| 1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- F R E E Z E --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- B o d y --
|
| 8 |
|
|
-- --
|
| 9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
| 10 |
|
|
-- --
|
| 11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
| 17 |
|
|
-- --
|
| 18 |
|
|
-- You should have received a copy of the GNU General Public License along --
|
| 19 |
|
|
-- with this program; see file COPYING3. If not see --
|
| 20 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
| 21 |
|
|
-- --
|
| 22 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 23 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 24 |
|
|
-- --
|
| 25 |
|
|
------------------------------------------------------------------------------
|
| 26 |
|
|
|
| 27 |
|
|
with Atree; use Atree;
|
| 28 |
|
|
with Debug; use Debug;
|
| 29 |
|
|
with Einfo; use Einfo;
|
| 30 |
|
|
with Elists; use Elists;
|
| 31 |
|
|
with Errout; use Errout;
|
| 32 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
| 33 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
| 34 |
|
|
with Exp_Disp; use Exp_Disp;
|
| 35 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
| 36 |
|
|
with Exp_Util; use Exp_Util;
|
| 37 |
|
|
with Exp_Tss; use Exp_Tss;
|
| 38 |
|
|
with Layout; use Layout;
|
| 39 |
|
|
with Namet; use Namet;
|
| 40 |
|
|
with Nlists; use Nlists;
|
| 41 |
|
|
with Nmake; use Nmake;
|
| 42 |
|
|
with Opt; use Opt;
|
| 43 |
|
|
with Restrict; use Restrict;
|
| 44 |
|
|
with Rident; use Rident;
|
| 45 |
|
|
with Sem; use Sem;
|
| 46 |
|
|
with Sem_Aux; use Sem_Aux;
|
| 47 |
|
|
with Sem_Cat; use Sem_Cat;
|
| 48 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
| 49 |
|
|
with Sem_Ch7; use Sem_Ch7;
|
| 50 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
| 51 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
| 52 |
|
|
with Sem_Eval; use Sem_Eval;
|
| 53 |
|
|
with Sem_Mech; use Sem_Mech;
|
| 54 |
|
|
with Sem_Prag; use Sem_Prag;
|
| 55 |
|
|
with Sem_Res; use Sem_Res;
|
| 56 |
|
|
with Sem_Util; use Sem_Util;
|
| 57 |
|
|
with Sinfo; use Sinfo;
|
| 58 |
|
|
with Snames; use Snames;
|
| 59 |
|
|
with Stand; use Stand;
|
| 60 |
|
|
with Targparm; use Targparm;
|
| 61 |
|
|
with Tbuild; use Tbuild;
|
| 62 |
|
|
with Ttypes; use Ttypes;
|
| 63 |
|
|
with Uintp; use Uintp;
|
| 64 |
|
|
with Urealp; use Urealp;
|
| 65 |
|
|
|
| 66 |
|
|
package body Freeze is
|
| 67 |
|
|
|
| 68 |
|
|
-----------------------
|
| 69 |
|
|
-- Local Subprograms --
|
| 70 |
|
|
-----------------------
|
| 71 |
|
|
|
| 72 |
|
|
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
|
| 73 |
|
|
-- Typ is a type that is being frozen. If no size clause is given,
|
| 74 |
|
|
-- but a default Esize has been computed, then this default Esize is
|
| 75 |
|
|
-- adjusted up if necessary to be consistent with a given alignment,
|
| 76 |
|
|
-- but never to a value greater than Long_Long_Integer'Size. This
|
| 77 |
|
|
-- is used for all discrete types and for fixed-point types.
|
| 78 |
|
|
|
| 79 |
|
|
procedure Build_And_Analyze_Renamed_Body
|
| 80 |
|
|
(Decl : Node_Id;
|
| 81 |
|
|
New_S : Entity_Id;
|
| 82 |
|
|
After : in out Node_Id);
|
| 83 |
|
|
-- Build body for a renaming declaration, insert in tree and analyze
|
| 84 |
|
|
|
| 85 |
|
|
procedure Check_Address_Clause (E : Entity_Id);
|
| 86 |
|
|
-- Apply legality checks to address clauses for object declarations,
|
| 87 |
|
|
-- at the point the object is frozen.
|
| 88 |
|
|
|
| 89 |
|
|
procedure Check_Strict_Alignment (E : Entity_Id);
|
| 90 |
|
|
-- E is a base type. If E is tagged or has a component that is aliased
|
| 91 |
|
|
-- or tagged or contains something this is aliased or tagged, set
|
| 92 |
|
|
-- Strict_Alignment.
|
| 93 |
|
|
|
| 94 |
|
|
procedure Check_Unsigned_Type (E : Entity_Id);
|
| 95 |
|
|
pragma Inline (Check_Unsigned_Type);
|
| 96 |
|
|
-- If E is a fixed-point or discrete type, then all the necessary work
|
| 97 |
|
|
-- to freeze it is completed except for possible setting of the flag
|
| 98 |
|
|
-- Is_Unsigned_Type, which is done by this procedure. The call has no
|
| 99 |
|
|
-- effect if the entity E is not a discrete or fixed-point type.
|
| 100 |
|
|
|
| 101 |
|
|
procedure Freeze_And_Append
|
| 102 |
|
|
(Ent : Entity_Id;
|
| 103 |
|
|
Loc : Source_Ptr;
|
| 104 |
|
|
Result : in out List_Id);
|
| 105 |
|
|
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
|
| 106 |
|
|
-- nodes to Result, modifying Result from No_List if necessary.
|
| 107 |
|
|
|
| 108 |
|
|
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
|
| 109 |
|
|
-- Freeze enumeration type. The Esize field is set as processing
|
| 110 |
|
|
-- proceeds (i.e. set by default when the type is declared and then
|
| 111 |
|
|
-- adjusted by rep clauses. What this procedure does is to make sure
|
| 112 |
|
|
-- that if a foreign convention is specified, and no specific size
|
| 113 |
|
|
-- is given, then the size must be at least Integer'Size.
|
| 114 |
|
|
|
| 115 |
|
|
procedure Freeze_Static_Object (E : Entity_Id);
|
| 116 |
|
|
-- If an object is frozen which has Is_Statically_Allocated set, then
|
| 117 |
|
|
-- all referenced types must also be marked with this flag. This routine
|
| 118 |
|
|
-- is in charge of meeting this requirement for the object entity E.
|
| 119 |
|
|
|
| 120 |
|
|
procedure Freeze_Subprogram (E : Entity_Id);
|
| 121 |
|
|
-- Perform freezing actions for a subprogram (create extra formals,
|
| 122 |
|
|
-- and set proper default mechanism values). Note that this routine
|
| 123 |
|
|
-- is not called for internal subprograms, for which neither of these
|
| 124 |
|
|
-- actions is needed (or desirable, we do not want for example to have
|
| 125 |
|
|
-- these extra formals present in initialization procedures, where they
|
| 126 |
|
|
-- would serve no purpose). In this call E is either a subprogram or
|
| 127 |
|
|
-- a subprogram type (i.e. an access to a subprogram).
|
| 128 |
|
|
|
| 129 |
|
|
function Is_Fully_Defined (T : Entity_Id) return Boolean;
|
| 130 |
|
|
-- True if T is not private and has no private components, or has a full
|
| 131 |
|
|
-- view. Used to determine whether the designated type of an access type
|
| 132 |
|
|
-- should be frozen when the access type is frozen. This is done when an
|
| 133 |
|
|
-- allocator is frozen, or an expression that may involve attributes of
|
| 134 |
|
|
-- the designated type. Otherwise freezing the access type does not freeze
|
| 135 |
|
|
-- the designated type.
|
| 136 |
|
|
|
| 137 |
|
|
procedure Process_Default_Expressions
|
| 138 |
|
|
(E : Entity_Id;
|
| 139 |
|
|
After : in out Node_Id);
|
| 140 |
|
|
-- This procedure is called for each subprogram to complete processing
|
| 141 |
|
|
-- of default expressions at the point where all types are known to be
|
| 142 |
|
|
-- frozen. The expressions must be analyzed in full, to make sure that
|
| 143 |
|
|
-- all error processing is done (they have only been pre-analyzed). If
|
| 144 |
|
|
-- the expression is not an entity or literal, its analysis may generate
|
| 145 |
|
|
-- code which must not be executed. In that case we build a function
|
| 146 |
|
|
-- body to hold that code. This wrapper function serves no other purpose
|
| 147 |
|
|
-- (it used to be called to evaluate the default, but now the default is
|
| 148 |
|
|
-- inlined at each point of call).
|
| 149 |
|
|
|
| 150 |
|
|
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
|
| 151 |
|
|
-- Typ is a record or array type that is being frozen. This routine
|
| 152 |
|
|
-- sets the default component alignment from the scope stack values
|
| 153 |
|
|
-- if the alignment is otherwise not specified.
|
| 154 |
|
|
|
| 155 |
|
|
procedure Check_Debug_Info_Needed (T : Entity_Id);
|
| 156 |
|
|
-- As each entity is frozen, this routine is called to deal with the
|
| 157 |
|
|
-- setting of Debug_Info_Needed for the entity. This flag is set if
|
| 158 |
|
|
-- the entity comes from source, or if we are in Debug_Generated_Code
|
| 159 |
|
|
-- mode or if the -gnatdV debug flag is set. However, it never sets
|
| 160 |
|
|
-- the flag if Debug_Info_Off is set. This procedure also ensures that
|
| 161 |
|
|
-- subsidiary entities have the flag set as required.
|
| 162 |
|
|
|
| 163 |
|
|
procedure Undelay_Type (T : Entity_Id);
|
| 164 |
|
|
-- T is a type of a component that we know to be an Itype.
|
| 165 |
|
|
-- We don't want this to have a Freeze_Node, so ensure it doesn't.
|
| 166 |
|
|
-- Do the same for any Full_View or Corresponding_Record_Type.
|
| 167 |
|
|
|
| 168 |
|
|
procedure Warn_Overlay
|
| 169 |
|
|
(Expr : Node_Id;
|
| 170 |
|
|
Typ : Entity_Id;
|
| 171 |
|
|
Nam : Node_Id);
|
| 172 |
|
|
-- Expr is the expression for an address clause for entity Nam whose type
|
| 173 |
|
|
-- is Typ. If Typ has a default initialization, and there is no explicit
|
| 174 |
|
|
-- initialization in the source declaration, check whether the address
|
| 175 |
|
|
-- clause might cause overlaying of an entity, and emit a warning on the
|
| 176 |
|
|
-- side effect that the initialization will cause.
|
| 177 |
|
|
|
| 178 |
|
|
-------------------------------
|
| 179 |
|
|
-- Adjust_Esize_For_Alignment --
|
| 180 |
|
|
-------------------------------
|
| 181 |
|
|
|
| 182 |
|
|
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
|
| 183 |
|
|
Align : Uint;
|
| 184 |
|
|
|
| 185 |
|
|
begin
|
| 186 |
|
|
if Known_Esize (Typ) and then Known_Alignment (Typ) then
|
| 187 |
|
|
Align := Alignment_In_Bits (Typ);
|
| 188 |
|
|
|
| 189 |
|
|
if Align > Esize (Typ)
|
| 190 |
|
|
and then Align <= Standard_Long_Long_Integer_Size
|
| 191 |
|
|
then
|
| 192 |
|
|
Set_Esize (Typ, Align);
|
| 193 |
|
|
end if;
|
| 194 |
|
|
end if;
|
| 195 |
|
|
end Adjust_Esize_For_Alignment;
|
| 196 |
|
|
|
| 197 |
|
|
------------------------------------
|
| 198 |
|
|
-- Build_And_Analyze_Renamed_Body --
|
| 199 |
|
|
------------------------------------
|
| 200 |
|
|
|
| 201 |
|
|
procedure Build_And_Analyze_Renamed_Body
|
| 202 |
|
|
(Decl : Node_Id;
|
| 203 |
|
|
New_S : Entity_Id;
|
| 204 |
|
|
After : in out Node_Id)
|
| 205 |
|
|
is
|
| 206 |
|
|
Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
|
| 207 |
|
|
begin
|
| 208 |
|
|
Insert_After (After, Body_Node);
|
| 209 |
|
|
Mark_Rewrite_Insertion (Body_Node);
|
| 210 |
|
|
Analyze (Body_Node);
|
| 211 |
|
|
After := Body_Node;
|
| 212 |
|
|
end Build_And_Analyze_Renamed_Body;
|
| 213 |
|
|
|
| 214 |
|
|
------------------------
|
| 215 |
|
|
-- Build_Renamed_Body --
|
| 216 |
|
|
------------------------
|
| 217 |
|
|
|
| 218 |
|
|
function Build_Renamed_Body
|
| 219 |
|
|
(Decl : Node_Id;
|
| 220 |
|
|
New_S : Entity_Id) return Node_Id
|
| 221 |
|
|
is
|
| 222 |
|
|
Loc : constant Source_Ptr := Sloc (New_S);
|
| 223 |
|
|
-- We use for the source location of the renamed body, the location
|
| 224 |
|
|
-- of the spec entity. It might seem more natural to use the location
|
| 225 |
|
|
-- of the renaming declaration itself, but that would be wrong, since
|
| 226 |
|
|
-- then the body we create would look as though it was created far
|
| 227 |
|
|
-- too late, and this could cause problems with elaboration order
|
| 228 |
|
|
-- analysis, particularly in connection with instantiations.
|
| 229 |
|
|
|
| 230 |
|
|
N : constant Node_Id := Unit_Declaration_Node (New_S);
|
| 231 |
|
|
Nam : constant Node_Id := Name (N);
|
| 232 |
|
|
Old_S : Entity_Id;
|
| 233 |
|
|
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
|
| 234 |
|
|
Actuals : List_Id := No_List;
|
| 235 |
|
|
Call_Node : Node_Id;
|
| 236 |
|
|
Call_Name : Node_Id;
|
| 237 |
|
|
Body_Node : Node_Id;
|
| 238 |
|
|
Formal : Entity_Id;
|
| 239 |
|
|
O_Formal : Entity_Id;
|
| 240 |
|
|
Param_Spec : Node_Id;
|
| 241 |
|
|
|
| 242 |
|
|
Pref : Node_Id := Empty;
|
| 243 |
|
|
-- If the renamed entity is a primitive operation given in prefix form,
|
| 244 |
|
|
-- the prefix is the target object and it has to be added as the first
|
| 245 |
|
|
-- actual in the generated call.
|
| 246 |
|
|
|
| 247 |
|
|
begin
|
| 248 |
|
|
-- Determine the entity being renamed, which is the target of the call
|
| 249 |
|
|
-- statement. If the name is an explicit dereference, this is a renaming
|
| 250 |
|
|
-- of a subprogram type rather than a subprogram. The name itself is
|
| 251 |
|
|
-- fully analyzed.
|
| 252 |
|
|
|
| 253 |
|
|
if Nkind (Nam) = N_Selected_Component then
|
| 254 |
|
|
Old_S := Entity (Selector_Name (Nam));
|
| 255 |
|
|
|
| 256 |
|
|
elsif Nkind (Nam) = N_Explicit_Dereference then
|
| 257 |
|
|
Old_S := Etype (Nam);
|
| 258 |
|
|
|
| 259 |
|
|
elsif Nkind (Nam) = N_Indexed_Component then
|
| 260 |
|
|
if Is_Entity_Name (Prefix (Nam)) then
|
| 261 |
|
|
Old_S := Entity (Prefix (Nam));
|
| 262 |
|
|
else
|
| 263 |
|
|
Old_S := Entity (Selector_Name (Prefix (Nam)));
|
| 264 |
|
|
end if;
|
| 265 |
|
|
|
| 266 |
|
|
elsif Nkind (Nam) = N_Character_Literal then
|
| 267 |
|
|
Old_S := Etype (New_S);
|
| 268 |
|
|
|
| 269 |
|
|
else
|
| 270 |
|
|
Old_S := Entity (Nam);
|
| 271 |
|
|
end if;
|
| 272 |
|
|
|
| 273 |
|
|
if Is_Entity_Name (Nam) then
|
| 274 |
|
|
|
| 275 |
|
|
-- If the renamed entity is a predefined operator, retain full name
|
| 276 |
|
|
-- to ensure its visibility.
|
| 277 |
|
|
|
| 278 |
|
|
if Ekind (Old_S) = E_Operator
|
| 279 |
|
|
and then Nkind (Nam) = N_Expanded_Name
|
| 280 |
|
|
then
|
| 281 |
|
|
Call_Name := New_Copy (Name (N));
|
| 282 |
|
|
else
|
| 283 |
|
|
Call_Name := New_Reference_To (Old_S, Loc);
|
| 284 |
|
|
end if;
|
| 285 |
|
|
|
| 286 |
|
|
else
|
| 287 |
|
|
if Nkind (Nam) = N_Selected_Component
|
| 288 |
|
|
and then Present (First_Formal (Old_S))
|
| 289 |
|
|
and then
|
| 290 |
|
|
(Is_Controlling_Formal (First_Formal (Old_S))
|
| 291 |
|
|
or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
|
| 292 |
|
|
then
|
| 293 |
|
|
|
| 294 |
|
|
-- Retrieve the target object, to be added as a first actual
|
| 295 |
|
|
-- in the call.
|
| 296 |
|
|
|
| 297 |
|
|
Call_Name := New_Occurrence_Of (Old_S, Loc);
|
| 298 |
|
|
Pref := Prefix (Nam);
|
| 299 |
|
|
|
| 300 |
|
|
else
|
| 301 |
|
|
Call_Name := New_Copy (Name (N));
|
| 302 |
|
|
end if;
|
| 303 |
|
|
|
| 304 |
|
|
-- The original name may have been overloaded, but
|
| 305 |
|
|
-- is fully resolved now.
|
| 306 |
|
|
|
| 307 |
|
|
Set_Is_Overloaded (Call_Name, False);
|
| 308 |
|
|
end if;
|
| 309 |
|
|
|
| 310 |
|
|
-- For simple renamings, subsequent calls can be expanded directly as
|
| 311 |
|
|
-- called to the renamed entity. The body must be generated in any case
|
| 312 |
|
|
-- for calls they may appear elsewhere.
|
| 313 |
|
|
|
| 314 |
|
|
if (Ekind (Old_S) = E_Function
|
| 315 |
|
|
or else Ekind (Old_S) = E_Procedure)
|
| 316 |
|
|
and then Nkind (Decl) = N_Subprogram_Declaration
|
| 317 |
|
|
then
|
| 318 |
|
|
Set_Body_To_Inline (Decl, Old_S);
|
| 319 |
|
|
end if;
|
| 320 |
|
|
|
| 321 |
|
|
-- The body generated for this renaming is an internal artifact, and
|
| 322 |
|
|
-- does not constitute a freeze point for the called entity.
|
| 323 |
|
|
|
| 324 |
|
|
Set_Must_Not_Freeze (Call_Name);
|
| 325 |
|
|
|
| 326 |
|
|
Formal := First_Formal (Defining_Entity (Decl));
|
| 327 |
|
|
|
| 328 |
|
|
if Present (Pref) then
|
| 329 |
|
|
declare
|
| 330 |
|
|
Pref_Type : constant Entity_Id := Etype (Pref);
|
| 331 |
|
|
Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
|
| 332 |
|
|
|
| 333 |
|
|
begin
|
| 334 |
|
|
|
| 335 |
|
|
-- The controlling formal may be an access parameter, or the
|
| 336 |
|
|
-- actual may be an access value, so adjust accordingly.
|
| 337 |
|
|
|
| 338 |
|
|
if Is_Access_Type (Pref_Type)
|
| 339 |
|
|
and then not Is_Access_Type (Form_Type)
|
| 340 |
|
|
then
|
| 341 |
|
|
Actuals := New_List
|
| 342 |
|
|
(Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
|
| 343 |
|
|
|
| 344 |
|
|
elsif Is_Access_Type (Form_Type)
|
| 345 |
|
|
and then not Is_Access_Type (Pref)
|
| 346 |
|
|
then
|
| 347 |
|
|
Actuals := New_List
|
| 348 |
|
|
(Make_Attribute_Reference (Loc,
|
| 349 |
|
|
Attribute_Name => Name_Access,
|
| 350 |
|
|
Prefix => Relocate_Node (Pref)));
|
| 351 |
|
|
else
|
| 352 |
|
|
Actuals := New_List (Pref);
|
| 353 |
|
|
end if;
|
| 354 |
|
|
end;
|
| 355 |
|
|
|
| 356 |
|
|
elsif Present (Formal) then
|
| 357 |
|
|
Actuals := New_List;
|
| 358 |
|
|
|
| 359 |
|
|
else
|
| 360 |
|
|
Actuals := No_List;
|
| 361 |
|
|
end if;
|
| 362 |
|
|
|
| 363 |
|
|
if Present (Formal) then
|
| 364 |
|
|
while Present (Formal) loop
|
| 365 |
|
|
Append (New_Reference_To (Formal, Loc), Actuals);
|
| 366 |
|
|
Next_Formal (Formal);
|
| 367 |
|
|
end loop;
|
| 368 |
|
|
end if;
|
| 369 |
|
|
|
| 370 |
|
|
-- If the renamed entity is an entry, inherit its profile. For other
|
| 371 |
|
|
-- renamings as bodies, both profiles must be subtype conformant, so it
|
| 372 |
|
|
-- is not necessary to replace the profile given in the declaration.
|
| 373 |
|
|
-- However, default values that are aggregates are rewritten when
|
| 374 |
|
|
-- partially analyzed, so we recover the original aggregate to insure
|
| 375 |
|
|
-- that subsequent conformity checking works. Similarly, if the default
|
| 376 |
|
|
-- expression was constant-folded, recover the original expression.
|
| 377 |
|
|
|
| 378 |
|
|
Formal := First_Formal (Defining_Entity (Decl));
|
| 379 |
|
|
|
| 380 |
|
|
if Present (Formal) then
|
| 381 |
|
|
O_Formal := First_Formal (Old_S);
|
| 382 |
|
|
Param_Spec := First (Parameter_Specifications (Spec));
|
| 383 |
|
|
|
| 384 |
|
|
while Present (Formal) loop
|
| 385 |
|
|
if Is_Entry (Old_S) then
|
| 386 |
|
|
|
| 387 |
|
|
if Nkind (Parameter_Type (Param_Spec)) /=
|
| 388 |
|
|
N_Access_Definition
|
| 389 |
|
|
then
|
| 390 |
|
|
Set_Etype (Formal, Etype (O_Formal));
|
| 391 |
|
|
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
|
| 392 |
|
|
end if;
|
| 393 |
|
|
|
| 394 |
|
|
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
|
| 395 |
|
|
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
|
| 396 |
|
|
Nkind (Default_Value (O_Formal))
|
| 397 |
|
|
then
|
| 398 |
|
|
Set_Expression (Param_Spec,
|
| 399 |
|
|
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
|
| 400 |
|
|
end if;
|
| 401 |
|
|
|
| 402 |
|
|
Next_Formal (Formal);
|
| 403 |
|
|
Next_Formal (O_Formal);
|
| 404 |
|
|
Next (Param_Spec);
|
| 405 |
|
|
end loop;
|
| 406 |
|
|
end if;
|
| 407 |
|
|
|
| 408 |
|
|
-- If the renamed entity is a function, the generated body contains a
|
| 409 |
|
|
-- return statement. Otherwise, build a procedure call. If the entity is
|
| 410 |
|
|
-- an entry, subsequent analysis of the call will transform it into the
|
| 411 |
|
|
-- proper entry or protected operation call. If the renamed entity is
|
| 412 |
|
|
-- a character literal, return it directly.
|
| 413 |
|
|
|
| 414 |
|
|
if Ekind (Old_S) = E_Function
|
| 415 |
|
|
or else Ekind (Old_S) = E_Operator
|
| 416 |
|
|
or else (Ekind (Old_S) = E_Subprogram_Type
|
| 417 |
|
|
and then Etype (Old_S) /= Standard_Void_Type)
|
| 418 |
|
|
then
|
| 419 |
|
|
Call_Node :=
|
| 420 |
|
|
Make_Simple_Return_Statement (Loc,
|
| 421 |
|
|
Expression =>
|
| 422 |
|
|
Make_Function_Call (Loc,
|
| 423 |
|
|
Name => Call_Name,
|
| 424 |
|
|
Parameter_Associations => Actuals));
|
| 425 |
|
|
|
| 426 |
|
|
elsif Ekind (Old_S) = E_Enumeration_Literal then
|
| 427 |
|
|
Call_Node :=
|
| 428 |
|
|
Make_Simple_Return_Statement (Loc,
|
| 429 |
|
|
Expression => New_Occurrence_Of (Old_S, Loc));
|
| 430 |
|
|
|
| 431 |
|
|
elsif Nkind (Nam) = N_Character_Literal then
|
| 432 |
|
|
Call_Node :=
|
| 433 |
|
|
Make_Simple_Return_Statement (Loc,
|
| 434 |
|
|
Expression => Call_Name);
|
| 435 |
|
|
|
| 436 |
|
|
else
|
| 437 |
|
|
Call_Node :=
|
| 438 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 439 |
|
|
Name => Call_Name,
|
| 440 |
|
|
Parameter_Associations => Actuals);
|
| 441 |
|
|
end if;
|
| 442 |
|
|
|
| 443 |
|
|
-- Create entities for subprogram body and formals
|
| 444 |
|
|
|
| 445 |
|
|
Set_Defining_Unit_Name (Spec,
|
| 446 |
|
|
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
|
| 447 |
|
|
|
| 448 |
|
|
Param_Spec := First (Parameter_Specifications (Spec));
|
| 449 |
|
|
|
| 450 |
|
|
while Present (Param_Spec) loop
|
| 451 |
|
|
Set_Defining_Identifier (Param_Spec,
|
| 452 |
|
|
Make_Defining_Identifier (Loc,
|
| 453 |
|
|
Chars => Chars (Defining_Identifier (Param_Spec))));
|
| 454 |
|
|
Next (Param_Spec);
|
| 455 |
|
|
end loop;
|
| 456 |
|
|
|
| 457 |
|
|
Body_Node :=
|
| 458 |
|
|
Make_Subprogram_Body (Loc,
|
| 459 |
|
|
Specification => Spec,
|
| 460 |
|
|
Declarations => New_List,
|
| 461 |
|
|
Handled_Statement_Sequence =>
|
| 462 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
| 463 |
|
|
Statements => New_List (Call_Node)));
|
| 464 |
|
|
|
| 465 |
|
|
if Nkind (Decl) /= N_Subprogram_Declaration then
|
| 466 |
|
|
Rewrite (N,
|
| 467 |
|
|
Make_Subprogram_Declaration (Loc,
|
| 468 |
|
|
Specification => Specification (N)));
|
| 469 |
|
|
end if;
|
| 470 |
|
|
|
| 471 |
|
|
-- Link the body to the entity whose declaration it completes. If
|
| 472 |
|
|
-- the body is analyzed when the renamed entity is frozen, it may
|
| 473 |
|
|
-- be necessary to restore the proper scope (see package Exp_Ch13).
|
| 474 |
|
|
|
| 475 |
|
|
if Nkind (N) = N_Subprogram_Renaming_Declaration
|
| 476 |
|
|
and then Present (Corresponding_Spec (N))
|
| 477 |
|
|
then
|
| 478 |
|
|
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
|
| 479 |
|
|
else
|
| 480 |
|
|
Set_Corresponding_Spec (Body_Node, New_S);
|
| 481 |
|
|
end if;
|
| 482 |
|
|
|
| 483 |
|
|
return Body_Node;
|
| 484 |
|
|
end Build_Renamed_Body;
|
| 485 |
|
|
|
| 486 |
|
|
--------------------------
|
| 487 |
|
|
-- Check_Address_Clause --
|
| 488 |
|
|
--------------------------
|
| 489 |
|
|
|
| 490 |
|
|
procedure Check_Address_Clause (E : Entity_Id) is
|
| 491 |
|
|
Addr : constant Node_Id := Address_Clause (E);
|
| 492 |
|
|
Expr : Node_Id;
|
| 493 |
|
|
Decl : constant Node_Id := Declaration_Node (E);
|
| 494 |
|
|
Typ : constant Entity_Id := Etype (E);
|
| 495 |
|
|
|
| 496 |
|
|
begin
|
| 497 |
|
|
if Present (Addr) then
|
| 498 |
|
|
Expr := Expression (Addr);
|
| 499 |
|
|
|
| 500 |
|
|
-- If we have no initialization of any kind, then we don't need to
|
| 501 |
|
|
-- place any restrictions on the address clause, because the object
|
| 502 |
|
|
-- will be elaborated after the address clause is evaluated. This
|
| 503 |
|
|
-- happens if the declaration has no initial expression, or the type
|
| 504 |
|
|
-- has no implicit initialization, or the object is imported.
|
| 505 |
|
|
|
| 506 |
|
|
-- The same holds for all initialized scalar types and all access
|
| 507 |
|
|
-- types. Packed bit arrays of size up to 64 are represented using a
|
| 508 |
|
|
-- modular type with an initialization (to zero) and can be processed
|
| 509 |
|
|
-- like other initialized scalar types.
|
| 510 |
|
|
|
| 511 |
|
|
-- If the type is controlled, code to attach the object to a
|
| 512 |
|
|
-- finalization chain is generated at the point of declaration,
|
| 513 |
|
|
-- and therefore the elaboration of the object cannot be delayed:
|
| 514 |
|
|
-- the address expression must be a constant.
|
| 515 |
|
|
|
| 516 |
|
|
if (No (Expression (Decl))
|
| 517 |
|
|
and then not Needs_Finalization (Typ)
|
| 518 |
|
|
and then
|
| 519 |
|
|
(not Has_Non_Null_Base_Init_Proc (Typ)
|
| 520 |
|
|
or else Is_Imported (E)))
|
| 521 |
|
|
|
| 522 |
|
|
or else
|
| 523 |
|
|
(Present (Expression (Decl))
|
| 524 |
|
|
and then Is_Scalar_Type (Typ))
|
| 525 |
|
|
|
| 526 |
|
|
or else
|
| 527 |
|
|
Is_Access_Type (Typ)
|
| 528 |
|
|
|
| 529 |
|
|
or else
|
| 530 |
|
|
(Is_Bit_Packed_Array (Typ)
|
| 531 |
|
|
and then
|
| 532 |
|
|
Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
|
| 533 |
|
|
then
|
| 534 |
|
|
null;
|
| 535 |
|
|
|
| 536 |
|
|
-- Otherwise, we require the address clause to be constant because
|
| 537 |
|
|
-- the call to the initialization procedure (or the attach code) has
|
| 538 |
|
|
-- to happen at the point of the declaration.
|
| 539 |
|
|
-- Actually the IP call has been moved to the freeze actions
|
| 540 |
|
|
-- anyway, so maybe we can relax this restriction???
|
| 541 |
|
|
|
| 542 |
|
|
else
|
| 543 |
|
|
Check_Constant_Address_Clause (Expr, E);
|
| 544 |
|
|
|
| 545 |
|
|
-- Has_Delayed_Freeze was set on E when the address clause was
|
| 546 |
|
|
-- analyzed. Reset the flag now unless freeze actions were
|
| 547 |
|
|
-- attached to it in the mean time.
|
| 548 |
|
|
|
| 549 |
|
|
if No (Freeze_Node (E)) then
|
| 550 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
| 551 |
|
|
end if;
|
| 552 |
|
|
end if;
|
| 553 |
|
|
|
| 554 |
|
|
if not Error_Posted (Expr)
|
| 555 |
|
|
and then not Needs_Finalization (Typ)
|
| 556 |
|
|
then
|
| 557 |
|
|
Warn_Overlay (Expr, Typ, Name (Addr));
|
| 558 |
|
|
end if;
|
| 559 |
|
|
end if;
|
| 560 |
|
|
end Check_Address_Clause;
|
| 561 |
|
|
|
| 562 |
|
|
-----------------------------
|
| 563 |
|
|
-- Check_Compile_Time_Size --
|
| 564 |
|
|
-----------------------------
|
| 565 |
|
|
|
| 566 |
|
|
procedure Check_Compile_Time_Size (T : Entity_Id) is
|
| 567 |
|
|
|
| 568 |
|
|
procedure Set_Small_Size (T : Entity_Id; S : Uint);
|
| 569 |
|
|
-- Sets the compile time known size (32 bits or less) in the Esize
|
| 570 |
|
|
-- field, of T checking for a size clause that was given which attempts
|
| 571 |
|
|
-- to give a smaller size, and also checking for an alignment clause.
|
| 572 |
|
|
|
| 573 |
|
|
function Size_Known (T : Entity_Id) return Boolean;
|
| 574 |
|
|
-- Recursive function that does all the work
|
| 575 |
|
|
|
| 576 |
|
|
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
|
| 577 |
|
|
-- If T is a constrained subtype, its size is not known if any of its
|
| 578 |
|
|
-- discriminant constraints is not static and it is not a null record.
|
| 579 |
|
|
-- The test is conservative and doesn't check that the components are
|
| 580 |
|
|
-- in fact constrained by non-static discriminant values. Could be made
|
| 581 |
|
|
-- more precise ???
|
| 582 |
|
|
|
| 583 |
|
|
--------------------
|
| 584 |
|
|
-- Set_Small_Size --
|
| 585 |
|
|
--------------------
|
| 586 |
|
|
|
| 587 |
|
|
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
|
| 588 |
|
|
begin
|
| 589 |
|
|
if S > 32 then
|
| 590 |
|
|
return;
|
| 591 |
|
|
|
| 592 |
|
|
-- Don't bother if alignment clause with a value other than 1 is
|
| 593 |
|
|
-- present, because size may be padded up to meet back end alignment
|
| 594 |
|
|
-- requirements, and only the back end knows the rules!
|
| 595 |
|
|
|
| 596 |
|
|
elsif Known_Alignment (T) and then Alignment (T) /= 1 then
|
| 597 |
|
|
return;
|
| 598 |
|
|
|
| 599 |
|
|
-- Check for bad size clause given
|
| 600 |
|
|
|
| 601 |
|
|
elsif Has_Size_Clause (T) then
|
| 602 |
|
|
if RM_Size (T) < S then
|
| 603 |
|
|
Error_Msg_Uint_1 := S;
|
| 604 |
|
|
Error_Msg_NE
|
| 605 |
|
|
("size for& too small, minimum allowed is ^",
|
| 606 |
|
|
Size_Clause (T), T);
|
| 607 |
|
|
|
| 608 |
|
|
elsif Unknown_Esize (T) then
|
| 609 |
|
|
Set_Esize (T, S);
|
| 610 |
|
|
end if;
|
| 611 |
|
|
|
| 612 |
|
|
-- Set sizes if not set already
|
| 613 |
|
|
|
| 614 |
|
|
else
|
| 615 |
|
|
if Unknown_Esize (T) then
|
| 616 |
|
|
Set_Esize (T, S);
|
| 617 |
|
|
end if;
|
| 618 |
|
|
|
| 619 |
|
|
if Unknown_RM_Size (T) then
|
| 620 |
|
|
Set_RM_Size (T, S);
|
| 621 |
|
|
end if;
|
| 622 |
|
|
end if;
|
| 623 |
|
|
end Set_Small_Size;
|
| 624 |
|
|
|
| 625 |
|
|
----------------
|
| 626 |
|
|
-- Size_Known --
|
| 627 |
|
|
----------------
|
| 628 |
|
|
|
| 629 |
|
|
function Size_Known (T : Entity_Id) return Boolean is
|
| 630 |
|
|
Index : Entity_Id;
|
| 631 |
|
|
Comp : Entity_Id;
|
| 632 |
|
|
Ctyp : Entity_Id;
|
| 633 |
|
|
Low : Node_Id;
|
| 634 |
|
|
High : Node_Id;
|
| 635 |
|
|
|
| 636 |
|
|
begin
|
| 637 |
|
|
if Size_Known_At_Compile_Time (T) then
|
| 638 |
|
|
return True;
|
| 639 |
|
|
|
| 640 |
|
|
-- Always True for scalar types. This is true even for generic formal
|
| 641 |
|
|
-- scalar types. We used to return False in the latter case, but the
|
| 642 |
|
|
-- size is known at compile time, even in the template, we just do
|
| 643 |
|
|
-- not know the exact size but that's not the point of this routine.
|
| 644 |
|
|
|
| 645 |
|
|
elsif Is_Scalar_Type (T)
|
| 646 |
|
|
or else Is_Task_Type (T)
|
| 647 |
|
|
then
|
| 648 |
|
|
return True;
|
| 649 |
|
|
|
| 650 |
|
|
-- Array types
|
| 651 |
|
|
|
| 652 |
|
|
elsif Is_Array_Type (T) then
|
| 653 |
|
|
|
| 654 |
|
|
-- String literals always have known size, and we can set it
|
| 655 |
|
|
|
| 656 |
|
|
if Ekind (T) = E_String_Literal_Subtype then
|
| 657 |
|
|
Set_Small_Size (T, Component_Size (T)
|
| 658 |
|
|
* String_Literal_Length (T));
|
| 659 |
|
|
return True;
|
| 660 |
|
|
|
| 661 |
|
|
-- Unconstrained types never have known at compile time size
|
| 662 |
|
|
|
| 663 |
|
|
elsif not Is_Constrained (T) then
|
| 664 |
|
|
return False;
|
| 665 |
|
|
|
| 666 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
| 667 |
|
|
-- have a malformed type that leads us into a loop.
|
| 668 |
|
|
|
| 669 |
|
|
elsif Error_Posted (T) then
|
| 670 |
|
|
return False;
|
| 671 |
|
|
|
| 672 |
|
|
-- Otherwise if component size unknown, then array size unknown
|
| 673 |
|
|
|
| 674 |
|
|
elsif not Size_Known (Component_Type (T)) then
|
| 675 |
|
|
return False;
|
| 676 |
|
|
end if;
|
| 677 |
|
|
|
| 678 |
|
|
-- Check for all indexes static, and also compute possible size
|
| 679 |
|
|
-- (in case it is less than 32 and may be packable).
|
| 680 |
|
|
|
| 681 |
|
|
declare
|
| 682 |
|
|
Esiz : Uint := Component_Size (T);
|
| 683 |
|
|
Dim : Uint;
|
| 684 |
|
|
|
| 685 |
|
|
begin
|
| 686 |
|
|
Index := First_Index (T);
|
| 687 |
|
|
while Present (Index) loop
|
| 688 |
|
|
if Nkind (Index) = N_Range then
|
| 689 |
|
|
Get_Index_Bounds (Index, Low, High);
|
| 690 |
|
|
|
| 691 |
|
|
elsif Error_Posted (Scalar_Range (Etype (Index))) then
|
| 692 |
|
|
return False;
|
| 693 |
|
|
|
| 694 |
|
|
else
|
| 695 |
|
|
Low := Type_Low_Bound (Etype (Index));
|
| 696 |
|
|
High := Type_High_Bound (Etype (Index));
|
| 697 |
|
|
end if;
|
| 698 |
|
|
|
| 699 |
|
|
if not Compile_Time_Known_Value (Low)
|
| 700 |
|
|
or else not Compile_Time_Known_Value (High)
|
| 701 |
|
|
or else Etype (Index) = Any_Type
|
| 702 |
|
|
then
|
| 703 |
|
|
return False;
|
| 704 |
|
|
|
| 705 |
|
|
else
|
| 706 |
|
|
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
|
| 707 |
|
|
|
| 708 |
|
|
if Dim >= 0 then
|
| 709 |
|
|
Esiz := Esiz * Dim;
|
| 710 |
|
|
else
|
| 711 |
|
|
Esiz := Uint_0;
|
| 712 |
|
|
end if;
|
| 713 |
|
|
end if;
|
| 714 |
|
|
|
| 715 |
|
|
Next_Index (Index);
|
| 716 |
|
|
end loop;
|
| 717 |
|
|
|
| 718 |
|
|
Set_Small_Size (T, Esiz);
|
| 719 |
|
|
return True;
|
| 720 |
|
|
end;
|
| 721 |
|
|
|
| 722 |
|
|
-- Access types always have known at compile time sizes
|
| 723 |
|
|
|
| 724 |
|
|
elsif Is_Access_Type (T) then
|
| 725 |
|
|
return True;
|
| 726 |
|
|
|
| 727 |
|
|
-- For non-generic private types, go to underlying type if present
|
| 728 |
|
|
|
| 729 |
|
|
elsif Is_Private_Type (T)
|
| 730 |
|
|
and then not Is_Generic_Type (T)
|
| 731 |
|
|
and then Present (Underlying_Type (T))
|
| 732 |
|
|
then
|
| 733 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
| 734 |
|
|
-- have a malformed type that leads us into a loop.
|
| 735 |
|
|
|
| 736 |
|
|
if Error_Posted (T) then
|
| 737 |
|
|
return False;
|
| 738 |
|
|
else
|
| 739 |
|
|
return Size_Known (Underlying_Type (T));
|
| 740 |
|
|
end if;
|
| 741 |
|
|
|
| 742 |
|
|
-- Record types
|
| 743 |
|
|
|
| 744 |
|
|
elsif Is_Record_Type (T) then
|
| 745 |
|
|
|
| 746 |
|
|
-- A class-wide type is never considered to have a known size
|
| 747 |
|
|
|
| 748 |
|
|
if Is_Class_Wide_Type (T) then
|
| 749 |
|
|
return False;
|
| 750 |
|
|
|
| 751 |
|
|
-- A subtype of a variant record must not have non-static
|
| 752 |
|
|
-- discriminanted components.
