_Variant
|
2516 |
|
|
or else Nkind (Parent (P)) = N_Record_Definition
|
2517 |
|
|
then
|
2518 |
|
|
null;
|
2519 |
|
|
|
2520 |
|
|
-- Do not insert freeze nodes within the loop generated for
|
2521 |
|
|
-- an aggregate, because they may be elaborated too late for
|
2522 |
|
|
-- subsequent use in the back end: within a package spec the
|
2523 |
|
|
-- loop is part of the elaboration procedure and is only
|
2524 |
|
|
-- elaborated during the second pass.
|
2525 |
|
|
-- If the loop comes from source, or the entity is local to
|
2526 |
|
|
-- the loop itself it must remain within.
|
2527 |
|
|
|
2528 |
|
|
elsif Nkind (Parent (P)) = N_Loop_Statement
|
2529 |
|
|
and then not Comes_From_Source (Parent (P))
|
2530 |
|
|
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
|
2531 |
|
|
and then
|
2532 |
|
|
Scope (Entity (First (Ins_Actions))) /= Current_Scope
|
2533 |
|
|
then
|
2534 |
|
|
null;
|
2535 |
|
|
|
2536 |
|
|
-- Otherwise we can go ahead and do the insertion
|
2537 |
|
|
|
2538 |
|
|
elsif P = Wrapped_Node then
|
2539 |
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
2540 |
|
|
return;
|
2541 |
|
|
|
2542 |
|
|
else
|
2543 |
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
2544 |
|
|
return;
|
2545 |
|
|
end if;
|
2546 |
|
|
|
2547 |
|
|
-- A special case, N_Raise_xxx_Error can act either as a
|
2548 |
|
|
-- statement or a subexpression. We tell the difference
|
2549 |
|
|
-- by looking at the Etype. It is set to Standard_Void_Type
|
2550 |
|
|
-- in the statement case.
|
2551 |
|
|
|
2552 |
|
|
when
|
2553 |
|
|
N_Raise_xxx_Error =>
|
2554 |
|
|
if Etype (P) = Standard_Void_Type then
|
2555 |
|
|
if P = Wrapped_Node then
|
2556 |
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
2557 |
|
|
else
|
2558 |
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
2559 |
|
|
end if;
|
2560 |
|
|
|
2561 |
|
|
return;
|
2562 |
|
|
|
2563 |
|
|
-- In the subexpression case, keep climbing
|
2564 |
|
|
|
2565 |
|
|
else
|
2566 |
|
|
null;
|
2567 |
|
|
end if;
|
2568 |
|
|
|
2569 |
|
|
-- If a component association appears within a loop created for
|
2570 |
|
|
-- an array aggregate, attach the actions to the association so
|
2571 |
|
|
-- they can be subsequently inserted within the loop. For other
|
2572 |
|
|
-- component associations insert outside of the aggregate. For
|
2573 |
|
|
-- an association that will generate a loop, its Loop_Actions
|
2574 |
|
|
-- attribute is already initialized (see exp_aggr.adb).
|
2575 |
|
|
|
2576 |
|
|
-- The list of loop_actions can in turn generate additional ones,
|
2577 |
|
|
-- that are inserted before the associated node. If the associated
|
2578 |
|
|
-- node is outside the aggregate, the new actions are collected
|
2579 |
|
|
-- at the end of the loop actions, to respect the order in which
|
2580 |
|
|
-- they are to be elaborated.
|
2581 |
|
|
|
2582 |
|
|
when
|
2583 |
|
|
N_Component_Association =>
|
2584 |
|
|
if Nkind (Parent (P)) = N_Aggregate
|
2585 |
|
|
and then Present (Loop_Actions (P))
|
2586 |
|
|
then
|
2587 |
|
|
if Is_Empty_List (Loop_Actions (P)) then
|
2588 |
|
|
Set_Loop_Actions (P, Ins_Actions);
|
2589 |
|
|
Analyze_List (Ins_Actions);
|
2590 |
|
|
|
2591 |
|
|
else
|
2592 |
|
|
declare
|
2593 |
|
|
Decl : Node_Id;
|
2594 |
|
|
|
2595 |
|
|
begin
|
2596 |
|
|
-- Check whether these actions were generated
|
2597 |
|
|
-- by a declaration that is part of the loop_
|
2598 |
|
|
-- actions for the component_association.
|
2599 |
|
|
|
2600 |
|
|
Decl := Assoc_Node;
|
2601 |
|
|
while Present (Decl) loop
|
2602 |
|
|
exit when Parent (Decl) = P
|
2603 |
|
|
and then Is_List_Member (Decl)
|
2604 |
|
|
and then
|
2605 |
|
|
List_Containing (Decl) = Loop_Actions (P);
|
2606 |
|
|
Decl := Parent (Decl);
|
2607 |
|
|
end loop;
|
2608 |
|
|
|
2609 |
|
|
if Present (Decl) then
|
2610 |
|
|
Insert_List_Before_And_Analyze
|
2611 |
|
|
(Decl, Ins_Actions);
|
2612 |
|
|
else
|
2613 |
|
|
Insert_List_After_And_Analyze
|
2614 |
|
|
(Last (Loop_Actions (P)), Ins_Actions);
|
2615 |
|
|
end if;
|
2616 |
|
|
end;
|
2617 |
|
|
end if;
|
2618 |
|
|
|
2619 |
|
|
return;
|
2620 |
|
|
|
2621 |
|
|
else
|
2622 |
|
|
null;
|
2623 |
|
|
end if;
|
2624 |
|
|
|
2625 |
|
|
-- Another special case, an attribute denoting a procedure call
|
2626 |
|
|
|
2627 |
|
|
when
|
2628 |
|
|
N_Attribute_Reference =>
|
2629 |
|
|
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
|
2630 |
|
|
if P = Wrapped_Node then
|
2631 |
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
2632 |
|
|
else
|
2633 |
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
2634 |
|
|
end if;
|
2635 |
|
|
|
2636 |
|
|
return;
|
2637 |
|
|
|
2638 |
|
|
-- In the subexpression case, keep climbing
|
2639 |
|
|
|
2640 |
|
|
else
|
2641 |
|
|
null;
|
2642 |
|
|
end if;
|
2643 |
|
|
|
2644 |
|
|
-- For all other node types, keep climbing tree
|
2645 |
|
|
|
2646 |
|
|
when
|
2647 |
|
|
N_Abortable_Part |
|
2648 |
|
|
N_Accept_Alternative |
|
2649 |
|
|
N_Access_Definition |
|
2650 |
|
|
N_Access_Function_Definition |
|
2651 |
|
|
N_Access_Procedure_Definition |
|
2652 |
|
|
N_Access_To_Object_Definition |
|
2653 |
|
|
N_Aggregate |
|
2654 |
|
|
N_Allocator |
|
2655 |
|
|
N_Case_Statement_Alternative |
|
2656 |
|
|
N_Character_Literal |
|
2657 |
|
|
N_Compilation_Unit |
|
2658 |
|
|
N_Compilation_Unit_Aux |
|
2659 |
|
|
N_Component_Clause |
|
2660 |
|
|
N_Component_Declaration |
|
2661 |
|
|
N_Component_Definition |
|
2662 |
|
|
N_Component_List |
|
2663 |
|
|
N_Constrained_Array_Definition |
|
2664 |
|
|
N_Decimal_Fixed_Point_Definition |
|
2665 |
|
|
N_Defining_Character_Literal |
|
2666 |
|
|
N_Defining_Identifier |
|
2667 |
|
|
N_Defining_Operator_Symbol |
|
2668 |
|
|
N_Defining_Program_Unit_Name |
|
2669 |
|
|
N_Delay_Alternative |
|
2670 |
|
|
N_Delta_Constraint |
|
2671 |
|
|
N_Derived_Type_Definition |
|
2672 |
|
|
N_Designator |
|
2673 |
|
|
N_Digits_Constraint |
|
2674 |
|
|
N_Discriminant_Association |
|
2675 |
|
|
N_Discriminant_Specification |
|
2676 |
|
|
N_Empty |
|
2677 |
|
|
N_Entry_Body_Formal_Part |
|
2678 |
|
|
N_Entry_Call_Alternative |
|
2679 |
|
|
N_Entry_Declaration |
|
2680 |
|
|
N_Entry_Index_Specification |
|
2681 |
|
|
N_Enumeration_Type_Definition |
|
2682 |
|
|
N_Error |
|
2683 |
|
|
N_Exception_Handler |
|
2684 |
|
|
N_Expanded_Name |
|
2685 |
|
|
N_Explicit_Dereference |
|
2686 |
|
|
N_Extension_Aggregate |
|
2687 |
|
|
N_Floating_Point_Definition |
|
2688 |
|
|
N_Formal_Decimal_Fixed_Point_Definition |
|
2689 |
|
|
N_Formal_Derived_Type_Definition |
|
2690 |
|
|
N_Formal_Discrete_Type_Definition |
|
2691 |
|
|
N_Formal_Floating_Point_Definition |
|
2692 |
|
|
N_Formal_Modular_Type_Definition |
|
2693 |
|
|
N_Formal_Ordinary_Fixed_Point_Definition |
|
2694 |
|
|
N_Formal_Package_Declaration |
|
2695 |
|
|
N_Formal_Private_Type_Definition |
|
2696 |
|
|
N_Formal_Signed_Integer_Type_Definition |
|
2697 |
|
|
N_Function_Call |
|
2698 |
|
|
N_Function_Specification |
|
2699 |
|
|
N_Generic_Association |
|
2700 |
|
|
N_Handled_Sequence_Of_Statements |
|
2701 |
|
|
N_Identifier |
|
2702 |
|
|
N_In |
|
2703 |
|
|
N_Index_Or_Discriminant_Constraint |
|
2704 |
|
|
N_Indexed_Component |
|
2705 |
|
|
N_Integer_Literal |
|
2706 |
|
|
N_Itype_Reference |
|
2707 |
|
|
N_Label |
|
2708 |
|
|
N_Loop_Parameter_Specification |
|
2709 |
|
|
N_Mod_Clause |
|
2710 |
|
|
N_Modular_Type_Definition |
|
2711 |
|
|
N_Not_In |
|
2712 |
|
|
N_Null |
|
2713 |
|
|
N_Op_Abs |
|
2714 |
|
|
N_Op_Add |
|
2715 |
|
|
N_Op_And |
|
2716 |
|
|
N_Op_Concat |
|
2717 |
|
|
N_Op_Divide |
|
2718 |
|
|
N_Op_Eq |
|
2719 |
|
|
N_Op_Expon |
|
2720 |
|
|
N_Op_Ge |
|
2721 |
|
|
N_Op_Gt |
|
2722 |
|
|
N_Op_Le |
|
2723 |
|
|
N_Op_Lt |
|
2724 |
|
|
N_Op_Minus |
|
2725 |
|
|
N_Op_Mod |
|
2726 |
|
|
N_Op_Multiply |
|
2727 |
|
|
N_Op_Ne |
|
2728 |
|
|
N_Op_Not |
|
2729 |
|
|
N_Op_Or |
|
2730 |
|
|
N_Op_Plus |
|
2731 |
|
|
N_Op_Rem |
|
2732 |
|
|
N_Op_Rotate_Left |
|
2733 |
|
|
N_Op_Rotate_Right |
|
2734 |
|
|
N_Op_Shift_Left |
|
2735 |
|
|
N_Op_Shift_Right |
|
2736 |
|
|
N_Op_Shift_Right_Arithmetic |
|
2737 |
|
|
N_Op_Subtract |
|
2738 |
|
|
N_Op_Xor |
|
2739 |
|
|
N_Operator_Symbol |
|
2740 |
|
|
N_Ordinary_Fixed_Point_Definition |
|
2741 |
|
|
N_Others_Choice |
|
2742 |
|
|
N_Package_Specification |
|
2743 |
|
|
N_Parameter_Association |
|
2744 |
|
|
N_Parameter_Specification |
|
2745 |
|
|
N_Pop_Constraint_Error_Label |
|
2746 |
|
|
N_Pop_Program_Error_Label |
|
2747 |
|
|
N_Pop_Storage_Error_Label |
|
2748 |
|
|
N_Pragma_Argument_Association |
|
2749 |
|
|
N_Procedure_Specification |
|
2750 |
|
|
N_Protected_Definition |
|
2751 |
|
|
N_Push_Constraint_Error_Label |
|
2752 |
|
|
N_Push_Program_Error_Label |
|
2753 |
|
|
N_Push_Storage_Error_Label |
|
2754 |
|
|
N_Qualified_Expression |
|
2755 |
|
|
N_Range |
|
2756 |
|
|
N_Range_Constraint |
|
2757 |
|
|
N_Real_Literal |
|
2758 |
|
|
N_Real_Range_Specification |
|
2759 |
|
|
N_Record_Definition |
|
2760 |
|
|
N_Reference |
|
2761 |
|
|
N_SCIL_Dispatch_Table_Object_Init |
|
2762 |
|
|
N_SCIL_Dispatch_Table_Tag_Init |
|
2763 |
|
|
N_SCIL_Dispatching_Call |
|
2764 |
|
|
N_SCIL_Membership_Test |
|
2765 |
|
|
N_SCIL_Tag_Init |
|
2766 |
|
|
N_Selected_Component |
|
2767 |
|
|
N_Signed_Integer_Type_Definition |
|
2768 |
|
|
N_Single_Protected_Declaration |
|
2769 |
|
|
N_Slice |
|
2770 |
|
|
N_String_Literal |
|
2771 |
|
|
N_Subprogram_Info |
|
2772 |
|
|
N_Subtype_Indication |
|
2773 |
|
|
N_Subunit |
|
2774 |
|
|
N_Task_Definition |
|
2775 |
|
|
N_Terminate_Alternative |
|
2776 |
|
|
N_Triggering_Alternative |
|
2777 |
|
|
N_Type_Conversion |
|
2778 |
|
|
N_Unchecked_Expression |
|
2779 |
|
|
N_Unchecked_Type_Conversion |
|
2780 |
|
|
N_Unconstrained_Array_Definition |
|
2781 |
|
|
N_Unused_At_End |
|
2782 |
|
|
N_Unused_At_Start |
|
2783 |
|
|
N_Use_Package_Clause |
|
2784 |
|
|
N_Use_Type_Clause |
|
2785 |
|
|
N_Variant |
|
2786 |
|
|
N_Variant_Part |
|
2787 |
|
|
N_Validate_Unchecked_Conversion |
|
2788 |
|
|
N_With_Clause
|
2789 |
|
|
=>
|
2790 |
|
|
null;
|
2791 |
|
|
|
2792 |
|
|
end case;
|
2793 |
|
|
|
2794 |
|
|
-- Make sure that inserted actions stay in the transient scope
|
2795 |
|
|
|
2796 |
|
|
if P = Wrapped_Node then
|
2797 |
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
2798 |
|
|
return;
|
2799 |
|
|
end if;
|
2800 |
|
|
|
2801 |
|
|
-- If we fall through above tests, keep climbing tree
|
2802 |
|
|
|
2803 |
|
|
N := P;
|
2804 |
|
|
|
2805 |
|
|
if Nkind (Parent (N)) = N_Subunit then
|
2806 |
|
|
|
2807 |
|
|
-- This is the proper body corresponding to a stub. Insertion
|
2808 |
|
|
-- must be done at the point of the stub, which is in the decla-
|
2809 |
|
|
-- rative part of the parent unit.
|
2810 |
|
|
|
2811 |
|
|
P := Corresponding_Stub (Parent (N));
|
2812 |
|
|
|
2813 |
|
|
else
|
2814 |
|
|
P := Parent (N);
|
2815 |
|
|
end if;
|
2816 |
|
|
end loop;
|
2817 |
|
|
end Insert_Actions;
|
2818 |
|
|
|
2819 |
|
|
-- Version with check(s) suppressed
|
2820 |
|
|
|
2821 |
|
|
procedure Insert_Actions
|
2822 |
|
|
(Assoc_Node : Node_Id;
|
2823 |
|
|
Ins_Actions : List_Id;
|
2824 |
|
|
Suppress : Check_Id)
|
2825 |
|
|
is
|
2826 |
|
|
begin
|
2827 |
|
|
if Suppress = All_Checks then
|
2828 |
|
|
declare
|
2829 |
|
|
Svg : constant Suppress_Array := Scope_Suppress;
|
2830 |
|
|
begin
|
2831 |
|
|
Scope_Suppress := (others => True);
|
2832 |
|
|
Insert_Actions (Assoc_Node, Ins_Actions);
|
2833 |
|
|
Scope_Suppress := Svg;
|
2834 |
|
|
end;
|
2835 |
|
|
|
2836 |
|
|
else
|
2837 |
|
|
declare
|
2838 |
|
|
Svg : constant Boolean := Scope_Suppress (Suppress);
|
2839 |
|
|
begin
|
2840 |
|
|
Scope_Suppress (Suppress) := True;
|
2841 |
|
|
Insert_Actions (Assoc_Node, Ins_Actions);
|
2842 |
|
|
Scope_Suppress (Suppress) := Svg;
|
2843 |
|
|
end;
|
2844 |
|
|
end if;
|
2845 |
|
|
end Insert_Actions;
|
2846 |
|
|
|
2847 |
|
|
--------------------------
|
2848 |
|
|
-- Insert_Actions_After --
|
2849 |
|
|
--------------------------
|
2850 |
|
|
|
2851 |
|
|
procedure Insert_Actions_After
|
2852 |
|
|
(Assoc_Node : Node_Id;
|
2853 |
|
|
Ins_Actions : List_Id)
|
2854 |
|
|
is
|
2855 |
|
|
begin
|
2856 |
|
|
if Scope_Is_Transient
|
2857 |
|
|
and then Assoc_Node = Node_To_Be_Wrapped
|
2858 |
|
|
then
|
2859 |
|
|
Store_After_Actions_In_Scope (Ins_Actions);
|
2860 |
|
|
else
|
2861 |
|
|
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
|
2862 |
|
|
end if;
|
2863 |
|
|
end Insert_Actions_After;
|
2864 |
|
|
|
2865 |
|
|
---------------------------------
|
2866 |
|
|
-- Insert_Library_Level_Action --
|
2867 |
|
|
---------------------------------
|
2868 |
|
|
|
2869 |
|
|
procedure Insert_Library_Level_Action (N : Node_Id) is
|
2870 |
|
|
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
|
2871 |
|
|
|
2872 |
|
|
begin
|
2873 |
|
|
Push_Scope (Cunit_Entity (Main_Unit));
|
2874 |
|
|
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
|
2875 |
|
|
|
2876 |
|
|
if No (Actions (Aux)) then
|
2877 |
|
|
Set_Actions (Aux, New_List (N));
|
2878 |
|
|
else
|
2879 |
|
|
Append (N, Actions (Aux));
|
2880 |
|
|
end if;
|
2881 |
|
|
|
2882 |
|
|
Analyze (N);
|
2883 |
|
|
Pop_Scope;
|
2884 |
|
|
end Insert_Library_Level_Action;
|
2885 |
|
|
|
2886 |
|
|
----------------------------------
|
2887 |
|
|
-- Insert_Library_Level_Actions --
|
2888 |
|
|
----------------------------------
|
2889 |
|
|
|
2890 |
|
|
procedure Insert_Library_Level_Actions (L : List_Id) is
|
2891 |
|
|
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
|
2892 |
|
|
|
2893 |
|
|
begin
|
2894 |
|
|
if Is_Non_Empty_List (L) then
|
2895 |
|
|
Push_Scope (Cunit_Entity (Main_Unit));
|
2896 |
|
|
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
|
2897 |
|
|
|
2898 |
|
|
if No (Actions (Aux)) then
|
2899 |
|
|
Set_Actions (Aux, L);
|
2900 |
|
|
Analyze_List (L);
|
2901 |
|
|
else
|
2902 |
|
|
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
|
2903 |
|
|
end if;
|
2904 |
|
|
|
2905 |
|
|
Pop_Scope;
|
2906 |
|
|
end if;
|
2907 |
|
|
end Insert_Library_Level_Actions;
|
2908 |
|
|
|
2909 |
|
|
----------------------
|
2910 |
|
|
-- Inside_Init_Proc --
|
2911 |
|
|
----------------------
|
2912 |
|
|
|
2913 |
|
|
function Inside_Init_Proc return Boolean is
|
2914 |
|
|
S : Entity_Id;
|
2915 |
|
|
|
2916 |
|
|
begin
|
2917 |
|
|
S := Current_Scope;
|
2918 |
|
|
while Present (S)
|
2919 |
|
|
and then S /= Standard_Standard
|
2920 |
|
|
loop
|
2921 |
|
|
if Is_Init_Proc (S) then
|
2922 |
|
|
return True;
|
2923 |
|
|
else
|
2924 |
|
|
S := Scope (S);
|
2925 |
|
|
end if;
|
2926 |
|
|
end loop;
|
2927 |
|
|
|
2928 |
|
|
return False;
|
2929 |
|
|
end Inside_Init_Proc;
|
2930 |
|
|
|
2931 |
|
|
----------------------------
|
2932 |
|
|
-- Is_All_Null_Statements --
|
2933 |
|
|
----------------------------
|
2934 |
|
|
|
2935 |
|
|
function Is_All_Null_Statements (L : List_Id) return Boolean is
|
2936 |
|
|
Stm : Node_Id;
|
2937 |
|
|
|
2938 |
|
|
begin
|
2939 |
|
|
Stm := First (L);
|
2940 |
|
|
while Present (Stm) loop
|
2941 |
|
|
if Nkind (Stm) /= N_Null_Statement then
|
2942 |
|
|
return False;
|
2943 |
|
|
end if;
|
2944 |
|
|
|
2945 |
|
|
Next (Stm);
|
2946 |
|
|
end loop;
|
2947 |
|
|
|
2948 |
|
|
return True;
|
2949 |
|
|
end Is_All_Null_Statements;
|
2950 |
|
|
|
2951 |
|
|
---------------------------------
|
2952 |
|
|
-- Is_Fully_Repped_Tagged_Type --
|
2953 |
|
|
---------------------------------
|
2954 |
|
|
|
2955 |
|
|
function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
|
2956 |
|
|
U : constant Entity_Id := Underlying_Type (T);
|
2957 |
|
|
Comp : Entity_Id;
|
2958 |
|
|
|
2959 |
|
|
begin
|
2960 |
|
|
if No (U) or else not Is_Tagged_Type (U) then
|
2961 |
|
|
return False;
|
2962 |
|
|
elsif Has_Discriminants (U) then
|
2963 |
|
|
return False;
|
2964 |
|
|
elsif not Has_Specified_Layout (U) then
|
2965 |
|
|
return False;
|
2966 |
|
|
end if;
|
2967 |
|
|
|
2968 |
|
|
-- Here we have a tagged type, see if it has any unlayed out fields
|
2969 |
|
|
-- other than a possible tag and parent fields. If so, we return False.
