1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- F R E E Z E --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- You should have received a copy of the GNU General Public License along --
|
19 |
|
|
-- with this program; see file COPYING3. If not see --
|
20 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
21 |
|
|
-- --
|
22 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
23 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
24 |
|
|
-- --
|
25 |
|
|
------------------------------------------------------------------------------
|
26 |
|
|
|
27 |
|
|
with Atree; use Atree;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
33 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
34 |
|
|
with Exp_Disp; use Exp_Disp;
|
35 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
36 |
|
|
with Exp_Util; use Exp_Util;
|
37 |
|
|
with Exp_Tss; use Exp_Tss;
|
38 |
|
|
with Layout; use Layout;
|
39 |
|
|
with Namet; use Namet;
|
40 |
|
|
with Nlists; use Nlists;
|
41 |
|
|
with Nmake; use Nmake;
|
42 |
|
|
with Opt; use Opt;
|
43 |
|
|
with Restrict; use Restrict;
|
44 |
|
|
with Rident; use Rident;
|
45 |
|
|
with Sem; use Sem;
|
46 |
|
|
with Sem_Aux; use Sem_Aux;
|
47 |
|
|
with Sem_Cat; use Sem_Cat;
|
48 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
49 |
|
|
with Sem_Ch7; use Sem_Ch7;
|
50 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
51 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
52 |
|
|
with Sem_Eval; use Sem_Eval;
|
53 |
|
|
with Sem_Mech; use Sem_Mech;
|
54 |
|
|
with Sem_Prag; use Sem_Prag;
|
55 |
|
|
with Sem_Res; use Sem_Res;
|
56 |
|
|
with Sem_Util; use Sem_Util;
|
57 |
|
|
with Sinfo; use Sinfo;
|
58 |
|
|
with Snames; use Snames;
|
59 |
|
|
with Stand; use Stand;
|
60 |
|
|
with Targparm; use Targparm;
|
61 |
|
|
with Tbuild; use Tbuild;
|
62 |
|
|
with Ttypes; use Ttypes;
|
63 |
|
|
with Uintp; use Uintp;
|
64 |
|
|
with Urealp; use Urealp;
|
65 |
|
|
|
66 |
|
|
package body Freeze is
|
67 |
|
|
|
68 |
|
|
-----------------------
|
69 |
|
|
-- Local Subprograms --
|
70 |
|
|
-----------------------
|
71 |
|
|
|
72 |
|
|
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
|
73 |
|
|
-- Typ is a type that is being frozen. If no size clause is given,
|
74 |
|
|
-- but a default Esize has been computed, then this default Esize is
|
75 |
|
|
-- adjusted up if necessary to be consistent with a given alignment,
|
76 |
|
|
-- but never to a value greater than Long_Long_Integer'Size. This
|
77 |
|
|
-- is used for all discrete types and for fixed-point types.
|
78 |
|
|
|
79 |
|
|
procedure Build_And_Analyze_Renamed_Body
|
80 |
|
|
(Decl : Node_Id;
|
81 |
|
|
New_S : Entity_Id;
|
82 |
|
|
After : in out Node_Id);
|
83 |
|
|
-- Build body for a renaming declaration, insert in tree and analyze
|
84 |
|
|
|
85 |
|
|
procedure Check_Address_Clause (E : Entity_Id);
|
86 |
|
|
-- Apply legality checks to address clauses for object declarations,
|
87 |
|
|
-- at the point the object is frozen.
|
88 |
|
|
|
89 |
|
|
procedure Check_Strict_Alignment (E : Entity_Id);
|
90 |
|
|
-- E is a base type. If E is tagged or has a component that is aliased
|
91 |
|
|
-- or tagged or contains something this is aliased or tagged, set
|
92 |
|
|
-- Strict_Alignment.
|
93 |
|
|
|
94 |
|
|
procedure Check_Unsigned_Type (E : Entity_Id);
|
95 |
|
|
pragma Inline (Check_Unsigned_Type);
|
96 |
|
|
-- If E is a fixed-point or discrete type, then all the necessary work
|
97 |
|
|
-- to freeze it is completed except for possible setting of the flag
|
98 |
|
|
-- Is_Unsigned_Type, which is done by this procedure. The call has no
|
99 |
|
|
-- effect if the entity E is not a discrete or fixed-point type.
|
100 |
|
|
|
101 |
|
|
procedure Freeze_And_Append
|
102 |
|
|
(Ent : Entity_Id;
|
103 |
|
|
Loc : Source_Ptr;
|
104 |
|
|
Result : in out List_Id);
|
105 |
|
|
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
|
106 |
|
|
-- nodes to Result, modifying Result from No_List if necessary.
|
107 |
|
|
|
108 |
|
|
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
|
109 |
|
|
-- Freeze enumeration type. The Esize field is set as processing
|
110 |
|
|
-- proceeds (i.e. set by default when the type is declared and then
|
111 |
|
|
-- adjusted by rep clauses. What this procedure does is to make sure
|
112 |
|
|
-- that if a foreign convention is specified, and no specific size
|
113 |
|
|
-- is given, then the size must be at least Integer'Size.
|
114 |
|
|
|
115 |
|
|
procedure Freeze_Static_Object (E : Entity_Id);
|
116 |
|
|
-- If an object is frozen which has Is_Statically_Allocated set, then
|
117 |
|
|
-- all referenced types must also be marked with this flag. This routine
|
118 |
|
|
-- is in charge of meeting this requirement for the object entity E.
|
119 |
|
|
|
120 |
|
|
procedure Freeze_Subprogram (E : Entity_Id);
|
121 |
|
|
-- Perform freezing actions for a subprogram (create extra formals,
|
122 |
|
|
-- and set proper default mechanism values). Note that this routine
|
123 |
|
|
-- is not called for internal subprograms, for which neither of these
|
124 |
|
|
-- actions is needed (or desirable, we do not want for example to have
|
125 |
|
|
-- these extra formals present in initialization procedures, where they
|
126 |
|
|
-- would serve no purpose). In this call E is either a subprogram or
|
127 |
|
|
-- a subprogram type (i.e. an access to a subprogram).
|
128 |
|
|
|
129 |
|
|
function Is_Fully_Defined (T : Entity_Id) return Boolean;
|
130 |
|
|
-- True if T is not private and has no private components, or has a full
|
131 |
|
|
-- view. Used to determine whether the designated type of an access type
|
132 |
|
|
-- should be frozen when the access type is frozen. This is done when an
|
133 |
|
|
-- allocator is frozen, or an expression that may involve attributes of
|
134 |
|
|
-- the designated type. Otherwise freezing the access type does not freeze
|
135 |
|
|
-- the designated type.
|
136 |
|
|
|
137 |
|
|
procedure Process_Default_Expressions
|
138 |
|
|
(E : Entity_Id;
|
139 |
|
|
After : in out Node_Id);
|
140 |
|
|
-- This procedure is called for each subprogram to complete processing
|
141 |
|
|
-- of default expressions at the point where all types are known to be
|
142 |
|
|
-- frozen. The expressions must be analyzed in full, to make sure that
|
143 |
|
|
-- all error processing is done (they have only been pre-analyzed). If
|
144 |
|
|
-- the expression is not an entity or literal, its analysis may generate
|
145 |
|
|
-- code which must not be executed. In that case we build a function
|
146 |
|
|
-- body to hold that code. This wrapper function serves no other purpose
|
147 |
|
|
-- (it used to be called to evaluate the default, but now the default is
|
148 |
|
|
-- inlined at each point of call).
|
149 |
|
|
|
150 |
|
|
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
|
151 |
|
|
-- Typ is a record or array type that is being frozen. This routine
|
152 |
|
|
-- sets the default component alignment from the scope stack values
|
153 |
|
|
-- if the alignment is otherwise not specified.
|
154 |
|
|
|
155 |
|
|
procedure Check_Debug_Info_Needed (T : Entity_Id);
|
156 |
|
|
-- As each entity is frozen, this routine is called to deal with the
|
157 |
|
|
-- setting of Debug_Info_Needed for the entity. This flag is set if
|
158 |
|
|
-- the entity comes from source, or if we are in Debug_Generated_Code
|
159 |
|
|
-- mode or if the -gnatdV debug flag is set. However, it never sets
|
160 |
|
|
-- the flag if Debug_Info_Off is set. This procedure also ensures that
|
161 |
|
|
-- subsidiary entities have the flag set as required.
|
162 |
|
|
|
163 |
|
|
procedure Undelay_Type (T : Entity_Id);
|
164 |
|
|
-- T is a type of a component that we know to be an Itype.
|
165 |
|
|
-- We don't want this to have a Freeze_Node, so ensure it doesn't.
|
166 |
|
|
-- Do the same for any Full_View or Corresponding_Record_Type.
|
167 |
|
|
|
168 |
|
|
procedure Warn_Overlay
|
169 |
|
|
(Expr : Node_Id;
|
170 |
|
|
Typ : Entity_Id;
|
171 |
|
|
Nam : Node_Id);
|
172 |
|
|
-- Expr is the expression for an address clause for entity Nam whose type
|
173 |
|
|
-- is Typ. If Typ has a default initialization, and there is no explicit
|
174 |
|
|
-- initialization in the source declaration, check whether the address
|
175 |
|
|
-- clause might cause overlaying of an entity, and emit a warning on the
|
176 |
|
|
-- side effect that the initialization will cause.
|
177 |
|
|
|
178 |
|
|
-------------------------------
|
179 |
|
|
-- Adjust_Esize_For_Alignment --
|
180 |
|
|
-------------------------------
|
181 |
|
|
|
182 |
|
|
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
|
183 |
|
|
Align : Uint;
|
184 |
|
|
|
185 |
|
|
begin
|
186 |
|
|
if Known_Esize (Typ) and then Known_Alignment (Typ) then
|
187 |
|
|
Align := Alignment_In_Bits (Typ);
|
188 |
|
|
|
189 |
|
|
if Align > Esize (Typ)
|
190 |
|
|
and then Align <= Standard_Long_Long_Integer_Size
|
191 |
|
|
then
|
192 |
|
|
Set_Esize (Typ, Align);
|
193 |
|
|
end if;
|
194 |
|
|
end if;
|
195 |
|
|
end Adjust_Esize_For_Alignment;
|
196 |
|
|
|
197 |
|
|
------------------------------------
|
198 |
|
|
-- Build_And_Analyze_Renamed_Body --
|
199 |
|
|
------------------------------------
|
200 |
|
|
|
201 |
|
|
procedure Build_And_Analyze_Renamed_Body
|
202 |
|
|
(Decl : Node_Id;
|
203 |
|
|
New_S : Entity_Id;
|
204 |
|
|
After : in out Node_Id)
|
205 |
|
|
is
|
206 |
|
|
Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
|
207 |
|
|
begin
|
208 |
|
|
Insert_After (After, Body_Node);
|
209 |
|
|
Mark_Rewrite_Insertion (Body_Node);
|
210 |
|
|
Analyze (Body_Node);
|
211 |
|
|
After := Body_Node;
|
212 |
|
|
end Build_And_Analyze_Renamed_Body;
|
213 |
|
|
|
214 |
|
|
------------------------
|
215 |
|
|
-- Build_Renamed_Body --
|
216 |
|
|
------------------------
|
217 |
|
|
|
218 |
|
|
function Build_Renamed_Body
|
219 |
|
|
(Decl : Node_Id;
|
220 |
|
|
New_S : Entity_Id) return Node_Id
|
221 |
|
|
is
|
222 |
|
|
Loc : constant Source_Ptr := Sloc (New_S);
|
223 |
|
|
-- We use for the source location of the renamed body, the location
|
224 |
|
|
-- of the spec entity. It might seem more natural to use the location
|
225 |
|
|
-- of the renaming declaration itself, but that would be wrong, since
|
226 |
|
|
-- then the body we create would look as though it was created far
|
227 |
|
|
-- too late, and this could cause problems with elaboration order
|
228 |
|
|
-- analysis, particularly in connection with instantiations.
|
229 |
|
|
|
230 |
|
|
N : constant Node_Id := Unit_Declaration_Node (New_S);
|
231 |
|
|
Nam : constant Node_Id := Name (N);
|
232 |
|
|
Old_S : Entity_Id;
|
233 |
|
|
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
|
234 |
|
|
Actuals : List_Id := No_List;
|
235 |
|
|
Call_Node : Node_Id;
|
236 |
|
|
Call_Name : Node_Id;
|
237 |
|
|
Body_Node : Node_Id;
|
238 |
|
|
Formal : Entity_Id;
|
239 |
|
|
O_Formal : Entity_Id;
|
240 |
|
|
Param_Spec : Node_Id;
|
241 |
|
|
|
242 |
|
|
Pref : Node_Id := Empty;
|
243 |
|
|
-- If the renamed entity is a primitive operation given in prefix form,
|
244 |
|
|
-- the prefix is the target object and it has to be added as the first
|
245 |
|
|
-- actual in the generated call.
|
246 |
|
|
|
247 |
|
|
begin
|
248 |
|
|
-- Determine the entity being renamed, which is the target of the call
|
249 |
|
|
-- statement. If the name is an explicit dereference, this is a renaming
|
250 |
|
|
-- of a subprogram type rather than a subprogram. The name itself is
|
251 |
|
|
-- fully analyzed.
|
252 |
|
|
|
253 |
|
|
if Nkind (Nam) = N_Selected_Component then
|
254 |
|
|
Old_S := Entity (Selector_Name (Nam));
|
255 |
|
|
|
256 |
|
|
elsif Nkind (Nam) = N_Explicit_Dereference then
|
257 |
|
|
Old_S := Etype (Nam);
|
258 |
|
|
|
259 |
|
|
elsif Nkind (Nam) = N_Indexed_Component then
|
260 |
|
|
if Is_Entity_Name (Prefix (Nam)) then
|
261 |
|
|
Old_S := Entity (Prefix (Nam));
|
262 |
|
|
else
|
263 |
|
|
Old_S := Entity (Selector_Name (Prefix (Nam)));
|
264 |
|
|
end if;
|
265 |
|
|
|
266 |
|
|
elsif Nkind (Nam) = N_Character_Literal then
|
267 |
|
|
Old_S := Etype (New_S);
|
268 |
|
|
|
269 |
|
|
else
|
270 |
|
|
Old_S := Entity (Nam);
|
271 |
|
|
end if;
|
272 |
|
|
|
273 |
|
|
if Is_Entity_Name (Nam) then
|
274 |
|
|
|
275 |
|
|
-- If the renamed entity is a predefined operator, retain full name
|
276 |
|
|
-- to ensure its visibility.
|
277 |
|
|
|
278 |
|
|
if Ekind (Old_S) = E_Operator
|
279 |
|
|
and then Nkind (Nam) = N_Expanded_Name
|
280 |
|
|
then
|
281 |
|
|
Call_Name := New_Copy (Name (N));
|
282 |
|
|
else
|
283 |
|
|
Call_Name := New_Reference_To (Old_S, Loc);
|
284 |
|
|
end if;
|
285 |
|
|
|
286 |
|
|
else
|
287 |
|
|
if Nkind (Nam) = N_Selected_Component
|
288 |
|
|
and then Present (First_Formal (Old_S))
|
289 |
|
|
and then
|
290 |
|
|
(Is_Controlling_Formal (First_Formal (Old_S))
|
291 |
|
|
or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
|
292 |
|
|
then
|
293 |
|
|
|
294 |
|
|
-- Retrieve the target object, to be added as a first actual
|
295 |
|
|
-- in the call.
|
296 |
|
|
|
297 |
|
|
Call_Name := New_Occurrence_Of (Old_S, Loc);
|
298 |
|
|
Pref := Prefix (Nam);
|
299 |
|
|
|
300 |
|
|
else
|
301 |
|
|
Call_Name := New_Copy (Name (N));
|
302 |
|
|
end if;
|
303 |
|
|
|
304 |
|
|
-- The original name may have been overloaded, but
|
305 |
|
|
-- is fully resolved now.
|
306 |
|
|
|
307 |
|
|
Set_Is_Overloaded (Call_Name, False);
|
308 |
|
|
end if;
|
309 |
|
|
|
310 |
|
|
-- For simple renamings, subsequent calls can be expanded directly as
|
311 |
|
|
-- called to the renamed entity. The body must be generated in any case
|
312 |
|
|
-- for calls they may appear elsewhere.
|
313 |
|
|
|
314 |
|
|
if (Ekind (Old_S) = E_Function
|
315 |
|
|
or else Ekind (Old_S) = E_Procedure)
|
316 |
|
|
and then Nkind (Decl) = N_Subprogram_Declaration
|
317 |
|
|
then
|
318 |
|
|
Set_Body_To_Inline (Decl, Old_S);
|
319 |
|
|
end if;
|
320 |
|
|
|
321 |
|
|
-- The body generated for this renaming is an internal artifact, and
|
322 |
|
|
-- does not constitute a freeze point for the called entity.
|
323 |
|
|
|
324 |
|
|
Set_Must_Not_Freeze (Call_Name);
|
325 |
|
|
|
326 |
|
|
Formal := First_Formal (Defining_Entity (Decl));
|
327 |
|
|
|
328 |
|
|
if Present (Pref) then
|
329 |
|
|
declare
|
330 |
|
|
Pref_Type : constant Entity_Id := Etype (Pref);
|
331 |
|
|
Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
|
332 |
|
|
|
333 |
|
|
begin
|
334 |
|
|
|
335 |
|
|
-- The controlling formal may be an access parameter, or the
|
336 |
|
|
-- actual may be an access value, so adjust accordingly.
|
337 |
|
|
|
338 |
|
|
if Is_Access_Type (Pref_Type)
|
339 |
|
|
and then not Is_Access_Type (Form_Type)
|
340 |
|
|
then
|
341 |
|
|
Actuals := New_List
|
342 |
|
|
(Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
|
343 |
|
|
|
344 |
|
|
elsif Is_Access_Type (Form_Type)
|
345 |
|
|
and then not Is_Access_Type (Pref)
|
346 |
|
|
then
|
347 |
|
|
Actuals := New_List
|
348 |
|
|
(Make_Attribute_Reference (Loc,
|
349 |
|
|
Attribute_Name => Name_Access,
|
350 |
|
|
Prefix => Relocate_Node (Pref)));
|
351 |
|
|
else
|
352 |
|
|
Actuals := New_List (Pref);
|
353 |
|
|
end if;
|
354 |
|
|
end;
|
355 |
|
|
|
356 |
|
|
elsif Present (Formal) then
|
357 |
|
|
Actuals := New_List;
|
358 |
|
|
|
359 |
|
|
else
|
360 |
|
|
Actuals := No_List;
|
361 |
|
|
end if;
|
362 |
|
|
|
363 |
|
|
if Present (Formal) then
|
364 |
|
|
while Present (Formal) loop
|
365 |
|
|
Append (New_Reference_To (Formal, Loc), Actuals);
|
366 |
|
|
Next_Formal (Formal);
|
367 |
|
|
end loop;
|
368 |
|
|
end if;
|
369 |
|
|
|
370 |
|
|
-- If the renamed entity is an entry, inherit its profile. For other
|
371 |
|
|
-- renamings as bodies, both profiles must be subtype conformant, so it
|
372 |
|
|
-- is not necessary to replace the profile given in the declaration.
|
373 |
|
|
-- However, default values that are aggregates are rewritten when
|
374 |
|
|
-- partially analyzed, so we recover the original aggregate to insure
|
375 |
|
|
-- that subsequent conformity checking works. Similarly, if the default
|
376 |
|
|
-- expression was constant-folded, recover the original expression.
|
377 |
|
|
|
378 |
|
|
Formal := First_Formal (Defining_Entity (Decl));
|
379 |
|
|
|
380 |
|
|
if Present (Formal) then
|
381 |
|
|
O_Formal := First_Formal (Old_S);
|
382 |
|
|
Param_Spec := First (Parameter_Specifications (Spec));
|
383 |
|
|
|
384 |
|
|
while Present (Formal) loop
|
385 |
|
|
if Is_Entry (Old_S) then
|
386 |
|
|
|
387 |
|
|
if Nkind (Parameter_Type (Param_Spec)) /=
|
388 |
|
|
N_Access_Definition
|
389 |
|
|
then
|
390 |
|
|
Set_Etype (Formal, Etype (O_Formal));
|
391 |
|
|
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
|
392 |
|
|
end if;
|
393 |
|
|
|
394 |
|
|
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
|
395 |
|
|
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
|
396 |
|
|
Nkind (Default_Value (O_Formal))
|
397 |
|
|
then
|
398 |
|
|
Set_Expression (Param_Spec,
|
399 |
|
|
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
|
400 |
|
|
end if;
|
401 |
|
|
|
402 |
|
|
Next_Formal (Formal);
|
403 |
|
|
Next_Formal (O_Formal);
|
404 |
|
|
Next (Param_Spec);
|
405 |
|
|
end loop;
|
406 |
|
|
end if;
|
407 |
|
|
|
408 |
|
|
-- If the renamed entity is a function, the generated body contains a
|
409 |
|
|
-- return statement. Otherwise, build a procedure call. If the entity is
|
410 |
|
|
-- an entry, subsequent analysis of the call will transform it into the
|
411 |
|
|
-- proper entry or protected operation call. If the renamed entity is
|
412 |
|
|
-- a character literal, return it directly.
|
413 |
|
|
|
414 |
|
|
if Ekind (Old_S) = E_Function
|
415 |
|
|
or else Ekind (Old_S) = E_Operator
|
416 |
|
|
or else (Ekind (Old_S) = E_Subprogram_Type
|
417 |
|
|
and then Etype (Old_S) /= Standard_Void_Type)
|
418 |
|
|
then
|
419 |
|
|
Call_Node :=
|
420 |
|
|
Make_Simple_Return_Statement (Loc,
|
421 |
|
|
Expression =>
|
422 |
|
|
Make_Function_Call (Loc,
|
423 |
|
|
Name => Call_Name,
|
424 |
|
|
Parameter_Associations => Actuals));
|
425 |
|
|
|
426 |
|
|
elsif Ekind (Old_S) = E_Enumeration_Literal then
|
427 |
|
|
Call_Node :=
|
428 |
|
|
Make_Simple_Return_Statement (Loc,
|
429 |
|
|
Expression => New_Occurrence_Of (Old_S, Loc));
|
430 |
|
|
|
431 |
|
|
elsif Nkind (Nam) = N_Character_Literal then
|
432 |
|
|
Call_Node :=
|
433 |
|
|
Make_Simple_Return_Statement (Loc,
|
434 |
|
|
Expression => Call_Name);
|
435 |
|
|
|
436 |
|
|
else
|
437 |
|
|
Call_Node :=
|
438 |
|
|
Make_Procedure_Call_Statement (Loc,
|
439 |
|
|
Name => Call_Name,
|
440 |
|
|
Parameter_Associations => Actuals);
|
441 |
|
|
end if;
|
442 |
|
|
|
443 |
|
|
-- Create entities for subprogram body and formals
|
444 |
|
|
|
445 |
|
|
Set_Defining_Unit_Name (Spec,
|
446 |
|
|
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
|
447 |
|
|
|
448 |
|
|
Param_Spec := First (Parameter_Specifications (Spec));
|
449 |
|
|
|
450 |
|
|
while Present (Param_Spec) loop
|
451 |
|
|
Set_Defining_Identifier (Param_Spec,
|
452 |
|
|
Make_Defining_Identifier (Loc,
|
453 |
|
|
Chars => Chars (Defining_Identifier (Param_Spec))));
|
454 |
|
|
Next (Param_Spec);
|
455 |
|
|
end loop;
|
456 |
|
|
|
457 |
|
|
Body_Node :=
|
458 |
|
|
Make_Subprogram_Body (Loc,
|
459 |
|
|
Specification => Spec,
|
460 |
|
|
Declarations => New_List,
|
461 |
|
|
Handled_Statement_Sequence =>
|
462 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
463 |
|
|
Statements => New_List (Call_Node)));
|
464 |
|
|
|
465 |
|
|
if Nkind (Decl) /= N_Subprogram_Declaration then
|
466 |
|
|
Rewrite (N,
|
467 |
|
|
Make_Subprogram_Declaration (Loc,
|
468 |
|
|
Specification => Specification (N)));
|
469 |
|
|
end if;
|
470 |
|
|
|
471 |
|
|
-- Link the body to the entity whose declaration it completes. If
|
472 |
|
|
-- the body is analyzed when the renamed entity is frozen, it may
|
473 |
|
|
-- be necessary to restore the proper scope (see package Exp_Ch13).
|
474 |
|
|
|
475 |
|
|
if Nkind (N) = N_Subprogram_Renaming_Declaration
|
476 |
|
|
and then Present (Corresponding_Spec (N))
|
477 |
|
|
then
|
478 |
|
|
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
|
479 |
|
|
else
|
480 |
|
|
Set_Corresponding_Spec (Body_Node, New_S);
|
481 |
|
|
end if;
|
482 |
|
|
|
483 |
|
|
return Body_Node;
|
484 |
|
|
end Build_Renamed_Body;
|
485 |
|
|
|
486 |
|
|
--------------------------
|
487 |
|
|
-- Check_Address_Clause --
|
488 |
|
|
--------------------------
|
489 |
|
|
|
490 |
|
|
procedure Check_Address_Clause (E : Entity_Id) is
|
491 |
|
|
Addr : constant Node_Id := Address_Clause (E);
|
492 |
|
|
Expr : Node_Id;
|
493 |
|
|
Decl : constant Node_Id := Declaration_Node (E);
|
494 |
|
|
Typ : constant Entity_Id := Etype (E);
|
495 |
|
|
|
496 |
|
|
begin
|
497 |
|
|
if Present (Addr) then
|
498 |
|
|
Expr := Expression (Addr);
|
499 |
|
|
|
500 |
|
|
-- If we have no initialization of any kind, then we don't need to
|
501 |
|
|
-- place any restrictions on the address clause, because the object
|
502 |
|
|
-- will be elaborated after the address clause is evaluated. This
|
503 |
|
|
-- happens if the declaration has no initial expression, or the type
|
504 |
|
|
-- has no implicit initialization, or the object is imported.
|
505 |
|
|
|
506 |
|
|
-- The same holds for all initialized scalar types and all access
|
507 |
|
|
-- types. Packed bit arrays of size up to 64 are represented using a
|
508 |
|
|
-- modular type with an initialization (to zero) and can be processed
|
509 |
|
|
-- like other initialized scalar types.
|
510 |
|
|
|
511 |
|
|
-- If the type is controlled, code to attach the object to a
|
512 |
|
|
-- finalization chain is generated at the point of declaration,
|
513 |
|
|
-- and therefore the elaboration of the object cannot be delayed:
|
514 |
|
|
-- the address expression must be a constant.
|
515 |
|
|
|
516 |
|
|
if (No (Expression (Decl))
|
517 |
|
|
and then not Needs_Finalization (Typ)
|
518 |
|
|
and then
|
519 |
|
|
(not Has_Non_Null_Base_Init_Proc (Typ)
|
520 |
|
|
or else Is_Imported (E)))
|
521 |
|
|
|
522 |
|
|
or else
|
523 |
|
|
(Present (Expression (Decl))
|
524 |
|
|
and then Is_Scalar_Type (Typ))
|
525 |
|
|
|
526 |
|
|
or else
|
527 |
|
|
Is_Access_Type (Typ)
|
528 |
|
|
|
529 |
|
|
or else
|
530 |
|
|
(Is_Bit_Packed_Array (Typ)
|
531 |
|
|
and then
|
532 |
|
|
Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
|
533 |
|
|
then
|
534 |
|
|
null;
|
535 |
|
|
|
536 |
|
|
-- Otherwise, we require the address clause to be constant because
|
537 |
|
|
-- the call to the initialization procedure (or the attach code) has
|
538 |
|
|
-- to happen at the point of the declaration.
|
539 |
|
|
-- Actually the IP call has been moved to the freeze actions
|
540 |
|
|
-- anyway, so maybe we can relax this restriction???
|
541 |
|
|
|
542 |
|
|
else
|
543 |
|
|
Check_Constant_Address_Clause (Expr, E);
|
544 |
|
|
|
545 |
|
|
-- Has_Delayed_Freeze was set on E when the address clause was
|
546 |
|
|
-- analyzed. Reset the flag now unless freeze actions were
|
547 |
|
|
-- attached to it in the mean time.
|
548 |
|
|
|
549 |
|
|
if No (Freeze_Node (E)) then
|
550 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
551 |
|
|
end if;
|
552 |
|
|
end if;
|
553 |
|
|
|
554 |
|
|
if not Error_Posted (Expr)
|
555 |
|
|
and then not Needs_Finalization (Typ)
|
556 |
|
|
then
|
557 |
|
|
Warn_Overlay (Expr, Typ, Name (Addr));
|
558 |
|
|
end if;
|
559 |
|
|
end if;
|
560 |
|
|
end Check_Address_Clause;
|
561 |
|
|
|
562 |
|
|
-----------------------------
|
563 |
|
|
-- Check_Compile_Time_Size --
|
564 |
|
|
-----------------------------
|
565 |
|
|
|
566 |
|
|
procedure Check_Compile_Time_Size (T : Entity_Id) is
|
567 |
|
|
|
568 |
|
|
procedure Set_Small_Size (T : Entity_Id; S : Uint);
|
569 |
|
|
-- Sets the compile time known size (32 bits or less) in the Esize
|
570 |
|
|
-- field, of T checking for a size clause that was given which attempts
|
571 |
|
|
-- to give a smaller size, and also checking for an alignment clause.