|
| 753 |
|
|
|
| 754 |
|
|
elsif T /= Base_Type (T)
|
| 755 |
|
|
and then not Static_Discriminated_Components (T)
|
| 756 |
|
|
then
|
| 757 |
|
|
return False;
|
| 758 |
|
|
|
| 759 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
| 760 |
|
|
-- have a malformed type that leads us into a loop.
|
| 761 |
|
|
|
| 762 |
|
|
elsif Error_Posted (T) then
|
| 763 |
|
|
return False;
|
| 764 |
|
|
end if;
|
| 765 |
|
|
|
| 766 |
|
|
-- Now look at the components of the record
|
| 767 |
|
|
|
| 768 |
|
|
declare
|
| 769 |
|
|
-- The following two variables are used to keep track of the
|
| 770 |
|
|
-- size of packed records if we can tell the size of the packed
|
| 771 |
|
|
-- record in the front end. Packed_Size_Known is True if so far
|
| 772 |
|
|
-- we can figure out the size. It is initialized to True for a
|
| 773 |
|
|
-- packed record, unless the record has discriminants. The
|
| 774 |
|
|
-- reason we eliminate the discriminated case is that we don't
|
| 775 |
|
|
-- know the way the back end lays out discriminated packed
|
| 776 |
|
|
-- records. If Packed_Size_Known is True, then Packed_Size is
|
| 777 |
|
|
-- the size in bits so far.
|
| 778 |
|
|
|
| 779 |
|
|
Packed_Size_Known : Boolean :=
|
| 780 |
|
|
Is_Packed (T)
|
| 781 |
|
|
and then not Has_Discriminants (T);
|
| 782 |
|
|
|
| 783 |
|
|
Packed_Size : Uint := Uint_0;
|
| 784 |
|
|
|
| 785 |
|
|
begin
|
| 786 |
|
|
-- Test for variant part present
|
| 787 |
|
|
|
| 788 |
|
|
if Has_Discriminants (T)
|
| 789 |
|
|
and then Present (Parent (T))
|
| 790 |
|
|
and then Nkind (Parent (T)) = N_Full_Type_Declaration
|
| 791 |
|
|
and then Nkind (Type_Definition (Parent (T))) =
|
| 792 |
|
|
N_Record_Definition
|
| 793 |
|
|
and then not Null_Present (Type_Definition (Parent (T)))
|
| 794 |
|
|
and then Present (Variant_Part
|
| 795 |
|
|
(Component_List (Type_Definition (Parent (T)))))
|
| 796 |
|
|
then
|
| 797 |
|
|
-- If variant part is present, and type is unconstrained,
|
| 798 |
|
|
-- then we must have defaulted discriminants, or a size
|
| 799 |
|
|
-- clause must be present for the type, or else the size
|
| 800 |
|
|
-- is definitely not known at compile time.
|
| 801 |
|
|
|
| 802 |
|
|
if not Is_Constrained (T)
|
| 803 |
|
|
and then
|
| 804 |
|
|
No (Discriminant_Default_Value
|
| 805 |
|
|
(First_Discriminant (T)))
|
| 806 |
|
|
and then Unknown_Esize (T)
|
| 807 |
|
|
then
|
| 808 |
|
|
return False;
|
| 809 |
|
|
end if;
|
| 810 |
|
|
end if;
|
| 811 |
|
|
|
| 812 |
|
|
-- Loop through components
|
| 813 |
|
|
|
| 814 |
|
|
Comp := First_Component_Or_Discriminant (T);
|
| 815 |
|
|
while Present (Comp) loop
|
| 816 |
|
|
Ctyp := Etype (Comp);
|
| 817 |
|
|
|
| 818 |
|
|
-- We do not know the packed size if there is a component
|
| 819 |
|
|
-- clause present (we possibly could, but this would only
|
| 820 |
|
|
-- help in the case of a record with partial rep clauses.
|
| 821 |
|
|
-- That's because in the case of full rep clauses, the
|
| 822 |
|
|
-- size gets figured out anyway by a different circuit).
|
| 823 |
|
|
|
| 824 |
|
|
if Present (Component_Clause (Comp)) then
|
| 825 |
|
|
Packed_Size_Known := False;
|
| 826 |
|
|
end if;
|
| 827 |
|
|
|
| 828 |
|
|
-- We need to identify a component that is an array where
|
| 829 |
|
|
-- the index type is an enumeration type with non-standard
|
| 830 |
|
|
-- representation, and some bound of the type depends on a
|
| 831 |
|
|
-- discriminant.
|
| 832 |
|
|
|
| 833 |
|
|
-- This is because gigi computes the size by doing a
|
| 834 |
|
|
-- substitution of the appropriate discriminant value in
|
| 835 |
|
|
-- the size expression for the base type, and gigi is not
|
| 836 |
|
|
-- clever enough to evaluate the resulting expression (which
|
| 837 |
|
|
-- involves a call to rep_to_pos) at compile time.
|
| 838 |
|
|
|
| 839 |
|
|
-- It would be nice if gigi would either recognize that
|
| 840 |
|
|
-- this expression can be computed at compile time, or
|
| 841 |
|
|
-- alternatively figured out the size from the subtype
|
| 842 |
|
|
-- directly, where all the information is at hand ???
|
| 843 |
|
|
|
| 844 |
|
|
if Is_Array_Type (Etype (Comp))
|
| 845 |
|
|
and then Present (Packed_Array_Type (Etype (Comp)))
|
| 846 |
|
|
then
|
| 847 |
|
|
declare
|
| 848 |
|
|
Ocomp : constant Entity_Id :=
|
| 849 |
|
|
Original_Record_Component (Comp);
|
| 850 |
|
|
OCtyp : constant Entity_Id := Etype (Ocomp);
|
| 851 |
|
|
Ind : Node_Id;
|
| 852 |
|
|
Indtyp : Entity_Id;
|
| 853 |
|
|
Lo, Hi : Node_Id;
|
| 854 |
|
|
|
| 855 |
|
|
begin
|
| 856 |
|
|
Ind := First_Index (OCtyp);
|
| 857 |
|
|
while Present (Ind) loop
|
| 858 |
|
|
Indtyp := Etype (Ind);
|
| 859 |
|
|
|
| 860 |
|
|
if Is_Enumeration_Type (Indtyp)
|
| 861 |
|
|
and then Has_Non_Standard_Rep (Indtyp)
|
| 862 |
|
|
then
|
| 863 |
|
|
Lo := Type_Low_Bound (Indtyp);
|
| 864 |
|
|
Hi := Type_High_Bound (Indtyp);
|
| 865 |
|
|
|
| 866 |
|
|
if Is_Entity_Name (Lo)
|
| 867 |
|
|
and then Ekind (Entity (Lo)) = E_Discriminant
|
| 868 |
|
|
then
|
| 869 |
|
|
return False;
|
| 870 |
|
|
|
| 871 |
|
|
elsif Is_Entity_Name (Hi)
|
| 872 |
|
|
and then Ekind (Entity (Hi)) = E_Discriminant
|
| 873 |
|
|
then
|
| 874 |
|
|
return False;
|
| 875 |
|
|
end if;
|
| 876 |
|
|
end if;
|
| 877 |
|
|
|
| 878 |
|
|
Next_Index (Ind);
|
| 879 |
|
|
end loop;
|
| 880 |
|
|
end;
|
| 881 |
|
|
end if;
|
| 882 |
|
|
|
| 883 |
|
|
-- Clearly size of record is not known if the size of one of
|
| 884 |
|
|
-- the components is not known.
|
| 885 |
|
|
|
| 886 |
|
|
if not Size_Known (Ctyp) then
|
| 887 |
|
|
return False;
|
| 888 |
|
|
end if;
|
| 889 |
|
|
|
| 890 |
|
|
-- Accumulate packed size if possible
|
| 891 |
|
|
|
| 892 |
|
|
if Packed_Size_Known then
|
| 893 |
|
|
|
| 894 |
|
|
-- We can only deal with elementary types, since for
|
| 895 |
|
|
-- non-elementary components, alignment enters into the
|
| 896 |
|
|
-- picture, and we don't know enough to handle proper
|
| 897 |
|
|
-- alignment in this context. Packed arrays count as
|
| 898 |
|
|
-- elementary if the representation is a modular type.
|
| 899 |
|
|
|
| 900 |
|
|
if Is_Elementary_Type (Ctyp)
|
| 901 |
|
|
or else (Is_Array_Type (Ctyp)
|
| 902 |
|
|
and then Present (Packed_Array_Type (Ctyp))
|
| 903 |
|
|
and then Is_Modular_Integer_Type
|
| 904 |
|
|
(Packed_Array_Type (Ctyp)))
|
| 905 |
|
|
then
|
| 906 |
|
|
-- If RM_Size is known and static, then we can keep
|
| 907 |
|
|
-- accumulating the packed size.
|
| 908 |
|
|
|
| 909 |
|
|
if Known_Static_RM_Size (Ctyp) then
|
| 910 |
|
|
|
| 911 |
|
|
-- A little glitch, to be removed sometime ???
|
| 912 |
|
|
-- gigi does not understand zero sizes yet.
|
| 913 |
|
|
|
| 914 |
|
|
if RM_Size (Ctyp) = Uint_0 then
|
| 915 |
|
|
Packed_Size_Known := False;
|
| 916 |
|
|
|
| 917 |
|
|
-- Normal case where we can keep accumulating the
|
| 918 |
|
|
-- packed array size.
|
| 919 |
|
|
|
| 920 |
|
|
else
|
| 921 |
|
|
Packed_Size := Packed_Size + RM_Size (Ctyp);
|
| 922 |
|
|
end if;
|
| 923 |
|
|
|
| 924 |
|
|
-- If we have a field whose RM_Size is not known then
|
| 925 |
|
|
-- we can't figure out the packed size here.
|
| 926 |
|
|
|
| 927 |
|
|
else
|
| 928 |
|
|
Packed_Size_Known := False;
|
| 929 |
|
|
end if;
|
| 930 |
|
|
|
| 931 |
|
|
-- If we have a non-elementary type we can't figure out
|
| 932 |
|
|
-- the packed array size (alignment issues).
|
| 933 |
|
|
|
| 934 |
|
|
else
|
| 935 |
|
|
Packed_Size_Known := False;
|
| 936 |
|
|
end if;
|
| 937 |
|
|
end if;
|
| 938 |
|
|
|
| 939 |
|
|
Next_Component_Or_Discriminant (Comp);
|
| 940 |
|
|
end loop;
|
| 941 |
|
|
|
| 942 |
|
|
if Packed_Size_Known then
|
| 943 |
|
|
Set_Small_Size (T, Packed_Size);
|
| 944 |
|
|
end if;
|
| 945 |
|
|
|
| 946 |
|
|
return True;
|
| 947 |
|
|
end;
|
| 948 |
|
|
|
| 949 |
|
|
-- All other cases, size not known at compile time
|
| 950 |
|
|
|
| 951 |
|
|
else
|
| 952 |
|
|
return False;
|
| 953 |
|
|
end if;
|
| 954 |
|
|
end Size_Known;
|
| 955 |
|
|
|
| 956 |
|
|
-------------------------------------
|
| 957 |
|
|
-- Static_Discriminated_Components --
|
| 958 |
|
|
-------------------------------------
|
| 959 |
|
|
|
| 960 |
|
|
function Static_Discriminated_Components
|
| 961 |
|
|
(T : Entity_Id) return Boolean
|
| 962 |
|
|
is
|
| 963 |
|
|
Constraint : Elmt_Id;
|
| 964 |
|
|
|
| 965 |
|
|
begin
|
| 966 |
|
|
if Has_Discriminants (T)
|
| 967 |
|
|
and then Present (Discriminant_Constraint (T))
|
| 968 |
|
|
and then Present (First_Component (T))
|
| 969 |
|
|
then
|
| 970 |
|
|
Constraint := First_Elmt (Discriminant_Constraint (T));
|
| 971 |
|
|
while Present (Constraint) loop
|
| 972 |
|
|
if not Compile_Time_Known_Value (Node (Constraint)) then
|
| 973 |
|
|
return False;
|
| 974 |
|
|
end if;
|
| 975 |
|
|
|
| 976 |
|
|
Next_Elmt (Constraint);
|
| 977 |
|
|
end loop;
|
| 978 |
|
|
end if;
|
| 979 |
|
|
|
| 980 |
|
|
return True;
|
| 981 |
|
|
end Static_Discriminated_Components;
|
| 982 |
|
|
|
| 983 |
|
|
-- Start of processing for Check_Compile_Time_Size
|
| 984 |
|
|
|
| 985 |
|
|
begin
|
| 986 |
|
|
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
|
| 987 |
|
|
end Check_Compile_Time_Size;
|
| 988 |
|
|
|
| 989 |
|
|
-----------------------------
|
| 990 |
|
|
-- Check_Debug_Info_Needed --
|
| 991 |
|
|
-----------------------------
|
| 992 |
|
|
|
| 993 |
|
|
procedure Check_Debug_Info_Needed (T : Entity_Id) is
|
| 994 |
|
|
begin
|
| 995 |
|
|
if Debug_Info_Off (T) then
|
| 996 |
|
|
return;
|
| 997 |
|
|
|
| 998 |
|
|
elsif Comes_From_Source (T)
|
| 999 |
|
|
or else Debug_Generated_Code
|
| 1000 |
|
|
or else Debug_Flag_VV
|
| 1001 |
|
|
or else Needs_Debug_Info (T)
|
| 1002 |
|
|
then
|
| 1003 |
|
|
Set_Debug_Info_Needed (T);
|
| 1004 |
|
|
end if;
|
| 1005 |
|
|
end Check_Debug_Info_Needed;
|
| 1006 |
|
|
|
| 1007 |
|
|
----------------------------
|
| 1008 |
|
|
-- Check_Strict_Alignment --
|
| 1009 |
|
|
----------------------------
|
| 1010 |
|
|
|
| 1011 |
|
|
procedure Check_Strict_Alignment (E : Entity_Id) is
|
| 1012 |
|
|
Comp : Entity_Id;
|
| 1013 |
|
|
|
| 1014 |
|
|
begin
|
| 1015 |
|
|
if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
|
| 1016 |
|
|
Set_Strict_Alignment (E);
|
| 1017 |
|
|
|
| 1018 |
|
|
elsif Is_Array_Type (E) then
|
| 1019 |
|
|
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
|
| 1020 |
|
|
|
| 1021 |
|
|
elsif Is_Record_Type (E) then
|
| 1022 |
|
|
if Is_Limited_Record (E) then
|
| 1023 |
|
|
Set_Strict_Alignment (E);
|
| 1024 |
|
|
return;
|
| 1025 |
|
|
end if;
|
| 1026 |
|
|
|
| 1027 |
|
|
Comp := First_Component (E);
|
| 1028 |
|
|
|
| 1029 |
|
|
while Present (Comp) loop
|
| 1030 |
|
|
if not Is_Type (Comp)
|
| 1031 |
|
|
and then (Strict_Alignment (Etype (Comp))
|
| 1032 |
|
|
or else Is_Aliased (Comp))
|
| 1033 |
|
|
then
|
| 1034 |
|
|
Set_Strict_Alignment (E);
|
| 1035 |
|
|
return;
|
| 1036 |
|
|
end if;
|
| 1037 |
|
|
|
| 1038 |
|
|
Next_Component (Comp);
|
| 1039 |
|
|
end loop;
|
| 1040 |
|
|
end if;
|
| 1041 |
|
|
end Check_Strict_Alignment;
|
| 1042 |
|
|
|
| 1043 |
|
|
-------------------------
|
| 1044 |
|
|
-- Check_Unsigned_Type --
|
| 1045 |
|
|
-------------------------
|
| 1046 |
|
|
|
| 1047 |
|
|
procedure Check_Unsigned_Type (E : Entity_Id) is
|
| 1048 |
|
|
Ancestor : Entity_Id;
|
| 1049 |
|
|
Lo_Bound : Node_Id;
|
| 1050 |
|
|
Btyp : Entity_Id;
|
| 1051 |
|
|
|
| 1052 |
|
|
begin
|
| 1053 |
|
|
if not Is_Discrete_Or_Fixed_Point_Type (E) then
|
| 1054 |
|
|
return;
|
| 1055 |
|
|
end if;
|
| 1056 |
|
|
|
| 1057 |
|
|
-- Do not attempt to analyze case where range was in error
|
| 1058 |
|
|
|
| 1059 |
|
|
if Error_Posted (Scalar_Range (E)) then
|
| 1060 |
|
|
return;
|
| 1061 |
|
|
end if;
|
| 1062 |
|
|
|
| 1063 |
|
|
-- The situation that is non trivial is something like
|
| 1064 |
|
|
|
| 1065 |
|
|
-- subtype x1 is integer range -10 .. +10;
|
| 1066 |
|
|
-- subtype x2 is x1 range 0 .. V1;
|
| 1067 |
|
|
-- subtype x3 is x2 range V2 .. V3;
|
| 1068 |
|
|
-- subtype x4 is x3 range V4 .. V5;
|
| 1069 |
|
|
|
| 1070 |
|
|
-- where Vn are variables. Here the base type is signed, but we still
|
| 1071 |
|
|
-- know that x4 is unsigned because of the lower bound of x2.
|
| 1072 |
|
|
|
| 1073 |
|
|
-- The only way to deal with this is to look up the ancestor chain
|
| 1074 |
|
|
|
| 1075 |
|
|
Ancestor := E;
|
| 1076 |
|
|
loop
|
| 1077 |
|
|
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
|
| 1078 |
|
|
return;
|
| 1079 |
|
|
end if;
|
| 1080 |
|
|
|
| 1081 |
|
|
Lo_Bound := Type_Low_Bound (Ancestor);
|
| 1082 |
|
|
|
| 1083 |
|
|
if Compile_Time_Known_Value (Lo_Bound) then
|
| 1084 |
|
|
|
| 1085 |
|
|
if Expr_Rep_Value (Lo_Bound) >= 0 then
|
| 1086 |
|
|
Set_Is_Unsigned_Type (E, True);
|
| 1087 |
|
|
end if;
|
| 1088 |
|
|
|
| 1089 |
|
|
return;
|
| 1090 |
|
|
|
| 1091 |
|
|
else
|
| 1092 |
|
|
Ancestor := Ancestor_Subtype (Ancestor);
|
| 1093 |
|
|
|
| 1094 |
|
|
-- If no ancestor had a static lower bound, go to base type
|
| 1095 |
|
|
|
| 1096 |
|
|
if No (Ancestor) then
|
| 1097 |
|
|
|
| 1098 |
|
|
-- Note: the reason we still check for a compile time known
|
| 1099 |
|
|
-- value for the base type is that at least in the case of
|
| 1100 |
|
|
-- generic formals, we can have bounds that fail this test,
|
| 1101 |
|
|
-- and there may be other cases in error situations.
|
| 1102 |
|
|
|
| 1103 |
|
|
Btyp := Base_Type (E);
|
| 1104 |
|
|
|
| 1105 |
|
|
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
|
| 1106 |
|
|
return;
|
| 1107 |
|
|
end if;
|
| 1108 |
|
|
|
| 1109 |
|
|
Lo_Bound := Type_Low_Bound (Base_Type (E));
|
| 1110 |
|
|
|
| 1111 |
|
|
if Compile_Time_Known_Value (Lo_Bound)
|
| 1112 |
|
|
and then Expr_Rep_Value (Lo_Bound) >= 0
|
| 1113 |
|
|
then
|
| 1114 |
|
|
Set_Is_Unsigned_Type (E, True);
|
| 1115 |
|
|
end if;
|
| 1116 |
|
|
|
| 1117 |
|
|
return;
|
| 1118 |
|
|
end if;
|
| 1119 |
|
|
end if;
|
| 1120 |
|
|
end loop;
|
| 1121 |
|
|
end Check_Unsigned_Type;
|
| 1122 |
|
|
|
| 1123 |
|
|
-------------------------
|
| 1124 |
|
|
-- Is_Atomic_Aggregate --
|
| 1125 |
|
|
-------------------------
|
| 1126 |
|
|
|
| 1127 |
|
|
function Is_Atomic_Aggregate
|
| 1128 |
|
|
(E : Entity_Id;
|
| 1129 |
|
|
Typ : Entity_Id) return Boolean
|
| 1130 |
|
|
is
|
| 1131 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
| 1132 |
|
|
New_N : Node_Id;
|
| 1133 |
|
|
Par : Node_Id;
|
| 1134 |
|
|
Temp : Entity_Id;
|
| 1135 |
|
|
|
| 1136 |
|
|
begin
|
| 1137 |
|
|
Par := Parent (E);
|
| 1138 |
|
|
|
| 1139 |
|
|
-- Array may be qualified, so find outer context
|
| 1140 |
|
|
|
| 1141 |
|
|
if Nkind (Par) = N_Qualified_Expression then
|
| 1142 |
|
|
Par := Parent (Par);
|
| 1143 |
|
|
end if;
|
| 1144 |
|
|
|
| 1145 |
|
|
if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
|
| 1146 |
|
|
and then Comes_From_Source (Par)
|
| 1147 |
|
|
then
|
| 1148 |
|
|
Temp :=
|
| 1149 |
|
|
Make_Defining_Identifier (Loc,
|
| 1150 |
|
|
New_Internal_Name ('T'));
|
| 1151 |
|
|
|
| 1152 |
|
|
New_N :=
|
| 1153 |
|
|
Make_Object_Declaration (Loc,
|
| 1154 |
|
|
Defining_Identifier => Temp,
|
| 1155 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc),
|
| 1156 |
|
|
Expression => Relocate_Node (E));
|
| 1157 |
|
|
Insert_Before (Par, New_N);
|
| 1158 |
|
|
Analyze (New_N);
|
| 1159 |
|
|
|
| 1160 |
|
|
Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
|
| 1161 |
|
|
return True;
|
| 1162 |
|
|
|
| 1163 |
|
|
else
|
| 1164 |
|
|
return False;
|
| 1165 |
|
|
end if;
|
| 1166 |
|
|
end Is_Atomic_Aggregate;
|
| 1167 |
|
|
|
| 1168 |
|
|
----------------
|
| 1169 |
|
|
-- Freeze_All --
|
| 1170 |
|
|
----------------
|
| 1171 |
|
|
|
| 1172 |
|
|
-- Note: the easy coding for this procedure would be to just build a
|
| 1173 |
|
|
-- single list of freeze nodes and then insert them and analyze them
|
| 1174 |
|
|
-- all at once. This won't work, because the analysis of earlier freeze
|
| 1175 |
|
|
-- nodes may recursively freeze types which would otherwise appear later
|
| 1176 |
|
|
-- on in the freeze list. So we must analyze and expand the freeze nodes
|
| 1177 |
|
|
-- as they are generated.
|
| 1178 |
|
|
|
| 1179 |
|
|
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
|
| 1180 |
|
|
Loc : constant Source_Ptr := Sloc (After);
|
| 1181 |
|
|
E : Entity_Id;
|
| 1182 |
|
|
Decl : Node_Id;
|
| 1183 |
|
|
|
| 1184 |
|
|
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
|
| 1185 |
|
|
-- This is the internal recursive routine that does freezing of entities
|
| 1186 |
|
|
-- (but NOT the analysis of default expressions, which should not be
|
| 1187 |
|
|
-- recursive, we don't want to analyze those till we are sure that ALL
|
| 1188 |
|
|
-- the types are frozen).
|
| 1189 |
|
|
|
| 1190 |
|
|
--------------------
|
| 1191 |
|
|
-- Freeze_All_Ent --
|
| 1192 |
|
|
--------------------
|
| 1193 |
|
|
|
| 1194 |
|
|
procedure Freeze_All_Ent
|
| 1195 |
|
|
(From : Entity_Id;
|
| 1196 |
|
|
After : in out Node_Id)
|
| 1197 |
|
|
is
|
| 1198 |
|
|
E : Entity_Id;
|
| 1199 |
|
|
Flist : List_Id;
|
| 1200 |
|
|
Lastn : Node_Id;
|
| 1201 |
|
|
|
| 1202 |
|
|
procedure Process_Flist;
|
| 1203 |
|
|
-- If freeze nodes are present, insert and analyze, and reset cursor
|
| 1204 |
|
|
-- for next insertion.
|
| 1205 |
|
|
|
| 1206 |
|
|
-------------------
|
| 1207 |
|
|
-- Process_Flist --
|
| 1208 |
|
|
-------------------
|
| 1209 |
|
|
|
| 1210 |
|
|
procedure Process_Flist is
|
| 1211 |
|
|
begin
|
| 1212 |
|
|
if Is_Non_Empty_List (Flist) then
|
| 1213 |
|
|
Lastn := Next (After);
|
| 1214 |
|
|
Insert_List_After_And_Analyze (After, Flist);
|
| 1215 |
|
|
|
| 1216 |
|
|
if Present (Lastn) then
|
| 1217 |
|
|
After := Prev (Lastn);
|
| 1218 |
|
|
else
|
| 1219 |
|
|
After := Last (List_Containing (After));
|
| 1220 |
|
|
end if;
|
| 1221 |
|
|
end if;
|
| 1222 |
|
|
end Process_Flist;
|
| 1223 |
|
|
|
| 1224 |
|
|
-- Start or processing for Freeze_All_Ent
|
| 1225 |
|
|
|
| 1226 |
|
|
begin
|
| 1227 |
|
|
E := From;
|
| 1228 |
|
|
while Present (E) loop
|
| 1229 |
|
|
|
| 1230 |
|
|
-- If the entity is an inner package which is not a package
|
| 1231 |
|
|
-- renaming, then its entities must be frozen at this point. Note
|
| 1232 |
|
|
-- that such entities do NOT get frozen at the end of the nested
|
| 1233 |
|
|
-- package itself (only library packages freeze).
|
| 1234 |
|
|
|
| 1235 |
|
|
-- Same is true for task declarations, where anonymous records
|
| 1236 |
|
|
-- created for entry parameters must be frozen.
|
| 1237 |
|
|
|
| 1238 |
|
|
if Ekind (E) = E_Package
|
| 1239 |
|
|
and then No (Renamed_Object (E))
|
| 1240 |
|
|
and then not Is_Child_Unit (E)
|
| 1241 |
|
|
and then not Is_Frozen (E)
|
| 1242 |
|
|
then
|
| 1243 |
|
|
Push_Scope (E);
|
| 1244 |
|
|
Install_Visible_Declarations (E);
|
| 1245 |
|
|
Install_Private_Declarations (E);
|
| 1246 |
|
|
|
| 1247 |
|
|
Freeze_All (First_Entity (E), After);
|
| 1248 |
|
|
|
| 1249 |
|
|
End_Package_Scope (E);
|
| 1250 |
|
|
|
| 1251 |
|
|
elsif Ekind (E) in Task_Kind
|
| 1252 |
|
|
and then
|
| 1253 |
|
|
(Nkind (Parent (E)) = N_Task_Type_Declaration
|
| 1254 |
|
|
or else
|
| 1255 |
|
|
Nkind (Parent (E)) = N_Single_Task_Declaration)
|
| 1256 |
|
|
then
|
| 1257 |
|
|
Push_Scope (E);
|
| 1258 |
|
|
Freeze_All (First_Entity (E), After);
|
| 1259 |
|
|
End_Scope;
|
| 1260 |
|
|
|
| 1261 |
|
|
-- For a derived tagged type, we must ensure that all the
|
| 1262 |
|
|
-- primitive operations of the parent have been frozen, so that
|
| 1263 |
|
|
-- their addresses will be in the parent's dispatch table at the
|
| 1264 |
|
|
-- point it is inherited.
|
| 1265 |
|
|
|
| 1266 |
|
|
elsif Ekind (E) = E_Record_Type
|
| 1267 |
|
|
and then Is_Tagged_Type (E)
|
| 1268 |
|
|
and then Is_Tagged_Type (Etype (E))
|
| 1269 |
|
|
and then Is_Derived_Type (E)
|
| 1270 |
|
|
then
|
| 1271 |
|
|
declare
|
| 1272 |
|
|
Prim_List : constant Elist_Id :=
|
| 1273 |
|
|
Primitive_Operations (Etype (E));
|
| 1274 |
|
|
|
| 1275 |
|
|
Prim : Elmt_Id;
|
| 1276 |
|
|
Subp : Entity_Id;
|
| 1277 |
|
|
|
| 1278 |
|
|
begin
|
| 1279 |
|
|
Prim := First_Elmt (Prim_List);
|
| 1280 |
|
|
|
| 1281 |
|
|
while Present (Prim) loop
|
| 1282 |
|
|
Subp := Node (Prim);
|
| 1283 |
|
|
|
| 1284 |
|
|
if Comes_From_Source (Subp)
|
| 1285 |
|
|
and then not Is_Frozen (Subp)
|
| 1286 |
|
|
then
|
| 1287 |
|
|
Flist := Freeze_Entity (Subp, Loc);
|
| 1288 |
|
|
Process_Flist;
|
| 1289 |
|
|
end if;
|
| 1290 |
|
|
|
| 1291 |
|
|
Next_Elmt (Prim);
|
| 1292 |
|
|
end loop;
|
| 1293 |
|
|
end;
|
| 1294 |
|
|
end if;
|
| 1295 |
|
|
|
| 1296 |
|
|
if not Is_Frozen (E) then
|
| 1297 |
|
|
Flist := Freeze_Entity (E, Loc);
|
| 1298 |
|
|
Process_Flist;
|
| 1299 |
|
|
end if;
|
| 1300 |
|
|
|
| 1301 |
|
|
-- If an incomplete type is still not frozen, this may be a
|
| 1302 |
|
|
-- premature freezing because of a body declaration that follows.
|
| 1303 |
|
|
-- Indicate where the freezing took place.
|
| 1304 |
|
|
|
| 1305 |
|
|
-- If the freezing is caused by the end of the current declarative
|
| 1306 |
|
|
-- part, it is a Taft Amendment type, and there is no error.
|
| 1307 |
|
|
|
| 1308 |
|
|
if not Is_Frozen (E)
|
| 1309 |
|
|
and then Ekind (E) = E_Incomplete_Type
|
| 1310 |
|
|
then
|
| 1311 |
|
|
declare
|
| 1312 |
|
|
Bod : constant Node_Id := Next (After);
|
| 1313 |
|
|
|
| 1314 |
|
|
begin
|
| 1315 |
|
|
if (Nkind (Bod) = N_Subprogram_Body
|
| 1316 |
|
|
or else Nkind (Bod) = N_Entry_Body
|
| 1317 |
|
|
or else Nkind (Bod) = N_Package_Body
|
| 1318 |
|
|
or else Nkind (Bod) = N_Protected_Body
|
| 1319 |
|
|
or else Nkind (Bod) = N_Task_Body
|
| 1320 |
|
|
or else Nkind (Bod) in N_Body_Stub)
|
| 1321 |
|
|
and then
|
| 1322 |
|
|
List_Containing (After) = List_Containing (Parent (E))
|
| 1323 |
|
|
then
|
| 1324 |
|
|
Error_Msg_Sloc := Sloc (Next (After));
|
| 1325 |
|
|
Error_Msg_NE
|
| 1326 |
|
|
("type& is frozen# before its full declaration",
|
| 1327 |
|
|
Parent (E), E);
|
| 1328 |
|
|
end if;
|
| 1329 |
|
|
end;
|
| 1330 |
|
|
end if;
|
| 1331 |
|
|
|
| 1332 |
|
|
Next_Entity (E);
|
| 1333 |
|
|
end loop;
|
| 1334 |
|
|
end Freeze_All_Ent;
|
| 1335 |
|
|
|
| 1336 |
|
|
-- Start of processing for Freeze_All
|
| 1337 |
|
|
|
| 1338 |
|
|
begin
|
| 1339 |
|
|
Freeze_All_Ent (From, After);
|
| 1340 |
|
|
|
| 1341 |
|
|
-- Now that all types are frozen, we can deal with default expressions
|
| 1342 |
|
|
-- that require us to build a default expression functions. This is the
|
| 1343 |
|
|
-- point at which such functions are constructed (after all types that
|
| 1344 |
|
|
-- might be used in such expressions have been frozen).
|
| 1345 |
|
|
|
| 1346 |
|
|
-- We also add finalization chains to access types whose designated
|
| 1347 |
|
|
-- types are controlled. This is normally done when freezing the type,
|
| 1348 |
|
|
-- but this misses recursive type definitions where the later members
|
| 1349 |
|
|
-- of the recursion introduce controlled components.
|
| 1350 |
|
|
|
| 1351 |
|
|
-- Loop through entities
|
| 1352 |
|
|
|
| 1353 |
|
|
E := From;
|
| 1354 |
|
|
while Present (E) loop
|
| 1355 |
|
|
if Is_Subprogram (E) then
|
| 1356 |
|
|
|
| 1357 |
|
|
if not Default_Expressions_Processed (E) then
|
| 1358 |
|
|
Process_Default_Expressions (E, After);
|
| 1359 |
|
|
end if;
|
| 1360 |
|
|
|
| 1361 |
|
|
if not Has_Completion (E) then
|
| 1362 |
|
|
Decl := Unit_Declaration_Node (E);
|
| 1363 |
|
|
|
| 1364 |
|
|
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
|
| 1365 |
|
|
Build_And_Analyze_Renamed_Body (Decl, E, After);
|
| 1366 |
|
|
|
| 1367 |
|
|
elsif Nkind (Decl) = N_Subprogram_Declaration
|
| 1368 |
|
|
and then Present (Corresponding_Body (Decl))
|
| 1369 |
|
|
and then
|
| 1370 |
|
|
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
|
| 1371 |
|
|
= N_Subprogram_Renaming_Declaration
|
| 1372 |
|
|
then
|
| 1373 |
|
|
Build_And_Analyze_Renamed_Body
|
| 1374 |
|
|
(Decl, Corresponding_Body (Decl), After);
|
| 1375 |
|
|
end if;
|
| 1376 |
|
|
end if;
|
| 1377 |
|
|
|
| 1378 |
|
|
elsif Ekind (E) in Task_Kind
|
| 1379 |
|
|
and then
|
| 1380 |
|
|
(Nkind (Parent (E)) = N_Task_Type_Declaration
|
| 1381 |
|
|
or else
|
| 1382 |
|
|
Nkind (Parent (E)) = N_Single_Task_Declaration)
|
| 1383 |
|
|
then
|
| 1384 |
|
|
declare
|
| 1385 |
|
|
Ent : Entity_Id;
|
| 1386 |
|
|
begin
|
| 1387 |
|
|
Ent := First_Entity (E);
|
| 1388 |
|
|
|
| 1389 |
|
|
while Present (Ent) loop
|
| 1390 |
|
|
|
| 1391 |
|
|
if Is_Entry (Ent)
|
| 1392 |
|
|
and then not Default_Expressions_Processed (Ent)
|
| 1393 |
|
|
then
|
| 1394 |
|
|
Process_Default_Expressions (Ent, After);
|
| 1395 |
|
|
end if;
|
| 1396 |
|
|
|
| 1397 |
|
|
Next_Entity (Ent);
|
| 1398 |
|
|
end loop;
|
| 1399 |
|
|
end;
|
| 1400 |
|
|
|
| 1401 |
|
|
elsif Is_Access_Type (E)
|
| 1402 |
|
|
and then Comes_From_Source (E)
|
| 1403 |
|
|
and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
|
| 1404 |
|
|
and then Needs_Finalization (Designated_Type (E))
|
| 1405 |
|
|
and then No (Associated_Final_Chain (E))
|
| 1406 |
|
|
then
|
| 1407 |
|
|
Build_Final_List (Parent (E), E);
|
| 1408 |
|
|
end if;
|
| 1409 |
|
|
|
| 1410 |
|
|
Next_Entity (E);
|
| 1411 |
|
|
end loop;
|
| 1412 |
|
|
end Freeze_All;
|
| 1413 |
|
|
|
| 1414 |
|
|
-----------------------
|
| 1415 |
|
|
-- Freeze_And_Append --
|
| 1416 |
|
|
-----------------------
|
| 1417 |
|
|
|
| 1418 |
|
|
procedure Freeze_And_Append
|
| 1419 |
|
|
(Ent : Entity_Id;
|
| 1420 |
|
|
Loc : Source_Ptr;
|
| 1421 |
|
|
Result : in out List_Id)
|
| 1422 |
|
|
is
|
| 1423 |
|
|
L : constant List_Id := Freeze_Entity (Ent, Loc);
|
| 1424 |
|
|
begin
|
| 1425 |
|
|
if Is_Non_Empty_List (L) then
|
| 1426 |
|
|
if Result = No_List then
|
| 1427 |
|
|
Result := L;
|
| 1428 |
|
|
else
|
| 1429 |
|
|
Append_List (L, Result);
|
| 1430 |
|
|
end if;
|
| 1431 |
|
|
end if;
|
| 1432 |
|
|
end Freeze_And_Append;
|
| 1433 |
|
|
|
| 1434 |
|
|
-------------------
|
| 1435 |
|
|
-- Freeze_Before --
|
| 1436 |
|
|
-------------------
|
| 1437 |
|
|
|
| 1438 |
|
|
procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
|
| 1439 |
|
|
Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
|
| 1440 |
|
|
begin
|
| 1441 |
|
|
if Is_Non_Empty_List (Freeze_Nodes) then
|
| 1442 |
|
|
Insert_Actions (N, Freeze_Nodes);
|
| 1443 |
|
|
end if;
|
| 1444 |
|
|
end Freeze_Before;
|
| 1445 |
|
|
|
| 1446 |
|
|
-------------------
|
| 1447 |
|
|
-- Freeze_Entity --
|
| 1448 |
|
|
-------------------
|
| 1449 |
|
|
|
| 1450 |
|
|
function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
|
| 1451 |
|
|
Test_E : Entity_Id := E;
|
| 1452 |
|
|
Comp : Entity_Id;
|
| 1453 |
|
|
F_Node : Node_Id;
|
| 1454 |
|
|
Result : List_Id;
|
| 1455 |
|
|
Indx : Node_Id;
|
| 1456 |
|
|
Formal : Entity_Id;
|
| 1457 |
|
|
Atype : Entity_Id;
|
| 1458 |
|
|
|
| 1459 |
|
|
Has_Default_Initialization : Boolean := False;
|
| 1460 |
|
|
-- This flag gets set to true for a variable with default initialization
|
| 1461 |
|
|
|
| 1462 |
|
|
procedure Check_Current_Instance (Comp_Decl : Node_Id);
|
| 1463 |
|
|
-- Check that an Access or Unchecked_Access attribute with a prefix
|
| 1464 |
|
|
-- which is the current instance type can only be applied when the type
|
| 1465 |
|
|
-- is limited.
|
| 1466 |
|
|
|
| 1467 |
|
|
procedure Check_Suspicious_Modulus (Utype : Entity_Id);
|
| 1468 |
|
|
-- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
|
| 1469 |
|
|
-- integer literal without an explicit corresponding size clause. The
|
| 1470 |
|
|
-- caller has checked that Utype is a modular integer type.
|
| 1471 |
|
|
|
| 1472 |
|
|
function After_Last_Declaration return Boolean;
|
| 1473 |
|
|
-- If Loc is a freeze_entity that appears after the last declaration
|
| 1474 |
|
|
-- in the scope, inhibit error messages on late completion.
|
| 1475 |
|
|
|
| 1476 |
|
|
procedure Freeze_Record_Type (Rec : Entity_Id);
|
| 1477 |
|
|
-- Freeze each component, handle some representation clauses, and freeze
|
| 1478 |
|
|
-- primitive operations if this is a tagged type.
|
| 1479 |
|
|
|
| 1480 |
|
|
----------------------------
|
| 1481 |
|
|
-- After_Last_Declaration --
|
| 1482 |
|
|
----------------------------
|
| 1483 |
|
|
|
| 1484 |
|
|
function After_Last_Declaration return Boolean is
|
| 1485 |
|
|
Spec : constant Node_Id := Parent (Current_Scope);
|
| 1486 |
|
|
begin
|
| 1487 |
|
|
if Nkind (Spec) = N_Package_Specification then
|
| 1488 |
|
|
if Present (Private_Declarations (Spec)) then
|
| 1489 |
|
|
return Loc >= Sloc (Last (Private_Declarations (Spec)));
|
| 1490 |
|
|
elsif Present (Visible_Declarations (Spec)) then
|
| 1491 |
|
|
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
|
| 1492 |
|
|
else
|
| 1493 |
|
|
return False;
|
| 1494 |
|
|
end if;
|
| 1495 |
|
|
else
|
| 1496 |
|
|
return False;
|
| 1497 |
|
|
end if;
|
| 1498 |
|
|
end After_Last_Declaration;
|
| 1499 |
|
|
|
| 1500 |
|
|
----------------------------
|
| 1501 |
|
|
-- Check_Current_Instance --
|
| 1502 |
|
|
----------------------------
|
| 1503 |
|
|
|
| 1504 |
|
|
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
|
| 1505 |
|
|
|
| 1506 |
|
|
Rec_Type : constant Entity_Id :=
|
| 1507 |
|
|
Scope (Defining_Identifier (Comp_Decl));
|
| 1508 |
|
|
|
| 1509 |
|
|
Decl : constant Node_Id := Parent (Rec_Type);
|
| 1510 |
|
|
|
| 1511 |
|
|
function Process (N : Node_Id) return Traverse_Result;
|
| 1512 |
|
|
-- Process routine to apply check to given node
|
| 1513 |
|
|
|
| 1514 |
|
|
-------------
|
| 1515 |
|
|
-- Process --
|
| 1516 |
|
|
-------------
|
| 1517 |
|
|
|
| 1518 |
|
|
function Process (N : Node_Id) return Traverse_Result is
|
| 1519 |
|
|
begin
|
| 1520 |
|
|
case Nkind (N) is
|
| 1521 |
|
|
when N_Attribute_Reference =>
|
| 1522 |
|
|
if (Attribute_Name (N) = Name_Access
|
| 1523 |
|
|
or else
|
| 1524 |
|
|
Attribute_Name (N) = Name_Unchecked_Access)
|
| 1525 |
|
|
and then Is_Entity_Name (Prefix (N))
|
| 1526 |
|
|
and then Is_Type (Entity (Prefix (N)))
|
| 1527 |
|
|
and then Entity (Prefix (N)) = E
|
| 1528 |
|
|
then
|
| 1529 |
|
|
Error_Msg_N
|
| 1530 |
|
|
("current instance must be a limited type", Prefix (N));
|
| 1531 |
|
|
return Abandon;
|
| 1532 |
|
|
else
|
| 1533 |
|
|
return OK;
|
| 1534 |
|
|
end if;
|
| 1535 |
|
|
|
| 1536 |
|
|
when others => return OK;
|
| 1537 |
|
|
end case;
|
| 1538 |
|
|
end Process;
|
| 1539 |
|
|
|
| 1540 |
|
|
procedure Traverse is new Traverse_Proc (Process);
|
| 1541 |
|
|
|
| 1542 |
|
|
-- Start of processing for Check_Current_Instance
|
| 1543 |
|
|
|
| 1544 |
|
|
begin
|
| 1545 |
|
|
-- In Ada95, the (imprecise) rule is that the current instance of a
|
| 1546 |
|
|
-- limited type is aliased. In Ada2005, limitedness must be explicit:
|
| 1547 |
|
|
-- either a tagged type, or a limited record.