|
2970 |
|
|
|
2971 |
|
|
Comp := First_Component (U);
|
2972 |
|
|
while Present (Comp) loop
|
2973 |
|
|
if not Is_Tag (Comp)
|
2974 |
|
|
and then Chars (Comp) /= Name_uParent
|
2975 |
|
|
and then No (Component_Clause (Comp))
|
2976 |
|
|
then
|
2977 |
|
|
return False;
|
2978 |
|
|
else
|
2979 |
|
|
Next_Component (Comp);
|
2980 |
|
|
end if;
|
2981 |
|
|
end loop;
|
2982 |
|
|
|
2983 |
|
|
-- All components are layed out
|
2984 |
|
|
|
2985 |
|
|
return True;
|
2986 |
|
|
end Is_Fully_Repped_Tagged_Type;
|
2987 |
|
|
|
2988 |
|
|
----------------------------------
|
2989 |
|
|
-- Is_Library_Level_Tagged_Type --
|
2990 |
|
|
----------------------------------
|
2991 |
|
|
|
2992 |
|
|
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
|
2993 |
|
|
begin
|
2994 |
|
|
return Is_Tagged_Type (Typ)
|
2995 |
|
|
and then Is_Library_Level_Entity (Typ);
|
2996 |
|
|
end Is_Library_Level_Tagged_Type;
|
2997 |
|
|
|
2998 |
|
|
----------------------------------
|
2999 |
|
|
-- Is_Possibly_Unaligned_Object --
|
3000 |
|
|
----------------------------------
|
3001 |
|
|
|
3002 |
|
|
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
|
3003 |
|
|
T : constant Entity_Id := Etype (N);
|
3004 |
|
|
|
3005 |
|
|
begin
|
3006 |
|
|
-- If renamed object, apply test to underlying object
|
3007 |
|
|
|
3008 |
|
|
if Is_Entity_Name (N)
|
3009 |
|
|
and then Is_Object (Entity (N))
|
3010 |
|
|
and then Present (Renamed_Object (Entity (N)))
|
3011 |
|
|
then
|
3012 |
|
|
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
|
3013 |
|
|
end if;
|
3014 |
|
|
|
3015 |
|
|
-- Tagged and controlled types and aliased types are always aligned,
|
3016 |
|
|
-- as are concurrent types.
|
3017 |
|
|
|
3018 |
|
|
if Is_Aliased (T)
|
3019 |
|
|
or else Has_Controlled_Component (T)
|
3020 |
|
|
or else Is_Concurrent_Type (T)
|
3021 |
|
|
or else Is_Tagged_Type (T)
|
3022 |
|
|
or else Is_Controlled (T)
|
3023 |
|
|
then
|
3024 |
|
|
return False;
|
3025 |
|
|
end if;
|
3026 |
|
|
|
3027 |
|
|
-- If this is an element of a packed array, may be unaligned
|
3028 |
|
|
|
3029 |
|
|
if Is_Ref_To_Bit_Packed_Array (N) then
|
3030 |
|
|
return True;
|
3031 |
|
|
end if;
|
3032 |
|
|
|
3033 |
|
|
-- Case of component reference
|
3034 |
|
|
|
3035 |
|
|
if Nkind (N) = N_Selected_Component then
|
3036 |
|
|
declare
|
3037 |
|
|
P : constant Node_Id := Prefix (N);
|
3038 |
|
|
C : constant Entity_Id := Entity (Selector_Name (N));
|
3039 |
|
|
M : Nat;
|
3040 |
|
|
S : Nat;
|
3041 |
|
|
|
3042 |
|
|
begin
|
3043 |
|
|
-- If component reference is for an array with non-static bounds,
|
3044 |
|
|
-- then it is always aligned: we can only process unaligned
|
3045 |
|
|
-- arrays with static bounds (more accurately bounds known at
|
3046 |
|
|
-- compile time).
|
3047 |
|
|
|
3048 |
|
|
if Is_Array_Type (T)
|
3049 |
|
|
and then not Compile_Time_Known_Bounds (T)
|
3050 |
|
|
then
|
3051 |
|
|
return False;
|
3052 |
|
|
end if;
|
3053 |
|
|
|
3054 |
|
|
-- If component is aliased, it is definitely properly aligned
|
3055 |
|
|
|
3056 |
|
|
if Is_Aliased (C) then
|
3057 |
|
|
return False;
|
3058 |
|
|
end if;
|
3059 |
|
|
|
3060 |
|
|
-- If component is for a type implemented as a scalar, and the
|
3061 |
|
|
-- record is packed, and the component is other than the first
|
3062 |
|
|
-- component of the record, then the component may be unaligned.
|
3063 |
|
|
|
3064 |
|
|
if Is_Packed (Etype (P))
|
3065 |
|
|
and then Represented_As_Scalar (Etype (C))
|
3066 |
|
|
and then First_Entity (Scope (C)) /= C
|
3067 |
|
|
then
|
3068 |
|
|
return True;
|
3069 |
|
|
end if;
|
3070 |
|
|
|
3071 |
|
|
-- Compute maximum possible alignment for T
|
3072 |
|
|
|
3073 |
|
|
-- If alignment is known, then that settles things
|
3074 |
|
|
|
3075 |
|
|
if Known_Alignment (T) then
|
3076 |
|
|
M := UI_To_Int (Alignment (T));
|
3077 |
|
|
|
3078 |
|
|
-- If alignment is not known, tentatively set max alignment
|
3079 |
|
|
|
3080 |
|
|
else
|
3081 |
|
|
M := Ttypes.Maximum_Alignment;
|
3082 |
|
|
|
3083 |
|
|
-- We can reduce this if the Esize is known since the default
|
3084 |
|
|
-- alignment will never be more than the smallest power of 2
|
3085 |
|
|
-- that does not exceed this Esize value.
|
3086 |
|
|
|
3087 |
|
|
if Known_Esize (T) then
|
3088 |
|
|
S := UI_To_Int (Esize (T));
|
3089 |
|
|
|
3090 |
|
|
while (M / 2) >= S loop
|
3091 |
|
|
M := M / 2;
|
3092 |
|
|
end loop;
|
3093 |
|
|
end if;
|
3094 |
|
|
end if;
|
3095 |
|
|
|
3096 |
|
|
-- If the component reference is for a record that has a specified
|
3097 |
|
|
-- alignment, and we either know it is too small, or cannot tell,
|
3098 |
|
|
-- then the component may be unaligned
|
3099 |
|
|
|
3100 |
|
|
if Known_Alignment (Etype (P))
|
3101 |
|
|
and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
|
3102 |
|
|
and then M > Alignment (Etype (P))
|
3103 |
|
|
then
|
3104 |
|
|
return True;
|
3105 |
|
|
end if;
|
3106 |
|
|
|
3107 |
|
|
-- Case of component clause present which may specify an
|
3108 |
|
|
-- unaligned position.
|
3109 |
|
|
|
3110 |
|
|
if Present (Component_Clause (C)) then
|
3111 |
|
|
|
3112 |
|
|
-- Otherwise we can do a test to make sure that the actual
|
3113 |
|
|
-- start position in the record, and the length, are both
|
3114 |
|
|
-- consistent with the required alignment. If not, we know
|
3115 |
|
|
-- that we are unaligned.
|
3116 |
|
|
|
3117 |
|
|
declare
|
3118 |
|
|
Align_In_Bits : constant Nat := M * System_Storage_Unit;
|
3119 |
|
|
begin
|
3120 |
|
|
if Component_Bit_Offset (C) mod Align_In_Bits /= 0
|
3121 |
|
|
or else Esize (C) mod Align_In_Bits /= 0
|
3122 |
|
|
then
|
3123 |
|
|
return True;
|
3124 |
|
|
end if;
|
3125 |
|
|
end;
|
3126 |
|
|
end if;
|
3127 |
|
|
|
3128 |
|
|
-- Otherwise, for a component reference, test prefix
|
3129 |
|
|
|
3130 |
|
|
return Is_Possibly_Unaligned_Object (P);
|
3131 |
|
|
end;
|
3132 |
|
|
|
3133 |
|
|
-- If not a component reference, must be aligned
|
3134 |
|
|
|
3135 |
|
|
else
|
3136 |
|
|
return False;
|
3137 |
|
|
end if;
|
3138 |
|
|
end Is_Possibly_Unaligned_Object;
|
3139 |
|
|
|
3140 |
|
|
---------------------------------
|
3141 |
|
|
-- Is_Possibly_Unaligned_Slice --
|
3142 |
|
|
---------------------------------
|
3143 |
|
|
|
3144 |
|
|
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
|
3145 |
|
|
begin
|
3146 |
|
|
-- Go to renamed object
|
3147 |
|
|
|
3148 |
|
|
if Is_Entity_Name (N)
|
3149 |
|
|
and then Is_Object (Entity (N))
|
3150 |
|
|
and then Present (Renamed_Object (Entity (N)))
|
3151 |
|
|
then
|
3152 |
|
|
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
|
3153 |
|
|
end if;
|
3154 |
|
|
|
3155 |
|
|
-- The reference must be a slice
|
3156 |
|
|
|
3157 |
|
|
if Nkind (N) /= N_Slice then
|
3158 |
|
|
return False;
|
3159 |
|
|
end if;
|
3160 |
|
|
|
3161 |
|
|
-- Always assume the worst for a nested record component with a
|
3162 |
|
|
-- component clause, which gigi/gcc does not appear to handle well.
|
3163 |
|
|
-- It is not clear why this special test is needed at all ???
|
3164 |
|
|
|
3165 |
|
|
if Nkind (Prefix (N)) = N_Selected_Component
|
3166 |
|
|
and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
|
3167 |
|
|
and then
|
3168 |
|
|
Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
|
3169 |
|
|
then
|
3170 |
|
|
return True;
|
3171 |
|
|
end if;
|
3172 |
|
|
|
3173 |
|
|
-- We only need to worry if the target has strict alignment
|
3174 |
|
|
|
3175 |
|
|
if not Target_Strict_Alignment then
|
3176 |
|
|
return False;
|
3177 |
|
|
end if;
|
3178 |
|
|
|
3179 |
|
|
-- If it is a slice, then look at the array type being sliced
|
3180 |
|
|
|
3181 |
|
|
declare
|
3182 |
|
|
Sarr : constant Node_Id := Prefix (N);
|
3183 |
|
|
-- Prefix of the slice, i.e. the array being sliced
|
3184 |
|
|
|
3185 |
|
|
Styp : constant Entity_Id := Etype (Prefix (N));
|
3186 |
|
|
-- Type of the array being sliced
|
3187 |
|
|
|
3188 |
|
|
Pref : Node_Id;
|
3189 |
|
|
Ptyp : Entity_Id;
|
3190 |
|
|
|
3191 |
|
|
begin
|
3192 |
|
|
-- The problems arise if the array object that is being sliced
|
3193 |
|
|
-- is a component of a record or array, and we cannot guarantee
|
3194 |
|
|
-- the alignment of the array within its containing object.
|
3195 |
|
|
|
3196 |
|
|
-- To investigate this, we look at successive prefixes to see
|
3197 |
|
|
-- if we have a worrisome indexed or selected component.
|
3198 |
|
|
|
3199 |
|
|
Pref := Sarr;
|
3200 |
|
|
loop
|
3201 |
|
|
-- Case of array is part of an indexed component reference
|
3202 |
|
|
|
3203 |
|
|
if Nkind (Pref) = N_Indexed_Component then
|
3204 |
|
|
Ptyp := Etype (Prefix (Pref));
|
3205 |
|
|
|
3206 |
|
|
-- The only problematic case is when the array is packed,
|
3207 |
|
|
-- in which case we really know nothing about the alignment
|
3208 |
|
|
-- of individual components.
|
3209 |
|
|
|
3210 |
|
|
if Is_Bit_Packed_Array (Ptyp) then
|
3211 |
|
|
return True;
|
3212 |
|
|
end if;
|
3213 |
|
|
|
3214 |
|
|
-- Case of array is part of a selected component reference
|
3215 |
|
|
|
3216 |
|
|
elsif Nkind (Pref) = N_Selected_Component then
|
3217 |
|
|
Ptyp := Etype (Prefix (Pref));
|
3218 |
|
|
|
3219 |
|
|
-- We are definitely in trouble if the record in question
|
3220 |
|
|
-- has an alignment, and either we know this alignment is
|
3221 |
|
|
-- inconsistent with the alignment of the slice, or we
|
3222 |
|
|
-- don't know what the alignment of the slice should be.
|
3223 |
|
|
|
3224 |
|
|
if Known_Alignment (Ptyp)
|
3225 |
|
|
and then (Unknown_Alignment (Styp)
|
3226 |
|
|
or else Alignment (Styp) > Alignment (Ptyp))
|
3227 |
|
|
then
|
3228 |
|
|
return True;
|
3229 |
|
|
end if;
|
3230 |
|
|
|
3231 |
|
|
-- We are in potential trouble if the record type is packed.
|
3232 |
|
|
-- We could special case when we know that the array is the
|
3233 |
|
|
-- first component, but that's not such a simple case ???
|
3234 |
|
|
|
3235 |
|
|
if Is_Packed (Ptyp) then
|
3236 |
|
|
return True;
|
3237 |
|
|
end if;
|
3238 |
|
|
|
3239 |
|
|
-- We are in trouble if there is a component clause, and
|
3240 |
|
|
-- either we do not know the alignment of the slice, or
|
3241 |
|
|
-- the alignment of the slice is inconsistent with the
|
3242 |
|
|
-- bit position specified by the component clause.
|
3243 |
|
|
|
3244 |
|
|
declare
|
3245 |
|
|
Field : constant Entity_Id := Entity (Selector_Name (Pref));
|
3246 |
|
|
begin
|
3247 |
|
|
if Present (Component_Clause (Field))
|
3248 |
|
|
and then
|
3249 |
|
|
(Unknown_Alignment (Styp)
|
3250 |
|
|
or else
|
3251 |
|
|
(Component_Bit_Offset (Field) mod
|
3252 |
|
|
(System_Storage_Unit * Alignment (Styp))) /= 0)
|
3253 |
|
|
then
|
3254 |
|
|
return True;
|
3255 |
|
|
end if;
|
3256 |
|
|
end;
|
3257 |
|
|
|
3258 |
|
|
-- For cases other than selected or indexed components we
|
3259 |
|
|
-- know we are OK, since no issues arise over alignment.
|
3260 |
|
|
|
3261 |
|
|
else
|
3262 |
|
|
return False;
|
3263 |
|
|
end if;
|
3264 |
|
|
|
3265 |
|
|
-- We processed an indexed component or selected component
|
3266 |
|
|
-- reference that looked safe, so keep checking prefixes.