|
572 |
|
|
|
573 |
|
|
function Size_Known (T : Entity_Id) return Boolean;
|
574 |
|
|
-- Recursive function that does all the work
|
575 |
|
|
|
576 |
|
|
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
|
577 |
|
|
-- If T is a constrained subtype, its size is not known if any of its
|
578 |
|
|
-- discriminant constraints is not static and it is not a null record.
|
579 |
|
|
-- The test is conservative and doesn't check that the components are
|
580 |
|
|
-- in fact constrained by non-static discriminant values. Could be made
|
581 |
|
|
-- more precise ???
|
582 |
|
|
|
583 |
|
|
--------------------
|
584 |
|
|
-- Set_Small_Size --
|
585 |
|
|
--------------------
|
586 |
|
|
|
587 |
|
|
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
|
588 |
|
|
begin
|
589 |
|
|
if S > 32 then
|
590 |
|
|
return;
|
591 |
|
|
|
592 |
|
|
-- Don't bother if alignment clause with a value other than 1 is
|
593 |
|
|
-- present, because size may be padded up to meet back end alignment
|
594 |
|
|
-- requirements, and only the back end knows the rules!
|
595 |
|
|
|
596 |
|
|
elsif Known_Alignment (T) and then Alignment (T) /= 1 then
|
597 |
|
|
return;
|
598 |
|
|
|
599 |
|
|
-- Check for bad size clause given
|
600 |
|
|
|
601 |
|
|
elsif Has_Size_Clause (T) then
|
602 |
|
|
if RM_Size (T) < S then
|
603 |
|
|
Error_Msg_Uint_1 := S;
|
604 |
|
|
Error_Msg_NE
|
605 |
|
|
("size for& too small, minimum allowed is ^",
|
606 |
|
|
Size_Clause (T), T);
|
607 |
|
|
|
608 |
|
|
elsif Unknown_Esize (T) then
|
609 |
|
|
Set_Esize (T, S);
|
610 |
|
|
end if;
|
611 |
|
|
|
612 |
|
|
-- Set sizes if not set already
|
613 |
|
|
|
614 |
|
|
else
|
615 |
|
|
if Unknown_Esize (T) then
|
616 |
|
|
Set_Esize (T, S);
|
617 |
|
|
end if;
|
618 |
|
|
|
619 |
|
|
if Unknown_RM_Size (T) then
|
620 |
|
|
Set_RM_Size (T, S);
|
621 |
|
|
end if;
|
622 |
|
|
end if;
|
623 |
|
|
end Set_Small_Size;
|
624 |
|
|
|
625 |
|
|
----------------
|
626 |
|
|
-- Size_Known --
|
627 |
|
|
----------------
|
628 |
|
|
|
629 |
|
|
function Size_Known (T : Entity_Id) return Boolean is
|
630 |
|
|
Index : Entity_Id;
|
631 |
|
|
Comp : Entity_Id;
|
632 |
|
|
Ctyp : Entity_Id;
|
633 |
|
|
Low : Node_Id;
|
634 |
|
|
High : Node_Id;
|
635 |
|
|
|
636 |
|
|
begin
|
637 |
|
|
if Size_Known_At_Compile_Time (T) then
|
638 |
|
|
return True;
|
639 |
|
|
|
640 |
|
|
-- Always True for scalar types. This is true even for generic formal
|
641 |
|
|
-- scalar types. We used to return False in the latter case, but the
|
642 |
|
|
-- size is known at compile time, even in the template, we just do
|
643 |
|
|
-- not know the exact size but that's not the point of this routine.
|
644 |
|
|
|
645 |
|
|
elsif Is_Scalar_Type (T)
|
646 |
|
|
or else Is_Task_Type (T)
|
647 |
|
|
then
|
648 |
|
|
return True;
|
649 |
|
|
|
650 |
|
|
-- Array types
|
651 |
|
|
|
652 |
|
|
elsif Is_Array_Type (T) then
|
653 |
|
|
|
654 |
|
|
-- String literals always have known size, and we can set it
|
655 |
|
|
|
656 |
|
|
if Ekind (T) = E_String_Literal_Subtype then
|
657 |
|
|
Set_Small_Size (T, Component_Size (T)
|
658 |
|
|
* String_Literal_Length (T));
|
659 |
|
|
return True;
|
660 |
|
|
|
661 |
|
|
-- Unconstrained types never have known at compile time size
|
662 |
|
|
|
663 |
|
|
elsif not Is_Constrained (T) then
|
664 |
|
|
return False;
|
665 |
|
|
|
666 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
667 |
|
|
-- have a malformed type that leads us into a loop.
|
668 |
|
|
|
669 |
|
|
elsif Error_Posted (T) then
|
670 |
|
|
return False;
|
671 |
|
|
|
672 |
|
|
-- Otherwise if component size unknown, then array size unknown
|
673 |
|
|
|
674 |
|
|
elsif not Size_Known (Component_Type (T)) then
|
675 |
|
|
return False;
|
676 |
|
|
end if;
|
677 |
|
|
|
678 |
|
|
-- Check for all indexes static, and also compute possible size
|
679 |
|
|
-- (in case it is less than 32 and may be packable).
|
680 |
|
|
|
681 |
|
|
declare
|
682 |
|
|
Esiz : Uint := Component_Size (T);
|
683 |
|
|
Dim : Uint;
|
684 |
|
|
|
685 |
|
|
begin
|
686 |
|
|
Index := First_Index (T);
|
687 |
|
|
while Present (Index) loop
|
688 |
|
|
if Nkind (Index) = N_Range then
|
689 |
|
|
Get_Index_Bounds (Index, Low, High);
|
690 |
|
|
|
691 |
|
|
elsif Error_Posted (Scalar_Range (Etype (Index))) then
|
692 |
|
|
return False;
|
693 |
|
|
|
694 |
|
|
else
|
695 |
|
|
Low := Type_Low_Bound (Etype (Index));
|
696 |
|
|
High := Type_High_Bound (Etype (Index));
|
697 |
|
|
end if;
|
698 |
|
|
|
699 |
|
|
if not Compile_Time_Known_Value (Low)
|
700 |
|
|
or else not Compile_Time_Known_Value (High)
|
701 |
|
|
or else Etype (Index) = Any_Type
|
702 |
|
|
then
|
703 |
|
|
return False;
|
704 |
|
|
|
705 |
|
|
else
|
706 |
|
|
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
|
707 |
|
|
|
708 |
|
|
if Dim >= 0 then
|
709 |
|
|
Esiz := Esiz * Dim;
|
710 |
|
|
else
|
711 |
|
|
Esiz := Uint_0;
|
712 |
|
|
end if;
|
713 |
|
|
end if;
|
714 |
|
|
|
715 |
|
|
Next_Index (Index);
|
716 |
|
|
end loop;
|
717 |
|
|
|
718 |
|
|
Set_Small_Size (T, Esiz);
|
719 |
|
|
return True;
|
720 |
|
|
end;
|
721 |
|
|
|
722 |
|
|
-- Access types always have known at compile time sizes
|
723 |
|
|
|
724 |
|
|
elsif Is_Access_Type (T) then
|
725 |
|
|
return True;
|
726 |
|
|
|
727 |
|
|
-- For non-generic private types, go to underlying type if present
|
728 |
|
|
|
729 |
|
|
elsif Is_Private_Type (T)
|
730 |
|
|
and then not Is_Generic_Type (T)
|
731 |
|
|
and then Present (Underlying_Type (T))
|
732 |
|
|
then
|
733 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
734 |
|
|
-- have a malformed type that leads us into a loop.
|
735 |
|
|
|
736 |
|
|
if Error_Posted (T) then
|
737 |
|
|
return False;
|
738 |
|
|
else
|
739 |
|
|
return Size_Known (Underlying_Type (T));
|
740 |
|
|
end if;
|
741 |
|
|
|
742 |
|
|
-- Record types
|
743 |
|
|
|
744 |
|
|
elsif Is_Record_Type (T) then
|
745 |
|
|
|
746 |
|
|
-- A class-wide type is never considered to have a known size
|
747 |
|
|
|
748 |
|
|
if Is_Class_Wide_Type (T) then
|
749 |
|
|
return False;
|
750 |
|
|
|
751 |
|
|
-- A subtype of a variant record must not have non-static
|
752 |
|
|
-- discriminanted components.
|
753 |
|
|
|
754 |
|
|
elsif T /= Base_Type (T)
|
755 |
|
|
and then not Static_Discriminated_Components (T)
|
756 |
|
|
then
|
757 |
|
|
return False;
|
758 |
|
|
|
759 |
|
|
-- Don't do any recursion on type with error posted, since we may
|
760 |
|
|
-- have a malformed type that leads us into a loop.
|
761 |
|
|
|
762 |
|
|
elsif Error_Posted (T) then
|
763 |
|
|
return False;
|
764 |
|
|
end if;
|
765 |
|
|
|
766 |
|
|
-- Now look at the components of the record
|
767 |
|
|
|
768 |
|
|
declare
|
769 |
|
|
-- The following two variables are used to keep track of the
|
770 |
|
|
-- size of packed records if we can tell the size of the packed
|
771 |
|
|
-- record in the front end. Packed_Size_Known is True if so far
|
772 |
|
|
-- we can figure out the size. It is initialized to True for a
|
773 |
|
|
-- packed record, unless the record has discriminants. The
|
774 |
|
|
-- reason we eliminate the discriminated case is that we don't
|
775 |
|
|
-- know the way the back end lays out discriminated packed
|
776 |
|
|
-- records. If Packed_Size_Known is True, then Packed_Size is
|
777 |
|
|
-- the size in bits so far.
|
778 |
|
|
|
779 |
|
|
Packed_Size_Known : Boolean :=
|
780 |
|
|
Is_Packed (T)
|
781 |
|
|
and then not Has_Discriminants (T);
|
782 |
|
|
|
783 |
|
|
Packed_Size : Uint := Uint_0;
|
784 |
|
|
|
785 |
|
|
begin
|
786 |
|
|
-- Test for variant part present
|
787 |
|
|
|
788 |
|
|
if Has_Discriminants (T)
|
789 |
|
|
and then Present (Parent (T))
|
790 |
|
|
and then Nkind (Parent (T)) = N_Full_Type_Declaration
|
791 |
|
|
and then Nkind (Type_Definition (Parent (T))) =
|
792 |
|
|
N_Record_Definition
|
793 |
|
|
and then not Null_Present (Type_Definition (Parent (T)))
|
794 |
|
|
and then Present (Variant_Part
|
795 |
|
|
(Component_List (Type_Definition (Parent (T)))))
|
796 |
|
|
then
|
797 |
|
|
-- If variant part is present, and type is unconstrained,
|
798 |
|
|
-- then we must have defaulted discriminants, or a size
|
799 |
|
|
-- clause must be present for the type, or else the size
|
800 |
|
|
-- is definitely not known at compile time.
|
801 |
|
|
|
802 |
|
|
if not Is_Constrained (T)
|
803 |
|
|
and then
|
804 |
|
|
No (Discriminant_Default_Value
|
805 |
|
|
(First_Discriminant (T)))
|
806 |
|
|
and then Unknown_Esize (T)
|
807 |
|
|
then
|
808 |
|
|
return False;
|
809 |
|
|
end if;
|
810 |
|
|
end if;
|
811 |
|
|
|
812 |
|
|
-- Loop through components
|
813 |
|
|
|
814 |
|
|
Comp := First_Component_Or_Discriminant (T);
|
815 |
|
|
while Present (Comp) loop
|
816 |
|
|
Ctyp := Etype (Comp);
|
817 |
|
|
|
818 |
|
|
-- We do not know the packed size if there is a component
|
819 |
|
|
-- clause present (we possibly could, but this would only
|
820 |
|
|
-- help in the case of a record with partial rep clauses.
|
821 |
|
|
-- That's because in the case of full rep clauses, the
|
822 |
|
|
-- size gets figured out anyway by a different circuit).
|
823 |
|
|
|
824 |
|
|
if Present (Component_Clause (Comp)) then
|
825 |
|
|
Packed_Size_Known := False;
|
826 |
|
|
end if;
|
827 |
|
|
|
828 |
|
|
-- We need to identify a component that is an array where
|
829 |
|
|
-- the index type is an enumeration type with non-standard
|
830 |
|
|
-- representation, and some bound of the type depends on a
|
831 |
|
|
-- discriminant.
|
832 |
|
|
|
833 |
|
|
-- This is because gigi computes the size by doing a
|
834 |
|
|
-- substitution of the appropriate discriminant value in
|
835 |
|
|
-- the size expression for the base type, and gigi is not
|
836 |
|
|
-- clever enough to evaluate the resulting expression (which
|
837 |
|
|
-- involves a call to rep_to_pos) at compile time.
|
838 |
|
|
|
839 |
|
|
-- It would be nice if gigi would either recognize that
|
840 |
|
|
-- this expression can be computed at compile time, or
|
841 |
|
|
-- alternatively figured out the size from the subtype
|
842 |
|
|
-- directly, where all the information is at hand ???
|
843 |
|
|
|
844 |
|
|
if Is_Array_Type (Etype (Comp))
|
845 |
|
|
and then Present (Packed_Array_Type (Etype (Comp)))
|
846 |
|
|
then
|
847 |
|
|
declare
|
848 |
|
|
Ocomp : constant Entity_Id :=
|
849 |
|
|
Original_Record_Component (Comp);
|
850 |
|
|
OCtyp : constant Entity_Id := Etype (Ocomp);
|
851 |
|
|
Ind : Node_Id;
|
852 |
|
|
Indtyp : Entity_Id;
|
853 |
|
|
Lo, Hi : Node_Id;
|
854 |
|
|
|
855 |
|
|
begin
|
856 |
|
|
Ind := First_Index (OCtyp);
|
857 |
|
|
while Present (Ind) loop
|
858 |
|
|
Indtyp := Etype (Ind);
|
859 |
|
|
|
860 |
|
|
if Is_Enumeration_Type (Indtyp)
|
861 |
|
|
and then Has_Non_Standard_Rep (Indtyp)
|
862 |
|
|
then
|
863 |
|
|
Lo := Type_Low_Bound (Indtyp);
|
864 |
|
|
Hi := Type_High_Bound (Indtyp);
|
865 |
|
|
|
866 |
|
|
if Is_Entity_Name (Lo)
|
867 |
|
|
and then Ekind (Entity (Lo)) = E_Discriminant
|
868 |
|
|
then
|
869 |
|
|
return False;
|
870 |
|
|
|
871 |
|
|
elsif Is_Entity_Name (Hi)
|
872 |
|
|
and then Ekind (Entity (Hi)) = E_Discriminant
|
873 |
|
|
then
|
874 |
|
|
return False;
|
875 |
|
|
end if;
|
876 |
|
|
end if;
|
877 |
|
|
|
878 |
|
|
Next_Index (Ind);
|
879 |
|
|
end loop;
|
880 |
|
|
end;
|
881 |
|
|
end if;
|
882 |
|
|
|
883 |
|
|
-- Clearly size of record is not known if the size of one of
|
884 |
|
|
-- the components is not known.
|
885 |
|
|
|
886 |
|
|
if not Size_Known (Ctyp) then
|
887 |
|
|
return False;
|
888 |
|
|
end if;
|
889 |
|
|
|
890 |
|
|
-- Accumulate packed size if possible
|
891 |
|
|
|
892 |
|
|
if Packed_Size_Known then
|
893 |
|
|
|
894 |
|
|
-- We can only deal with elementary types, since for
|
895 |
|
|
-- non-elementary components, alignment enters into the
|
896 |
|
|
-- picture, and we don't know enough to handle proper
|
897 |
|
|
-- alignment in this context. Packed arrays count as
|
898 |
|
|
-- elementary if the representation is a modular type.
|
899 |
|
|
|
900 |
|
|
if Is_Elementary_Type (Ctyp)
|
901 |
|
|
or else (Is_Array_Type (Ctyp)
|
902 |
|
|
and then Present (Packed_Array_Type (Ctyp))
|
903 |
|
|
and then Is_Modular_Integer_Type
|
904 |
|
|
(Packed_Array_Type (Ctyp)))
|
905 |
|
|
then
|
906 |
|
|
-- If RM_Size is known and static, then we can keep
|
907 |
|
|
-- accumulating the packed size.
|
908 |
|
|
|
909 |
|
|
if Known_Static_RM_Size (Ctyp) then
|
910 |
|
|
|
911 |
|
|
-- A little glitch, to be removed sometime ???
|
912 |
|
|
-- gigi does not understand zero sizes yet.
|
913 |
|
|
|
914 |
|
|
if RM_Size (Ctyp) = Uint_0 then
|
915 |
|
|
Packed_Size_Known := False;
|
916 |
|
|
|
917 |
|
|
-- Normal case where we can keep accumulating the
|
918 |
|
|
-- packed array size.
|
919 |
|
|
|
920 |
|
|
else
|
921 |
|
|
Packed_Size := Packed_Size + RM_Size (Ctyp);
|
922 |
|
|
end if;
|
923 |
|
|
|
924 |
|
|
-- If we have a field whose RM_Size is not known then
|
925 |
|
|
-- we can't figure out the packed size here.
|
926 |
|
|
|
927 |
|
|
else
|
928 |
|
|
Packed_Size_Known := False;
|
929 |
|
|
end if;
|
930 |
|
|
|
931 |
|
|
-- If we have a non-elementary type we can't figure out
|
932 |
|
|
-- the packed array size (alignment issues).
|
933 |
|
|
|
934 |
|
|
else
|
935 |
|
|
Packed_Size_Known := False;
|
936 |
|
|
end if;
|
937 |
|
|
end if;
|
938 |
|
|
|
939 |
|
|
Next_Component_Or_Discriminant (Comp);
|
940 |
|
|
end loop;
|
941 |
|
|
|
942 |
|
|
if Packed_Size_Known then
|
943 |
|
|
Set_Small_Size (T, Packed_Size);
|
944 |
|
|
end if;
|
945 |
|
|
|
946 |
|
|
return True;
|
947 |
|
|
end;
|
948 |
|
|
|
949 |
|
|
-- All other cases, size not known at compile time
|
950 |
|
|
|
951 |
|
|
else
|
952 |
|
|
return False;
|
953 |
|
|
end if;
|
954 |
|
|
end Size_Known;
|
955 |
|
|
|
956 |
|
|
-------------------------------------
|
957 |
|
|
-- Static_Discriminated_Components --
|
958 |
|
|
-------------------------------------
|
959 |
|
|
|
960 |
|
|
function Static_Discriminated_Components
|
961 |
|
|
(T : Entity_Id) return Boolean
|
962 |
|
|
is
|
963 |
|
|
Constraint : Elmt_Id;
|
964 |
|
|
|
965 |
|
|
begin
|
966 |
|
|
if Has_Discriminants (T)
|
967 |
|
|
and then Present (Discriminant_Constraint (T))
|
968 |
|
|
and then Present (First_Component (T))
|
969 |
|
|
then
|
970 |
|
|
Constraint := First_Elmt (Discriminant_Constraint (T));
|
971 |
|
|
while Present (Constraint) loop
|
972 |
|
|
if not Compile_Time_Known_Value (Node (Constraint)) then
|
973 |
|
|
return False;
|
974 |
|
|
end if;
|
975 |
|
|
|
976 |
|
|
Next_Elmt (Constraint);
|
977 |
|
|
end loop;
|
978 |
|
|
end if;
|
979 |
|
|
|
980 |
|
|
return True;
|
981 |
|
|
end Static_Discriminated_Components;
|
982 |
|
|
|
983 |
|
|
-- Start of processing for Check_Compile_Time_Size
|
984 |
|
|
|
985 |
|
|
begin
|
986 |
|
|
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
|
987 |
|
|
end Check_Compile_Time_Size;
|
988 |
|
|
|
989 |
|
|
-----------------------------
|
990 |
|
|
-- Check_Debug_Info_Needed --
|
991 |
|
|
-----------------------------
|
992 |
|
|
|
993 |
|
|
procedure Check_Debug_Info_Needed (T : Entity_Id) is
|
994 |
|
|
begin
|
995 |
|
|
if Debug_Info_Off (T) then
|
996 |
|
|
return;
|
997 |
|
|
|
998 |
|
|
elsif Comes_From_Source (T)
|
999 |
|
|
or else Debug_Generated_Code
|
1000 |
|
|
or else Debug_Flag_VV
|
1001 |
|
|
or else Needs_Debug_Info (T)
|
1002 |
|
|
then
|
1003 |
|
|
Set_Debug_Info_Needed (T);
|
1004 |
|
|
end if;
|
1005 |
|
|
end Check_Debug_Info_Needed;
|
1006 |
|
|
|
1007 |
|
|
----------------------------
|
1008 |
|
|
-- Check_Strict_Alignment --
|
1009 |
|
|
----------------------------
|
1010 |
|
|
|
1011 |
|
|
procedure Check_Strict_Alignment (E : Entity_Id) is
|
1012 |
|
|
Comp : Entity_Id;
|
1013 |
|
|
|
1014 |
|
|
begin
|
1015 |
|
|
if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
|
1016 |
|
|
Set_Strict_Alignment (E);
|
1017 |
|
|
|
1018 |
|
|
elsif Is_Array_Type (E) then
|
1019 |
|
|
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
|
1020 |
|
|
|
1021 |
|
|
elsif Is_Record_Type (E) then
|
1022 |
|
|
if Is_Limited_Record (E) then
|
1023 |
|
|
Set_Strict_Alignment (E);
|
1024 |
|
|
return;
|
1025 |
|
|
end if;
|
1026 |
|
|
|
1027 |
|
|
Comp := First_Component (E);
|
1028 |
|
|
|
1029 |
|
|
while Present (Comp) loop
|
1030 |
|
|
if not Is_Type (Comp)
|
1031 |
|
|
and then (Strict_Alignment (Etype (Comp))
|
1032 |
|
|
or else Is_Aliased (Comp))
|
1033 |
|
|
then
|
1034 |
|
|
Set_Strict_Alignment (E);
|
1035 |
|
|
return;
|
1036 |
|
|
end if;
|
1037 |
|
|
|
1038 |
|
|
Next_Component (Comp);
|
1039 |
|
|
end loop;
|
1040 |
|
|
end if;
|
1041 |
|
|
end Check_Strict_Alignment;
|
1042 |
|
|
|
1043 |
|
|
-------------------------
|
1044 |
|
|
-- Check_Unsigned_Type --
|
1045 |
|
|
-------------------------
|
1046 |
|
|
|
1047 |
|
|
procedure Check_Unsigned_Type (E : Entity_Id) is
|
1048 |
|
|
Ancestor : Entity_Id;
|
1049 |
|
|
Lo_Bound : Node_Id;
|
1050 |
|
|
Btyp : Entity_Id;
|
1051 |
|
|
|
1052 |
|
|
begin
|
1053 |
|
|
if not Is_Discrete_Or_Fixed_Point_Type (E) then
|
1054 |
|
|
return;
|
1055 |
|
|
end if;
|
1056 |
|
|
|
1057 |
|
|
-- Do not attempt to analyze case where range was in error
|
1058 |
|
|
|
1059 |
|
|
if Error_Posted (Scalar_Range (E)) then
|
1060 |
|
|
return;
|
1061 |
|
|
end if;
|
1062 |
|
|
|
1063 |
|
|
-- The situation that is non trivial is something like
|
1064 |
|
|
|
1065 |
|
|
-- subtype x1 is integer range -10 .. +10;
|
1066 |
|
|
-- subtype x2 is x1 range 0 .. V1;
|
1067 |
|
|
-- subtype x3 is x2 range V2 .. V3;
|
1068 |
|
|
-- subtype x4 is x3 range V4 .. V5;
|
1069 |
|
|
|
1070 |
|
|
-- where Vn are variables. Here the base type is signed, but we still
|
1071 |
|
|
-- know that x4 is unsigned because of the lower bound of x2.
|
1072 |
|
|
|
1073 |
|
|
-- The only way to deal with this is to look up the ancestor chain
|
1074 |
|
|
|
1075 |
|
|
Ancestor := E;
|
1076 |
|
|
loop
|
1077 |
|
|
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
|
1078 |
|
|
return;
|
1079 |
|
|
end if;
|
1080 |
|
|
|
1081 |
|
|
Lo_Bound := Type_Low_Bound (Ancestor);
|
1082 |
|
|
|
1083 |
|
|
if Compile_Time_Known_Value (Lo_Bound) then
|
1084 |
|
|
|
1085 |
|
|
if Expr_Rep_Value (Lo_Bound) >= 0 then
|
1086 |
|
|
Set_Is_Unsigned_Type (E, True);
|
1087 |
|
|
end if;
|
1088 |
|
|
|
1089 |
|
|
return;
|
1090 |
|
|
|
1091 |
|
|
else
|
1092 |
|
|
Ancestor := Ancestor_Subtype (Ancestor);
|
1093 |
|
|
|
1094 |
|
|
-- If no ancestor had a static lower bound, go to base type
|
1095 |
|
|
|
1096 |
|
|
if No (Ancestor) then
|
1097 |
|
|
|
1098 |
|
|
-- Note: the reason we still check for a compile time known
|
1099 |
|
|
-- value for the base type is that at least in the case of
|
1100 |
|
|
-- generic formals, we can have bounds that fail this test,
|
1101 |
|
|
-- and there may be other cases in error situations.
|
1102 |
|
|
|
1103 |
|
|
Btyp := Base_Type (E);
|
1104 |
|
|
|
1105 |
|
|
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
|
1106 |
|
|
return;
|
1107 |
|
|
end if;
|
1108 |
|
|
|
1109 |
|
|
Lo_Bound := Type_Low_Bound (Base_Type (E));
|
1110 |
|
|
|
1111 |
|
|
if Compile_Time_Known_Value (Lo_Bound)
|
1112 |
|
|
and then Expr_Rep_Value (Lo_Bound) >= 0
|
1113 |
|
|
then
|
1114 |
|
|
Set_Is_Unsigned_Type (E, True);
|
1115 |
|
|
end if;
|
1116 |
|
|
|
1117 |
|
|
return;
|
1118 |
|
|
end if;
|
1119 |
|
|
end if;
|
1120 |
|
|
end loop;
|
1121 |
|
|
end Check_Unsigned_Type;
|
1122 |
|
|
|
1123 |
|
|
-------------------------
|
1124 |
|
|
-- Is_Atomic_Aggregate --
|
1125 |
|
|
-------------------------
|
1126 |
|
|
|
1127 |
|
|
function Is_Atomic_Aggregate
|
1128 |
|
|
(E : Entity_Id;
|
1129 |
|
|
Typ : Entity_Id) return Boolean
|
1130 |
|
|
is
|
1131 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
1132 |
|
|
New_N : Node_Id;
|
1133 |
|
|
Par : Node_Id;
|
1134 |
|
|
Temp : Entity_Id;
|
1135 |
|
|
|
1136 |
|
|
begin
|
1137 |
|
|
Par := Parent (E);
|
1138 |
|
|
|
1139 |
|
|
-- Array may be qualified, so find outer context
|
1140 |
|
|
|
1141 |
|
|
if Nkind (Par) = N_Qualified_Expression then
|
1142 |
|
|
Par := Parent (Par);
|
1143 |
|
|
end if;
|
1144 |
|
|
|
1145 |
|
|
if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
|
1146 |
|
|
and then Comes_From_Source (Par)
|
1147 |
|
|
then
|
1148 |
|
|
Temp :=
|
1149 |
|
|
Make_Defining_Identifier (Loc,
|
1150 |
|
|
New_Internal_Name ('T'));
|
1151 |
|
|
|
1152 |
|
|
New_N :=
|
1153 |
|
|
Make_Object_Declaration (Loc,
|
1154 |
|
|
Defining_Identifier => Temp,
|
1155 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc),
|
1156 |
|
|
Expression => Relocate_Node (E));
|
1157 |
|
|
Insert_Before (Par, New_N);
|
1158 |
|
|
Analyze (New_N);
|
1159 |
|
|
|
1160 |
|
|
Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
|
1161 |
|
|
return True;
|
1162 |
|
|
|
1163 |
|
|
else
|
1164 |
|
|
return False;
|
1165 |
|
|
end if;
|
1166 |
|
|
end Is_Atomic_Aggregate;
|
1167 |
|
|
|
1168 |
|
|
----------------
|
1169 |
|
|
-- Freeze_All --
|
1170 |
|
|
----------------
|
1171 |
|
|
|
1172 |
|
|
-- Note: the easy coding for this procedure would be to just build a
|
1173 |
|
|
-- single list of freeze nodes and then insert them and analyze them
|
1174 |
|
|
-- all at once. This won't work, because the analysis of earlier freeze
|
1175 |
|
|
-- nodes may recursively freeze types which would otherwise appear later
|
1176 |
|
|
-- on in the freeze list. So we must analyze and expand the freeze nodes
|
1177 |
|
|
-- as they are generated.