|
| 1548 |
|
|
|
| 1549 |
|
|
if Is_Limited_Type (Rec_Type)
|
| 1550 |
|
|
and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
|
| 1551 |
|
|
then
|
| 1552 |
|
|
return;
|
| 1553 |
|
|
|
| 1554 |
|
|
elsif Nkind (Decl) = N_Full_Type_Declaration
|
| 1555 |
|
|
and then Limited_Present (Type_Definition (Decl))
|
| 1556 |
|
|
then
|
| 1557 |
|
|
return;
|
| 1558 |
|
|
|
| 1559 |
|
|
else
|
| 1560 |
|
|
Traverse (Comp_Decl);
|
| 1561 |
|
|
end if;
|
| 1562 |
|
|
end Check_Current_Instance;
|
| 1563 |
|
|
|
| 1564 |
|
|
------------------------------
|
| 1565 |
|
|
-- Check_Suspicious_Modulus --
|
| 1566 |
|
|
------------------------------
|
| 1567 |
|
|
|
| 1568 |
|
|
procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
|
| 1569 |
|
|
Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
|
| 1570 |
|
|
|
| 1571 |
|
|
begin
|
| 1572 |
|
|
if Nkind (Decl) = N_Full_Type_Declaration then
|
| 1573 |
|
|
declare
|
| 1574 |
|
|
Tdef : constant Node_Id := Type_Definition (Decl);
|
| 1575 |
|
|
begin
|
| 1576 |
|
|
if Nkind (Tdef) = N_Modular_Type_Definition then
|
| 1577 |
|
|
declare
|
| 1578 |
|
|
Modulus : constant Node_Id :=
|
| 1579 |
|
|
Original_Node (Expression (Tdef));
|
| 1580 |
|
|
begin
|
| 1581 |
|
|
if Nkind (Modulus) = N_Integer_Literal then
|
| 1582 |
|
|
declare
|
| 1583 |
|
|
Modv : constant Uint := Intval (Modulus);
|
| 1584 |
|
|
Sizv : constant Uint := RM_Size (Utype);
|
| 1585 |
|
|
|
| 1586 |
|
|
begin
|
| 1587 |
|
|
-- First case, modulus and size are the same. This
|
| 1588 |
|
|
-- happens if you have something like mod 32, with
|
| 1589 |
|
|
-- an explicit size of 32, this is for sure a case
|
| 1590 |
|
|
-- where the warning is given, since it is seems
|
| 1591 |
|
|
-- very unlikely that someone would want e.g. a
|
| 1592 |
|
|
-- five bit type stored in 32 bits. It is much
|
| 1593 |
|
|
-- more likely they wanted a 32-bit type.
|
| 1594 |
|
|
|
| 1595 |
|
|
if Modv = Sizv then
|
| 1596 |
|
|
null;
|
| 1597 |
|
|
|
| 1598 |
|
|
-- Second case, the modulus is 32 or 64 and no
|
| 1599 |
|
|
-- size clause is present. This is a less clear
|
| 1600 |
|
|
-- case for giving the warning, but in the case
|
| 1601 |
|
|
-- of 32/64 (5-bit or 6-bit types) these seem rare
|
| 1602 |
|
|
-- enough that it is a likely error (and in any
|
| 1603 |
|
|
-- case using 2**5 or 2**6 in these cases seems
|
| 1604 |
|
|
-- clearer. We don't include 8 or 16 here, simply
|
| 1605 |
|
|
-- because in practice 3-bit and 4-bit types are
|
| 1606 |
|
|
-- more common and too many false positives if
|
| 1607 |
|
|
-- we warn in these cases.
|
| 1608 |
|
|
|
| 1609 |
|
|
elsif not Has_Size_Clause (Utype)
|
| 1610 |
|
|
and then (Modv = Uint_32 or else Modv = Uint_64)
|
| 1611 |
|
|
then
|
| 1612 |
|
|
null;
|
| 1613 |
|
|
|
| 1614 |
|
|
-- No warning needed
|
| 1615 |
|
|
|
| 1616 |
|
|
else
|
| 1617 |
|
|
return;
|
| 1618 |
|
|
end if;
|
| 1619 |
|
|
|
| 1620 |
|
|
-- If we fall through, give warning
|
| 1621 |
|
|
|
| 1622 |
|
|
Error_Msg_Uint_1 := Modv;
|
| 1623 |
|
|
Error_Msg_N
|
| 1624 |
|
|
("?2 '*'*^' may have been intended here",
|
| 1625 |
|
|
Modulus);
|
| 1626 |
|
|
end;
|
| 1627 |
|
|
end if;
|
| 1628 |
|
|
end;
|
| 1629 |
|
|
end if;
|
| 1630 |
|
|
end;
|
| 1631 |
|
|
end if;
|
| 1632 |
|
|
end Check_Suspicious_Modulus;
|
| 1633 |
|
|
|
| 1634 |
|
|
------------------------
|
| 1635 |
|
|
-- Freeze_Record_Type --
|
| 1636 |
|
|
------------------------
|
| 1637 |
|
|
|
| 1638 |
|
|
procedure Freeze_Record_Type (Rec : Entity_Id) is
|
| 1639 |
|
|
Comp : Entity_Id;
|
| 1640 |
|
|
IR : Node_Id;
|
| 1641 |
|
|
ADC : Node_Id;
|
| 1642 |
|
|
Prev : Entity_Id;
|
| 1643 |
|
|
|
| 1644 |
|
|
Junk : Boolean;
|
| 1645 |
|
|
pragma Warnings (Off, Junk);
|
| 1646 |
|
|
|
| 1647 |
|
|
Unplaced_Component : Boolean := False;
|
| 1648 |
|
|
-- Set True if we find at least one component with no component
|
| 1649 |
|
|
-- clause (used to warn about useless Pack pragmas).
|
| 1650 |
|
|
|
| 1651 |
|
|
Placed_Component : Boolean := False;
|
| 1652 |
|
|
-- Set True if we find at least one component with a component
|
| 1653 |
|
|
-- clause (used to warn about useless Bit_Order pragmas, and also
|
| 1654 |
|
|
-- to detect cases where Implicit_Packing may have an effect).
|
| 1655 |
|
|
|
| 1656 |
|
|
All_Scalar_Components : Boolean := True;
|
| 1657 |
|
|
-- Set False if we encounter a component of a non-scalar type
|
| 1658 |
|
|
|
| 1659 |
|
|
Scalar_Component_Total_RM_Size : Uint := Uint_0;
|
| 1660 |
|
|
Scalar_Component_Total_Esize : Uint := Uint_0;
|
| 1661 |
|
|
-- Accumulates total RM_Size values and total Esize values of all
|
| 1662 |
|
|
-- scalar components. Used for processing of Implicit_Packing.
|
| 1663 |
|
|
|
| 1664 |
|
|
function Check_Allocator (N : Node_Id) return Node_Id;
|
| 1665 |
|
|
-- If N is an allocator, possibly wrapped in one or more level of
|
| 1666 |
|
|
-- qualified expression(s), return the inner allocator node, else
|
| 1667 |
|
|
-- return Empty.
|
| 1668 |
|
|
|
| 1669 |
|
|
procedure Check_Itype (Typ : Entity_Id);
|
| 1670 |
|
|
-- If the component subtype is an access to a constrained subtype of
|
| 1671 |
|
|
-- an already frozen type, make the subtype frozen as well. It might
|
| 1672 |
|
|
-- otherwise be frozen in the wrong scope, and a freeze node on
|
| 1673 |
|
|
-- subtype has no effect. Similarly, if the component subtype is a
|
| 1674 |
|
|
-- regular (not protected) access to subprogram, set the anonymous
|
| 1675 |
|
|
-- subprogram type to frozen as well, to prevent an out-of-scope
|
| 1676 |
|
|
-- freeze node at some eventual point of call. Protected operations
|
| 1677 |
|
|
-- are handled elsewhere.
|
| 1678 |
|
|
|
| 1679 |
|
|
---------------------
|
| 1680 |
|
|
-- Check_Allocator --
|
| 1681 |
|
|
---------------------
|
| 1682 |
|
|
|
| 1683 |
|
|
function Check_Allocator (N : Node_Id) return Node_Id is
|
| 1684 |
|
|
Inner : Node_Id;
|
| 1685 |
|
|
begin
|
| 1686 |
|
|
Inner := N;
|
| 1687 |
|
|
loop
|
| 1688 |
|
|
if Nkind (Inner) = N_Allocator then
|
| 1689 |
|
|
return Inner;
|
| 1690 |
|
|
elsif Nkind (Inner) = N_Qualified_Expression then
|
| 1691 |
|
|
Inner := Expression (Inner);
|
| 1692 |
|
|
else
|
| 1693 |
|
|
return Empty;
|
| 1694 |
|
|
end if;
|
| 1695 |
|
|
end loop;
|
| 1696 |
|
|
end Check_Allocator;
|
| 1697 |
|
|
|
| 1698 |
|
|
-----------------
|
| 1699 |
|
|
-- Check_Itype --
|
| 1700 |
|
|
-----------------
|
| 1701 |
|
|
|
| 1702 |
|
|
procedure Check_Itype (Typ : Entity_Id) is
|
| 1703 |
|
|
Desig : constant Entity_Id := Designated_Type (Typ);
|
| 1704 |
|
|
|
| 1705 |
|
|
begin
|
| 1706 |
|
|
if not Is_Frozen (Desig)
|
| 1707 |
|
|
and then Is_Frozen (Base_Type (Desig))
|
| 1708 |
|
|
then
|
| 1709 |
|
|
Set_Is_Frozen (Desig);
|
| 1710 |
|
|
|
| 1711 |
|
|
-- In addition, add an Itype_Reference to ensure that the
|
| 1712 |
|
|
-- access subtype is elaborated early enough. This cannot be
|
| 1713 |
|
|
-- done if the subtype may depend on discriminants.
|
| 1714 |
|
|
|
| 1715 |
|
|
if Ekind (Comp) = E_Component
|
| 1716 |
|
|
and then Is_Itype (Etype (Comp))
|
| 1717 |
|
|
and then not Has_Discriminants (Rec)
|
| 1718 |
|
|
then
|
| 1719 |
|
|
IR := Make_Itype_Reference (Sloc (Comp));
|
| 1720 |
|
|
Set_Itype (IR, Desig);
|
| 1721 |
|
|
|
| 1722 |
|
|
if No (Result) then
|
| 1723 |
|
|
Result := New_List (IR);
|
| 1724 |
|
|
else
|
| 1725 |
|
|
Append (IR, Result);
|
| 1726 |
|
|
end if;
|
| 1727 |
|
|
end if;
|
| 1728 |
|
|
|
| 1729 |
|
|
elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
|
| 1730 |
|
|
and then Convention (Desig) /= Convention_Protected
|
| 1731 |
|
|
then
|
| 1732 |
|
|
Set_Is_Frozen (Desig);
|
| 1733 |
|
|
end if;
|
| 1734 |
|
|
end Check_Itype;
|
| 1735 |
|
|
|
| 1736 |
|
|
-- Start of processing for Freeze_Record_Type
|
| 1737 |
|
|
|
| 1738 |
|
|
begin
|
| 1739 |
|
|
-- If this is a subtype of a controlled type, declared without a
|
| 1740 |
|
|
-- constraint, the _controller may not appear in the component list
|
| 1741 |
|
|
-- if the parent was not frozen at the point of subtype declaration.
|
| 1742 |
|
|
-- Inherit the _controller component now.
|
| 1743 |
|
|
|
| 1744 |
|
|
if Rec /= Base_Type (Rec)
|
| 1745 |
|
|
and then Has_Controlled_Component (Rec)
|
| 1746 |
|
|
then
|
| 1747 |
|
|
if Nkind (Parent (Rec)) = N_Subtype_Declaration
|
| 1748 |
|
|
and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
|
| 1749 |
|
|
then
|
| 1750 |
|
|
Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
|
| 1751 |
|
|
|
| 1752 |
|
|
-- If this is an internal type without a declaration, as for
|
| 1753 |
|
|
-- record component, the base type may not yet be frozen, and its
|
| 1754 |
|
|
-- controller has not been created. Add an explicit freeze node
|
| 1755 |
|
|
-- for the itype, so it will be frozen after the base type. This
|
| 1756 |
|
|
-- freeze node is used to communicate with the expander, in order
|
| 1757 |
|
|
-- to create the controller for the enclosing record, and it is
|
| 1758 |
|
|
-- deleted afterwards (see exp_ch3). It must not be created when
|
| 1759 |
|
|
-- expansion is off, because it might appear in the wrong context
|
| 1760 |
|
|
-- for the back end.
|
| 1761 |
|
|
|
| 1762 |
|
|
elsif Is_Itype (Rec)
|
| 1763 |
|
|
and then Has_Delayed_Freeze (Base_Type (Rec))
|
| 1764 |
|
|
and then
|
| 1765 |
|
|
Nkind (Associated_Node_For_Itype (Rec)) =
|
| 1766 |
|
|
N_Component_Declaration
|
| 1767 |
|
|
and then Expander_Active
|
| 1768 |
|
|
then
|
| 1769 |
|
|
Ensure_Freeze_Node (Rec);
|
| 1770 |
|
|
end if;
|
| 1771 |
|
|
end if;
|
| 1772 |
|
|
|
| 1773 |
|
|
-- Freeze components and embedded subtypes
|
| 1774 |
|
|
|
| 1775 |
|
|
Comp := First_Entity (Rec);
|
| 1776 |
|
|
Prev := Empty;
|
| 1777 |
|
|
while Present (Comp) loop
|
| 1778 |
|
|
|
| 1779 |
|
|
-- First handle the (real) component case
|
| 1780 |
|
|
|
| 1781 |
|
|
if Ekind (Comp) = E_Component
|
| 1782 |
|
|
or else Ekind (Comp) = E_Discriminant
|
| 1783 |
|
|
then
|
| 1784 |
|
|
declare
|
| 1785 |
|
|
CC : constant Node_Id := Component_Clause (Comp);
|
| 1786 |
|
|
|
| 1787 |
|
|
begin
|
| 1788 |
|
|
-- Freezing a record type freezes the type of each of its
|
| 1789 |
|
|
-- components. However, if the type of the component is
|
| 1790 |
|
|
-- part of this record, we do not want or need a separate
|
| 1791 |
|
|
-- Freeze_Node. Note that Is_Itype is wrong because that's
|
| 1792 |
|
|
-- also set in private type cases. We also can't check for
|
| 1793 |
|
|
-- the Scope being exactly Rec because of private types and
|
| 1794 |
|
|
-- record extensions.
|
| 1795 |
|
|
|
| 1796 |
|
|
if Is_Itype (Etype (Comp))
|
| 1797 |
|
|
and then Is_Record_Type (Underlying_Type
|
| 1798 |
|
|
(Scope (Etype (Comp))))
|
| 1799 |
|
|
then
|
| 1800 |
|
|
Undelay_Type (Etype (Comp));
|
| 1801 |
|
|
end if;
|
| 1802 |
|
|
|
| 1803 |
|
|
Freeze_And_Append (Etype (Comp), Loc, Result);
|
| 1804 |
|
|
|
| 1805 |
|
|
-- Check for error of component clause given for variable
|
| 1806 |
|
|
-- sized type. We have to delay this test till this point,
|
| 1807 |
|
|
-- since the component type has to be frozen for us to know
|
| 1808 |
|
|
-- if it is variable length. We omit this test in a generic
|
| 1809 |
|
|
-- context, it will be applied at instantiation time.
|
| 1810 |
|
|
|
| 1811 |
|
|
if Present (CC) then
|
| 1812 |
|
|
Placed_Component := True;
|
| 1813 |
|
|
|
| 1814 |
|
|
if Inside_A_Generic then
|
| 1815 |
|
|
null;
|
| 1816 |
|
|
|
| 1817 |
|
|
elsif not
|
| 1818 |
|
|
Size_Known_At_Compile_Time
|
| 1819 |
|
|
(Underlying_Type (Etype (Comp)))
|
| 1820 |
|
|
then
|
| 1821 |
|
|
Error_Msg_N
|
| 1822 |
|
|
("component clause not allowed for variable " &
|
| 1823 |
|
|
"length component", CC);
|
| 1824 |
|
|
end if;
|
| 1825 |
|
|
|
| 1826 |
|
|
else
|
| 1827 |
|
|
Unplaced_Component := True;
|
| 1828 |
|
|
end if;
|
| 1829 |
|
|
|
| 1830 |
|
|
-- Case of component requires byte alignment
|
| 1831 |
|
|
|
| 1832 |
|
|
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
|
| 1833 |
|
|
|
| 1834 |
|
|
-- Set the enclosing record to also require byte align
|
| 1835 |
|
|
|
| 1836 |
|
|
Set_Must_Be_On_Byte_Boundary (Rec);
|
| 1837 |
|
|
|
| 1838 |
|
|
-- Check for component clause that is inconsistent with
|
| 1839 |
|
|
-- the required byte boundary alignment.
|
| 1840 |
|
|
|
| 1841 |
|
|
if Present (CC)
|
| 1842 |
|
|
and then Normalized_First_Bit (Comp) mod
|
| 1843 |
|
|
System_Storage_Unit /= 0
|
| 1844 |
|
|
then
|
| 1845 |
|
|
Error_Msg_N
|
| 1846 |
|
|
("component & must be byte aligned",
|
| 1847 |
|
|
Component_Name (Component_Clause (Comp)));
|
| 1848 |
|
|
end if;
|
| 1849 |
|
|
end if;
|
| 1850 |
|
|
|
| 1851 |
|
|
-- If component clause is present, then deal with the non-
|
| 1852 |
|
|
-- default bit order case for Ada 95 mode. The required
|
| 1853 |
|
|
-- processing for Ada 2005 mode is handled separately after
|
| 1854 |
|
|
-- processing all components.
|
| 1855 |
|
|
|
| 1856 |
|
|
-- We only do this processing for the base type, and in
|
| 1857 |
|
|
-- fact that's important, since otherwise if there are
|
| 1858 |
|
|
-- record subtypes, we could reverse the bits once for
|
| 1859 |
|
|
-- each subtype, which would be incorrect.
|
| 1860 |
|
|
|
| 1861 |
|
|
if Present (CC)
|
| 1862 |
|
|
and then Reverse_Bit_Order (Rec)
|
| 1863 |
|
|
and then Ekind (E) = E_Record_Type
|
| 1864 |
|
|
and then Ada_Version <= Ada_95
|
| 1865 |
|
|
then
|
| 1866 |
|
|
declare
|
| 1867 |
|
|
CFB : constant Uint := Component_Bit_Offset (Comp);
|
| 1868 |
|
|
CSZ : constant Uint := Esize (Comp);
|
| 1869 |
|
|
CLC : constant Node_Id := Component_Clause (Comp);
|
| 1870 |
|
|
Pos : constant Node_Id := Position (CLC);
|
| 1871 |
|
|
FB : constant Node_Id := First_Bit (CLC);
|
| 1872 |
|
|
|
| 1873 |
|
|
Storage_Unit_Offset : constant Uint :=
|
| 1874 |
|
|
CFB / System_Storage_Unit;
|
| 1875 |
|
|
|
| 1876 |
|
|
Start_Bit : constant Uint :=
|
| 1877 |
|
|
CFB mod System_Storage_Unit;
|
| 1878 |
|
|
|
| 1879 |
|
|
begin
|
| 1880 |
|
|
-- Cases where field goes over storage unit boundary
|
| 1881 |
|
|
|
| 1882 |
|
|
if Start_Bit + CSZ > System_Storage_Unit then
|
| 1883 |
|
|
|
| 1884 |
|
|
-- Allow multi-byte field but generate warning
|
| 1885 |
|
|
|
| 1886 |
|
|
if Start_Bit mod System_Storage_Unit = 0
|
| 1887 |
|
|
and then CSZ mod System_Storage_Unit = 0
|
| 1888 |
|
|
then
|
| 1889 |
|
|
Error_Msg_N
|
| 1890 |
|
|
("multi-byte field specified with non-standard"
|
| 1891 |
|
|
& " Bit_Order?", CLC);
|
| 1892 |
|
|
|
| 1893 |
|
|
if Bytes_Big_Endian then
|
| 1894 |
|
|
Error_Msg_N
|
| 1895 |
|
|
("bytes are not reversed "
|
| 1896 |
|
|
& "(component is big-endian)?", CLC);
|
| 1897 |
|
|
else
|
| 1898 |
|
|
Error_Msg_N
|
| 1899 |
|
|
("bytes are not reversed "
|
| 1900 |
|
|
& "(component is little-endian)?", CLC);
|
| 1901 |
|
|
end if;
|
| 1902 |
|
|
|
| 1903 |
|
|
-- Do not allow non-contiguous field
|
| 1904 |
|
|
|
| 1905 |
|
|
else
|
| 1906 |
|
|
Error_Msg_N
|
| 1907 |
|
|
("attempt to specify non-contiguous field "
|
| 1908 |
|
|
& "not permitted", CLC);
|
| 1909 |
|
|
Error_Msg_N
|
| 1910 |
|
|
("\caused by non-standard Bit_Order "
|
| 1911 |
|
|
& "specified", CLC);
|
| 1912 |
|
|
Error_Msg_N
|
| 1913 |
|
|
("\consider possibility of using "
|
| 1914 |
|
|
& "Ada 2005 mode here", CLC);
|
| 1915 |
|
|
end if;
|
| 1916 |
|
|
|
| 1917 |
|
|
-- Case where field fits in one storage unit
|
| 1918 |
|
|
|
| 1919 |
|
|
else
|
| 1920 |
|
|
-- Give warning if suspicious component clause
|
| 1921 |
|
|
|
| 1922 |
|
|
if Intval (FB) >= System_Storage_Unit
|
| 1923 |
|
|
and then Warn_On_Reverse_Bit_Order
|
| 1924 |
|
|
then
|
| 1925 |
|
|
Error_Msg_N
|
| 1926 |
|
|
("?Bit_Order clause does not affect " &
|
| 1927 |
|
|
"byte ordering", Pos);
|
| 1928 |
|
|
Error_Msg_Uint_1 :=
|
| 1929 |
|
|
Intval (Pos) + Intval (FB) /
|
| 1930 |
|
|
System_Storage_Unit;
|
| 1931 |
|
|
Error_Msg_N
|
| 1932 |
|
|
("?position normalized to ^ before bit " &
|
| 1933 |
|
|
"order interpreted", Pos);
|
| 1934 |
|
|
end if;
|
| 1935 |
|
|
|
| 1936 |
|
|
-- Here is where we fix up the Component_Bit_Offset
|
| 1937 |
|
|
-- value to account for the reverse bit order.
|
| 1938 |
|
|
-- Some examples of what needs to be done are:
|
| 1939 |
|
|
|
| 1940 |
|
|
-- First_Bit .. Last_Bit Component_Bit_Offset
|
| 1941 |
|
|
-- old new old new
|
| 1942 |
|
|
|
| 1943 |
|
|
-- 0 .. 0 7 .. 7 0 7
|
| 1944 |
|
|
-- 0 .. 1 6 .. 7 0 6
|
| 1945 |
|
|
-- 0 .. 2 5 .. 7 0 5
|
| 1946 |
|
|
-- 0 .. 7 0 .. 7 0 4
|
| 1947 |
|
|
|
| 1948 |
|
|
-- 1 .. 1 6 .. 6 1 6
|
| 1949 |
|
|
-- 1 .. 4 3 .. 6 1 3
|
| 1950 |
|
|
-- 4 .. 7 0 .. 3 4 0
|
| 1951 |
|
|
|
| 1952 |
|
|
-- The general rule is that the first bit is
|
| 1953 |
|
|
-- is obtained by subtracting the old ending bit
|
| 1954 |
|
|
-- from storage_unit - 1.
|
| 1955 |
|
|
|
| 1956 |
|
|
Set_Component_Bit_Offset
|
| 1957 |
|
|
(Comp,
|
| 1958 |
|
|
(Storage_Unit_Offset * System_Storage_Unit) +
|
| 1959 |
|
|
(System_Storage_Unit - 1) -
|
| 1960 |
|
|
(Start_Bit + CSZ - 1));
|
| 1961 |
|
|
|
| 1962 |
|
|
Set_Normalized_First_Bit
|
| 1963 |
|
|
(Comp,
|
| 1964 |
|
|
Component_Bit_Offset (Comp) mod
|
| 1965 |
|
|
System_Storage_Unit);
|
| 1966 |
|
|
end if;
|
| 1967 |
|
|
end;
|
| 1968 |
|
|
end if;
|
| 1969 |
|
|
end;
|
| 1970 |
|
|
end if;
|
| 1971 |
|
|
|
| 1972 |
|
|
-- Gather data for possible Implicit_Packing later
|
| 1973 |
|
|
|
| 1974 |
|
|
if not Is_Scalar_Type (Etype (Comp)) then
|
| 1975 |
|
|
All_Scalar_Components := False;
|
| 1976 |
|
|
else
|
| 1977 |
|
|
Scalar_Component_Total_RM_Size :=
|
| 1978 |
|
|
Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
|
| 1979 |
|
|
Scalar_Component_Total_Esize :=
|
| 1980 |
|
|
Scalar_Component_Total_Esize + Esize (Etype (Comp));
|
| 1981 |
|
|
end if;
|
| 1982 |
|
|
|
| 1983 |
|
|
-- If the component is an Itype with Delayed_Freeze and is either
|
| 1984 |
|
|
-- a record or array subtype and its base type has not yet been
|
| 1985 |
|
|
-- frozen, we must remove this from the entity list of this
|
| 1986 |
|
|
-- record and put it on the entity list of the scope of its base
|
| 1987 |
|
|
-- type. Note that we know that this is not the type of a
|
| 1988 |
|
|
-- component since we cleared Has_Delayed_Freeze for it in the
|
| 1989 |
|
|
-- previous loop. Thus this must be the Designated_Type of an
|
| 1990 |
|
|
-- access type, which is the type of a component.
|
| 1991 |
|
|
|
| 1992 |
|
|
if Is_Itype (Comp)
|
| 1993 |
|
|
and then Is_Type (Scope (Comp))
|
| 1994 |
|
|
and then Is_Composite_Type (Comp)
|
| 1995 |
|
|
and then Base_Type (Comp) /= Comp
|
| 1996 |
|
|
and then Has_Delayed_Freeze (Comp)
|
| 1997 |
|
|
and then not Is_Frozen (Base_Type (Comp))
|
| 1998 |
|
|
then
|
| 1999 |
|
|
declare
|
| 2000 |
|
|
Will_Be_Frozen : Boolean := False;
|
| 2001 |
|
|
S : Entity_Id;
|
| 2002 |
|
|
|
| 2003 |
|
|
begin
|
| 2004 |
|
|
-- We have a pretty bad kludge here. Suppose Rec is subtype
|
| 2005 |
|
|
-- being defined in a subprogram that's created as part of
|
| 2006 |
|
|
-- the freezing of Rec'Base. In that case, we know that
|
| 2007 |
|
|
-- Comp'Base must have already been frozen by the time we
|
| 2008 |
|
|
-- get to elaborate this because Gigi doesn't elaborate any
|
| 2009 |
|
|
-- bodies until it has elaborated all of the declarative
|
| 2010 |
|
|
-- part. But Is_Frozen will not be set at this point because
|
| 2011 |
|
|
-- we are processing code in lexical order.
|
| 2012 |
|
|
|
| 2013 |
|
|
-- We detect this case by going up the Scope chain of Rec
|
| 2014 |
|
|
-- and seeing if we have a subprogram scope before reaching
|
| 2015 |
|
|
-- the top of the scope chain or that of Comp'Base. If we
|
| 2016 |
|
|
-- do, then mark that Comp'Base will actually be frozen. If
|
| 2017 |
|
|
-- so, we merely undelay it.
|
| 2018 |
|
|
|
| 2019 |
|
|
S := Scope (Rec);
|
| 2020 |
|
|
while Present (S) loop
|
| 2021 |
|
|
if Is_Subprogram (S) then
|
| 2022 |
|
|
Will_Be_Frozen := True;
|
| 2023 |
|
|
exit;
|
| 2024 |
|
|
elsif S = Scope (Base_Type (Comp)) then
|
| 2025 |
|
|
exit;
|
| 2026 |
|
|
end if;
|
| 2027 |
|
|
|
| 2028 |
|
|
S := Scope (S);
|
| 2029 |
|
|
end loop;
|
| 2030 |
|
|
|
| 2031 |
|
|
if Will_Be_Frozen then
|
| 2032 |
|
|
Undelay_Type (Comp);
|
| 2033 |
|
|
else
|
| 2034 |
|
|
if Present (Prev) then
|
| 2035 |
|
|
Set_Next_Entity (Prev, Next_Entity (Comp));
|
| 2036 |
|
|
else
|
| 2037 |
|
|
Set_First_Entity (Rec, Next_Entity (Comp));
|
| 2038 |
|
|
end if;
|
| 2039 |
|
|
|
| 2040 |
|
|
-- Insert in entity list of scope of base type (which
|
| 2041 |
|
|
-- must be an enclosing scope, because still unfrozen).
|
| 2042 |
|
|
|
| 2043 |
|
|
Append_Entity (Comp, Scope (Base_Type (Comp)));
|
| 2044 |
|
|
end if;
|
| 2045 |
|
|
end;
|
| 2046 |
|
|
|
| 2047 |
|
|
-- If the component is an access type with an allocator as default
|
| 2048 |
|
|
-- value, the designated type will be frozen by the corresponding
|
| 2049 |
|
|
-- expression in init_proc. In order to place the freeze node for
|
| 2050 |
|
|
-- the designated type before that for the current record type,
|
| 2051 |
|
|
-- freeze it now.
|
| 2052 |
|
|
|
| 2053 |
|
|
-- Same process if the component is an array of access types,
|
| 2054 |
|
|
-- initialized with an aggregate. If the designated type is
|
| 2055 |
|
|
-- private, it cannot contain allocators, and it is premature
|
| 2056 |
|
|
-- to freeze the type, so we check for this as well.
|
| 2057 |
|
|
|
| 2058 |
|
|
elsif Is_Access_Type (Etype (Comp))
|
| 2059 |
|
|
and then Present (Parent (Comp))
|
| 2060 |
|
|
and then Present (Expression (Parent (Comp)))
|
| 2061 |
|
|
then
|
| 2062 |
|
|
declare
|
| 2063 |
|
|
Alloc : constant Node_Id :=
|
| 2064 |
|
|
Check_Allocator (Expression (Parent (Comp)));
|
| 2065 |
|
|
|
| 2066 |
|
|
begin
|
| 2067 |
|
|
if Present (Alloc) then
|
| 2068 |
|
|
|
| 2069 |
|
|
-- If component is pointer to a classwide type, freeze
|
| 2070 |
|
|
-- the specific type in the expression being allocated.
|
| 2071 |
|
|
-- The expression may be a subtype indication, in which
|
| 2072 |
|
|
-- case freeze the subtype mark.
|
| 2073 |
|
|
|
| 2074 |
|
|
if Is_Class_Wide_Type
|
| 2075 |
|
|
(Designated_Type (Etype (Comp)))
|
| 2076 |
|
|
then
|
| 2077 |
|
|
if Is_Entity_Name (Expression (Alloc)) then
|
| 2078 |
|
|
Freeze_And_Append
|
| 2079 |
|
|
(Entity (Expression (Alloc)), Loc, Result);
|
| 2080 |
|
|
elsif
|
| 2081 |
|
|
Nkind (Expression (Alloc)) = N_Subtype_Indication
|
| 2082 |
|
|
then
|
| 2083 |
|
|
Freeze_And_Append
|
| 2084 |
|
|
(Entity (Subtype_Mark (Expression (Alloc))),
|
| 2085 |
|
|
Loc, Result);
|
| 2086 |
|
|
end if;
|
| 2087 |
|
|
|
| 2088 |
|
|
elsif Is_Itype (Designated_Type (Etype (Comp))) then
|
| 2089 |
|
|
Check_Itype (Etype (Comp));
|
| 2090 |
|
|
|
| 2091 |
|
|
else
|
| 2092 |
|
|
Freeze_And_Append
|
| 2093 |
|
|
(Designated_Type (Etype (Comp)), Loc, Result);
|
| 2094 |
|
|
end if;
|
| 2095 |
|
|
end if;
|
| 2096 |
|
|
end;
|
| 2097 |
|
|
|
| 2098 |
|
|
elsif Is_Access_Type (Etype (Comp))
|
| 2099 |
|
|
and then Is_Itype (Designated_Type (Etype (Comp)))
|
| 2100 |
|
|
then
|
| 2101 |
|
|
Check_Itype (Etype (Comp));
|
| 2102 |
|
|
|
| 2103 |
|
|
elsif Is_Array_Type (Etype (Comp))
|
| 2104 |
|
|
and then Is_Access_Type (Component_Type (Etype (Comp)))
|
| 2105 |
|
|
and then Present (Parent (Comp))
|
| 2106 |
|
|
and then Nkind (Parent (Comp)) = N_Component_Declaration
|
| 2107 |
|
|
and then Present (Expression (Parent (Comp)))
|
| 2108 |
|
|
and then Nkind (Expression (Parent (Comp))) = N_Aggregate
|
| 2109 |
|
|
and then Is_Fully_Defined
|
| 2110 |
|
|
(Designated_Type (Component_Type (Etype (Comp))))
|
| 2111 |
|
|
then
|
| 2112 |
|
|
Freeze_And_Append
|
| 2113 |
|
|
(Designated_Type
|
| 2114 |
|
|
(Component_Type (Etype (Comp))), Loc, Result);
|
| 2115 |
|
|
end if;
|
| 2116 |
|
|
|
| 2117 |
|
|
Prev := Comp;
|
| 2118 |
|
|
Next_Entity (Comp);
|
| 2119 |
|
|
end loop;
|
| 2120 |
|
|
|
| 2121 |
|
|
-- Deal with pragma Bit_Order
|
| 2122 |
|
|
|
| 2123 |
|
|
if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
|
| 2124 |
|
|
if not Placed_Component then
|
| 2125 |
|
|
ADC :=
|
| 2126 |
|
|
Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
|
| 2127 |
|
|
Error_Msg_N
|
| 2128 |
|
|
("?Bit_Order specification has no effect", ADC);
|
| 2129 |
|
|
Error_Msg_N
|
| 2130 |
|
|
("\?since no component clauses were specified", ADC);
|
| 2131 |
|
|
|
| 2132 |
|
|
-- Here is where we do Ada 2005 processing for bit order (the Ada
|
| 2133 |
|
|
-- 95 case was already taken care of above).
|
| 2134 |
|
|
|
| 2135 |
|
|
elsif Ada_Version >= Ada_05 then
|
| 2136 |
|
|
Adjust_Record_For_Reverse_Bit_Order (Rec);
|
| 2137 |
|
|
end if;
|
| 2138 |
|
|
end if;
|
| 2139 |
|
|
|
| 2140 |
|
|
-- Set OK_To_Reorder_Components depending on debug flags
|
| 2141 |
|
|
|
| 2142 |
|
|
if Rec = Base_Type (Rec)
|
| 2143 |
|
|
and then Convention (Rec) = Convention_Ada
|
| 2144 |
|
|
then
|
| 2145 |
|
|
if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
|
| 2146 |
|
|
or else
|
| 2147 |
|
|
(not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
|
| 2148 |
|
|
then
|
| 2149 |
|
|
Set_OK_To_Reorder_Components (Rec);
|
| 2150 |
|
|
end if;
|
| 2151 |
|
|
end if;
|
| 2152 |
|
|
|
| 2153 |
|
|
-- Check for useless pragma Pack when all components placed. We only
|
| 2154 |
|
|
-- do this check for record types, not subtypes, since a subtype may
|
| 2155 |
|
|
-- have all its components placed, and it still makes perfectly good
|
| 2156 |
|
|
-- sense to pack other subtypes or the parent type. We do not give
|
| 2157 |
|
|
-- this warning if Optimize_Alignment is set to Space, since the
|
| 2158 |
|
|
-- pragma Pack does have an effect in this case (it always resets
|
| 2159 |
|
|
-- the alignment to one).
|
| 2160 |
|
|
|
| 2161 |
|
|
if Ekind (Rec) = E_Record_Type
|
| 2162 |
|
|
and then Is_Packed (Rec)
|
| 2163 |
|
|
and then not Unplaced_Component
|
| 2164 |
|
|
and then Optimize_Alignment /= 'S'
|
| 2165 |
|
|
then
|
| 2166 |
|
|
-- Reset packed status. Probably not necessary, but we do it so
|
| 2167 |
|
|
-- that there is no chance of the back end doing something strange
|
| 2168 |
|
|
-- with this redundant indication of packing.
|
| 2169 |
|
|
|
| 2170 |
|
|
Set_Is_Packed (Rec, False);
|
| 2171 |
|
|
|
| 2172 |
|
|
-- Give warning if redundant constructs warnings on
|
| 2173 |
|
|
|
| 2174 |
|
|
if Warn_On_Redundant_Constructs then
|
| 2175 |
|
|
Error_Msg_N
|
| 2176 |
|
|
("?pragma Pack has no effect, no unplaced components",
|
| 2177 |
|
|
Get_Rep_Pragma (Rec, Name_Pack));
|
| 2178 |
|
|
end if;
|
| 2179 |
|
|
end if;
|
| 2180 |
|
|
|
| 2181 |
|
|
-- If this is the record corresponding to a remote type, freeze the
|
| 2182 |
|
|
-- remote type here since that is what we are semantically freezing.
|
| 2183 |
|
|
-- This prevents the freeze node for that type in an inner scope.
|
| 2184 |
|
|
|
| 2185 |
|
|
-- Also, Check for controlled components and unchecked unions.
|
| 2186 |
|
|
-- Finally, enforce the restriction that access attributes with a
|
| 2187 |
|
|
-- current instance prefix can only apply to limited types.
|
| 2188 |
|
|
|
| 2189 |
|
|
if Ekind (Rec) = E_Record_Type then
|
| 2190 |
|
|
if Present (Corresponding_Remote_Type (Rec)) then
|
| 2191 |
|
|
Freeze_And_Append
|
| 2192 |
|
|
(Corresponding_Remote_Type (Rec), Loc, Result);
|
| 2193 |
|
|
end if;
|
| 2194 |
|
|
|
| 2195 |
|
|
Comp := First_Component (Rec);
|
| 2196 |
|
|
while Present (Comp) loop
|
| 2197 |
|
|
|
| 2198 |
|
|
-- Do not set Has_Controlled_Component on a class-wide
|
| 2199 |
|
|
-- equivalent type. See Make_CW_Equivalent_Type.
|
| 2200 |
|
|
|
| 2201 |
|
|
if not Is_Class_Wide_Equivalent_Type (Rec)
|
| 2202 |
|
|
and then (Has_Controlled_Component (Etype (Comp))
|
| 2203 |
|
|
or else (Chars (Comp) /= Name_uParent
|
| 2204 |
|
|
and then Is_Controlled (Etype (Comp)))
|
| 2205 |
|
|
or else (Is_Protected_Type (Etype (Comp))
|
| 2206 |
|
|
and then Present
|
| 2207 |
|
|
(Corresponding_Record_Type
|
| 2208 |
|
|
(Etype (Comp)))
|
| 2209 |
|
|
and then Has_Controlled_Component
|
| 2210 |
|
|
(Corresponding_Record_Type
|
| 2211 |
|
|
(Etype (Comp)))))
|
| 2212 |
|
|
then
|
| 2213 |
|
|
Set_Has_Controlled_Component (Rec);
|
| 2214 |
|
|
exit;
|
| 2215 |
|
|
end if;
|
| 2216 |
|
|
|
| 2217 |
|
|
if Has_Unchecked_Union (Etype (Comp)) then
|
| 2218 |
|
|
Set_Has_Unchecked_Union (Rec);
|
| 2219 |
|
|
end if;
|
| 2220 |
|
|
|
| 2221 |
|
|
if Has_Per_Object_Constraint (Comp) then
|
| 2222 |
|
|
|
| 2223 |
|
|
-- Scan component declaration for likely misuses of current
|
| 2224 |
|
|
-- instance, either in a constraint or a default expression.