|
3267 |
|
|
|
3268 |
|
|
Pref := Prefix (Pref);
|
3269 |
|
|
end loop;
|
3270 |
|
|
end;
|
3271 |
|
|
end Is_Possibly_Unaligned_Slice;
|
3272 |
|
|
|
3273 |
|
|
--------------------------------
|
3274 |
|
|
-- Is_Ref_To_Bit_Packed_Array --
|
3275 |
|
|
--------------------------------
|
3276 |
|
|
|
3277 |
|
|
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
|
3278 |
|
|
Result : Boolean;
|
3279 |
|
|
Expr : Node_Id;
|
3280 |
|
|
|
3281 |
|
|
begin
|
3282 |
|
|
if Is_Entity_Name (N)
|
3283 |
|
|
and then Is_Object (Entity (N))
|
3284 |
|
|
and then Present (Renamed_Object (Entity (N)))
|
3285 |
|
|
then
|
3286 |
|
|
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
|
3287 |
|
|
end if;
|
3288 |
|
|
|
3289 |
|
|
if Nkind (N) = N_Indexed_Component
|
3290 |
|
|
or else
|
3291 |
|
|
Nkind (N) = N_Selected_Component
|
3292 |
|
|
then
|
3293 |
|
|
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
|
3294 |
|
|
Result := True;
|
3295 |
|
|
else
|
3296 |
|
|
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
|
3297 |
|
|
end if;
|
3298 |
|
|
|
3299 |
|
|
if Result and then Nkind (N) = N_Indexed_Component then
|
3300 |
|
|
Expr := First (Expressions (N));
|
3301 |
|
|
while Present (Expr) loop
|
3302 |
|
|
Force_Evaluation (Expr);
|
3303 |
|
|
Next (Expr);
|
3304 |
|
|
end loop;
|
3305 |
|
|
end if;
|
3306 |
|
|
|
3307 |
|
|
return Result;
|
3308 |
|
|
|
3309 |
|
|
else
|
3310 |
|
|
return False;
|
3311 |
|
|
end if;
|
3312 |
|
|
end Is_Ref_To_Bit_Packed_Array;
|
3313 |
|
|
|
3314 |
|
|
--------------------------------
|
3315 |
|
|
-- Is_Ref_To_Bit_Packed_Slice --
|
3316 |
|
|
--------------------------------
|
3317 |
|
|
|
3318 |
|
|
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
|
3319 |
|
|
begin
|
3320 |
|
|
if Nkind (N) = N_Type_Conversion then
|
3321 |
|
|
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
|
3322 |
|
|
|
3323 |
|
|
elsif Is_Entity_Name (N)
|
3324 |
|
|
and then Is_Object (Entity (N))
|
3325 |
|
|
and then Present (Renamed_Object (Entity (N)))
|
3326 |
|
|
then
|
3327 |
|
|
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
|
3328 |
|
|
|
3329 |
|
|
elsif Nkind (N) = N_Slice
|
3330 |
|
|
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
|
3331 |
|
|
then
|
3332 |
|
|
return True;
|
3333 |
|
|
|
3334 |
|
|
elsif Nkind (N) = N_Indexed_Component
|
3335 |
|
|
or else
|
3336 |
|
|
Nkind (N) = N_Selected_Component
|
3337 |
|
|
then
|
3338 |
|
|
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
|
3339 |
|
|
|
3340 |
|
|
else
|
3341 |
|
|
return False;
|
3342 |
|
|
end if;
|
3343 |
|
|
end Is_Ref_To_Bit_Packed_Slice;
|
3344 |
|
|
|
3345 |
|
|
-----------------------
|
3346 |
|
|
-- Is_Renamed_Object --
|
3347 |
|
|
-----------------------
|
3348 |
|
|
|
3349 |
|
|
function Is_Renamed_Object (N : Node_Id) return Boolean is
|
3350 |
|
|
Pnod : constant Node_Id := Parent (N);
|
3351 |
|
|
Kind : constant Node_Kind := Nkind (Pnod);
|
3352 |
|
|
begin
|
3353 |
|
|
if Kind = N_Object_Renaming_Declaration then
|
3354 |
|
|
return True;
|
3355 |
|
|
elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
|
3356 |
|
|
return Is_Renamed_Object (Pnod);
|
3357 |
|
|
else
|
3358 |
|
|
return False;
|
3359 |
|
|
end if;
|
3360 |
|
|
end Is_Renamed_Object;
|
3361 |
|
|
|
3362 |
|
|
----------------------------
|
3363 |
|
|
-- Is_Untagged_Derivation --
|
3364 |
|
|
----------------------------
|
3365 |
|
|
|
3366 |
|
|
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
|
3367 |
|
|
begin
|
3368 |
|
|
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
|
3369 |
|
|
or else
|
3370 |
|
|
(Is_Private_Type (T) and then Present (Full_View (T))
|
3371 |
|
|
and then not Is_Tagged_Type (Full_View (T))
|
3372 |
|
|
and then Is_Derived_Type (Full_View (T))
|
3373 |
|
|
and then Etype (Full_View (T)) /= T);
|
3374 |
|
|
end Is_Untagged_Derivation;
|
3375 |
|
|
|
3376 |
|
|
---------------------------
|
3377 |
|
|
-- Is_Volatile_Reference --
|
3378 |
|
|
---------------------------
|
3379 |
|
|
|
3380 |
|
|
function Is_Volatile_Reference (N : Node_Id) return Boolean is
|
3381 |
|
|
begin
|
3382 |
|
|
if Nkind (N) in N_Has_Etype
|
3383 |
|
|
and then Present (Etype (N))
|
3384 |
|
|
and then Treat_As_Volatile (Etype (N))
|
3385 |
|
|
then
|
3386 |
|
|
return True;
|
3387 |
|
|
|
3388 |
|
|
elsif Is_Entity_Name (N) then
|
3389 |
|
|
return Treat_As_Volatile (Entity (N));
|
3390 |
|
|
|
3391 |
|
|
elsif Nkind (N) = N_Slice then
|
3392 |
|
|
return Is_Volatile_Reference (Prefix (N));
|
3393 |
|
|
|
3394 |
|
|
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
|
3395 |
|
|
if (Is_Entity_Name (Prefix (N))
|
3396 |
|
|
and then Has_Volatile_Components (Entity (Prefix (N))))
|
3397 |
|
|
or else (Present (Etype (Prefix (N)))
|
3398 |
|
|
and then Has_Volatile_Components (Etype (Prefix (N))))
|
3399 |
|
|
then
|
3400 |
|
|
return True;
|
3401 |
|
|
else
|
3402 |
|
|
return Is_Volatile_Reference (Prefix (N));
|
3403 |
|
|
end if;
|
3404 |
|
|
|
3405 |
|
|
else
|
3406 |
|
|
return False;
|
3407 |
|
|
end if;
|
3408 |
|
|
end Is_Volatile_Reference;
|
3409 |
|
|
|
3410 |
|
|
--------------------
|
3411 |
|
|
-- Kill_Dead_Code --
|
3412 |
|
|
--------------------
|
3413 |
|
|
|
3414 |
|
|
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
|
3415 |
|
|
W : Boolean := Warn;
|
3416 |
|
|
-- Set False if warnings suppressed
|
3417 |
|
|
|
3418 |
|
|
begin
|
3419 |
|
|
if Present (N) then
|
3420 |
|
|
Remove_Warning_Messages (N);
|
3421 |
|
|
|
3422 |
|
|
-- Generate warning if appropriate
|
3423 |
|
|
|
3424 |
|
|
if W then
|
3425 |
|
|
|
3426 |
|
|
-- We suppress the warning if this code is under control of an
|
3427 |
|
|
-- if statement, whose condition is a simple identifier, and
|
3428 |
|
|
-- either we are in an instance, or warnings off is set for this
|
3429 |
|
|
-- identifier. The reason for killing it in the instance case is
|
3430 |
|
|
-- that it is common and reasonable for code to be deleted in
|
3431 |
|
|
-- instances for various reasons.
|
3432 |
|
|
|
3433 |
|
|
if Nkind (Parent (N)) = N_If_Statement then
|
3434 |
|
|
declare
|
3435 |
|
|
C : constant Node_Id := Condition (Parent (N));
|
3436 |
|
|
begin
|
3437 |
|
|
if Nkind (C) = N_Identifier
|
3438 |
|
|
and then
|
3439 |
|
|
(In_Instance
|
3440 |
|
|
or else (Present (Entity (C))
|
3441 |
|
|
and then Has_Warnings_Off (Entity (C))))
|
3442 |
|
|
then
|
3443 |
|
|
W := False;
|
3444 |
|
|
end if;
|
3445 |
|
|
end;
|
3446 |
|
|
end if;
|
3447 |
|
|
|
3448 |
|
|
-- Generate warning if not suppressed
|
3449 |
|
|
|
3450 |
|
|
if W then
|
3451 |
|
|
Error_Msg_F
|
3452 |
|
|
("?this code can never be executed and has been deleted!", N);
|
3453 |
|
|
end if;
|
3454 |
|
|
end if;
|
3455 |
|
|
|
3456 |
|
|
-- Recurse into block statements and bodies to process declarations
|
3457 |
|
|
-- and statements.
|
3458 |
|
|
|
3459 |
|
|
if Nkind (N) = N_Block_Statement
|
3460 |
|
|
or else Nkind (N) = N_Subprogram_Body
|
3461 |
|
|
or else Nkind (N) = N_Package_Body
|
3462 |
|
|
then
|
3463 |
|
|
Kill_Dead_Code (Declarations (N), False);
|
3464 |
|
|
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
|
3465 |
|
|
|
3466 |
|
|
if Nkind (N) = N_Subprogram_Body then
|
3467 |
|
|
Set_Is_Eliminated (Defining_Entity (N));
|
3468 |
|
|
end if;
|
3469 |
|
|
|
3470 |
|
|
elsif Nkind (N) = N_Package_Declaration then
|
3471 |
|
|
Kill_Dead_Code (Visible_Declarations (Specification (N)));
|
3472 |
|
|
Kill_Dead_Code (Private_Declarations (Specification (N)));
|
3473 |
|
|
|
3474 |
|
|
-- ??? After this point, Delete_Tree has been called on all
|
3475 |
|
|
-- declarations in Specification (N), so references to
|
3476 |
|
|
-- entities therein look suspicious.
|
3477 |
|
|
|
3478 |
|
|
declare
|
3479 |
|
|
E : Entity_Id := First_Entity (Defining_Entity (N));
|
3480 |
|
|
begin
|
3481 |
|
|
while Present (E) loop
|
3482 |
|
|
if Ekind (E) = E_Operator then
|
3483 |
|
|
Set_Is_Eliminated (E);
|
3484 |
|
|
end if;
|
3485 |
|
|
|
3486 |
|
|
Next_Entity (E);
|
3487 |
|
|
end loop;
|
3488 |
|
|
end;
|
3489 |
|
|
|
3490 |
|
|
-- Recurse into composite statement to kill individual statements,
|
3491 |
|
|
-- in particular instantiations.
|
3492 |
|
|
|
3493 |
|
|
elsif Nkind (N) = N_If_Statement then
|
3494 |
|
|
Kill_Dead_Code (Then_Statements (N));
|
3495 |
|
|
Kill_Dead_Code (Elsif_Parts (N));
|
3496 |
|
|
Kill_Dead_Code (Else_Statements (N));
|
3497 |
|
|
|
3498 |
|
|
elsif Nkind (N) = N_Loop_Statement then
|
3499 |
|
|
Kill_Dead_Code (Statements (N));
|
3500 |
|
|
|
3501 |
|
|
elsif Nkind (N) = N_Case_Statement then
|
3502 |
|
|
declare
|
3503 |
|
|
Alt : Node_Id;
|
3504 |
|
|
begin
|
3505 |
|
|
Alt := First (Alternatives (N));
|
3506 |
|
|
while Present (Alt) loop
|
3507 |
|
|
Kill_Dead_Code (Statements (Alt));
|
3508 |
|
|
Next (Alt);
|
3509 |
|
|
end loop;
|
3510 |
|
|
end;
|
3511 |
|
|
|
3512 |
|
|
elsif Nkind (N) = N_Case_Statement_Alternative then
|
3513 |
|
|
Kill_Dead_Code (Statements (N));
|
3514 |
|
|
|
3515 |
|
|
-- Deal with dead instances caused by deleting instantiations
|
3516 |
|
|
|
3517 |
|
|
elsif Nkind (N) in N_Generic_Instantiation then
|
3518 |
|
|
Remove_Dead_Instance (N);
|
3519 |
|
|
end if;
|
3520 |
|
|
end if;
|
3521 |
|
|
end Kill_Dead_Code;
|
3522 |
|
|
|
3523 |
|
|
-- Case where argument is a list of nodes to be killed
|
3524 |
|
|
|
3525 |
|
|
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
|
3526 |
|
|
N : Node_Id;
|
3527 |
|
|
W : Boolean;
|
3528 |
|
|
begin
|
3529 |
|
|
W := Warn;
|
3530 |
|
|
if Is_Non_Empty_List (L) then
|
3531 |
|
|
N := First (L);
|
3532 |
|
|
while Present (N) loop
|
3533 |
|
|
Kill_Dead_Code (N, W);
|
3534 |
|
|
W := False;
|
3535 |
|
|
Next (N);
|
3536 |
|
|
end loop;
|
3537 |
|
|
end if;
|
3538 |
|
|
end Kill_Dead_Code;
|
3539 |
|
|
|
3540 |
|
|
------------------------
|
3541 |
|
|
-- Known_Non_Negative --
|
3542 |
|
|
------------------------
|
3543 |
|
|
|
3544 |
|
|
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
|
3545 |
|
|
begin
|
3546 |
|
|
if Is_OK_Static_Expression (Opnd)
|
3547 |
|
|
and then Expr_Value (Opnd) >= 0
|
3548 |
|
|
then
|
3549 |
|
|
return True;
|
3550 |
|
|
|
3551 |
|
|
else
|
3552 |
|
|
declare
|
3553 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
|
3554 |
|
|
|
3555 |
|
|
begin
|
3556 |
|
|
return
|
3557 |
|
|
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
|
3558 |
|
|
end;
|
3559 |
|
|
end if;
|
3560 |
|
|
end Known_Non_Negative;
|
3561 |
|
|
|
3562 |
|
|
--------------------
|
3563 |
|
|
-- Known_Non_Null --
|
3564 |
|
|
--------------------
|
3565 |
|
|
|
3566 |
|
|
function Known_Non_Null (N : Node_Id) return Boolean is
|
3567 |
|
|
begin
|
3568 |
|
|
-- Checks for case where N is an entity reference
|
3569 |
|
|
|
3570 |
|
|
if Is_Entity_Name (N) and then Present (Entity (N)) then
|
3571 |
|
|
declare
|
3572 |
|
|
E : constant Entity_Id := Entity (N);
|
3573 |
|
|
Op : Node_Kind;
|
3574 |
|
|
Val : Node_Id;
|
3575 |
|
|
|
3576 |
|
|
begin
|
3577 |
|
|
-- First check if we are in decisive conditional
|
3578 |
|
|
|
3579 |
|
|
Get_Current_Value_Condition (N, Op, Val);
|
3580 |
|
|
|
3581 |
|
|
if Known_Null (Val) then
|
3582 |
|
|
if Op = N_Op_Eq then
|
3583 |
|
|
return False;
|
3584 |
|
|
elsif Op = N_Op_Ne then
|
3585 |
|
|
return True;
|
3586 |
|
|
end if;
|
3587 |
|
|
end if;
|
3588 |
|
|
|
3589 |
|
|
-- If OK to do replacement, test Is_Known_Non_Null flag
|
3590 |
|
|
|
3591 |
|
|
if OK_To_Do_Constant_Replacement (E) then
|
3592 |
|
|
return Is_Known_Non_Null (E);
|
3593 |
|
|
|
3594 |
|
|
-- Otherwise if not safe to do replacement, then say so
|
3595 |
|
|
|
3596 |
|
|
else
|
3597 |
|
|
return False;
|
3598 |
|
|
end if;
|
3599 |
|
|
end;
|
3600 |
|
|
|
3601 |
|
|
-- True if access attribute
|
3602 |
|
|
|
3603 |
|
|
elsif Nkind (N) = N_Attribute_Reference
|
3604 |
|
|
and then (Attribute_Name (N) = Name_Access
|
3605 |
|
|
or else
|
3606 |
|
|
Attribute_Name (N) = Name_Unchecked_Access
|
3607 |
|
|
or else
|
3608 |
|
|
Attribute_Name (N) = Name_Unrestricted_Access)
|
3609 |
|
|
then
|
3610 |
|
|
return True;
|
3611 |
|
|
|
3612 |
|
|
-- True if allocator
|
3613 |
|
|
|
3614 |
|
|
elsif Nkind (N) = N_Allocator then
|
3615 |
|
|
return True;
|
3616 |
|
|
|
3617 |
|
|
-- For a conversion, true if expression is known non-null
|
3618 |
|
|
|
3619 |
|
|
elsif Nkind (N) = N_Type_Conversion then
|
3620 |
|
|
return Known_Non_Null (Expression (N));
|
3621 |
|
|
|
3622 |
|
|
-- Above are all cases where the value could be determined to be
|
3623 |
|
|
-- non-null. In all other cases, we don't know, so return False.
|
3624 |
|
|
|
3625 |
|
|
else
|
3626 |
|
|
return False;
|
3627 |
|
|
end if;
|
3628 |
|
|
end Known_Non_Null;
|
3629 |
|
|
|
3630 |
|
|
----------------
|
3631 |
|
|
-- Known_Null --
|
3632 |
|
|
----------------
|
3633 |
|
|
|
3634 |
|
|
function Known_Null (N : Node_Id) return Boolean is
|
3635 |
|
|
begin
|
3636 |
|
|
-- Checks for case where N is an entity reference
|
3637 |
|
|
|
3638 |
|
|
if Is_Entity_Name (N) and then Present (Entity (N)) then
|
3639 |
|
|
declare
|
3640 |
|
|
E : constant Entity_Id := Entity (N);
|
3641 |
|
|
Op : Node_Kind;
|
3642 |
|
|
Val : Node_Id;
|
3643 |
|
|
|
3644 |
|
|
begin
|
3645 |
|
|
-- Constant null value is for sure null
|
3646 |
|
|
|
3647 |
|
|
if Ekind (E) = E_Constant
|
3648 |
|
|
and then Known_Null (Constant_Value (E))
|
3649 |
|
|
then
|
3650 |
|
|
return True;
|
3651 |
|
|
end if;
|
3652 |
|
|
|
3653 |
|
|
-- First check if we are in decisive conditional
|
3654 |
|
|
|
3655 |
|
|
Get_Current_Value_Condition (N, Op, Val);
|
3656 |
|
|
|
3657 |
|
|
if Known_Null (Val) then
|
3658 |
|
|
if Op = N_Op_Eq then
|
3659 |
|
|
return True;
|
3660 |
|
|
elsif Op = N_Op_Ne then
|
3661 |
|
|
return False;
|
3662 |
|
|
end if;
|
3663 |
|
|
end if;
|
3664 |
|
|
|
3665 |
|
|
-- If OK to do replacement, test Is_Known_Null flag
|
3666 |
|
|
|
3667 |
|
|
if OK_To_Do_Constant_Replacement (E) then
|
3668 |
|
|
return Is_Known_Null (E);
|
3669 |
|
|
|
3670 |
|
|
-- Otherwise if not safe to do replacement, then say so
|
3671 |
|
|
|
3672 |
|
|
else
|
3673 |
|
|
return False;
|
3674 |
|
|
end if;
|
3675 |
|
|
end;
|
3676 |
|
|
|
3677 |
|
|
-- True if explicit reference to null
|
3678 |
|
|
|
3679 |
|
|
elsif Nkind (N) = N_Null then
|
3680 |
|
|
return True;
|
3681 |
|
|
|
3682 |
|
|
-- For a conversion, true if expression is known null
|
3683 |
|
|
|
3684 |
|
|
elsif Nkind (N) = N_Type_Conversion then
|
3685 |
|
|
return Known_Null (Expression (N));
|
3686 |
|
|
|
3687 |
|
|
-- Above are all cases where the value could be determined to be null.
|
3688 |
|
|
-- In all other cases, we don't know, so return False.
|
3689 |
|
|
|
3690 |
|
|
else
|
3691 |
|
|
return False;
|
3692 |
|
|
end if;
|
3693 |
|
|
end Known_Null;
|
3694 |
|
|
|
3695 |
|
|
-----------------------------
|
3696 |
|
|
-- Make_CW_Equivalent_Type --
|
3697 |
|
|
-----------------------------
|
3698 |
|
|
|
3699 |
|
|
-- Create a record type used as an equivalent of any member of the class
|
3700 |
|
|
-- which takes its size from exp.