|
1178 |
|
|
|
1179 |
|
|
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
|
1180 |
|
|
Loc : constant Source_Ptr := Sloc (After);
|
1181 |
|
|
E : Entity_Id;
|
1182 |
|
|
Decl : Node_Id;
|
1183 |
|
|
|
1184 |
|
|
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
|
1185 |
|
|
-- This is the internal recursive routine that does freezing of entities
|
1186 |
|
|
-- (but NOT the analysis of default expressions, which should not be
|
1187 |
|
|
-- recursive, we don't want to analyze those till we are sure that ALL
|
1188 |
|
|
-- the types are frozen).
|
1189 |
|
|
|
1190 |
|
|
--------------------
|
1191 |
|
|
-- Freeze_All_Ent --
|
1192 |
|
|
--------------------
|
1193 |
|
|
|
1194 |
|
|
procedure Freeze_All_Ent
|
1195 |
|
|
(From : Entity_Id;
|
1196 |
|
|
After : in out Node_Id)
|
1197 |
|
|
is
|
1198 |
|
|
E : Entity_Id;
|
1199 |
|
|
Flist : List_Id;
|
1200 |
|
|
Lastn : Node_Id;
|
1201 |
|
|
|
1202 |
|
|
procedure Process_Flist;
|
1203 |
|
|
-- If freeze nodes are present, insert and analyze, and reset cursor
|
1204 |
|
|
-- for next insertion.
|
1205 |
|
|
|
1206 |
|
|
-------------------
|
1207 |
|
|
-- Process_Flist --
|
1208 |
|
|
-------------------
|
1209 |
|
|
|
1210 |
|
|
procedure Process_Flist is
|
1211 |
|
|
begin
|
1212 |
|
|
if Is_Non_Empty_List (Flist) then
|
1213 |
|
|
Lastn := Next (After);
|
1214 |
|
|
Insert_List_After_And_Analyze (After, Flist);
|
1215 |
|
|
|
1216 |
|
|
if Present (Lastn) then
|
1217 |
|
|
After := Prev (Lastn);
|
1218 |
|
|
else
|
1219 |
|
|
After := Last (List_Containing (After));
|
1220 |
|
|
end if;
|
1221 |
|
|
end if;
|
1222 |
|
|
end Process_Flist;
|
1223 |
|
|
|
1224 |
|
|
-- Start or processing for Freeze_All_Ent
|
1225 |
|
|
|
1226 |
|
|
begin
|
1227 |
|
|
E := From;
|
1228 |
|
|
while Present (E) loop
|
1229 |
|
|
|
1230 |
|
|
-- If the entity is an inner package which is not a package
|
1231 |
|
|
-- renaming, then its entities must be frozen at this point. Note
|
1232 |
|
|
-- that such entities do NOT get frozen at the end of the nested
|
1233 |
|
|
-- package itself (only library packages freeze).
|
1234 |
|
|
|
1235 |
|
|
-- Same is true for task declarations, where anonymous records
|
1236 |
|
|
-- created for entry parameters must be frozen.
|
1237 |
|
|
|
1238 |
|
|
if Ekind (E) = E_Package
|
1239 |
|
|
and then No (Renamed_Object (E))
|
1240 |
|
|
and then not Is_Child_Unit (E)
|
1241 |
|
|
and then not Is_Frozen (E)
|
1242 |
|
|
then
|
1243 |
|
|
Push_Scope (E);
|
1244 |
|
|
Install_Visible_Declarations (E);
|
1245 |
|
|
Install_Private_Declarations (E);
|
1246 |
|
|
|
1247 |
|
|
Freeze_All (First_Entity (E), After);
|
1248 |
|
|
|
1249 |
|
|
End_Package_Scope (E);
|
1250 |
|
|
|
1251 |
|
|
elsif Ekind (E) in Task_Kind
|
1252 |
|
|
and then
|
1253 |
|
|
(Nkind (Parent (E)) = N_Task_Type_Declaration
|
1254 |
|
|
or else
|
1255 |
|
|
Nkind (Parent (E)) = N_Single_Task_Declaration)
|
1256 |
|
|
then
|
1257 |
|
|
Push_Scope (E);
|
1258 |
|
|
Freeze_All (First_Entity (E), After);
|
1259 |
|
|
End_Scope;
|
1260 |
|
|
|
1261 |
|
|
-- For a derived tagged type, we must ensure that all the
|
1262 |
|
|
-- primitive operations of the parent have been frozen, so that
|
1263 |
|
|
-- their addresses will be in the parent's dispatch table at the
|
1264 |
|
|
-- point it is inherited.
|
1265 |
|
|
|
1266 |
|
|
elsif Ekind (E) = E_Record_Type
|
1267 |
|
|
and then Is_Tagged_Type (E)
|
1268 |
|
|
and then Is_Tagged_Type (Etype (E))
|
1269 |
|
|
and then Is_Derived_Type (E)
|
1270 |
|
|
then
|
1271 |
|
|
declare
|
1272 |
|
|
Prim_List : constant Elist_Id :=
|
1273 |
|
|
Primitive_Operations (Etype (E));
|
1274 |
|
|
|
1275 |
|
|
Prim : Elmt_Id;
|
1276 |
|
|
Subp : Entity_Id;
|
1277 |
|
|
|
1278 |
|
|
begin
|
1279 |
|
|
Prim := First_Elmt (Prim_List);
|
1280 |
|
|
|
1281 |
|
|
while Present (Prim) loop
|
1282 |
|
|
Subp := Node (Prim);
|
1283 |
|
|
|
1284 |
|
|
if Comes_From_Source (Subp)
|
1285 |
|
|
and then not Is_Frozen (Subp)
|
1286 |
|
|
then
|
1287 |
|
|
Flist := Freeze_Entity (Subp, Loc);
|
1288 |
|
|
Process_Flist;
|
1289 |
|
|
end if;
|
1290 |
|
|
|
1291 |
|
|
Next_Elmt (Prim);
|
1292 |
|
|
end loop;
|
1293 |
|
|
end;
|
1294 |
|
|
end if;
|
1295 |
|
|
|
1296 |
|
|
if not Is_Frozen (E) then
|
1297 |
|
|
Flist := Freeze_Entity (E, Loc);
|
1298 |
|
|
Process_Flist;
|
1299 |
|
|
end if;
|
1300 |
|
|
|
1301 |
|
|
-- If an incomplete type is still not frozen, this may be a
|
1302 |
|
|
-- premature freezing because of a body declaration that follows.
|
1303 |
|
|
-- Indicate where the freezing took place.
|
1304 |
|
|
|
1305 |
|
|
-- If the freezing is caused by the end of the current declarative
|
1306 |
|
|
-- part, it is a Taft Amendment type, and there is no error.
|
1307 |
|
|
|
1308 |
|
|
if not Is_Frozen (E)
|
1309 |
|
|
and then Ekind (E) = E_Incomplete_Type
|
1310 |
|
|
then
|
1311 |
|
|
declare
|
1312 |
|
|
Bod : constant Node_Id := Next (After);
|
1313 |
|
|
|
1314 |
|
|
begin
|
1315 |
|
|
if (Nkind (Bod) = N_Subprogram_Body
|
1316 |
|
|
or else Nkind (Bod) = N_Entry_Body
|
1317 |
|
|
or else Nkind (Bod) = N_Package_Body
|
1318 |
|
|
or else Nkind (Bod) = N_Protected_Body
|
1319 |
|
|
or else Nkind (Bod) = N_Task_Body
|
1320 |
|
|
or else Nkind (Bod) in N_Body_Stub)
|
1321 |
|
|
and then
|
1322 |
|
|
List_Containing (After) = List_Containing (Parent (E))
|
1323 |
|
|
then
|
1324 |
|
|
Error_Msg_Sloc := Sloc (Next (After));
|
1325 |
|
|
Error_Msg_NE
|
1326 |
|
|
("type& is frozen# before its full declaration",
|
1327 |
|
|
Parent (E), E);
|
1328 |
|
|
end if;
|
1329 |
|
|
end;
|
1330 |
|
|
end if;
|
1331 |
|
|
|
1332 |
|
|
Next_Entity (E);
|
1333 |
|
|
end loop;
|
1334 |
|
|
end Freeze_All_Ent;
|
1335 |
|
|
|
1336 |
|
|
-- Start of processing for Freeze_All
|
1337 |
|
|
|
1338 |
|
|
begin
|
1339 |
|
|
Freeze_All_Ent (From, After);
|
1340 |
|
|
|
1341 |
|
|
-- Now that all types are frozen, we can deal with default expressions
|
1342 |
|
|
-- that require us to build a default expression functions. This is the
|
1343 |
|
|
-- point at which such functions are constructed (after all types that
|
1344 |
|
|
-- might be used in such expressions have been frozen).
|
1345 |
|
|
|
1346 |
|
|
-- We also add finalization chains to access types whose designated
|
1347 |
|
|
-- types are controlled. This is normally done when freezing the type,
|
1348 |
|
|
-- but this misses recursive type definitions where the later members
|
1349 |
|
|
-- of the recursion introduce controlled components.
|
1350 |
|
|
|
1351 |
|
|
-- Loop through entities
|
1352 |
|
|
|
1353 |
|
|
E := From;
|
1354 |
|
|
while Present (E) loop
|
1355 |
|
|
if Is_Subprogram (E) then
|
1356 |
|
|
|
1357 |
|
|
if not Default_Expressions_Processed (E) then
|
1358 |
|
|
Process_Default_Expressions (E, After);
|
1359 |
|
|
end if;
|
1360 |
|
|
|
1361 |
|
|
if not Has_Completion (E) then
|
1362 |
|
|
Decl := Unit_Declaration_Node (E);
|
1363 |
|
|
|
1364 |
|
|
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
|
1365 |
|
|
Build_And_Analyze_Renamed_Body (Decl, E, After);
|
1366 |
|
|
|
1367 |
|
|
elsif Nkind (Decl) = N_Subprogram_Declaration
|
1368 |
|
|
and then Present (Corresponding_Body (Decl))
|
1369 |
|
|
and then
|
1370 |
|
|
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
|
1371 |
|
|
= N_Subprogram_Renaming_Declaration
|
1372 |
|
|
then
|
1373 |
|
|
Build_And_Analyze_Renamed_Body
|
1374 |
|
|
(Decl, Corresponding_Body (Decl), After);
|
1375 |
|
|
end if;
|
1376 |
|
|
end if;
|
1377 |
|
|
|
1378 |
|
|
elsif Ekind (E) in Task_Kind
|
1379 |
|
|
and then
|
1380 |
|
|
(Nkind (Parent (E)) = N_Task_Type_Declaration
|
1381 |
|
|
or else
|
1382 |
|
|
Nkind (Parent (E)) = N_Single_Task_Declaration)
|
1383 |
|
|
then
|
1384 |
|
|
declare
|
1385 |
|
|
Ent : Entity_Id;
|
1386 |
|
|
begin
|
1387 |
|
|
Ent := First_Entity (E);
|
1388 |
|
|
|
1389 |
|
|
while Present (Ent) loop
|
1390 |
|
|
|
1391 |
|
|
if Is_Entry (Ent)
|
1392 |
|
|
and then not Default_Expressions_Processed (Ent)
|
1393 |
|
|
then
|
1394 |
|
|
Process_Default_Expressions (Ent, After);
|
1395 |
|
|
end if;
|
1396 |
|
|
|
1397 |
|
|
Next_Entity (Ent);
|
1398 |
|
|
end loop;
|
1399 |
|
|
end;
|
1400 |
|
|
|
1401 |
|
|
elsif Is_Access_Type (E)
|
1402 |
|
|
and then Comes_From_Source (E)
|
1403 |
|
|
and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
|
1404 |
|
|
and then Needs_Finalization (Designated_Type (E))
|
1405 |
|
|
and then No (Associated_Final_Chain (E))
|
1406 |
|
|
then
|
1407 |
|
|
Build_Final_List (Parent (E), E);
|
1408 |
|
|
end if;
|
1409 |
|
|
|
1410 |
|
|
Next_Entity (E);
|
1411 |
|
|
end loop;
|
1412 |
|
|
end Freeze_All;
|
1413 |
|
|
|
1414 |
|
|
-----------------------
|
1415 |
|
|
-- Freeze_And_Append --
|
1416 |
|
|
-----------------------
|
1417 |
|
|
|
1418 |
|
|
procedure Freeze_And_Append
|
1419 |
|
|
(Ent : Entity_Id;
|
1420 |
|
|
Loc : Source_Ptr;
|
1421 |
|
|
Result : in out List_Id)
|
1422 |
|
|
is
|
1423 |
|
|
L : constant List_Id := Freeze_Entity (Ent, Loc);
|
1424 |
|
|
begin
|
1425 |
|
|
if Is_Non_Empty_List (L) then
|
1426 |
|
|
if Result = No_List then
|
1427 |
|
|
Result := L;
|
1428 |
|
|
else
|
1429 |
|
|
Append_List (L, Result);
|
1430 |
|
|
end if;
|
1431 |
|
|
end if;
|
1432 |
|
|
end Freeze_And_Append;
|
1433 |
|
|
|
1434 |
|
|
-------------------
|
1435 |
|
|
-- Freeze_Before --
|
1436 |
|
|
-------------------
|
1437 |
|
|
|
1438 |
|
|
procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
|
1439 |
|
|
Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
|
1440 |
|
|
begin
|
1441 |
|
|
if Is_Non_Empty_List (Freeze_Nodes) then
|
1442 |
|
|
Insert_Actions (N, Freeze_Nodes);
|
1443 |
|
|
end if;
|
1444 |
|
|
end Freeze_Before;
|
1445 |
|
|
|
1446 |
|
|
-------------------
|
1447 |
|
|
-- Freeze_Entity --
|
1448 |
|
|
-------------------
|
1449 |
|
|
|
1450 |
|
|
function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
|
1451 |
|
|
Test_E : Entity_Id := E;
|
1452 |
|
|
Comp : Entity_Id;
|
1453 |
|
|
F_Node : Node_Id;
|
1454 |
|
|
Result : List_Id;
|
1455 |
|
|
Indx : Node_Id;
|
1456 |
|
|
Formal : Entity_Id;
|
1457 |
|
|
Atype : Entity_Id;
|
1458 |
|
|
|
1459 |
|
|
Has_Default_Initialization : Boolean := False;
|
1460 |
|
|
-- This flag gets set to true for a variable with default initialization
|
1461 |
|
|
|
1462 |
|
|
procedure Check_Current_Instance (Comp_Decl : Node_Id);
|
1463 |
|
|
-- Check that an Access or Unchecked_Access attribute with a prefix
|
1464 |
|
|
-- which is the current instance type can only be applied when the type
|
1465 |
|
|
-- is limited.
|
1466 |
|
|
|
1467 |
|
|
procedure Check_Suspicious_Modulus (Utype : Entity_Id);
|
1468 |
|
|
-- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
|
1469 |
|
|
-- integer literal without an explicit corresponding size clause. The
|
1470 |
|
|
-- caller has checked that Utype is a modular integer type.
|
1471 |
|
|
|
1472 |
|
|
function After_Last_Declaration return Boolean;
|
1473 |
|
|
-- If Loc is a freeze_entity that appears after the last declaration
|
1474 |
|
|
-- in the scope, inhibit error messages on late completion.
|
1475 |
|
|
|
1476 |
|
|
procedure Freeze_Record_Type (Rec : Entity_Id);
|
1477 |
|
|
-- Freeze each component, handle some representation clauses, and freeze
|
1478 |
|
|
-- primitive operations if this is a tagged type.
|
1479 |
|
|
|
1480 |
|
|
----------------------------
|
1481 |
|
|
-- After_Last_Declaration --
|
1482 |
|
|
----------------------------
|
1483 |
|
|
|
1484 |
|
|
function After_Last_Declaration return Boolean is
|
1485 |
|
|
Spec : constant Node_Id := Parent (Current_Scope);
|
1486 |
|
|
begin
|
1487 |
|
|
if Nkind (Spec) = N_Package_Specification then
|
1488 |
|
|
if Present (Private_Declarations (Spec)) then
|
1489 |
|
|
return Loc >= Sloc (Last (Private_Declarations (Spec)));
|
1490 |
|
|
elsif Present (Visible_Declarations (Spec)) then
|
1491 |
|
|
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
|
1492 |
|
|
else
|
1493 |
|
|
return False;
|
1494 |
|
|
end if;
|
1495 |
|
|
else
|
1496 |
|
|
return False;
|
1497 |
|
|
end if;
|
1498 |
|
|
end After_Last_Declaration;
|
1499 |
|
|
|
1500 |
|
|
----------------------------
|
1501 |
|
|
-- Check_Current_Instance --
|
1502 |
|
|
----------------------------
|
1503 |
|
|
|
1504 |
|
|
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
|
1505 |
|
|
|
1506 |
|
|
Rec_Type : constant Entity_Id :=
|
1507 |
|
|
Scope (Defining_Identifier (Comp_Decl));
|
1508 |
|
|
|
1509 |
|
|
Decl : constant Node_Id := Parent (Rec_Type);
|
1510 |
|
|
|
1511 |
|
|
function Process (N : Node_Id) return Traverse_Result;
|
1512 |
|
|
-- Process routine to apply check to given node
|
1513 |
|
|
|
1514 |
|
|
-------------
|
1515 |
|
|
-- Process --
|
1516 |
|
|
-------------
|
1517 |
|
|
|
1518 |
|
|
function Process (N : Node_Id) return Traverse_Result is
|
1519 |
|
|
begin
|
1520 |
|
|
case Nkind (N) is
|
1521 |
|
|
when N_Attribute_Reference =>
|
1522 |
|
|
if (Attribute_Name (N) = Name_Access
|
1523 |
|
|
or else
|
1524 |
|
|
Attribute_Name (N) = Name_Unchecked_Access)
|
1525 |
|
|
and then Is_Entity_Name (Prefix (N))
|
1526 |
|
|
and then Is_Type (Entity (Prefix (N)))
|
1527 |
|
|
and then Entity (Prefix (N)) = E
|
1528 |
|
|
then
|
1529 |
|
|
Error_Msg_N
|
1530 |
|
|
("current instance must be a limited type", Prefix (N));
|
1531 |
|
|
return Abandon;
|
1532 |
|
|
else
|
1533 |
|
|
return OK;
|
1534 |
|
|
end if;
|
1535 |
|
|
|
1536 |
|
|
when others => return OK;
|
1537 |
|
|
end case;
|
1538 |
|
|
end Process;
|
1539 |
|
|
|
1540 |
|
|
procedure Traverse is new Traverse_Proc (Process);
|
1541 |
|
|
|
1542 |
|
|
-- Start of processing for Check_Current_Instance
|
1543 |
|
|
|
1544 |
|
|
begin
|
1545 |
|
|
-- In Ada95, the (imprecise) rule is that the current instance of a
|
1546 |
|
|
-- limited type is aliased. In Ada2005, limitedness must be explicit:
|
1547 |
|
|
-- either a tagged type, or a limited record.
|
1548 |
|
|
|
1549 |
|
|
if Is_Limited_Type (Rec_Type)
|
1550 |
|
|
and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
|
1551 |
|
|
then
|
1552 |
|
|
return;
|
1553 |
|
|
|
1554 |
|
|
elsif Nkind (Decl) = N_Full_Type_Declaration
|
1555 |
|
|
and then Limited_Present (Type_Definition (Decl))
|
1556 |
|
|
then
|
1557 |
|
|
return;
|
1558 |
|
|
|
1559 |
|
|
else
|
1560 |
|
|
Traverse (Comp_Decl);
|
1561 |
|
|
end if;
|
1562 |
|
|
end Check_Current_Instance;
|
1563 |
|
|
|
1564 |
|
|
------------------------------
|
1565 |
|
|
-- Check_Suspicious_Modulus --
|
1566 |
|
|
------------------------------
|
1567 |
|
|
|
1568 |
|
|
procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
|
1569 |
|
|
Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
|
1570 |
|
|
|
1571 |
|
|
begin
|
1572 |
|
|
if Nkind (Decl) = N_Full_Type_Declaration then
|
1573 |
|
|
declare
|
1574 |
|
|
Tdef : constant Node_Id := Type_Definition (Decl);
|
1575 |
|
|
begin
|
1576 |
|
|
if Nkind (Tdef) = N_Modular_Type_Definition then
|
1577 |
|
|
declare
|
1578 |
|
|
Modulus : constant Node_Id :=
|
1579 |
|
|
Original_Node (Expression (Tdef));
|
1580 |
|
|
begin
|
1581 |
|
|
if Nkind (Modulus) = N_Integer_Literal then
|
1582 |
|
|
declare
|
1583 |
|
|
Modv : constant Uint := Intval (Modulus);
|
1584 |
|
|
Sizv : constant Uint := RM_Size (Utype);
|
1585 |
|
|
|
1586 |
|
|
begin
|
1587 |
|
|
-- First case, modulus and size are the same. This
|
1588 |
|
|
-- happens if you have something like mod 32, with
|
1589 |
|
|
-- an explicit size of 32, this is for sure a case
|
1590 |
|
|
-- where the warning is given, since it is seems
|
1591 |
|
|
-- very unlikely that someone would want e.g. a
|
1592 |
|
|
-- five bit type stored in 32 bits. It is much
|
1593 |
|
|
-- more likely they wanted a 32-bit type.
|
1594 |
|
|
|
1595 |
|
|
if Modv = Sizv then
|
1596 |
|
|
null;
|
1597 |
|
|
|
1598 |
|
|
-- Second case, the modulus is 32 or 64 and no
|
1599 |
|
|
-- size clause is present. This is a less clear
|
1600 |
|
|
-- case for giving the warning, but in the case
|
1601 |
|
|
-- of 32/64 (5-bit or 6-bit types) these seem rare
|
1602 |
|
|
-- enough that it is a likely error (and in any
|
1603 |
|
|
-- case using 2**5 or 2**6 in these cases seems
|
1604 |
|
|
-- clearer. We don't include 8 or 16 here, simply
|
1605 |
|
|
-- because in practice 3-bit and 4-bit types are
|
1606 |
|
|
-- more common and too many false positives if
|
1607 |
|
|
-- we warn in these cases.
|
1608 |
|
|
|
1609 |
|
|
elsif not Has_Size_Clause (Utype)
|
1610 |
|
|
and then (Modv = Uint_32 or else Modv = Uint_64)
|
1611 |
|
|
then
|
1612 |
|
|
null;
|
1613 |
|
|
|
1614 |
|
|
-- No warning needed
|
1615 |
|
|
|
1616 |
|
|
else
|
1617 |
|
|
return;
|
1618 |
|
|
end if;
|
1619 |
|
|
|
1620 |
|
|
-- If we fall through, give warning
|
1621 |
|
|
|
1622 |
|
|
Error_Msg_Uint_1 := Modv;
|
1623 |
|
|
Error_Msg_N
|
1624 |
|
|
("?2 '*'*^' may have been intended here",
|
1625 |
|
|
Modulus);
|
1626 |
|
|
end;
|
1627 |
|
|
end if;
|
1628 |
|
|
end;
|
1629 |
|
|
end if;
|
1630 |
|
|
end;
|
1631 |
|
|
end if;
|
1632 |
|
|
end Check_Suspicious_Modulus;
|
1633 |
|
|
|
1634 |
|
|
------------------------
|
1635 |
|
|
-- Freeze_Record_Type --
|
1636 |
|
|
------------------------
|
1637 |
|
|
|
1638 |
|
|
procedure Freeze_Record_Type (Rec : Entity_Id) is
|
1639 |
|
|
Comp : Entity_Id;
|
1640 |
|
|
IR : Node_Id;
|
1641 |
|
|
ADC : Node_Id;
|
1642 |
|
|
Prev : Entity_Id;
|
1643 |
|
|
|
1644 |
|
|
Junk : Boolean;
|
1645 |
|
|
pragma Warnings (Off, Junk);
|
1646 |
|
|
|
1647 |
|
|
Unplaced_Component : Boolean := False;
|
1648 |
|
|
-- Set True if we find at least one component with no component
|
1649 |
|
|
-- clause (used to warn about useless Pack pragmas).
|
1650 |
|
|
|
1651 |
|
|
Placed_Component : Boolean := False;
|
1652 |
|
|
-- Set True if we find at least one component with a component
|
1653 |
|
|
-- clause (used to warn about useless Bit_Order pragmas, and also
|
1654 |
|
|
-- to detect cases where Implicit_Packing may have an effect).
|
1655 |
|
|
|
1656 |
|
|
All_Scalar_Components : Boolean := True;
|
1657 |
|
|
-- Set False if we encounter a component of a non-scalar type
|
1658 |
|
|
|
1659 |
|
|
Scalar_Component_Total_RM_Size : Uint := Uint_0;
|
1660 |
|
|
Scalar_Component_Total_Esize : Uint := Uint_0;
|
1661 |
|
|
-- Accumulates total RM_Size values and total Esize values of all
|
1662 |
|
|
-- scalar components. Used for processing of Implicit_Packing.
|
1663 |
|
|
|
1664 |
|
|
function Check_Allocator (N : Node_Id) return Node_Id;
|
1665 |
|
|
-- If N is an allocator, possibly wrapped in one or more level of
|
1666 |
|
|
-- qualified expression(s), return the inner allocator node, else
|
1667 |
|
|
-- return Empty.
|
1668 |
|
|
|
1669 |
|
|
procedure Check_Itype (Typ : Entity_Id);
|
1670 |
|
|
-- If the component subtype is an access to a constrained subtype of
|
1671 |
|
|
-- an already frozen type, make the subtype frozen as well. It might
|
1672 |
|
|
-- otherwise be frozen in the wrong scope, and a freeze node on
|
1673 |
|
|
-- subtype has no effect. Similarly, if the component subtype is a
|
1674 |
|
|
-- regular (not protected) access to subprogram, set the anonymous
|
1675 |
|
|
-- subprogram type to frozen as well, to prevent an out-of-scope
|
1676 |
|
|
-- freeze node at some eventual point of call. Protected operations
|
1677 |
|
|
-- are handled elsewhere.
|
1678 |
|
|
|
1679 |
|
|
---------------------
|
1680 |
|
|
-- Check_Allocator --
|
1681 |
|
|
---------------------
|
1682 |
|
|
|
1683 |
|
|
function Check_Allocator (N : Node_Id) return Node_Id is
|
1684 |
|
|
Inner : Node_Id;
|
1685 |
|
|
begin
|
1686 |
|
|
Inner := N;
|
1687 |
|
|
loop
|
1688 |
|
|
if Nkind (Inner) = N_Allocator then
|
1689 |
|
|
return Inner;
|
1690 |
|
|
elsif Nkind (Inner) = N_Qualified_Expression then
|
1691 |
|
|
Inner := Expression (Inner);
|
1692 |
|
|
else
|
1693 |
|
|
return Empty;
|
1694 |
|
|
end if;
|
1695 |
|
|
end loop;
|
1696 |
|
|
end Check_Allocator;
|
1697 |
|
|
|
1698 |
|
|
-----------------
|
1699 |
|
|
-- Check_Itype --
|
1700 |
|
|
-----------------
|
1701 |
|
|
|
1702 |
|
|
procedure Check_Itype (Typ : Entity_Id) is
|
1703 |
|
|
Desig : constant Entity_Id := Designated_Type (Typ);
|
1704 |
|
|
|
1705 |
|
|
begin
|
1706 |
|
|
if not Is_Frozen (Desig)
|
1707 |
|
|
and then Is_Frozen (Base_Type (Desig))
|
1708 |
|
|
then
|
1709 |
|
|
Set_Is_Frozen (Desig);
|
1710 |
|
|
|
1711 |
|
|
-- In addition, add an Itype_Reference to ensure that the
|
1712 |
|
|
-- access subtype is elaborated early enough. This cannot be
|
1713 |
|
|
-- done if the subtype may depend on discriminants.