|
| 2225 |
|
|
|
| 2226 |
|
|
Check_Current_Instance (Parent (Comp));
|
| 2227 |
|
|
end if;
|
| 2228 |
|
|
|
| 2229 |
|
|
Next_Component (Comp);
|
| 2230 |
|
|
end loop;
|
| 2231 |
|
|
end if;
|
| 2232 |
|
|
|
| 2233 |
|
|
Set_Component_Alignment_If_Not_Set (Rec);
|
| 2234 |
|
|
|
| 2235 |
|
|
-- For first subtypes, check if there are any fixed-point fields with
|
| 2236 |
|
|
-- component clauses, where we must check the size. This is not done
|
| 2237 |
|
|
-- till the freeze point, since for fixed-point types, we do not know
|
| 2238 |
|
|
-- the size until the type is frozen. Similar processing applies to
|
| 2239 |
|
|
-- bit packed arrays.
|
| 2240 |
|
|
|
| 2241 |
|
|
if Is_First_Subtype (Rec) then
|
| 2242 |
|
|
Comp := First_Component (Rec);
|
| 2243 |
|
|
|
| 2244 |
|
|
while Present (Comp) loop
|
| 2245 |
|
|
if Present (Component_Clause (Comp))
|
| 2246 |
|
|
and then (Is_Fixed_Point_Type (Etype (Comp))
|
| 2247 |
|
|
or else
|
| 2248 |
|
|
Is_Bit_Packed_Array (Etype (Comp)))
|
| 2249 |
|
|
then
|
| 2250 |
|
|
Check_Size
|
| 2251 |
|
|
(Component_Name (Component_Clause (Comp)),
|
| 2252 |
|
|
Etype (Comp),
|
| 2253 |
|
|
Esize (Comp),
|
| 2254 |
|
|
Junk);
|
| 2255 |
|
|
end if;
|
| 2256 |
|
|
|
| 2257 |
|
|
Next_Component (Comp);
|
| 2258 |
|
|
end loop;
|
| 2259 |
|
|
end if;
|
| 2260 |
|
|
|
| 2261 |
|
|
-- Generate warning for applying C or C++ convention to a record
|
| 2262 |
|
|
-- with discriminants. This is suppressed for the unchecked union
|
| 2263 |
|
|
-- case, since the whole point in this case is interface C. We also
|
| 2264 |
|
|
-- do not generate this within instantiations, since we will have
|
| 2265 |
|
|
-- generated a message on the template.
|
| 2266 |
|
|
|
| 2267 |
|
|
if Has_Discriminants (E)
|
| 2268 |
|
|
and then not Is_Unchecked_Union (E)
|
| 2269 |
|
|
and then (Convention (E) = Convention_C
|
| 2270 |
|
|
or else
|
| 2271 |
|
|
Convention (E) = Convention_CPP)
|
| 2272 |
|
|
and then Comes_From_Source (E)
|
| 2273 |
|
|
and then not In_Instance
|
| 2274 |
|
|
and then not Has_Warnings_Off (E)
|
| 2275 |
|
|
and then not Has_Warnings_Off (Base_Type (E))
|
| 2276 |
|
|
then
|
| 2277 |
|
|
declare
|
| 2278 |
|
|
Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
|
| 2279 |
|
|
A2 : Node_Id;
|
| 2280 |
|
|
|
| 2281 |
|
|
begin
|
| 2282 |
|
|
if Present (Cprag) then
|
| 2283 |
|
|
A2 := Next (First (Pragma_Argument_Associations (Cprag)));
|
| 2284 |
|
|
|
| 2285 |
|
|
if Convention (E) = Convention_C then
|
| 2286 |
|
|
Error_Msg_N
|
| 2287 |
|
|
("?variant record has no direct equivalent in C", A2);
|
| 2288 |
|
|
else
|
| 2289 |
|
|
Error_Msg_N
|
| 2290 |
|
|
("?variant record has no direct equivalent in C++", A2);
|
| 2291 |
|
|
end if;
|
| 2292 |
|
|
|
| 2293 |
|
|
Error_Msg_NE
|
| 2294 |
|
|
("\?use of convention for type& is dubious", A2, E);
|
| 2295 |
|
|
end if;
|
| 2296 |
|
|
end;
|
| 2297 |
|
|
end if;
|
| 2298 |
|
|
|
| 2299 |
|
|
-- See if Size is too small as is (and implicit packing might help)
|
| 2300 |
|
|
|
| 2301 |
|
|
if not Is_Packed (Rec)
|
| 2302 |
|
|
|
| 2303 |
|
|
-- No implicit packing if even one component is explicitly placed
|
| 2304 |
|
|
|
| 2305 |
|
|
and then not Placed_Component
|
| 2306 |
|
|
|
| 2307 |
|
|
-- Must have size clause and all scalar components
|
| 2308 |
|
|
|
| 2309 |
|
|
and then Has_Size_Clause (Rec)
|
| 2310 |
|
|
and then All_Scalar_Components
|
| 2311 |
|
|
|
| 2312 |
|
|
-- Do not try implicit packing on records with discriminants, too
|
| 2313 |
|
|
-- complicated, especially in the variant record case.
|
| 2314 |
|
|
|
| 2315 |
|
|
and then not Has_Discriminants (Rec)
|
| 2316 |
|
|
|
| 2317 |
|
|
-- We can implicitly pack if the specified size of the record is
|
| 2318 |
|
|
-- less than the sum of the object sizes (no point in packing if
|
| 2319 |
|
|
-- this is not the case).
|
| 2320 |
|
|
|
| 2321 |
|
|
and then Esize (Rec) < Scalar_Component_Total_Esize
|
| 2322 |
|
|
|
| 2323 |
|
|
-- And the total RM size cannot be greater than the specified size
|
| 2324 |
|
|
-- since otherwise packing will not get us where we have to be!
|
| 2325 |
|
|
|
| 2326 |
|
|
and then Esize (Rec) >= Scalar_Component_Total_RM_Size
|
| 2327 |
|
|
|
| 2328 |
|
|
-- Never do implicit packing in CodePeer mode since we don't do
|
| 2329 |
|
|
-- any packing ever in this mode (why not???)
|
| 2330 |
|
|
|
| 2331 |
|
|
and then not CodePeer_Mode
|
| 2332 |
|
|
then
|
| 2333 |
|
|
-- If implicit packing enabled, do it
|
| 2334 |
|
|
|
| 2335 |
|
|
if Implicit_Packing then
|
| 2336 |
|
|
Set_Is_Packed (Rec);
|
| 2337 |
|
|
|
| 2338 |
|
|
-- Otherwise flag the size clause
|
| 2339 |
|
|
|
| 2340 |
|
|
else
|
| 2341 |
|
|
declare
|
| 2342 |
|
|
Sz : constant Node_Id := Size_Clause (Rec);
|
| 2343 |
|
|
begin
|
| 2344 |
|
|
Error_Msg_NE -- CODEFIX
|
| 2345 |
|
|
("size given for& too small", Sz, Rec);
|
| 2346 |
|
|
Error_Msg_N -- CODEFIX
|
| 2347 |
|
|
("\use explicit pragma Pack "
|
| 2348 |
|
|
& "or use pragma Implicit_Packing", Sz);
|
| 2349 |
|
|
end;
|
| 2350 |
|
|
end if;
|
| 2351 |
|
|
end if;
|
| 2352 |
|
|
end Freeze_Record_Type;
|
| 2353 |
|
|
|
| 2354 |
|
|
-- Start of processing for Freeze_Entity
|
| 2355 |
|
|
|
| 2356 |
|
|
begin
|
| 2357 |
|
|
-- We are going to test for various reasons why this entity need not be
|
| 2358 |
|
|
-- frozen here, but in the case of an Itype that's defined within a
|
| 2359 |
|
|
-- record, that test actually applies to the record.
|
| 2360 |
|
|
|
| 2361 |
|
|
if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
|
| 2362 |
|
|
Test_E := Scope (E);
|
| 2363 |
|
|
elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
|
| 2364 |
|
|
and then Is_Record_Type (Underlying_Type (Scope (E)))
|
| 2365 |
|
|
then
|
| 2366 |
|
|
Test_E := Underlying_Type (Scope (E));
|
| 2367 |
|
|
end if;
|
| 2368 |
|
|
|
| 2369 |
|
|
-- Do not freeze if already frozen since we only need one freeze node
|
| 2370 |
|
|
|
| 2371 |
|
|
if Is_Frozen (E) then
|
| 2372 |
|
|
return No_List;
|
| 2373 |
|
|
|
| 2374 |
|
|
-- It is improper to freeze an external entity within a generic because
|
| 2375 |
|
|
-- its freeze node will appear in a non-valid context. The entity will
|
| 2376 |
|
|
-- be frozen in the proper scope after the current generic is analyzed.
|
| 2377 |
|
|
|
| 2378 |
|
|
elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
|
| 2379 |
|
|
return No_List;
|
| 2380 |
|
|
|
| 2381 |
|
|
-- Do not freeze a global entity within an inner scope created during
|
| 2382 |
|
|
-- expansion. A call to subprogram E within some internal procedure
|
| 2383 |
|
|
-- (a stream attribute for example) might require freezing E, but the
|
| 2384 |
|
|
-- freeze node must appear in the same declarative part as E itself.
|
| 2385 |
|
|
-- The two-pass elaboration mechanism in gigi guarantees that E will
|
| 2386 |
|
|
-- be frozen before the inner call is elaborated. We exclude constants
|
| 2387 |
|
|
-- from this test, because deferred constants may be frozen early, and
|
| 2388 |
|
|
-- must be diagnosed (e.g. in the case of a deferred constant being used
|
| 2389 |
|
|
-- in a default expression). If the enclosing subprogram comes from
|
| 2390 |
|
|
-- source, or is a generic instance, then the freeze point is the one
|
| 2391 |
|
|
-- mandated by the language, and we freeze the entity. A subprogram that
|
| 2392 |
|
|
-- is a child unit body that acts as a spec does not have a spec that
|
| 2393 |
|
|
-- comes from source, but can only come from source.
|
| 2394 |
|
|
|
| 2395 |
|
|
elsif In_Open_Scopes (Scope (Test_E))
|
| 2396 |
|
|
and then Scope (Test_E) /= Current_Scope
|
| 2397 |
|
|
and then Ekind (Test_E) /= E_Constant
|
| 2398 |
|
|
then
|
| 2399 |
|
|
declare
|
| 2400 |
|
|
S : Entity_Id := Current_Scope;
|
| 2401 |
|
|
|
| 2402 |
|
|
begin
|
| 2403 |
|
|
while Present (S) loop
|
| 2404 |
|
|
if Is_Overloadable (S) then
|
| 2405 |
|
|
if Comes_From_Source (S)
|
| 2406 |
|
|
or else Is_Generic_Instance (S)
|
| 2407 |
|
|
or else Is_Child_Unit (S)
|
| 2408 |
|
|
then
|
| 2409 |
|
|
exit;
|
| 2410 |
|
|
else
|
| 2411 |
|
|
return No_List;
|
| 2412 |
|
|
end if;
|
| 2413 |
|
|
end if;
|
| 2414 |
|
|
|
| 2415 |
|
|
S := Scope (S);
|
| 2416 |
|
|
end loop;
|
| 2417 |
|
|
end;
|
| 2418 |
|
|
|
| 2419 |
|
|
-- Similarly, an inlined instance body may make reference to global
|
| 2420 |
|
|
-- entities, but these references cannot be the proper freezing point
|
| 2421 |
|
|
-- for them, and in the absence of inlining freezing will take place in
|
| 2422 |
|
|
-- their own scope. Normally instance bodies are analyzed after the
|
| 2423 |
|
|
-- enclosing compilation, and everything has been frozen at the proper
|
| 2424 |
|
|
-- place, but with front-end inlining an instance body is compiled
|
| 2425 |
|
|
-- before the end of the enclosing scope, and as a result out-of-order
|
| 2426 |
|
|
-- freezing must be prevented.
|
| 2427 |
|
|
|
| 2428 |
|
|
elsif Front_End_Inlining
|
| 2429 |
|
|
and then In_Instance_Body
|
| 2430 |
|
|
and then Present (Scope (Test_E))
|
| 2431 |
|
|
then
|
| 2432 |
|
|
declare
|
| 2433 |
|
|
S : Entity_Id := Scope (Test_E);
|
| 2434 |
|
|
|
| 2435 |
|
|
begin
|
| 2436 |
|
|
while Present (S) loop
|
| 2437 |
|
|
if Is_Generic_Instance (S) then
|
| 2438 |
|
|
exit;
|
| 2439 |
|
|
else
|
| 2440 |
|
|
S := Scope (S);
|
| 2441 |
|
|
end if;
|
| 2442 |
|
|
end loop;
|
| 2443 |
|
|
|
| 2444 |
|
|
if No (S) then
|
| 2445 |
|
|
return No_List;
|
| 2446 |
|
|
end if;
|
| 2447 |
|
|
end;
|
| 2448 |
|
|
end if;
|
| 2449 |
|
|
|
| 2450 |
|
|
-- Here to freeze the entity
|
| 2451 |
|
|
|
| 2452 |
|
|
Result := No_List;
|
| 2453 |
|
|
Set_Is_Frozen (E);
|
| 2454 |
|
|
|
| 2455 |
|
|
-- Case of entity being frozen is other than a type
|
| 2456 |
|
|
|
| 2457 |
|
|
if not Is_Type (E) then
|
| 2458 |
|
|
|
| 2459 |
|
|
-- If entity is exported or imported and does not have an external
|
| 2460 |
|
|
-- name, now is the time to provide the appropriate default name.
|
| 2461 |
|
|
-- Skip this if the entity is stubbed, since we don't need a name
|
| 2462 |
|
|
-- for any stubbed routine. For the case on intrinsics, if no
|
| 2463 |
|
|
-- external name is specified, then calls will be handled in
|
| 2464 |
|
|
-- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
|
| 2465 |
|
|
-- an external name is provided, then Expand_Intrinsic_Call leaves
|
| 2466 |
|
|
-- calls in place for expansion by GIGI.
|
| 2467 |
|
|
|
| 2468 |
|
|
if (Is_Imported (E) or else Is_Exported (E))
|
| 2469 |
|
|
and then No (Interface_Name (E))
|
| 2470 |
|
|
and then Convention (E) /= Convention_Stubbed
|
| 2471 |
|
|
and then Convention (E) /= Convention_Intrinsic
|
| 2472 |
|
|
then
|
| 2473 |
|
|
Set_Encoded_Interface_Name
|
| 2474 |
|
|
(E, Get_Default_External_Name (E));
|
| 2475 |
|
|
|
| 2476 |
|
|
-- If entity is an atomic object appearing in a declaration and
|
| 2477 |
|
|
-- the expression is an aggregate, assign it to a temporary to
|
| 2478 |
|
|
-- ensure that the actual assignment is done atomically rather
|
| 2479 |
|
|
-- than component-wise (the assignment to the temp may be done
|
| 2480 |
|
|
-- component-wise, but that is harmless).
|
| 2481 |
|
|
|
| 2482 |
|
|
elsif Is_Atomic (E)
|
| 2483 |
|
|
and then Nkind (Parent (E)) = N_Object_Declaration
|
| 2484 |
|
|
and then Present (Expression (Parent (E)))
|
| 2485 |
|
|
and then Nkind (Expression (Parent (E))) = N_Aggregate
|
| 2486 |
|
|
and then
|
| 2487 |
|
|
Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
|
| 2488 |
|
|
then
|
| 2489 |
|
|
null;
|
| 2490 |
|
|
end if;
|
| 2491 |
|
|
|
| 2492 |
|
|
-- For a subprogram, freeze all parameter types and also the return
|
| 2493 |
|
|
-- type (RM 13.14(14)). However skip this for internal subprograms.
|
| 2494 |
|
|
-- This is also the point where any extra formal parameters are
|
| 2495 |
|
|
-- created since we now know whether the subprogram will use a
|
| 2496 |
|
|
-- foreign convention.
|
| 2497 |
|
|
|
| 2498 |
|
|
if Is_Subprogram (E) then
|
| 2499 |
|
|
if not Is_Internal (E) then
|
| 2500 |
|
|
declare
|
| 2501 |
|
|
F_Type : Entity_Id;
|
| 2502 |
|
|
R_Type : Entity_Id;
|
| 2503 |
|
|
Warn_Node : Node_Id;
|
| 2504 |
|
|
|
| 2505 |
|
|
begin
|
| 2506 |
|
|
-- Loop through formals
|
| 2507 |
|
|
|
| 2508 |
|
|
Formal := First_Formal (E);
|
| 2509 |
|
|
while Present (Formal) loop
|
| 2510 |
|
|
F_Type := Etype (Formal);
|
| 2511 |
|
|
Freeze_And_Append (F_Type, Loc, Result);
|
| 2512 |
|
|
|
| 2513 |
|
|
if Is_Private_Type (F_Type)
|
| 2514 |
|
|
and then Is_Private_Type (Base_Type (F_Type))
|
| 2515 |
|
|
and then No (Full_View (Base_Type (F_Type)))
|
| 2516 |
|
|
and then not Is_Generic_Type (F_Type)
|
| 2517 |
|
|
and then not Is_Derived_Type (F_Type)
|
| 2518 |
|
|
then
|
| 2519 |
|
|
-- If the type of a formal is incomplete, subprogram
|
| 2520 |
|
|
-- is being frozen prematurely. Within an instance
|
| 2521 |
|
|
-- (but not within a wrapper package) this is an
|
| 2522 |
|
|
-- artifact of our need to regard the end of an
|
| 2523 |
|
|
-- instantiation as a freeze point. Otherwise it is
|
| 2524 |
|
|
-- a definite error.
|
| 2525 |
|
|
|
| 2526 |
|
|
if In_Instance then
|
| 2527 |
|
|
Set_Is_Frozen (E, False);
|
| 2528 |
|
|
return No_List;
|
| 2529 |
|
|
|
| 2530 |
|
|
elsif not After_Last_Declaration
|
| 2531 |
|
|
and then not Freezing_Library_Level_Tagged_Type
|
| 2532 |
|
|
then
|
| 2533 |
|
|
Error_Msg_Node_1 := F_Type;
|
| 2534 |
|
|
Error_Msg
|
| 2535 |
|
|
("type& must be fully defined before this point",
|
| 2536 |
|
|
Loc);
|
| 2537 |
|
|
end if;
|
| 2538 |
|
|
end if;
|
| 2539 |
|
|
|
| 2540 |
|
|
-- Check suspicious parameter for C function. These tests
|
| 2541 |
|
|
-- apply only to exported/imported subprograms.
|
| 2542 |
|
|
|
| 2543 |
|
|
if Warn_On_Export_Import
|
| 2544 |
|
|
and then Comes_From_Source (E)
|
| 2545 |
|
|
and then (Convention (E) = Convention_C
|
| 2546 |
|
|
or else
|
| 2547 |
|
|
Convention (E) = Convention_CPP)
|
| 2548 |
|
|
and then (Is_Imported (E) or else Is_Exported (E))
|
| 2549 |
|
|
and then Convention (E) /= Convention (Formal)
|
| 2550 |
|
|
and then not Has_Warnings_Off (E)
|
| 2551 |
|
|
and then not Has_Warnings_Off (F_Type)
|
| 2552 |
|
|
and then not Has_Warnings_Off (Formal)
|
| 2553 |
|
|
then
|
| 2554 |
|
|
-- Qualify mention of formals with subprogram name
|
| 2555 |
|
|
|
| 2556 |
|
|
Error_Msg_Qual_Level := 1;
|
| 2557 |
|
|
|
| 2558 |
|
|
-- Check suspicious use of fat C pointer
|
| 2559 |
|
|
|
| 2560 |
|
|
if Is_Access_Type (F_Type)
|
| 2561 |
|
|
and then Esize (F_Type) > Ttypes.System_Address_Size
|
| 2562 |
|
|
then
|
| 2563 |
|
|
Error_Msg_N
|
| 2564 |
|
|
("?type of & does not correspond to C pointer!",
|
| 2565 |
|
|
Formal);
|
| 2566 |
|
|
|
| 2567 |
|
|
-- Check suspicious return of boolean
|
| 2568 |
|
|
|
| 2569 |
|
|
elsif Root_Type (F_Type) = Standard_Boolean
|
| 2570 |
|
|
and then Convention (F_Type) = Convention_Ada
|
| 2571 |
|
|
and then not Has_Warnings_Off (F_Type)
|
| 2572 |
|
|
and then not Has_Size_Clause (F_Type)
|
| 2573 |
|
|
and then VM_Target = No_VM
|
| 2574 |
|
|
then
|
| 2575 |
|
|
Error_Msg_N
|
| 2576 |
|
|
("& is an 8-bit Ada Boolean?", Formal);
|
| 2577 |
|
|
Error_Msg_N
|
| 2578 |
|
|
("\use appropriate corresponding type in C "
|
| 2579 |
|
|
& "(e.g. char)?", Formal);
|
| 2580 |
|
|
|
| 2581 |
|
|
-- Check suspicious tagged type
|
| 2582 |
|
|
|
| 2583 |
|
|
elsif (Is_Tagged_Type (F_Type)
|
| 2584 |
|
|
or else (Is_Access_Type (F_Type)
|
| 2585 |
|
|
and then
|
| 2586 |
|
|
Is_Tagged_Type
|
| 2587 |
|
|
(Designated_Type (F_Type))))
|
| 2588 |
|
|
and then Convention (E) = Convention_C
|
| 2589 |
|
|
then
|
| 2590 |
|
|
Error_Msg_N
|
| 2591 |
|
|
("?& involves a tagged type which does not "
|
| 2592 |
|
|
& "correspond to any C type!", Formal);
|
| 2593 |
|
|
|
| 2594 |
|
|
-- Check wrong convention subprogram pointer
|
| 2595 |
|
|
|
| 2596 |
|
|
elsif Ekind (F_Type) = E_Access_Subprogram_Type
|
| 2597 |
|
|
and then not Has_Foreign_Convention (F_Type)
|
| 2598 |
|
|
then
|
| 2599 |
|
|
Error_Msg_N
|
| 2600 |
|
|
("?subprogram pointer & should "
|
| 2601 |
|
|
& "have foreign convention!", Formal);
|
| 2602 |
|
|
Error_Msg_Sloc := Sloc (F_Type);
|
| 2603 |
|
|
Error_Msg_NE
|
| 2604 |
|
|
("\?add Convention pragma to declaration of &#",
|
| 2605 |
|
|
Formal, F_Type);
|
| 2606 |
|
|
end if;
|
| 2607 |
|
|
|
| 2608 |
|
|
-- Turn off name qualification after message output
|
| 2609 |
|
|
|
| 2610 |
|
|
Error_Msg_Qual_Level := 0;
|
| 2611 |
|
|
end if;
|
| 2612 |
|
|
|
| 2613 |
|
|
-- Check for unconstrained array in exported foreign
|
| 2614 |
|
|
-- convention case.
|
| 2615 |
|
|
|
| 2616 |
|
|
if Has_Foreign_Convention (E)
|
| 2617 |
|
|
and then not Is_Imported (E)
|
| 2618 |
|
|
and then Is_Array_Type (F_Type)
|
| 2619 |
|
|
and then not Is_Constrained (F_Type)
|
| 2620 |
|
|
and then Warn_On_Export_Import
|
| 2621 |
|
|
|
| 2622 |
|
|
-- Exclude VM case, since both .NET and JVM can handle
|
| 2623 |
|
|
-- unconstrained arrays without a problem.
|
| 2624 |
|
|
|
| 2625 |
|
|
and then VM_Target = No_VM
|
| 2626 |
|
|
then
|
| 2627 |
|
|
Error_Msg_Qual_Level := 1;
|
| 2628 |
|
|
|
| 2629 |
|
|
-- If this is an inherited operation, place the
|
| 2630 |
|
|
-- warning on the derived type declaration, rather
|
| 2631 |
|
|
-- than on the original subprogram.
|
| 2632 |
|
|
|
| 2633 |
|
|
if Nkind (Original_Node (Parent (E))) =
|
| 2634 |
|
|
N_Full_Type_Declaration
|
| 2635 |
|
|
then
|
| 2636 |
|
|
Warn_Node := Parent (E);
|
| 2637 |
|
|
|
| 2638 |
|
|
if Formal = First_Formal (E) then
|
| 2639 |
|
|
Error_Msg_NE
|
| 2640 |
|
|
("?in inherited operation&", Warn_Node, E);
|
| 2641 |
|
|
end if;
|
| 2642 |
|
|
else
|
| 2643 |
|
|
Warn_Node := Formal;
|
| 2644 |
|
|
end if;
|
| 2645 |
|
|
|
| 2646 |
|
|
Error_Msg_NE
|
| 2647 |
|
|
("?type of argument& is unconstrained array",
|
| 2648 |
|
|
Warn_Node, Formal);
|
| 2649 |
|
|
Error_Msg_NE
|
| 2650 |
|
|
("?foreign caller must pass bounds explicitly",
|
| 2651 |
|
|
Warn_Node, Formal);
|
| 2652 |
|
|
Error_Msg_Qual_Level := 0;
|
| 2653 |
|
|
end if;
|
| 2654 |
|
|
|
| 2655 |
|
|
if not From_With_Type (F_Type) then
|
| 2656 |
|
|
if Is_Access_Type (F_Type) then
|
| 2657 |
|
|
F_Type := Designated_Type (F_Type);
|
| 2658 |
|
|
end if;
|
| 2659 |
|
|
|
| 2660 |
|
|
-- If the formal is an anonymous_access_to_subprogram
|
| 2661 |
|
|
-- freeze the subprogram type as well, to prevent
|
| 2662 |
|
|
-- scope anomalies in gigi, because there is no other
|
| 2663 |
|
|
-- clear point at which it could be frozen.
|
| 2664 |
|
|
|
| 2665 |
|
|
if Is_Itype (Etype (Formal))
|
| 2666 |
|
|
and then Ekind (F_Type) = E_Subprogram_Type
|
| 2667 |
|
|
then
|
| 2668 |
|
|
Freeze_And_Append (F_Type, Loc, Result);
|
| 2669 |
|
|
end if;
|
| 2670 |
|
|
end if;
|
| 2671 |
|
|
|
| 2672 |
|
|
Next_Formal (Formal);
|
| 2673 |
|
|
end loop;
|
| 2674 |
|
|
|
| 2675 |
|
|
-- Case of function: similar checks on return type
|
| 2676 |
|
|
|
| 2677 |
|
|
if Ekind (E) = E_Function then
|
| 2678 |
|
|
|
| 2679 |
|
|
-- Freeze return type
|
| 2680 |
|
|
|
| 2681 |
|
|
R_Type := Etype (E);
|
| 2682 |
|
|
Freeze_And_Append (R_Type, Loc, Result);
|
| 2683 |
|
|
|
| 2684 |
|
|
-- Check suspicious return type for C function
|
| 2685 |
|
|
|
| 2686 |
|
|
if Warn_On_Export_Import
|
| 2687 |
|
|
and then (Convention (E) = Convention_C
|
| 2688 |
|
|
or else
|
| 2689 |
|
|
Convention (E) = Convention_CPP)
|
| 2690 |
|
|
and then (Is_Imported (E) or else Is_Exported (E))
|
| 2691 |
|
|
then
|
| 2692 |
|
|
-- Check suspicious return of fat C pointer
|
| 2693 |
|
|
|
| 2694 |
|
|
if Is_Access_Type (R_Type)
|
| 2695 |
|
|
and then Esize (R_Type) > Ttypes.System_Address_Size
|
| 2696 |
|
|
and then not Has_Warnings_Off (E)
|
| 2697 |
|
|
and then not Has_Warnings_Off (R_Type)
|
| 2698 |
|
|
then
|
| 2699 |
|
|
Error_Msg_N
|
| 2700 |
|
|
("?return type of& does not "
|
| 2701 |
|
|
& "correspond to C pointer!", E);
|
| 2702 |
|
|
|
| 2703 |
|
|
-- Check suspicious return of boolean
|
| 2704 |
|
|
|
| 2705 |
|
|
elsif Root_Type (R_Type) = Standard_Boolean
|
| 2706 |
|
|
and then Convention (R_Type) = Convention_Ada
|
| 2707 |
|
|
and then VM_Target = No_VM
|
| 2708 |
|
|
and then not Has_Warnings_Off (E)
|
| 2709 |
|
|
and then not Has_Warnings_Off (R_Type)
|
| 2710 |
|
|
and then not Has_Size_Clause (R_Type)
|
| 2711 |
|
|
then
|
| 2712 |
|
|
declare
|
| 2713 |
|
|
N : constant Node_Id :=
|
| 2714 |
|
|
Result_Definition (Declaration_Node (E));
|
| 2715 |
|
|
begin
|
| 2716 |
|
|
Error_Msg_NE
|
| 2717 |
|
|
("return type of & is an 8-bit Ada Boolean?",
|
| 2718 |
|
|
N, E);
|
| 2719 |
|
|
Error_Msg_NE
|
| 2720 |
|
|
("\use appropriate corresponding type in C "
|
| 2721 |
|
|
& "(e.g. char)?", N, E);
|
| 2722 |
|
|
end;
|
| 2723 |
|
|
|
| 2724 |
|
|
-- Check suspicious return tagged type
|
| 2725 |
|
|
|
| 2726 |
|
|
elsif (Is_Tagged_Type (R_Type)
|
| 2727 |
|
|
or else (Is_Access_Type (R_Type)
|
| 2728 |
|
|
and then
|
| 2729 |
|
|
Is_Tagged_Type
|
| 2730 |
|
|
(Designated_Type (R_Type))))
|
| 2731 |
|
|
and then Convention (E) = Convention_C
|
| 2732 |
|
|
and then not Has_Warnings_Off (E)
|
| 2733 |
|
|
and then not Has_Warnings_Off (R_Type)
|
| 2734 |
|
|
then
|
| 2735 |
|
|
Error_Msg_N
|
| 2736 |
|
|
("?return type of & does not "
|
| 2737 |
|
|
& "correspond to C type!", E);
|
| 2738 |
|
|
|
| 2739 |
|
|
-- Check return of wrong convention subprogram pointer
|
| 2740 |
|
|
|
| 2741 |
|
|
elsif Ekind (R_Type) = E_Access_Subprogram_Type
|
| 2742 |
|
|
and then not Has_Foreign_Convention (R_Type)
|
| 2743 |
|
|
and then not Has_Warnings_Off (E)
|
| 2744 |
|
|
and then not Has_Warnings_Off (R_Type)
|
| 2745 |
|
|
then
|
| 2746 |
|
|
Error_Msg_N
|
| 2747 |
|
|
("?& should return a foreign "
|
| 2748 |
|
|
& "convention subprogram pointer", E);
|
| 2749 |
|
|
Error_Msg_Sloc := Sloc (R_Type);
|
| 2750 |
|
|
Error_Msg_NE
|
| 2751 |
|
|
("\?add Convention pragma to declaration of& #",
|
| 2752 |
|
|
E, R_Type);
|
| 2753 |
|
|
end if;
|
| 2754 |
|
|
end if;
|
| 2755 |
|
|
|
| 2756 |
|
|
-- Give warning for suspicous return of a result of an
|
| 2757 |
|
|
-- unconstrained array type in a foreign convention
|
| 2758 |
|
|
-- function.
|
| 2759 |
|
|
|
| 2760 |
|
|
if Has_Foreign_Convention (E)
|
| 2761 |
|
|
|
| 2762 |
|
|
-- We are looking for a return of unconstrained array
|
| 2763 |
|
|
|
| 2764 |
|
|
and then Is_Array_Type (R_Type)
|
| 2765 |
|
|
and then not Is_Constrained (R_Type)
|
| 2766 |
|
|
|
| 2767 |
|
|
-- Exclude imported routines, the warning does not
|
| 2768 |
|
|
-- belong on the import, but on the routine definition.
|
| 2769 |
|
|
|
| 2770 |
|
|
and then not Is_Imported (E)
|
| 2771 |
|
|
|
| 2772 |
|
|
-- Exclude VM case, since both .NET and JVM can handle
|
| 2773 |
|
|
-- return of unconstrained arrays without a problem.
|
| 2774 |
|
|
|
| 2775 |
|
|
and then VM_Target = No_VM
|
| 2776 |
|
|
|
| 2777 |
|
|
-- Check that general warning is enabled, and that it
|
| 2778 |
|
|
-- is not suppressed for this particular case.
|
| 2779 |
|
|
|
| 2780 |
|
|
and then Warn_On_Export_Import
|
| 2781 |
|
|
and then not Has_Warnings_Off (E)
|
| 2782 |
|
|
and then not Has_Warnings_Off (R_Type)
|
| 2783 |
|
|
then
|
| 2784 |
|
|
Error_Msg_N
|
| 2785 |
|
|
("?foreign convention function& should not " &
|
| 2786 |
|
|
"return unconstrained array!", E);
|
| 2787 |
|
|
end if;
|
| 2788 |
|
|
end if;
|
| 2789 |
|
|
end;
|
| 2790 |
|
|
end if;
|
| 2791 |
|
|
|
| 2792 |
|
|
-- Must freeze its parent first if it is a derived subprogram
|
| 2793 |
|
|
|
| 2794 |
|
|
if Present (Alias (E)) then
|
| 2795 |
|
|
Freeze_And_Append (Alias (E), Loc, Result);
|
| 2796 |
|
|
end if;
|
| 2797 |
|
|
|
| 2798 |
|
|
-- We don't freeze internal subprograms, because we don't normally
|
| 2799 |
|
|
-- want addition of extra formals or mechanism setting to happen
|
| 2800 |
|
|
-- for those. However we do pass through predefined dispatching
|
| 2801 |
|
|
-- cases, since extra formals may be needed in some cases, such as
|
| 2802 |
|
|
-- for the stream 'Input function (build-in-place formals).
|
| 2803 |
|
|
|
| 2804 |
|
|
if not Is_Internal (E)
|
| 2805 |
|
|
or else Is_Predefined_Dispatching_Operation (E)
|
| 2806 |
|
|
then
|
| 2807 |
|
|
Freeze_Subprogram (E);
|
| 2808 |
|
|
end if;
|
| 2809 |
|
|
|
| 2810 |
|
|
-- Here for other than a subprogram or type
|
| 2811 |
|
|
|
| 2812 |
|
|
else
|
| 2813 |
|
|
-- If entity has a type, and it is not a generic unit, then
|
| 2814 |
|
|
-- freeze it first (RM 13.14(10)).
|
| 2815 |
|
|
|
| 2816 |
|
|
if Present (Etype (E))
|
| 2817 |
|
|
and then Ekind (E) /= E_Generic_Function
|
| 2818 |
|
|
then
|
| 2819 |
|
|
Freeze_And_Append (Etype (E), Loc, Result);
|
| 2820 |
|
|
end if;
|
| 2821 |
|
|
|
| 2822 |
|
|
-- Special processing for objects created by object declaration
|
| 2823 |
|
|
|
| 2824 |
|
|
if Nkind (Declaration_Node (E)) = N_Object_Declaration then
|
| 2825 |
|
|
|
| 2826 |
|
|
-- Abstract type allowed only for C++ imported variables or
|
| 2827 |
|
|
-- constants.
|
| 2828 |
|
|
|
| 2829 |
|
|
-- Note: we inhibit this check for objects that do not come
|
| 2830 |
|
|
-- from source because there is at least one case (the
|
| 2831 |
|
|
-- expansion of x'class'input where x is abstract) where we
|
| 2832 |
|
|
-- legitimately generate an abstract object.
|
| 2833 |
|
|
|
| 2834 |
|
|
if Is_Abstract_Type (Etype (E))
|
| 2835 |
|
|
and then Comes_From_Source (Parent (E))
|
| 2836 |
|
|
and then not (Is_Imported (E)
|
| 2837 |
|
|
and then Is_CPP_Class (Etype (E)))
|
| 2838 |
|
|
then
|
| 2839 |
|
|
Error_Msg_N ("type of object cannot be abstract",
|
| 2840 |
|
|
Object_Definition (Parent (E)));
|
| 2841 |
|
|
|
| 2842 |
|
|
if Is_CPP_Class (Etype (E)) then
|
| 2843 |
|
|
Error_Msg_NE ("\} may need a cpp_constructor",
|
| 2844 |
|
|
Object_Definition (Parent (E)), Etype (E));
|
| 2845 |
|
|
end if;
|
| 2846 |
|
|
end if;
|
| 2847 |
|
|
|
| 2848 |
|
|
-- For object created by object declaration, perform required
|
| 2849 |
|
|
-- categorization (preelaborate and pure) checks. Defer these
|
| 2850 |
|
|
-- checks to freeze time since pragma Import inhibits default
|
| 2851 |
|
|
-- initialization and thus pragma Import affects these checks.
|
| 2852 |
|
|
|
| 2853 |
|
|
Validate_Object_Declaration (Declaration_Node (E));
|
| 2854 |
|
|
|
| 2855 |
|
|
-- If there is an address clause, check that it is valid
|
| 2856 |
|
|
|
| 2857 |
|
|
Check_Address_Clause (E);
|
| 2858 |
|
|
|
| 2859 |
|
|
-- If the object needs any kind of default initialization, an
|
| 2860 |
|
|
-- error must be issued if No_Default_Initialization applies.
|
| 2861 |
|
|
-- The check doesn't apply to imported objects, which are not
|
| 2862 |
|
|
-- ever default initialized, and is why the check is deferred
|
| 2863 |
|
|
-- until freezing, at which point we know if Import applies.
|
| 2864 |
|
|
-- Deferred constants are also exempted from this test because
|
| 2865 |
|
|
-- their completion is explicit, or through an import pragma.
|
| 2866 |
|
|
|
| 2867 |
|
|
if Ekind (E) = E_Constant
|
| 2868 |
|
|
and then Present (Full_View (E))
|
| 2869 |
|
|
then
|
| 2870 |
|
|
null;
|
| 2871 |
|
|
|
| 2872 |
|
|
elsif Comes_From_Source (E)
|
| 2873 |
|
|
and then not Is_Imported (E)
|
| 2874 |
|
|
and then not Has_Init_Expression (Declaration_Node (E))
|
| 2875 |
|
|
and then
|
| 2876 |
|
|
((Has_Non_Null_Base_Init_Proc (Etype (E))
|
| 2877 |
|
|
and then not No_Initialization (Declaration_Node (E))
|
| 2878 |
|
|
and then not Is_Value_Type (Etype (E))
|
| 2879 |
|
|
and then not Suppress_Init_Proc (Etype (E)))
|
| 2880 |
|
|
or else
|
| 2881 |
|
|
(Needs_Simple_Initialization (Etype (E))
|
| 2882 |
|
|
and then not Is_Internal (E)))
|
| 2883 |
|
|
then
|
| 2884 |
|
|
Has_Default_Initialization := True;
|
| 2885 |
|
|
Check_Restriction
|
| 2886 |
|
|
(No_Default_Initialization, Declaration_Node (E));
|
| 2887 |
|
|
end if;
|
| 2888 |
|
|
|
| 2889 |
|
|
-- Check that a Thread_Local_Storage variable does not have
|
| 2890 |
|
|
-- default initialization, and any explicit initialization must
|
| 2891 |
|
|
-- either be the null constant or a static constant.
|
| 2892 |
|
|
|
| 2893 |
|
|
if Has_Pragma_Thread_Local_Storage (E) then
|
| 2894 |
|
|
declare
|
| 2895 |
|
|
Decl : constant Node_Id := Declaration_Node (E);
|
| 2896 |
|
|
begin
|
| 2897 |
|
|
if Has_Default_Initialization
|
| 2898 |
|
|
or else
|
| 2899 |
|
|
(Has_Init_Expression (Decl)
|
| 2900 |
|
|
and then
|
| 2901 |
|
|
(No (Expression (Decl))
|
| 2902 |
|
|
or else not
|
| 2903 |
|
|
(Is_Static_Expression (Expression (Decl))
|
| 2904 |
|
|
or else
|
| 2905 |
|
|
Nkind (Expression (Decl)) = N_Null)))
|
| 2906 |
|
|
then
|
| 2907 |
|
|
Error_Msg_NE
|
| 2908 |
|
|
("Thread_Local_Storage variable& is "
|
| 2909 |
|
|
& "improperly initialized", Decl, E);
|
| 2910 |
|
|
Error_Msg_NE
|
| 2911 |
|
|
("\only allowed initialization is explicit "
|
| 2912 |
|
|
& "NULL or static expression", Decl, E);
|
| 2913 |
|
|
end if;
|
| 2914 |
|
|
end;
|
| 2915 |
|
|
end if;
|
| 2916 |
|
|
|
| 2917 |
|
|
-- For imported objects, set Is_Public unless there is also an
|
| 2918 |
|
|
-- address clause, which means that there is no external symbol
|
| 2919 |
|
|
-- needed for the Import (Is_Public may still be set for other
|
| 2920 |
|
|
-- unrelated reasons). Note that we delayed this processing
|
| 2921 |
|
|
-- till freeze time so that we can be sure not to set the flag
|
| 2922 |
|
|
-- if there is an address clause. If there is such a clause,
|
| 2923 |
|
|
-- then the only purpose of the Import pragma is to suppress
|
| 2924 |
|
|
-- implicit initialization.
|
| 2925 |
|
|
|
| 2926 |
|
|
if Is_Imported (E)
|
| 2927 |
|
|
and then No (Address_Clause (E))
|
| 2928 |
|
|
then
|
| 2929 |
|
|
Set_Is_Public (E);
|
| 2930 |
|
|
end if;
|
| 2931 |
|
|
|
| 2932 |
|
|
-- For convention C objects of an enumeration type, warn if
|
| 2933 |
|
|
-- the size is not integer size and no explicit size given.