|
3701 |
|
|
|
3702 |
|
|
-- Generate the following code:
|
3703 |
|
|
|
3704 |
|
|
-- type Equiv_T is record
|
3705 |
|
|
-- _parent : T (List of discriminant constraints taken from Exp);
|
3706 |
|
|
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
|
3707 |
|
|
-- end Equiv_T;
|
3708 |
|
|
--
|
3709 |
|
|
-- ??? Note that this type does not guarantee same alignment as all
|
3710 |
|
|
-- derived types
|
3711 |
|
|
|
3712 |
|
|
function Make_CW_Equivalent_Type
|
3713 |
|
|
(T : Entity_Id;
|
3714 |
|
|
E : Node_Id) return Entity_Id
|
3715 |
|
|
is
|
3716 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
3717 |
|
|
Root_Typ : constant Entity_Id := Root_Type (T);
|
3718 |
|
|
List_Def : constant List_Id := Empty_List;
|
3719 |
|
|
Comp_List : constant List_Id := New_List;
|
3720 |
|
|
Equiv_Type : Entity_Id;
|
3721 |
|
|
Range_Type : Entity_Id;
|
3722 |
|
|
Str_Type : Entity_Id;
|
3723 |
|
|
Constr_Root : Entity_Id;
|
3724 |
|
|
Sizexpr : Node_Id;
|
3725 |
|
|
|
3726 |
|
|
begin
|
3727 |
|
|
if not Has_Discriminants (Root_Typ) then
|
3728 |
|
|
Constr_Root := Root_Typ;
|
3729 |
|
|
else
|
3730 |
|
|
Constr_Root :=
|
3731 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
3732 |
|
|
|
3733 |
|
|
-- subtype cstr__n is T (List of discr constraints taken from Exp)
|
3734 |
|
|
|
3735 |
|
|
Append_To (List_Def,
|
3736 |
|
|
Make_Subtype_Declaration (Loc,
|
3737 |
|
|
Defining_Identifier => Constr_Root,
|
3738 |
|
|
Subtype_Indication =>
|
3739 |
|
|
Make_Subtype_From_Expr (E, Root_Typ)));
|
3740 |
|
|
end if;
|
3741 |
|
|
|
3742 |
|
|
-- Generate the range subtype declaration
|
3743 |
|
|
|
3744 |
|
|
Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
|
3745 |
|
|
|
3746 |
|
|
if not Is_Interface (Root_Typ) then
|
3747 |
|
|
|
3748 |
|
|
-- subtype rg__xx is
|
3749 |
|
|
-- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
|
3750 |
|
|
|
3751 |
|
|
Sizexpr :=
|
3752 |
|
|
Make_Op_Subtract (Loc,
|
3753 |
|
|
Left_Opnd =>
|
3754 |
|
|
Make_Attribute_Reference (Loc,
|
3755 |
|
|
Prefix =>
|
3756 |
|
|
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
|
3757 |
|
|
Attribute_Name => Name_Size),
|
3758 |
|
|
Right_Opnd =>
|
3759 |
|
|
Make_Attribute_Reference (Loc,
|
3760 |
|
|
Prefix => New_Reference_To (Constr_Root, Loc),
|
3761 |
|
|
Attribute_Name => Name_Object_Size));
|
3762 |
|
|
else
|
3763 |
|
|
-- subtype rg__xx is
|
3764 |
|
|
-- Storage_Offset range 1 .. Expr'size / Storage_Unit
|
3765 |
|
|
|
3766 |
|
|
Sizexpr :=
|
3767 |
|
|
Make_Attribute_Reference (Loc,
|
3768 |
|
|
Prefix =>
|
3769 |
|
|
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
|
3770 |
|
|
Attribute_Name => Name_Size);
|
3771 |
|
|
end if;
|
3772 |
|
|
|
3773 |
|
|
Set_Paren_Count (Sizexpr, 1);
|
3774 |
|
|
|
3775 |
|
|
Append_To (List_Def,
|
3776 |
|
|
Make_Subtype_Declaration (Loc,
|
3777 |
|
|
Defining_Identifier => Range_Type,
|
3778 |
|
|
Subtype_Indication =>
|
3779 |
|
|
Make_Subtype_Indication (Loc,
|
3780 |
|
|
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
|
3781 |
|
|
Constraint => Make_Range_Constraint (Loc,
|
3782 |
|
|
Range_Expression =>
|
3783 |
|
|
Make_Range (Loc,
|
3784 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
3785 |
|
|
High_Bound =>
|
3786 |
|
|
Make_Op_Divide (Loc,
|
3787 |
|
|
Left_Opnd => Sizexpr,
|
3788 |
|
|
Right_Opnd => Make_Integer_Literal (Loc,
|
3789 |
|
|
Intval => System_Storage_Unit)))))));
|
3790 |
|
|
|
3791 |
|
|
-- subtype str__nn is Storage_Array (rg__x);
|
3792 |
|
|
|
3793 |
|
|
Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
3794 |
|
|
Append_To (List_Def,
|
3795 |
|
|
Make_Subtype_Declaration (Loc,
|
3796 |
|
|
Defining_Identifier => Str_Type,
|
3797 |
|
|
Subtype_Indication =>
|
3798 |
|
|
Make_Subtype_Indication (Loc,
|
3799 |
|
|
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
|
3800 |
|
|
Constraint =>
|
3801 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
3802 |
|
|
Constraints =>
|
3803 |
|
|
New_List (New_Reference_To (Range_Type, Loc))))));
|
3804 |
|
|
|
3805 |
|
|
-- type Equiv_T is record
|
3806 |
|
|
-- [ _parent : Tnn; ]
|
3807 |
|
|
-- E : Str_Type;
|
3808 |
|
|
-- end Equiv_T;
|
3809 |
|
|
|
3810 |
|
|
Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
3811 |
|
|
Set_Ekind (Equiv_Type, E_Record_Type);
|
3812 |
|
|
Set_Parent_Subtype (Equiv_Type, Constr_Root);
|
3813 |
|
|
|
3814 |
|
|
-- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
|
3815 |
|
|
-- treatment for this type. In particular, even though _parent's type
|
3816 |
|
|
-- is a controlled type or contains controlled components, we do not
|
3817 |
|
|
-- want to set Has_Controlled_Component on it to avoid making it gain
|
3818 |
|
|
-- an unwanted _controller component.
|
3819 |
|
|
|
3820 |
|
|
Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
|
3821 |
|
|
|
3822 |
|
|
if not Is_Interface (Root_Typ) then
|
3823 |
|
|
Append_To (Comp_List,
|
3824 |
|
|
Make_Component_Declaration (Loc,
|
3825 |
|
|
Defining_Identifier =>
|
3826 |
|
|
Make_Defining_Identifier (Loc, Name_uParent),
|
3827 |
|
|
Component_Definition =>
|
3828 |
|
|
Make_Component_Definition (Loc,
|
3829 |
|
|
Aliased_Present => False,
|
3830 |
|
|
Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
|
3831 |
|
|
end if;
|
3832 |
|
|
|
3833 |
|
|
Append_To (Comp_List,
|
3834 |
|
|
Make_Component_Declaration (Loc,
|
3835 |
|
|
Defining_Identifier =>
|
3836 |
|
|
Make_Defining_Identifier (Loc,
|
3837 |
|
|
Chars => New_Internal_Name ('C')),
|
3838 |
|
|
Component_Definition =>
|
3839 |
|
|
Make_Component_Definition (Loc,
|
3840 |
|
|
Aliased_Present => False,
|
3841 |
|
|
Subtype_Indication => New_Reference_To (Str_Type, Loc))));
|
3842 |
|
|
|
3843 |
|
|
Append_To (List_Def,
|
3844 |
|
|
Make_Full_Type_Declaration (Loc,
|
3845 |
|
|
Defining_Identifier => Equiv_Type,
|
3846 |
|
|
Type_Definition =>
|
3847 |
|
|
Make_Record_Definition (Loc,
|
3848 |
|
|
Component_List =>
|
3849 |
|
|
Make_Component_List (Loc,
|
3850 |
|
|
Component_Items => Comp_List,
|
3851 |
|
|
Variant_Part => Empty))));
|
3852 |
|
|
|
3853 |
|
|
-- Suppress all checks during the analysis of the expanded code
|
3854 |
|
|
-- to avoid the generation of spurious warnings under ZFP run-time.
|
3855 |
|
|
|
3856 |
|
|
Insert_Actions (E, List_Def, Suppress => All_Checks);
|
3857 |
|
|
return Equiv_Type;
|
3858 |
|
|
end Make_CW_Equivalent_Type;
|
3859 |
|
|
|
3860 |
|
|
------------------------
|
3861 |
|
|
-- Make_Literal_Range --
|
3862 |
|
|
------------------------
|
3863 |
|
|
|
3864 |
|
|
function Make_Literal_Range
|
3865 |
|
|
(Loc : Source_Ptr;
|
3866 |
|
|
Literal_Typ : Entity_Id) return Node_Id
|
3867 |
|
|
is
|
3868 |
|
|
Lo : constant Node_Id :=
|
3869 |
|
|
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
|
3870 |
|
|
Index : constant Entity_Id := Etype (Lo);
|
3871 |
|
|
|
3872 |
|
|
Hi : Node_Id;
|
3873 |
|
|
Length_Expr : constant Node_Id :=
|
3874 |
|
|
Make_Op_Subtract (Loc,
|
3875 |
|
|
Left_Opnd =>
|
3876 |
|
|
Make_Integer_Literal (Loc,
|
3877 |
|
|
Intval => String_Literal_Length (Literal_Typ)),
|
3878 |
|
|
Right_Opnd =>
|
3879 |
|
|
Make_Integer_Literal (Loc, 1));
|
3880 |
|
|
|
3881 |
|
|
begin
|
3882 |
|
|
Set_Analyzed (Lo, False);
|
3883 |
|
|
|
3884 |
|
|
if Is_Integer_Type (Index) then
|
3885 |
|
|
Hi :=
|
3886 |
|
|
Make_Op_Add (Loc,
|
3887 |
|
|
Left_Opnd => New_Copy_Tree (Lo),
|
3888 |
|
|
Right_Opnd => Length_Expr);
|
3889 |
|
|
else
|
3890 |
|
|
Hi :=
|
3891 |
|
|
Make_Attribute_Reference (Loc,
|
3892 |
|
|
Attribute_Name => Name_Val,
|
3893 |
|
|
Prefix => New_Occurrence_Of (Index, Loc),
|
3894 |
|
|
Expressions => New_List (
|
3895 |
|
|
Make_Op_Add (Loc,
|
3896 |
|
|
Left_Opnd =>
|
3897 |
|
|
Make_Attribute_Reference (Loc,
|
3898 |
|
|
Attribute_Name => Name_Pos,
|
3899 |
|
|
Prefix => New_Occurrence_Of (Index, Loc),
|
3900 |
|
|
Expressions => New_List (New_Copy_Tree (Lo))),
|
3901 |
|
|
Right_Opnd => Length_Expr)));
|
3902 |
|
|
end if;
|
3903 |
|
|
|
3904 |
|
|
return
|
3905 |
|
|
Make_Range (Loc,
|
3906 |
|
|
Low_Bound => Lo,
|
3907 |
|
|
High_Bound => Hi);
|
3908 |
|
|
end Make_Literal_Range;
|
3909 |
|
|
|
3910 |
|
|
--------------------------
|
3911 |
|
|
-- Make_Non_Empty_Check --
|
3912 |
|
|
--------------------------
|
3913 |
|
|
|
3914 |
|
|
function Make_Non_Empty_Check
|
3915 |
|
|
(Loc : Source_Ptr;
|
3916 |
|
|
N : Node_Id) return Node_Id
|
3917 |
|
|
is
|
3918 |
|
|
begin
|
3919 |
|
|
return
|
3920 |
|
|
Make_Op_Ne (Loc,
|
3921 |
|
|
Left_Opnd =>
|
3922 |
|
|
Make_Attribute_Reference (Loc,
|
3923 |
|
|
Attribute_Name => Name_Length,
|
3924 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
|
3925 |
|
|
Right_Opnd =>
|
3926 |
|
|
Make_Integer_Literal (Loc, 0));
|
3927 |
|
|
end Make_Non_Empty_Check;
|
3928 |
|
|
|
3929 |
|
|
----------------------------
|
3930 |
|
|
-- Make_Subtype_From_Expr --
|
3931 |
|
|
----------------------------
|
3932 |
|
|
|
3933 |
|
|
-- 1. If Expr is an unconstrained array expression, creates
|
3934 |
|
|
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
|
3935 |
|
|
|
3936 |
|
|
-- 2. If Expr is a unconstrained discriminated type expression, creates
|
3937 |
|
|
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
|
3938 |
|
|
|
3939 |
|
|
-- 3. If Expr is class-wide, creates an implicit class wide subtype
|
3940 |
|
|
|
3941 |
|
|
function Make_Subtype_From_Expr
|
3942 |
|
|
(E : Node_Id;
|
3943 |
|
|
Unc_Typ : Entity_Id) return Node_Id
|
3944 |
|
|
is
|
3945 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
3946 |
|
|
List_Constr : constant List_Id := New_List;
|
3947 |
|
|
D : Entity_Id;
|
3948 |
|
|
|
3949 |
|
|
Full_Subtyp : Entity_Id;
|
3950 |
|
|
Priv_Subtyp : Entity_Id;
|
3951 |
|
|
Utyp : Entity_Id;
|
3952 |
|
|
Full_Exp : Node_Id;
|
3953 |
|
|
|
3954 |
|
|
begin
|
3955 |
|
|
if Is_Private_Type (Unc_Typ)
|
3956 |
|
|
and then Has_Unknown_Discriminants (Unc_Typ)
|
3957 |
|
|
then
|
3958 |
|
|
-- Prepare the subtype completion, Go to base type to
|
3959 |
|
|
-- find underlying type, because the type may be a generic
|
3960 |
|
|
-- actual or an explicit subtype.
|
3961 |
|
|
|
3962 |
|
|
Utyp := Underlying_Type (Base_Type (Unc_Typ));
|
3963 |
|
|
Full_Subtyp := Make_Defining_Identifier (Loc,
|
3964 |
|
|
New_Internal_Name ('C'));
|
3965 |
|
|
Full_Exp :=
|
3966 |
|
|
Unchecked_Convert_To
|
3967 |
|
|
(Utyp, Duplicate_Subexpr_No_Checks (E));
|
3968 |
|
|
Set_Parent (Full_Exp, Parent (E));
|
3969 |
|
|
|
3970 |
|
|
Priv_Subtyp :=
|
3971 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
3972 |
|
|
|
3973 |
|
|
Insert_Action (E,
|
3974 |
|
|
Make_Subtype_Declaration (Loc,
|
3975 |
|
|
Defining_Identifier => Full_Subtyp,
|
3976 |
|
|
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
|
3977 |
|
|
|
3978 |
|
|
-- Define the dummy private subtype
|
3979 |
|
|
|
3980 |
|
|
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
|
3981 |
|
|
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
|
3982 |
|
|
Set_Scope (Priv_Subtyp, Full_Subtyp);
|
3983 |
|
|
Set_Is_Constrained (Priv_Subtyp);
|
3984 |
|
|
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
|
3985 |
|
|
Set_Is_Itype (Priv_Subtyp);
|
3986 |
|
|
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
|
3987 |
|
|
|
3988 |
|
|
if Is_Tagged_Type (Priv_Subtyp) then
|
3989 |
|
|
Set_Class_Wide_Type
|
3990 |
|
|
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
|
3991 |
|
|
Set_Primitive_Operations (Priv_Subtyp,
|
3992 |
|
|
Primitive_Operations (Unc_Typ));
|
3993 |
|
|
end if;
|
3994 |
|
|
|
3995 |
|
|
Set_Full_View (Priv_Subtyp, Full_Subtyp);
|
3996 |
|
|
|
3997 |
|
|
return New_Reference_To (Priv_Subtyp, Loc);
|
3998 |
|
|
|
3999 |
|
|
elsif Is_Array_Type (Unc_Typ) then
|
4000 |
|
|
for J in 1 .. Number_Dimensions (Unc_Typ) loop
|
4001 |
|
|
Append_To (List_Constr,
|
4002 |
|
|
Make_Range (Loc,
|
4003 |
|
|
Low_Bound =>
|
4004 |
|
|
Make_Attribute_Reference (Loc,
|
4005 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (E),
|
4006 |
|
|
Attribute_Name => Name_First,
|
4007 |
|
|
Expressions => New_List (
|
4008 |
|
|
Make_Integer_Literal (Loc, J))),
|
4009 |
|
|
|
4010 |
|
|
High_Bound =>
|
4011 |
|
|
Make_Attribute_Reference (Loc,
|
4012 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (E),
|
4013 |
|
|
Attribute_Name => Name_Last,
|
4014 |
|
|
Expressions => New_List (
|
4015 |
|
|
Make_Integer_Literal (Loc, J)))));
|
4016 |
|
|
end loop;
|
4017 |
|
|
|
4018 |
|
|
elsif Is_Class_Wide_Type (Unc_Typ) then
|
4019 |
|
|
declare
|
4020 |
|
|
CW_Subtype : Entity_Id;
|
4021 |
|
|
EQ_Typ : Entity_Id := Empty;
|
4022 |
|
|
|
4023 |
|
|
begin
|
4024 |
|
|
-- A class-wide equivalent type is not needed when VM_Target
|
4025 |
|
|
-- because the VM back-ends handle the class-wide object
|
4026 |
|
|
-- initialization itself (and doesn't need or want the
|
4027 |
|
|
-- additional intermediate type to handle the assignment).
|
4028 |
|
|
|
4029 |
|
|
if Expander_Active and then Tagged_Type_Expansion then
|
4030 |
|
|
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
|
4031 |
|
|
end if;
|
4032 |
|
|
|
4033 |
|
|
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
|
4034 |
|
|
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
|
4035 |
|
|
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
|
4036 |
|
|
|
4037 |
|
|
return New_Occurrence_Of (CW_Subtype, Loc);
|
4038 |
|
|
end;
|
4039 |
|
|
|
4040 |
|
|
-- Indefinite record type with discriminants
|
4041 |
|
|
|
4042 |
|
|
else
|
4043 |
|
|
D := First_Discriminant (Unc_Typ);
|
4044 |
|
|
while Present (D) loop
|
4045 |
|
|
Append_To (List_Constr,
|
4046 |
|
|
Make_Selected_Component (Loc,
|
4047 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (E),
|
4048 |
|
|
Selector_Name => New_Reference_To (D, Loc)));
|
4049 |
|
|
|
4050 |
|
|
Next_Discriminant (D);
|
4051 |
|
|
end loop;
|
4052 |
|
|
end if;
|
4053 |
|
|
|
4054 |
|
|
return
|
4055 |
|
|
Make_Subtype_Indication (Loc,
|
4056 |
|
|
Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
|
4057 |
|
|
Constraint =>
|
4058 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
4059 |
|
|
Constraints => List_Constr));
|
4060 |
|
|
end Make_Subtype_From_Expr;
|
4061 |
|
|
|
4062 |
|
|
-----------------------------
|
4063 |
|
|
-- May_Generate_Large_Temp --
|
4064 |
|
|
-----------------------------
|
4065 |
|
|
|
4066 |
|
|
-- At the current time, the only types that we return False for (i.e.
|
4067 |
|
|
-- where we decide we know they cannot generate large temps) are ones
|
4068 |
|
|
-- where we know the size is 256 bits or less at compile time, and we
|
4069 |
|
|
-- are still not doing a thorough job on arrays and records ???
|
4070 |
|
|
|
4071 |
|
|
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
|
4072 |
|
|
begin
|
4073 |
|
|
if not Size_Known_At_Compile_Time (Typ) then
|
4074 |
|
|
return False;
|
4075 |
|
|
|
4076 |
|
|
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
|
4077 |
|
|
return False;
|
4078 |
|
|
|
4079 |
|
|
elsif Is_Array_Type (Typ)
|
4080 |
|
|
and then Present (Packed_Array_Type (Typ))
|
4081 |
|
|
then
|
4082 |
|
|
return May_Generate_Large_Temp (Packed_Array_Type (Typ));
|
4083 |
|
|
|
4084 |
|
|
-- We could do more here to find other small types ???