|
1714 |
|
|
|
1715 |
|
|
if Ekind (Comp) = E_Component
|
1716 |
|
|
and then Is_Itype (Etype (Comp))
|
1717 |
|
|
and then not Has_Discriminants (Rec)
|
1718 |
|
|
then
|
1719 |
|
|
IR := Make_Itype_Reference (Sloc (Comp));
|
1720 |
|
|
Set_Itype (IR, Desig);
|
1721 |
|
|
|
1722 |
|
|
if No (Result) then
|
1723 |
|
|
Result := New_List (IR);
|
1724 |
|
|
else
|
1725 |
|
|
Append (IR, Result);
|
1726 |
|
|
end if;
|
1727 |
|
|
end if;
|
1728 |
|
|
|
1729 |
|
|
elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
|
1730 |
|
|
and then Convention (Desig) /= Convention_Protected
|
1731 |
|
|
then
|
1732 |
|
|
Set_Is_Frozen (Desig);
|
1733 |
|
|
end if;
|
1734 |
|
|
end Check_Itype;
|
1735 |
|
|
|
1736 |
|
|
-- Start of processing for Freeze_Record_Type
|
1737 |
|
|
|
1738 |
|
|
begin
|
1739 |
|
|
-- If this is a subtype of a controlled type, declared without a
|
1740 |
|
|
-- constraint, the _controller may not appear in the component list
|
1741 |
|
|
-- if the parent was not frozen at the point of subtype declaration.
|
1742 |
|
|
-- Inherit the _controller component now.
|
1743 |
|
|
|
1744 |
|
|
if Rec /= Base_Type (Rec)
|
1745 |
|
|
and then Has_Controlled_Component (Rec)
|
1746 |
|
|
then
|
1747 |
|
|
if Nkind (Parent (Rec)) = N_Subtype_Declaration
|
1748 |
|
|
and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
|
1749 |
|
|
then
|
1750 |
|
|
Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
|
1751 |
|
|
|
1752 |
|
|
-- If this is an internal type without a declaration, as for
|
1753 |
|
|
-- record component, the base type may not yet be frozen, and its
|
1754 |
|
|
-- controller has not been created. Add an explicit freeze node
|
1755 |
|
|
-- for the itype, so it will be frozen after the base type. This
|
1756 |
|
|
-- freeze node is used to communicate with the expander, in order
|
1757 |
|
|
-- to create the controller for the enclosing record, and it is
|
1758 |
|
|
-- deleted afterwards (see exp_ch3). It must not be created when
|
1759 |
|
|
-- expansion is off, because it might appear in the wrong context
|
1760 |
|
|
-- for the back end.
|
1761 |
|
|
|
1762 |
|
|
elsif Is_Itype (Rec)
|
1763 |
|
|
and then Has_Delayed_Freeze (Base_Type (Rec))
|
1764 |
|
|
and then
|
1765 |
|
|
Nkind (Associated_Node_For_Itype (Rec)) =
|
1766 |
|
|
N_Component_Declaration
|
1767 |
|
|
and then Expander_Active
|
1768 |
|
|
then
|
1769 |
|
|
Ensure_Freeze_Node (Rec);
|
1770 |
|
|
end if;
|
1771 |
|
|
end if;
|
1772 |
|
|
|
1773 |
|
|
-- Freeze components and embedded subtypes
|
1774 |
|
|
|
1775 |
|
|
Comp := First_Entity (Rec);
|
1776 |
|
|
Prev := Empty;
|
1777 |
|
|
while Present (Comp) loop
|
1778 |
|
|
|
1779 |
|
|
-- First handle the (real) component case
|
1780 |
|
|
|
1781 |
|
|
if Ekind (Comp) = E_Component
|
1782 |
|
|
or else Ekind (Comp) = E_Discriminant
|
1783 |
|
|
then
|
1784 |
|
|
declare
|
1785 |
|
|
CC : constant Node_Id := Component_Clause (Comp);
|
1786 |
|
|
|
1787 |
|
|
begin
|
1788 |
|
|
-- Freezing a record type freezes the type of each of its
|
1789 |
|
|
-- components. However, if the type of the component is
|
1790 |
|
|
-- part of this record, we do not want or need a separate
|
1791 |
|
|
-- Freeze_Node. Note that Is_Itype is wrong because that's
|
1792 |
|
|
-- also set in private type cases. We also can't check for
|
1793 |
|
|
-- the Scope being exactly Rec because of private types and
|
1794 |
|
|
-- record extensions.
|
1795 |
|
|
|
1796 |
|
|
if Is_Itype (Etype (Comp))
|
1797 |
|
|
and then Is_Record_Type (Underlying_Type
|
1798 |
|
|
(Scope (Etype (Comp))))
|
1799 |
|
|
then
|
1800 |
|
|
Undelay_Type (Etype (Comp));
|
1801 |
|
|
end if;
|
1802 |
|
|
|
1803 |
|
|
Freeze_And_Append (Etype (Comp), Loc, Result);
|
1804 |
|
|
|
1805 |
|
|
-- Check for error of component clause given for variable
|
1806 |
|
|
-- sized type. We have to delay this test till this point,
|
1807 |
|
|
-- since the component type has to be frozen for us to know
|
1808 |
|
|
-- if it is variable length. We omit this test in a generic
|
1809 |
|
|
-- context, it will be applied at instantiation time.
|
1810 |
|
|
|
1811 |
|
|
if Present (CC) then
|
1812 |
|
|
Placed_Component := True;
|
1813 |
|
|
|
1814 |
|
|
if Inside_A_Generic then
|
1815 |
|
|
null;
|
1816 |
|
|
|
1817 |
|
|
elsif not
|
1818 |
|
|
Size_Known_At_Compile_Time
|
1819 |
|
|
(Underlying_Type (Etype (Comp)))
|
1820 |
|
|
then
|
1821 |
|
|
Error_Msg_N
|
1822 |
|
|
("component clause not allowed for variable " &
|
1823 |
|
|
"length component", CC);
|
1824 |
|
|
end if;
|
1825 |
|
|
|
1826 |
|
|
else
|
1827 |
|
|
Unplaced_Component := True;
|
1828 |
|
|
end if;
|
1829 |
|
|
|
1830 |
|
|
-- Case of component requires byte alignment
|
1831 |
|
|
|
1832 |
|
|
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
|
1833 |
|
|
|
1834 |
|
|
-- Set the enclosing record to also require byte align
|
1835 |
|
|
|
1836 |
|
|
Set_Must_Be_On_Byte_Boundary (Rec);
|
1837 |
|
|
|
1838 |
|
|
-- Check for component clause that is inconsistent with
|
1839 |
|
|
-- the required byte boundary alignment.
|
1840 |
|
|
|
1841 |
|
|
if Present (CC)
|
1842 |
|
|
and then Normalized_First_Bit (Comp) mod
|
1843 |
|
|
System_Storage_Unit /= 0
|
1844 |
|
|
then
|
1845 |
|
|
Error_Msg_N
|
1846 |
|
|
("component & must be byte aligned",
|
1847 |
|
|
Component_Name (Component_Clause (Comp)));
|
1848 |
|
|
end if;
|
1849 |
|
|
end if;
|
1850 |
|
|
|
1851 |
|
|
-- If component clause is present, then deal with the non-
|
1852 |
|
|
-- default bit order case for Ada 95 mode. The required
|
1853 |
|
|
-- processing for Ada 2005 mode is handled separately after
|
1854 |
|
|
-- processing all components.
|
1855 |
|
|
|
1856 |
|
|
-- We only do this processing for the base type, and in
|
1857 |
|
|
-- fact that's important, since otherwise if there are
|
1858 |
|
|
-- record subtypes, we could reverse the bits once for
|
1859 |
|
|
-- each subtype, which would be incorrect.
|
1860 |
|
|
|
1861 |
|
|
if Present (CC)
|
1862 |
|
|
and then Reverse_Bit_Order (Rec)
|
1863 |
|
|
and then Ekind (E) = E_Record_Type
|
1864 |
|
|
and then Ada_Version <= Ada_95
|
1865 |
|
|
then
|
1866 |
|
|
declare
|
1867 |
|
|
CFB : constant Uint := Component_Bit_Offset (Comp);
|
1868 |
|
|
CSZ : constant Uint := Esize (Comp);
|
1869 |
|
|
CLC : constant Node_Id := Component_Clause (Comp);
|
1870 |
|
|
Pos : constant Node_Id := Position (CLC);
|
1871 |
|
|
FB : constant Node_Id := First_Bit (CLC);
|
1872 |
|
|
|
1873 |
|
|
Storage_Unit_Offset : constant Uint :=
|
1874 |
|
|
CFB / System_Storage_Unit;
|
1875 |
|
|
|
1876 |
|
|
Start_Bit : constant Uint :=
|
1877 |
|
|
CFB mod System_Storage_Unit;
|
1878 |
|
|
|
1879 |
|
|
begin
|
1880 |
|
|
-- Cases where field goes over storage unit boundary
|
1881 |
|
|
|
1882 |
|
|
if Start_Bit + CSZ > System_Storage_Unit then
|
1883 |
|
|
|
1884 |
|
|
-- Allow multi-byte field but generate warning
|
1885 |
|
|
|
1886 |
|
|
if Start_Bit mod System_Storage_Unit = 0
|
1887 |
|
|
and then CSZ mod System_Storage_Unit = 0
|
1888 |
|
|
then
|
1889 |
|
|
Error_Msg_N
|
1890 |
|
|
("multi-byte field specified with non-standard"
|
1891 |
|
|
& " Bit_Order?", CLC);
|
1892 |
|
|
|
1893 |
|
|
if Bytes_Big_Endian then
|
1894 |
|
|
Error_Msg_N
|
1895 |
|
|
("bytes are not reversed "
|
1896 |
|
|
& "(component is big-endian)?", CLC);
|
1897 |
|
|
else
|
1898 |
|
|
Error_Msg_N
|
1899 |
|
|
("bytes are not reversed "
|
1900 |
|
|
& "(component is little-endian)?", CLC);
|
1901 |
|
|
end if;
|
1902 |
|
|
|
1903 |
|
|
-- Do not allow non-contiguous field
|
1904 |
|
|
|
1905 |
|
|
else
|
1906 |
|
|
Error_Msg_N
|
1907 |
|
|
("attempt to specify non-contiguous field "
|
1908 |
|
|
& "not permitted", CLC);
|
1909 |
|
|
Error_Msg_N
|
1910 |
|
|
("\caused by non-standard Bit_Order "
|
1911 |
|
|
& "specified", CLC);
|
1912 |
|
|
Error_Msg_N
|
1913 |
|
|
("\consider possibility of using "
|
1914 |
|
|
& "Ada 2005 mode here", CLC);
|
1915 |
|
|
end if;
|
1916 |
|
|
|
1917 |
|
|
-- Case where field fits in one storage unit
|
1918 |
|
|
|
1919 |
|
|
else
|
1920 |
|
|
-- Give warning if suspicious component clause
|
1921 |
|
|
|
1922 |
|
|
if Intval (FB) >= System_Storage_Unit
|
1923 |
|
|
and then Warn_On_Reverse_Bit_Order
|
1924 |
|
|
then
|
1925 |
|
|
Error_Msg_N
|
1926 |
|
|
("?Bit_Order clause does not affect " &
|
1927 |
|
|
"byte ordering", Pos);
|
1928 |
|
|
Error_Msg_Uint_1 :=
|
1929 |
|
|
Intval (Pos) + Intval (FB) /
|
1930 |
|
|
System_Storage_Unit;
|
1931 |
|
|
Error_Msg_N
|
1932 |
|
|
("?position normalized to ^ before bit " &
|
1933 |
|
|
"order interpreted", Pos);
|
1934 |
|
|
end if;
|
1935 |
|
|
|
1936 |
|
|
-- Here is where we fix up the Component_Bit_Offset
|
1937 |
|
|
-- value to account for the reverse bit order.
|
1938 |
|
|
-- Some examples of what needs to be done are:
|
1939 |
|
|
|
1940 |
|
|
-- First_Bit .. Last_Bit Component_Bit_Offset
|
1941 |
|
|
-- old new old new
|
1942 |
|
|
|
1943 |
|
|
-- 0 .. 0 7 .. 7 0 7
|
1944 |
|
|
-- 0 .. 1 6 .. 7 0 6
|
1945 |
|
|
-- 0 .. 2 5 .. 7 0 5
|
1946 |
|
|
-- 0 .. 7 0 .. 7 0 4
|
1947 |
|
|
|
1948 |
|
|
-- 1 .. 1 6 .. 6 1 6
|
1949 |
|
|
-- 1 .. 4 3 .. 6 1 3
|
1950 |
|
|
-- 4 .. 7 0 .. 3 4 0
|
1951 |
|
|
|
1952 |
|
|
-- The general rule is that the first bit is
|
1953 |
|
|
-- is obtained by subtracting the old ending bit
|
1954 |
|
|
-- from storage_unit - 1.
|
1955 |
|
|
|
1956 |
|
|
Set_Component_Bit_Offset
|
1957 |
|
|
(Comp,
|
1958 |
|
|
(Storage_Unit_Offset * System_Storage_Unit) +
|
1959 |
|
|
(System_Storage_Unit - 1) -
|
1960 |
|
|
(Start_Bit + CSZ - 1));
|
1961 |
|
|
|
1962 |
|
|
Set_Normalized_First_Bit
|
1963 |
|
|
(Comp,
|
1964 |
|
|
Component_Bit_Offset (Comp) mod
|
1965 |
|
|
System_Storage_Unit);
|
1966 |
|
|
end if;
|
1967 |
|
|
end;
|
1968 |
|
|
end if;
|
1969 |
|
|
end;
|
1970 |
|
|
end if;
|
1971 |
|
|
|
1972 |
|
|
-- Gather data for possible Implicit_Packing later
|
1973 |
|
|
|
1974 |
|
|
if not Is_Scalar_Type (Etype (Comp)) then
|
1975 |
|
|
All_Scalar_Components := False;
|
1976 |
|
|
else
|
1977 |
|
|
Scalar_Component_Total_RM_Size :=
|
1978 |
|
|
Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
|
1979 |
|
|
Scalar_Component_Total_Esize :=
|
1980 |
|
|
Scalar_Component_Total_Esize + Esize (Etype (Comp));
|
1981 |
|
|
end if;
|
1982 |
|
|
|
1983 |
|
|
-- If the component is an Itype with Delayed_Freeze and is either
|
1984 |
|
|
-- a record or array subtype and its base type has not yet been
|
1985 |
|
|
-- frozen, we must remove this from the entity list of this
|
1986 |
|
|
-- record and put it on the entity list of the scope of its base
|
1987 |
|
|
-- type. Note that we know that this is not the type of a
|
1988 |
|
|
-- component since we cleared Has_Delayed_Freeze for it in the
|
1989 |
|
|
-- previous loop. Thus this must be the Designated_Type of an
|
1990 |
|
|
-- access type, which is the type of a component.
|
1991 |
|
|
|
1992 |
|
|
if Is_Itype (Comp)
|
1993 |
|
|
and then Is_Type (Scope (Comp))
|
1994 |
|
|
and then Is_Composite_Type (Comp)
|
1995 |
|
|
and then Base_Type (Comp) /= Comp
|
1996 |
|
|
and then Has_Delayed_Freeze (Comp)
|
1997 |
|
|
and then not Is_Frozen (Base_Type (Comp))
|
1998 |
|
|
then
|
1999 |
|
|
declare
|
2000 |
|
|
Will_Be_Frozen : Boolean := False;
|
2001 |
|
|
S : Entity_Id;
|
2002 |
|
|
|
2003 |
|
|
begin
|
2004 |
|
|
-- We have a pretty bad kludge here. Suppose Rec is subtype
|
2005 |
|
|
-- being defined in a subprogram that's created as part of
|
2006 |
|
|
-- the freezing of Rec'Base. In that case, we know that
|
2007 |
|
|
-- Comp'Base must have already been frozen by the time we
|
2008 |
|
|
-- get to elaborate this because Gigi doesn't elaborate any
|
2009 |
|
|
-- bodies until it has elaborated all of the declarative
|
2010 |
|
|
-- part. But Is_Frozen will not be set at this point because
|
2011 |
|
|
-- we are processing code in lexical order.
|
2012 |
|
|
|
2013 |
|
|
-- We detect this case by going up the Scope chain of Rec
|
2014 |
|
|
-- and seeing if we have a subprogram scope before reaching
|
2015 |
|
|
-- the top of the scope chain or that of Comp'Base. If we
|
2016 |
|
|
-- do, then mark that Comp'Base will actually be frozen. If
|
2017 |
|
|
-- so, we merely undelay it.
|
2018 |
|
|
|
2019 |
|
|
S := Scope (Rec);
|
2020 |
|
|
while Present (S) loop
|
2021 |
|
|
if Is_Subprogram (S) then
|
2022 |
|
|
Will_Be_Frozen := True;
|
2023 |
|
|
exit;
|
2024 |
|
|
elsif S = Scope (Base_Type (Comp)) then
|
2025 |
|
|
exit;
|
2026 |
|
|
end if;
|
2027 |
|
|
|
2028 |
|
|
S := Scope (S);
|
2029 |
|
|
end loop;
|
2030 |
|
|
|
2031 |
|
|
if Will_Be_Frozen then
|
2032 |
|
|
Undelay_Type (Comp);
|
2033 |
|
|
else
|
2034 |
|
|
if Present (Prev) then
|
2035 |
|
|
Set_Next_Entity (Prev, Next_Entity (Comp));
|
2036 |
|
|
else
|
2037 |
|
|
Set_First_Entity (Rec, Next_Entity (Comp));
|
2038 |
|
|
end if;
|
2039 |
|
|
|
2040 |
|
|
-- Insert in entity list of scope of base type (which
|
2041 |
|
|
-- must be an enclosing scope, because still unfrozen).
|
2042 |
|
|
|
2043 |
|
|
Append_Entity (Comp, Scope (Base_Type (Comp)));
|
2044 |
|
|
end if;
|
2045 |
|
|
end;
|
2046 |
|
|
|
2047 |
|
|
-- If the component is an access type with an allocator as default
|
2048 |
|
|
-- value, the designated type will be frozen by the corresponding
|
2049 |
|
|
-- expression in init_proc. In order to place the freeze node for
|
2050 |
|
|
-- the designated type before that for the current record type,
|
2051 |
|
|
-- freeze it now.
|
2052 |
|
|
|
2053 |
|
|
-- Same process if the component is an array of access types,
|
2054 |
|
|
-- initialized with an aggregate. If the designated type is
|
2055 |
|
|
-- private, it cannot contain allocators, and it is premature
|
2056 |
|
|
-- to freeze the type, so we check for this as well.
|
2057 |
|
|
|
2058 |
|
|
elsif Is_Access_Type (Etype (Comp))
|
2059 |
|
|
and then Present (Parent (Comp))
|
2060 |
|
|
and then Present (Expression (Parent (Comp)))
|
2061 |
|
|
then
|
2062 |
|
|
declare
|
2063 |
|
|
Alloc : constant Node_Id :=
|
2064 |
|
|
Check_Allocator (Expression (Parent (Comp)));
|
2065 |
|
|
|
2066 |
|
|
begin
|
2067 |
|
|
if Present (Alloc) then
|
2068 |
|
|
|
2069 |
|
|
-- If component is pointer to a classwide type, freeze
|
2070 |
|
|
-- the specific type in the expression being allocated.
|
2071 |
|
|
-- The expression may be a subtype indication, in which
|
2072 |
|
|
-- case freeze the subtype mark.
|
2073 |
|
|
|
2074 |
|
|
if Is_Class_Wide_Type
|
2075 |
|
|
(Designated_Type (Etype (Comp)))
|
2076 |
|
|
then
|
2077 |
|
|
if Is_Entity_Name (Expression (Alloc)) then
|
2078 |
|
|
Freeze_And_Append
|
2079 |
|
|
(Entity (Expression (Alloc)), Loc, Result);
|
2080 |
|
|
elsif
|
2081 |
|
|
Nkind (Expression (Alloc)) = N_Subtype_Indication
|
2082 |
|
|
then
|
2083 |
|
|
Freeze_And_Append
|
2084 |
|
|
(Entity (Subtype_Mark (Expression (Alloc))),
|
2085 |
|
|
Loc, Result);
|
2086 |
|
|
end if;
|
2087 |
|
|
|
2088 |
|
|
elsif Is_Itype (Designated_Type (Etype (Comp))) then
|
2089 |
|
|
Check_Itype (Etype (Comp));
|
2090 |
|
|
|
2091 |
|
|
else
|
2092 |
|
|
Freeze_And_Append
|
2093 |
|
|
(Designated_Type (Etype (Comp)), Loc, Result);
|
2094 |
|
|
end if;
|
2095 |
|
|
end if;
|
2096 |
|
|
end;
|
2097 |
|
|
|
2098 |
|
|
elsif Is_Access_Type (Etype (Comp))
|
2099 |
|
|
and then Is_Itype (Designated_Type (Etype (Comp)))
|
2100 |
|
|
then
|
2101 |
|
|
Check_Itype (Etype (Comp));
|
2102 |
|
|
|
2103 |
|
|
elsif Is_Array_Type (Etype (Comp))
|
2104 |
|
|
and then Is_Access_Type (Component_Type (Etype (Comp)))
|
2105 |
|
|
and then Present (Parent (Comp))
|
2106 |
|
|
and then Nkind (Parent (Comp)) = N_Component_Declaration
|
2107 |
|
|
and then Present (Expression (Parent (Comp)))
|
2108 |
|
|
and then Nkind (Expression (Parent (Comp))) = N_Aggregate
|
2109 |
|
|
and then Is_Fully_Defined
|
2110 |
|
|
(Designated_Type (Component_Type (Etype (Comp))))
|
2111 |
|
|
then
|
2112 |
|
|
Freeze_And_Append
|
2113 |
|
|
(Designated_Type
|
2114 |
|
|
(Component_Type (Etype (Comp))), Loc, Result);
|
2115 |
|
|
end if;
|
2116 |
|
|
|
2117 |
|
|
Prev := Comp;
|
2118 |
|
|
Next_Entity (Comp);
|
2119 |
|
|
end loop;
|
2120 |
|
|
|
2121 |
|
|
-- Deal with pragma Bit_Order
|
2122 |
|
|
|
2123 |
|
|
if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
|
2124 |
|
|
if not Placed_Component then
|
2125 |
|
|
ADC :=
|
2126 |
|
|
Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
|
2127 |
|
|
Error_Msg_N
|
2128 |
|
|
("?Bit_Order specification has no effect", ADC);
|
2129 |
|
|
Error_Msg_N
|
2130 |
|
|
("\?since no component clauses were specified", ADC);
|
2131 |
|
|
|
2132 |
|
|
-- Here is where we do Ada 2005 processing for bit order (the Ada
|
2133 |
|
|
-- 95 case was already taken care of above).
|
2134 |
|
|
|
2135 |
|
|
elsif Ada_Version >= Ada_05 then
|
2136 |
|
|
Adjust_Record_For_Reverse_Bit_Order (Rec);
|
2137 |
|
|
end if;
|
2138 |
|
|
end if;
|
2139 |
|
|
|
2140 |
|
|
-- Set OK_To_Reorder_Components depending on debug flags
|
2141 |
|
|
|
2142 |
|
|
if Rec = Base_Type (Rec)
|
2143 |
|
|
and then Convention (Rec) = Convention_Ada
|
2144 |
|
|
then
|
2145 |
|
|
if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
|
2146 |
|
|
or else
|
2147 |
|
|
(not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
|
2148 |
|
|
then
|
2149 |
|
|
Set_OK_To_Reorder_Components (Rec);
|
2150 |
|
|
end if;
|
2151 |
|
|
end if;
|
2152 |
|
|
|
2153 |
|
|
-- Check for useless pragma Pack when all components placed. We only
|
2154 |
|
|
-- do this check for record types, not subtypes, since a subtype may
|
2155 |
|
|
-- have all its components placed, and it still makes perfectly good
|
2156 |
|
|
-- sense to pack other subtypes or the parent type. We do not give
|
2157 |
|
|
-- this warning if Optimize_Alignment is set to Space, since the
|
2158 |
|
|
-- pragma Pack does have an effect in this case (it always resets
|
2159 |
|
|
-- the alignment to one).
|
2160 |
|
|
|
2161 |
|
|
if Ekind (Rec) = E_Record_Type
|
2162 |
|
|
and then Is_Packed (Rec)
|
2163 |
|
|
and then not Unplaced_Component
|
2164 |
|
|
and then Optimize_Alignment /= 'S'
|
2165 |
|
|
then
|
2166 |
|
|
-- Reset packed status. Probably not necessary, but we do it so
|
2167 |
|
|
-- that there is no chance of the back end doing something strange
|
2168 |
|
|
-- with this redundant indication of packing.
|
2169 |
|
|
|
2170 |
|
|
Set_Is_Packed (Rec, False);
|
2171 |
|
|
|
2172 |
|
|
-- Give warning if redundant constructs warnings on
|
2173 |
|
|
|
2174 |
|
|
if Warn_On_Redundant_Constructs then
|
2175 |
|
|
Error_Msg_N
|
2176 |
|
|
("?pragma Pack has no effect, no unplaced components",
|
2177 |
|
|
Get_Rep_Pragma (Rec, Name_Pack));
|
2178 |
|
|
end if;
|
2179 |
|
|
end if;
|
2180 |
|
|
|
2181 |
|
|
-- If this is the record corresponding to a remote type, freeze the
|
2182 |
|
|
-- remote type here since that is what we are semantically freezing.
|
2183 |
|
|
-- This prevents the freeze node for that type in an inner scope.
|
2184 |
|
|
|
2185 |
|
|
-- Also, Check for controlled components and unchecked unions.
|
2186 |
|
|
-- Finally, enforce the restriction that access attributes with a
|
2187 |
|
|
-- current instance prefix can only apply to limited types.
|
2188 |
|
|
|
2189 |
|
|
if Ekind (Rec) = E_Record_Type then
|
2190 |
|
|
if Present (Corresponding_Remote_Type (Rec)) then
|
2191 |
|
|
Freeze_And_Append
|
2192 |
|
|
(Corresponding_Remote_Type (Rec), Loc, Result);
|
2193 |
|
|
end if;
|
2194 |
|
|
|
2195 |
|
|
Comp := First_Component (Rec);
|
2196 |
|
|
while Present (Comp) loop
|
2197 |
|
|
|
2198 |
|
|
-- Do not set Has_Controlled_Component on a class-wide
|
2199 |
|
|
-- equivalent type. See Make_CW_Equivalent_Type.
|
2200 |
|
|
|
2201 |
|
|
if not Is_Class_Wide_Equivalent_Type (Rec)
|
2202 |
|
|
and then (Has_Controlled_Component (Etype (Comp))
|
2203 |
|
|
or else (Chars (Comp) /= Name_uParent
|
2204 |
|
|
and then Is_Controlled (Etype (Comp)))
|
2205 |
|
|
or else (Is_Protected_Type (Etype (Comp))
|
2206 |
|
|
and then Present
|
2207 |
|
|
(Corresponding_Record_Type
|
2208 |
|
|
(Etype (Comp)))
|
2209 |
|
|
and then Has_Controlled_Component
|
2210 |
|
|
(Corresponding_Record_Type
|
2211 |
|
|
(Etype (Comp)))))
|
2212 |
|
|
then
|
2213 |
|
|
Set_Has_Controlled_Component (Rec);
|
2214 |
|
|
exit;
|
2215 |
|
|
end if;
|
2216 |
|
|
|
2217 |
|
|
if Has_Unchecked_Union (Etype (Comp)) then
|
2218 |
|
|
Set_Has_Unchecked_Union (Rec);
|
2219 |
|
|
end if;
|
2220 |
|
|
|
2221 |
|
|
if Has_Per_Object_Constraint (Comp) then
|
2222 |
|
|
|
2223 |
|
|
-- Scan component declaration for likely misuses of current
|
2224 |
|
|
-- instance, either in a constraint or a default expression.
|
2225 |
|
|
|
2226 |
|
|
Check_Current_Instance (Parent (Comp));
|
2227 |
|
|
end if;
|
2228 |
|
|
|
2229 |
|
|
Next_Component (Comp);
|
2230 |
|
|
end loop;
|
2231 |
|
|
end if;
|
2232 |
|
|
|
2233 |
|
|
Set_Component_Alignment_If_Not_Set (Rec);
|
2234 |
|
|
|
2235 |
|
|
-- For first subtypes, check if there are any fixed-point fields with
|
2236 |
|
|
-- component clauses, where we must check the size. This is not done
|
2237 |
|
|
-- till the freeze point, since for fixed-point types, we do not know
|
2238 |
|
|
-- the size until the type is frozen. Similar processing applies to
|
2239 |
|
|
-- bit packed arrays.
|
2240 |
|
|
|
2241 |
|
|
if Is_First_Subtype (Rec) then
|
2242 |
|
|
Comp := First_Component (Rec);
|
2243 |
|
|
|
2244 |
|
|
while Present (Comp) loop
|
2245 |
|
|
if Present (Component_Clause (Comp))
|
2246 |
|
|
and then (Is_Fixed_Point_Type (Etype (Comp))
|
2247 |
|
|
or else
|
2248 |
|
|
Is_Bit_Packed_Array (Etype (Comp)))
|
2249 |
|
|
then
|
2250 |
|
|
Check_Size
|
2251 |
|
|
(Component_Name (Component_Clause (Comp)),
|
2252 |
|
|
Etype (Comp),
|
2253 |
|
|
Esize (Comp),
|
2254 |
|
|
Junk);
|
2255 |
|
|
end if;
|
2256 |
|
|
|
2257 |
|
|
Next_Component (Comp);
|
2258 |
|
|
end loop;
|
2259 |
|
|
end if;
|
2260 |
|
|
|
2261 |
|
|
-- Generate warning for applying C or C++ convention to a record
|
2262 |
|
|
-- with discriminants. This is suppressed for the unchecked union
|
2263 |
|
|
-- case, since the whole point in this case is interface C. We also
|
2264 |
|
|
-- do not generate this within instantiations, since we will have
|
2265 |
|
|
-- generated a message on the template.