|
| 2934 |
|
|
-- Skip warning for Boolean, and Character, assume programmer
|
| 2935 |
|
|
-- expects 8-bit sizes for these cases.
|
| 2936 |
|
|
|
| 2937 |
|
|
if (Convention (E) = Convention_C
|
| 2938 |
|
|
or else
|
| 2939 |
|
|
Convention (E) = Convention_CPP)
|
| 2940 |
|
|
and then Is_Enumeration_Type (Etype (E))
|
| 2941 |
|
|
and then not Is_Character_Type (Etype (E))
|
| 2942 |
|
|
and then not Is_Boolean_Type (Etype (E))
|
| 2943 |
|
|
and then Esize (Etype (E)) < Standard_Integer_Size
|
| 2944 |
|
|
and then not Has_Size_Clause (E)
|
| 2945 |
|
|
then
|
| 2946 |
|
|
Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
|
| 2947 |
|
|
Error_Msg_N
|
| 2948 |
|
|
("?convention C enumeration object has size less than ^",
|
| 2949 |
|
|
E);
|
| 2950 |
|
|
Error_Msg_N ("\?use explicit size clause to set size", E);
|
| 2951 |
|
|
end if;
|
| 2952 |
|
|
end if;
|
| 2953 |
|
|
|
| 2954 |
|
|
-- Check that a constant which has a pragma Volatile[_Components]
|
| 2955 |
|
|
-- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
|
| 2956 |
|
|
|
| 2957 |
|
|
-- Note: Atomic[_Components] also sets Volatile[_Components]
|
| 2958 |
|
|
|
| 2959 |
|
|
if Ekind (E) = E_Constant
|
| 2960 |
|
|
and then (Has_Volatile_Components (E) or else Is_Volatile (E))
|
| 2961 |
|
|
and then not Is_Imported (E)
|
| 2962 |
|
|
then
|
| 2963 |
|
|
-- Make sure we actually have a pragma, and have not merely
|
| 2964 |
|
|
-- inherited the indication from elsewhere (e.g. an address
|
| 2965 |
|
|
-- clause, which is not good enough in RM terms!)
|
| 2966 |
|
|
|
| 2967 |
|
|
if Has_Rep_Pragma (E, Name_Atomic)
|
| 2968 |
|
|
or else
|
| 2969 |
|
|
Has_Rep_Pragma (E, Name_Atomic_Components)
|
| 2970 |
|
|
then
|
| 2971 |
|
|
Error_Msg_N
|
| 2972 |
|
|
("stand alone atomic constant must be " &
|
| 2973 |
|
|
"imported (RM C.6(13))", E);
|
| 2974 |
|
|
|
| 2975 |
|
|
elsif Has_Rep_Pragma (E, Name_Volatile)
|
| 2976 |
|
|
or else
|
| 2977 |
|
|
Has_Rep_Pragma (E, Name_Volatile_Components)
|
| 2978 |
|
|
then
|
| 2979 |
|
|
Error_Msg_N
|
| 2980 |
|
|
("stand alone volatile constant must be " &
|
| 2981 |
|
|
"imported (RM C.6(13))", E);
|
| 2982 |
|
|
end if;
|
| 2983 |
|
|
end if;
|
| 2984 |
|
|
|
| 2985 |
|
|
-- Static objects require special handling
|
| 2986 |
|
|
|
| 2987 |
|
|
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
|
| 2988 |
|
|
and then Is_Statically_Allocated (E)
|
| 2989 |
|
|
then
|
| 2990 |
|
|
Freeze_Static_Object (E);
|
| 2991 |
|
|
end if;
|
| 2992 |
|
|
|
| 2993 |
|
|
-- Remaining step is to layout objects
|
| 2994 |
|
|
|
| 2995 |
|
|
if Ekind (E) = E_Variable
|
| 2996 |
|
|
or else
|
| 2997 |
|
|
Ekind (E) = E_Constant
|
| 2998 |
|
|
or else
|
| 2999 |
|
|
Ekind (E) = E_Loop_Parameter
|
| 3000 |
|
|
or else
|
| 3001 |
|
|
Is_Formal (E)
|
| 3002 |
|
|
then
|
| 3003 |
|
|
Layout_Object (E);
|
| 3004 |
|
|
end if;
|
| 3005 |
|
|
end if;
|
| 3006 |
|
|
|
| 3007 |
|
|
-- Case of a type or subtype being frozen
|
| 3008 |
|
|
|
| 3009 |
|
|
else
|
| 3010 |
|
|
-- We used to check here that a full type must have preelaborable
|
| 3011 |
|
|
-- initialization if it completes a private type specified with
|
| 3012 |
|
|
-- pragma Preelaborable_Intialization, but that missed cases where
|
| 3013 |
|
|
-- the types occur within a generic package, since the freezing
|
| 3014 |
|
|
-- that occurs within a containing scope generally skips traversal
|
| 3015 |
|
|
-- of a generic unit's declarations (those will be frozen within
|
| 3016 |
|
|
-- instances). This check was moved to Analyze_Package_Specification.
|
| 3017 |
|
|
|
| 3018 |
|
|
-- The type may be defined in a generic unit. This can occur when
|
| 3019 |
|
|
-- freezing a generic function that returns the type (which is
|
| 3020 |
|
|
-- defined in a parent unit). It is clearly meaningless to freeze
|
| 3021 |
|
|
-- this type. However, if it is a subtype, its size may be determi-
|
| 3022 |
|
|
-- nable and used in subsequent checks, so might as well try to
|
| 3023 |
|
|
-- compute it.
|
| 3024 |
|
|
|
| 3025 |
|
|
if Present (Scope (E))
|
| 3026 |
|
|
and then Is_Generic_Unit (Scope (E))
|
| 3027 |
|
|
then
|
| 3028 |
|
|
Check_Compile_Time_Size (E);
|
| 3029 |
|
|
return No_List;
|
| 3030 |
|
|
end if;
|
| 3031 |
|
|
|
| 3032 |
|
|
-- Deal with special cases of freezing for subtype
|
| 3033 |
|
|
|
| 3034 |
|
|
if E /= Base_Type (E) then
|
| 3035 |
|
|
|
| 3036 |
|
|
-- Before we do anything else, a specialized test for the case of
|
| 3037 |
|
|
-- a size given for an array where the array needs to be packed,
|
| 3038 |
|
|
-- but was not so the size cannot be honored. This would of course
|
| 3039 |
|
|
-- be caught by the backend, and indeed we don't catch all cases.
|
| 3040 |
|
|
-- The point is that we can give a better error message in those
|
| 3041 |
|
|
-- cases that we do catch with the circuitry here. Also if pragma
|
| 3042 |
|
|
-- Implicit_Packing is set, this is where the packing occurs.
|
| 3043 |
|
|
|
| 3044 |
|
|
-- The reason we do this so early is that the processing in the
|
| 3045 |
|
|
-- automatic packing case affects the layout of the base type, so
|
| 3046 |
|
|
-- it must be done before we freeze the base type.
|
| 3047 |
|
|
|
| 3048 |
|
|
if Is_Array_Type (E) then
|
| 3049 |
|
|
declare
|
| 3050 |
|
|
Lo, Hi : Node_Id;
|
| 3051 |
|
|
Ctyp : constant Entity_Id := Component_Type (E);
|
| 3052 |
|
|
|
| 3053 |
|
|
begin
|
| 3054 |
|
|
-- Check enabling conditions. These are straightforward
|
| 3055 |
|
|
-- except for the test for a limited composite type. This
|
| 3056 |
|
|
-- eliminates the rare case of a array of limited components
|
| 3057 |
|
|
-- where there are issues of whether or not we can go ahead
|
| 3058 |
|
|
-- and pack the array (since we can't freely pack and unpack
|
| 3059 |
|
|
-- arrays if they are limited).
|
| 3060 |
|
|
|
| 3061 |
|
|
-- Note that we check the root type explicitly because the
|
| 3062 |
|
|
-- whole point is we are doing this test before we have had
|
| 3063 |
|
|
-- a chance to freeze the base type (and it is that freeze
|
| 3064 |
|
|
-- action that causes stuff to be inherited).
|
| 3065 |
|
|
|
| 3066 |
|
|
if Present (Size_Clause (E))
|
| 3067 |
|
|
and then Known_Static_Esize (E)
|
| 3068 |
|
|
and then not Is_Packed (E)
|
| 3069 |
|
|
and then not Has_Pragma_Pack (E)
|
| 3070 |
|
|
and then Number_Dimensions (E) = 1
|
| 3071 |
|
|
and then not Has_Component_Size_Clause (E)
|
| 3072 |
|
|
and then Known_Static_Esize (Ctyp)
|
| 3073 |
|
|
and then not Is_Limited_Composite (E)
|
| 3074 |
|
|
and then not Is_Packed (Root_Type (E))
|
| 3075 |
|
|
and then not Has_Component_Size_Clause (Root_Type (E))
|
| 3076 |
|
|
and then not CodePeer_Mode
|
| 3077 |
|
|
then
|
| 3078 |
|
|
Get_Index_Bounds (First_Index (E), Lo, Hi);
|
| 3079 |
|
|
|
| 3080 |
|
|
if Compile_Time_Known_Value (Lo)
|
| 3081 |
|
|
and then Compile_Time_Known_Value (Hi)
|
| 3082 |
|
|
and then Known_Static_RM_Size (Ctyp)
|
| 3083 |
|
|
and then RM_Size (Ctyp) < 64
|
| 3084 |
|
|
then
|
| 3085 |
|
|
declare
|
| 3086 |
|
|
Lov : constant Uint := Expr_Value (Lo);
|
| 3087 |
|
|
Hiv : constant Uint := Expr_Value (Hi);
|
| 3088 |
|
|
Len : constant Uint := UI_Max
|
| 3089 |
|
|
(Uint_0,
|
| 3090 |
|
|
Hiv - Lov + 1);
|
| 3091 |
|
|
Rsiz : constant Uint := RM_Size (Ctyp);
|
| 3092 |
|
|
SZ : constant Node_Id := Size_Clause (E);
|
| 3093 |
|
|
Btyp : constant Entity_Id := Base_Type (E);
|
| 3094 |
|
|
|
| 3095 |
|
|
-- What we are looking for here is the situation where
|
| 3096 |
|
|
-- the RM_Size given would be exactly right if there
|
| 3097 |
|
|
-- was a pragma Pack (resulting in the component size
|
| 3098 |
|
|
-- being the same as the RM_Size). Furthermore, the
|
| 3099 |
|
|
-- component type size must be an odd size (not a
|
| 3100 |
|
|
-- multiple of storage unit). If the component RM size
|
| 3101 |
|
|
-- is an exact number of storage units that is a power
|
| 3102 |
|
|
-- of two, the array is not packed and has a standard
|
| 3103 |
|
|
-- representation.
|
| 3104 |
|
|
|
| 3105 |
|
|
begin
|
| 3106 |
|
|
if RM_Size (E) = Len * Rsiz
|
| 3107 |
|
|
and then Rsiz mod System_Storage_Unit /= 0
|
| 3108 |
|
|
then
|
| 3109 |
|
|
-- For implicit packing mode, just set the
|
| 3110 |
|
|
-- component size silently.
|
| 3111 |
|
|
|
| 3112 |
|
|
if Implicit_Packing then
|
| 3113 |
|
|
Set_Component_Size (Btyp, Rsiz);
|
| 3114 |
|
|
Set_Is_Bit_Packed_Array (Btyp);
|
| 3115 |
|
|
Set_Is_Packed (Btyp);
|
| 3116 |
|
|
Set_Has_Non_Standard_Rep (Btyp);
|
| 3117 |
|
|
|
| 3118 |
|
|
-- Otherwise give an error message
|
| 3119 |
|
|
|
| 3120 |
|
|
else
|
| 3121 |
|
|
Error_Msg_NE
|
| 3122 |
|
|
("size given for& too small", SZ, E);
|
| 3123 |
|
|
Error_Msg_N
|
| 3124 |
|
|
("\use explicit pragma Pack "
|
| 3125 |
|
|
& "or use pragma Implicit_Packing", SZ);
|
| 3126 |
|
|
end if;
|
| 3127 |
|
|
|
| 3128 |
|
|
elsif RM_Size (E) = Len * Rsiz
|
| 3129 |
|
|
and then Implicit_Packing
|
| 3130 |
|
|
and then
|
| 3131 |
|
|
(Rsiz / System_Storage_Unit = 1
|
| 3132 |
|
|
or else Rsiz / System_Storage_Unit = 2
|
| 3133 |
|
|
or else Rsiz / System_Storage_Unit = 4)
|
| 3134 |
|
|
then
|
| 3135 |
|
|
|
| 3136 |
|
|
-- Not a packed array, but indicate the desired
|
| 3137 |
|
|
-- component size, for the back-end.
|
| 3138 |
|
|
|
| 3139 |
|
|
Set_Component_Size (Btyp, Rsiz);
|
| 3140 |
|
|
end if;
|
| 3141 |
|
|
end;
|
| 3142 |
|
|
end if;
|
| 3143 |
|
|
end if;
|
| 3144 |
|
|
end;
|
| 3145 |
|
|
end if;
|
| 3146 |
|
|
|
| 3147 |
|
|
-- If ancestor subtype present, freeze that first. Note that this
|
| 3148 |
|
|
-- will also get the base type frozen.
|
| 3149 |
|
|
|
| 3150 |
|
|
Atype := Ancestor_Subtype (E);
|
| 3151 |
|
|
|
| 3152 |
|
|
if Present (Atype) then
|
| 3153 |
|
|
Freeze_And_Append (Atype, Loc, Result);
|
| 3154 |
|
|
|
| 3155 |
|
|
-- Otherwise freeze the base type of the entity before freezing
|
| 3156 |
|
|
-- the entity itself (RM 13.14(15)).
|
| 3157 |
|
|
|
| 3158 |
|
|
elsif E /= Base_Type (E) then
|
| 3159 |
|
|
Freeze_And_Append (Base_Type (E), Loc, Result);
|
| 3160 |
|
|
end if;
|
| 3161 |
|
|
|
| 3162 |
|
|
-- For a derived type, freeze its parent type first (RM 13.14(15))
|
| 3163 |
|
|
|
| 3164 |
|
|
elsif Is_Derived_Type (E) then
|
| 3165 |
|
|
Freeze_And_Append (Etype (E), Loc, Result);
|
| 3166 |
|
|
Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
|
| 3167 |
|
|
end if;
|
| 3168 |
|
|
|
| 3169 |
|
|
-- For array type, freeze index types and component type first
|
| 3170 |
|
|
-- before freezing the array (RM 13.14(15)).
|
| 3171 |
|
|
|
| 3172 |
|
|
if Is_Array_Type (E) then
|
| 3173 |
|
|
declare
|
| 3174 |
|
|
Ctyp : constant Entity_Id := Component_Type (E);
|
| 3175 |
|
|
|
| 3176 |
|
|
Non_Standard_Enum : Boolean := False;
|
| 3177 |
|
|
-- Set true if any of the index types is an enumeration type
|
| 3178 |
|
|
-- with a non-standard representation.
|
| 3179 |
|
|
|
| 3180 |
|
|
begin
|
| 3181 |
|
|
Freeze_And_Append (Ctyp, Loc, Result);
|
| 3182 |
|
|
|
| 3183 |
|
|
Indx := First_Index (E);
|
| 3184 |
|
|
while Present (Indx) loop
|
| 3185 |
|
|
Freeze_And_Append (Etype (Indx), Loc, Result);
|
| 3186 |
|
|
|
| 3187 |
|
|
if Is_Enumeration_Type (Etype (Indx))
|
| 3188 |
|
|
and then Has_Non_Standard_Rep (Etype (Indx))
|
| 3189 |
|
|
then
|
| 3190 |
|
|
Non_Standard_Enum := True;
|
| 3191 |
|
|
end if;
|
| 3192 |
|
|
|
| 3193 |
|
|
Next_Index (Indx);
|
| 3194 |
|
|
end loop;
|
| 3195 |
|
|
|
| 3196 |
|
|
-- Processing that is done only for base types
|
| 3197 |
|
|
|
| 3198 |
|
|
if Ekind (E) = E_Array_Type then
|
| 3199 |
|
|
|
| 3200 |
|
|
-- Propagate flags for component type
|
| 3201 |
|
|
|
| 3202 |
|
|
if Is_Controlled (Component_Type (E))
|
| 3203 |
|
|
or else Has_Controlled_Component (Ctyp)
|
| 3204 |
|
|
then
|
| 3205 |
|
|
Set_Has_Controlled_Component (E);
|
| 3206 |
|
|
end if;
|
| 3207 |
|
|
|
| 3208 |
|
|
if Has_Unchecked_Union (Component_Type (E)) then
|
| 3209 |
|
|
Set_Has_Unchecked_Union (E);
|
| 3210 |
|
|
end if;
|
| 3211 |
|
|
|
| 3212 |
|
|
-- If packing was requested or if the component size was set
|
| 3213 |
|
|
-- explicitly, then see if bit packing is required. This
|
| 3214 |
|
|
-- processing is only done for base types, since all the
|
| 3215 |
|
|
-- representation aspects involved are type-related. This
|
| 3216 |
|
|
-- is not just an optimization, if we start processing the
|
| 3217 |
|
|
-- subtypes, they interfere with the settings on the base
|
| 3218 |
|
|
-- type (this is because Is_Packed has a slightly different
|
| 3219 |
|
|
-- meaning before and after freezing).
|
| 3220 |
|
|
|
| 3221 |
|
|
declare
|
| 3222 |
|
|
Csiz : Uint;
|
| 3223 |
|
|
Esiz : Uint;
|
| 3224 |
|
|
|
| 3225 |
|
|
begin
|
| 3226 |
|
|
if (Is_Packed (E) or else Has_Pragma_Pack (E))
|
| 3227 |
|
|
and then not Has_Atomic_Components (E)
|
| 3228 |
|
|
and then Known_Static_RM_Size (Ctyp)
|
| 3229 |
|
|
then
|
| 3230 |
|
|
Csiz := UI_Max (RM_Size (Ctyp), 1);
|
| 3231 |
|
|
|
| 3232 |
|
|
elsif Known_Component_Size (E) then
|
| 3233 |
|
|
Csiz := Component_Size (E);
|
| 3234 |
|
|
|
| 3235 |
|
|
elsif not Known_Static_Esize (Ctyp) then
|
| 3236 |
|
|
Csiz := Uint_0;
|
| 3237 |
|
|
|
| 3238 |
|
|
else
|
| 3239 |
|
|
Esiz := Esize (Ctyp);
|
| 3240 |
|
|
|
| 3241 |
|
|
-- We can set the component size if it is less than
|
| 3242 |
|
|
-- 16, rounding it up to the next storage unit size.
|
| 3243 |
|
|
|
| 3244 |
|
|
if Esiz <= 8 then
|
| 3245 |
|
|
Csiz := Uint_8;
|
| 3246 |
|
|
elsif Esiz <= 16 then
|
| 3247 |
|
|
Csiz := Uint_16;
|
| 3248 |
|
|
else
|
| 3249 |
|
|
Csiz := Uint_0;
|
| 3250 |
|
|
end if;
|
| 3251 |
|
|
|
| 3252 |
|
|
-- Set component size up to match alignment if it
|
| 3253 |
|
|
-- would otherwise be less than the alignment. This
|
| 3254 |
|
|
-- deals with cases of types whose alignment exceeds
|
| 3255 |
|
|
-- their size (padded types).
|
| 3256 |
|
|
|
| 3257 |
|
|
if Csiz /= 0 then
|
| 3258 |
|
|
declare
|
| 3259 |
|
|
A : constant Uint := Alignment_In_Bits (Ctyp);
|
| 3260 |
|
|
begin
|
| 3261 |
|
|
if Csiz < A then
|
| 3262 |
|
|
Csiz := A;
|
| 3263 |
|
|
end if;
|
| 3264 |
|
|
end;
|
| 3265 |
|
|
end if;
|
| 3266 |
|
|
end if;
|
| 3267 |
|
|
|
| 3268 |
|
|
-- Case of component size that may result in packing
|
| 3269 |
|
|
|
| 3270 |
|
|
if 1 <= Csiz and then Csiz <= 64 then
|
| 3271 |
|
|
declare
|
| 3272 |
|
|
Ent : constant Entity_Id :=
|
| 3273 |
|
|
First_Subtype (E);
|
| 3274 |
|
|
Pack_Pragma : constant Node_Id :=
|
| 3275 |
|
|
Get_Rep_Pragma (Ent, Name_Pack);
|
| 3276 |
|
|
Comp_Size_C : constant Node_Id :=
|
| 3277 |
|
|
Get_Attribute_Definition_Clause
|
| 3278 |
|
|
(Ent, Attribute_Component_Size);
|
| 3279 |
|
|
begin
|
| 3280 |
|
|
-- Warn if we have pack and component size so that
|
| 3281 |
|
|
-- the pack is ignored.
|
| 3282 |
|
|
|
| 3283 |
|
|
-- Note: here we must check for the presence of a
|
| 3284 |
|
|
-- component size before checking for a Pack pragma
|
| 3285 |
|
|
-- to deal with the case where the array type is a
|
| 3286 |
|
|
-- derived type whose parent is currently private.
|
| 3287 |
|
|
|
| 3288 |
|
|
if Present (Comp_Size_C)
|
| 3289 |
|
|
and then Has_Pragma_Pack (Ent)
|
| 3290 |
|
|
then
|
| 3291 |
|
|
Error_Msg_Sloc := Sloc (Comp_Size_C);
|
| 3292 |
|
|
Error_Msg_NE
|
| 3293 |
|
|
("?pragma Pack for& ignored!",
|
| 3294 |
|
|
Pack_Pragma, Ent);
|
| 3295 |
|
|
Error_Msg_N
|
| 3296 |
|
|
("\?explicit component size given#!",
|
| 3297 |
|
|
Pack_Pragma);
|
| 3298 |
|
|
end if;
|
| 3299 |
|
|
|
| 3300 |
|
|
-- Set component size if not already set by a
|
| 3301 |
|
|
-- component size clause.
|
| 3302 |
|
|
|
| 3303 |
|
|
if not Present (Comp_Size_C) then
|
| 3304 |
|
|
Set_Component_Size (E, Csiz);
|
| 3305 |
|
|
end if;
|
| 3306 |
|
|
|
| 3307 |
|
|
-- Check for base type of 8, 16, 32 bits, where an
|
| 3308 |
|
|
-- unsigned subtype has a length one less than the
|
| 3309 |
|
|
-- base type (e.g. Natural subtype of Integer).
|
| 3310 |
|
|
|
| 3311 |
|
|
-- In such cases, if a component size was not set
|
| 3312 |
|
|
-- explicitly, then generate a warning.
|
| 3313 |
|
|
|
| 3314 |
|
|
if Has_Pragma_Pack (E)
|
| 3315 |
|
|
and then not Present (Comp_Size_C)
|
| 3316 |
|
|
and then
|
| 3317 |
|
|
(Csiz = 7 or else Csiz = 15 or else Csiz = 31)
|
| 3318 |
|
|
and then Esize (Base_Type (Ctyp)) = Csiz + 1
|
| 3319 |
|
|
then
|
| 3320 |
|
|
Error_Msg_Uint_1 := Csiz;
|
| 3321 |
|
|
|
| 3322 |
|
|
if Present (Pack_Pragma) then
|
| 3323 |
|
|
Error_Msg_N
|
| 3324 |
|
|
("?pragma Pack causes component size "
|
| 3325 |
|
|
& "to be ^!", Pack_Pragma);
|
| 3326 |
|
|
Error_Msg_N
|
| 3327 |
|
|
("\?use Component_Size to set "
|
| 3328 |
|
|
& "desired value!", Pack_Pragma);
|
| 3329 |
|
|
end if;
|
| 3330 |
|
|
end if;
|
| 3331 |
|
|
|
| 3332 |
|
|
-- Actual packing is not needed for 8, 16, 32, 64.
|
| 3333 |
|
|
-- Also not needed for 24 if alignment is 1.
|
| 3334 |
|
|
|
| 3335 |
|
|
if Csiz = 8
|
| 3336 |
|
|
or else Csiz = 16
|
| 3337 |
|
|
or else Csiz = 32
|
| 3338 |
|
|
or else Csiz = 64
|
| 3339 |
|
|
or else (Csiz = 24 and then Alignment (Ctyp) = 1)
|
| 3340 |
|
|
then
|
| 3341 |
|
|
-- Here the array was requested to be packed,
|
| 3342 |
|
|
-- but the packing request had no effect, so
|
| 3343 |
|
|
-- Is_Packed is reset.
|
| 3344 |
|
|
|
| 3345 |
|
|
-- Note: semantically this means that we lose
|
| 3346 |
|
|
-- track of the fact that a derived type
|
| 3347 |
|
|
-- inherited a pragma Pack that was non-
|
| 3348 |
|
|
-- effective, but that seems fine.
|
| 3349 |
|
|
|
| 3350 |
|
|
-- We regard a Pack pragma as a request to set
|
| 3351 |
|
|
-- a representation characteristic, and this
|
| 3352 |
|
|
-- request may be ignored.
|
| 3353 |
|
|
|
| 3354 |
|
|
Set_Is_Packed (Base_Type (E), False);
|
| 3355 |
|
|
|
| 3356 |
|
|
-- In all other cases, packing is indeed needed
|
| 3357 |
|
|
|
| 3358 |
|
|
else
|
| 3359 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (E));
|
| 3360 |
|
|
Set_Is_Bit_Packed_Array (Base_Type (E));
|
| 3361 |
|
|
Set_Is_Packed (Base_Type (E));
|
| 3362 |
|
|
end if;
|
| 3363 |
|
|
end;
|
| 3364 |
|
|
end if;
|
| 3365 |
|
|
end;
|
| 3366 |
|
|
|
| 3367 |
|
|
-- Processing that is done only for subtypes
|
| 3368 |
|
|
|
| 3369 |
|
|
else
|
| 3370 |
|
|
-- Acquire alignment from base type
|
| 3371 |
|
|
|
| 3372 |
|
|
if Unknown_Alignment (E) then
|
| 3373 |
|
|
Set_Alignment (E, Alignment (Base_Type (E)));
|
| 3374 |
|
|
Adjust_Esize_Alignment (E);
|
| 3375 |
|
|
end if;
|
| 3376 |
|
|
end if;
|
| 3377 |
|
|
|
| 3378 |
|
|
-- For bit-packed arrays, check the size
|
| 3379 |
|
|
|
| 3380 |
|
|
if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
|
| 3381 |
|
|
declare
|
| 3382 |
|
|
SizC : constant Node_Id := Size_Clause (E);
|
| 3383 |
|
|
|
| 3384 |
|
|
Discard : Boolean;
|
| 3385 |
|
|
pragma Warnings (Off, Discard);
|
| 3386 |
|
|
|
| 3387 |
|
|
begin
|
| 3388 |
|
|
-- It is not clear if it is possible to have no size
|
| 3389 |
|
|
-- clause at this stage, but it is not worth worrying
|
| 3390 |
|
|
-- about. Post error on the entity name in the size
|
| 3391 |
|
|
-- clause if present, else on the type entity itself.
|
| 3392 |
|
|
|
| 3393 |
|
|
if Present (SizC) then
|
| 3394 |
|
|
Check_Size (Name (SizC), E, RM_Size (E), Discard);
|
| 3395 |
|
|
else
|
| 3396 |
|
|
Check_Size (E, E, RM_Size (E), Discard);
|
| 3397 |
|
|
end if;
|
| 3398 |
|
|
end;
|
| 3399 |
|
|
end if;
|
| 3400 |
|
|
|
| 3401 |
|
|
-- If any of the index types was an enumeration type with
|
| 3402 |
|
|
-- a non-standard rep clause, then we indicate that the
|
| 3403 |
|
|
-- array type is always packed (even if it is not bit packed).
|
| 3404 |
|
|
|
| 3405 |
|
|
if Non_Standard_Enum then
|
| 3406 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (E));
|
| 3407 |
|
|
Set_Is_Packed (Base_Type (E));
|
| 3408 |
|
|
end if;
|
| 3409 |
|
|
|
| 3410 |
|
|
Set_Component_Alignment_If_Not_Set (E);
|
| 3411 |
|
|
|
| 3412 |
|
|
-- If the array is packed, we must create the packed array
|
| 3413 |
|
|
-- type to be used to actually implement the type. This is
|
| 3414 |
|
|
-- only needed for real array types (not for string literal
|
| 3415 |
|
|
-- types, since they are present only for the front end).
|
| 3416 |
|
|
|
| 3417 |
|
|
if Is_Packed (E)
|
| 3418 |
|
|
and then Ekind (E) /= E_String_Literal_Subtype
|
| 3419 |
|
|
then
|
| 3420 |
|
|
Create_Packed_Array_Type (E);
|
| 3421 |
|
|
Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
|
| 3422 |
|
|
|
| 3423 |
|
|
-- Size information of packed array type is copied to the
|
| 3424 |
|
|
-- array type, since this is really the representation. But
|
| 3425 |
|
|
-- do not override explicit existing size values. If the
|
| 3426 |
|
|
-- ancestor subtype is constrained the packed_array_type
|
| 3427 |
|
|
-- will be inherited from it, but the size may have been
|
| 3428 |
|
|
-- provided already, and must not be overridden either.
|
| 3429 |
|
|
|
| 3430 |
|
|
if not Has_Size_Clause (E)
|
| 3431 |
|
|
and then
|
| 3432 |
|
|
(No (Ancestor_Subtype (E))
|
| 3433 |
|
|
or else not Has_Size_Clause (Ancestor_Subtype (E)))
|
| 3434 |
|
|
then
|
| 3435 |
|
|
Set_Esize (E, Esize (Packed_Array_Type (E)));
|
| 3436 |
|
|
Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
|
| 3437 |
|
|
end if;
|
| 3438 |
|
|
|
| 3439 |
|
|
if not Has_Alignment_Clause (E) then
|
| 3440 |
|
|
Set_Alignment (E, Alignment (Packed_Array_Type (E)));
|
| 3441 |
|
|
end if;
|
| 3442 |
|
|
end if;
|
| 3443 |
|
|
|
| 3444 |
|
|
-- For non-packed arrays set the alignment of the array to the
|
| 3445 |
|
|
-- alignment of the component type if it is unknown. Skip this
|
| 3446 |
|
|
-- in atomic case (atomic arrays may need larger alignments).
|
| 3447 |
|
|
|
| 3448 |
|
|
if not Is_Packed (E)
|
| 3449 |
|
|
and then Unknown_Alignment (E)
|
| 3450 |
|
|
and then Known_Alignment (Ctyp)
|
| 3451 |
|
|
and then Known_Static_Component_Size (E)
|
| 3452 |
|
|
and then Known_Static_Esize (Ctyp)
|
| 3453 |
|
|
and then Esize (Ctyp) = Component_Size (E)
|
| 3454 |
|
|
and then not Is_Atomic (E)
|
| 3455 |
|
|
then
|
| 3456 |
|
|
Set_Alignment (E, Alignment (Component_Type (E)));
|
| 3457 |
|
|
end if;
|
| 3458 |
|
|
end;
|
| 3459 |
|
|
|
| 3460 |
|
|
-- For a class-wide type, the corresponding specific type is
|
| 3461 |
|
|
-- frozen as well (RM 13.14(15))
|
| 3462 |
|
|
|
| 3463 |
|
|
elsif Is_Class_Wide_Type (E) then
|
| 3464 |
|
|
Freeze_And_Append (Root_Type (E), Loc, Result);
|
| 3465 |
|
|
|
| 3466 |
|
|
-- If the base type of the class-wide type is still incomplete,
|
| 3467 |
|
|
-- the class-wide remains unfrozen as well. This is legal when
|
| 3468 |
|
|
-- E is the formal of a primitive operation of some other type
|
| 3469 |
|
|
-- which is being frozen.
|
| 3470 |
|
|
|
| 3471 |
|
|
if not Is_Frozen (Root_Type (E)) then
|
| 3472 |
|
|
Set_Is_Frozen (E, False);
|
| 3473 |
|
|
return Result;
|
| 3474 |
|
|
end if;
|
| 3475 |
|
|
|
| 3476 |
|
|
-- If the Class_Wide_Type is an Itype (when type is the anonymous
|
| 3477 |
|
|
-- parent of a derived type) and it is a library-level entity,
|
| 3478 |
|
|
-- generate an itype reference for it. Otherwise, its first
|
| 3479 |
|
|
-- explicit reference may be in an inner scope, which will be
|
| 3480 |
|
|
-- rejected by the back-end.
|
| 3481 |
|
|
|
| 3482 |
|
|
if Is_Itype (E)
|
| 3483 |
|
|
and then Is_Compilation_Unit (Scope (E))
|
| 3484 |
|
|
then
|
| 3485 |
|
|
declare
|
| 3486 |
|
|
Ref : constant Node_Id := Make_Itype_Reference (Loc);
|
| 3487 |
|
|
|
| 3488 |
|
|
begin
|
| 3489 |
|
|
Set_Itype (Ref, E);
|
| 3490 |
|
|
if No (Result) then
|
| 3491 |
|
|
Result := New_List (Ref);
|
| 3492 |
|
|
else
|
| 3493 |
|
|
Append (Ref, Result);
|
| 3494 |
|
|
end if;
|
| 3495 |
|
|
end;
|
| 3496 |
|
|
end if;
|
| 3497 |
|
|
|
| 3498 |
|
|
-- The equivalent type associated with a class-wide subtype needs
|
| 3499 |
|
|
-- to be frozen to ensure that its layout is done.
|
| 3500 |
|
|
|
| 3501 |
|
|
if Ekind (E) = E_Class_Wide_Subtype
|
| 3502 |
|
|
and then Present (Equivalent_Type (E))
|
| 3503 |
|
|
then
|
| 3504 |
|
|
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
|
| 3505 |
|
|
end if;
|
| 3506 |
|
|
|
| 3507 |
|
|
-- For a record (sub)type, freeze all the component types (RM
|
| 3508 |
|
|
-- 13.14(15). We test for E_Record_(sub)Type here, rather than using
|
| 3509 |
|
|
-- Is_Record_Type, because we don't want to attempt the freeze for
|
| 3510 |
|
|
-- the case of a private type with record extension (we will do that
|
| 3511 |
|
|
-- later when the full type is frozen).
|
| 3512 |
|
|
|
| 3513 |
|
|
elsif Ekind (E) = E_Record_Type
|
| 3514 |
|
|
or else Ekind (E) = E_Record_Subtype
|
| 3515 |
|
|
then
|
| 3516 |
|
|
Freeze_Record_Type (E);
|
| 3517 |
|
|
|
| 3518 |
|
|
-- For a concurrent type, freeze corresponding record type. This
|
| 3519 |
|
|
-- does not correspond to any specific rule in the RM, but the
|
| 3520 |
|
|
-- record type is essentially part of the concurrent type.
|
| 3521 |
|
|
-- Freeze as well all local entities. This includes record types
|
| 3522 |
|
|
-- created for entry parameter blocks, and whatever local entities
|
| 3523 |
|
|
-- may appear in the private part.
|
| 3524 |
|
|
|
| 3525 |
|
|
elsif Is_Concurrent_Type (E) then
|
| 3526 |
|
|
if Present (Corresponding_Record_Type (E)) then
|
| 3527 |
|
|
Freeze_And_Append
|
| 3528 |
|
|
(Corresponding_Record_Type (E), Loc, Result);
|
| 3529 |
|
|
end if;
|
| 3530 |
|
|
|
| 3531 |
|
|
Comp := First_Entity (E);
|
| 3532 |
|
|
while Present (Comp) loop
|
| 3533 |
|
|
if Is_Type (Comp) then
|
| 3534 |
|
|
Freeze_And_Append (Comp, Loc, Result);
|
| 3535 |
|
|
|
| 3536 |
|
|
elsif (Ekind (Comp)) /= E_Function then
|
| 3537 |
|
|
if Is_Itype (Etype (Comp))
|
| 3538 |
|
|
and then Underlying_Type (Scope (Etype (Comp))) = E
|
| 3539 |
|
|
then
|
| 3540 |
|
|
Undelay_Type (Etype (Comp));
|
| 3541 |
|
|
end if;
|
| 3542 |
|
|
|
| 3543 |
|
|
Freeze_And_Append (Etype (Comp), Loc, Result);
|
| 3544 |
|
|
end if;
|
| 3545 |
|
|
|
| 3546 |
|
|
Next_Entity (Comp);
|
| 3547 |
|
|
end loop;
|
| 3548 |
|
|
|
| 3549 |
|
|
-- Private types are required to point to the same freeze node as
|
| 3550 |
|
|
-- their corresponding full views. The freeze node itself has to
|
| 3551 |
|
|
-- point to the partial view of the entity (because from the partial
|
| 3552 |
|
|
-- view, we can retrieve the full view, but not the reverse).
|
| 3553 |
|
|
-- However, in order to freeze correctly, we need to freeze the full
|
| 3554 |
|
|
-- view. If we are freezing at the end of a scope (or within the
|
| 3555 |
|
|
-- scope of the private type), the partial and full views will have
|
| 3556 |
|
|
-- been swapped, the full view appears first in the entity chain and
|
| 3557 |
|
|
-- the swapping mechanism ensures that the pointers are properly set
|
| 3558 |
|
|
-- (on scope exit).
|
| 3559 |
|
|
|
| 3560 |
|
|
-- If we encounter the partial view before the full view (e.g. when
|
| 3561 |
|
|
-- freezing from another scope), we freeze the full view, and then
|
| 3562 |
|
|
-- set the pointers appropriately since we cannot rely on swapping to
|
| 3563 |
|
|
-- fix things up (subtypes in an outer scope might not get swapped).
|
| 3564 |
|
|
|
| 3565 |
|
|
elsif Is_Incomplete_Or_Private_Type (E)
|
| 3566 |
|
|
and then not Is_Generic_Type (E)
|
| 3567 |
|
|
then
|
| 3568 |
|
|
-- The construction of the dispatch table associated with library
|
| 3569 |
|
|
-- level tagged types forces freezing of all the primitives of the
|
| 3570 |
|
|
-- type, which may cause premature freezing of the partial view.
|
| 3571 |
|
|
-- For example:
|
| 3572 |
|
|
|
| 3573 |
|
|
-- package Pkg is
|
| 3574 |
|
|
-- type T is tagged private;
|
| 3575 |
|
|
-- type DT is new T with private;
|
| 3576 |
|
|
-- procedure Prim (X : in out T; Y : in out DT'class);
|
| 3577 |
|
|
-- private
|
| 3578 |
|
|
-- type T is tagged null record;
|
| 3579 |
|
|
-- Obj : T;
|
| 3580 |
|
|
-- type DT is new T with null record;
|
| 3581 |
|
|
-- end;
|
| 3582 |
|
|
|
| 3583 |
|
|
-- In this case the type will be frozen later by the usual
|
| 3584 |
|
|
-- mechanism: an object declaration, an instantiation, or the
|
| 3585 |
|
|
-- end of a declarative part.
|
| 3586 |
|
|
|
| 3587 |
|
|
if Is_Library_Level_Tagged_Type (E)
|
| 3588 |
|
|
and then not Present (Full_View (E))
|
| 3589 |
|
|
then
|
| 3590 |
|
|
Set_Is_Frozen (E, False);
|
| 3591 |
|
|
return Result;
|
| 3592 |
|
|
|
| 3593 |
|
|
-- Case of full view present
|
| 3594 |
|
|
|
| 3595 |
|
|
elsif Present (Full_View (E)) then
|
| 3596 |
|
|
|
| 3597 |
|
|
-- If full view has already been frozen, then no further
|
| 3598 |
|
|
-- processing is required
|
| 3599 |
|
|
|
| 3600 |
|
|
if Is_Frozen (Full_View (E)) then
|
| 3601 |
|
|
|
| 3602 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
| 3603 |
|
|
Set_Freeze_Node (E, Empty);
|
| 3604 |
|
|
Check_Debug_Info_Needed (E);
|
| 3605 |
|
|
|
| 3606 |
|
|
-- Otherwise freeze full view and patch the pointers so that
|
| 3607 |
|
|
-- the freeze node will elaborate both views in the back-end.
|
| 3608 |
|
|
|
| 3609 |
|
|
else
|
| 3610 |
|
|
declare
|
| 3611 |
|
|
Full : constant Entity_Id := Full_View (E);
|
| 3612 |
|
|
|
| 3613 |
|
|
begin
|
| 3614 |
|
|
if Is_Private_Type (Full)
|
| 3615 |
|
|
and then Present (Underlying_Full_View (Full))
|
| 3616 |
|
|
then
|
| 3617 |
|
|
Freeze_And_Append
|
| 3618 |
|
|
(Underlying_Full_View (Full), Loc, Result);
|
| 3619 |
|
|
end if;
|
| 3620 |
|
|
|
| 3621 |
|
|
Freeze_And_Append (Full, Loc, Result);
|
| 3622 |
|
|
|
| 3623 |
|
|
if Has_Delayed_Freeze (E) then
|
| 3624 |
|
|
F_Node := Freeze_Node (Full);
|
| 3625 |
|
|
|
| 3626 |
|
|
if Present (F_Node) then
|
| 3627 |
|
|
Set_Freeze_Node (E, F_Node);
|
| 3628 |
|
|
Set_Entity (F_Node, E);
|
| 3629 |
|
|
|
| 3630 |
|
|
else
|
| 3631 |
|
|
-- {Incomplete,Private}_Subtypes with Full_Views
|
| 3632 |
|
|
-- constrained by discriminants.