|
4085 |
|
|
|
4086 |
|
|
else
|
4087 |
|
|
return True;
|
4088 |
|
|
end if;
|
4089 |
|
|
end May_Generate_Large_Temp;
|
4090 |
|
|
|
4091 |
|
|
----------------------------
|
4092 |
|
|
-- New_Class_Wide_Subtype --
|
4093 |
|
|
----------------------------
|
4094 |
|
|
|
4095 |
|
|
function New_Class_Wide_Subtype
|
4096 |
|
|
(CW_Typ : Entity_Id;
|
4097 |
|
|
N : Node_Id) return Entity_Id
|
4098 |
|
|
is
|
4099 |
|
|
Res : constant Entity_Id := Create_Itype (E_Void, N);
|
4100 |
|
|
Res_Name : constant Name_Id := Chars (Res);
|
4101 |
|
|
Res_Scope : constant Entity_Id := Scope (Res);
|
4102 |
|
|
|
4103 |
|
|
begin
|
4104 |
|
|
Copy_Node (CW_Typ, Res);
|
4105 |
|
|
Set_Comes_From_Source (Res, False);
|
4106 |
|
|
Set_Sloc (Res, Sloc (N));
|
4107 |
|
|
Set_Is_Itype (Res);
|
4108 |
|
|
Set_Associated_Node_For_Itype (Res, N);
|
4109 |
|
|
Set_Is_Public (Res, False); -- By default, may be changed below.
|
4110 |
|
|
Set_Public_Status (Res);
|
4111 |
|
|
Set_Chars (Res, Res_Name);
|
4112 |
|
|
Set_Scope (Res, Res_Scope);
|
4113 |
|
|
Set_Ekind (Res, E_Class_Wide_Subtype);
|
4114 |
|
|
Set_Next_Entity (Res, Empty);
|
4115 |
|
|
Set_Etype (Res, Base_Type (CW_Typ));
|
4116 |
|
|
Set_Is_Frozen (Res, False);
|
4117 |
|
|
Set_Freeze_Node (Res, Empty);
|
4118 |
|
|
return (Res);
|
4119 |
|
|
end New_Class_Wide_Subtype;
|
4120 |
|
|
|
4121 |
|
|
--------------------------------
|
4122 |
|
|
-- Non_Limited_Designated_Type --
|
4123 |
|
|
---------------------------------
|
4124 |
|
|
|
4125 |
|
|
function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
|
4126 |
|
|
Desig : constant Entity_Id := Designated_Type (T);
|
4127 |
|
|
begin
|
4128 |
|
|
if Ekind (Desig) = E_Incomplete_Type
|
4129 |
|
|
and then Present (Non_Limited_View (Desig))
|
4130 |
|
|
then
|
4131 |
|
|
return Non_Limited_View (Desig);
|
4132 |
|
|
else
|
4133 |
|
|
return Desig;
|
4134 |
|
|
end if;
|
4135 |
|
|
end Non_Limited_Designated_Type;
|
4136 |
|
|
|
4137 |
|
|
-----------------------------------
|
4138 |
|
|
-- OK_To_Do_Constant_Replacement --
|
4139 |
|
|
-----------------------------------
|
4140 |
|
|
|
4141 |
|
|
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
|
4142 |
|
|
ES : constant Entity_Id := Scope (E);
|
4143 |
|
|
CS : Entity_Id;
|
4144 |
|
|
|
4145 |
|
|
begin
|
4146 |
|
|
-- Do not replace statically allocated objects, because they may be
|
4147 |
|
|
-- modified outside the current scope.
|
4148 |
|
|
|
4149 |
|
|
if Is_Statically_Allocated (E) then
|
4150 |
|
|
return False;
|
4151 |
|
|
|
4152 |
|
|
-- Do not replace aliased or volatile objects, since we don't know what
|
4153 |
|
|
-- else might change the value.
|
4154 |
|
|
|
4155 |
|
|
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
|
4156 |
|
|
return False;
|
4157 |
|
|
|
4158 |
|
|
-- Debug flag -gnatdM disconnects this optimization
|
4159 |
|
|
|
4160 |
|
|
elsif Debug_Flag_MM then
|
4161 |
|
|
return False;
|
4162 |
|
|
|
4163 |
|
|
-- Otherwise check scopes
|
4164 |
|
|
|
4165 |
|
|
else
|
4166 |
|
|
CS := Current_Scope;
|
4167 |
|
|
|
4168 |
|
|
loop
|
4169 |
|
|
-- If we are in right scope, replacement is safe
|
4170 |
|
|
|
4171 |
|
|
if CS = ES then
|
4172 |
|
|
return True;
|
4173 |
|
|
|
4174 |
|
|
-- Packages do not affect the determination of safety
|
4175 |
|
|
|
4176 |
|
|
elsif Ekind (CS) = E_Package then
|
4177 |
|
|
exit when CS = Standard_Standard;
|
4178 |
|
|
CS := Scope (CS);
|
4179 |
|
|
|
4180 |
|
|
-- Blocks do not affect the determination of safety
|
4181 |
|
|
|
4182 |
|
|
elsif Ekind (CS) = E_Block then
|
4183 |
|
|
CS := Scope (CS);
|
4184 |
|
|
|
4185 |
|
|
-- Loops do not affect the determination of safety. Note that we
|
4186 |
|
|
-- kill all current values on entry to a loop, so we are just
|
4187 |
|
|
-- talking about processing within a loop here.
|
4188 |
|
|
|
4189 |
|
|
elsif Ekind (CS) = E_Loop then
|
4190 |
|
|
CS := Scope (CS);
|
4191 |
|
|
|
4192 |
|
|
-- Otherwise, the reference is dubious, and we cannot be sure that
|
4193 |
|
|
-- it is safe to do the replacement.
|
4194 |
|
|
|
4195 |
|
|
else
|
4196 |
|
|
exit;
|
4197 |
|
|
end if;
|
4198 |
|
|
end loop;
|
4199 |
|
|
|
4200 |
|
|
return False;
|
4201 |
|
|
end if;
|
4202 |
|
|
end OK_To_Do_Constant_Replacement;
|
4203 |
|
|
|
4204 |
|
|
------------------------------------
|
4205 |
|
|
-- Possible_Bit_Aligned_Component --
|
4206 |
|
|
------------------------------------
|
4207 |
|
|
|
4208 |
|
|
function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
|
4209 |
|
|
begin
|
4210 |
|
|
case Nkind (N) is
|
4211 |
|
|
|
4212 |
|
|
-- Case of indexed component
|
4213 |
|
|
|
4214 |
|
|
when N_Indexed_Component =>
|
4215 |
|
|
declare
|
4216 |
|
|
P : constant Node_Id := Prefix (N);
|
4217 |
|
|
Ptyp : constant Entity_Id := Etype (P);
|
4218 |
|
|
|
4219 |
|
|
begin
|
4220 |
|
|
-- If we know the component size and it is less than 64, then
|
4221 |
|
|
-- we are definitely OK. The back end always does assignment of
|
4222 |
|
|
-- misaligned small objects correctly.
|
4223 |
|
|
|
4224 |
|
|
if Known_Static_Component_Size (Ptyp)
|
4225 |
|
|
and then Component_Size (Ptyp) <= 64
|
4226 |
|
|
then
|
4227 |
|
|
return False;
|
4228 |
|
|
|
4229 |
|
|
-- Otherwise, we need to test the prefix, to see if we are
|
4230 |
|
|
-- indexing from a possibly unaligned component.
|
4231 |
|
|
|
4232 |
|
|
else
|
4233 |
|
|
return Possible_Bit_Aligned_Component (P);
|
4234 |
|
|
end if;
|
4235 |
|
|
end;
|
4236 |
|
|
|
4237 |
|
|
-- Case of selected component
|
4238 |
|
|
|
4239 |
|
|
when N_Selected_Component =>
|
4240 |
|
|
declare
|
4241 |
|
|
P : constant Node_Id := Prefix (N);
|
4242 |
|
|
Comp : constant Entity_Id := Entity (Selector_Name (N));
|
4243 |
|
|
|
4244 |
|
|
begin
|
4245 |
|
|
-- If there is no component clause, then we are in the clear
|
4246 |
|
|
-- since the back end will never misalign a large component
|
4247 |
|
|
-- unless it is forced to do so. In the clear means we need
|
4248 |
|
|
-- only the recursive test on the prefix.
|
4249 |
|
|
|
4250 |
|
|
if Component_May_Be_Bit_Aligned (Comp) then
|
4251 |
|
|
return True;
|
4252 |
|
|
else
|
4253 |
|
|
return Possible_Bit_Aligned_Component (P);
|
4254 |
|
|
end if;
|
4255 |
|
|
end;
|
4256 |
|
|
|
4257 |
|
|
-- For a slice, test the prefix, if that is possibly misaligned,
|
4258 |
|
|
-- then for sure the slice is!
|
4259 |
|
|
|
4260 |
|
|
when N_Slice =>
|
4261 |
|
|
return Possible_Bit_Aligned_Component (Prefix (N));
|
4262 |
|
|
|
4263 |
|
|
-- If we have none of the above, it means that we have fallen off the
|
4264 |
|
|
-- top testing prefixes recursively, and we now have a stand alone
|
4265 |
|
|
-- object, where we don't have a problem.
|
4266 |
|
|
|
4267 |
|
|
when others =>
|
4268 |
|
|
return False;
|
4269 |
|
|
|
4270 |
|
|
end case;
|
4271 |
|
|
end Possible_Bit_Aligned_Component;
|
4272 |
|
|
|
4273 |
|
|
-------------------------
|
4274 |
|
|
-- Remove_Side_Effects --
|
4275 |
|
|
-------------------------
|
4276 |
|
|
|
4277 |
|
|
procedure Remove_Side_Effects
|
4278 |
|
|
(Exp : Node_Id;
|
4279 |
|
|
Name_Req : Boolean := False;
|
4280 |
|
|
Variable_Ref : Boolean := False)
|
4281 |
|
|
is
|
4282 |
|
|
Loc : constant Source_Ptr := Sloc (Exp);
|
4283 |
|
|
Exp_Type : constant Entity_Id := Etype (Exp);
|
4284 |
|
|
Svg_Suppress : constant Suppress_Array := Scope_Suppress;
|
4285 |
|
|
Def_Id : Entity_Id;
|
4286 |
|
|
Ref_Type : Entity_Id;
|
4287 |
|
|
Res : Node_Id;
|
4288 |
|
|
Ptr_Typ_Decl : Node_Id;
|
4289 |
|
|
New_Exp : Node_Id;
|
4290 |
|
|
E : Node_Id;
|
4291 |
|
|
|
4292 |
|
|
function Side_Effect_Free (N : Node_Id) return Boolean;
|
4293 |
|
|
-- Determines if the tree N represents an expression that is known not
|
4294 |
|
|
-- to have side effects, and for which no processing is required.
|
4295 |
|
|
|
4296 |
|
|
function Side_Effect_Free (L : List_Id) return Boolean;
|
4297 |
|
|
-- Determines if all elements of the list L are side effect free
|
4298 |
|
|
|
4299 |
|
|
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
|
4300 |
|
|
-- The argument N is a construct where the Prefix is dereferenced if it
|
4301 |
|
|
-- is an access type and the result is a variable. The call returns True
|
4302 |
|
|
-- if the construct is side effect free (not considering side effects in
|
4303 |
|
|
-- other than the prefix which are to be tested by the caller).
|
4304 |
|
|
|
4305 |
|
|
function Within_In_Parameter (N : Node_Id) return Boolean;
|
4306 |
|
|
-- Determines if N is a subcomponent of a composite in-parameter. If so,
|
4307 |
|
|
-- N is not side-effect free when the actual is global and modifiable
|
4308 |
|
|
-- indirectly from within a subprogram, because it may be passed by
|
4309 |
|
|
-- reference. The front-end must be conservative here and assume that
|
4310 |
|
|
-- this may happen with any array or record type. On the other hand, we
|
4311 |
|
|
-- cannot create temporaries for all expressions for which this
|
4312 |
|
|
-- condition is true, for various reasons that might require clearing up
|
4313 |
|
|
-- ??? For example, discriminant references that appear out of place, or
|
4314 |
|
|
-- spurious type errors with class-wide expressions. As a result, we
|
4315 |
|
|
-- limit the transformation to loop bounds, which is so far the only
|
4316 |
|
|
-- case that requires it.
|
4317 |
|
|
|
4318 |
|
|
-----------------------------
|
4319 |
|
|
-- Safe_Prefixed_Reference --
|
4320 |
|
|
-----------------------------
|
4321 |
|
|
|
4322 |
|
|
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
|
4323 |
|
|
begin
|
4324 |
|
|
-- If prefix is not side effect free, definitely not safe
|
4325 |
|
|
|
4326 |
|
|
if not Side_Effect_Free (Prefix (N)) then
|
4327 |
|
|
return False;
|
4328 |
|
|
|
4329 |
|
|
-- If the prefix is of an access type that is not access-to-constant,
|
4330 |
|
|
-- then this construct is a variable reference, which means it is to
|
4331 |
|
|
-- be considered to have side effects if Variable_Ref is set True
|
4332 |
|
|
-- Exception is an access to an entity that is a constant or an
|
4333 |
|
|
-- in-parameter which does not come from source, and is the result
|
4334 |
|
|
-- of a previous removal of side-effects.
|
4335 |
|
|
|
4336 |
|
|
elsif Is_Access_Type (Etype (Prefix (N)))
|
4337 |
|
|
and then not Is_Access_Constant (Etype (Prefix (N)))
|
4338 |
|
|
and then Variable_Ref
|
4339 |
|
|
then
|
4340 |
|
|
if not Is_Entity_Name (Prefix (N)) then
|
4341 |
|
|
return False;
|
4342 |
|
|
else
|
4343 |
|
|
return Ekind (Entity (Prefix (N))) = E_Constant
|
4344 |
|
|
or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
|
4345 |
|
|
end if;
|
4346 |
|
|
|
4347 |
|
|
-- The following test is the simplest way of solving a complex
|
4348 |
|
|
-- problem uncovered by BB08-010: Side effect on loop bound that
|
4349 |
|
|
-- is a subcomponent of a global variable:
|
4350 |
|
|
-- If a loop bound is a subcomponent of a global variable, a
|
4351 |
|
|
-- modification of that variable within the loop may incorrectly
|
4352 |
|
|
-- affect the execution of the loop.
|
4353 |
|
|
|
4354 |
|
|
elsif not
|
4355 |
|
|
(Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
|
4356 |
|
|
or else not Within_In_Parameter (Prefix (N)))
|
4357 |
|
|
then
|
4358 |
|
|
return False;
|
4359 |
|
|
|
4360 |
|
|
-- All other cases are side effect free
|
4361 |
|
|
|
4362 |
|
|
else
|
4363 |
|
|
return True;
|
4364 |
|
|
end if;
|
4365 |
|
|
end Safe_Prefixed_Reference;
|
4366 |
|
|
|
4367 |
|
|
----------------------
|
4368 |
|
|
-- Side_Effect_Free --
|
4369 |
|
|
----------------------
|
4370 |
|
|
|
4371 |
|
|
function Side_Effect_Free (N : Node_Id) return Boolean is
|
4372 |
|
|
begin
|
4373 |
|
|
-- Note on checks that could raise Constraint_Error. Strictly, if
|
4374 |
|
|
-- we take advantage of 11.6, these checks do not count as side
|
4375 |
|
|
-- effects. However, we would just as soon consider that they are
|
4376 |
|
|
-- side effects, since the backend CSE does not work very well on
|
4377 |
|
|
-- expressions which can raise Constraint_Error. On the other
|
4378 |
|
|
-- hand, if we do not consider them to be side effect free, then
|
4379 |
|
|
-- we get some awkward expansions in -gnato mode, resulting in
|
4380 |
|
|
-- code insertions at a point where we do not have a clear model
|
4381 |
|
|
-- for performing the insertions.
|
4382 |
|
|
|
4383 |
|
|
-- Special handling for entity names
|
4384 |
|
|
|
4385 |
|
|
if Is_Entity_Name (N) then
|
4386 |
|
|
|
4387 |
|
|
-- If the entity is a constant, it is definitely side effect
|
4388 |
|
|
-- free. Note that the test of Is_Variable (N) below might
|
4389 |
|
|
-- be expected to catch this case, but it does not, because
|
4390 |
|
|
-- this test goes to the original tree, and we may have
|
4391 |
|
|
-- already rewritten a variable node with a constant as
|
4392 |
|
|
-- a result of an earlier Force_Evaluation call.
|
4393 |
|
|
|
4394 |
|
|
if Ekind (Entity (N)) = E_Constant
|
4395 |
|
|
or else Ekind (Entity (N)) = E_In_Parameter
|
4396 |
|
|
then
|
4397 |
|
|
return True;
|
4398 |
|
|
|
4399 |
|
|
-- Functions are not side effect free
|
4400 |
|
|
|
4401 |
|
|
elsif Ekind (Entity (N)) = E_Function then
|
4402 |
|
|
return False;
|
4403 |
|
|
|
4404 |
|
|
-- Variables are considered to be a side effect if Variable_Ref
|
4405 |
|
|
-- is set or if we have a volatile reference and Name_Req is off.
|
4406 |
|
|
-- If Name_Req is True then we can't help returning a name which
|
4407 |
|
|
-- effectively allows multiple references in any case.
|
4408 |
|
|
|
4409 |
|
|
elsif Is_Variable (N) then
|
4410 |
|
|
return not Variable_Ref
|
4411 |
|
|
and then (not Is_Volatile_Reference (N) or else Name_Req);
|
4412 |
|
|
|
4413 |
|
|
-- Any other entity (e.g. a subtype name) is definitely side
|
4414 |
|
|
-- effect free.
|
4415 |
|
|
|
4416 |
|
|
else
|
4417 |
|
|
return True;
|
4418 |
|
|
end if;
|
4419 |
|
|
|
4420 |
|
|
-- A value known at compile time is always side effect free
|
4421 |
|
|
|
4422 |
|
|
elsif Compile_Time_Known_Value (N) then
|
4423 |
|
|
return True;
|
4424 |
|
|
|
4425 |
|
|
-- A variable renaming is not side-effect free, because the
|
4426 |
|
|
-- renaming will function like a macro in the front-end in
|
4427 |
|
|
-- some cases, and an assignment can modify the component
|
4428 |
|
|
-- designated by N, so we need to create a temporary for it.
|
4429 |
|
|
|
4430 |
|
|
elsif Is_Entity_Name (Original_Node (N))
|
4431 |
|
|
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
|
4432 |
|
|
and then Ekind (Entity (Original_Node (N))) /= E_Constant
|
4433 |
|
|
then
|
4434 |
|
|
return False;
|
4435 |
|
|
end if;
|
4436 |
|
|
|
4437 |
|
|
-- For other than entity names and compile time known values,
|
4438 |
|
|
-- check the node kind for special processing.
|
4439 |
|
|
|
4440 |
|
|
case Nkind (N) is
|
4441 |
|
|
|
4442 |
|
|
-- An attribute reference is side effect free if its expressions
|
4443 |
|
|
-- are side effect free and its prefix is side effect free or
|
4444 |
|
|
-- is an entity reference.
|
4445 |
|
|
|
4446 |
|
|
-- Is this right? what about x'first where x is a variable???