|
2266 |
|
|
|
2267 |
|
|
if Has_Discriminants (E)
|
2268 |
|
|
and then not Is_Unchecked_Union (E)
|
2269 |
|
|
and then (Convention (E) = Convention_C
|
2270 |
|
|
or else
|
2271 |
|
|
Convention (E) = Convention_CPP)
|
2272 |
|
|
and then Comes_From_Source (E)
|
2273 |
|
|
and then not In_Instance
|
2274 |
|
|
and then not Has_Warnings_Off (E)
|
2275 |
|
|
and then not Has_Warnings_Off (Base_Type (E))
|
2276 |
|
|
then
|
2277 |
|
|
declare
|
2278 |
|
|
Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
|
2279 |
|
|
A2 : Node_Id;
|
2280 |
|
|
|
2281 |
|
|
begin
|
2282 |
|
|
if Present (Cprag) then
|
2283 |
|
|
A2 := Next (First (Pragma_Argument_Associations (Cprag)));
|
2284 |
|
|
|
2285 |
|
|
if Convention (E) = Convention_C then
|
2286 |
|
|
Error_Msg_N
|
2287 |
|
|
("?variant record has no direct equivalent in C", A2);
|
2288 |
|
|
else
|
2289 |
|
|
Error_Msg_N
|
2290 |
|
|
("?variant record has no direct equivalent in C++", A2);
|
2291 |
|
|
end if;
|
2292 |
|
|
|
2293 |
|
|
Error_Msg_NE
|
2294 |
|
|
("\?use of convention for type& is dubious", A2, E);
|
2295 |
|
|
end if;
|
2296 |
|
|
end;
|
2297 |
|
|
end if;
|
2298 |
|
|
|
2299 |
|
|
-- See if Size is too small as is (and implicit packing might help)
|
2300 |
|
|
|
2301 |
|
|
if not Is_Packed (Rec)
|
2302 |
|
|
|
2303 |
|
|
-- No implicit packing if even one component is explicitly placed
|
2304 |
|
|
|
2305 |
|
|
and then not Placed_Component
|
2306 |
|
|
|
2307 |
|
|
-- Must have size clause and all scalar components
|
2308 |
|
|
|
2309 |
|
|
and then Has_Size_Clause (Rec)
|
2310 |
|
|
and then All_Scalar_Components
|
2311 |
|
|
|
2312 |
|
|
-- Do not try implicit packing on records with discriminants, too
|
2313 |
|
|
-- complicated, especially in the variant record case.
|
2314 |
|
|
|
2315 |
|
|
and then not Has_Discriminants (Rec)
|
2316 |
|
|
|
2317 |
|
|
-- We can implicitly pack if the specified size of the record is
|
2318 |
|
|
-- less than the sum of the object sizes (no point in packing if
|
2319 |
|
|
-- this is not the case).
|
2320 |
|
|
|
2321 |
|
|
and then Esize (Rec) < Scalar_Component_Total_Esize
|
2322 |
|
|
|
2323 |
|
|
-- And the total RM size cannot be greater than the specified size
|
2324 |
|
|
-- since otherwise packing will not get us where we have to be!
|
2325 |
|
|
|
2326 |
|
|
and then Esize (Rec) >= Scalar_Component_Total_RM_Size
|
2327 |
|
|
|
2328 |
|
|
-- Never do implicit packing in CodePeer mode since we don't do
|
2329 |
|
|
-- any packing ever in this mode (why not???)
|
2330 |
|
|
|
2331 |
|
|
and then not CodePeer_Mode
|
2332 |
|
|
then
|
2333 |
|
|
-- If implicit packing enabled, do it
|
2334 |
|
|
|
2335 |
|
|
if Implicit_Packing then
|
2336 |
|
|
Set_Is_Packed (Rec);
|
2337 |
|
|
|
2338 |
|
|
-- Otherwise flag the size clause
|
2339 |
|
|
|
2340 |
|
|
else
|
2341 |
|
|
declare
|
2342 |
|
|
Sz : constant Node_Id := Size_Clause (Rec);
|
2343 |
|
|
begin
|
2344 |
|
|
Error_Msg_NE -- CODEFIX
|
2345 |
|
|
("size given for& too small", Sz, Rec);
|
2346 |
|
|
Error_Msg_N -- CODEFIX
|
2347 |
|
|
("\use explicit pragma Pack "
|
2348 |
|
|
& "or use pragma Implicit_Packing", Sz);
|
2349 |
|
|
end;
|
2350 |
|
|
end if;
|
2351 |
|
|
end if;
|
2352 |
|
|
end Freeze_Record_Type;
|
2353 |
|
|
|
2354 |
|
|
-- Start of processing for Freeze_Entity
|
2355 |
|
|
|
2356 |
|
|
begin
|
2357 |
|
|
-- We are going to test for various reasons why this entity need not be
|
2358 |
|
|
-- frozen here, but in the case of an Itype that's defined within a
|
2359 |
|
|
-- record, that test actually applies to the record.
|
2360 |
|
|
|
2361 |
|
|
if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
|
2362 |
|
|
Test_E := Scope (E);
|
2363 |
|
|
elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
|
2364 |
|
|
and then Is_Record_Type (Underlying_Type (Scope (E)))
|
2365 |
|
|
then
|
2366 |
|
|
Test_E := Underlying_Type (Scope (E));
|
2367 |
|
|
end if;
|
2368 |
|
|
|
2369 |
|
|
-- Do not freeze if already frozen since we only need one freeze node
|
2370 |
|
|
|
2371 |
|
|
if Is_Frozen (E) then
|
2372 |
|
|
return No_List;
|
2373 |
|
|
|
2374 |
|
|
-- It is improper to freeze an external entity within a generic because
|
2375 |
|
|
-- its freeze node will appear in a non-valid context. The entity will
|
2376 |
|
|
-- be frozen in the proper scope after the current generic is analyzed.
|
2377 |
|
|
|
2378 |
|
|
elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
|
2379 |
|
|
return No_List;
|
2380 |
|
|
|
2381 |
|
|
-- Do not freeze a global entity within an inner scope created during
|
2382 |
|
|
-- expansion. A call to subprogram E within some internal procedure
|
2383 |
|
|
-- (a stream attribute for example) might require freezing E, but the
|
2384 |
|
|
-- freeze node must appear in the same declarative part as E itself.
|
2385 |
|
|
-- The two-pass elaboration mechanism in gigi guarantees that E will
|
2386 |
|
|
-- be frozen before the inner call is elaborated. We exclude constants
|
2387 |
|
|
-- from this test, because deferred constants may be frozen early, and
|
2388 |
|
|
-- must be diagnosed (e.g. in the case of a deferred constant being used
|
2389 |
|
|
-- in a default expression). If the enclosing subprogram comes from
|
2390 |
|
|
-- source, or is a generic instance, then the freeze point is the one
|
2391 |
|
|
-- mandated by the language, and we freeze the entity. A subprogram that
|
2392 |
|
|
-- is a child unit body that acts as a spec does not have a spec that
|
2393 |
|
|
-- comes from source, but can only come from source.
|
2394 |
|
|
|
2395 |
|
|
elsif In_Open_Scopes (Scope (Test_E))
|
2396 |
|
|
and then Scope (Test_E) /= Current_Scope
|
2397 |
|
|
and then Ekind (Test_E) /= E_Constant
|
2398 |
|
|
then
|
2399 |
|
|
declare
|
2400 |
|
|
S : Entity_Id := Current_Scope;
|
2401 |
|
|
|
2402 |
|
|
begin
|
2403 |
|
|
while Present (S) loop
|
2404 |
|
|
if Is_Overloadable (S) then
|
2405 |
|
|
if Comes_From_Source (S)
|
2406 |
|
|
or else Is_Generic_Instance (S)
|
2407 |
|
|
or else Is_Child_Unit (S)
|
2408 |
|
|
then
|
2409 |
|
|
exit;
|
2410 |
|
|
else
|
2411 |
|
|
return No_List;
|
2412 |
|
|
end if;
|
2413 |
|
|
end if;
|
2414 |
|
|
|
2415 |
|
|
S := Scope (S);
|
2416 |
|
|
end loop;
|
2417 |
|
|
end;
|
2418 |
|
|
|
2419 |
|
|
-- Similarly, an inlined instance body may make reference to global
|
2420 |
|
|
-- entities, but these references cannot be the proper freezing point
|
2421 |
|
|
-- for them, and in the absence of inlining freezing will take place in
|
2422 |
|
|
-- their own scope. Normally instance bodies are analyzed after the
|
2423 |
|
|
-- enclosing compilation, and everything has been frozen at the proper
|
2424 |
|
|
-- place, but with front-end inlining an instance body is compiled
|
2425 |
|
|
-- before the end of the enclosing scope, and as a result out-of-order
|
2426 |
|
|
-- freezing must be prevented.
|
2427 |
|
|
|
2428 |
|
|
elsif Front_End_Inlining
|
2429 |
|
|
and then In_Instance_Body
|
2430 |
|
|
and then Present (Scope (Test_E))
|
2431 |
|
|
then
|
2432 |
|
|
declare
|
2433 |
|
|
S : Entity_Id := Scope (Test_E);
|
2434 |
|
|
|
2435 |
|
|
begin
|
2436 |
|
|
while Present (S) loop
|
2437 |
|
|
if Is_Generic_Instance (S) then
|
2438 |
|
|
exit;
|
2439 |
|
|
else
|
2440 |
|
|
S := Scope (S);
|
2441 |
|
|
end if;
|
2442 |
|
|
end loop;
|
2443 |
|
|
|
2444 |
|
|
if No (S) then
|
2445 |
|
|
return No_List;
|
2446 |
|
|
end if;
|
2447 |
|
|
end;
|
2448 |
|
|
end if;
|
2449 |
|
|
|
2450 |
|
|
-- Here to freeze the entity
|
2451 |
|
|
|
2452 |
|
|
Result := No_List;
|
2453 |
|
|
Set_Is_Frozen (E);
|
2454 |
|
|
|
2455 |
|
|
-- Case of entity being frozen is other than a type
|
2456 |
|
|
|
2457 |
|
|
if not Is_Type (E) then
|
2458 |
|
|
|
2459 |
|
|
-- If entity is exported or imported and does not have an external
|
2460 |
|
|
-- name, now is the time to provide the appropriate default name.
|
2461 |
|
|
-- Skip this if the entity is stubbed, since we don't need a name
|
2462 |
|
|
-- for any stubbed routine. For the case on intrinsics, if no
|
2463 |
|
|
-- external name is specified, then calls will be handled in
|
2464 |
|
|
-- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
|
2465 |
|
|
-- an external name is provided, then Expand_Intrinsic_Call leaves
|
2466 |
|
|
-- calls in place for expansion by GIGI.
|
2467 |
|
|
|
2468 |
|
|
if (Is_Imported (E) or else Is_Exported (E))
|
2469 |
|
|
and then No (Interface_Name (E))
|
2470 |
|
|
and then Convention (E) /= Convention_Stubbed
|
2471 |
|
|
and then Convention (E) /= Convention_Intrinsic
|
2472 |
|
|
then
|
2473 |
|
|
Set_Encoded_Interface_Name
|
2474 |
|
|
(E, Get_Default_External_Name (E));
|
2475 |
|
|
|
2476 |
|
|
-- If entity is an atomic object appearing in a declaration and
|
2477 |
|
|
-- the expression is an aggregate, assign it to a temporary to
|
2478 |
|
|
-- ensure that the actual assignment is done atomically rather
|
2479 |
|
|
-- than component-wise (the assignment to the temp may be done
|
2480 |
|
|
-- component-wise, but that is harmless).
|
2481 |
|
|
|
2482 |
|
|
elsif Is_Atomic (E)
|
2483 |
|
|
and then Nkind (Parent (E)) = N_Object_Declaration
|
2484 |
|
|
and then Present (Expression (Parent (E)))
|
2485 |
|
|
and then Nkind (Expression (Parent (E))) = N_Aggregate
|
2486 |
|
|
and then
|
2487 |
|
|
Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
|
2488 |
|
|
then
|
2489 |
|
|
null;
|
2490 |
|
|
end if;
|
2491 |
|
|
|
2492 |
|
|
-- For a subprogram, freeze all parameter types and also the return
|
2493 |
|
|
-- type (RM 13.14(14)). However skip this for internal subprograms.
|
2494 |
|
|
-- This is also the point where any extra formal parameters are
|
2495 |
|
|
-- created since we now know whether the subprogram will use a
|
2496 |
|
|
-- foreign convention.
|
2497 |
|
|
|
2498 |
|
|
if Is_Subprogram (E) then
|
2499 |
|
|
if not Is_Internal (E) then
|
2500 |
|
|
declare
|
2501 |
|
|
F_Type : Entity_Id;
|
2502 |
|
|
R_Type : Entity_Id;
|
2503 |
|
|
Warn_Node : Node_Id;
|
2504 |
|
|
|
2505 |
|
|
begin
|
2506 |
|
|
-- Loop through formals
|
2507 |
|
|
|
2508 |
|
|
Formal := First_Formal (E);
|
2509 |
|
|
while Present (Formal) loop
|
2510 |
|
|
F_Type := Etype (Formal);
|
2511 |
|
|
Freeze_And_Append (F_Type, Loc, Result);
|
2512 |
|
|
|
2513 |
|
|
if Is_Private_Type (F_Type)
|
2514 |
|
|
and then Is_Private_Type (Base_Type (F_Type))
|
2515 |
|
|
and then No (Full_View (Base_Type (F_Type)))
|
2516 |
|
|
and then not Is_Generic_Type (F_Type)
|
2517 |
|
|
and then not Is_Derived_Type (F_Type)
|
2518 |
|
|
then
|
2519 |
|
|
-- If the type of a formal is incomplete, subprogram
|
2520 |
|
|
-- is being frozen prematurely. Within an instance
|
2521 |
|
|
-- (but not within a wrapper package) this is an
|
2522 |
|
|
-- artifact of our need to regard the end of an
|
2523 |
|
|
-- instantiation as a freeze point. Otherwise it is
|
2524 |
|
|
-- a definite error.
|
2525 |
|
|
|
2526 |
|
|
if In_Instance then
|
2527 |
|
|
Set_Is_Frozen (E, False);
|
2528 |
|
|
return No_List;
|
2529 |
|
|
|
2530 |
|
|
elsif not After_Last_Declaration
|
2531 |
|
|
and then not Freezing_Library_Level_Tagged_Type
|
2532 |
|
|
then
|
2533 |
|
|
Error_Msg_Node_1 := F_Type;
|
2534 |
|
|
Error_Msg
|
2535 |
|
|
("type& must be fully defined before this point",
|
2536 |
|
|
Loc);
|
2537 |
|
|
end if;
|
2538 |
|
|
end if;
|
2539 |
|
|
|
2540 |
|
|
-- Check suspicious parameter for C function. These tests
|
2541 |
|
|
-- apply only to exported/imported subprograms.
|
2542 |
|
|
|
2543 |
|
|
if Warn_On_Export_Import
|
2544 |
|
|
and then Comes_From_Source (E)
|
2545 |
|
|
and then (Convention (E) = Convention_C
|
2546 |
|
|
or else
|
2547 |
|
|
Convention (E) = Convention_CPP)
|
2548 |
|
|
and then (Is_Imported (E) or else Is_Exported (E))
|
2549 |
|
|
and then Convention (E) /= Convention (Formal)
|
2550 |
|
|
and then not Has_Warnings_Off (E)
|
2551 |
|
|
and then not Has_Warnings_Off (F_Type)
|
2552 |
|
|
and then not Has_Warnings_Off (Formal)
|
2553 |
|
|
then
|
2554 |
|
|
-- Qualify mention of formals with subprogram name
|
2555 |
|
|
|
2556 |
|
|
Error_Msg_Qual_Level := 1;
|
2557 |
|
|
|
2558 |
|
|
-- Check suspicious use of fat C pointer
|
2559 |
|
|
|
2560 |
|
|
if Is_Access_Type (F_Type)
|
2561 |
|
|
and then Esize (F_Type) > Ttypes.System_Address_Size
|
2562 |
|
|
then
|
2563 |
|
|
Error_Msg_N
|
2564 |
|
|
("?type of & does not correspond to C pointer!",
|
2565 |
|
|
Formal);
|
2566 |
|
|
|
2567 |
|
|
-- Check suspicious return of boolean
|
2568 |
|
|
|
2569 |
|
|
elsif Root_Type (F_Type) = Standard_Boolean
|
2570 |
|
|
and then Convention (F_Type) = Convention_Ada
|
2571 |
|
|
and then not Has_Warnings_Off (F_Type)
|
2572 |
|
|
and then not Has_Size_Clause (F_Type)
|
2573 |
|
|
and then VM_Target = No_VM
|
2574 |
|
|
then
|
2575 |
|
|
Error_Msg_N
|
2576 |
|
|
("& is an 8-bit Ada Boolean?", Formal);
|
2577 |
|
|
Error_Msg_N
|
2578 |
|
|
("\use appropriate corresponding type in C "
|
2579 |
|
|
& "(e.g. char)?", Formal);
|
2580 |
|
|
|
2581 |
|
|
-- Check suspicious tagged type
|
2582 |
|
|
|
2583 |
|
|
elsif (Is_Tagged_Type (F_Type)
|
2584 |
|
|
or else (Is_Access_Type (F_Type)
|
2585 |
|
|
and then
|
2586 |
|
|
Is_Tagged_Type
|
2587 |
|
|
(Designated_Type (F_Type))))
|
2588 |
|
|
and then Convention (E) = Convention_C
|
2589 |
|
|
then
|
2590 |
|
|
Error_Msg_N
|
2591 |
|
|
("?& involves a tagged type which does not "
|
2592 |
|
|
& "correspond to any C type!", Formal);
|
2593 |
|
|
|
2594 |
|
|
-- Check wrong convention subprogram pointer
|
2595 |
|
|
|
2596 |
|
|
elsif Ekind (F_Type) = E_Access_Subprogram_Type
|
2597 |
|
|
and then not Has_Foreign_Convention (F_Type)
|
2598 |
|
|
then
|
2599 |
|
|
Error_Msg_N
|
2600 |
|
|
("?subprogram pointer & should "
|
2601 |
|
|
& "have foreign convention!", Formal);
|
2602 |
|
|
Error_Msg_Sloc := Sloc (F_Type);
|
2603 |
|
|
Error_Msg_NE
|
2604 |
|
|
("\?add Convention pragma to declaration of &#",
|
2605 |
|
|
Formal, F_Type);
|
2606 |
|
|
end if;
|
2607 |
|
|
|
2608 |
|
|
-- Turn off name qualification after message output
|
2609 |
|
|
|
2610 |
|
|
Error_Msg_Qual_Level := 0;
|
2611 |
|
|
end if;
|
2612 |
|
|
|
2613 |
|
|
-- Check for unconstrained array in exported foreign
|
2614 |
|
|
-- convention case.
|
2615 |
|
|
|
2616 |
|
|
if Has_Foreign_Convention (E)
|
2617 |
|
|
and then not Is_Imported (E)
|
2618 |
|
|
and then Is_Array_Type (F_Type)
|
2619 |
|
|
and then not Is_Constrained (F_Type)
|
2620 |
|
|
and then Warn_On_Export_Import
|
2621 |
|
|
|
2622 |
|
|
-- Exclude VM case, since both .NET and JVM can handle
|
2623 |
|
|
-- unconstrained arrays without a problem.
|
2624 |
|
|
|
2625 |
|
|
and then VM_Target = No_VM
|
2626 |
|
|
then
|
2627 |
|
|
Error_Msg_Qual_Level := 1;
|
2628 |
|
|
|
2629 |
|
|
-- If this is an inherited operation, place the
|
2630 |
|
|
-- warning on the derived type declaration, rather
|
2631 |
|
|
-- than on the original subprogram.
|
2632 |
|
|
|
2633 |
|
|
if Nkind (Original_Node (Parent (E))) =
|
2634 |
|
|
N_Full_Type_Declaration
|
2635 |
|
|
then
|
2636 |
|
|
Warn_Node := Parent (E);
|
2637 |
|
|
|
2638 |
|
|
if Formal = First_Formal (E) then
|
2639 |
|
|
Error_Msg_NE
|
2640 |
|
|
("?in inherited operation&", Warn_Node, E);
|
2641 |
|
|
end if;
|
2642 |
|
|
else
|
2643 |
|
|
Warn_Node := Formal;
|
2644 |
|
|
end if;
|
2645 |
|
|
|
2646 |
|
|
Error_Msg_NE
|
2647 |
|
|
("?type of argument& is unconstrained array",
|
2648 |
|
|
Warn_Node, Formal);
|
2649 |
|
|
Error_Msg_NE
|
2650 |
|
|
("?foreign caller must pass bounds explicitly",
|
2651 |
|
|
Warn_Node, Formal);
|
2652 |
|
|
Error_Msg_Qual_Level := 0;
|
2653 |
|
|
end if;
|
2654 |
|
|
|
2655 |
|
|
if not From_With_Type (F_Type) then
|
2656 |
|
|
if Is_Access_Type (F_Type) then
|
2657 |
|
|
F_Type := Designated_Type (F_Type);
|
2658 |
|
|
end if;
|
2659 |
|
|
|
2660 |
|
|
-- If the formal is an anonymous_access_to_subprogram
|
2661 |
|
|
-- freeze the subprogram type as well, to prevent
|
2662 |
|
|
-- scope anomalies in gigi, because there is no other
|
2663 |
|
|
-- clear point at which it could be frozen.
|
2664 |
|
|
|
2665 |
|
|
if Is_Itype (Etype (Formal))
|
2666 |
|
|
and then Ekind (F_Type) = E_Subprogram_Type
|
2667 |
|
|
then
|
2668 |
|
|
Freeze_And_Append (F_Type, Loc, Result);
|
2669 |
|
|
end if;
|
2670 |
|
|
end if;
|
2671 |
|
|
|
2672 |
|
|
Next_Formal (Formal);
|
2673 |
|
|
end loop;
|
2674 |
|
|
|
2675 |
|
|
-- Case of function: similar checks on return type
|
2676 |
|
|
|
2677 |
|
|
if Ekind (E) = E_Function then
|
2678 |
|
|
|
2679 |
|
|
-- Freeze return type
|
2680 |
|
|
|
2681 |
|
|
R_Type := Etype (E);
|
2682 |
|
|
Freeze_And_Append (R_Type, Loc, Result);
|
2683 |
|
|
|
2684 |
|
|
-- Check suspicious return type for C function
|
2685 |
|
|
|
2686 |
|
|
if Warn_On_Export_Import
|
2687 |
|
|
and then (Convention (E) = Convention_C
|
2688 |
|
|
or else
|
2689 |
|
|
Convention (E) = Convention_CPP)
|
2690 |
|
|
and then (Is_Imported (E) or else Is_Exported (E))
|
2691 |
|
|
then
|
2692 |
|
|
-- Check suspicious return of fat C pointer
|
2693 |
|
|
|
2694 |
|
|
if Is_Access_Type (R_Type)
|
2695 |
|
|
and then Esize (R_Type) > Ttypes.System_Address_Size
|
2696 |
|
|
and then not Has_Warnings_Off (E)
|
2697 |
|
|
and then not Has_Warnings_Off (R_Type)
|
2698 |
|
|
then
|
2699 |
|
|
Error_Msg_N
|
2700 |
|
|
("?return type of& does not "
|
2701 |
|
|
& "correspond to C pointer!", E);
|
2702 |
|
|
|
2703 |
|
|
-- Check suspicious return of boolean
|
2704 |
|
|
|
2705 |
|
|
elsif Root_Type (R_Type) = Standard_Boolean
|
2706 |
|
|
and then Convention (R_Type) = Convention_Ada
|
2707 |
|
|
and then VM_Target = No_VM
|
2708 |
|
|
and then not Has_Warnings_Off (E)
|
2709 |
|
|
and then not Has_Warnings_Off (R_Type)
|
2710 |
|
|
and then not Has_Size_Clause (R_Type)
|
2711 |
|
|
then
|
2712 |
|
|
declare
|
2713 |
|
|
N : constant Node_Id :=
|
2714 |
|
|
Result_Definition (Declaration_Node (E));
|
2715 |
|
|
begin
|
2716 |
|
|
Error_Msg_NE
|
2717 |
|
|
("return type of & is an 8-bit Ada Boolean?",
|
2718 |
|
|
N, E);
|
2719 |
|
|
Error_Msg_NE
|
2720 |
|
|
("\use appropriate corresponding type in C "
|
2721 |
|
|
& "(e.g. char)?", N, E);
|
2722 |
|
|
end;
|
2723 |
|
|
|
2724 |
|
|
-- Check suspicious return tagged type
|
2725 |
|
|
|
2726 |
|
|
elsif (Is_Tagged_Type (R_Type)
|
2727 |
|
|
or else (Is_Access_Type (R_Type)
|
2728 |
|
|
and then
|
2729 |
|
|
Is_Tagged_Type
|
2730 |
|
|
(Designated_Type (R_Type))))
|
2731 |
|
|
and then Convention (E) = Convention_C
|
2732 |
|
|
and then not Has_Warnings_Off (E)
|
2733 |
|
|
and then not Has_Warnings_Off (R_Type)
|
2734 |
|
|
then
|
2735 |
|
|
Error_Msg_N
|
2736 |
|
|
("?return type of & does not "
|
2737 |
|
|
& "correspond to C type!", E);
|
2738 |
|
|
|
2739 |
|
|
-- Check return of wrong convention subprogram pointer
|
2740 |
|
|
|
2741 |
|
|
elsif Ekind (R_Type) = E_Access_Subprogram_Type
|
2742 |
|
|
and then not Has_Foreign_Convention (R_Type)
|
2743 |
|
|
and then not Has_Warnings_Off (E)
|
2744 |
|
|
and then not Has_Warnings_Off (R_Type)
|
2745 |
|
|
then
|
2746 |
|
|
Error_Msg_N
|
2747 |
|
|
("?& should return a foreign "
|
2748 |
|
|
& "convention subprogram pointer", E);
|
2749 |
|
|
Error_Msg_Sloc := Sloc (R_Type);
|
2750 |
|
|
Error_Msg_NE
|
2751 |
|
|
("\?add Convention pragma to declaration of& #",
|
2752 |
|
|
E, R_Type);
|
2753 |
|
|
end if;
|
2754 |
|
|
end if;
|
2755 |
|
|
|
2756 |
|
|
-- Give warning for suspicous return of a result of an
|
2757 |
|
|
-- unconstrained array type in a foreign convention
|
2758 |
|
|
-- function.
|
2759 |
|
|
|
2760 |
|
|
if Has_Foreign_Convention (E)
|
2761 |
|
|
|
2762 |
|
|
-- We are looking for a return of unconstrained array
|
2763 |
|
|
|
2764 |
|
|
and then Is_Array_Type (R_Type)
|
2765 |
|
|
and then not Is_Constrained (R_Type)
|
2766 |
|
|
|
2767 |
|
|
-- Exclude imported routines, the warning does not
|
2768 |
|
|
-- belong on the import, but on the routine definition.
|
2769 |
|
|
|
2770 |
|
|
and then not Is_Imported (E)
|
2771 |
|
|
|
2772 |
|
|
-- Exclude VM case, since both .NET and JVM can handle
|
2773 |
|
|
-- return of unconstrained arrays without a problem.
|
2774 |
|
|
|
2775 |
|
|
and then VM_Target = No_VM
|
2776 |
|
|
|
2777 |
|
|
-- Check that general warning is enabled, and that it
|
2778 |
|
|
-- is not suppressed for this particular case.
|
2779 |
|
|
|
2780 |
|
|
and then Warn_On_Export_Import
|
2781 |
|
|
and then not Has_Warnings_Off (E)
|
2782 |
|
|
and then not Has_Warnings_Off (R_Type)
|
2783 |
|
|
then
|
2784 |
|
|
Error_Msg_N
|
2785 |
|
|
("?foreign convention function& should not " &
|
2786 |
|
|
"return unconstrained array!", E);
|
2787 |
|
|
end if;
|
2788 |
|
|
end if;
|
2789 |
|
|
end;
|
2790 |
|
|
end if;
|
2791 |
|
|
|
2792 |
|
|
-- Must freeze its parent first if it is a derived subprogram
|
2793 |
|
|
|
2794 |
|
|
if Present (Alias (E)) then
|
2795 |
|
|
Freeze_And_Append (Alias (E), Loc, Result);
|
2796 |
|
|
end if;
|
2797 |
|
|
|
2798 |
|
|
-- We don't freeze internal subprograms, because we don't normally
|
2799 |
|
|
-- want addition of extra formals or mechanism setting to happen
|
2800 |
|
|
-- for those. However we do pass through predefined dispatching
|
2801 |
|
|
-- cases, since extra formals may be needed in some cases, such as
|
2802 |
|
|
-- for the stream 'Input function (build-in-place formals).