|
| 3633 |
|
|
|
| 3634 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
| 3635 |
|
|
Set_Freeze_Node (E, Empty);
|
| 3636 |
|
|
end if;
|
| 3637 |
|
|
end if;
|
| 3638 |
|
|
end;
|
| 3639 |
|
|
|
| 3640 |
|
|
Check_Debug_Info_Needed (E);
|
| 3641 |
|
|
end if;
|
| 3642 |
|
|
|
| 3643 |
|
|
-- AI-117 requires that the convention of a partial view be the
|
| 3644 |
|
|
-- same as the convention of the full view. Note that this is a
|
| 3645 |
|
|
-- recognized breach of privacy, but it's essential for logical
|
| 3646 |
|
|
-- consistency of representation, and the lack of a rule in
|
| 3647 |
|
|
-- RM95 was an oversight.
|
| 3648 |
|
|
|
| 3649 |
|
|
Set_Convention (E, Convention (Full_View (E)));
|
| 3650 |
|
|
|
| 3651 |
|
|
Set_Size_Known_At_Compile_Time (E,
|
| 3652 |
|
|
Size_Known_At_Compile_Time (Full_View (E)));
|
| 3653 |
|
|
|
| 3654 |
|
|
-- Size information is copied from the full view to the
|
| 3655 |
|
|
-- incomplete or private view for consistency.
|
| 3656 |
|
|
|
| 3657 |
|
|
-- We skip this is the full view is not a type. This is very
|
| 3658 |
|
|
-- strange of course, and can only happen as a result of
|
| 3659 |
|
|
-- certain illegalities, such as a premature attempt to derive
|
| 3660 |
|
|
-- from an incomplete type.
|
| 3661 |
|
|
|
| 3662 |
|
|
if Is_Type (Full_View (E)) then
|
| 3663 |
|
|
Set_Size_Info (E, Full_View (E));
|
| 3664 |
|
|
Set_RM_Size (E, RM_Size (Full_View (E)));
|
| 3665 |
|
|
end if;
|
| 3666 |
|
|
|
| 3667 |
|
|
return Result;
|
| 3668 |
|
|
|
| 3669 |
|
|
-- Case of no full view present. If entity is derived or subtype,
|
| 3670 |
|
|
-- it is safe to freeze, correctness depends on the frozen status
|
| 3671 |
|
|
-- of parent. Otherwise it is either premature usage, or a Taft
|
| 3672 |
|
|
-- amendment type, so diagnosis is at the point of use and the
|
| 3673 |
|
|
-- type might be frozen later.
|
| 3674 |
|
|
|
| 3675 |
|
|
elsif E /= Base_Type (E)
|
| 3676 |
|
|
or else Is_Derived_Type (E)
|
| 3677 |
|
|
then
|
| 3678 |
|
|
null;
|
| 3679 |
|
|
|
| 3680 |
|
|
else
|
| 3681 |
|
|
Set_Is_Frozen (E, False);
|
| 3682 |
|
|
return No_List;
|
| 3683 |
|
|
end if;
|
| 3684 |
|
|
|
| 3685 |
|
|
-- For access subprogram, freeze types of all formals, the return
|
| 3686 |
|
|
-- type was already frozen, since it is the Etype of the function.
|
| 3687 |
|
|
-- Formal types can be tagged Taft amendment types, but otherwise
|
| 3688 |
|
|
-- they cannot be incomplete.
|
| 3689 |
|
|
|
| 3690 |
|
|
elsif Ekind (E) = E_Subprogram_Type then
|
| 3691 |
|
|
Formal := First_Formal (E);
|
| 3692 |
|
|
|
| 3693 |
|
|
while Present (Formal) loop
|
| 3694 |
|
|
if Ekind (Etype (Formal)) = E_Incomplete_Type
|
| 3695 |
|
|
and then No (Full_View (Etype (Formal)))
|
| 3696 |
|
|
and then not Is_Value_Type (Etype (Formal))
|
| 3697 |
|
|
then
|
| 3698 |
|
|
if Is_Tagged_Type (Etype (Formal)) then
|
| 3699 |
|
|
null;
|
| 3700 |
|
|
else
|
| 3701 |
|
|
Error_Msg_NE
|
| 3702 |
|
|
("invalid use of incomplete type&", E, Etype (Formal));
|
| 3703 |
|
|
end if;
|
| 3704 |
|
|
end if;
|
| 3705 |
|
|
|
| 3706 |
|
|
Freeze_And_Append (Etype (Formal), Loc, Result);
|
| 3707 |
|
|
Next_Formal (Formal);
|
| 3708 |
|
|
end loop;
|
| 3709 |
|
|
|
| 3710 |
|
|
Freeze_Subprogram (E);
|
| 3711 |
|
|
|
| 3712 |
|
|
-- For access to a protected subprogram, freeze the equivalent type
|
| 3713 |
|
|
-- (however this is not set if we are not generating code or if this
|
| 3714 |
|
|
-- is an anonymous type used just for resolution).
|
| 3715 |
|
|
|
| 3716 |
|
|
elsif Is_Access_Protected_Subprogram_Type (E) then
|
| 3717 |
|
|
if Present (Equivalent_Type (E)) then
|
| 3718 |
|
|
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
|
| 3719 |
|
|
end if;
|
| 3720 |
|
|
end if;
|
| 3721 |
|
|
|
| 3722 |
|
|
-- Generic types are never seen by the back-end, and are also not
|
| 3723 |
|
|
-- processed by the expander (since the expander is turned off for
|
| 3724 |
|
|
-- generic processing), so we never need freeze nodes for them.
|
| 3725 |
|
|
|
| 3726 |
|
|
if Is_Generic_Type (E) then
|
| 3727 |
|
|
return Result;
|
| 3728 |
|
|
end if;
|
| 3729 |
|
|
|
| 3730 |
|
|
-- Some special processing for non-generic types to complete
|
| 3731 |
|
|
-- representation details not known till the freeze point.
|
| 3732 |
|
|
|
| 3733 |
|
|
if Is_Fixed_Point_Type (E) then
|
| 3734 |
|
|
Freeze_Fixed_Point_Type (E);
|
| 3735 |
|
|
|
| 3736 |
|
|
-- Some error checks required for ordinary fixed-point type. Defer
|
| 3737 |
|
|
-- these till the freeze-point since we need the small and range
|
| 3738 |
|
|
-- values. We only do these checks for base types
|
| 3739 |
|
|
|
| 3740 |
|
|
if Is_Ordinary_Fixed_Point_Type (E)
|
| 3741 |
|
|
and then E = Base_Type (E)
|
| 3742 |
|
|
then
|
| 3743 |
|
|
if Small_Value (E) < Ureal_2_M_80 then
|
| 3744 |
|
|
Error_Msg_Name_1 := Name_Small;
|
| 3745 |
|
|
Error_Msg_N
|
| 3746 |
|
|
("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
|
| 3747 |
|
|
|
| 3748 |
|
|
elsif Small_Value (E) > Ureal_2_80 then
|
| 3749 |
|
|
Error_Msg_Name_1 := Name_Small;
|
| 3750 |
|
|
Error_Msg_N
|
| 3751 |
|
|
("`&''%` too large, maximum allowed is 2.0'*'*80", E);
|
| 3752 |
|
|
end if;
|
| 3753 |
|
|
|
| 3754 |
|
|
if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
|
| 3755 |
|
|
Error_Msg_Name_1 := Name_First;
|
| 3756 |
|
|
Error_Msg_N
|
| 3757 |
|
|
("`&''%` too small, minimum allowed is -10.0'*'*36", E);
|
| 3758 |
|
|
end if;
|
| 3759 |
|
|
|
| 3760 |
|
|
if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
|
| 3761 |
|
|
Error_Msg_Name_1 := Name_Last;
|
| 3762 |
|
|
Error_Msg_N
|
| 3763 |
|
|
("`&''%` too large, maximum allowed is 10.0'*'*36", E);
|
| 3764 |
|
|
end if;
|
| 3765 |
|
|
end if;
|
| 3766 |
|
|
|
| 3767 |
|
|
elsif Is_Enumeration_Type (E) then
|
| 3768 |
|
|
Freeze_Enumeration_Type (E);
|
| 3769 |
|
|
|
| 3770 |
|
|
elsif Is_Integer_Type (E) then
|
| 3771 |
|
|
Adjust_Esize_For_Alignment (E);
|
| 3772 |
|
|
|
| 3773 |
|
|
if Is_Modular_Integer_Type (E)
|
| 3774 |
|
|
and then Warn_On_Suspicious_Modulus_Value
|
| 3775 |
|
|
then
|
| 3776 |
|
|
Check_Suspicious_Modulus (E);
|
| 3777 |
|
|
end if;
|
| 3778 |
|
|
|
| 3779 |
|
|
elsif Is_Access_Type (E) then
|
| 3780 |
|
|
|
| 3781 |
|
|
-- Check restriction for standard storage pool
|
| 3782 |
|
|
|
| 3783 |
|
|
if No (Associated_Storage_Pool (E)) then
|
| 3784 |
|
|
Check_Restriction (No_Standard_Storage_Pools, E);
|
| 3785 |
|
|
end if;
|
| 3786 |
|
|
|
| 3787 |
|
|
-- Deal with error message for pure access type. This is not an
|
| 3788 |
|
|
-- error in Ada 2005 if there is no pool (see AI-366).
|
| 3789 |
|
|
|
| 3790 |
|
|
if Is_Pure_Unit_Access_Type (E)
|
| 3791 |
|
|
and then (Ada_Version < Ada_05
|
| 3792 |
|
|
or else not No_Pool_Assigned (E))
|
| 3793 |
|
|
then
|
| 3794 |
|
|
Error_Msg_N ("named access type not allowed in pure unit", E);
|
| 3795 |
|
|
|
| 3796 |
|
|
if Ada_Version >= Ada_05 then
|
| 3797 |
|
|
Error_Msg_N
|
| 3798 |
|
|
("\would be legal if Storage_Size of 0 given?", E);
|
| 3799 |
|
|
|
| 3800 |
|
|
elsif No_Pool_Assigned (E) then
|
| 3801 |
|
|
Error_Msg_N
|
| 3802 |
|
|
("\would be legal in Ada 2005?", E);
|
| 3803 |
|
|
|
| 3804 |
|
|
else
|
| 3805 |
|
|
Error_Msg_N
|
| 3806 |
|
|
("\would be legal in Ada 2005 if "
|
| 3807 |
|
|
& "Storage_Size of 0 given?", E);
|
| 3808 |
|
|
end if;
|
| 3809 |
|
|
end if;
|
| 3810 |
|
|
end if;
|
| 3811 |
|
|
|
| 3812 |
|
|
-- Case of composite types
|
| 3813 |
|
|
|
| 3814 |
|
|
if Is_Composite_Type (E) then
|
| 3815 |
|
|
|
| 3816 |
|
|
-- AI-117 requires that all new primitives of a tagged type must
|
| 3817 |
|
|
-- inherit the convention of the full view of the type. Inherited
|
| 3818 |
|
|
-- and overriding operations are defined to inherit the convention
|
| 3819 |
|
|
-- of their parent or overridden subprogram (also specified in
|
| 3820 |
|
|
-- AI-117), which will have occurred earlier (in Derive_Subprogram
|
| 3821 |
|
|
-- and New_Overloaded_Entity). Here we set the convention of
|
| 3822 |
|
|
-- primitives that are still convention Ada, which will ensure
|
| 3823 |
|
|
-- that any new primitives inherit the type's convention. Class-
|
| 3824 |
|
|
-- wide types can have a foreign convention inherited from their
|
| 3825 |
|
|
-- specific type, but are excluded from this since they don't have
|
| 3826 |
|
|
-- any associated primitives.
|
| 3827 |
|
|
|
| 3828 |
|
|
if Is_Tagged_Type (E)
|
| 3829 |
|
|
and then not Is_Class_Wide_Type (E)
|
| 3830 |
|
|
and then Convention (E) /= Convention_Ada
|
| 3831 |
|
|
then
|
| 3832 |
|
|
declare
|
| 3833 |
|
|
Prim_List : constant Elist_Id := Primitive_Operations (E);
|
| 3834 |
|
|
Prim : Elmt_Id;
|
| 3835 |
|
|
begin
|
| 3836 |
|
|
Prim := First_Elmt (Prim_List);
|
| 3837 |
|
|
while Present (Prim) loop
|
| 3838 |
|
|
if Convention (Node (Prim)) = Convention_Ada then
|
| 3839 |
|
|
Set_Convention (Node (Prim), Convention (E));
|
| 3840 |
|
|
end if;
|
| 3841 |
|
|
|
| 3842 |
|
|
Next_Elmt (Prim);
|
| 3843 |
|
|
end loop;
|
| 3844 |
|
|
end;
|
| 3845 |
|
|
end if;
|
| 3846 |
|
|
end if;
|
| 3847 |
|
|
|
| 3848 |
|
|
-- Now that all types from which E may depend are frozen, see if the
|
| 3849 |
|
|
-- size is known at compile time, if it must be unsigned, or if
|
| 3850 |
|
|
-- strict alignment is required
|
| 3851 |
|
|
|
| 3852 |
|
|
Check_Compile_Time_Size (E);
|
| 3853 |
|
|
Check_Unsigned_Type (E);
|
| 3854 |
|
|
|
| 3855 |
|
|
if Base_Type (E) = E then
|
| 3856 |
|
|
Check_Strict_Alignment (E);
|
| 3857 |
|
|
end if;
|
| 3858 |
|
|
|
| 3859 |
|
|
-- Do not allow a size clause for a type which does not have a size
|
| 3860 |
|
|
-- that is known at compile time
|
| 3861 |
|
|
|
| 3862 |
|
|
if Has_Size_Clause (E)
|
| 3863 |
|
|
and then not Size_Known_At_Compile_Time (E)
|
| 3864 |
|
|
then
|
| 3865 |
|
|
-- Suppress this message if errors posted on E, even if we are
|
| 3866 |
|
|
-- in all errors mode, since this is often a junk message
|
| 3867 |
|
|
|
| 3868 |
|
|
if not Error_Posted (E) then
|
| 3869 |
|
|
Error_Msg_N
|
| 3870 |
|
|
("size clause not allowed for variable length type",
|
| 3871 |
|
|
Size_Clause (E));
|
| 3872 |
|
|
end if;
|
| 3873 |
|
|
end if;
|
| 3874 |
|
|
|
| 3875 |
|
|
-- Remaining process is to set/verify the representation information,
|
| 3876 |
|
|
-- in particular the size and alignment values. This processing is
|
| 3877 |
|
|
-- not required for generic types, since generic types do not play
|
| 3878 |
|
|
-- any part in code generation, and so the size and alignment values
|
| 3879 |
|
|
-- for such types are irrelevant.
|
| 3880 |
|
|
|
| 3881 |
|
|
if Is_Generic_Type (E) then
|
| 3882 |
|
|
return Result;
|
| 3883 |
|
|
|
| 3884 |
|
|
-- Otherwise we call the layout procedure
|
| 3885 |
|
|
|
| 3886 |
|
|
else
|
| 3887 |
|
|
Layout_Type (E);
|
| 3888 |
|
|
end if;
|
| 3889 |
|
|
|
| 3890 |
|
|
-- End of freeze processing for type entities
|
| 3891 |
|
|
end if;
|
| 3892 |
|
|
|
| 3893 |
|
|
-- Here is where we logically freeze the current entity. If it has a
|
| 3894 |
|
|
-- freeze node, then this is the point at which the freeze node is
|
| 3895 |
|
|
-- linked into the result list.
|
| 3896 |
|
|
|
| 3897 |
|
|
if Has_Delayed_Freeze (E) then
|
| 3898 |
|
|
|
| 3899 |
|
|
-- If a freeze node is already allocated, use it, otherwise allocate
|
| 3900 |
|
|
-- a new one. The preallocation happens in the case of anonymous base
|
| 3901 |
|
|
-- types, where we preallocate so that we can set First_Subtype_Link.
|
| 3902 |
|
|
-- Note that we reset the Sloc to the current freeze location.
|
| 3903 |
|
|
|
| 3904 |
|
|
if Present (Freeze_Node (E)) then
|
| 3905 |
|
|
F_Node := Freeze_Node (E);
|
| 3906 |
|
|
Set_Sloc (F_Node, Loc);
|
| 3907 |
|
|
|
| 3908 |
|
|
else
|
| 3909 |
|
|
F_Node := New_Node (N_Freeze_Entity, Loc);
|
| 3910 |
|
|
Set_Freeze_Node (E, F_Node);
|
| 3911 |
|
|
Set_Access_Types_To_Process (F_Node, No_Elist);
|
| 3912 |
|
|
Set_TSS_Elist (F_Node, No_Elist);
|
| 3913 |
|
|
Set_Actions (F_Node, No_List);
|
| 3914 |
|
|
end if;
|
| 3915 |
|
|
|
| 3916 |
|
|
Set_Entity (F_Node, E);
|
| 3917 |
|
|
|
| 3918 |
|
|
if Result = No_List then
|
| 3919 |
|
|
Result := New_List (F_Node);
|
| 3920 |
|
|
else
|
| 3921 |
|
|
Append (F_Node, Result);
|
| 3922 |
|
|
end if;
|
| 3923 |
|
|
|
| 3924 |
|
|
-- A final pass over record types with discriminants. If the type
|
| 3925 |
|
|
-- has an incomplete declaration, there may be constrained access
|
| 3926 |
|
|
-- subtypes declared elsewhere, which do not depend on the discrimi-
|
| 3927 |
|
|
-- nants of the type, and which are used as component types (i.e.
|
| 3928 |
|
|
-- the full view is a recursive type). The designated types of these
|
| 3929 |
|
|
-- subtypes can only be elaborated after the type itself, and they
|
| 3930 |
|
|
-- need an itype reference.
|
| 3931 |
|
|
|
| 3932 |
|
|
if Ekind (E) = E_Record_Type
|
| 3933 |
|
|
and then Has_Discriminants (E)
|
| 3934 |
|
|
then
|
| 3935 |
|
|
declare
|
| 3936 |
|
|
Comp : Entity_Id;
|
| 3937 |
|
|
IR : Node_Id;
|
| 3938 |
|
|
Typ : Entity_Id;
|
| 3939 |
|
|
|
| 3940 |
|
|
begin
|
| 3941 |
|
|
Comp := First_Component (E);
|
| 3942 |
|
|
|
| 3943 |
|
|
while Present (Comp) loop
|
| 3944 |
|
|
Typ := Etype (Comp);
|
| 3945 |
|
|
|
| 3946 |
|
|
if Ekind (Comp) = E_Component
|
| 3947 |
|
|
and then Is_Access_Type (Typ)
|
| 3948 |
|
|
and then Scope (Typ) /= E
|
| 3949 |
|
|
and then Base_Type (Designated_Type (Typ)) = E
|
| 3950 |
|
|
and then Is_Itype (Designated_Type (Typ))
|
| 3951 |
|
|
then
|
| 3952 |
|
|
IR := Make_Itype_Reference (Sloc (Comp));
|
| 3953 |
|
|
Set_Itype (IR, Designated_Type (Typ));
|
| 3954 |
|
|
Append (IR, Result);
|
| 3955 |
|
|
end if;
|
| 3956 |
|
|
|
| 3957 |
|
|
Next_Component (Comp);
|
| 3958 |
|
|
end loop;
|
| 3959 |
|
|
end;
|
| 3960 |
|
|
end if;
|
| 3961 |
|
|
end if;
|
| 3962 |
|
|
|
| 3963 |
|
|
-- When a type is frozen, the first subtype of the type is frozen as
|
| 3964 |
|
|
-- well (RM 13.14(15)). This has to be done after freezing the type,
|
| 3965 |
|
|
-- since obviously the first subtype depends on its own base type.
|
| 3966 |
|
|
|
| 3967 |
|
|
if Is_Type (E) then
|
| 3968 |
|
|
Freeze_And_Append (First_Subtype (E), Loc, Result);
|
| 3969 |
|
|
|
| 3970 |
|
|
-- If we just froze a tagged non-class wide record, then freeze the
|
| 3971 |
|
|
-- corresponding class-wide type. This must be done after the tagged
|
| 3972 |
|
|
-- type itself is frozen, because the class-wide type refers to the
|
| 3973 |
|
|
-- tagged type which generates the class.
|
| 3974 |
|
|
|
| 3975 |
|
|
if Is_Tagged_Type (E)
|
| 3976 |
|
|
and then not Is_Class_Wide_Type (E)
|
| 3977 |
|
|
and then Present (Class_Wide_Type (E))
|
| 3978 |
|
|
then
|
| 3979 |
|
|
Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
|
| 3980 |
|
|
end if;
|
| 3981 |
|
|
end if;
|
| 3982 |
|
|
|
| 3983 |
|
|
Check_Debug_Info_Needed (E);
|
| 3984 |
|
|
|
| 3985 |
|
|
-- Special handling for subprograms
|
| 3986 |
|
|
|
| 3987 |
|
|
if Is_Subprogram (E) then
|
| 3988 |
|
|
|
| 3989 |
|
|
-- If subprogram has address clause then reset Is_Public flag, since
|
| 3990 |
|
|
-- we do not want the backend to generate external references.
|
| 3991 |
|
|
|
| 3992 |
|
|
if Present (Address_Clause (E))
|
| 3993 |
|
|
and then not Is_Library_Level_Entity (E)
|
| 3994 |
|
|
then
|
| 3995 |
|
|
Set_Is_Public (E, False);
|
| 3996 |
|
|
|
| 3997 |
|
|
-- If no address clause and not intrinsic, then for imported
|
| 3998 |
|
|
-- subprogram in main unit, generate descriptor if we are in
|
| 3999 |
|
|
-- Propagate_Exceptions mode.
|
| 4000 |
|
|
|
| 4001 |
|
|
elsif Propagate_Exceptions
|
| 4002 |
|
|
and then Is_Imported (E)
|
| 4003 |
|
|
and then not Is_Intrinsic_Subprogram (E)
|
| 4004 |
|
|
and then Convention (E) /= Convention_Stubbed
|
| 4005 |
|
|
then
|
| 4006 |
|
|
if Result = No_List then
|
| 4007 |
|
|
Result := Empty_List;
|
| 4008 |
|
|
end if;
|
| 4009 |
|
|
end if;
|
| 4010 |
|
|
end if;
|
| 4011 |
|
|
|
| 4012 |
|
|
return Result;
|
| 4013 |
|
|
end Freeze_Entity;
|
| 4014 |
|
|
|
| 4015 |
|
|
-----------------------------
|
| 4016 |
|
|
-- Freeze_Enumeration_Type --
|
| 4017 |
|
|
-----------------------------
|
| 4018 |
|
|
|
| 4019 |
|
|
procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
|
| 4020 |
|
|
begin
|
| 4021 |
|
|
-- By default, if no size clause is present, an enumeration type with
|
| 4022 |
|
|
-- Convention C is assumed to interface to a C enum, and has integer
|
| 4023 |
|
|
-- size. This applies to types. For subtypes, verify that its base
|
| 4024 |
|
|
-- type has no size clause either.
|
| 4025 |
|
|
|
| 4026 |
|
|
if Has_Foreign_Convention (Typ)
|
| 4027 |
|
|
and then not Has_Size_Clause (Typ)
|
| 4028 |
|
|
and then not Has_Size_Clause (Base_Type (Typ))
|
| 4029 |
|
|
and then Esize (Typ) < Standard_Integer_Size
|
| 4030 |
|
|
then
|
| 4031 |
|
|
Init_Esize (Typ, Standard_Integer_Size);
|
| 4032 |
|
|
|
| 4033 |
|
|
else
|
| 4034 |
|
|
-- If the enumeration type interfaces to C, and it has a size clause
|
| 4035 |
|
|
-- that specifies less than int size, it warrants a warning. The
|
| 4036 |
|
|
-- user may intend the C type to be an enum or a char, so this is
|
| 4037 |
|
|
-- not by itself an error that the Ada compiler can detect, but it
|
| 4038 |
|
|
-- it is a worth a heads-up. For Boolean and Character types we
|
| 4039 |
|
|
-- assume that the programmer has the proper C type in mind.
|
| 4040 |
|
|
|
| 4041 |
|
|
if Convention (Typ) = Convention_C
|
| 4042 |
|
|
and then Has_Size_Clause (Typ)
|
| 4043 |
|
|
and then Esize (Typ) /= Esize (Standard_Integer)
|
| 4044 |
|
|
and then not Is_Boolean_Type (Typ)
|
| 4045 |
|
|
and then not Is_Character_Type (Typ)
|
| 4046 |
|
|
then
|
| 4047 |
|
|
Error_Msg_N
|
| 4048 |
|
|
("C enum types have the size of a C int?", Size_Clause (Typ));
|
| 4049 |
|
|
end if;
|
| 4050 |
|
|
|
| 4051 |
|
|
Adjust_Esize_For_Alignment (Typ);
|
| 4052 |
|
|
end if;
|
| 4053 |
|
|
end Freeze_Enumeration_Type;
|
| 4054 |
|
|
|
| 4055 |
|
|
-----------------------
|
| 4056 |
|
|
-- Freeze_Expression --
|
| 4057 |
|
|
-----------------------
|
| 4058 |
|
|
|
| 4059 |
|
|
procedure Freeze_Expression (N : Node_Id) is
|
| 4060 |
|
|
In_Spec_Exp : constant Boolean := In_Spec_Expression;
|
| 4061 |
|
|
Typ : Entity_Id;
|
| 4062 |
|
|
Nam : Entity_Id;
|
| 4063 |
|
|
Desig_Typ : Entity_Id;
|
| 4064 |
|
|
P : Node_Id;
|
| 4065 |
|
|
Parent_P : Node_Id;
|
| 4066 |
|
|
|
| 4067 |
|
|
Freeze_Outside : Boolean := False;
|
| 4068 |
|
|
-- This flag is set true if the entity must be frozen outside the
|
| 4069 |
|
|
-- current subprogram. This happens in the case of expander generated
|
| 4070 |
|
|
-- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
|
| 4071 |
|
|
-- not freeze all entities like other bodies, but which nevertheless
|
| 4072 |
|
|
-- may reference entities that have to be frozen before the body and
|
| 4073 |
|
|
-- obviously cannot be frozen inside the body.
|
| 4074 |
|
|
|
| 4075 |
|
|
function In_Exp_Body (N : Node_Id) return Boolean;
|
| 4076 |
|
|
-- Given an N_Handled_Sequence_Of_Statements node N, determines whether
|
| 4077 |
|
|
-- it is the handled statement sequence of an expander-generated
|
| 4078 |
|
|
-- subprogram (init proc, stream subprogram, or renaming as body).
|
| 4079 |
|
|
-- If so, this is not a freezing context.
|
| 4080 |
|
|
|
| 4081 |
|
|
-----------------
|
| 4082 |
|
|
-- In_Exp_Body --
|
| 4083 |
|
|
-----------------
|
| 4084 |
|
|
|
| 4085 |
|
|
function In_Exp_Body (N : Node_Id) return Boolean is
|
| 4086 |
|
|
P : Node_Id;
|
| 4087 |
|
|
Id : Entity_Id;
|
| 4088 |
|
|
|
| 4089 |
|
|
begin
|
| 4090 |
|
|
if Nkind (N) = N_Subprogram_Body then
|
| 4091 |
|
|
P := N;
|
| 4092 |
|
|
else
|
| 4093 |
|
|
P := Parent (N);
|
| 4094 |
|
|
end if;
|
| 4095 |
|
|
|
| 4096 |
|
|
if Nkind (P) /= N_Subprogram_Body then
|
| 4097 |
|
|
return False;
|
| 4098 |
|
|
|
| 4099 |
|
|
else
|
| 4100 |
|
|
Id := Defining_Unit_Name (Specification (P));
|
| 4101 |
|
|
|
| 4102 |
|
|
if Nkind (Id) = N_Defining_Identifier
|
| 4103 |
|
|
and then (Is_Init_Proc (Id) or else
|
| 4104 |
|
|
Is_TSS (Id, TSS_Stream_Input) or else
|
| 4105 |
|
|
Is_TSS (Id, TSS_Stream_Output) or else
|
| 4106 |
|
|
Is_TSS (Id, TSS_Stream_Read) or else
|
| 4107 |
|
|
Is_TSS (Id, TSS_Stream_Write) or else
|
| 4108 |
|
|
Nkind (Original_Node (P)) =
|
| 4109 |
|
|
N_Subprogram_Renaming_Declaration)
|
| 4110 |
|
|
then
|
| 4111 |
|
|
return True;
|
| 4112 |
|
|
else
|
| 4113 |
|
|
return False;
|
| 4114 |
|
|
end if;
|
| 4115 |
|
|
end if;
|
| 4116 |
|
|
end In_Exp_Body;
|
| 4117 |
|
|
|
| 4118 |
|
|
-- Start of processing for Freeze_Expression
|
| 4119 |
|
|
|
| 4120 |
|
|
begin
|
| 4121 |
|
|
-- Immediate return if freezing is inhibited. This flag is set by the
|
| 4122 |
|
|
-- analyzer to stop freezing on generated expressions that would cause
|
| 4123 |
|
|
-- freezing if they were in the source program, but which are not
|
| 4124 |
|
|
-- supposed to freeze, since they are created.
|
| 4125 |
|
|
|
| 4126 |
|
|
if Must_Not_Freeze (N) then
|
| 4127 |
|
|
return;
|
| 4128 |
|
|
end if;
|
| 4129 |
|
|
|
| 4130 |
|
|
-- If expression is non-static, then it does not freeze in a default
|
| 4131 |
|
|
-- expression, see section "Handling of Default Expressions" in the
|
| 4132 |
|
|
-- spec of package Sem for further details. Note that we have to
|
| 4133 |
|
|
-- make sure that we actually have a real expression (if we have
|
| 4134 |
|
|
-- a subtype indication, we can't test Is_Static_Expression!)
|
| 4135 |
|
|
|
| 4136 |
|
|
if In_Spec_Exp
|
| 4137 |
|
|
and then Nkind (N) in N_Subexpr
|
| 4138 |
|
|
and then not Is_Static_Expression (N)
|
| 4139 |
|
|
then
|
| 4140 |
|
|
return;
|
| 4141 |
|
|
end if;
|
| 4142 |
|
|
|
| 4143 |
|
|
-- Freeze type of expression if not frozen already
|
| 4144 |
|
|
|
| 4145 |
|
|
Typ := Empty;
|
| 4146 |
|
|
|
| 4147 |
|
|
if Nkind (N) in N_Has_Etype then
|
| 4148 |
|
|
if not Is_Frozen (Etype (N)) then
|
| 4149 |
|
|
Typ := Etype (N);
|
| 4150 |
|
|
|
| 4151 |
|
|
-- Base type may be an derived numeric type that is frozen at
|
| 4152 |
|
|
-- the point of declaration, but first_subtype is still unfrozen.
|
| 4153 |
|
|
|
| 4154 |
|
|
elsif not Is_Frozen (First_Subtype (Etype (N))) then
|
| 4155 |
|
|
Typ := First_Subtype (Etype (N));
|
| 4156 |
|
|
end if;
|
| 4157 |
|
|
end if;
|
| 4158 |
|
|
|
| 4159 |
|
|
-- For entity name, freeze entity if not frozen already. A special
|
| 4160 |
|
|
-- exception occurs for an identifier that did not come from source.
|
| 4161 |
|
|
-- We don't let such identifiers freeze a non-internal entity, i.e.
|
| 4162 |
|
|
-- an entity that did come from source, since such an identifier was
|
| 4163 |
|
|
-- generated by the expander, and cannot have any semantic effect on
|
| 4164 |
|
|
-- the freezing semantics. For example, this stops the parameter of
|
| 4165 |
|
|
-- an initialization procedure from freezing the variable.
|
| 4166 |
|
|
|
| 4167 |
|
|
if Is_Entity_Name (N)
|
| 4168 |
|
|
and then not Is_Frozen (Entity (N))
|
| 4169 |
|
|
and then (Nkind (N) /= N_Identifier
|
| 4170 |
|
|
or else Comes_From_Source (N)
|
| 4171 |
|
|
or else not Comes_From_Source (Entity (N)))
|
| 4172 |
|
|
then
|
| 4173 |
|
|
Nam := Entity (N);
|
| 4174 |
|
|
else
|
| 4175 |
|
|
Nam := Empty;
|
| 4176 |
|
|
end if;
|
| 4177 |
|
|
|
| 4178 |
|
|
-- For an allocator freeze designated type if not frozen already
|
| 4179 |
|
|
|
| 4180 |
|
|
-- For an aggregate whose component type is an access type, freeze the
|
| 4181 |
|
|
-- designated type now, so that its freeze does not appear within the
|
| 4182 |
|
|
-- loop that might be created in the expansion of the aggregate. If the
|
| 4183 |
|
|
-- designated type is a private type without full view, the expression
|
| 4184 |
|
|
-- cannot contain an allocator, so the type is not frozen.
|
| 4185 |
|
|
|
| 4186 |
|
|
-- For a function, we freeze the entity when the subprogram declaration
|
| 4187 |
|
|
-- is frozen, but a function call may appear in an initialization proc.
|
| 4188 |
|
|
-- before the declaration is frozen. We need to generate the extra
|
| 4189 |
|
|
-- formals, if any, to ensure that the expansion of the call includes
|
| 4190 |
|
|
-- the proper actuals. This only applies to Ada subprograms, not to
|
| 4191 |
|
|
-- imported ones.
|
| 4192 |
|
|
|
| 4193 |
|
|
Desig_Typ := Empty;
|
| 4194 |
|
|
|
| 4195 |
|
|
case Nkind (N) is
|
| 4196 |
|
|
when N_Allocator =>
|
| 4197 |
|
|
Desig_Typ := Designated_Type (Etype (N));
|
| 4198 |
|
|
|
| 4199 |
|
|
when N_Aggregate =>
|
| 4200 |
|
|
if Is_Array_Type (Etype (N))
|
| 4201 |
|
|
and then Is_Access_Type (Component_Type (Etype (N)))
|
| 4202 |
|
|
then
|
| 4203 |
|
|
Desig_Typ := Designated_Type (Component_Type (Etype (N)));
|
| 4204 |
|
|
end if;
|
| 4205 |
|
|
|
| 4206 |
|
|
when N_Selected_Component |
|
| 4207 |
|
|
N_Indexed_Component |
|
| 4208 |
|
|
N_Slice =>
|
| 4209 |
|
|
|
| 4210 |
|
|
if Is_Access_Type (Etype (Prefix (N))) then
|
| 4211 |
|
|
Desig_Typ := Designated_Type (Etype (Prefix (N)));
|
| 4212 |
|
|
end if;
|
| 4213 |
|
|
|
| 4214 |
|
|
when N_Identifier =>
|
| 4215 |
|
|
if Present (Nam)
|
| 4216 |
|
|
and then Ekind (Nam) = E_Function
|
| 4217 |
|
|
and then Nkind (Parent (N)) = N_Function_Call
|
| 4218 |
|
|
and then Convention (Nam) = Convention_Ada
|
| 4219 |
|
|
then
|
| 4220 |
|
|
Create_Extra_Formals (Nam);
|
| 4221 |
|
|
end if;
|
| 4222 |
|
|
|
| 4223 |
|
|
when others =>
|
| 4224 |
|
|
null;
|
| 4225 |
|
|
end case;
|
| 4226 |
|
|
|
| 4227 |
|
|
if Desig_Typ /= Empty
|
| 4228 |
|
|
and then (Is_Frozen (Desig_Typ)
|
| 4229 |
|
|
or else (not Is_Fully_Defined (Desig_Typ)))
|
| 4230 |
|
|
then
|
| 4231 |
|
|
Desig_Typ := Empty;
|
| 4232 |
|
|
end if;
|
| 4233 |
|
|
|
| 4234 |
|
|
-- All done if nothing needs freezing
|
| 4235 |
|
|
|
| 4236 |
|
|
if No (Typ)
|
| 4237 |
|
|
and then No (Nam)
|
| 4238 |
|
|
and then No (Desig_Typ)
|
| 4239 |
|
|
then
|
| 4240 |
|
|
return;
|
| 4241 |
|
|
end if;
|
| 4242 |
|
|
|
| 4243 |
|
|
-- Loop for looking at the right place to insert the freeze nodes,
|
| 4244 |
|
|
-- exiting from the loop when it is appropriate to insert the freeze
|
| 4245 |
|
|
-- node before the current node P.
|
| 4246 |
|
|
|
| 4247 |
|
|
-- Also checks som special exceptions to the freezing rules. These cases
|
| 4248 |
|
|
-- result in a direct return, bypassing the freeze action.
|
| 4249 |
|
|
|
| 4250 |
|
|
P := N;
|
| 4251 |
|
|
loop
|
| 4252 |
|
|
Parent_P := Parent (P);
|
| 4253 |
|
|
|
| 4254 |
|
|
-- If we don't have a parent, then we are not in a well-formed tree.
|
| 4255 |
|
|
-- This is an unusual case, but there are some legitimate situations
|
| 4256 |
|
|
-- in which this occurs, notably when the expressions in the range of
|
| 4257 |
|
|
-- a type declaration are resolved. We simply ignore the freeze
|
| 4258 |
|
|
-- request in this case. Is this right ???
|
| 4259 |
|
|
|
| 4260 |
|
|
if No (Parent_P) then
|
| 4261 |
|
|
return;
|
| 4262 |
|
|
end if;
|
| 4263 |
|
|
|
| 4264 |
|
|
-- See if we have got to an appropriate point in the tree
|
| 4265 |
|
|
|
| 4266 |
|
|
case Nkind (Parent_P) is
|
| 4267 |
|
|
|
| 4268 |
|
|
-- A special test for the exception of (RM 13.14(8)) for the case
|
| 4269 |
|
|
-- of per-object expressions (RM 3.8(18)) occurring in component
|
| 4270 |
|
|
-- definition or a discrete subtype definition. Note that we test
|
| 4271 |
|
|
-- for a component declaration which includes both cases we are
|
| 4272 |
|
|
-- interested in, and furthermore the tree does not have explicit
|
| 4273 |
|
|
-- nodes for either of these two constructs.
|
| 4274 |
|
|
|
| 4275 |
|
|
when N_Component_Declaration =>
|
| 4276 |
|
|
|
| 4277 |
|
|
-- The case we want to test for here is an identifier that is
|
| 4278 |
|
|
-- a per-object expression, this is either a discriminant that
|
| 4279 |
|
|
-- appears in a context other than the component declaration
|
| 4280 |
|
|
-- or it is a reference to the type of the enclosing construct.
|
| 4281 |
|
|
|
| 4282 |
|
|
-- For either of these cases, we skip the freezing
|
| 4283 |
|
|
|
| 4284 |
|
|
if not In_Spec_Expression
|
| 4285 |
|
|
and then Nkind (N) = N_Identifier
|
| 4286 |
|
|
and then (Present (Entity (N)))
|
| 4287 |
|
|
then
|
| 4288 |
|
|
-- We recognize the discriminant case by just looking for
|
| 4289 |
|
|
-- a reference to a discriminant. It can only be one for
|
| 4290 |
|
|
-- the enclosing construct. Skip freezing in this case.
|
| 4291 |
|
|
|
| 4292 |
|
|
if Ekind (Entity (N)) = E_Discriminant then
|
| 4293 |
|
|
return;
|
| 4294 |
|
|
|
| 4295 |
|
|
-- For the case of a reference to the enclosing record,
|
| 4296 |
|
|
-- (or task or protected type), we look for a type that
|
| 4297 |
|
|
-- matches the current scope.
|
| 4298 |
|
|
|
| 4299 |
|
|
elsif Entity (N) = Current_Scope then
|
| 4300 |
|
|
return;
|
| 4301 |
|
|
end if;
|
| 4302 |
|
|
end if;
|
| 4303 |
|
|
|
| 4304 |
|
|
-- If we have an enumeration literal that appears as the choice in
|
| 4305 |
|
|
-- the aggregate of an enumeration representation clause, then
|
| 4306 |
|
|
-- freezing does not occur (RM 13.14(10)).
|
| 4307 |
|
|
|
| 4308 |
|
|
when N_Enumeration_Representation_Clause =>
|
| 4309 |
|
|
|
| 4310 |
|
|
-- The case we are looking for is an enumeration literal
|
| 4311 |
|
|
|
| 4312 |
|
|
if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
|
| 4313 |
|
|
and then Is_Enumeration_Type (Etype (N))
|
| 4314 |
|
|
then
|
| 4315 |
|
|
-- If enumeration literal appears directly as the choice,
|
| 4316 |
|
|
-- do not freeze (this is the normal non-overloaded case)
|
| 4317 |
|
|
|
| 4318 |
|
|
if Nkind (Parent (N)) = N_Component_Association
|
| 4319 |
|
|
and then First (Choices (Parent (N))) = N
|
| 4320 |
|
|
then
|
| 4321 |
|
|
return;
|
| 4322 |
|
|
|
| 4323 |
|
|
-- If enumeration literal appears as the name of function
|
| 4324 |
|
|
-- which is the choice, then also do not freeze. This
|
| 4325 |
|
|
-- happens in the overloaded literal case, where the
|
| 4326 |
|
|
-- enumeration literal is temporarily changed to a function
|
| 4327 |
|
|
-- call for overloading analysis purposes.