|
4447 |
|
|
|
4448 |
|
|
when N_Attribute_Reference =>
|
4449 |
|
|
return Side_Effect_Free (Expressions (N))
|
4450 |
|
|
and then Attribute_Name (N) /= Name_Input
|
4451 |
|
|
and then (Is_Entity_Name (Prefix (N))
|
4452 |
|
|
or else Side_Effect_Free (Prefix (N)));
|
4453 |
|
|
|
4454 |
|
|
-- A binary operator is side effect free if and both operands
|
4455 |
|
|
-- are side effect free. For this purpose binary operators
|
4456 |
|
|
-- include membership tests and short circuit forms
|
4457 |
|
|
|
4458 |
|
|
when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
|
4459 |
|
|
return Side_Effect_Free (Left_Opnd (N))
|
4460 |
|
|
and then
|
4461 |
|
|
Side_Effect_Free (Right_Opnd (N));
|
4462 |
|
|
|
4463 |
|
|
-- An explicit dereference is side effect free only if it is
|
4464 |
|
|
-- a side effect free prefixed reference.
|
4465 |
|
|
|
4466 |
|
|
when N_Explicit_Dereference =>
|
4467 |
|
|
return Safe_Prefixed_Reference (N);
|
4468 |
|
|
|
4469 |
|
|
-- A call to _rep_to_pos is side effect free, since we generate
|
4470 |
|
|
-- this pure function call ourselves. Moreover it is critically
|
4471 |
|
|
-- important to make this exception, since otherwise we can
|
4472 |
|
|
-- have discriminants in array components which don't look
|
4473 |
|
|
-- side effect free in the case of an array whose index type
|
4474 |
|
|
-- is an enumeration type with an enumeration rep clause.
|
4475 |
|
|
|
4476 |
|
|
-- All other function calls are not side effect free
|
4477 |
|
|
|
4478 |
|
|
when N_Function_Call =>
|
4479 |
|
|
return Nkind (Name (N)) = N_Identifier
|
4480 |
|
|
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
|
4481 |
|
|
and then
|
4482 |
|
|
Side_Effect_Free (First (Parameter_Associations (N)));
|
4483 |
|
|
|
4484 |
|
|
-- An indexed component is side effect free if it is a side
|
4485 |
|
|
-- effect free prefixed reference and all the indexing
|
4486 |
|
|
-- expressions are side effect free.
|
4487 |
|
|
|
4488 |
|
|
when N_Indexed_Component =>
|
4489 |
|
|
return Side_Effect_Free (Expressions (N))
|
4490 |
|
|
and then Safe_Prefixed_Reference (N);
|
4491 |
|
|
|
4492 |
|
|
-- A type qualification is side effect free if the expression
|
4493 |
|
|
-- is side effect free.
|
4494 |
|
|
|
4495 |
|
|
when N_Qualified_Expression =>
|
4496 |
|
|
return Side_Effect_Free (Expression (N));
|
4497 |
|
|
|
4498 |
|
|
-- A selected component is side effect free only if it is a
|
4499 |
|
|
-- side effect free prefixed reference. If it designates a
|
4500 |
|
|
-- component with a rep. clause it must be treated has having
|
4501 |
|
|
-- a potential side effect, because it may be modified through
|
4502 |
|
|
-- a renaming, and a subsequent use of the renaming as a macro
|
4503 |
|
|
-- will yield the wrong value. This complex interaction between
|
4504 |
|
|
-- renaming and removing side effects is a reminder that the
|
4505 |
|
|
-- latter has become a headache to maintain, and that it should
|
4506 |
|
|
-- be removed in favor of the gcc mechanism to capture values ???
|
4507 |
|
|
|
4508 |
|
|
when N_Selected_Component =>
|
4509 |
|
|
if Nkind (Parent (N)) = N_Explicit_Dereference
|
4510 |
|
|
and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
|
4511 |
|
|
then
|
4512 |
|
|
return False;
|
4513 |
|
|
else
|
4514 |
|
|
return Safe_Prefixed_Reference (N);
|
4515 |
|
|
end if;
|
4516 |
|
|
|
4517 |
|
|
-- A range is side effect free if the bounds are side effect free
|
4518 |
|
|
|
4519 |
|
|
when N_Range =>
|
4520 |
|
|
return Side_Effect_Free (Low_Bound (N))
|
4521 |
|
|
and then Side_Effect_Free (High_Bound (N));
|
4522 |
|
|
|
4523 |
|
|
-- A slice is side effect free if it is a side effect free
|
4524 |
|
|
-- prefixed reference and the bounds are side effect free.
|
4525 |
|
|
|
4526 |
|
|
when N_Slice =>
|
4527 |
|
|
return Side_Effect_Free (Discrete_Range (N))
|
4528 |
|
|
and then Safe_Prefixed_Reference (N);
|
4529 |
|
|
|
4530 |
|
|
-- A type conversion is side effect free if the expression to be
|
4531 |
|
|
-- converted is side effect free.
|
4532 |
|
|
|
4533 |
|
|
when N_Type_Conversion =>
|
4534 |
|
|
return Side_Effect_Free (Expression (N));
|
4535 |
|
|
|
4536 |
|
|
-- A unary operator is side effect free if the operand
|
4537 |
|
|
-- is side effect free.
|
4538 |
|
|
|
4539 |
|
|
when N_Unary_Op =>
|
4540 |
|
|
return Side_Effect_Free (Right_Opnd (N));
|
4541 |
|
|
|
4542 |
|
|
-- An unchecked type conversion is side effect free only if it
|
4543 |
|
|
-- is safe and its argument is side effect free.
|
4544 |
|
|
|
4545 |
|
|
when N_Unchecked_Type_Conversion =>
|
4546 |
|
|
return Safe_Unchecked_Type_Conversion (N)
|
4547 |
|
|
and then Side_Effect_Free (Expression (N));
|
4548 |
|
|
|
4549 |
|
|
-- An unchecked expression is side effect free if its expression
|
4550 |
|
|
-- is side effect free.
|
4551 |
|
|
|
4552 |
|
|
when N_Unchecked_Expression =>
|
4553 |
|
|
return Side_Effect_Free (Expression (N));
|
4554 |
|
|
|
4555 |
|
|
-- A literal is side effect free
|
4556 |
|
|
|
4557 |
|
|
when N_Character_Literal |
|
4558 |
|
|
N_Integer_Literal |
|
4559 |
|
|
N_Real_Literal |
|
4560 |
|
|
N_String_Literal =>
|
4561 |
|
|
return True;
|
4562 |
|
|
|
4563 |
|
|
-- We consider that anything else has side effects. This is a bit
|
4564 |
|
|
-- crude, but we are pretty close for most common cases, and we
|
4565 |
|
|
-- are certainly correct (i.e. we never return True when the
|
4566 |
|
|
-- answer should be False).
|
4567 |
|
|
|
4568 |
|
|
when others =>
|
4569 |
|
|
return False;
|
4570 |
|
|
end case;
|
4571 |
|
|
end Side_Effect_Free;
|
4572 |
|
|
|
4573 |
|
|
-- A list is side effect free if all elements of the list are
|
4574 |
|
|
-- side effect free.
|
4575 |
|
|
|
4576 |
|
|
function Side_Effect_Free (L : List_Id) return Boolean is
|
4577 |
|
|
N : Node_Id;
|
4578 |
|
|
|
4579 |
|
|
begin
|
4580 |
|
|
if L = No_List or else L = Error_List then
|
4581 |
|
|
return True;
|
4582 |
|
|
|
4583 |
|
|
else
|
4584 |
|
|
N := First (L);
|
4585 |
|
|
while Present (N) loop
|
4586 |
|
|
if not Side_Effect_Free (N) then
|
4587 |
|
|
return False;
|
4588 |
|
|
else
|
4589 |
|
|
Next (N);
|
4590 |
|
|
end if;
|
4591 |
|
|
end loop;
|
4592 |
|
|
|
4593 |
|
|
return True;
|
4594 |
|
|
end if;
|
4595 |
|
|
end Side_Effect_Free;
|
4596 |
|
|
|
4597 |
|
|
-------------------------
|
4598 |
|
|
-- Within_In_Parameter --
|
4599 |
|
|
-------------------------
|
4600 |
|
|
|
4601 |
|
|
function Within_In_Parameter (N : Node_Id) return Boolean is
|
4602 |
|
|
begin
|
4603 |
|
|
if not Comes_From_Source (N) then
|
4604 |
|
|
return False;
|
4605 |
|
|
|
4606 |
|
|
elsif Is_Entity_Name (N) then
|
4607 |
|
|
return Ekind (Entity (N)) = E_In_Parameter;
|
4608 |
|
|
|
4609 |
|
|
elsif Nkind (N) = N_Indexed_Component
|
4610 |
|
|
or else Nkind (N) = N_Selected_Component
|
4611 |
|
|
then
|
4612 |
|
|
return Within_In_Parameter (Prefix (N));
|
4613 |
|
|
else
|
4614 |
|
|
|
4615 |
|
|
return False;
|
4616 |
|
|
end if;
|
4617 |
|
|
end Within_In_Parameter;
|
4618 |
|
|
|
4619 |
|
|
-- Start of processing for Remove_Side_Effects
|
4620 |
|
|
|
4621 |
|
|
begin
|
4622 |
|
|
-- If we are side effect free already or expansion is disabled,
|
4623 |
|
|
-- there is nothing to do.
|
4624 |
|
|
|
4625 |
|
|
if Side_Effect_Free (Exp) or else not Expander_Active then
|
4626 |
|
|
return;
|
4627 |
|
|
end if;
|
4628 |
|
|
|
4629 |
|
|
-- All this must not have any checks
|
4630 |
|
|
|
4631 |
|
|
Scope_Suppress := (others => True);
|
4632 |
|
|
|
4633 |
|
|
-- If it is a scalar type and we need to capture the value, just make
|
4634 |
|
|
-- a copy. Likewise for a function call, an attribute reference or an
|
4635 |
|
|
-- operator. And if we have a volatile reference and Name_Req is not
|
4636 |
|
|
-- set (see comments above for Side_Effect_Free).
|
4637 |
|
|
|
4638 |
|
|
if Is_Elementary_Type (Exp_Type)
|
4639 |
|
|
and then (Variable_Ref
|
4640 |
|
|
or else Nkind (Exp) = N_Function_Call
|
4641 |
|
|
or else Nkind (Exp) = N_Attribute_Reference
|
4642 |
|
|
or else Nkind (Exp) in N_Op
|
4643 |
|
|
or else (not Name_Req and then Is_Volatile_Reference (Exp)))
|
4644 |
|
|
then
|
4645 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4646 |
|
|
Set_Etype (Def_Id, Exp_Type);
|
4647 |
|
|
Res := New_Reference_To (Def_Id, Loc);
|
4648 |
|
|
|
4649 |
|
|
E :=
|
4650 |
|
|
Make_Object_Declaration (Loc,
|
4651 |
|
|
Defining_Identifier => Def_Id,
|
4652 |
|
|
Object_Definition => New_Reference_To (Exp_Type, Loc),
|
4653 |
|
|
Constant_Present => True,
|
4654 |
|
|
Expression => Relocate_Node (Exp));
|
4655 |
|
|
|
4656 |
|
|
-- Check if the previous node relocation requires readjustment of
|
4657 |
|
|
-- some SCIL Dispatching node.
|
4658 |
|
|
|
4659 |
|
|
if Generate_SCIL
|
4660 |
|
|
and then Nkind (Exp) = N_Function_Call
|
4661 |
|
|
then
|
4662 |
|
|
Adjust_SCIL_Node (Exp, Expression (E));
|
4663 |
|
|
end if;
|
4664 |
|
|
|
4665 |
|
|
Set_Assignment_OK (E);
|
4666 |
|
|
Insert_Action (Exp, E);
|
4667 |
|
|
|
4668 |
|
|
-- If the expression has the form v.all then we can just capture
|
4669 |
|
|
-- the pointer, and then do an explicit dereference on the result.
|
4670 |
|
|
|
4671 |
|
|
elsif Nkind (Exp) = N_Explicit_Dereference then
|
4672 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4673 |
|
|
Res :=
|
4674 |
|
|
Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
|
4675 |
|
|
|
4676 |
|
|
Insert_Action (Exp,
|
4677 |
|
|
Make_Object_Declaration (Loc,
|
4678 |
|
|
Defining_Identifier => Def_Id,
|
4679 |
|
|
Object_Definition =>
|
4680 |
|
|
New_Reference_To (Etype (Prefix (Exp)), Loc),
|
4681 |
|
|
Constant_Present => True,
|
4682 |
|
|
Expression => Relocate_Node (Prefix (Exp))));
|
4683 |
|
|
|
4684 |
|
|
-- Similar processing for an unchecked conversion of an expression
|
4685 |
|
|
-- of the form v.all, where we want the same kind of treatment.
|
4686 |
|
|
|
4687 |
|
|
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
|
4688 |
|
|
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
|
4689 |
|
|
then
|
4690 |
|
|
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
|
4691 |
|
|
Scope_Suppress := Svg_Suppress;
|
4692 |
|
|
return;
|
4693 |
|
|
|
4694 |
|
|
-- If this is a type conversion, leave the type conversion and remove
|
4695 |
|
|
-- the side effects in the expression. This is important in several
|
4696 |
|
|
-- circumstances: for change of representations, and also when this is
|
4697 |
|
|
-- a view conversion to a smaller object, where gigi can end up creating
|
4698 |
|
|
-- its own temporary of the wrong size.
|
4699 |
|
|
|
4700 |
|
|
elsif Nkind (Exp) = N_Type_Conversion then
|
4701 |
|
|
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
|
4702 |
|
|
Scope_Suppress := Svg_Suppress;
|
4703 |
|
|
return;
|
4704 |
|
|
|
4705 |
|
|
-- If this is an unchecked conversion that Gigi can't handle, make
|
4706 |
|
|
-- a copy or a use a renaming to capture the value.
|
4707 |
|
|
|
4708 |
|
|
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
|
4709 |
|
|
and then not Safe_Unchecked_Type_Conversion (Exp)
|
4710 |
|
|
then
|
4711 |
|
|
if CW_Or_Has_Controlled_Part (Exp_Type) then
|
4712 |
|
|
|
4713 |
|
|
-- Use a renaming to capture the expression, rather than create
|
4714 |
|
|
-- a controlled temporary.
|
4715 |
|
|
|
4716 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4717 |
|
|
Res := New_Reference_To (Def_Id, Loc);
|
4718 |
|
|
|
4719 |
|
|
Insert_Action (Exp,
|
4720 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4721 |
|
|
Defining_Identifier => Def_Id,
|
4722 |
|
|
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
|
4723 |
|
|
Name => Relocate_Node (Exp)));
|
4724 |
|
|
|
4725 |
|
|
else
|
4726 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4727 |
|
|
Set_Etype (Def_Id, Exp_Type);
|
4728 |
|
|
Res := New_Reference_To (Def_Id, Loc);
|
4729 |
|
|
|
4730 |
|
|
E :=
|
4731 |
|
|
Make_Object_Declaration (Loc,
|
4732 |
|
|
Defining_Identifier => Def_Id,
|
4733 |
|
|
Object_Definition => New_Reference_To (Exp_Type, Loc),
|
4734 |
|
|
Constant_Present => not Is_Variable (Exp),
|
4735 |
|
|
Expression => Relocate_Node (Exp));
|
4736 |
|
|
|
4737 |
|
|
Set_Assignment_OK (E);
|
4738 |
|
|
Insert_Action (Exp, E);
|
4739 |
|
|
end if;
|
4740 |
|
|
|
4741 |
|
|
-- For expressions that denote objects, we can use a renaming scheme.
|
4742 |
|
|
-- We skip using this if we have a volatile reference and we do not
|
4743 |
|
|
-- have Name_Req set true (see comments above for Side_Effect_Free).
|
4744 |
|
|
|
4745 |
|
|
elsif Is_Object_Reference (Exp)
|
4746 |
|
|
and then Nkind (Exp) /= N_Function_Call
|
4747 |
|
|
and then (Name_Req or else not Is_Volatile_Reference (Exp))
|
4748 |
|
|
then
|
4749 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4750 |
|
|
|
4751 |
|
|
if Nkind (Exp) = N_Selected_Component
|
4752 |
|
|
and then Nkind (Prefix (Exp)) = N_Function_Call
|
4753 |
|
|
and then Is_Array_Type (Exp_Type)
|
4754 |
|
|
then
|
4755 |
|
|
-- Avoid generating a variable-sized temporary, by generating
|
4756 |
|
|
-- the renaming declaration just for the function call. The
|
4757 |
|
|
-- transformation could be refined to apply only when the array
|
4758 |
|
|
-- component is constrained by a discriminant???
|
4759 |
|
|
|
4760 |
|
|
Res :=
|
4761 |
|
|
Make_Selected_Component (Loc,
|
4762 |
|
|
Prefix => New_Occurrence_Of (Def_Id, Loc),
|
4763 |
|
|
Selector_Name => Selector_Name (Exp));
|
4764 |
|
|
|
4765 |
|
|
Insert_Action (Exp,
|
4766 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4767 |
|
|
Defining_Identifier => Def_Id,
|
4768 |
|
|
Subtype_Mark =>
|
4769 |
|
|
New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
|
4770 |
|
|
Name => Relocate_Node (Prefix (Exp))));
|
4771 |
|
|
|
4772 |
|
|
else
|
4773 |
|
|
Res := New_Reference_To (Def_Id, Loc);
|
4774 |
|
|
|
4775 |
|
|
Insert_Action (Exp,
|
4776 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4777 |
|
|
Defining_Identifier => Def_Id,
|
4778 |
|
|
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
|
4779 |
|
|
Name => Relocate_Node (Exp)));
|
4780 |
|
|
end if;
|
4781 |
|
|
|
4782 |
|
|
-- If this is a packed reference, or a selected component with a
|
4783 |
|
|
-- non-standard representation, a reference to the temporary will
|
4784 |
|
|
-- be replaced by a copy of the original expression (see
|
4785 |
|
|
-- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
|
4786 |
|
|
-- elaborated by gigi, and is of course not to be replaced in-line
|
4787 |
|
|
-- by the expression it renames, which would defeat the purpose of
|
4788 |
|
|
-- removing the side-effect.
|
4789 |
|
|
|
4790 |
|
|
if (Nkind (Exp) = N_Selected_Component
|
4791 |
|
|
or else Nkind (Exp) = N_Indexed_Component)
|
4792 |
|
|
and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
|
4793 |
|
|
then
|
4794 |
|
|
null;
|
4795 |
|
|
else
|
4796 |
|
|
Set_Is_Renaming_Of_Object (Def_Id, False);
|
4797 |
|
|
end if;
|
4798 |
|
|
|
4799 |
|
|
-- Otherwise we generate a reference to the value
|
4800 |
|
|
|
4801 |
|
|
else
|
4802 |
|
|
-- Special processing for function calls that return a limited type.
|
4803 |
|
|
-- We need to build a declaration that will enable build-in-place
|
4804 |
|
|
-- expansion of the call. This is not done if the context is already
|
4805 |
|
|
-- an object declaration, to prevent infinite recursion.
|
4806 |
|
|
|
4807 |
|
|
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
|
4808 |
|
|
-- to accommodate functions returning limited objects by reference.