|
2803 |
|
|
|
2804 |
|
|
if not Is_Internal (E)
|
2805 |
|
|
or else Is_Predefined_Dispatching_Operation (E)
|
2806 |
|
|
then
|
2807 |
|
|
Freeze_Subprogram (E);
|
2808 |
|
|
end if;
|
2809 |
|
|
|
2810 |
|
|
-- Here for other than a subprogram or type
|
2811 |
|
|
|
2812 |
|
|
else
|
2813 |
|
|
-- If entity has a type, and it is not a generic unit, then
|
2814 |
|
|
-- freeze it first (RM 13.14(10)).
|
2815 |
|
|
|
2816 |
|
|
if Present (Etype (E))
|
2817 |
|
|
and then Ekind (E) /= E_Generic_Function
|
2818 |
|
|
then
|
2819 |
|
|
Freeze_And_Append (Etype (E), Loc, Result);
|
2820 |
|
|
end if;
|
2821 |
|
|
|
2822 |
|
|
-- Special processing for objects created by object declaration
|
2823 |
|
|
|
2824 |
|
|
if Nkind (Declaration_Node (E)) = N_Object_Declaration then
|
2825 |
|
|
|
2826 |
|
|
-- Abstract type allowed only for C++ imported variables or
|
2827 |
|
|
-- constants.
|
2828 |
|
|
|
2829 |
|
|
-- Note: we inhibit this check for objects that do not come
|
2830 |
|
|
-- from source because there is at least one case (the
|
2831 |
|
|
-- expansion of x'class'input where x is abstract) where we
|
2832 |
|
|
-- legitimately generate an abstract object.
|
2833 |
|
|
|
2834 |
|
|
if Is_Abstract_Type (Etype (E))
|
2835 |
|
|
and then Comes_From_Source (Parent (E))
|
2836 |
|
|
and then not (Is_Imported (E)
|
2837 |
|
|
and then Is_CPP_Class (Etype (E)))
|
2838 |
|
|
then
|
2839 |
|
|
Error_Msg_N ("type of object cannot be abstract",
|
2840 |
|
|
Object_Definition (Parent (E)));
|
2841 |
|
|
|
2842 |
|
|
if Is_CPP_Class (Etype (E)) then
|
2843 |
|
|
Error_Msg_NE ("\} may need a cpp_constructor",
|
2844 |
|
|
Object_Definition (Parent (E)), Etype (E));
|
2845 |
|
|
end if;
|
2846 |
|
|
end if;
|
2847 |
|
|
|
2848 |
|
|
-- For object created by object declaration, perform required
|
2849 |
|
|
-- categorization (preelaborate and pure) checks. Defer these
|
2850 |
|
|
-- checks to freeze time since pragma Import inhibits default
|
2851 |
|
|
-- initialization and thus pragma Import affects these checks.
|
2852 |
|
|
|
2853 |
|
|
Validate_Object_Declaration (Declaration_Node (E));
|
2854 |
|
|
|
2855 |
|
|
-- If there is an address clause, check that it is valid
|
2856 |
|
|
|
2857 |
|
|
Check_Address_Clause (E);
|
2858 |
|
|
|
2859 |
|
|
-- If the object needs any kind of default initialization, an
|
2860 |
|
|
-- error must be issued if No_Default_Initialization applies.
|
2861 |
|
|
-- The check doesn't apply to imported objects, which are not
|
2862 |
|
|
-- ever default initialized, and is why the check is deferred
|
2863 |
|
|
-- until freezing, at which point we know if Import applies.
|
2864 |
|
|
-- Deferred constants are also exempted from this test because
|
2865 |
|
|
-- their completion is explicit, or through an import pragma.
|
2866 |
|
|
|
2867 |
|
|
if Ekind (E) = E_Constant
|
2868 |
|
|
and then Present (Full_View (E))
|
2869 |
|
|
then
|
2870 |
|
|
null;
|
2871 |
|
|
|
2872 |
|
|
elsif Comes_From_Source (E)
|
2873 |
|
|
and then not Is_Imported (E)
|
2874 |
|
|
and then not Has_Init_Expression (Declaration_Node (E))
|
2875 |
|
|
and then
|
2876 |
|
|
((Has_Non_Null_Base_Init_Proc (Etype (E))
|
2877 |
|
|
and then not No_Initialization (Declaration_Node (E))
|
2878 |
|
|
and then not Is_Value_Type (Etype (E))
|
2879 |
|
|
and then not Suppress_Init_Proc (Etype (E)))
|
2880 |
|
|
or else
|
2881 |
|
|
(Needs_Simple_Initialization (Etype (E))
|
2882 |
|
|
and then not Is_Internal (E)))
|
2883 |
|
|
then
|
2884 |
|
|
Has_Default_Initialization := True;
|
2885 |
|
|
Check_Restriction
|
2886 |
|
|
(No_Default_Initialization, Declaration_Node (E));
|
2887 |
|
|
end if;
|
2888 |
|
|
|
2889 |
|
|
-- Check that a Thread_Local_Storage variable does not have
|
2890 |
|
|
-- default initialization, and any explicit initialization must
|
2891 |
|
|
-- either be the null constant or a static constant.
|
2892 |
|
|
|
2893 |
|
|
if Has_Pragma_Thread_Local_Storage (E) then
|
2894 |
|
|
declare
|
2895 |
|
|
Decl : constant Node_Id := Declaration_Node (E);
|
2896 |
|
|
begin
|
2897 |
|
|
if Has_Default_Initialization
|
2898 |
|
|
or else
|
2899 |
|
|
(Has_Init_Expression (Decl)
|
2900 |
|
|
and then
|
2901 |
|
|
(No (Expression (Decl))
|
2902 |
|
|
or else not
|
2903 |
|
|
(Is_Static_Expression (Expression (Decl))
|
2904 |
|
|
or else
|
2905 |
|
|
Nkind (Expression (Decl)) = N_Null)))
|
2906 |
|
|
then
|
2907 |
|
|
Error_Msg_NE
|
2908 |
|
|
("Thread_Local_Storage variable& is "
|
2909 |
|
|
& "improperly initialized", Decl, E);
|
2910 |
|
|
Error_Msg_NE
|
2911 |
|
|
("\only allowed initialization is explicit "
|
2912 |
|
|
& "NULL or static expression", Decl, E);
|
2913 |
|
|
end if;
|
2914 |
|
|
end;
|
2915 |
|
|
end if;
|
2916 |
|
|
|
2917 |
|
|
-- For imported objects, set Is_Public unless there is also an
|
2918 |
|
|
-- address clause, which means that there is no external symbol
|
2919 |
|
|
-- needed for the Import (Is_Public may still be set for other
|
2920 |
|
|
-- unrelated reasons). Note that we delayed this processing
|
2921 |
|
|
-- till freeze time so that we can be sure not to set the flag
|
2922 |
|
|
-- if there is an address clause. If there is such a clause,
|
2923 |
|
|
-- then the only purpose of the Import pragma is to suppress
|
2924 |
|
|
-- implicit initialization.
|
2925 |
|
|
|
2926 |
|
|
if Is_Imported (E)
|
2927 |
|
|
and then No (Address_Clause (E))
|
2928 |
|
|
then
|
2929 |
|
|
Set_Is_Public (E);
|
2930 |
|
|
end if;
|
2931 |
|
|
|
2932 |
|
|
-- For convention C objects of an enumeration type, warn if
|
2933 |
|
|
-- the size is not integer size and no explicit size given.
|
2934 |
|
|
-- Skip warning for Boolean, and Character, assume programmer
|
2935 |
|
|
-- expects 8-bit sizes for these cases.
|
2936 |
|
|
|
2937 |
|
|
if (Convention (E) = Convention_C
|
2938 |
|
|
or else
|
2939 |
|
|
Convention (E) = Convention_CPP)
|
2940 |
|
|
and then Is_Enumeration_Type (Etype (E))
|
2941 |
|
|
and then not Is_Character_Type (Etype (E))
|
2942 |
|
|
and then not Is_Boolean_Type (Etype (E))
|
2943 |
|
|
and then Esize (Etype (E)) < Standard_Integer_Size
|
2944 |
|
|
and then not Has_Size_Clause (E)
|
2945 |
|
|
then
|
2946 |
|
|
Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
|
2947 |
|
|
Error_Msg_N
|
2948 |
|
|
("?convention C enumeration object has size less than ^",
|
2949 |
|
|
E);
|
2950 |
|
|
Error_Msg_N ("\?use explicit size clause to set size", E);
|
2951 |
|
|
end if;
|
2952 |
|
|
end if;
|
2953 |
|
|
|
2954 |
|
|
-- Check that a constant which has a pragma Volatile[_Components]
|
2955 |
|
|
-- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
|
2956 |
|
|
|
2957 |
|
|
-- Note: Atomic[_Components] also sets Volatile[_Components]
|
2958 |
|
|
|
2959 |
|
|
if Ekind (E) = E_Constant
|
2960 |
|
|
and then (Has_Volatile_Components (E) or else Is_Volatile (E))
|
2961 |
|
|
and then not Is_Imported (E)
|
2962 |
|
|
then
|
2963 |
|
|
-- Make sure we actually have a pragma, and have not merely
|
2964 |
|
|
-- inherited the indication from elsewhere (e.g. an address
|
2965 |
|
|
-- clause, which is not good enough in RM terms!)
|
2966 |
|
|
|
2967 |
|
|
if Has_Rep_Pragma (E, Name_Atomic)
|
2968 |
|
|
or else
|
2969 |
|
|
Has_Rep_Pragma (E, Name_Atomic_Components)
|
2970 |
|
|
then
|
2971 |
|
|
Error_Msg_N
|
2972 |
|
|
("stand alone atomic constant must be " &
|
2973 |
|
|
"imported (RM C.6(13))", E);
|
2974 |
|
|
|
2975 |
|
|
elsif Has_Rep_Pragma (E, Name_Volatile)
|
2976 |
|
|
or else
|
2977 |
|
|
Has_Rep_Pragma (E, Name_Volatile_Components)
|
2978 |
|
|
then
|
2979 |
|
|
Error_Msg_N
|
2980 |
|
|
("stand alone volatile constant must be " &
|
2981 |
|
|
"imported (RM C.6(13))", E);
|
2982 |
|
|
end if;
|
2983 |
|
|
end if;
|
2984 |
|
|
|
2985 |
|
|
-- Static objects require special handling
|
2986 |
|
|
|
2987 |
|
|
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
|
2988 |
|
|
and then Is_Statically_Allocated (E)
|
2989 |
|
|
then
|
2990 |
|
|
Freeze_Static_Object (E);
|
2991 |
|
|
end if;
|
2992 |
|
|
|
2993 |
|
|
-- Remaining step is to layout objects
|
2994 |
|
|
|
2995 |
|
|
if Ekind (E) = E_Variable
|
2996 |
|
|
or else
|
2997 |
|
|
Ekind (E) = E_Constant
|
2998 |
|
|
or else
|
2999 |
|
|
Ekind (E) = E_Loop_Parameter
|
3000 |
|
|
or else
|
3001 |
|
|
Is_Formal (E)
|
3002 |
|
|
then
|
3003 |
|
|
Layout_Object (E);
|
3004 |
|
|
end if;
|
3005 |
|
|
end if;
|
3006 |
|
|
|
3007 |
|
|
-- Case of a type or subtype being frozen
|
3008 |
|
|
|
3009 |
|
|
else
|
3010 |
|
|
-- We used to check here that a full type must have preelaborable
|
3011 |
|
|
-- initialization if it completes a private type specified with
|
3012 |
|
|
-- pragma Preelaborable_Intialization, but that missed cases where
|
3013 |
|
|
-- the types occur within a generic package, since the freezing
|
3014 |
|
|
-- that occurs within a containing scope generally skips traversal
|
3015 |
|
|
-- of a generic unit's declarations (those will be frozen within
|
3016 |
|
|
-- instances). This check was moved to Analyze_Package_Specification.
|
3017 |
|
|
|
3018 |
|
|
-- The type may be defined in a generic unit. This can occur when
|
3019 |
|
|
-- freezing a generic function that returns the type (which is
|
3020 |
|
|
-- defined in a parent unit). It is clearly meaningless to freeze
|
3021 |
|
|
-- this type. However, if it is a subtype, its size may be determi-
|
3022 |
|
|
-- nable and used in subsequent checks, so might as well try to
|
3023 |
|
|
-- compute it.
|
3024 |
|
|
|
3025 |
|
|
if Present (Scope (E))
|
3026 |
|
|
and then Is_Generic_Unit (Scope (E))
|
3027 |
|
|
then
|
3028 |
|
|
Check_Compile_Time_Size (E);
|
3029 |
|
|
return No_List;
|
3030 |
|
|
end if;
|
3031 |
|
|
|
3032 |
|
|
-- Deal with special cases of freezing for subtype
|
3033 |
|
|
|
3034 |
|
|
if E /= Base_Type (E) then
|
3035 |
|
|
|
3036 |
|
|
-- Before we do anything else, a specialized test for the case of
|
3037 |
|
|
-- a size given for an array where the array needs to be packed,
|
3038 |
|
|
-- but was not so the size cannot be honored. This would of course
|
3039 |
|
|
-- be caught by the backend, and indeed we don't catch all cases.
|
3040 |
|
|
-- The point is that we can give a better error message in those
|
3041 |
|
|
-- cases that we do catch with the circuitry here. Also if pragma
|
3042 |
|
|
-- Implicit_Packing is set, this is where the packing occurs.
|
3043 |
|
|
|
3044 |
|
|
-- The reason we do this so early is that the processing in the
|
3045 |
|
|
-- automatic packing case affects the layout of the base type, so
|
3046 |
|
|
-- it must be done before we freeze the base type.
|
3047 |
|
|
|
3048 |
|
|
if Is_Array_Type (E) then
|
3049 |
|
|
declare
|
3050 |
|
|
Lo, Hi : Node_Id;
|
3051 |
|
|
Ctyp : constant Entity_Id := Component_Type (E);
|
3052 |
|
|
|
3053 |
|
|
begin
|
3054 |
|
|
-- Check enabling conditions. These are straightforward
|
3055 |
|
|
-- except for the test for a limited composite type. This
|
3056 |
|
|
-- eliminates the rare case of a array of limited components
|
3057 |
|
|
-- where there are issues of whether or not we can go ahead
|
3058 |
|
|
-- and pack the array (since we can't freely pack and unpack
|
3059 |
|
|
-- arrays if they are limited).
|
3060 |
|
|
|
3061 |
|
|
-- Note that we check the root type explicitly because the
|
3062 |
|
|
-- whole point is we are doing this test before we have had
|
3063 |
|
|
-- a chance to freeze the base type (and it is that freeze
|
3064 |
|
|
-- action that causes stuff to be inherited).
|
3065 |
|
|
|
3066 |
|
|
if Present (Size_Clause (E))
|
3067 |
|
|
and then Known_Static_Esize (E)
|
3068 |
|
|
and then not Is_Packed (E)
|
3069 |
|
|
and then not Has_Pragma_Pack (E)
|
3070 |
|
|
and then Number_Dimensions (E) = 1
|
3071 |
|
|
and then not Has_Component_Size_Clause (E)
|
3072 |
|
|
and then Known_Static_Esize (Ctyp)
|
3073 |
|
|
and then not Is_Limited_Composite (E)
|
3074 |
|
|
and then not Is_Packed (Root_Type (E))
|
3075 |
|
|
and then not Has_Component_Size_Clause (Root_Type (E))
|
3076 |
|
|
and then not CodePeer_Mode
|
3077 |
|
|
then
|
3078 |
|
|
Get_Index_Bounds (First_Index (E), Lo, Hi);
|
3079 |
|
|
|
3080 |
|
|
if Compile_Time_Known_Value (Lo)
|
3081 |
|
|
and then Compile_Time_Known_Value (Hi)
|
3082 |
|
|
and then Known_Static_RM_Size (Ctyp)
|
3083 |
|
|
and then RM_Size (Ctyp) < 64
|
3084 |
|
|
then
|
3085 |
|
|
declare
|
3086 |
|
|
Lov : constant Uint := Expr_Value (Lo);
|
3087 |
|
|
Hiv : constant Uint := Expr_Value (Hi);
|
3088 |
|
|
Len : constant Uint := UI_Max
|
3089 |
|
|
(Uint_0,
|
3090 |
|
|
Hiv - Lov + 1);
|
3091 |
|
|
Rsiz : constant Uint := RM_Size (Ctyp);
|
3092 |
|
|
SZ : constant Node_Id := Size_Clause (E);
|
3093 |
|
|
Btyp : constant Entity_Id := Base_Type (E);
|
3094 |
|
|
|
3095 |
|
|
-- What we are looking for here is the situation where
|
3096 |
|
|
-- the RM_Size given would be exactly right if there
|
3097 |
|
|
-- was a pragma Pack (resulting in the component size
|
3098 |
|
|
-- being the same as the RM_Size). Furthermore, the
|
3099 |
|
|
-- component type size must be an odd size (not a
|
3100 |
|
|
-- multiple of storage unit). If the component RM size
|
3101 |
|
|
-- is an exact number of storage units that is a power
|
3102 |
|
|
-- of two, the array is not packed and has a standard
|
3103 |
|
|
-- representation.
|
3104 |
|
|
|
3105 |
|
|
begin
|
3106 |
|
|
if RM_Size (E) = Len * Rsiz
|
3107 |
|
|
and then Rsiz mod System_Storage_Unit /= 0
|
3108 |
|
|
then
|
3109 |
|
|
-- For implicit packing mode, just set the
|
3110 |
|
|
-- component size silently.
|
3111 |
|
|
|
3112 |
|
|
if Implicit_Packing then
|
3113 |
|
|
Set_Component_Size (Btyp, Rsiz);
|
3114 |
|
|
Set_Is_Bit_Packed_Array (Btyp);
|
3115 |
|
|
Set_Is_Packed (Btyp);
|
3116 |
|
|
Set_Has_Non_Standard_Rep (Btyp);
|
3117 |
|
|
|
3118 |
|
|
-- Otherwise give an error message
|
3119 |
|
|
|
3120 |
|
|
else
|
3121 |
|
|
Error_Msg_NE
|
3122 |
|
|
("size given for& too small", SZ, E);
|
3123 |
|
|
Error_Msg_N
|
3124 |
|
|
("\use explicit pragma Pack "
|
3125 |
|
|
& "or use pragma Implicit_Packing", SZ);
|
3126 |
|
|
end if;
|
3127 |
|
|
|
3128 |
|
|
elsif RM_Size (E) = Len * Rsiz
|
3129 |
|
|
and then Implicit_Packing
|
3130 |
|
|
and then
|
3131 |
|
|
(Rsiz / System_Storage_Unit = 1
|
3132 |
|
|
or else Rsiz / System_Storage_Unit = 2
|
3133 |
|
|
or else Rsiz / System_Storage_Unit = 4)
|
3134 |
|
|
then
|
3135 |
|
|
|
3136 |
|
|
-- Not a packed array, but indicate the desired
|
3137 |
|
|
-- component size, for the back-end.
|
3138 |
|
|
|
3139 |
|
|
Set_Component_Size (Btyp, Rsiz);
|
3140 |
|
|
end if;
|
3141 |
|
|
end;
|
3142 |
|
|
end if;
|
3143 |
|
|
end if;
|
3144 |
|
|
end;
|
3145 |
|
|
end if;
|
3146 |
|
|
|
3147 |
|
|
-- If ancestor subtype present, freeze that first. Note that this
|
3148 |
|
|
-- will also get the base type frozen.
|
3149 |
|
|
|
3150 |
|
|
Atype := Ancestor_Subtype (E);
|
3151 |
|
|
|
3152 |
|
|
if Present (Atype) then
|
3153 |
|
|
Freeze_And_Append (Atype, Loc, Result);
|
3154 |
|
|
|
3155 |
|
|
-- Otherwise freeze the base type of the entity before freezing
|
3156 |
|
|
-- the entity itself (RM 13.14(15)).
|
3157 |
|
|
|
3158 |
|
|
elsif E /= Base_Type (E) then
|
3159 |
|
|
Freeze_And_Append (Base_Type (E), Loc, Result);
|
3160 |
|
|
end if;
|
3161 |
|
|
|
3162 |
|
|
-- For a derived type, freeze its parent type first (RM 13.14(15))
|
3163 |
|
|
|
3164 |
|
|
elsif Is_Derived_Type (E) then
|
3165 |
|
|
Freeze_And_Append (Etype (E), Loc, Result);
|
3166 |
|
|
Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
|
3167 |
|
|
end if;
|
3168 |
|
|
|
3169 |
|
|
-- For array type, freeze index types and component type first
|
3170 |
|
|
-- before freezing the array (RM 13.14(15)).
|
3171 |
|
|
|
3172 |
|
|
if Is_Array_Type (E) then
|
3173 |
|
|
declare
|
3174 |
|
|
Ctyp : constant Entity_Id := Component_Type (E);
|
3175 |
|
|
|
3176 |
|
|
Non_Standard_Enum : Boolean := False;
|
3177 |
|
|
-- Set true if any of the index types is an enumeration type
|
3178 |
|
|
-- with a non-standard representation.
|
3179 |
|
|
|
3180 |
|
|
begin
|
3181 |
|
|
Freeze_And_Append (Ctyp, Loc, Result);
|
3182 |
|
|
|
3183 |
|
|
Indx := First_Index (E);
|
3184 |
|
|
while Present (Indx) loop
|
3185 |
|
|
Freeze_And_Append (Etype (Indx), Loc, Result);
|
3186 |
|
|
|
3187 |
|
|
if Is_Enumeration_Type (Etype (Indx))
|
3188 |
|
|
and then Has_Non_Standard_Rep (Etype (Indx))
|
3189 |
|
|
then
|
3190 |
|
|
Non_Standard_Enum := True;
|
3191 |
|
|
end if;
|
3192 |
|
|
|
3193 |
|
|
Next_Index (Indx);
|
3194 |
|
|
end loop;
|
3195 |
|
|
|
3196 |
|
|
-- Processing that is done only for base types
|
3197 |
|
|
|
3198 |
|
|
if Ekind (E) = E_Array_Type then
|
3199 |
|
|
|
3200 |
|
|
-- Propagate flags for component type
|
3201 |
|
|
|
3202 |
|
|
if Is_Controlled (Component_Type (E))
|
3203 |
|
|
or else Has_Controlled_Component (Ctyp)
|
3204 |
|
|
then
|
3205 |
|
|
Set_Has_Controlled_Component (E);
|
3206 |
|
|
end if;
|
3207 |
|
|
|
3208 |
|
|
if Has_Unchecked_Union (Component_Type (E)) then
|
3209 |
|
|
Set_Has_Unchecked_Union (E);
|
3210 |
|
|
end if;
|
3211 |
|
|
|
3212 |
|
|
-- If packing was requested or if the component size was set
|
3213 |
|
|
-- explicitly, then see if bit packing is required. This
|
3214 |
|
|
-- processing is only done for base types, since all the
|
3215 |
|
|
-- representation aspects involved are type-related. This
|
3216 |
|
|
-- is not just an optimization, if we start processing the
|
3217 |
|
|
-- subtypes, they interfere with the settings on the base
|
3218 |
|
|
-- type (this is because Is_Packed has a slightly different
|
3219 |
|
|
-- meaning before and after freezing).
|
3220 |
|
|
|
3221 |
|
|
declare
|
3222 |
|
|
Csiz : Uint;
|
3223 |
|
|
Esiz : Uint;
|
3224 |
|
|
|
3225 |
|
|
begin
|
3226 |
|
|
if (Is_Packed (E) or else Has_Pragma_Pack (E))
|
3227 |
|
|
and then not Has_Atomic_Components (E)
|
3228 |
|
|
and then Known_Static_RM_Size (Ctyp)
|
3229 |
|
|
then
|
3230 |
|
|
Csiz := UI_Max (RM_Size (Ctyp), 1);
|
3231 |
|
|
|
3232 |
|
|
elsif Known_Component_Size (E) then
|
3233 |
|
|
Csiz := Component_Size (E);
|
3234 |
|
|
|
3235 |
|
|
elsif not Known_Static_Esize (Ctyp) then
|
3236 |
|
|
Csiz := Uint_0;
|
3237 |
|
|
|
3238 |
|
|
else
|
3239 |
|
|
Esiz := Esize (Ctyp);
|
3240 |
|
|
|
3241 |
|
|
-- We can set the component size if it is less than
|
3242 |
|
|
-- 16, rounding it up to the next storage unit size.
|
3243 |
|
|
|
3244 |
|
|
if Esiz <= 8 then
|
3245 |
|
|
Csiz := Uint_8;
|
3246 |
|
|
elsif Esiz <= 16 then
|
3247 |
|
|
Csiz := Uint_16;
|
3248 |
|
|
else
|
3249 |
|
|
Csiz := Uint_0;
|
3250 |
|
|
end if;
|
3251 |
|
|
|
3252 |
|
|
-- Set component size up to match alignment if it
|
3253 |
|
|
-- would otherwise be less than the alignment. This
|
3254 |
|
|
-- deals with cases of types whose alignment exceeds
|
3255 |
|
|
-- their size (padded types).
|
3256 |
|
|
|
3257 |
|
|
if Csiz /= 0 then
|
3258 |
|
|
declare
|
3259 |
|
|
A : constant Uint := Alignment_In_Bits (Ctyp);
|
3260 |
|
|
begin
|
3261 |
|
|
if Csiz < A then
|
3262 |
|
|
Csiz := A;
|
3263 |
|
|
end if;
|
3264 |
|
|
end;
|
3265 |
|
|
end if;
|
3266 |
|
|
end if;
|
3267 |
|
|
|
3268 |
|
|
-- Case of component size that may result in packing
|
3269 |
|
|
|
3270 |
|
|
if 1 <= Csiz and then Csiz <= 64 then
|
3271 |
|
|
declare
|
3272 |
|
|
Ent : constant Entity_Id :=
|
3273 |
|
|
First_Subtype (E);
|
3274 |
|
|
Pack_Pragma : constant Node_Id :=
|
3275 |
|
|
Get_Rep_Pragma (Ent, Name_Pack);
|
3276 |
|
|
Comp_Size_C : constant Node_Id :=
|
3277 |
|
|
Get_Attribute_Definition_Clause
|
3278 |
|
|
(Ent, Attribute_Component_Size);
|
3279 |
|
|
begin
|
3280 |
|
|
-- Warn if we have pack and component size so that
|
3281 |
|
|
-- the pack is ignored.
|
3282 |
|
|
|
3283 |
|
|
-- Note: here we must check for the presence of a
|
3284 |
|
|
-- component size before checking for a Pack pragma
|
3285 |
|
|
-- to deal with the case where the array type is a
|
3286 |
|
|
-- derived type whose parent is currently private.
|
3287 |
|
|
|
3288 |
|
|
if Present (Comp_Size_C)
|
3289 |
|
|
and then Has_Pragma_Pack (Ent)
|
3290 |
|
|
then
|
3291 |
|
|
Error_Msg_Sloc := Sloc (Comp_Size_C);
|
3292 |
|
|
Error_Msg_NE
|
3293 |
|
|
("?pragma Pack for& ignored!",
|
3294 |
|
|
Pack_Pragma, Ent);
|
3295 |
|
|
Error_Msg_N
|
3296 |
|
|
("\?explicit component size given#!",
|
3297 |
|
|
Pack_Pragma);
|
3298 |
|
|
end if;
|
3299 |
|
|
|
3300 |
|
|
-- Set component size if not already set by a
|
3301 |
|
|
-- component size clause.
|
3302 |
|
|
|
3303 |
|
|
if not Present (Comp_Size_C) then
|
3304 |
|
|
Set_Component_Size (E, Csiz);
|
3305 |
|
|
end if;
|
3306 |
|
|
|
3307 |
|
|
-- Check for base type of 8, 16, 32 bits, where an
|
3308 |
|
|
-- unsigned subtype has a length one less than the
|
3309 |
|
|
-- base type (e.g. Natural subtype of Integer).
|
3310 |
|
|
|
3311 |
|
|
-- In such cases, if a component size was not set
|
3312 |
|
|
-- explicitly, then generate a warning.