|
| 4328 |
|
|
|
| 4329 |
|
|
elsif Nkind (Parent (N)) = N_Function_Call
|
| 4330 |
|
|
and then
|
| 4331 |
|
|
Nkind (Parent (Parent (N))) = N_Component_Association
|
| 4332 |
|
|
and then
|
| 4333 |
|
|
First (Choices (Parent (Parent (N)))) = Parent (N)
|
| 4334 |
|
|
then
|
| 4335 |
|
|
return;
|
| 4336 |
|
|
end if;
|
| 4337 |
|
|
end if;
|
| 4338 |
|
|
|
| 4339 |
|
|
-- Normally if the parent is a handled sequence of statements,
|
| 4340 |
|
|
-- then the current node must be a statement, and that is an
|
| 4341 |
|
|
-- appropriate place to insert a freeze node.
|
| 4342 |
|
|
|
| 4343 |
|
|
when N_Handled_Sequence_Of_Statements =>
|
| 4344 |
|
|
|
| 4345 |
|
|
-- An exception occurs when the sequence of statements is for
|
| 4346 |
|
|
-- an expander generated body that did not do the usual freeze
|
| 4347 |
|
|
-- all operation. In this case we usually want to freeze
|
| 4348 |
|
|
-- outside this body, not inside it, and we skip past the
|
| 4349 |
|
|
-- subprogram body that we are inside.
|
| 4350 |
|
|
|
| 4351 |
|
|
if In_Exp_Body (Parent_P) then
|
| 4352 |
|
|
|
| 4353 |
|
|
-- However, we *do* want to freeze at this point if we have
|
| 4354 |
|
|
-- an entity to freeze, and that entity is declared *inside*
|
| 4355 |
|
|
-- the body of the expander generated procedure. This case
|
| 4356 |
|
|
-- is recognized by the scope of the type, which is either
|
| 4357 |
|
|
-- the spec for some enclosing body, or (in the case of
|
| 4358 |
|
|
-- init_procs, for which there are no separate specs) the
|
| 4359 |
|
|
-- current scope.
|
| 4360 |
|
|
|
| 4361 |
|
|
declare
|
| 4362 |
|
|
Subp : constant Node_Id := Parent (Parent_P);
|
| 4363 |
|
|
Cspc : Entity_Id;
|
| 4364 |
|
|
|
| 4365 |
|
|
begin
|
| 4366 |
|
|
if Nkind (Subp) = N_Subprogram_Body then
|
| 4367 |
|
|
Cspc := Corresponding_Spec (Subp);
|
| 4368 |
|
|
|
| 4369 |
|
|
if (Present (Typ) and then Scope (Typ) = Cspc)
|
| 4370 |
|
|
or else
|
| 4371 |
|
|
(Present (Nam) and then Scope (Nam) = Cspc)
|
| 4372 |
|
|
then
|
| 4373 |
|
|
exit;
|
| 4374 |
|
|
|
| 4375 |
|
|
elsif Present (Typ)
|
| 4376 |
|
|
and then Scope (Typ) = Current_Scope
|
| 4377 |
|
|
and then Current_Scope = Defining_Entity (Subp)
|
| 4378 |
|
|
then
|
| 4379 |
|
|
exit;
|
| 4380 |
|
|
end if;
|
| 4381 |
|
|
end if;
|
| 4382 |
|
|
end;
|
| 4383 |
|
|
|
| 4384 |
|
|
-- If not that exception to the exception, then this is
|
| 4385 |
|
|
-- where we delay the freeze till outside the body.
|
| 4386 |
|
|
|
| 4387 |
|
|
Parent_P := Parent (Parent_P);
|
| 4388 |
|
|
Freeze_Outside := True;
|
| 4389 |
|
|
|
| 4390 |
|
|
-- Here if normal case where we are in handled statement
|
| 4391 |
|
|
-- sequence and want to do the insertion right there.
|
| 4392 |
|
|
|
| 4393 |
|
|
else
|
| 4394 |
|
|
exit;
|
| 4395 |
|
|
end if;
|
| 4396 |
|
|
|
| 4397 |
|
|
-- If parent is a body or a spec or a block, then the current node
|
| 4398 |
|
|
-- is a statement or declaration and we can insert the freeze node
|
| 4399 |
|
|
-- before it.
|
| 4400 |
|
|
|
| 4401 |
|
|
when N_Package_Specification |
|
| 4402 |
|
|
N_Package_Body |
|
| 4403 |
|
|
N_Subprogram_Body |
|
| 4404 |
|
|
N_Task_Body |
|
| 4405 |
|
|
N_Protected_Body |
|
| 4406 |
|
|
N_Entry_Body |
|
| 4407 |
|
|
N_Block_Statement => exit;
|
| 4408 |
|
|
|
| 4409 |
|
|
-- The expander is allowed to define types in any statements list,
|
| 4410 |
|
|
-- so any of the following parent nodes also mark a freezing point
|
| 4411 |
|
|
-- if the actual node is in a list of statements or declarations.
|
| 4412 |
|
|
|
| 4413 |
|
|
when N_Exception_Handler |
|
| 4414 |
|
|
N_If_Statement |
|
| 4415 |
|
|
N_Elsif_Part |
|
| 4416 |
|
|
N_Case_Statement_Alternative |
|
| 4417 |
|
|
N_Compilation_Unit_Aux |
|
| 4418 |
|
|
N_Selective_Accept |
|
| 4419 |
|
|
N_Accept_Alternative |
|
| 4420 |
|
|
N_Delay_Alternative |
|
| 4421 |
|
|
N_Conditional_Entry_Call |
|
| 4422 |
|
|
N_Entry_Call_Alternative |
|
| 4423 |
|
|
N_Triggering_Alternative |
|
| 4424 |
|
|
N_Abortable_Part |
|
| 4425 |
|
|
N_Freeze_Entity =>
|
| 4426 |
|
|
|
| 4427 |
|
|
exit when Is_List_Member (P);
|
| 4428 |
|
|
|
| 4429 |
|
|
-- Note: The N_Loop_Statement is a special case. A type that
|
| 4430 |
|
|
-- appears in the source can never be frozen in a loop (this
|
| 4431 |
|
|
-- occurs only because of a loop expanded by the expander), so we
|
| 4432 |
|
|
-- keep on going. Otherwise we terminate the search. Same is true
|
| 4433 |
|
|
-- of any entity which comes from source. (if they have predefined
|
| 4434 |
|
|
-- type, that type does not appear to come from source, but the
|
| 4435 |
|
|
-- entity should not be frozen here).
|
| 4436 |
|
|
|
| 4437 |
|
|
when N_Loop_Statement =>
|
| 4438 |
|
|
exit when not Comes_From_Source (Etype (N))
|
| 4439 |
|
|
and then (No (Nam) or else not Comes_From_Source (Nam));
|
| 4440 |
|
|
|
| 4441 |
|
|
-- For all other cases, keep looking at parents
|
| 4442 |
|
|
|
| 4443 |
|
|
when others =>
|
| 4444 |
|
|
null;
|
| 4445 |
|
|
end case;
|
| 4446 |
|
|
|
| 4447 |
|
|
-- We fall through the case if we did not yet find the proper
|
| 4448 |
|
|
-- place in the free for inserting the freeze node, so climb!
|
| 4449 |
|
|
|
| 4450 |
|
|
P := Parent_P;
|
| 4451 |
|
|
end loop;
|
| 4452 |
|
|
|
| 4453 |
|
|
-- If the expression appears in a record or an initialization procedure,
|
| 4454 |
|
|
-- the freeze nodes are collected and attached to the current scope, to
|
| 4455 |
|
|
-- be inserted and analyzed on exit from the scope, to insure that
|
| 4456 |
|
|
-- generated entities appear in the correct scope. If the expression is
|
| 4457 |
|
|
-- a default for a discriminant specification, the scope is still void.
|
| 4458 |
|
|
-- The expression can also appear in the discriminant part of a private
|
| 4459 |
|
|
-- or concurrent type.
|
| 4460 |
|
|
|
| 4461 |
|
|
-- If the expression appears in a constrained subcomponent of an
|
| 4462 |
|
|
-- enclosing record declaration, the freeze nodes must be attached to
|
| 4463 |
|
|
-- the outer record type so they can eventually be placed in the
|
| 4464 |
|
|
-- enclosing declaration list.
|
| 4465 |
|
|
|
| 4466 |
|
|
-- The other case requiring this special handling is if we are in a
|
| 4467 |
|
|
-- default expression, since in that case we are about to freeze a
|
| 4468 |
|
|
-- static type, and the freeze scope needs to be the outer scope, not
|
| 4469 |
|
|
-- the scope of the subprogram with the default parameter.
|
| 4470 |
|
|
|
| 4471 |
|
|
-- For default expressions and other spec expressions in generic units,
|
| 4472 |
|
|
-- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
|
| 4473 |
|
|
-- placing them at the proper place, after the generic unit.
|
| 4474 |
|
|
|
| 4475 |
|
|
if (In_Spec_Exp and not Inside_A_Generic)
|
| 4476 |
|
|
or else Freeze_Outside
|
| 4477 |
|
|
or else (Is_Type (Current_Scope)
|
| 4478 |
|
|
and then (not Is_Concurrent_Type (Current_Scope)
|
| 4479 |
|
|
or else not Has_Completion (Current_Scope)))
|
| 4480 |
|
|
or else Ekind (Current_Scope) = E_Void
|
| 4481 |
|
|
then
|
| 4482 |
|
|
declare
|
| 4483 |
|
|
Loc : constant Source_Ptr := Sloc (Current_Scope);
|
| 4484 |
|
|
Freeze_Nodes : List_Id := No_List;
|
| 4485 |
|
|
Pos : Int := Scope_Stack.Last;
|
| 4486 |
|
|
|
| 4487 |
|
|
begin
|
| 4488 |
|
|
if Present (Desig_Typ) then
|
| 4489 |
|
|
Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
|
| 4490 |
|
|
end if;
|
| 4491 |
|
|
|
| 4492 |
|
|
if Present (Typ) then
|
| 4493 |
|
|
Freeze_And_Append (Typ, Loc, Freeze_Nodes);
|
| 4494 |
|
|
end if;
|
| 4495 |
|
|
|
| 4496 |
|
|
if Present (Nam) then
|
| 4497 |
|
|
Freeze_And_Append (Nam, Loc, Freeze_Nodes);
|
| 4498 |
|
|
end if;
|
| 4499 |
|
|
|
| 4500 |
|
|
-- The current scope may be that of a constrained component of
|
| 4501 |
|
|
-- an enclosing record declaration, which is above the current
|
| 4502 |
|
|
-- scope in the scope stack.
|
| 4503 |
|
|
|
| 4504 |
|
|
if Is_Record_Type (Scope (Current_Scope)) then
|
| 4505 |
|
|
Pos := Pos - 1;
|
| 4506 |
|
|
end if;
|
| 4507 |
|
|
|
| 4508 |
|
|
if Is_Non_Empty_List (Freeze_Nodes) then
|
| 4509 |
|
|
if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
|
| 4510 |
|
|
Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
|
| 4511 |
|
|
Freeze_Nodes;
|
| 4512 |
|
|
else
|
| 4513 |
|
|
Append_List (Freeze_Nodes, Scope_Stack.Table
|
| 4514 |
|
|
(Pos).Pending_Freeze_Actions);
|
| 4515 |
|
|
end if;
|
| 4516 |
|
|
end if;
|
| 4517 |
|
|
end;
|
| 4518 |
|
|
|
| 4519 |
|
|
return;
|
| 4520 |
|
|
end if;
|
| 4521 |
|
|
|
| 4522 |
|
|
-- Now we have the right place to do the freezing. First, a special
|
| 4523 |
|
|
-- adjustment, if we are in spec-expression analysis mode, these freeze
|
| 4524 |
|
|
-- actions must not be thrown away (normally all inserted actions are
|
| 4525 |
|
|
-- thrown away in this mode. However, the freeze actions are from static
|
| 4526 |
|
|
-- expressions and one of the important reasons we are doing this
|
| 4527 |
|
|
-- special analysis is to get these freeze actions. Therefore we turn
|
| 4528 |
|
|
-- off the In_Spec_Expression mode to propagate these freeze actions.
|
| 4529 |
|
|
-- This also means they get properly analyzed and expanded.
|
| 4530 |
|
|
|
| 4531 |
|
|
In_Spec_Expression := False;
|
| 4532 |
|
|
|
| 4533 |
|
|
-- Freeze the designated type of an allocator (RM 13.14(13))
|
| 4534 |
|
|
|
| 4535 |
|
|
if Present (Desig_Typ) then
|
| 4536 |
|
|
Freeze_Before (P, Desig_Typ);
|
| 4537 |
|
|
end if;
|
| 4538 |
|
|
|
| 4539 |
|
|
-- Freeze type of expression (RM 13.14(10)). Note that we took care of
|
| 4540 |
|
|
-- the enumeration representation clause exception in the loop above.
|
| 4541 |
|
|
|
| 4542 |
|
|
if Present (Typ) then
|
| 4543 |
|
|
Freeze_Before (P, Typ);
|
| 4544 |
|
|
end if;
|
| 4545 |
|
|
|
| 4546 |
|
|
-- Freeze name if one is present (RM 13.14(11))
|
| 4547 |
|
|
|
| 4548 |
|
|
if Present (Nam) then
|
| 4549 |
|
|
Freeze_Before (P, Nam);
|
| 4550 |
|
|
end if;
|
| 4551 |
|
|
|
| 4552 |
|
|
-- Restore In_Spec_Expression flag
|
| 4553 |
|
|
|
| 4554 |
|
|
In_Spec_Expression := In_Spec_Exp;
|
| 4555 |
|
|
end Freeze_Expression;
|
| 4556 |
|
|
|
| 4557 |
|
|
-----------------------------
|
| 4558 |
|
|
-- Freeze_Fixed_Point_Type --
|
| 4559 |
|
|
-----------------------------
|
| 4560 |
|
|
|
| 4561 |
|
|
-- Certain fixed-point types and subtypes, including implicit base types
|
| 4562 |
|
|
-- and declared first subtypes, have not yet set up a range. This is
|
| 4563 |
|
|
-- because the range cannot be set until the Small and Size values are
|
| 4564 |
|
|
-- known, and these are not known till the type is frozen.
|
| 4565 |
|
|
|
| 4566 |
|
|
-- To signal this case, Scalar_Range contains an unanalyzed syntactic range
|
| 4567 |
|
|
-- whose bounds are unanalyzed real literals. This routine will recognize
|
| 4568 |
|
|
-- this case, and transform this range node into a properly typed range
|
| 4569 |
|
|
-- with properly analyzed and resolved values.
|
| 4570 |
|
|
|
| 4571 |
|
|
procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
|
| 4572 |
|
|
Rng : constant Node_Id := Scalar_Range (Typ);
|
| 4573 |
|
|
Lo : constant Node_Id := Low_Bound (Rng);
|
| 4574 |
|
|
Hi : constant Node_Id := High_Bound (Rng);
|
| 4575 |
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
| 4576 |
|
|
Brng : constant Node_Id := Scalar_Range (Btyp);
|
| 4577 |
|
|
BLo : constant Node_Id := Low_Bound (Brng);
|
| 4578 |
|
|
BHi : constant Node_Id := High_Bound (Brng);
|
| 4579 |
|
|
Small : constant Ureal := Small_Value (Typ);
|
| 4580 |
|
|
Loval : Ureal;
|
| 4581 |
|
|
Hival : Ureal;
|
| 4582 |
|
|
Atype : Entity_Id;
|
| 4583 |
|
|
|
| 4584 |
|
|
Actual_Size : Nat;
|
| 4585 |
|
|
|
| 4586 |
|
|
function Fsize (Lov, Hiv : Ureal) return Nat;
|
| 4587 |
|
|
-- Returns size of type with given bounds. Also leaves these
|
| 4588 |
|
|
-- bounds set as the current bounds of the Typ.
|
| 4589 |
|
|
|
| 4590 |
|
|
-----------
|
| 4591 |
|
|
-- Fsize --
|
| 4592 |
|
|
-----------
|
| 4593 |
|
|
|
| 4594 |
|
|
function Fsize (Lov, Hiv : Ureal) return Nat is
|
| 4595 |
|
|
begin
|
| 4596 |
|
|
Set_Realval (Lo, Lov);
|
| 4597 |
|
|
Set_Realval (Hi, Hiv);
|
| 4598 |
|
|
return Minimum_Size (Typ);
|
| 4599 |
|
|
end Fsize;
|
| 4600 |
|
|
|
| 4601 |
|
|
-- Start of processing for Freeze_Fixed_Point_Type
|
| 4602 |
|
|
|
| 4603 |
|
|
begin
|
| 4604 |
|
|
-- If Esize of a subtype has not previously been set, set it now
|
| 4605 |
|
|
|
| 4606 |
|
|
if Unknown_Esize (Typ) then
|
| 4607 |
|
|
Atype := Ancestor_Subtype (Typ);
|
| 4608 |
|
|
|
| 4609 |
|
|
if Present (Atype) then
|
| 4610 |
|
|
Set_Esize (Typ, Esize (Atype));
|
| 4611 |
|
|
else
|
| 4612 |
|
|
Set_Esize (Typ, Esize (Base_Type (Typ)));
|
| 4613 |
|
|
end if;
|
| 4614 |
|
|
end if;
|
| 4615 |
|
|
|
| 4616 |
|
|
-- Immediate return if the range is already analyzed. This means that
|
| 4617 |
|
|
-- the range is already set, and does not need to be computed by this
|
| 4618 |
|
|
-- routine.
|
| 4619 |
|
|
|
| 4620 |
|
|
if Analyzed (Rng) then
|
| 4621 |
|
|
return;
|
| 4622 |
|
|
end if;
|
| 4623 |
|
|
|
| 4624 |
|
|
-- Immediate return if either of the bounds raises Constraint_Error
|
| 4625 |
|
|
|
| 4626 |
|
|
if Raises_Constraint_Error (Lo)
|
| 4627 |
|
|
or else Raises_Constraint_Error (Hi)
|
| 4628 |
|
|
then
|
| 4629 |
|
|
return;
|
| 4630 |
|
|
end if;
|
| 4631 |
|
|
|
| 4632 |
|
|
Loval := Realval (Lo);
|
| 4633 |
|
|
Hival := Realval (Hi);
|
| 4634 |
|
|
|
| 4635 |
|
|
-- Ordinary fixed-point case
|
| 4636 |
|
|
|
| 4637 |
|
|
if Is_Ordinary_Fixed_Point_Type (Typ) then
|
| 4638 |
|
|
|
| 4639 |
|
|
-- For the ordinary fixed-point case, we are allowed to fudge the
|
| 4640 |
|
|
-- end-points up or down by small. Generally we prefer to fudge up,
|
| 4641 |
|
|
-- i.e. widen the bounds for non-model numbers so that the end points
|
| 4642 |
|
|
-- are included. However there are cases in which this cannot be
|
| 4643 |
|
|
-- done, and indeed cases in which we may need to narrow the bounds.
|
| 4644 |
|
|
-- The following circuit makes the decision.
|
| 4645 |
|
|
|
| 4646 |
|
|
-- Note: our terminology here is that Incl_EP means that the bounds
|
| 4647 |
|
|
-- are widened by Small if necessary to include the end points, and
|
| 4648 |
|
|
-- Excl_EP means that the bounds are narrowed by Small to exclude the
|
| 4649 |
|
|
-- end-points if this reduces the size.
|
| 4650 |
|
|
|
| 4651 |
|
|
-- Note that in the Incl case, all we care about is including the
|
| 4652 |
|
|
-- end-points. In the Excl case, we want to narrow the bounds as
|
| 4653 |
|
|
-- much as permitted by the RM, to give the smallest possible size.
|
| 4654 |
|
|
|
| 4655 |
|
|
Fudge : declare
|
| 4656 |
|
|
Loval_Incl_EP : Ureal;
|
| 4657 |
|
|
Hival_Incl_EP : Ureal;
|
| 4658 |
|
|
|
| 4659 |
|
|
Loval_Excl_EP : Ureal;
|
| 4660 |
|
|
Hival_Excl_EP : Ureal;
|
| 4661 |
|
|
|
| 4662 |
|
|
Size_Incl_EP : Nat;
|
| 4663 |
|
|
Size_Excl_EP : Nat;
|
| 4664 |
|
|
|
| 4665 |
|
|
Model_Num : Ureal;
|
| 4666 |
|
|
First_Subt : Entity_Id;
|
| 4667 |
|
|
Actual_Lo : Ureal;
|
| 4668 |
|
|
Actual_Hi : Ureal;
|
| 4669 |
|
|
|
| 4670 |
|
|
begin
|
| 4671 |
|
|
-- First step. Base types are required to be symmetrical. Right
|
| 4672 |
|
|
-- now, the base type range is a copy of the first subtype range.
|
| 4673 |
|
|
-- This will be corrected before we are done, but right away we
|
| 4674 |
|
|
-- need to deal with the case where both bounds are non-negative.
|
| 4675 |
|
|
-- In this case, we set the low bound to the negative of the high
|
| 4676 |
|
|
-- bound, to make sure that the size is computed to include the
|
| 4677 |
|
|
-- required sign. Note that we do not need to worry about the
|
| 4678 |
|
|
-- case of both bounds negative, because the sign will be dealt
|
| 4679 |
|
|
-- with anyway. Furthermore we can't just go making such a bound
|
| 4680 |
|
|
-- symmetrical, since in a twos-complement system, there is an
|
| 4681 |
|
|
-- extra negative value which could not be accommodated on the
|
| 4682 |
|
|
-- positive side.
|
| 4683 |
|
|
|
| 4684 |
|
|
if Typ = Btyp
|
| 4685 |
|
|
and then not UR_Is_Negative (Loval)
|
| 4686 |
|
|
and then Hival > Loval
|
| 4687 |
|
|
then
|
| 4688 |
|
|
Loval := -Hival;
|
| 4689 |
|
|
Set_Realval (Lo, Loval);
|
| 4690 |
|
|
end if;
|
| 4691 |
|
|
|
| 4692 |
|
|
-- Compute the fudged bounds. If the number is a model number,
|
| 4693 |
|
|
-- then we do nothing to include it, but we are allowed to backoff
|
| 4694 |
|
|
-- to the next adjacent model number when we exclude it. If it is
|
| 4695 |
|
|
-- not a model number then we straddle the two values with the
|
| 4696 |
|
|
-- model numbers on either side.
|
| 4697 |
|
|
|
| 4698 |
|
|
Model_Num := UR_Trunc (Loval / Small) * Small;
|
| 4699 |
|
|
|
| 4700 |
|
|
if Loval = Model_Num then
|
| 4701 |
|
|
Loval_Incl_EP := Model_Num;
|
| 4702 |
|
|
else
|
| 4703 |
|
|
Loval_Incl_EP := Model_Num - Small;
|
| 4704 |
|
|
end if;
|
| 4705 |
|
|
|
| 4706 |
|
|
-- The low value excluding the end point is Small greater, but
|
| 4707 |
|
|
-- we do not do this exclusion if the low value is positive,
|
| 4708 |
|
|
-- since it can't help the size and could actually hurt by
|
| 4709 |
|
|
-- crossing the high bound.
|
| 4710 |
|
|
|
| 4711 |
|
|
if UR_Is_Negative (Loval_Incl_EP) then
|
| 4712 |
|
|
Loval_Excl_EP := Loval_Incl_EP + Small;
|
| 4713 |
|
|
|
| 4714 |
|
|
-- If the value went from negative to zero, then we have the
|
| 4715 |
|
|
-- case where Loval_Incl_EP is the model number just below
|
| 4716 |
|
|
-- zero, so we want to stick to the negative value for the
|
| 4717 |
|
|
-- base type to maintain the condition that the size will
|
| 4718 |
|
|
-- include signed values.
|
| 4719 |
|
|
|
| 4720 |
|
|
if Typ = Btyp
|
| 4721 |
|
|
and then UR_Is_Zero (Loval_Excl_EP)
|
| 4722 |
|
|
then
|
| 4723 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
| 4724 |
|
|
end if;
|
| 4725 |
|
|
|
| 4726 |
|
|
else
|
| 4727 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
| 4728 |
|
|
end if;
|
| 4729 |
|
|
|
| 4730 |
|
|
-- Similar processing for upper bound and high value
|
| 4731 |
|
|
|
| 4732 |
|
|
Model_Num := UR_Trunc (Hival / Small) * Small;
|
| 4733 |
|
|
|
| 4734 |
|
|
if Hival = Model_Num then
|
| 4735 |
|
|
Hival_Incl_EP := Model_Num;
|
| 4736 |
|
|
else
|
| 4737 |
|
|
Hival_Incl_EP := Model_Num + Small;
|
| 4738 |
|
|
end if;
|
| 4739 |
|
|
|
| 4740 |
|
|
if UR_Is_Positive (Hival_Incl_EP) then
|
| 4741 |
|
|
Hival_Excl_EP := Hival_Incl_EP - Small;
|
| 4742 |
|
|
else
|
| 4743 |
|
|
Hival_Excl_EP := Hival_Incl_EP;
|
| 4744 |
|
|
end if;
|
| 4745 |
|
|
|
| 4746 |
|
|
-- One further adjustment is needed. In the case of subtypes, we
|
| 4747 |
|
|
-- cannot go outside the range of the base type, or we get
|
| 4748 |
|
|
-- peculiarities, and the base type range is already set. This
|
| 4749 |
|
|
-- only applies to the Incl values, since clearly the Excl values
|
| 4750 |
|
|
-- are already as restricted as they are allowed to be.
|
| 4751 |
|
|
|
| 4752 |
|
|
if Typ /= Btyp then
|
| 4753 |
|
|
Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
|
| 4754 |
|
|
Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
|
| 4755 |
|
|
end if;
|
| 4756 |
|
|
|
| 4757 |
|
|
-- Get size including and excluding end points
|
| 4758 |
|
|
|
| 4759 |
|
|
Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
|
| 4760 |
|
|
Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
|
| 4761 |
|
|
|
| 4762 |
|
|
-- No need to exclude end-points if it does not reduce size
|
| 4763 |
|
|
|
| 4764 |
|
|
if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
|
| 4765 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
| 4766 |
|
|
end if;
|
| 4767 |
|
|
|
| 4768 |
|
|
if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
|
| 4769 |
|
|
Hival_Excl_EP := Hival_Incl_EP;
|
| 4770 |
|
|
end if;
|
| 4771 |
|
|
|
| 4772 |
|
|
-- Now we set the actual size to be used. We want to use the
|
| 4773 |
|
|
-- bounds fudged up to include the end-points but only if this
|
| 4774 |
|
|
-- can be done without violating a specifically given size
|
| 4775 |
|
|
-- size clause or causing an unacceptable increase in size.
|
| 4776 |
|
|
|
| 4777 |
|
|
-- Case of size clause given
|
| 4778 |
|
|
|
| 4779 |
|
|
if Has_Size_Clause (Typ) then
|
| 4780 |
|
|
|
| 4781 |
|
|
-- Use the inclusive size only if it is consistent with
|
| 4782 |
|
|
-- the explicitly specified size.
|
| 4783 |
|
|
|
| 4784 |
|
|
if Size_Incl_EP <= RM_Size (Typ) then
|
| 4785 |
|
|
Actual_Lo := Loval_Incl_EP;
|
| 4786 |
|
|
Actual_Hi := Hival_Incl_EP;
|
| 4787 |
|
|
Actual_Size := Size_Incl_EP;
|
| 4788 |
|
|
|
| 4789 |
|
|
-- If the inclusive size is too large, we try excluding
|
| 4790 |
|
|
-- the end-points (will be caught later if does not work).
|
| 4791 |
|
|
|
| 4792 |
|
|
else
|
| 4793 |
|
|
Actual_Lo := Loval_Excl_EP;
|
| 4794 |
|
|
Actual_Hi := Hival_Excl_EP;
|
| 4795 |
|
|
Actual_Size := Size_Excl_EP;
|
| 4796 |
|
|
end if;
|
| 4797 |
|
|
|
| 4798 |
|
|
-- Case of size clause not given
|
| 4799 |
|
|
|
| 4800 |
|
|
else
|
| 4801 |
|
|
-- If we have a base type whose corresponding first subtype
|
| 4802 |
|
|
-- has an explicit size that is large enough to include our
|
| 4803 |
|
|
-- end-points, then do so. There is no point in working hard
|
| 4804 |
|
|
-- to get a base type whose size is smaller than the specified
|
| 4805 |
|
|
-- size of the first subtype.
|
| 4806 |
|
|
|
| 4807 |
|
|
First_Subt := First_Subtype (Typ);
|
| 4808 |
|
|
|
| 4809 |
|
|
if Has_Size_Clause (First_Subt)
|
| 4810 |
|
|
and then Size_Incl_EP <= Esize (First_Subt)
|
| 4811 |
|
|
then
|
| 4812 |
|
|
Actual_Size := Size_Incl_EP;
|
| 4813 |
|
|
Actual_Lo := Loval_Incl_EP;
|
| 4814 |
|
|
Actual_Hi := Hival_Incl_EP;
|
| 4815 |
|
|
|
| 4816 |
|
|
-- If excluding the end-points makes the size smaller and
|
| 4817 |
|
|
-- results in a size of 8,16,32,64, then we take the smaller
|
| 4818 |
|
|
-- size. For the 64 case, this is compulsory. For the other
|
| 4819 |
|
|
-- cases, it seems reasonable. We like to include end points
|
| 4820 |
|
|
-- if we can, but not at the expense of moving to the next
|
| 4821 |
|
|
-- natural boundary of size.
|
| 4822 |
|
|
|
| 4823 |
|
|
elsif Size_Incl_EP /= Size_Excl_EP
|
| 4824 |
|
|
and then
|
| 4825 |
|
|
(Size_Excl_EP = 8 or else
|
| 4826 |
|
|
Size_Excl_EP = 16 or else
|
| 4827 |
|
|
Size_Excl_EP = 32 or else
|
| 4828 |
|
|
Size_Excl_EP = 64)
|
| 4829 |
|
|
then
|
| 4830 |
|
|
Actual_Size := Size_Excl_EP;
|
| 4831 |
|
|
Actual_Lo := Loval_Excl_EP;
|
| 4832 |
|
|
Actual_Hi := Hival_Excl_EP;
|
| 4833 |
|
|
|
| 4834 |
|
|
-- Otherwise we can definitely include the end points
|
| 4835 |
|
|
|
| 4836 |
|
|
else
|
| 4837 |
|
|
Actual_Size := Size_Incl_EP;
|
| 4838 |
|
|
Actual_Lo := Loval_Incl_EP;
|
| 4839 |
|
|
Actual_Hi := Hival_Incl_EP;
|
| 4840 |
|
|
end if;
|
| 4841 |
|
|
|
| 4842 |
|
|
-- One pathological case: normally we never fudge a low bound
|
| 4843 |
|
|
-- down, since it would seem to increase the size (if it has
|
| 4844 |
|
|
-- any effect), but for ranges containing single value, or no
|
| 4845 |
|
|
-- values, the high bound can be small too large. Consider:
|
| 4846 |
|
|
|
| 4847 |
|
|
-- type t is delta 2.0**(-14)
|
| 4848 |
|
|
-- range 131072.0 .. 0;
|
| 4849 |
|
|
|
| 4850 |
|
|
-- That lower bound is *just* outside the range of 32 bits, and
|
| 4851 |
|
|
-- does need fudging down in this case. Note that the bounds
|
| 4852 |
|
|
-- will always have crossed here, since the high bound will be
|
| 4853 |
|
|
-- fudged down if necessary, as in the case of:
|
| 4854 |
|
|
|
| 4855 |
|
|
-- type t is delta 2.0**(-14)
|
| 4856 |
|
|
-- range 131072.0 .. 131072.0;
|
| 4857 |
|
|
|
| 4858 |
|
|
-- So we detect the situation by looking for crossed bounds,
|
| 4859 |
|
|
-- and if the bounds are crossed, and the low bound is greater
|
| 4860 |
|
|
-- than zero, we will always back it off by small, since this
|
| 4861 |
|
|
-- is completely harmless.
|
| 4862 |
|
|
|
| 4863 |
|
|
if Actual_Lo > Actual_Hi then
|
| 4864 |
|
|
if UR_Is_Positive (Actual_Lo) then
|
| 4865 |
|
|
Actual_Lo := Loval_Incl_EP - Small;
|
| 4866 |
|
|
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
|
| 4867 |
|
|
|
| 4868 |
|
|
-- And of course, we need to do exactly the same parallel
|
| 4869 |
|
|
-- fudge for flat ranges in the negative region.
|
| 4870 |
|
|
|
| 4871 |
|
|
elsif UR_Is_Negative (Actual_Hi) then
|
| 4872 |
|
|
Actual_Hi := Hival_Incl_EP + Small;
|
| 4873 |
|
|
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
|
| 4874 |
|
|
end if;
|
| 4875 |
|
|
end if;
|
| 4876 |
|
|
end if;
|
| 4877 |
|
|
|
| 4878 |
|
|
Set_Realval (Lo, Actual_Lo);
|
| 4879 |
|
|
Set_Realval (Hi, Actual_Hi);
|
| 4880 |
|
|
end Fudge;
|
| 4881 |
|
|
|
| 4882 |
|
|
-- For the decimal case, none of this fudging is required, since there
|
| 4883 |
|
|
-- are no end-point problems in the decimal case (the end-points are
|
| 4884 |
|
|
-- always included).
|
| 4885 |
|
|
|
| 4886 |
|
|
else
|
| 4887 |
|
|
Actual_Size := Fsize (Loval, Hival);
|
| 4888 |
|
|
end if;
|
| 4889 |
|
|
|
| 4890 |
|
|
-- At this stage, the actual size has been calculated and the proper
|
| 4891 |
|
|
-- required bounds are stored in the low and high bounds.
|
| 4892 |
|
|
|
| 4893 |
|
|
if Actual_Size > 64 then
|
| 4894 |
|
|
Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
|
| 4895 |
|
|
Error_Msg_N
|
| 4896 |
|
|
("size required (^) for type& too large, maximum allowed is 64",
|
| 4897 |
|
|
Typ);
|
| 4898 |
|
|
Actual_Size := 64;
|
| 4899 |
|
|
end if;
|
| 4900 |
|
|
|
| 4901 |
|
|
-- Check size against explicit given size
|
| 4902 |
|
|
|
| 4903 |
|
|
if Has_Size_Clause (Typ) then
|
| 4904 |
|
|
if Actual_Size > RM_Size (Typ) then
|
| 4905 |
|
|
Error_Msg_Uint_1 := RM_Size (Typ);
|
| 4906 |
|
|
Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
|
| 4907 |
|
|
Error_Msg_NE
|
| 4908 |
|
|
("size given (^) for type& too small, minimum allowed is ^",
|
| 4909 |
|
|
Size_Clause (Typ), Typ);
|
| 4910 |
|
|
|
| 4911 |
|
|
else
|
| 4912 |
|
|
Actual_Size := UI_To_Int (Esize (Typ));
|
| 4913 |
|
|
end if;
|
| 4914 |
|
|
|
| 4915 |
|
|
-- Increase size to next natural boundary if no size clause given
|
| 4916 |
|
|
|
| 4917 |
|
|
else
|
| 4918 |
|
|
if Actual_Size <= 8 then
|
| 4919 |
|
|
Actual_Size := 8;
|
| 4920 |
|
|
elsif Actual_Size <= 16 then
|
| 4921 |
|
|
Actual_Size := 16;
|
| 4922 |
|
|
elsif Actual_Size <= 32 then
|
| 4923 |
|
|
Actual_Size := 32;
|
| 4924 |
|
|
else
|
| 4925 |
|
|
Actual_Size := 64;
|
| 4926 |
|
|
end if;
|
| 4927 |
|
|
|
| 4928 |
|
|
Init_Esize (Typ, Actual_Size);
|
| 4929 |
|
|
Adjust_Esize_For_Alignment (Typ);
|
| 4930 |
|
|
end if;
|
| 4931 |
|
|
|
| 4932 |
|
|
-- If we have a base type, then expand the bounds so that they extend to
|
| 4933 |
|
|
-- the full width of the allocated size in bits, to avoid junk range
|
| 4934 |
|
|
-- checks on intermediate computations.
|
| 4935 |
|
|
|
| 4936 |
|
|
if Base_Type (Typ) = Typ then
|
| 4937 |
|
|
Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
|
| 4938 |
|
|
Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
|
| 4939 |
|
|
end if;
|
| 4940 |
|
|
|
| 4941 |
|
|
-- Final step is to reanalyze the bounds using the proper type
|
| 4942 |
|
|
-- and set the Corresponding_Integer_Value fields of the literals.
|
| 4943 |
|
|
|
| 4944 |
|
|
Set_Etype (Lo, Empty);
|
| 4945 |
|
|
Set_Analyzed (Lo, False);
|
| 4946 |
|
|
Analyze (Lo);
|
| 4947 |
|
|
|
| 4948 |
|
|
-- Resolve with universal fixed if the base type, and the base type if
|
| 4949 |
|
|
-- it is a subtype. Note we can't resolve the base type with itself,
|
| 4950 |
|
|
-- that would be a reference before definition.
|
| 4951 |
|
|
|
| 4952 |
|
|
if Typ = Btyp then
|
| 4953 |
|
|
Resolve (Lo, Universal_Fixed);
|
| 4954 |
|
|
else
|
| 4955 |
|
|
Resolve (Lo, Btyp);
|
| 4956 |
|
|
end if;
|
| 4957 |
|
|
|
| 4958 |
|
|
-- Set corresponding integer value for bound
|
| 4959 |
|
|
|
| 4960 |
|
|
Set_Corresponding_Integer_Value
|
| 4961 |
|
|
(Lo, UR_To_Uint (Realval (Lo) / Small));
|
| 4962 |
|
|
|
| 4963 |
|
|
-- Similar processing for high bound
|
| 4964 |
|
|
|
| 4965 |
|
|
Set_Etype (Hi, Empty);
|
| 4966 |
|
|
Set_Analyzed (Hi, False);
|
| 4967 |
|
|
Analyze (Hi);
|
| 4968 |
|
|
|
| 4969 |
|
|
if Typ = Btyp then
|
| 4970 |
|
|
Resolve (Hi, Universal_Fixed);
|
| 4971 |
|
|
else
|
| 4972 |
|
|
Resolve (Hi, Btyp);
|
| 4973 |
|
|
end if;
|
| 4974 |
|
|
|
| 4975 |
|
|
Set_Corresponding_Integer_Value
|
| 4976 |
|
|
(Hi, UR_To_Uint (Realval (Hi) / Small));
|
| 4977 |
|
|
|
| 4978 |
|
|
-- Set type of range to correspond to bounds
|
| 4979 |
|
|
|
| 4980 |
|
|
Set_Etype (Rng, Etype (Lo));
|
| 4981 |
|
|
|
| 4982 |
|
|
-- Set Esize to calculated size if not set already
|
| 4983 |
|
|
|
| 4984 |
|
|
if Unknown_Esize (Typ) then
|
| 4985 |
|
|
Init_Esize (Typ, Actual_Size);
|
| 4986 |
|
|
end if;
|
| 4987 |
|
|
|
| 4988 |
|
|
-- Set RM_Size if not already set. If already set, check value
|
| 4989 |
|
|
|
| 4990 |
|
|
declare
|
| 4991 |
|
|
Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
|
| 4992 |
|
|
|
| 4993 |
|
|
begin
|
| 4994 |
|
|
if RM_Size (Typ) /= Uint_0 then
|
| 4995 |
|
|
if RM_Size (Typ) < Minsiz then
|
| 4996 |
|
|
Error_Msg_Uint_1 := RM_Size (Typ);
|
| 4997 |
|
|
Error_Msg_Uint_2 := Minsiz;
|
| 4998 |
|
|
Error_Msg_NE
|
| 4999 |
|
|
("size given (^) for type& too small, minimum allowed is ^",
|
| 5000 |
|
|
Size_Clause (Typ), Typ);
|
| 5001 |
|
|
end if;
|
| 5002 |
|
|
|
| 5003 |
|
|
else
|
| 5004 |
|
|
Set_RM_Size (Typ, Minsiz);
|
| 5005 |
|
|
end if;
|
| 5006 |
|
|
end;
|
| 5007 |
|
|
end Freeze_Fixed_Point_Type;
|
| 5008 |
|
|
|
| 5009 |
|
|
------------------
|
| 5010 |
|
|
-- Freeze_Itype --
|
| 5011 |
|
|
------------------
|
| 5012 |
|
|
|
| 5013 |
|
|
procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
|
| 5014 |
|
|
L : List_Id;
|
| 5015 |
|
|
|
| 5016 |
|
|
begin
|
| 5017 |
|
|
Set_Has_Delayed_Freeze (T);
|
| 5018 |
|
|
L := Freeze_Entity (T, Sloc (N));
|
| 5019 |
|
|
|
| 5020 |
|
|
if Is_Non_Empty_List (L) then
|
| 5021 |
|
|
Insert_Actions (N, L);
|
| 5022 |
|
|
end if;
|
| 5023 |
|
|
end Freeze_Itype;
|
| 5024 |
|
|
|
| 5025 |
|
|
--------------------------
|
| 5026 |
|
|
-- Freeze_Static_Object --
|
| 5027 |
|
|
--------------------------
|
| 5028 |
|
|
|
| 5029 |
|
|
procedure Freeze_Static_Object (E : Entity_Id) is
|
| 5030 |
|
|
|
| 5031 |
|
|
Cannot_Be_Static : exception;
|
| 5032 |
|
|
-- Exception raised if the type of a static object cannot be made
|
| 5033 |
|
|
-- static. This happens if the type depends on non-global objects.