|
4809 |
|
|
|
4810 |
|
|
if Nkind (Exp) = N_Function_Call
|
4811 |
|
|
and then Is_Inherently_Limited_Type (Etype (Exp))
|
4812 |
|
|
and then Nkind (Parent (Exp)) /= N_Object_Declaration
|
4813 |
|
|
and then Ada_Version >= Ada_05
|
4814 |
|
|
then
|
4815 |
|
|
declare
|
4816 |
|
|
Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
|
4817 |
|
|
Decl : Node_Id;
|
4818 |
|
|
|
4819 |
|
|
begin
|
4820 |
|
|
Decl :=
|
4821 |
|
|
Make_Object_Declaration (Loc,
|
4822 |
|
|
Defining_Identifier => Obj,
|
4823 |
|
|
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
|
4824 |
|
|
Expression => Relocate_Node (Exp));
|
4825 |
|
|
|
4826 |
|
|
-- Check if the previous node relocation requires readjustment
|
4827 |
|
|
-- of some SCIL Dispatching node.
|
4828 |
|
|
|
4829 |
|
|
if Generate_SCIL
|
4830 |
|
|
and then Nkind (Exp) = N_Function_Call
|
4831 |
|
|
then
|
4832 |
|
|
Adjust_SCIL_Node (Exp, Expression (Decl));
|
4833 |
|
|
end if;
|
4834 |
|
|
|
4835 |
|
|
Insert_Action (Exp, Decl);
|
4836 |
|
|
Set_Etype (Obj, Exp_Type);
|
4837 |
|
|
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
|
4838 |
|
|
return;
|
4839 |
|
|
end;
|
4840 |
|
|
end if;
|
4841 |
|
|
|
4842 |
|
|
Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
|
4843 |
|
|
|
4844 |
|
|
Ptr_Typ_Decl :=
|
4845 |
|
|
Make_Full_Type_Declaration (Loc,
|
4846 |
|
|
Defining_Identifier => Ref_Type,
|
4847 |
|
|
Type_Definition =>
|
4848 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4849 |
|
|
All_Present => True,
|
4850 |
|
|
Subtype_Indication =>
|
4851 |
|
|
New_Reference_To (Exp_Type, Loc)));
|
4852 |
|
|
|
4853 |
|
|
E := Exp;
|
4854 |
|
|
Insert_Action (Exp, Ptr_Typ_Decl);
|
4855 |
|
|
|
4856 |
|
|
Def_Id := Make_Temporary (Loc, 'R', Exp);
|
4857 |
|
|
Set_Etype (Def_Id, Exp_Type);
|
4858 |
|
|
|
4859 |
|
|
Res :=
|
4860 |
|
|
Make_Explicit_Dereference (Loc,
|
4861 |
|
|
Prefix => New_Reference_To (Def_Id, Loc));
|
4862 |
|
|
|
4863 |
|
|
if Nkind (E) = N_Explicit_Dereference then
|
4864 |
|
|
New_Exp := Relocate_Node (Prefix (E));
|
4865 |
|
|
else
|
4866 |
|
|
E := Relocate_Node (E);
|
4867 |
|
|
New_Exp := Make_Reference (Loc, E);
|
4868 |
|
|
end if;
|
4869 |
|
|
|
4870 |
|
|
if Is_Delayed_Aggregate (E) then
|
4871 |
|
|
|
4872 |
|
|
-- The expansion of nested aggregates is delayed until the
|
4873 |
|
|
-- enclosing aggregate is expanded. As aggregates are often
|
4874 |
|
|
-- qualified, the predicate applies to qualified expressions
|
4875 |
|
|
-- as well, indicating that the enclosing aggregate has not
|
4876 |
|
|
-- been expanded yet. At this point the aggregate is part of
|
4877 |
|
|
-- a stand-alone declaration, and must be fully expanded.
|
4878 |
|
|
|
4879 |
|
|
if Nkind (E) = N_Qualified_Expression then
|
4880 |
|
|
Set_Expansion_Delayed (Expression (E), False);
|
4881 |
|
|
Set_Analyzed (Expression (E), False);
|
4882 |
|
|
else
|
4883 |
|
|
Set_Expansion_Delayed (E, False);
|
4884 |
|
|
end if;
|
4885 |
|
|
|
4886 |
|
|
Set_Analyzed (E, False);
|
4887 |
|
|
end if;
|
4888 |
|
|
|
4889 |
|
|
Insert_Action (Exp,
|
4890 |
|
|
Make_Object_Declaration (Loc,
|
4891 |
|
|
Defining_Identifier => Def_Id,
|
4892 |
|
|
Object_Definition => New_Reference_To (Ref_Type, Loc),
|
4893 |
|
|
Expression => New_Exp));
|
4894 |
|
|
|
4895 |
|
|
-- Check if the previous node relocation requires readjustment
|
4896 |
|
|
-- of some SCIL Dispatching node.
|
4897 |
|
|
|
4898 |
|
|
if Generate_SCIL
|
4899 |
|
|
and then Nkind (Exp) = N_Function_Call
|
4900 |
|
|
then
|
4901 |
|
|
Adjust_SCIL_Node (Exp, Prefix (New_Exp));
|
4902 |
|
|
end if;
|
4903 |
|
|
end if;
|
4904 |
|
|
|
4905 |
|
|
-- Preserve the Assignment_OK flag in all copies, since at least
|
4906 |
|
|
-- one copy may be used in a context where this flag must be set
|
4907 |
|
|
-- (otherwise why would the flag be set in the first place).
|
4908 |
|
|
|
4909 |
|
|
Set_Assignment_OK (Res, Assignment_OK (Exp));
|
4910 |
|
|
|
4911 |
|
|
-- Finally rewrite the original expression and we are done
|
4912 |
|
|
|
4913 |
|
|
Rewrite (Exp, Res);
|
4914 |
|
|
Analyze_And_Resolve (Exp, Exp_Type);
|
4915 |
|
|
Scope_Suppress := Svg_Suppress;
|
4916 |
|
|
end Remove_Side_Effects;
|
4917 |
|
|
|
4918 |
|
|
---------------------------
|
4919 |
|
|
-- Represented_As_Scalar --
|
4920 |
|
|
---------------------------
|
4921 |
|
|
|
4922 |
|
|
function Represented_As_Scalar (T : Entity_Id) return Boolean is
|
4923 |
|
|
UT : constant Entity_Id := Underlying_Type (T);
|
4924 |
|
|
begin
|
4925 |
|
|
return Is_Scalar_Type (UT)
|
4926 |
|
|
or else (Is_Bit_Packed_Array (UT)
|
4927 |
|
|
and then Is_Scalar_Type (Packed_Array_Type (UT)));
|
4928 |
|
|
end Represented_As_Scalar;
|
4929 |
|
|
|
4930 |
|
|
------------------------------------
|
4931 |
|
|
-- Safe_Unchecked_Type_Conversion --
|
4932 |
|
|
------------------------------------
|
4933 |
|
|
|
4934 |
|
|
-- Note: this function knows quite a bit about the exact requirements
|
4935 |
|
|
-- of Gigi with respect to unchecked type conversions, and its code
|
4936 |
|
|
-- must be coordinated with any changes in Gigi in this area.
|
4937 |
|
|
|
4938 |
|
|
-- The above requirements should be documented in Sinfo ???
|
4939 |
|
|
|
4940 |
|
|
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
|
4941 |
|
|
Otyp : Entity_Id;
|
4942 |
|
|
Ityp : Entity_Id;
|
4943 |
|
|
Oalign : Uint;
|
4944 |
|
|
Ialign : Uint;
|
4945 |
|
|
Pexp : constant Node_Id := Parent (Exp);
|
4946 |
|
|
|
4947 |
|
|
begin
|
4948 |
|
|
-- If the expression is the RHS of an assignment or object declaration
|
4949 |
|
|
-- we are always OK because there will always be a target.
|
4950 |
|
|
|
4951 |
|
|
-- Object renaming declarations, (generated for view conversions of
|
4952 |
|
|
-- actuals in inlined calls), like object declarations, provide an
|
4953 |
|
|
-- explicit type, and are safe as well.
|
4954 |
|
|
|
4955 |
|
|
if (Nkind (Pexp) = N_Assignment_Statement
|
4956 |
|
|
and then Expression (Pexp) = Exp)
|
4957 |
|
|
or else Nkind (Pexp) = N_Object_Declaration
|
4958 |
|
|
or else Nkind (Pexp) = N_Object_Renaming_Declaration
|
4959 |
|
|
then
|
4960 |
|
|
return True;
|
4961 |
|
|
|
4962 |
|
|
-- If the expression is the prefix of an N_Selected_Component
|
4963 |
|
|
-- we should also be OK because GCC knows to look inside the
|
4964 |
|
|
-- conversion except if the type is discriminated. We assume
|
4965 |
|
|
-- that we are OK anyway if the type is not set yet or if it is
|
4966 |
|
|
-- controlled since we can't afford to introduce a temporary in
|
4967 |
|
|
-- this case.
|
4968 |
|
|
|
4969 |
|
|
elsif Nkind (Pexp) = N_Selected_Component
|
4970 |
|
|
and then Prefix (Pexp) = Exp
|
4971 |
|
|
then
|
4972 |
|
|
if No (Etype (Pexp)) then
|
4973 |
|
|
return True;
|
4974 |
|
|
else
|
4975 |
|
|
return
|
4976 |
|
|
not Has_Discriminants (Etype (Pexp))
|
4977 |
|
|
or else Is_Constrained (Etype (Pexp));
|
4978 |
|
|
end if;
|
4979 |
|
|
end if;
|
4980 |
|
|
|
4981 |
|
|
-- Set the output type, this comes from Etype if it is set, otherwise
|
4982 |
|
|
-- we take it from the subtype mark, which we assume was already
|
4983 |
|
|
-- fully analyzed.
|
4984 |
|
|
|
4985 |
|
|
if Present (Etype (Exp)) then
|
4986 |
|
|
Otyp := Etype (Exp);
|
4987 |
|
|
else
|
4988 |
|
|
Otyp := Entity (Subtype_Mark (Exp));
|
4989 |
|
|
end if;
|
4990 |
|
|
|
4991 |
|
|
-- The input type always comes from the expression, and we assume
|
4992 |
|
|
-- this is indeed always analyzed, so we can simply get the Etype.
|
4993 |
|
|
|
4994 |
|
|
Ityp := Etype (Expression (Exp));
|
4995 |
|
|
|
4996 |
|
|
-- Initialize alignments to unknown so far
|
4997 |
|
|
|
4998 |
|
|
Oalign := No_Uint;
|
4999 |
|
|
Ialign := No_Uint;
|
5000 |
|
|
|
5001 |
|
|
-- Replace a concurrent type by its corresponding record type
|
5002 |
|
|
-- and each type by its underlying type and do the tests on those.
|
5003 |
|
|
-- The original type may be a private type whose completion is a
|
5004 |
|
|
-- concurrent type, so find the underlying type first.
|
5005 |
|
|
|
5006 |
|
|
if Present (Underlying_Type (Otyp)) then
|
5007 |
|
|
Otyp := Underlying_Type (Otyp);
|
5008 |
|
|
end if;
|
5009 |
|
|
|
5010 |
|
|
if Present (Underlying_Type (Ityp)) then
|
5011 |
|
|
Ityp := Underlying_Type (Ityp);
|
5012 |
|
|
end if;
|
5013 |
|
|
|
5014 |
|
|
if Is_Concurrent_Type (Otyp) then
|
5015 |
|
|
Otyp := Corresponding_Record_Type (Otyp);
|
5016 |
|
|
end if;
|
5017 |
|
|
|
5018 |
|
|
if Is_Concurrent_Type (Ityp) then
|
5019 |
|
|
Ityp := Corresponding_Record_Type (Ityp);
|
5020 |
|
|
end if;
|
5021 |
|
|
|
5022 |
|
|
-- If the base types are the same, we know there is no problem since
|
5023 |
|
|
-- this conversion will be a noop.
|
5024 |
|
|
|
5025 |
|
|
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
|
5026 |
|
|
return True;
|
5027 |
|
|
|
5028 |
|
|
-- Same if this is an upwards conversion of an untagged type, and there
|
5029 |
|
|
-- are no constraints involved (could be more general???)
|
5030 |
|
|
|
5031 |
|
|
elsif Etype (Ityp) = Otyp
|
5032 |
|
|
and then not Is_Tagged_Type (Ityp)
|
5033 |
|
|
and then not Has_Discriminants (Ityp)
|
5034 |
|
|
and then No (First_Rep_Item (Base_Type (Ityp)))
|
5035 |
|
|
then
|
5036 |
|
|
return True;
|
5037 |
|
|
|
5038 |
|
|
-- If the expression has an access type (object or subprogram) we
|
5039 |
|
|
-- assume that the conversion is safe, because the size of the target
|
5040 |
|
|
-- is safe, even if it is a record (which might be treated as having
|
5041 |
|
|
-- unknown size at this point).
|
5042 |
|
|
|
5043 |
|
|
elsif Is_Access_Type (Ityp) then
|
5044 |
|
|
return True;
|
5045 |
|
|
|
5046 |
|
|
-- If the size of output type is known at compile time, there is
|
5047 |
|
|
-- never a problem. Note that unconstrained records are considered
|
5048 |
|
|
-- to be of known size, but we can't consider them that way here,
|
5049 |
|
|
-- because we are talking about the actual size of the object.
|
5050 |
|
|
|
5051 |
|
|
-- We also make sure that in addition to the size being known, we do
|
5052 |
|
|
-- not have a case which might generate an embarrassingly large temp
|
5053 |
|
|
-- in stack checking mode.
|
5054 |
|
|
|
5055 |
|
|
elsif Size_Known_At_Compile_Time (Otyp)
|
5056 |
|
|
and then
|
5057 |
|
|
(not Stack_Checking_Enabled
|
5058 |
|
|
or else not May_Generate_Large_Temp (Otyp))
|
5059 |
|
|
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
|
5060 |
|
|
then
|
5061 |
|
|
return True;
|
5062 |
|
|
|
5063 |
|
|
-- If either type is tagged, then we know the alignment is OK so
|
5064 |
|
|
-- Gigi will be able to use pointer punning.
|
5065 |
|
|
|
5066 |
|
|
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
|
5067 |
|
|
return True;
|
5068 |
|
|
|
5069 |
|
|
-- If either type is a limited record type, we cannot do a copy, so
|
5070 |
|
|
-- say safe since there's nothing else we can do.
|
5071 |
|
|
|
5072 |
|
|
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
|
5073 |
|
|
return True;
|
5074 |
|
|
|
5075 |
|
|
-- Conversions to and from packed array types are always ignored and
|
5076 |
|
|
-- hence are safe.
|
5077 |
|
|
|
5078 |
|
|
elsif Is_Packed_Array_Type (Otyp)
|
5079 |
|
|
or else Is_Packed_Array_Type (Ityp)
|
5080 |
|
|
then
|
5081 |
|
|
return True;
|
5082 |
|
|
end if;
|
5083 |
|
|
|
5084 |
|
|
-- The only other cases known to be safe is if the input type's
|
5085 |
|
|
-- alignment is known to be at least the maximum alignment for the
|
5086 |
|
|
-- target or if both alignments are known and the output type's
|
5087 |
|
|
-- alignment is no stricter than the input's. We can use the alignment
|
5088 |
|
|
-- of the component type of an array if a type is an unpacked
|
5089 |
|
|
-- array type.
|
5090 |
|
|
|
5091 |
|
|
if Present (Alignment_Clause (Otyp)) then
|
5092 |
|
|
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
|
5093 |
|
|
|
5094 |
|
|
elsif Is_Array_Type (Otyp)
|
5095 |
|
|
and then Present (Alignment_Clause (Component_Type (Otyp)))
|
5096 |
|
|
then
|
5097 |
|
|
Oalign := Expr_Value (Expression (Alignment_Clause
|
5098 |
|
|
(Component_Type (Otyp))));
|
5099 |
|
|
end if;
|
5100 |
|
|
|
5101 |
|
|
if Present (Alignment_Clause (Ityp)) then
|
5102 |
|
|
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
|
5103 |
|
|
|
5104 |
|
|
elsif Is_Array_Type (Ityp)
|
5105 |
|
|
and then Present (Alignment_Clause (Component_Type (Ityp)))
|
5106 |
|
|
then
|
5107 |
|
|
Ialign := Expr_Value (Expression (Alignment_Clause
|
5108 |
|
|
(Component_Type (Ityp))));
|
5109 |
|
|
end if;
|
5110 |
|
|
|
5111 |
|
|
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
|
5112 |
|
|
return True;
|
5113 |
|
|
|
5114 |
|
|
elsif Ialign /= No_Uint and then Oalign /= No_Uint
|
5115 |
|
|
and then Ialign <= Oalign
|
5116 |
|
|
then
|
5117 |
|
|
return True;
|
5118 |
|
|
|
5119 |
|
|
-- Otherwise, Gigi cannot handle this and we must make a temporary
|
5120 |
|
|
|
5121 |
|
|
else
|
5122 |
|
|
return False;
|
5123 |
|
|
end if;
|
5124 |
|
|
end Safe_Unchecked_Type_Conversion;
|
5125 |
|
|
|
5126 |
|
|
---------------------------------
|
5127 |
|
|
-- Set_Current_Value_Condition --
|
5128 |
|
|
---------------------------------
|
5129 |
|
|
|
5130 |
|
|
-- Note: the implementation of this procedure is very closely tied to the
|
5131 |
|
|
-- implementation of Get_Current_Value_Condition. Here we set required
|
5132 |
|
|
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
|
5133 |
|
|
-- them, so they must have a consistent view.
|
5134 |
|
|
|
5135 |
|
|
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
|
5136 |
|
|
|
5137 |
|
|
procedure Set_Entity_Current_Value (N : Node_Id);
|
5138 |
|
|
-- If N is an entity reference, where the entity is of an appropriate
|
5139 |
|
|
-- kind, then set the current value of this entity to Cnode, unless
|
5140 |
|
|
-- there is already a definite value set there.
|
5141 |
|
|
|
5142 |
|
|
procedure Set_Expression_Current_Value (N : Node_Id);
|
5143 |
|
|
-- If N is of an appropriate form, sets an appropriate entry in current
|
5144 |
|
|
-- value fields of relevant entities. Multiple entities can be affected
|
5145 |
|
|
-- in the case of an AND or AND THEN.
|
5146 |
|
|
|
5147 |
|
|
------------------------------
|
5148 |
|
|
-- Set_Entity_Current_Value --
|
5149 |
|
|
------------------------------
|
5150 |
|
|
|
5151 |
|
|
procedure Set_Entity_Current_Value (N : Node_Id) is
|
5152 |
|
|
begin
|
5153 |
|
|
if Is_Entity_Name (N) then
|
5154 |
|
|
declare
|
5155 |
|
|
Ent : constant Entity_Id := Entity (N);
|
5156 |
|
|
|
5157 |
|
|
begin
|
5158 |
|
|
-- Don't capture if not safe to do so
|
5159 |
|
|
|
5160 |
|
|
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
|
5161 |
|
|
return;
|
5162 |
|
|
end if;
|
5163 |
|
|
|
5164 |
|
|
-- Here we have a case where the Current_Value field may
|
5165 |
|
|
-- need to be set. We set it if it is not already set to a
|
5166 |
|
|
-- compile time expression value.
|
5167 |
|
|
|
5168 |
|
|
-- Note that this represents a decision that one condition
|
5169 |
|
|
-- blots out another previous one. That's certainly right
|
5170 |
|
|
-- if they occur at the same level. If the second one is
|
5171 |
|
|
-- nested, then the decision is neither right nor wrong (it
|
5172 |
|
|
-- would be equally OK to leave the outer one in place, or
|
5173 |
|
|
-- take the new inner one. Really we should record both, but
|
5174 |
|
|
-- our data structures are not that elaborate.