|
3313 |
|
|
|
3314 |
|
|
if Has_Pragma_Pack (E)
|
3315 |
|
|
and then not Present (Comp_Size_C)
|
3316 |
|
|
and then
|
3317 |
|
|
(Csiz = 7 or else Csiz = 15 or else Csiz = 31)
|
3318 |
|
|
and then Esize (Base_Type (Ctyp)) = Csiz + 1
|
3319 |
|
|
then
|
3320 |
|
|
Error_Msg_Uint_1 := Csiz;
|
3321 |
|
|
|
3322 |
|
|
if Present (Pack_Pragma) then
|
3323 |
|
|
Error_Msg_N
|
3324 |
|
|
("?pragma Pack causes component size "
|
3325 |
|
|
& "to be ^!", Pack_Pragma);
|
3326 |
|
|
Error_Msg_N
|
3327 |
|
|
("\?use Component_Size to set "
|
3328 |
|
|
& "desired value!", Pack_Pragma);
|
3329 |
|
|
end if;
|
3330 |
|
|
end if;
|
3331 |
|
|
|
3332 |
|
|
-- Actual packing is not needed for 8, 16, 32, 64.
|
3333 |
|
|
-- Also not needed for 24 if alignment is 1.
|
3334 |
|
|
|
3335 |
|
|
if Csiz = 8
|
3336 |
|
|
or else Csiz = 16
|
3337 |
|
|
or else Csiz = 32
|
3338 |
|
|
or else Csiz = 64
|
3339 |
|
|
or else (Csiz = 24 and then Alignment (Ctyp) = 1)
|
3340 |
|
|
then
|
3341 |
|
|
-- Here the array was requested to be packed,
|
3342 |
|
|
-- but the packing request had no effect, so
|
3343 |
|
|
-- Is_Packed is reset.
|
3344 |
|
|
|
3345 |
|
|
-- Note: semantically this means that we lose
|
3346 |
|
|
-- track of the fact that a derived type
|
3347 |
|
|
-- inherited a pragma Pack that was non-
|
3348 |
|
|
-- effective, but that seems fine.
|
3349 |
|
|
|
3350 |
|
|
-- We regard a Pack pragma as a request to set
|
3351 |
|
|
-- a representation characteristic, and this
|
3352 |
|
|
-- request may be ignored.
|
3353 |
|
|
|
3354 |
|
|
Set_Is_Packed (Base_Type (E), False);
|
3355 |
|
|
|
3356 |
|
|
-- In all other cases, packing is indeed needed
|
3357 |
|
|
|
3358 |
|
|
else
|
3359 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (E));
|
3360 |
|
|
Set_Is_Bit_Packed_Array (Base_Type (E));
|
3361 |
|
|
Set_Is_Packed (Base_Type (E));
|
3362 |
|
|
end if;
|
3363 |
|
|
end;
|
3364 |
|
|
end if;
|
3365 |
|
|
end;
|
3366 |
|
|
|
3367 |
|
|
-- Processing that is done only for subtypes
|
3368 |
|
|
|
3369 |
|
|
else
|
3370 |
|
|
-- Acquire alignment from base type
|
3371 |
|
|
|
3372 |
|
|
if Unknown_Alignment (E) then
|
3373 |
|
|
Set_Alignment (E, Alignment (Base_Type (E)));
|
3374 |
|
|
Adjust_Esize_Alignment (E);
|
3375 |
|
|
end if;
|
3376 |
|
|
end if;
|
3377 |
|
|
|
3378 |
|
|
-- For bit-packed arrays, check the size
|
3379 |
|
|
|
3380 |
|
|
if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
|
3381 |
|
|
declare
|
3382 |
|
|
SizC : constant Node_Id := Size_Clause (E);
|
3383 |
|
|
|
3384 |
|
|
Discard : Boolean;
|
3385 |
|
|
pragma Warnings (Off, Discard);
|
3386 |
|
|
|
3387 |
|
|
begin
|
3388 |
|
|
-- It is not clear if it is possible to have no size
|
3389 |
|
|
-- clause at this stage, but it is not worth worrying
|
3390 |
|
|
-- about. Post error on the entity name in the size
|
3391 |
|
|
-- clause if present, else on the type entity itself.
|
3392 |
|
|
|
3393 |
|
|
if Present (SizC) then
|
3394 |
|
|
Check_Size (Name (SizC), E, RM_Size (E), Discard);
|
3395 |
|
|
else
|
3396 |
|
|
Check_Size (E, E, RM_Size (E), Discard);
|
3397 |
|
|
end if;
|
3398 |
|
|
end;
|
3399 |
|
|
end if;
|
3400 |
|
|
|
3401 |
|
|
-- If any of the index types was an enumeration type with
|
3402 |
|
|
-- a non-standard rep clause, then we indicate that the
|
3403 |
|
|
-- array type is always packed (even if it is not bit packed).
|
3404 |
|
|
|
3405 |
|
|
if Non_Standard_Enum then
|
3406 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (E));
|
3407 |
|
|
Set_Is_Packed (Base_Type (E));
|
3408 |
|
|
end if;
|
3409 |
|
|
|
3410 |
|
|
Set_Component_Alignment_If_Not_Set (E);
|
3411 |
|
|
|
3412 |
|
|
-- If the array is packed, we must create the packed array
|
3413 |
|
|
-- type to be used to actually implement the type. This is
|
3414 |
|
|
-- only needed for real array types (not for string literal
|
3415 |
|
|
-- types, since they are present only for the front end).
|
3416 |
|
|
|
3417 |
|
|
if Is_Packed (E)
|
3418 |
|
|
and then Ekind (E) /= E_String_Literal_Subtype
|
3419 |
|
|
then
|
3420 |
|
|
Create_Packed_Array_Type (E);
|
3421 |
|
|
Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
|
3422 |
|
|
|
3423 |
|
|
-- Size information of packed array type is copied to the
|
3424 |
|
|
-- array type, since this is really the representation. But
|
3425 |
|
|
-- do not override explicit existing size values. If the
|
3426 |
|
|
-- ancestor subtype is constrained the packed_array_type
|
3427 |
|
|
-- will be inherited from it, but the size may have been
|
3428 |
|
|
-- provided already, and must not be overridden either.
|
3429 |
|
|
|
3430 |
|
|
if not Has_Size_Clause (E)
|
3431 |
|
|
and then
|
3432 |
|
|
(No (Ancestor_Subtype (E))
|
3433 |
|
|
or else not Has_Size_Clause (Ancestor_Subtype (E)))
|
3434 |
|
|
then
|
3435 |
|
|
Set_Esize (E, Esize (Packed_Array_Type (E)));
|
3436 |
|
|
Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
|
3437 |
|
|
end if;
|
3438 |
|
|
|
3439 |
|
|
if not Has_Alignment_Clause (E) then
|
3440 |
|
|
Set_Alignment (E, Alignment (Packed_Array_Type (E)));
|
3441 |
|
|
end if;
|
3442 |
|
|
end if;
|
3443 |
|
|
|
3444 |
|
|
-- For non-packed arrays set the alignment of the array to the
|
3445 |
|
|
-- alignment of the component type if it is unknown. Skip this
|
3446 |
|
|
-- in atomic case (atomic arrays may need larger alignments).
|
3447 |
|
|
|
3448 |
|
|
if not Is_Packed (E)
|
3449 |
|
|
and then Unknown_Alignment (E)
|
3450 |
|
|
and then Known_Alignment (Ctyp)
|
3451 |
|
|
and then Known_Static_Component_Size (E)
|
3452 |
|
|
and then Known_Static_Esize (Ctyp)
|
3453 |
|
|
and then Esize (Ctyp) = Component_Size (E)
|
3454 |
|
|
and then not Is_Atomic (E)
|
3455 |
|
|
then
|
3456 |
|
|
Set_Alignment (E, Alignment (Component_Type (E)));
|
3457 |
|
|
end if;
|
3458 |
|
|
end;
|
3459 |
|
|
|
3460 |
|
|
-- For a class-wide type, the corresponding specific type is
|
3461 |
|
|
-- frozen as well (RM 13.14(15))
|
3462 |
|
|
|
3463 |
|
|
elsif Is_Class_Wide_Type (E) then
|
3464 |
|
|
Freeze_And_Append (Root_Type (E), Loc, Result);
|
3465 |
|
|
|
3466 |
|
|
-- If the base type of the class-wide type is still incomplete,
|
3467 |
|
|
-- the class-wide remains unfrozen as well. This is legal when
|
3468 |
|
|
-- E is the formal of a primitive operation of some other type
|
3469 |
|
|
-- which is being frozen.
|
3470 |
|
|
|
3471 |
|
|
if not Is_Frozen (Root_Type (E)) then
|
3472 |
|
|
Set_Is_Frozen (E, False);
|
3473 |
|
|
return Result;
|
3474 |
|
|
end if;
|
3475 |
|
|
|
3476 |
|
|
-- If the Class_Wide_Type is an Itype (when type is the anonymous
|
3477 |
|
|
-- parent of a derived type) and it is a library-level entity,
|
3478 |
|
|
-- generate an itype reference for it. Otherwise, its first
|
3479 |
|
|
-- explicit reference may be in an inner scope, which will be
|
3480 |
|
|
-- rejected by the back-end.
|
3481 |
|
|
|
3482 |
|
|
if Is_Itype (E)
|
3483 |
|
|
and then Is_Compilation_Unit (Scope (E))
|
3484 |
|
|
then
|
3485 |
|
|
declare
|
3486 |
|
|
Ref : constant Node_Id := Make_Itype_Reference (Loc);
|
3487 |
|
|
|
3488 |
|
|
begin
|
3489 |
|
|
Set_Itype (Ref, E);
|
3490 |
|
|
if No (Result) then
|
3491 |
|
|
Result := New_List (Ref);
|
3492 |
|
|
else
|
3493 |
|
|
Append (Ref, Result);
|
3494 |
|
|
end if;
|
3495 |
|
|
end;
|
3496 |
|
|
end if;
|
3497 |
|
|
|
3498 |
|
|
-- The equivalent type associated with a class-wide subtype needs
|
3499 |
|
|
-- to be frozen to ensure that its layout is done.
|
3500 |
|
|
|
3501 |
|
|
if Ekind (E) = E_Class_Wide_Subtype
|
3502 |
|
|
and then Present (Equivalent_Type (E))
|
3503 |
|
|
then
|
3504 |
|
|
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
|
3505 |
|
|
end if;
|
3506 |
|
|
|
3507 |
|
|
-- For a record (sub)type, freeze all the component types (RM
|
3508 |
|
|
-- 13.14(15). We test for E_Record_(sub)Type here, rather than using
|
3509 |
|
|
-- Is_Record_Type, because we don't want to attempt the freeze for
|
3510 |
|
|
-- the case of a private type with record extension (we will do that
|
3511 |
|
|
-- later when the full type is frozen).
|
3512 |
|
|
|
3513 |
|
|
elsif Ekind (E) = E_Record_Type
|
3514 |
|
|
or else Ekind (E) = E_Record_Subtype
|
3515 |
|
|
then
|
3516 |
|
|
Freeze_Record_Type (E);
|
3517 |
|
|
|
3518 |
|
|
-- For a concurrent type, freeze corresponding record type. This
|
3519 |
|
|
-- does not correspond to any specific rule in the RM, but the
|
3520 |
|
|
-- record type is essentially part of the concurrent type.
|
3521 |
|
|
-- Freeze as well all local entities. This includes record types
|
3522 |
|
|
-- created for entry parameter blocks, and whatever local entities
|
3523 |
|
|
-- may appear in the private part.
|
3524 |
|
|
|
3525 |
|
|
elsif Is_Concurrent_Type (E) then
|
3526 |
|
|
if Present (Corresponding_Record_Type (E)) then
|
3527 |
|
|
Freeze_And_Append
|
3528 |
|
|
(Corresponding_Record_Type (E), Loc, Result);
|
3529 |
|
|
end if;
|
3530 |
|
|
|
3531 |
|
|
Comp := First_Entity (E);
|
3532 |
|
|
while Present (Comp) loop
|
3533 |
|
|
if Is_Type (Comp) then
|
3534 |
|
|
Freeze_And_Append (Comp, Loc, Result);
|
3535 |
|
|
|
3536 |
|
|
elsif (Ekind (Comp)) /= E_Function then
|
3537 |
|
|
if Is_Itype (Etype (Comp))
|
3538 |
|
|
and then Underlying_Type (Scope (Etype (Comp))) = E
|
3539 |
|
|
then
|
3540 |
|
|
Undelay_Type (Etype (Comp));
|
3541 |
|
|
end if;
|
3542 |
|
|
|
3543 |
|
|
Freeze_And_Append (Etype (Comp), Loc, Result);
|
3544 |
|
|
end if;
|
3545 |
|
|
|
3546 |
|
|
Next_Entity (Comp);
|
3547 |
|
|
end loop;
|
3548 |
|
|
|
3549 |
|
|
-- Private types are required to point to the same freeze node as
|
3550 |
|
|
-- their corresponding full views. The freeze node itself has to
|
3551 |
|
|
-- point to the partial view of the entity (because from the partial
|
3552 |
|
|
-- view, we can retrieve the full view, but not the reverse).
|
3553 |
|
|
-- However, in order to freeze correctly, we need to freeze the full
|
3554 |
|
|
-- view. If we are freezing at the end of a scope (or within the
|
3555 |
|
|
-- scope of the private type), the partial and full views will have
|
3556 |
|
|
-- been swapped, the full view appears first in the entity chain and
|
3557 |
|
|
-- the swapping mechanism ensures that the pointers are properly set
|
3558 |
|
|
-- (on scope exit).
|
3559 |
|
|
|
3560 |
|
|
-- If we encounter the partial view before the full view (e.g. when
|
3561 |
|
|
-- freezing from another scope), we freeze the full view, and then
|
3562 |
|
|
-- set the pointers appropriately since we cannot rely on swapping to
|
3563 |
|
|
-- fix things up (subtypes in an outer scope might not get swapped).
|
3564 |
|
|
|
3565 |
|
|
elsif Is_Incomplete_Or_Private_Type (E)
|
3566 |
|
|
and then not Is_Generic_Type (E)
|
3567 |
|
|
then
|
3568 |
|
|
-- The construction of the dispatch table associated with library
|
3569 |
|
|
-- level tagged types forces freezing of all the primitives of the
|
3570 |
|
|
-- type, which may cause premature freezing of the partial view.
|
3571 |
|
|
-- For example:
|
3572 |
|
|
|
3573 |
|
|
-- package Pkg is
|
3574 |
|
|
-- type T is tagged private;
|
3575 |
|
|
-- type DT is new T with private;
|
3576 |
|
|
-- procedure Prim (X : in out T; Y : in out DT'class);
|
3577 |
|
|
-- private
|
3578 |
|
|
-- type T is tagged null record;
|
3579 |
|
|
-- Obj : T;
|
3580 |
|
|
-- type DT is new T with null record;
|
3581 |
|
|
-- end;
|
3582 |
|
|
|
3583 |
|
|
-- In this case the type will be frozen later by the usual
|
3584 |
|
|
-- mechanism: an object declaration, an instantiation, or the
|
3585 |
|
|
-- end of a declarative part.
|
3586 |
|
|
|
3587 |
|
|
if Is_Library_Level_Tagged_Type (E)
|
3588 |
|
|
and then not Present (Full_View (E))
|
3589 |
|
|
then
|
3590 |
|
|
Set_Is_Frozen (E, False);
|
3591 |
|
|
return Result;
|
3592 |
|
|
|
3593 |
|
|
-- Case of full view present
|
3594 |
|
|
|
3595 |
|
|
elsif Present (Full_View (E)) then
|
3596 |
|
|
|
3597 |
|
|
-- If full view has already been frozen, then no further
|
3598 |
|
|
-- processing is required
|
3599 |
|
|
|
3600 |
|
|
if Is_Frozen (Full_View (E)) then
|
3601 |
|
|
|
3602 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
3603 |
|
|
Set_Freeze_Node (E, Empty);
|
3604 |
|
|
Check_Debug_Info_Needed (E);
|
3605 |
|
|
|
3606 |
|
|
-- Otherwise freeze full view and patch the pointers so that
|
3607 |
|
|
-- the freeze node will elaborate both views in the back-end.
|
3608 |
|
|
|
3609 |
|
|
else
|
3610 |
|
|
declare
|
3611 |
|
|
Full : constant Entity_Id := Full_View (E);
|
3612 |
|
|
|
3613 |
|
|
begin
|
3614 |
|
|
if Is_Private_Type (Full)
|
3615 |
|
|
and then Present (Underlying_Full_View (Full))
|
3616 |
|
|
then
|
3617 |
|
|
Freeze_And_Append
|
3618 |
|
|
(Underlying_Full_View (Full), Loc, Result);
|
3619 |
|
|
end if;
|
3620 |
|
|
|
3621 |
|
|
Freeze_And_Append (Full, Loc, Result);
|
3622 |
|
|
|
3623 |
|
|
if Has_Delayed_Freeze (E) then
|
3624 |
|
|
F_Node := Freeze_Node (Full);
|
3625 |
|
|
|
3626 |
|
|
if Present (F_Node) then
|
3627 |
|
|
Set_Freeze_Node (E, F_Node);
|
3628 |
|
|
Set_Entity (F_Node, E);
|
3629 |
|
|
|
3630 |
|
|
else
|
3631 |
|
|
-- {Incomplete,Private}_Subtypes with Full_Views
|
3632 |
|
|
-- constrained by discriminants.
|
3633 |
|
|
|
3634 |
|
|
Set_Has_Delayed_Freeze (E, False);
|
3635 |
|
|
Set_Freeze_Node (E, Empty);
|
3636 |
|
|
end if;
|
3637 |
|
|
end if;
|
3638 |
|
|
end;
|
3639 |
|
|
|
3640 |
|
|
Check_Debug_Info_Needed (E);
|
3641 |
|
|
end if;
|
3642 |
|
|
|
3643 |
|
|
-- AI-117 requires that the convention of a partial view be the
|
3644 |
|
|
-- same as the convention of the full view. Note that this is a
|
3645 |
|
|
-- recognized breach of privacy, but it's essential for logical
|
3646 |
|
|
-- consistency of representation, and the lack of a rule in
|
3647 |
|
|
-- RM95 was an oversight.
|
3648 |
|
|
|
3649 |
|
|
Set_Convention (E, Convention (Full_View (E)));
|
3650 |
|
|
|
3651 |
|
|
Set_Size_Known_At_Compile_Time (E,
|
3652 |
|
|
Size_Known_At_Compile_Time (Full_View (E)));
|
3653 |
|
|
|
3654 |
|
|
-- Size information is copied from the full view to the
|
3655 |
|
|
-- incomplete or private view for consistency.
|
3656 |
|
|
|
3657 |
|
|
-- We skip this is the full view is not a type. This is very
|
3658 |
|
|
-- strange of course, and can only happen as a result of
|
3659 |
|
|
-- certain illegalities, such as a premature attempt to derive
|
3660 |
|
|
-- from an incomplete type.
|
3661 |
|
|
|
3662 |
|
|
if Is_Type (Full_View (E)) then
|
3663 |
|
|
Set_Size_Info (E, Full_View (E));
|
3664 |
|
|
Set_RM_Size (E, RM_Size (Full_View (E)));
|
3665 |
|
|
end if;
|
3666 |
|
|
|
3667 |
|
|
return Result;
|
3668 |
|
|
|
3669 |
|
|
-- Case of no full view present. If entity is derived or subtype,
|
3670 |
|
|
-- it is safe to freeze, correctness depends on the frozen status
|
3671 |
|
|
-- of parent. Otherwise it is either premature usage, or a Taft
|
3672 |
|
|
-- amendment type, so diagnosis is at the point of use and the
|
3673 |
|
|
-- type might be frozen later.
|
3674 |
|
|
|
3675 |
|
|
elsif E /= Base_Type (E)
|
3676 |
|
|
or else Is_Derived_Type (E)
|
3677 |
|
|
then
|
3678 |
|
|
null;
|
3679 |
|
|
|
3680 |
|
|
else
|
3681 |
|
|
Set_Is_Frozen (E, False);
|
3682 |
|
|
return No_List;
|
3683 |
|
|
end if;
|
3684 |
|
|
|
3685 |
|
|
-- For access subprogram, freeze types of all formals, the return
|
3686 |
|
|
-- type was already frozen, since it is the Etype of the function.
|
3687 |
|
|
-- Formal types can be tagged Taft amendment types, but otherwise
|
3688 |
|
|
-- they cannot be incomplete.
|
3689 |
|
|
|
3690 |
|
|
elsif Ekind (E) = E_Subprogram_Type then
|
3691 |
|
|
Formal := First_Formal (E);
|
3692 |
|
|
|
3693 |
|
|
while Present (Formal) loop
|
3694 |
|
|
if Ekind (Etype (Formal)) = E_Incomplete_Type
|
3695 |
|
|
and then No (Full_View (Etype (Formal)))
|
3696 |
|
|
and then not Is_Value_Type (Etype (Formal))
|
3697 |
|
|
then
|
3698 |
|
|
if Is_Tagged_Type (Etype (Formal)) then
|
3699 |
|
|
null;
|
3700 |
|
|
else
|
3701 |
|
|
Error_Msg_NE
|
3702 |
|
|
("invalid use of incomplete type&", E, Etype (Formal));
|
3703 |
|
|
end if;
|
3704 |
|
|
end if;
|
3705 |
|
|
|
3706 |
|
|
Freeze_And_Append (Etype (Formal), Loc, Result);
|
3707 |
|
|
Next_Formal (Formal);
|
3708 |
|
|
end loop;
|
3709 |
|
|
|
3710 |
|
|
Freeze_Subprogram (E);
|
3711 |
|
|
|
3712 |
|
|
-- For access to a protected subprogram, freeze the equivalent type
|
3713 |
|
|
-- (however this is not set if we are not generating code or if this
|
3714 |
|
|
-- is an anonymous type used just for resolution).
|
3715 |
|
|
|
3716 |
|
|
elsif Is_Access_Protected_Subprogram_Type (E) then
|
3717 |
|
|
if Present (Equivalent_Type (E)) then
|
3718 |
|
|
Freeze_And_Append (Equivalent_Type (E), Loc, Result);
|
3719 |
|
|
end if;
|
3720 |
|
|
end if;
|
3721 |
|
|
|
3722 |
|
|
-- Generic types are never seen by the back-end, and are also not
|
3723 |
|
|
-- processed by the expander (since the expander is turned off for
|
3724 |
|
|
-- generic processing), so we never need freeze nodes for them.
|
3725 |
|
|
|
3726 |
|
|
if Is_Generic_Type (E) then
|
3727 |
|
|
return Result;
|
3728 |
|
|
end if;
|
3729 |
|
|
|
3730 |
|
|
-- Some special processing for non-generic types to complete
|
3731 |
|
|
-- representation details not known till the freeze point.
|
3732 |
|
|
|
3733 |
|
|
if Is_Fixed_Point_Type (E) then
|
3734 |
|
|
Freeze_Fixed_Point_Type (E);
|
3735 |
|
|
|
3736 |
|
|
-- Some error checks required for ordinary fixed-point type. Defer
|
3737 |
|
|
-- these till the freeze-point since we need the small and range
|
3738 |
|
|
-- values. We only do these checks for base types
|
3739 |
|
|
|
3740 |
|
|
if Is_Ordinary_Fixed_Point_Type (E)
|
3741 |
|
|
and then E = Base_Type (E)
|
3742 |
|
|
then
|
3743 |
|
|
if Small_Value (E) < Ureal_2_M_80 then
|
3744 |
|
|
Error_Msg_Name_1 := Name_Small;
|
3745 |
|
|
Error_Msg_N
|
3746 |
|
|
("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
|
3747 |
|
|
|
3748 |
|
|
elsif Small_Value (E) > Ureal_2_80 then
|
3749 |
|
|
Error_Msg_Name_1 := Name_Small;
|
3750 |
|
|
Error_Msg_N
|
3751 |
|
|
("`&''%` too large, maximum allowed is 2.0'*'*80", E);
|
3752 |
|
|
end if;
|
3753 |
|
|
|
3754 |
|
|
if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
|
3755 |
|
|
Error_Msg_Name_1 := Name_First;
|
3756 |
|
|
Error_Msg_N
|
3757 |
|
|
("`&''%` too small, minimum allowed is -10.0'*'*36", E);
|
3758 |
|
|
end if;
|
3759 |
|
|
|
3760 |
|
|
if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
|
3761 |
|
|
Error_Msg_Name_1 := Name_Last;
|
3762 |
|
|
Error_Msg_N
|
3763 |
|
|
("`&''%` too large, maximum allowed is 10.0'*'*36", E);
|
3764 |
|
|
end if;
|
3765 |
|
|
end if;
|
3766 |
|
|
|
3767 |
|
|
elsif Is_Enumeration_Type (E) then
|
3768 |
|
|
Freeze_Enumeration_Type (E);
|
3769 |
|
|
|
3770 |
|
|
elsif Is_Integer_Type (E) then
|
3771 |
|
|
Adjust_Esize_For_Alignment (E);
|
3772 |
|
|
|
3773 |
|
|
if Is_Modular_Integer_Type (E)
|
3774 |
|
|
and then Warn_On_Suspicious_Modulus_Value
|
3775 |
|
|
then
|
3776 |
|
|
Check_Suspicious_Modulus (E);
|
3777 |
|
|
end if;
|
3778 |
|
|
|
3779 |
|
|
elsif Is_Access_Type (E) then
|
3780 |
|
|
|
3781 |
|
|
-- Check restriction for standard storage pool
|
3782 |
|
|
|
3783 |
|
|
if No (Associated_Storage_Pool (E)) then
|
3784 |
|
|
Check_Restriction (No_Standard_Storage_Pools, E);
|
3785 |
|
|
end if;
|
3786 |
|
|
|
3787 |
|
|
-- Deal with error message for pure access type. This is not an
|
3788 |
|
|
-- error in Ada 2005 if there is no pool (see AI-366).
|
3789 |
|
|
|
3790 |
|
|
if Is_Pure_Unit_Access_Type (E)
|
3791 |
|
|
and then (Ada_Version < Ada_05
|
3792 |
|
|
or else not No_Pool_Assigned (E))
|
3793 |
|
|
then
|
3794 |
|
|
Error_Msg_N ("named access type not allowed in pure unit", E);
|
3795 |
|
|
|
3796 |
|
|
if Ada_Version >= Ada_05 then
|
3797 |
|
|
Error_Msg_N
|
3798 |
|
|
("\would be legal if Storage_Size of 0 given?", E);
|
3799 |
|
|
|
3800 |
|
|
elsif No_Pool_Assigned (E) then
|
3801 |
|
|
Error_Msg_N
|
3802 |
|
|
("\would be legal in Ada 2005?", E);
|
3803 |
|
|
|
3804 |
|
|
else
|
3805 |
|
|
Error_Msg_N
|
3806 |
|
|
("\would be legal in Ada 2005 if "
|
3807 |
|
|
& "Storage_Size of 0 given?", E);
|
3808 |
|
|
end if;
|
3809 |
|
|
end if;
|
3810 |
|
|
end if;
|
3811 |
|
|
|
3812 |
|
|
-- Case of composite types
|
3813 |
|
|
|
3814 |
|
|
if Is_Composite_Type (E) then
|
3815 |
|
|
|
3816 |
|
|
-- AI-117 requires that all new primitives of a tagged type must
|
3817 |
|
|
-- inherit the convention of the full view of the type. Inherited
|
3818 |
|
|
-- and overriding operations are defined to inherit the convention
|
3819 |
|
|
-- of their parent or overridden subprogram (also specified in
|
3820 |
|
|
-- AI-117), which will have occurred earlier (in Derive_Subprogram
|
3821 |
|
|
-- and New_Overloaded_Entity). Here we set the convention of
|
3822 |
|
|
-- primitives that are still convention Ada, which will ensure
|
3823 |
|
|
-- that any new primitives inherit the type's convention. Class-
|
3824 |
|
|
-- wide types can have a foreign convention inherited from their
|
3825 |
|
|
-- specific type, but are excluded from this since they don't have
|
3826 |
|
|
-- any associated primitives.