|
| 5034 |
|
|
|
| 5035 |
|
|
procedure Ensure_Expression_Is_SA (N : Node_Id);
|
| 5036 |
|
|
-- Called to ensure that an expression used as part of a type definition
|
| 5037 |
|
|
-- is statically allocatable, which means that the expression type is
|
| 5038 |
|
|
-- statically allocatable, and the expression is either static, or a
|
| 5039 |
|
|
-- reference to a library level constant.
|
| 5040 |
|
|
|
| 5041 |
|
|
procedure Ensure_Type_Is_SA (Typ : Entity_Id);
|
| 5042 |
|
|
-- Called to mark a type as static, checking that it is possible
|
| 5043 |
|
|
-- to set the type as static. If it is not possible, then the
|
| 5044 |
|
|
-- exception Cannot_Be_Static is raised.
|
| 5045 |
|
|
|
| 5046 |
|
|
-----------------------------
|
| 5047 |
|
|
-- Ensure_Expression_Is_SA --
|
| 5048 |
|
|
-----------------------------
|
| 5049 |
|
|
|
| 5050 |
|
|
procedure Ensure_Expression_Is_SA (N : Node_Id) is
|
| 5051 |
|
|
Ent : Entity_Id;
|
| 5052 |
|
|
|
| 5053 |
|
|
begin
|
| 5054 |
|
|
Ensure_Type_Is_SA (Etype (N));
|
| 5055 |
|
|
|
| 5056 |
|
|
if Is_Static_Expression (N) then
|
| 5057 |
|
|
return;
|
| 5058 |
|
|
|
| 5059 |
|
|
elsif Nkind (N) = N_Identifier then
|
| 5060 |
|
|
Ent := Entity (N);
|
| 5061 |
|
|
|
| 5062 |
|
|
if Present (Ent)
|
| 5063 |
|
|
and then Ekind (Ent) = E_Constant
|
| 5064 |
|
|
and then Is_Library_Level_Entity (Ent)
|
| 5065 |
|
|
then
|
| 5066 |
|
|
return;
|
| 5067 |
|
|
end if;
|
| 5068 |
|
|
end if;
|
| 5069 |
|
|
|
| 5070 |
|
|
raise Cannot_Be_Static;
|
| 5071 |
|
|
end Ensure_Expression_Is_SA;
|
| 5072 |
|
|
|
| 5073 |
|
|
-----------------------
|
| 5074 |
|
|
-- Ensure_Type_Is_SA --
|
| 5075 |
|
|
-----------------------
|
| 5076 |
|
|
|
| 5077 |
|
|
procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
|
| 5078 |
|
|
N : Node_Id;
|
| 5079 |
|
|
C : Entity_Id;
|
| 5080 |
|
|
|
| 5081 |
|
|
begin
|
| 5082 |
|
|
-- If type is library level, we are all set
|
| 5083 |
|
|
|
| 5084 |
|
|
if Is_Library_Level_Entity (Typ) then
|
| 5085 |
|
|
return;
|
| 5086 |
|
|
end if;
|
| 5087 |
|
|
|
| 5088 |
|
|
-- We are also OK if the type already marked as statically allocated,
|
| 5089 |
|
|
-- which means we processed it before.
|
| 5090 |
|
|
|
| 5091 |
|
|
if Is_Statically_Allocated (Typ) then
|
| 5092 |
|
|
return;
|
| 5093 |
|
|
end if;
|
| 5094 |
|
|
|
| 5095 |
|
|
-- Mark type as statically allocated
|
| 5096 |
|
|
|
| 5097 |
|
|
Set_Is_Statically_Allocated (Typ);
|
| 5098 |
|
|
|
| 5099 |
|
|
-- Check that it is safe to statically allocate this type
|
| 5100 |
|
|
|
| 5101 |
|
|
if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
|
| 5102 |
|
|
Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
|
| 5103 |
|
|
Ensure_Expression_Is_SA (Type_High_Bound (Typ));
|
| 5104 |
|
|
|
| 5105 |
|
|
elsif Is_Array_Type (Typ) then
|
| 5106 |
|
|
N := First_Index (Typ);
|
| 5107 |
|
|
while Present (N) loop
|
| 5108 |
|
|
Ensure_Type_Is_SA (Etype (N));
|
| 5109 |
|
|
Next_Index (N);
|
| 5110 |
|
|
end loop;
|
| 5111 |
|
|
|
| 5112 |
|
|
Ensure_Type_Is_SA (Component_Type (Typ));
|
| 5113 |
|
|
|
| 5114 |
|
|
elsif Is_Access_Type (Typ) then
|
| 5115 |
|
|
if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
|
| 5116 |
|
|
|
| 5117 |
|
|
declare
|
| 5118 |
|
|
F : Entity_Id;
|
| 5119 |
|
|
T : constant Entity_Id := Etype (Designated_Type (Typ));
|
| 5120 |
|
|
|
| 5121 |
|
|
begin
|
| 5122 |
|
|
if T /= Standard_Void_Type then
|
| 5123 |
|
|
Ensure_Type_Is_SA (T);
|
| 5124 |
|
|
end if;
|
| 5125 |
|
|
|
| 5126 |
|
|
F := First_Formal (Designated_Type (Typ));
|
| 5127 |
|
|
|
| 5128 |
|
|
while Present (F) loop
|
| 5129 |
|
|
Ensure_Type_Is_SA (Etype (F));
|
| 5130 |
|
|
Next_Formal (F);
|
| 5131 |
|
|
end loop;
|
| 5132 |
|
|
end;
|
| 5133 |
|
|
|
| 5134 |
|
|
else
|
| 5135 |
|
|
Ensure_Type_Is_SA (Designated_Type (Typ));
|
| 5136 |
|
|
end if;
|
| 5137 |
|
|
|
| 5138 |
|
|
elsif Is_Record_Type (Typ) then
|
| 5139 |
|
|
C := First_Entity (Typ);
|
| 5140 |
|
|
while Present (C) loop
|
| 5141 |
|
|
if Ekind (C) = E_Discriminant
|
| 5142 |
|
|
or else Ekind (C) = E_Component
|
| 5143 |
|
|
then
|
| 5144 |
|
|
Ensure_Type_Is_SA (Etype (C));
|
| 5145 |
|
|
|
| 5146 |
|
|
elsif Is_Type (C) then
|
| 5147 |
|
|
Ensure_Type_Is_SA (C);
|
| 5148 |
|
|
end if;
|
| 5149 |
|
|
|
| 5150 |
|
|
Next_Entity (C);
|
| 5151 |
|
|
end loop;
|
| 5152 |
|
|
|
| 5153 |
|
|
elsif Ekind (Typ) = E_Subprogram_Type then
|
| 5154 |
|
|
Ensure_Type_Is_SA (Etype (Typ));
|
| 5155 |
|
|
|
| 5156 |
|
|
C := First_Formal (Typ);
|
| 5157 |
|
|
while Present (C) loop
|
| 5158 |
|
|
Ensure_Type_Is_SA (Etype (C));
|
| 5159 |
|
|
Next_Formal (C);
|
| 5160 |
|
|
end loop;
|
| 5161 |
|
|
|
| 5162 |
|
|
else
|
| 5163 |
|
|
raise Cannot_Be_Static;
|
| 5164 |
|
|
end if;
|
| 5165 |
|
|
end Ensure_Type_Is_SA;
|
| 5166 |
|
|
|
| 5167 |
|
|
-- Start of processing for Freeze_Static_Object
|
| 5168 |
|
|
|
| 5169 |
|
|
begin
|
| 5170 |
|
|
Ensure_Type_Is_SA (Etype (E));
|
| 5171 |
|
|
|
| 5172 |
|
|
exception
|
| 5173 |
|
|
when Cannot_Be_Static =>
|
| 5174 |
|
|
|
| 5175 |
|
|
-- If the object that cannot be static is imported or exported, then
|
| 5176 |
|
|
-- issue an error message saying that this object cannot be imported
|
| 5177 |
|
|
-- or exported. If it has an address clause it is an overlay in the
|
| 5178 |
|
|
-- current partition and the static requirement is not relevant.
|
| 5179 |
|
|
|
| 5180 |
|
|
if Is_Imported (E) and then No (Address_Clause (E)) then
|
| 5181 |
|
|
Error_Msg_N
|
| 5182 |
|
|
("& cannot be imported (local type is not constant)", E);
|
| 5183 |
|
|
|
| 5184 |
|
|
-- Otherwise must be exported, something is wrong if compiler
|
| 5185 |
|
|
-- is marking something as statically allocated which cannot be).
|
| 5186 |
|
|
|
| 5187 |
|
|
else pragma Assert (Is_Exported (E));
|
| 5188 |
|
|
Error_Msg_N
|
| 5189 |
|
|
("& cannot be exported (local type is not constant)", E);
|
| 5190 |
|
|
end if;
|
| 5191 |
|
|
end Freeze_Static_Object;
|
| 5192 |
|
|
|
| 5193 |
|
|
-----------------------
|
| 5194 |
|
|
-- Freeze_Subprogram --
|
| 5195 |
|
|
-----------------------
|
| 5196 |
|
|
|
| 5197 |
|
|
procedure Freeze_Subprogram (E : Entity_Id) is
|
| 5198 |
|
|
Retype : Entity_Id;
|
| 5199 |
|
|
F : Entity_Id;
|
| 5200 |
|
|
|
| 5201 |
|
|
begin
|
| 5202 |
|
|
-- Subprogram may not have an address clause unless it is imported
|
| 5203 |
|
|
|
| 5204 |
|
|
if Present (Address_Clause (E)) then
|
| 5205 |
|
|
if not Is_Imported (E) then
|
| 5206 |
|
|
Error_Msg_N
|
| 5207 |
|
|
("address clause can only be given " &
|
| 5208 |
|
|
"for imported subprogram",
|
| 5209 |
|
|
Name (Address_Clause (E)));
|
| 5210 |
|
|
end if;
|
| 5211 |
|
|
end if;
|
| 5212 |
|
|
|
| 5213 |
|
|
-- Reset the Pure indication on an imported subprogram unless an
|
| 5214 |
|
|
-- explicit Pure_Function pragma was present. We do this because
|
| 5215 |
|
|
-- otherwise it is an insidious error to call a non-pure function from
|
| 5216 |
|
|
-- pure unit and have calls mysteriously optimized away. What happens
|
| 5217 |
|
|
-- here is that the Import can bypass the normal check to ensure that
|
| 5218 |
|
|
-- pure units call only pure subprograms.
|
| 5219 |
|
|
|
| 5220 |
|
|
if Is_Imported (E)
|
| 5221 |
|
|
and then Is_Pure (E)
|
| 5222 |
|
|
and then not Has_Pragma_Pure_Function (E)
|
| 5223 |
|
|
then
|
| 5224 |
|
|
Set_Is_Pure (E, False);
|
| 5225 |
|
|
end if;
|
| 5226 |
|
|
|
| 5227 |
|
|
-- For non-foreign convention subprograms, this is where we create
|
| 5228 |
|
|
-- the extra formals (for accessibility level and constrained bit
|
| 5229 |
|
|
-- information). We delay this till the freeze point precisely so
|
| 5230 |
|
|
-- that we know the convention!
|
| 5231 |
|
|
|
| 5232 |
|
|
if not Has_Foreign_Convention (E) then
|
| 5233 |
|
|
Create_Extra_Formals (E);
|
| 5234 |
|
|
Set_Mechanisms (E);
|
| 5235 |
|
|
|
| 5236 |
|
|
-- If this is convention Ada and a Valued_Procedure, that's odd
|
| 5237 |
|
|
|
| 5238 |
|
|
if Ekind (E) = E_Procedure
|
| 5239 |
|
|
and then Is_Valued_Procedure (E)
|
| 5240 |
|
|
and then Convention (E) = Convention_Ada
|
| 5241 |
|
|
and then Warn_On_Export_Import
|
| 5242 |
|
|
then
|
| 5243 |
|
|
Error_Msg_N
|
| 5244 |
|
|
("?Valued_Procedure has no effect for convention Ada", E);
|
| 5245 |
|
|
Set_Is_Valued_Procedure (E, False);
|
| 5246 |
|
|
end if;
|
| 5247 |
|
|
|
| 5248 |
|
|
-- Case of foreign convention
|
| 5249 |
|
|
|
| 5250 |
|
|
else
|
| 5251 |
|
|
Set_Mechanisms (E);
|
| 5252 |
|
|
|
| 5253 |
|
|
-- For foreign conventions, warn about return of an
|
| 5254 |
|
|
-- unconstrained array.
|
| 5255 |
|
|
|
| 5256 |
|
|
-- Note: we *do* allow a return by descriptor for the VMS case,
|
| 5257 |
|
|
-- though here there is probably more to be done ???
|
| 5258 |
|
|
|
| 5259 |
|
|
if Ekind (E) = E_Function then
|
| 5260 |
|
|
Retype := Underlying_Type (Etype (E));
|
| 5261 |
|
|
|
| 5262 |
|
|
-- If no return type, probably some other error, e.g. a
|
| 5263 |
|
|
-- missing full declaration, so ignore.
|
| 5264 |
|
|
|
| 5265 |
|
|
if No (Retype) then
|
| 5266 |
|
|
null;
|
| 5267 |
|
|
|
| 5268 |
|
|
-- If the return type is generic, we have emitted a warning
|
| 5269 |
|
|
-- earlier on, and there is nothing else to check here. Specific
|
| 5270 |
|
|
-- instantiations may lead to erroneous behavior.
|
| 5271 |
|
|
|
| 5272 |
|
|
elsif Is_Generic_Type (Etype (E)) then
|
| 5273 |
|
|
null;
|
| 5274 |
|
|
|
| 5275 |
|
|
-- Display warning if returning unconstrained array
|
| 5276 |
|
|
|
| 5277 |
|
|
elsif Is_Array_Type (Retype)
|
| 5278 |
|
|
and then not Is_Constrained (Retype)
|
| 5279 |
|
|
|
| 5280 |
|
|
-- Exclude cases where descriptor mechanism is set, since the
|
| 5281 |
|
|
-- VMS descriptor mechanisms allow such unconstrained returns.
|
| 5282 |
|
|
|
| 5283 |
|
|
and then Mechanism (E) not in Descriptor_Codes
|
| 5284 |
|
|
|
| 5285 |
|
|
-- Check appropriate warning is enabled (should we check for
|
| 5286 |
|
|
-- Warnings (Off) on specific entities here, probably so???)
|
| 5287 |
|
|
|
| 5288 |
|
|
and then Warn_On_Export_Import
|
| 5289 |
|
|
|
| 5290 |
|
|
-- Exclude the VM case, since return of unconstrained arrays
|
| 5291 |
|
|
-- is properly handled in both the JVM and .NET cases.
|
| 5292 |
|
|
|
| 5293 |
|
|
and then VM_Target = No_VM
|
| 5294 |
|
|
then
|
| 5295 |
|
|
Error_Msg_N
|
| 5296 |
|
|
("?foreign convention function& should not return " &
|
| 5297 |
|
|
"unconstrained array", E);
|
| 5298 |
|
|
return;
|
| 5299 |
|
|
end if;
|
| 5300 |
|
|
end if;
|
| 5301 |
|
|
|
| 5302 |
|
|
-- If any of the formals for an exported foreign convention
|
| 5303 |
|
|
-- subprogram have defaults, then emit an appropriate warning since
|
| 5304 |
|
|
-- this is odd (default cannot be used from non-Ada code)
|
| 5305 |
|
|
|
| 5306 |
|
|
if Is_Exported (E) then
|
| 5307 |
|
|
F := First_Formal (E);
|
| 5308 |
|
|
while Present (F) loop
|
| 5309 |
|
|
if Warn_On_Export_Import
|
| 5310 |
|
|
and then Present (Default_Value (F))
|
| 5311 |
|
|
then
|
| 5312 |
|
|
Error_Msg_N
|
| 5313 |
|
|
("?parameter cannot be defaulted in non-Ada call",
|
| 5314 |
|
|
Default_Value (F));
|
| 5315 |
|
|
end if;
|
| 5316 |
|
|
|
| 5317 |
|
|
Next_Formal (F);
|
| 5318 |
|
|
end loop;
|
| 5319 |
|
|
end if;
|
| 5320 |
|
|
end if;
|
| 5321 |
|
|
|
| 5322 |
|
|
-- For VMS, descriptor mechanisms for parameters are allowed only for
|
| 5323 |
|
|
-- imported/exported subprograms. Moreover, the NCA descriptor is not
|
| 5324 |
|
|
-- allowed for parameters of exported subprograms.
|
| 5325 |
|
|
|
| 5326 |
|
|
if OpenVMS_On_Target then
|
| 5327 |
|
|
if Is_Exported (E) then
|
| 5328 |
|
|
F := First_Formal (E);
|
| 5329 |
|
|
while Present (F) loop
|
| 5330 |
|
|
if Mechanism (F) = By_Descriptor_NCA then
|
| 5331 |
|
|
Error_Msg_N
|
| 5332 |
|
|
("'N'C'A' descriptor for parameter not permitted", F);
|
| 5333 |
|
|
Error_Msg_N
|
| 5334 |
|
|
("\can only be used for imported subprogram", F);
|
| 5335 |
|
|
end if;
|
| 5336 |
|
|
|
| 5337 |
|
|
Next_Formal (F);
|
| 5338 |
|
|
end loop;
|
| 5339 |
|
|
|
| 5340 |
|
|
elsif not Is_Imported (E) then
|
| 5341 |
|
|
F := First_Formal (E);
|
| 5342 |
|
|
while Present (F) loop
|
| 5343 |
|
|
if Mechanism (F) in Descriptor_Codes then
|
| 5344 |
|
|
Error_Msg_N
|
| 5345 |
|
|
("descriptor mechanism for parameter not permitted", F);
|
| 5346 |
|
|
Error_Msg_N
|
| 5347 |
|
|
("\can only be used for imported/exported subprogram", F);
|
| 5348 |
|
|
end if;
|
| 5349 |
|
|
|
| 5350 |
|
|
Next_Formal (F);
|
| 5351 |
|
|
end loop;
|
| 5352 |
|
|
end if;
|
| 5353 |
|
|
end if;
|
| 5354 |
|
|
|
| 5355 |
|
|
-- Pragma Inline_Always is disallowed for dispatching subprograms
|
| 5356 |
|
|
-- because the address of such subprograms is saved in the dispatch
|
| 5357 |
|
|
-- table to support dispatching calls, and dispatching calls cannot
|
| 5358 |
|
|
-- be inlined. This is consistent with the restriction against using
|
| 5359 |
|
|
-- 'Access or 'Address on an Inline_Always subprogram.
|
| 5360 |
|
|
|
| 5361 |
|
|
if Is_Dispatching_Operation (E)
|
| 5362 |
|
|
and then Has_Pragma_Inline_Always (E)
|
| 5363 |
|
|
then
|
| 5364 |
|
|
Error_Msg_N
|
| 5365 |
|
|
("pragma Inline_Always not allowed for dispatching subprograms", E);
|
| 5366 |
|
|
end if;
|
| 5367 |
|
|
|
| 5368 |
|
|
-- Because of the implicit representation of inherited predefined
|
| 5369 |
|
|
-- operators in the front-end, the overriding status of the operation
|
| 5370 |
|
|
-- may be affected when a full view of a type is analyzed, and this is
|
| 5371 |
|
|
-- not captured by the analysis of the corresponding type declaration.
|
| 5372 |
|
|
-- Therefore the correctness of a not-overriding indicator must be
|
| 5373 |
|
|
-- rechecked when the subprogram is frozen.
|
| 5374 |
|
|
|
| 5375 |
|
|
if Nkind (E) = N_Defining_Operator_Symbol
|
| 5376 |
|
|
and then not Error_Posted (Parent (E))
|
| 5377 |
|
|
then
|
| 5378 |
|
|
Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
|
| 5379 |
|
|
end if;
|
| 5380 |
|
|
end Freeze_Subprogram;
|
| 5381 |
|
|
|
| 5382 |
|
|
----------------------
|
| 5383 |
|
|
-- Is_Fully_Defined --
|
| 5384 |
|
|
----------------------
|
| 5385 |
|
|
|
| 5386 |
|
|
function Is_Fully_Defined (T : Entity_Id) return Boolean is
|
| 5387 |
|
|
begin
|
| 5388 |
|
|
if Ekind (T) = E_Class_Wide_Type then
|
| 5389 |
|
|
return Is_Fully_Defined (Etype (T));
|
| 5390 |
|
|
|
| 5391 |
|
|
elsif Is_Array_Type (T) then
|
| 5392 |
|
|
return Is_Fully_Defined (Component_Type (T));
|
| 5393 |
|
|
|
| 5394 |
|
|
elsif Is_Record_Type (T)
|
| 5395 |
|
|
and not Is_Private_Type (T)
|
| 5396 |
|
|
then
|
| 5397 |
|
|
-- Verify that the record type has no components with private types
|
| 5398 |
|
|
-- without completion.
|
| 5399 |
|
|
|
| 5400 |
|
|
declare
|
| 5401 |
|
|
Comp : Entity_Id;
|
| 5402 |
|
|
|
| 5403 |
|
|
begin
|
| 5404 |
|
|
Comp := First_Component (T);
|
| 5405 |
|
|
|
| 5406 |
|
|
while Present (Comp) loop
|
| 5407 |
|
|
if not Is_Fully_Defined (Etype (Comp)) then
|
| 5408 |
|
|
return False;
|
| 5409 |
|
|
end if;
|
| 5410 |
|
|
|
| 5411 |
|
|
Next_Component (Comp);
|
| 5412 |
|
|
end loop;
|
| 5413 |
|
|
return True;
|
| 5414 |
|
|
end;
|
| 5415 |
|
|
|
| 5416 |
|
|
else
|
| 5417 |
|
|
return not Is_Private_Type (T)
|
| 5418 |
|
|
or else Present (Full_View (Base_Type (T)));
|
| 5419 |
|
|
end if;
|
| 5420 |
|
|
end Is_Fully_Defined;
|
| 5421 |
|
|
|
| 5422 |
|
|
---------------------------------
|
| 5423 |
|
|
-- Process_Default_Expressions --
|
| 5424 |
|
|
---------------------------------
|
| 5425 |
|
|
|
| 5426 |
|
|
procedure Process_Default_Expressions
|
| 5427 |
|
|
(E : Entity_Id;
|
| 5428 |
|
|
After : in out Node_Id)
|
| 5429 |
|
|
is
|
| 5430 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
| 5431 |
|
|
Dbody : Node_Id;
|
| 5432 |
|
|
Formal : Node_Id;
|
| 5433 |
|
|
Dcopy : Node_Id;
|
| 5434 |
|
|
Dnam : Entity_Id;
|
| 5435 |
|
|
|
| 5436 |
|
|
begin
|
| 5437 |
|
|
Set_Default_Expressions_Processed (E);
|
| 5438 |
|
|
|
| 5439 |
|
|
-- A subprogram instance and its associated anonymous subprogram share
|
| 5440 |
|
|
-- their signature. The default expression functions are defined in the
|
| 5441 |
|
|
-- wrapper packages for the anonymous subprogram, and should not be
|
| 5442 |
|
|
-- generated again for the instance.
|
| 5443 |
|
|
|
| 5444 |
|
|
if Is_Generic_Instance (E)
|
| 5445 |
|
|
and then Present (Alias (E))
|
| 5446 |
|
|
and then Default_Expressions_Processed (Alias (E))
|
| 5447 |
|
|
then
|
| 5448 |
|
|
return;
|
| 5449 |
|
|
end if;
|
| 5450 |
|
|
|
| 5451 |
|
|
Formal := First_Formal (E);
|
| 5452 |
|
|
while Present (Formal) loop
|
| 5453 |
|
|
if Present (Default_Value (Formal)) then
|
| 5454 |
|
|
|
| 5455 |
|
|
-- We work with a copy of the default expression because we
|
| 5456 |
|
|
-- do not want to disturb the original, since this would mess
|
| 5457 |
|
|
-- up the conformance checking.
|
| 5458 |
|
|
|
| 5459 |
|
|
Dcopy := New_Copy_Tree (Default_Value (Formal));
|
| 5460 |
|
|
|
| 5461 |
|
|
-- The analysis of the expression may generate insert actions,
|
| 5462 |
|
|
-- which of course must not be executed. We wrap those actions
|
| 5463 |
|
|
-- in a procedure that is not called, and later on eliminated.
|
| 5464 |
|
|
-- The following cases have no side-effects, and are analyzed
|
| 5465 |
|
|
-- directly.
|
| 5466 |
|
|
|
| 5467 |
|
|
if Nkind (Dcopy) = N_Identifier
|
| 5468 |
|
|
or else Nkind (Dcopy) = N_Expanded_Name
|
| 5469 |
|
|
or else Nkind (Dcopy) = N_Integer_Literal
|
| 5470 |
|
|
or else (Nkind (Dcopy) = N_Real_Literal
|
| 5471 |
|
|
and then not Vax_Float (Etype (Dcopy)))
|
| 5472 |
|
|
or else Nkind (Dcopy) = N_Character_Literal
|
| 5473 |
|
|
or else Nkind (Dcopy) = N_String_Literal
|
| 5474 |
|
|
or else Known_Null (Dcopy)
|
| 5475 |
|
|
or else (Nkind (Dcopy) = N_Attribute_Reference
|
| 5476 |
|
|
and then
|
| 5477 |
|
|
Attribute_Name (Dcopy) = Name_Null_Parameter)
|
| 5478 |
|
|
then
|
| 5479 |
|
|
|
| 5480 |
|
|
-- If there is no default function, we must still do a full
|
| 5481 |
|
|
-- analyze call on the default value, to ensure that all error
|
| 5482 |
|
|
-- checks are performed, e.g. those associated with static
|
| 5483 |
|
|
-- evaluation. Note: this branch will always be taken if the
|
| 5484 |
|
|
-- analyzer is turned off (but we still need the error checks).
|
| 5485 |
|
|
|
| 5486 |
|
|
-- Note: the setting of parent here is to meet the requirement
|
| 5487 |
|
|
-- that we can only analyze the expression while attached to
|
| 5488 |
|
|
-- the tree. Really the requirement is that the parent chain
|
| 5489 |
|
|
-- be set, we don't actually need to be in the tree.
|
| 5490 |
|
|
|
| 5491 |
|
|
Set_Parent (Dcopy, Declaration_Node (Formal));
|
| 5492 |
|
|
Analyze (Dcopy);
|
| 5493 |
|
|
|
| 5494 |
|
|
-- Default expressions are resolved with their own type if the
|
| 5495 |
|
|
-- context is generic, to avoid anomalies with private types.
|
| 5496 |
|
|
|
| 5497 |
|
|
if Ekind (Scope (E)) = E_Generic_Package then
|
| 5498 |
|
|
Resolve (Dcopy);
|
| 5499 |
|
|
else
|
| 5500 |
|
|
Resolve (Dcopy, Etype (Formal));
|
| 5501 |
|
|
end if;
|
| 5502 |
|
|
|
| 5503 |
|
|
-- If that resolved expression will raise constraint error,
|
| 5504 |
|
|
-- then flag the default value as raising constraint error.
|
| 5505 |
|
|
-- This allows a proper error message on the calls.
|
| 5506 |
|
|
|
| 5507 |
|
|
if Raises_Constraint_Error (Dcopy) then
|
| 5508 |
|
|
Set_Raises_Constraint_Error (Default_Value (Formal));
|
| 5509 |
|
|
end if;
|
| 5510 |
|
|
|
| 5511 |
|
|
-- If the default is a parameterless call, we use the name of
|
| 5512 |
|
|
-- the called function directly, and there is no body to build.
|
| 5513 |
|
|
|
| 5514 |
|
|
elsif Nkind (Dcopy) = N_Function_Call
|
| 5515 |
|
|
and then No (Parameter_Associations (Dcopy))
|
| 5516 |
|
|
then
|
| 5517 |
|
|
null;
|
| 5518 |
|
|
|
| 5519 |
|
|
-- Else construct and analyze the body of a wrapper procedure
|
| 5520 |
|
|
-- that contains an object declaration to hold the expression.
|
| 5521 |
|
|
-- Given that this is done only to complete the analysis, it
|
| 5522 |
|
|
-- simpler to build a procedure than a function which might
|
| 5523 |
|
|
-- involve secondary stack expansion.
|
| 5524 |
|
|
|
| 5525 |
|
|
else
|
| 5526 |
|
|
Dnam :=
|
| 5527 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
|
| 5528 |
|
|
|
| 5529 |
|
|
Dbody :=
|
| 5530 |
|
|
Make_Subprogram_Body (Loc,
|
| 5531 |
|
|
Specification =>
|
| 5532 |
|
|
Make_Procedure_Specification (Loc,
|
| 5533 |
|
|
Defining_Unit_Name => Dnam),
|
| 5534 |
|
|
|
| 5535 |
|
|
Declarations => New_List (
|
| 5536 |
|
|
Make_Object_Declaration (Loc,
|
| 5537 |
|
|
Defining_Identifier =>
|
| 5538 |
|
|
Make_Defining_Identifier (Loc,
|
| 5539 |
|
|
New_Internal_Name ('T')),
|
| 5540 |
|
|
Object_Definition =>
|
| 5541 |
|
|
New_Occurrence_Of (Etype (Formal), Loc),
|
| 5542 |
|
|
Expression => New_Copy_Tree (Dcopy))),
|
| 5543 |
|
|
|
| 5544 |
|
|
Handled_Statement_Sequence =>
|
| 5545 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
| 5546 |
|
|
Statements => New_List));
|
| 5547 |
|
|
|
| 5548 |
|
|
Set_Scope (Dnam, Scope (E));
|
| 5549 |
|
|
Set_Assignment_OK (First (Declarations (Dbody)));
|
| 5550 |
|
|
Set_Is_Eliminated (Dnam);
|
| 5551 |
|
|
Insert_After (After, Dbody);
|
| 5552 |
|
|
Analyze (Dbody);
|
| 5553 |
|
|
After := Dbody;
|
| 5554 |
|
|
end if;
|
| 5555 |
|
|
end if;
|
| 5556 |
|
|
|
| 5557 |
|
|
Next_Formal (Formal);
|
| 5558 |
|
|
end loop;
|
| 5559 |
|
|
end Process_Default_Expressions;
|
| 5560 |
|
|
|
| 5561 |
|
|
----------------------------------------
|
| 5562 |
|
|
-- Set_Component_Alignment_If_Not_Set --
|
| 5563 |
|
|
----------------------------------------
|
| 5564 |
|
|
|
| 5565 |
|
|
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
|
| 5566 |
|
|
begin
|
| 5567 |
|
|
-- Ignore if not base type, subtypes don't need anything
|
| 5568 |
|
|
|
| 5569 |
|
|
if Typ /= Base_Type (Typ) then
|
| 5570 |
|
|
return;
|
| 5571 |
|
|
end if;
|
| 5572 |
|
|
|
| 5573 |
|
|
-- Do not override existing representation
|
| 5574 |
|
|
|
| 5575 |
|
|
if Is_Packed (Typ) then
|
| 5576 |
|
|
return;
|
| 5577 |
|
|
|
| 5578 |
|
|
elsif Has_Specified_Layout (Typ) then
|
| 5579 |
|
|
return;
|
| 5580 |
|
|
|
| 5581 |
|
|
elsif Component_Alignment (Typ) /= Calign_Default then
|
| 5582 |
|
|
return;
|
| 5583 |
|
|
|
| 5584 |
|
|
else
|
| 5585 |
|
|
Set_Component_Alignment
|
| 5586 |
|
|
(Typ, Scope_Stack.Table
|
| 5587 |
|
|
(Scope_Stack.Last).Component_Alignment_Default);
|
| 5588 |
|
|
end if;
|
| 5589 |
|
|
end Set_Component_Alignment_If_Not_Set;
|
| 5590 |
|
|
|
| 5591 |
|
|
------------------
|
| 5592 |
|
|
-- Undelay_Type --
|
| 5593 |
|
|
------------------
|
| 5594 |
|
|
|
| 5595 |
|
|
procedure Undelay_Type (T : Entity_Id) is
|
| 5596 |
|
|
begin
|
| 5597 |
|
|
Set_Has_Delayed_Freeze (T, False);
|
| 5598 |
|
|
Set_Freeze_Node (T, Empty);
|
| 5599 |
|
|
|
| 5600 |
|
|
-- Since we don't want T to have a Freeze_Node, we don't want its
|
| 5601 |
|
|
-- Full_View or Corresponding_Record_Type to have one either.
|
| 5602 |
|
|
|
| 5603 |
|
|
-- ??? Fundamentally, this whole handling is a kludge. What we really
|
| 5604 |
|
|
-- want is to be sure that for an Itype that's part of record R and is a
|
| 5605 |
|
|
-- subtype of type T, that it's frozen after the later of the freeze
|
| 5606 |
|
|
-- points of R and T. We have no way of doing that directly, so what we
|
| 5607 |
|
|
-- do is force most such Itypes to be frozen as part of freezing R via
|
| 5608 |
|
|
-- this procedure and only delay the ones that need to be delayed
|
| 5609 |
|
|
-- (mostly the designated types of access types that are defined as part
|
| 5610 |
|
|
-- of the record).
|
| 5611 |
|
|
|
| 5612 |
|
|
if Is_Private_Type (T)
|
| 5613 |
|
|
and then Present (Full_View (T))
|
| 5614 |
|
|
and then Is_Itype (Full_View (T))
|
| 5615 |
|
|
and then Is_Record_Type (Scope (Full_View (T)))
|
| 5616 |
|
|
then
|
| 5617 |
|
|
Undelay_Type (Full_View (T));
|
| 5618 |
|
|
end if;
|
| 5619 |
|
|
|
| 5620 |
|
|
if Is_Concurrent_Type (T)
|
| 5621 |
|
|
and then Present (Corresponding_Record_Type (T))
|
| 5622 |
|
|
and then Is_Itype (Corresponding_Record_Type (T))
|
| 5623 |
|
|
and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
|
| 5624 |
|
|
then
|
| 5625 |
|
|
Undelay_Type (Corresponding_Record_Type (T));
|
| 5626 |
|
|
end if;
|
| 5627 |
|
|
end Undelay_Type;
|
| 5628 |
|
|
|
| 5629 |
|
|
------------------
|
| 5630 |
|
|
-- Warn_Overlay --
|
| 5631 |
|
|
------------------
|
| 5632 |
|
|
|
| 5633 |
|
|
procedure Warn_Overlay
|
| 5634 |
|
|
(Expr : Node_Id;
|
| 5635 |
|
|
Typ : Entity_Id;
|
| 5636 |
|
|
Nam : Entity_Id)
|
| 5637 |
|
|
is
|
| 5638 |
|
|
Ent : constant Entity_Id := Entity (Nam);
|
| 5639 |
|
|
-- The object to which the address clause applies
|
| 5640 |
|
|
|
| 5641 |
|
|
Init : Node_Id;
|
| 5642 |
|
|
Old : Entity_Id := Empty;
|
| 5643 |
|
|
Decl : Node_Id;
|
| 5644 |
|
|
|
| 5645 |
|
|
begin
|
| 5646 |
|
|
-- No warning if address clause overlay warnings are off
|
| 5647 |
|
|
|
| 5648 |
|
|
if not Address_Clause_Overlay_Warnings then
|
| 5649 |
|
|
return;
|
| 5650 |
|
|
end if;
|
| 5651 |
|
|
|
| 5652 |
|
|
-- No warning if there is an explicit initialization
|
| 5653 |
|
|
|
| 5654 |
|
|
Init := Original_Node (Expression (Declaration_Node (Ent)));
|
| 5655 |
|
|
|
| 5656 |
|
|
if Present (Init) and then Comes_From_Source (Init) then
|
| 5657 |
|
|
return;
|
| 5658 |
|
|
end if;
|
| 5659 |
|
|
|
| 5660 |
|
|
-- We only give the warning for non-imported entities of a type for
|
| 5661 |
|
|
-- which a non-null base init proc is defined, or for objects of access
|
| 5662 |
|
|
-- types with implicit null initialization, or when Initialize_Scalars
|
| 5663 |
|
|
-- applies and the type is scalar or a string type (the latter being
|
| 5664 |
|
|
-- tested for because predefined String types are initialized by inline
|
| 5665 |
|
|
-- code rather than by an init_proc).
|
| 5666 |
|
|
|
| 5667 |
|
|
if Present (Expr)
|
| 5668 |
|
|
and then not Is_Imported (Ent)
|
| 5669 |
|
|
and then (Has_Non_Null_Base_Init_Proc (Typ)
|
| 5670 |
|
|
or else Is_Access_Type (Typ)
|
| 5671 |
|
|
or else (Init_Or_Norm_Scalars
|
| 5672 |
|
|
and then (Is_Scalar_Type (Typ)
|
| 5673 |
|
|
or else Is_String_Type (Typ))))
|
| 5674 |
|
|
then
|
| 5675 |
|
|
if Nkind (Expr) = N_Attribute_Reference
|
| 5676 |
|
|
and then Is_Entity_Name (Prefix (Expr))
|
| 5677 |
|
|
then
|
| 5678 |
|
|
Old := Entity (Prefix (Expr));
|
| 5679 |
|
|
|
| 5680 |
|
|
elsif Is_Entity_Name (Expr)
|
| 5681 |
|
|
and then Ekind (Entity (Expr)) = E_Constant
|
| 5682 |
|
|
then
|
| 5683 |
|
|
Decl := Declaration_Node (Entity (Expr));
|
| 5684 |
|
|
|
| 5685 |
|
|
if Nkind (Decl) = N_Object_Declaration
|
| 5686 |
|
|
and then Present (Expression (Decl))
|
| 5687 |
|
|
and then Nkind (Expression (Decl)) = N_Attribute_Reference
|
| 5688 |
|
|
and then Is_Entity_Name (Prefix (Expression (Decl)))
|
| 5689 |
|
|
then
|
| 5690 |
|
|
Old := Entity (Prefix (Expression (Decl)));
|
| 5691 |
|
|
|
| 5692 |
|
|
elsif Nkind (Expr) = N_Function_Call then
|
| 5693 |
|
|
return;
|
| 5694 |
|
|
end if;
|
| 5695 |
|
|
|
| 5696 |
|
|
-- A function call (most likely to To_Address) is probably not an
|
| 5697 |
|
|
-- overlay, so skip warning. Ditto if the function call was inlined
|
| 5698 |
|
|
-- and transformed into an entity.
|
| 5699 |
|
|
|
| 5700 |
|
|
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
|
| 5701 |
|
|
return;
|
| 5702 |
|
|
end if;
|
| 5703 |
|
|
|
| 5704 |
|
|
Decl := Next (Parent (Expr));
|
| 5705 |
|
|
|
| 5706 |
|
|
-- If a pragma Import follows, we assume that it is for the current
|
| 5707 |
|
|
-- target of the address clause, and skip the warning.
|
| 5708 |
|
|
|
| 5709 |
|
|
if Present (Decl)
|
| 5710 |
|
|
and then Nkind (Decl) = N_Pragma
|
| 5711 |
|
|
and then Pragma_Name (Decl) = Name_Import
|
| 5712 |
|
|
then
|
| 5713 |
|
|
return;
|
| 5714 |
|
|
end if;
|
| 5715 |
|
|
|
| 5716 |
|
|
if Present (Old) then
|
| 5717 |
|
|
Error_Msg_Node_2 := Old;
|
| 5718 |
|
|
Error_Msg_N
|
| 5719 |
|
|
("default initialization of & may modify &?",
|
| 5720 |
|
|
Nam);
|
| 5721 |
|
|
else
|
| 5722 |
|
|
Error_Msg_N
|
| 5723 |
|
|
("default initialization of & may modify overlaid storage?",
|
| 5724 |
|
|
Nam);
|
| 5725 |
|
|
end if;
|
| 5726 |
|
|
|
| 5727 |
|
|
-- Add friendly warning if initialization comes from a packed array
|
| 5728 |
|
|
-- component.
|
| 5729 |
|
|
|
| 5730 |
|
|
if Is_Record_Type (Typ) then
|
| 5731 |
|
|
declare
|
| 5732 |
|
|
Comp : Entity_Id;
|
| 5733 |
|
|
|
| 5734 |
|
|
begin
|
| 5735 |
|
|
Comp := First_Component (Typ);
|
| 5736 |
|
|
|
| 5737 |
|
|
while Present (Comp) loop
|
| 5738 |
|
|
if Nkind (Parent (Comp)) = N_Component_Declaration
|
| 5739 |
|
|
and then Present (Expression (Parent (Comp)))
|
| 5740 |
|
|
then
|
| 5741 |
|
|
exit;
|
| 5742 |
|
|
elsif Is_Array_Type (Etype (Comp))
|
| 5743 |
|
|
and then Present (Packed_Array_Type (Etype (Comp)))
|
| 5744 |
|
|
then
|
| 5745 |
|
|
Error_Msg_NE
|
| 5746 |
|
|
("\packed array component& " &
|
| 5747 |
|
|
"will be initialized to zero?",
|
| 5748 |
|
|
Nam, Comp);
|
| 5749 |
|
|
exit;
|
| 5750 |
|
|
else
|
| 5751 |
|
|
Next_Component (Comp);
|
| 5752 |
|
|
end if;
|
| 5753 |
|
|
end loop;
|
| 5754 |
|
|
end;
|
| 5755 |
|
|
end if;
|
| 5756 |
|
|
|
| 5757 |
|
|
Error_Msg_N
|
| 5758 |
|
|
("\use pragma Import for & to " &
|
| 5759 |
|
|
"suppress initialization (RM B.1(24))?",
|
| 5760 |
|
|
Nam);
|
| 5761 |
|
|
end if;
|
| 5762 |
|
|
end Warn_Overlay;
|
| 5763 |
|
|
|
| 5764 |
|
|
end Freeze;
|