|
5175 |
|
|
|
5176 |
|
|
if Nkind (Current_Value (Ent)) not in N_Subexpr then
|
5177 |
|
|
Set_Current_Value (Ent, Cnode);
|
5178 |
|
|
end if;
|
5179 |
|
|
end;
|
5180 |
|
|
end if;
|
5181 |
|
|
end Set_Entity_Current_Value;
|
5182 |
|
|
|
5183 |
|
|
----------------------------------
|
5184 |
|
|
-- Set_Expression_Current_Value --
|
5185 |
|
|
----------------------------------
|
5186 |
|
|
|
5187 |
|
|
procedure Set_Expression_Current_Value (N : Node_Id) is
|
5188 |
|
|
Cond : Node_Id;
|
5189 |
|
|
|
5190 |
|
|
begin
|
5191 |
|
|
Cond := N;
|
5192 |
|
|
|
5193 |
|
|
-- Loop to deal with (ignore for now) any NOT operators present. The
|
5194 |
|
|
-- presence of NOT operators will be handled properly when we call
|
5195 |
|
|
-- Get_Current_Value_Condition.
|
5196 |
|
|
|
5197 |
|
|
while Nkind (Cond) = N_Op_Not loop
|
5198 |
|
|
Cond := Right_Opnd (Cond);
|
5199 |
|
|
end loop;
|
5200 |
|
|
|
5201 |
|
|
-- For an AND or AND THEN, recursively process operands
|
5202 |
|
|
|
5203 |
|
|
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
|
5204 |
|
|
Set_Expression_Current_Value (Left_Opnd (Cond));
|
5205 |
|
|
Set_Expression_Current_Value (Right_Opnd (Cond));
|
5206 |
|
|
return;
|
5207 |
|
|
end if;
|
5208 |
|
|
|
5209 |
|
|
-- Check possible relational operator
|
5210 |
|
|
|
5211 |
|
|
if Nkind (Cond) in N_Op_Compare then
|
5212 |
|
|
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
|
5213 |
|
|
Set_Entity_Current_Value (Left_Opnd (Cond));
|
5214 |
|
|
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
|
5215 |
|
|
Set_Entity_Current_Value (Right_Opnd (Cond));
|
5216 |
|
|
end if;
|
5217 |
|
|
|
5218 |
|
|
-- Check possible boolean variable reference
|
5219 |
|
|
|
5220 |
|
|
else
|
5221 |
|
|
Set_Entity_Current_Value (Cond);
|
5222 |
|
|
end if;
|
5223 |
|
|
end Set_Expression_Current_Value;
|
5224 |
|
|
|
5225 |
|
|
-- Start of processing for Set_Current_Value_Condition
|
5226 |
|
|
|
5227 |
|
|
begin
|
5228 |
|
|
Set_Expression_Current_Value (Condition (Cnode));
|
5229 |
|
|
end Set_Current_Value_Condition;
|
5230 |
|
|
|
5231 |
|
|
--------------------------
|
5232 |
|
|
-- Set_Elaboration_Flag --
|
5233 |
|
|
--------------------------
|
5234 |
|
|
|
5235 |
|
|
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
|
5236 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5237 |
|
|
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
|
5238 |
|
|
Asn : Node_Id;
|
5239 |
|
|
|
5240 |
|
|
begin
|
5241 |
|
|
if Present (Ent) then
|
5242 |
|
|
|
5243 |
|
|
-- Nothing to do if at the compilation unit level, because in this
|
5244 |
|
|
-- case the flag is set by the binder generated elaboration routine.
|
5245 |
|
|
|
5246 |
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
5247 |
|
|
null;
|
5248 |
|
|
|
5249 |
|
|
-- Here we do need to generate an assignment statement
|
5250 |
|
|
|
5251 |
|
|
else
|
5252 |
|
|
Check_Restriction (No_Elaboration_Code, N);
|
5253 |
|
|
Asn :=
|
5254 |
|
|
Make_Assignment_Statement (Loc,
|
5255 |
|
|
Name => New_Occurrence_Of (Ent, Loc),
|
5256 |
|
|
Expression => New_Occurrence_Of (Standard_True, Loc));
|
5257 |
|
|
|
5258 |
|
|
if Nkind (Parent (N)) = N_Subunit then
|
5259 |
|
|
Insert_After (Corresponding_Stub (Parent (N)), Asn);
|
5260 |
|
|
else
|
5261 |
|
|
Insert_After (N, Asn);
|
5262 |
|
|
end if;
|
5263 |
|
|
|
5264 |
|
|
Analyze (Asn);
|
5265 |
|
|
|
5266 |
|
|
-- Kill current value indication. This is necessary because the
|
5267 |
|
|
-- tests of this flag are inserted out of sequence and must not
|
5268 |
|
|
-- pick up bogus indications of the wrong constant value.
|
5269 |
|
|
|
5270 |
|
|
Set_Current_Value (Ent, Empty);
|
5271 |
|
|
end if;
|
5272 |
|
|
end if;
|
5273 |
|
|
end Set_Elaboration_Flag;
|
5274 |
|
|
|
5275 |
|
|
----------------------------
|
5276 |
|
|
-- Set_Renamed_Subprogram --
|
5277 |
|
|
----------------------------
|
5278 |
|
|
|
5279 |
|
|
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
|
5280 |
|
|
begin
|
5281 |
|
|
-- If input node is an identifier, we can just reset it
|
5282 |
|
|
|
5283 |
|
|
if Nkind (N) = N_Identifier then
|
5284 |
|
|
Set_Chars (N, Chars (E));
|
5285 |
|
|
Set_Entity (N, E);
|
5286 |
|
|
|
5287 |
|
|
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
|
5288 |
|
|
|
5289 |
|
|
else
|
5290 |
|
|
declare
|
5291 |
|
|
CS : constant Boolean := Comes_From_Source (N);
|
5292 |
|
|
begin
|
5293 |
|
|
Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
|
5294 |
|
|
Set_Entity (N, E);
|
5295 |
|
|
Set_Comes_From_Source (N, CS);
|
5296 |
|
|
Set_Analyzed (N, True);
|
5297 |
|
|
end;
|
5298 |
|
|
end if;
|
5299 |
|
|
end Set_Renamed_Subprogram;
|
5300 |
|
|
|
5301 |
|
|
----------------------------------
|
5302 |
|
|
-- Silly_Boolean_Array_Not_Test --
|
5303 |
|
|
----------------------------------
|
5304 |
|
|
|
5305 |
|
|
-- This procedure implements an odd and silly test. We explicitly check
|
5306 |
|
|
-- for the case where the 'First of the component type is equal to the
|
5307 |
|
|
-- 'Last of this component type, and if this is the case, we make sure
|
5308 |
|
|
-- that constraint error is raised. The reason is that the NOT is bound
|
5309 |
|
|
-- to cause CE in this case, and we will not otherwise catch it.
|
5310 |
|
|
|
5311 |
|
|
-- No such check is required for AND and OR, since for both these cases
|
5312 |
|
|
-- False op False = False, and True op True = True. For the XOR case,
|
5313 |
|
|
-- see Silly_Boolean_Array_Xor_Test.
|
5314 |
|
|
|
5315 |
|
|
-- Believe it or not, this was reported as a bug. Note that nearly
|
5316 |
|
|
-- always, the test will evaluate statically to False, so the code will
|
5317 |
|
|
-- be statically removed, and no extra overhead caused.
|
5318 |
|
|
|
5319 |
|
|
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
|
5320 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5321 |
|
|
CT : constant Entity_Id := Component_Type (T);
|
5322 |
|
|
|
5323 |
|
|
begin
|
5324 |
|
|
-- The check we install is
|
5325 |
|
|
|
5326 |
|
|
-- constraint_error when
|
5327 |
|
|
-- component_type'first = component_type'last
|
5328 |
|
|
-- and then array_type'Length /= 0)
|
5329 |
|
|
|
5330 |
|
|
-- We need the last guard because we don't want to raise CE for empty
|
5331 |
|
|
-- arrays since no out of range values result. (Empty arrays with a
|
5332 |
|
|
-- component type of True .. True -- very useful -- even the ACATS
|
5333 |
|
|
-- does not test that marginal case!)
|
5334 |
|
|
|
5335 |
|
|
Insert_Action (N,
|
5336 |
|
|
Make_Raise_Constraint_Error (Loc,
|
5337 |
|
|
Condition =>
|
5338 |
|
|
Make_And_Then (Loc,
|
5339 |
|
|
Left_Opnd =>
|
5340 |
|
|
Make_Op_Eq (Loc,
|
5341 |
|
|
Left_Opnd =>
|
5342 |
|
|
Make_Attribute_Reference (Loc,
|
5343 |
|
|
Prefix => New_Occurrence_Of (CT, Loc),
|
5344 |
|
|
Attribute_Name => Name_First),
|
5345 |
|
|
|
5346 |
|
|
Right_Opnd =>
|
5347 |
|
|
Make_Attribute_Reference (Loc,
|
5348 |
|
|
Prefix => New_Occurrence_Of (CT, Loc),
|
5349 |
|
|
Attribute_Name => Name_Last)),
|
5350 |
|
|
|
5351 |
|
|
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
|
5352 |
|
|
Reason => CE_Range_Check_Failed));
|
5353 |
|
|
end Silly_Boolean_Array_Not_Test;
|
5354 |
|
|
|
5355 |
|
|
----------------------------------
|
5356 |
|
|
-- Silly_Boolean_Array_Xor_Test --
|
5357 |
|
|
----------------------------------
|
5358 |
|
|
|
5359 |
|
|
-- This procedure implements an odd and silly test. We explicitly check
|
5360 |
|
|
-- for the XOR case where the component type is True .. True, since this
|
5361 |
|
|
-- will raise constraint error. A special check is required since CE
|
5362 |
|
|
-- will not be generated otherwise (cf Expand_Packed_Not).
|
5363 |
|
|
|
5364 |
|
|
-- No such check is required for AND and OR, since for both these cases
|
5365 |
|
|
-- False op False = False, and True op True = True, and no check is
|
5366 |
|
|
-- required for the case of False .. False, since False xor False = False.
|
5367 |
|
|
-- See also Silly_Boolean_Array_Not_Test
|
5368 |
|
|
|
5369 |
|
|
procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
|
5370 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5371 |
|
|
CT : constant Entity_Id := Component_Type (T);
|
5372 |
|
|
|
5373 |
|
|
begin
|
5374 |
|
|
-- The check we install is
|
5375 |
|
|
|
5376 |
|
|
-- constraint_error when
|
5377 |
|
|
-- Boolean (component_type'First)
|
5378 |
|
|
-- and then Boolean (component_type'Last)
|
5379 |
|
|
-- and then array_type'Length /= 0)
|
5380 |
|
|
|
5381 |
|
|
-- We need the last guard because we don't want to raise CE for empty
|
5382 |
|
|
-- arrays since no out of range values result (Empty arrays with a
|
5383 |
|
|
-- component type of True .. True -- very useful -- even the ACATS
|
5384 |
|
|
-- does not test that marginal case!).
|
5385 |
|
|
|
5386 |
|
|
Insert_Action (N,
|
5387 |
|
|
Make_Raise_Constraint_Error (Loc,
|
5388 |
|
|
Condition =>
|
5389 |
|
|
Make_And_Then (Loc,
|
5390 |
|
|
Left_Opnd =>
|
5391 |
|
|
Make_And_Then (Loc,
|
5392 |
|
|
Left_Opnd =>
|
5393 |
|
|
Convert_To (Standard_Boolean,
|
5394 |
|
|
Make_Attribute_Reference (Loc,
|
5395 |
|
|
Prefix => New_Occurrence_Of (CT, Loc),
|
5396 |
|
|
Attribute_Name => Name_First)),
|
5397 |
|
|
|
5398 |
|
|
Right_Opnd =>
|
5399 |
|
|
Convert_To (Standard_Boolean,
|
5400 |
|
|
Make_Attribute_Reference (Loc,
|
5401 |
|
|
Prefix => New_Occurrence_Of (CT, Loc),
|
5402 |
|
|
Attribute_Name => Name_Last))),
|
5403 |
|
|
|
5404 |
|
|
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
|
5405 |
|
|
Reason => CE_Range_Check_Failed));
|
5406 |
|
|
end Silly_Boolean_Array_Xor_Test;
|
5407 |
|
|
|
5408 |
|
|
--------------------------
|
5409 |
|
|
-- Target_Has_Fixed_Ops --
|
5410 |
|
|
--------------------------
|
5411 |
|
|
|
5412 |
|
|
Integer_Sized_Small : Ureal;
|
5413 |
|
|
-- Set to 2.0 ** -(Integer'Size - 1) the first time that this
|
5414 |
|
|
-- function is called (we don't want to compute it more than once!)
|
5415 |
|
|
|
5416 |
|
|
Long_Integer_Sized_Small : Ureal;
|
5417 |
|
|
-- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
|
5418 |
|
|
-- function is called (we don't want to compute it more than once)
|
5419 |
|
|
|
5420 |
|
|
First_Time_For_THFO : Boolean := True;
|
5421 |
|
|
-- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
|
5422 |
|
|
|
5423 |
|
|
function Target_Has_Fixed_Ops
|
5424 |
|
|
(Left_Typ : Entity_Id;
|
5425 |
|
|
Right_Typ : Entity_Id;
|
5426 |
|
|
Result_Typ : Entity_Id) return Boolean
|
5427 |
|
|
is
|
5428 |
|
|
function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
|
5429 |
|
|
-- Return True if the given type is a fixed-point type with a small
|
5430 |
|
|
-- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
|
5431 |
|
|
-- an absolute value less than 1.0. This is currently limited
|
5432 |
|
|
-- to fixed-point types that map to Integer or Long_Integer.
|
5433 |
|
|
|
5434 |
|
|
------------------------
|
5435 |
|
|
-- Is_Fractional_Type --
|
5436 |
|
|
------------------------
|
5437 |
|
|
|
5438 |
|
|
function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
|
5439 |
|
|
begin
|
5440 |
|
|
if Esize (Typ) = Standard_Integer_Size then
|
5441 |
|
|
return Small_Value (Typ) = Integer_Sized_Small;
|
5442 |
|
|
|
5443 |
|
|
elsif Esize (Typ) = Standard_Long_Integer_Size then
|
5444 |
|
|
return Small_Value (Typ) = Long_Integer_Sized_Small;
|
5445 |
|
|
|
5446 |
|
|
else
|
5447 |
|
|
return False;
|
5448 |
|
|
end if;
|
5449 |
|
|
end Is_Fractional_Type;
|
5450 |
|
|
|
5451 |
|
|
-- Start of processing for Target_Has_Fixed_Ops
|
5452 |
|
|
|
5453 |
|
|
begin
|
5454 |
|
|
-- Return False if Fractional_Fixed_Ops_On_Target is false
|
5455 |
|
|
|
5456 |
|
|
if not Fractional_Fixed_Ops_On_Target then
|
5457 |
|
|
return False;
|
5458 |
|
|
end if;
|
5459 |
|
|
|
5460 |
|
|
-- Here the target has Fractional_Fixed_Ops, if first time, compute
|
5461 |
|
|
-- standard constants used by Is_Fractional_Type.
|
5462 |
|
|
|
5463 |
|
|
if First_Time_For_THFO then
|
5464 |
|
|
First_Time_For_THFO := False;
|
5465 |
|
|
|
5466 |
|
|
Integer_Sized_Small :=
|
5467 |
|
|
UR_From_Components
|
5468 |
|
|
(Num => Uint_1,
|
5469 |
|
|
Den => UI_From_Int (Standard_Integer_Size - 1),
|
5470 |
|
|
Rbase => 2);
|
5471 |
|
|
|
5472 |
|
|
Long_Integer_Sized_Small :=
|
5473 |
|
|
UR_From_Components
|
5474 |
|
|
(Num => Uint_1,
|
5475 |
|
|
Den => UI_From_Int (Standard_Long_Integer_Size - 1),
|
5476 |
|
|
Rbase => 2);
|
5477 |
|
|
end if;
|
5478 |
|
|
|
5479 |
|
|
-- Return True if target supports fixed-by-fixed multiply/divide
|
5480 |
|
|
-- for fractional fixed-point types (see Is_Fractional_Type) and
|
5481 |
|
|
-- the operand and result types are equivalent fractional types.
|
5482 |
|
|
|
5483 |
|
|
return Is_Fractional_Type (Base_Type (Left_Typ))
|
5484 |
|
|
and then Is_Fractional_Type (Base_Type (Right_Typ))
|
5485 |
|
|
and then Is_Fractional_Type (Base_Type (Result_Typ))
|
5486 |
|
|
and then Esize (Left_Typ) = Esize (Right_Typ)
|
5487 |
|
|
and then Esize (Left_Typ) = Esize (Result_Typ);
|
5488 |
|
|
end Target_Has_Fixed_Ops;
|
5489 |
|
|
|
5490 |
|
|
------------------------------------------
|
5491 |
|
|
-- Type_May_Have_Bit_Aligned_Components --
|
5492 |
|
|
------------------------------------------
|
5493 |
|
|
|
5494 |
|
|
function Type_May_Have_Bit_Aligned_Components
|
5495 |
|
|
(Typ : Entity_Id) return Boolean
|
5496 |
|
|
is
|
5497 |
|
|
begin
|
5498 |
|
|
-- Array type, check component type
|
5499 |
|
|
|
5500 |
|
|
if Is_Array_Type (Typ) then
|
5501 |
|
|
return
|
5502 |
|
|
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
|
5503 |
|
|
|
5504 |
|
|
-- Record type, check components
|
5505 |
|
|
|
5506 |
|
|
elsif Is_Record_Type (Typ) then
|
5507 |
|
|
declare
|
5508 |
|
|
E : Entity_Id;
|
5509 |
|
|
|
5510 |
|
|
begin
|
5511 |
|
|
E := First_Component_Or_Discriminant (Typ);
|
5512 |
|
|
while Present (E) loop
|
5513 |
|
|
if Component_May_Be_Bit_Aligned (E)
|
5514 |
|
|
or else Type_May_Have_Bit_Aligned_Components (Etype (E))
|
5515 |
|
|
then
|
5516 |
|
|
return True;
|
5517 |
|
|
end if;
|
5518 |
|
|
|
5519 |
|
|
Next_Component_Or_Discriminant (E);
|
5520 |
|
|
end loop;
|
5521 |
|
|
|
5522 |
|
|
return False;
|
5523 |
|
|
end;
|
5524 |
|
|
|
5525 |
|
|
-- Type other than array or record is always OK
|
5526 |
|
|
|
5527 |
|
|
else
|
5528 |
|
|
return False;
|
5529 |
|
|
end if;
|
5530 |
|
|
end Type_May_Have_Bit_Aligned_Components;
|
5531 |
|
|
|
5532 |
|
|
----------------------------
|
5533 |
|
|
-- Wrap_Cleanup_Procedure --
|
5534 |
|
|
----------------------------
|
5535 |
|
|
|
5536 |
|
|
procedure Wrap_Cleanup_Procedure (N : Node_Id) is
|
5537 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5538 |
|
|
Stseq : constant Node_Id := Handled_Statement_Sequence (N);
|
5539 |
|
|
Stmts : constant List_Id := Statements (Stseq);
|
5540 |
|
|
|
5541 |
|
|
begin
|
5542 |
|
|
if Abort_Allowed then
|
5543 |
|
|
Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
|
5544 |
|
|
Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
|
5545 |
|
|
end if;
|
5546 |
|
|
end Wrap_Cleanup_Procedure;
|
5547 |
|
|
|
5548 |
|
|
end Exp_Util;
|