|
3827 |
|
|
|
3828 |
|
|
if Is_Tagged_Type (E)
|
3829 |
|
|
and then not Is_Class_Wide_Type (E)
|
3830 |
|
|
and then Convention (E) /= Convention_Ada
|
3831 |
|
|
then
|
3832 |
|
|
declare
|
3833 |
|
|
Prim_List : constant Elist_Id := Primitive_Operations (E);
|
3834 |
|
|
Prim : Elmt_Id;
|
3835 |
|
|
begin
|
3836 |
|
|
Prim := First_Elmt (Prim_List);
|
3837 |
|
|
while Present (Prim) loop
|
3838 |
|
|
if Convention (Node (Prim)) = Convention_Ada then
|
3839 |
|
|
Set_Convention (Node (Prim), Convention (E));
|
3840 |
|
|
end if;
|
3841 |
|
|
|
3842 |
|
|
Next_Elmt (Prim);
|
3843 |
|
|
end loop;
|
3844 |
|
|
end;
|
3845 |
|
|
end if;
|
3846 |
|
|
end if;
|
3847 |
|
|
|
3848 |
|
|
-- Now that all types from which E may depend are frozen, see if the
|
3849 |
|
|
-- size is known at compile time, if it must be unsigned, or if
|
3850 |
|
|
-- strict alignment is required
|
3851 |
|
|
|
3852 |
|
|
Check_Compile_Time_Size (E);
|
3853 |
|
|
Check_Unsigned_Type (E);
|
3854 |
|
|
|
3855 |
|
|
if Base_Type (E) = E then
|
3856 |
|
|
Check_Strict_Alignment (E);
|
3857 |
|
|
end if;
|
3858 |
|
|
|
3859 |
|
|
-- Do not allow a size clause for a type which does not have a size
|
3860 |
|
|
-- that is known at compile time
|
3861 |
|
|
|
3862 |
|
|
if Has_Size_Clause (E)
|
3863 |
|
|
and then not Size_Known_At_Compile_Time (E)
|
3864 |
|
|
then
|
3865 |
|
|
-- Suppress this message if errors posted on E, even if we are
|
3866 |
|
|
-- in all errors mode, since this is often a junk message
|
3867 |
|
|
|
3868 |
|
|
if not Error_Posted (E) then
|
3869 |
|
|
Error_Msg_N
|
3870 |
|
|
("size clause not allowed for variable length type",
|
3871 |
|
|
Size_Clause (E));
|
3872 |
|
|
end if;
|
3873 |
|
|
end if;
|
3874 |
|
|
|
3875 |
|
|
-- Remaining process is to set/verify the representation information,
|
3876 |
|
|
-- in particular the size and alignment values. This processing is
|
3877 |
|
|
-- not required for generic types, since generic types do not play
|
3878 |
|
|
-- any part in code generation, and so the size and alignment values
|
3879 |
|
|
-- for such types are irrelevant.
|
3880 |
|
|
|
3881 |
|
|
if Is_Generic_Type (E) then
|
3882 |
|
|
return Result;
|
3883 |
|
|
|
3884 |
|
|
-- Otherwise we call the layout procedure
|
3885 |
|
|
|
3886 |
|
|
else
|
3887 |
|
|
Layout_Type (E);
|
3888 |
|
|
end if;
|
3889 |
|
|
|
3890 |
|
|
-- End of freeze processing for type entities
|
3891 |
|
|
end if;
|
3892 |
|
|
|
3893 |
|
|
-- Here is where we logically freeze the current entity. If it has a
|
3894 |
|
|
-- freeze node, then this is the point at which the freeze node is
|
3895 |
|
|
-- linked into the result list.
|
3896 |
|
|
|
3897 |
|
|
if Has_Delayed_Freeze (E) then
|
3898 |
|
|
|
3899 |
|
|
-- If a freeze node is already allocated, use it, otherwise allocate
|
3900 |
|
|
-- a new one. The preallocation happens in the case of anonymous base
|
3901 |
|
|
-- types, where we preallocate so that we can set First_Subtype_Link.
|
3902 |
|
|
-- Note that we reset the Sloc to the current freeze location.
|
3903 |
|
|
|
3904 |
|
|
if Present (Freeze_Node (E)) then
|
3905 |
|
|
F_Node := Freeze_Node (E);
|
3906 |
|
|
Set_Sloc (F_Node, Loc);
|
3907 |
|
|
|
3908 |
|
|
else
|
3909 |
|
|
F_Node := New_Node (N_Freeze_Entity, Loc);
|
3910 |
|
|
Set_Freeze_Node (E, F_Node);
|
3911 |
|
|
Set_Access_Types_To_Process (F_Node, No_Elist);
|
3912 |
|
|
Set_TSS_Elist (F_Node, No_Elist);
|
3913 |
|
|
Set_Actions (F_Node, No_List);
|
3914 |
|
|
end if;
|
3915 |
|
|
|
3916 |
|
|
Set_Entity (F_Node, E);
|
3917 |
|
|
|
3918 |
|
|
if Result = No_List then
|
3919 |
|
|
Result := New_List (F_Node);
|
3920 |
|
|
else
|
3921 |
|
|
Append (F_Node, Result);
|
3922 |
|
|
end if;
|
3923 |
|
|
|
3924 |
|
|
-- A final pass over record types with discriminants. If the type
|
3925 |
|
|
-- has an incomplete declaration, there may be constrained access
|
3926 |
|
|
-- subtypes declared elsewhere, which do not depend on the discrimi-
|
3927 |
|
|
-- nants of the type, and which are used as component types (i.e.
|
3928 |
|
|
-- the full view is a recursive type). The designated types of these
|
3929 |
|
|
-- subtypes can only be elaborated after the type itself, and they
|
3930 |
|
|
-- need an itype reference.
|
3931 |
|
|
|
3932 |
|
|
if Ekind (E) = E_Record_Type
|
3933 |
|
|
and then Has_Discriminants (E)
|
3934 |
|
|
then
|
3935 |
|
|
declare
|
3936 |
|
|
Comp : Entity_Id;
|
3937 |
|
|
IR : Node_Id;
|
3938 |
|
|
Typ : Entity_Id;
|
3939 |
|
|
|
3940 |
|
|
begin
|
3941 |
|
|
Comp := First_Component (E);
|
3942 |
|
|
|
3943 |
|
|
while Present (Comp) loop
|
3944 |
|
|
Typ := Etype (Comp);
|
3945 |
|
|
|
3946 |
|
|
if Ekind (Comp) = E_Component
|
3947 |
|
|
and then Is_Access_Type (Typ)
|
3948 |
|
|
and then Scope (Typ) /= E
|
3949 |
|
|
and then Base_Type (Designated_Type (Typ)) = E
|
3950 |
|
|
and then Is_Itype (Designated_Type (Typ))
|
3951 |
|
|
then
|
3952 |
|
|
IR := Make_Itype_Reference (Sloc (Comp));
|
3953 |
|
|
Set_Itype (IR, Designated_Type (Typ));
|
3954 |
|
|
Append (IR, Result);
|
3955 |
|
|
end if;
|
3956 |
|
|
|
3957 |
|
|
Next_Component (Comp);
|
3958 |
|
|
end loop;
|
3959 |
|
|
end;
|
3960 |
|
|
end if;
|
3961 |
|
|
end if;
|
3962 |
|
|
|
3963 |
|
|
-- When a type is frozen, the first subtype of the type is frozen as
|
3964 |
|
|
-- well (RM 13.14(15)). This has to be done after freezing the type,
|
3965 |
|
|
-- since obviously the first subtype depends on its own base type.
|
3966 |
|
|
|
3967 |
|
|
if Is_Type (E) then
|
3968 |
|
|
Freeze_And_Append (First_Subtype (E), Loc, Result);
|
3969 |
|
|
|
3970 |
|
|
-- If we just froze a tagged non-class wide record, then freeze the
|
3971 |
|
|
-- corresponding class-wide type. This must be done after the tagged
|
3972 |
|
|
-- type itself is frozen, because the class-wide type refers to the
|
3973 |
|
|
-- tagged type which generates the class.
|
3974 |
|
|
|
3975 |
|
|
if Is_Tagged_Type (E)
|
3976 |
|
|
and then not Is_Class_Wide_Type (E)
|
3977 |
|
|
and then Present (Class_Wide_Type (E))
|
3978 |
|
|
then
|
3979 |
|
|
Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
|
3980 |
|
|
end if;
|
3981 |
|
|
end if;
|
3982 |
|
|
|
3983 |
|
|
Check_Debug_Info_Needed (E);
|
3984 |
|
|
|
3985 |
|
|
-- Special handling for subprograms
|
3986 |
|
|
|
3987 |
|
|
if Is_Subprogram (E) then
|
3988 |
|
|
|
3989 |
|
|
-- If subprogram has address clause then reset Is_Public flag, since
|
3990 |
|
|
-- we do not want the backend to generate external references.
|
3991 |
|
|
|
3992 |
|
|
if Present (Address_Clause (E))
|
3993 |
|
|
and then not Is_Library_Level_Entity (E)
|
3994 |
|
|
then
|
3995 |
|
|
Set_Is_Public (E, False);
|
3996 |
|
|
|
3997 |
|
|
-- If no address clause and not intrinsic, then for imported
|
3998 |
|
|
-- subprogram in main unit, generate descriptor if we are in
|
3999 |
|
|
-- Propagate_Exceptions mode.
|
4000 |
|
|
|
4001 |
|
|
elsif Propagate_Exceptions
|
4002 |
|
|
and then Is_Imported (E)
|
4003 |
|
|
and then not Is_Intrinsic_Subprogram (E)
|
4004 |
|
|
and then Convention (E) /= Convention_Stubbed
|
4005 |
|
|
then
|
4006 |
|
|
if Result = No_List then
|
4007 |
|
|
Result := Empty_List;
|
4008 |
|
|
end if;
|
4009 |
|
|
end if;
|
4010 |
|
|
end if;
|
4011 |
|
|
|
4012 |
|
|
return Result;
|
4013 |
|
|
end Freeze_Entity;
|
4014 |
|
|
|
4015 |
|
|
-----------------------------
|
4016 |
|
|
-- Freeze_Enumeration_Type --
|
4017 |
|
|
-----------------------------
|
4018 |
|
|
|
4019 |
|
|
procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
|
4020 |
|
|
begin
|
4021 |
|
|
-- By default, if no size clause is present, an enumeration type with
|
4022 |
|
|
-- Convention C is assumed to interface to a C enum, and has integer
|
4023 |
|
|
-- size. This applies to types. For subtypes, verify that its base
|
4024 |
|
|
-- type has no size clause either.
|
4025 |
|
|
|
4026 |
|
|
if Has_Foreign_Convention (Typ)
|
4027 |
|
|
and then not Has_Size_Clause (Typ)
|
4028 |
|
|
and then not Has_Size_Clause (Base_Type (Typ))
|
4029 |
|
|
and then Esize (Typ) < Standard_Integer_Size
|
4030 |
|
|
then
|
4031 |
|
|
Init_Esize (Typ, Standard_Integer_Size);
|
4032 |
|
|
|
4033 |
|
|
else
|
4034 |
|
|
-- If the enumeration type interfaces to C, and it has a size clause
|
4035 |
|
|
-- that specifies less than int size, it warrants a warning. The
|
4036 |
|
|
-- user may intend the C type to be an enum or a char, so this is
|
4037 |
|
|
-- not by itself an error that the Ada compiler can detect, but it
|
4038 |
|
|
-- it is a worth a heads-up. For Boolean and Character types we
|
4039 |
|
|
-- assume that the programmer has the proper C type in mind.
|
4040 |
|
|
|
4041 |
|
|
if Convention (Typ) = Convention_C
|
4042 |
|
|
and then Has_Size_Clause (Typ)
|
4043 |
|
|
and then Esize (Typ) /= Esize (Standard_Integer)
|
4044 |
|
|
and then not Is_Boolean_Type (Typ)
|
4045 |
|
|
and then not Is_Character_Type (Typ)
|
4046 |
|
|
then
|
4047 |
|
|
Error_Msg_N
|
4048 |
|
|
("C enum types have the size of a C int?", Size_Clause (Typ));
|
4049 |
|
|
end if;
|
4050 |
|
|
|
4051 |
|
|
Adjust_Esize_For_Alignment (Typ);
|
4052 |
|
|
end if;
|
4053 |
|
|
end Freeze_Enumeration_Type;
|
4054 |
|
|
|
4055 |
|
|
-----------------------
|
4056 |
|
|
-- Freeze_Expression --
|
4057 |
|
|
-----------------------
|
4058 |
|
|
|
4059 |
|
|
procedure Freeze_Expression (N : Node_Id) is
|
4060 |
|
|
In_Spec_Exp : constant Boolean := In_Spec_Expression;
|
4061 |
|
|
Typ : Entity_Id;
|
4062 |
|
|
Nam : Entity_Id;
|
4063 |
|
|
Desig_Typ : Entity_Id;
|
4064 |
|
|
P : Node_Id;
|
4065 |
|
|
Parent_P : Node_Id;
|
4066 |
|
|
|
4067 |
|
|
Freeze_Outside : Boolean := False;
|
4068 |
|
|
-- This flag is set true if the entity must be frozen outside the
|
4069 |
|
|
-- current subprogram. This happens in the case of expander generated
|
4070 |
|
|
-- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
|
4071 |
|
|
-- not freeze all entities like other bodies, but which nevertheless
|
4072 |
|
|
-- may reference entities that have to be frozen before the body and
|
4073 |
|
|
-- obviously cannot be frozen inside the body.
|
4074 |
|
|
|
4075 |
|
|
function In_Exp_Body (N : Node_Id) return Boolean;
|
4076 |
|
|
-- Given an N_Handled_Sequence_Of_Statements node N, determines whether
|
4077 |
|
|
-- it is the handled statement sequence of an expander-generated
|
4078 |
|
|
-- subprogram (init proc, stream subprogram, or renaming as body).
|
4079 |
|
|
-- If so, this is not a freezing context.
|
4080 |
|
|
|
4081 |
|
|
-----------------
|
4082 |
|
|
-- In_Exp_Body --
|
4083 |
|
|
-----------------
|
4084 |
|
|
|
4085 |
|
|
function In_Exp_Body (N : Node_Id) return Boolean is
|
4086 |
|
|
P : Node_Id;
|
4087 |
|
|
Id : Entity_Id;
|
4088 |
|
|
|
4089 |
|
|
begin
|
4090 |
|
|
if Nkind (N) = N_Subprogram_Body then
|
4091 |
|
|
P := N;
|
4092 |
|
|
else
|
4093 |
|
|
P := Parent (N);
|
4094 |
|
|
end if;
|
4095 |
|
|
|
4096 |
|
|
if Nkind (P) /= N_Subprogram_Body then
|
4097 |
|
|
return False;
|
4098 |
|
|
|
4099 |
|
|
else
|
4100 |
|
|
Id := Defining_Unit_Name (Specification (P));
|
4101 |
|
|
|
4102 |
|
|
if Nkind (Id) = N_Defining_Identifier
|
4103 |
|
|
and then (Is_Init_Proc (Id) or else
|
4104 |
|
|
Is_TSS (Id, TSS_Stream_Input) or else
|
4105 |
|
|
Is_TSS (Id, TSS_Stream_Output) or else
|
4106 |
|
|
Is_TSS (Id, TSS_Stream_Read) or else
|
4107 |
|
|
Is_TSS (Id, TSS_Stream_Write) or else
|
4108 |
|
|
Nkind (Original_Node (P)) =
|
4109 |
|
|
N_Subprogram_Renaming_Declaration)
|
4110 |
|
|
then
|
4111 |
|
|
return True;
|
4112 |
|
|
else
|
4113 |
|
|
return False;
|
4114 |
|
|
end if;
|
4115 |
|
|
end if;
|
4116 |
|
|
end In_Exp_Body;
|
4117 |
|
|
|
4118 |
|
|
-- Start of processing for Freeze_Expression
|
4119 |
|
|
|
4120 |
|
|
begin
|
4121 |
|
|
-- Immediate return if freezing is inhibited. This flag is set by the
|
4122 |
|
|
-- analyzer to stop freezing on generated expressions that would cause
|
4123 |
|
|
-- freezing if they were in the source program, but which are not
|
4124 |
|
|
-- supposed to freeze, since they are created.
|
4125 |
|
|
|
4126 |
|
|
if Must_Not_Freeze (N) then
|
4127 |
|
|
return;
|
4128 |
|
|
end if;
|
4129 |
|
|
|
4130 |
|
|
-- If expression is non-static, then it does not freeze in a default
|
4131 |
|
|
-- expression, see section "Handling of Default Expressions" in the
|
4132 |
|
|
-- spec of package Sem for further details. Note that we have to
|
4133 |
|
|
-- make sure that we actually have a real expression (if we have
|
4134 |
|
|
-- a subtype indication, we can't test Is_Static_Expression!)
|
4135 |
|
|
|
4136 |
|
|
if In_Spec_Exp
|
4137 |
|
|
and then Nkind (N) in N_Subexpr
|
4138 |
|
|
and then not Is_Static_Expression (N)
|
4139 |
|
|
then
|
4140 |
|
|
return;
|
4141 |
|
|
end if;
|
4142 |
|
|
|
4143 |
|
|
-- Freeze type of expression if not frozen already
|
4144 |
|
|
|
4145 |
|
|
Typ := Empty;
|
4146 |
|
|
|
4147 |
|
|
if Nkind (N) in N_Has_Etype then
|
4148 |
|
|
if not Is_Frozen (Etype (N)) then
|
4149 |
|
|
Typ := Etype (N);
|
4150 |
|
|
|
4151 |
|
|
-- Base type may be an derived numeric type that is frozen at
|
4152 |
|
|
-- the point of declaration, but first_subtype is still unfrozen.
|
4153 |
|
|
|
4154 |
|
|
elsif not Is_Frozen (First_Subtype (Etype (N))) then
|
4155 |
|
|
Typ := First_Subtype (Etype (N));
|
4156 |
|
|
end if;
|
4157 |
|
|
end if;
|
4158 |
|
|
|
4159 |
|
|
-- For entity name, freeze entity if not frozen already. A special
|
4160 |
|
|
-- exception occurs for an identifier that did not come from source.
|
4161 |
|
|
-- We don't let such identifiers freeze a non-internal entity, i.e.
|
4162 |
|
|
-- an entity that did come from source, since such an identifier was
|
4163 |
|
|
-- generated by the expander, and cannot have any semantic effect on
|
4164 |
|
|
-- the freezing semantics. For example, this stops the parameter of
|
4165 |
|
|
-- an initialization procedure from freezing the variable.
|
4166 |
|
|
|
4167 |
|
|
if Is_Entity_Name (N)
|
4168 |
|
|
and then not Is_Frozen (Entity (N))
|
4169 |
|
|
and then (Nkind (N) /= N_Identifier
|
4170 |
|
|
or else Comes_From_Source (N)
|
4171 |
|
|
or else not Comes_From_Source (Entity (N)))
|
4172 |
|
|
then
|
4173 |
|
|
Nam := Entity (N);
|
4174 |
|
|
else
|
4175 |
|
|
Nam := Empty;
|
4176 |
|
|
end if;
|
4177 |
|
|
|
4178 |
|
|
-- For an allocator freeze designated type if not frozen already
|
4179 |
|
|
|
4180 |
|
|
-- For an aggregate whose component type is an access type, freeze the
|
4181 |
|
|
-- designated type now, so that its freeze does not appear within the
|
4182 |
|
|
-- loop that might be created in the expansion of the aggregate. If the
|
4183 |
|
|
-- designated type is a private type without full view, the expression
|
4184 |
|
|
-- cannot contain an allocator, so the type is not frozen.
|
4185 |
|
|
|
4186 |
|
|
-- For a function, we freeze the entity when the subprogram declaration
|
4187 |
|
|
-- is frozen, but a function call may appear in an initialization proc.
|
4188 |
|
|
-- before the declaration is frozen. We need to generate the extra
|
4189 |
|
|
-- formals, if any, to ensure that the expansion of the call includes
|
4190 |
|
|
-- the proper actuals. This only applies to Ada subprograms, not to
|
4191 |
|
|
-- imported ones.
|
4192 |
|
|
|
4193 |
|
|
Desig_Typ := Empty;
|
4194 |
|
|
|
4195 |
|
|
case Nkind (N) is
|
4196 |
|
|
when N_Allocator =>
|
4197 |
|
|
Desig_Typ := Designated_Type (Etype (N));
|
4198 |
|
|
|
4199 |
|
|
when N_Aggregate =>
|
4200 |
|
|
if Is_Array_Type (Etype (N))
|
4201 |
|
|
and then Is_Access_Type (Component_Type (Etype (N)))
|
4202 |
|
|
then
|
4203 |
|
|
Desig_Typ := Designated_Type (Component_Type (Etype (N)));
|
4204 |
|
|
end if;
|
4205 |
|
|
|
4206 |
|
|
when N_Selected_Component |
|
4207 |
|
|
N_Indexed_Component |
|
4208 |
|
|
N_Slice =>
|
4209 |
|
|
|
4210 |
|
|
if Is_Access_Type (Etype (Prefix (N))) then
|
4211 |
|
|
Desig_Typ := Designated_Type (Etype (Prefix (N)));
|
4212 |
|
|
end if;
|
4213 |
|
|
|
4214 |
|
|
when N_Identifier =>
|
4215 |
|
|
if Present (Nam)
|
4216 |
|
|
and then Ekind (Nam) = E_Function
|
4217 |
|
|
and then Nkind (Parent (N)) = N_Function_Call
|
4218 |
|
|
and then Convention (Nam) = Convention_Ada
|
4219 |
|
|
then
|
4220 |
|
|
Create_Extra_Formals (Nam);
|
4221 |
|
|
end if;
|
4222 |
|
|
|
4223 |
|
|
when others =>
|
4224 |
|
|
null;
|
4225 |
|
|
end case;
|
4226 |
|
|
|
4227 |
|
|
if Desig_Typ /= Empty
|
4228 |
|
|
and then (Is_Frozen (Desig_Typ)
|
4229 |
|
|
or else (not Is_Fully_Defined (Desig_Typ)))
|
4230 |
|
|
then
|
4231 |
|
|
Desig_Typ := Empty;
|
4232 |
|
|
end if;
|
4233 |
|
|
|
4234 |
|
|
-- All done if nothing needs freezing
|
4235 |
|
|
|
4236 |
|
|
if No (Typ)
|
4237 |
|
|
and then No (Nam)
|
4238 |
|
|
and then No (Desig_Typ)
|
4239 |
|
|
then
|
4240 |
|
|
return;
|
4241 |
|
|
end if;
|
4242 |
|
|
|
4243 |
|
|
-- Loop for looking at the right place to insert the freeze nodes,
|
4244 |
|
|
-- exiting from the loop when it is appropriate to insert the freeze
|
4245 |
|
|
-- node before the current node P.
|
4246 |
|
|
|
4247 |
|
|
-- Also checks som special exceptions to the freezing rules. These cases
|
4248 |
|
|
-- result in a direct return, bypassing the freeze action.
|
4249 |
|
|
|
4250 |
|
|
P := N;
|
4251 |
|
|
loop
|
4252 |
|
|
Parent_P := Parent (P);
|
4253 |
|
|
|
4254 |
|
|
-- If we don't have a parent, then we are not in a well-formed tree.
|
4255 |
|
|
-- This is an unusual case, but there are some legitimate situations
|
4256 |
|
|
-- in which this occurs, notably when the expressions in the range of
|
4257 |
|
|
-- a type declaration are resolved. We simply ignore the freeze
|
4258 |
|
|
-- request in this case. Is this right ???
|
4259 |
|
|
|
4260 |
|
|
if No (Parent_P) then
|
4261 |
|
|
return;
|
4262 |
|
|
end if;
|
4263 |
|
|
|
4264 |
|
|
-- See if we have got to an appropriate point in the tree
|
4265 |
|
|
|
4266 |
|
|
case Nkind (Parent_P) is
|
4267 |
|
|
|
4268 |
|
|
-- A special test for the exception of (RM 13.14(8)) for the case
|
4269 |
|
|
-- of per-object expressions (RM 3.8(18)) occurring in component
|
4270 |
|
|
-- definition or a discrete subtype definition. Note that we test
|
4271 |
|
|
-- for a component declaration which includes both cases we are
|
4272 |
|
|
-- interested in, and furthermore the tree does not have explicit
|
4273 |
|
|
-- nodes for either of these two constructs.
|
4274 |
|
|
|
4275 |
|
|
when N_Component_Declaration =>
|
4276 |
|
|
|
4277 |
|
|
-- The case we want to test for here is an identifier that is
|
4278 |
|
|
-- a per-object expression, this is either a discriminant that
|
4279 |
|
|
-- appears in a context other than the component declaration
|
4280 |
|
|
-- or it is a reference to the type of the enclosing construct.
|
4281 |
|
|
|
4282 |
|
|
-- For either of these cases, we skip the freezing
|
4283 |
|
|
|
4284 |
|
|
if not In_Spec_Expression
|
4285 |
|
|
and then Nkind (N) = N_Identifier
|
4286 |
|
|
and then (Present (Entity (N)))
|
4287 |
|
|
then
|
4288 |
|
|
-- We recognize the discriminant case by just looking for
|
4289 |
|
|
-- a reference to a discriminant. It can only be one for
|
4290 |
|
|
-- the enclosing construct. Skip freezing in this case.
|
4291 |
|
|
|
4292 |
|
|
if Ekind (Entity (N)) = E_Discriminant then
|
4293 |
|
|
return;
|
4294 |
|
|
|
4295 |
|
|
-- For the case of a reference to the enclosing record,
|
4296 |
|
|
-- (or task or protected type), we look for a type that
|
4297 |
|
|
-- matches the current scope.
|
4298 |
|
|
|
4299 |
|
|
elsif Entity (N) = Current_Scope then
|
4300 |
|
|
return;
|
4301 |
|
|
end if;
|
4302 |
|
|
end if;
|
4303 |
|
|
|
4304 |
|
|
-- If we have an enumeration literal that appears as the choice in
|
4305 |
|
|
-- the aggregate of an enumeration representation clause, then
|
4306 |
|
|
-- freezing does not occur (RM 13.14(10)).
|
4307 |
|
|
|
4308 |
|
|
when N_Enumeration_Representation_Clause =>
|
4309 |
|
|
|
4310 |
|
|
-- The case we are looking for is an enumeration literal
|
4311 |
|
|
|
4312 |
|
|
if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
|
4313 |
|
|
and then Is_Enumeration_Type (Etype (N))
|
4314 |
|
|
then
|
4315 |
|
|
-- If enumeration literal appears directly as the choice,
|
4316 |
|
|
-- do not freeze (this is the normal non-overloaded case)
|
4317 |
|
|
|
4318 |
|
|
if Nkind (Parent (N)) = N_Component_Association
|
4319 |
|
|
and then First (Choices (Parent (N))) = N
|
4320 |
|
|
then
|
4321 |
|
|
return;
|
4322 |
|
|
|
4323 |
|
|
-- If enumeration literal appears as the name of function
|
4324 |
|
|
-- which is the choice, then also do not freeze. This
|
4325 |
|
|
-- happens in the overloaded literal case, where the
|
4326 |
|
|
-- enumeration literal is temporarily changed to a function
|
4327 |
|
|
-- call for overloading analysis purposes.
|
4328 |
|
|
|
4329 |
|
|
elsif Nkind (Parent (N)) = N_Function_Call
|
4330 |
|
|
and then
|
4331 |
|
|
Nkind (Parent (Parent (N))) = N_Component_Association
|
4332 |
|
|
and then
|
4333 |
|
|
First (Choices (Parent (Parent (N)))) = Parent (N)
|
4334 |
|
|
then
|
4335 |
|
|
return;
|
4336 |
|
|
end if;
|
4337 |
|
|
end if;
|
4338 |
|
|
|
4339 |
|
|
-- Normally if the parent is a handled sequence of statements,
|
4340 |
|
|
-- then the current node must be a statement, and that is an
|
4341 |
|
|
-- appropriate place to insert a freeze node.
|
4342 |
|
|
|
4343 |
|
|
when N_Handled_Sequence_Of_Statements =>
|
4344 |
|
|
|
4345 |
|
|
-- An exception occurs when the sequence of statements is for
|
4346 |
|
|
-- an expander generated body that did not do the usual freeze
|
4347 |
|
|
-- all operation. In this case we usually want to freeze
|
4348 |
|
|
-- outside this body, not inside it, and we skip past the
|
4349 |
|
|
-- subprogram body that we are inside.
|
4350 |
|
|
|
4351 |
|
|
if In_Exp_Body (Parent_P) then
|
4352 |
|
|
|
4353 |
|
|
-- However, we *do* want to freeze at this point if we have
|
4354 |
|
|
-- an entity to freeze, and that entity is declared *inside*
|
4355 |
|
|
-- the body of the expander generated procedure. This case
|
4356 |
|
|
-- is recognized by the scope of the type, which is either
|
4357 |
|
|
-- the spec for some enclosing body, or (in the case of
|
4358 |
|
|
-- init_procs, for which there are no separate specs) the
|
4359 |
|
|
-- current scope.
|
4360 |
|
|
|
4361 |
|
|
declare
|
4362 |
|
|
Subp : constant Node_Id := Parent (Parent_P);
|
4363 |
|
|
Cspc : Entity_Id;
|
4364 |
|
|
|
4365 |
|
|
begin
|
4366 |
|
|
if Nkind (Subp) = N_Subprogram_Body then
|
4367 |
|
|
Cspc := Corresponding_Spec (Subp);
|
4368 |
|
|
|
4369 |
|
|
if (Present (Typ) and then Scope (Typ) = Cspc)
|
4370 |
|
|
or else
|
4371 |
|
|
(Present (Nam) and then Scope (Nam) = Cspc)
|
4372 |
|
|
then
|
4373 |
|
|
exit;
|
4374 |
|
|
|
4375 |
|
|
elsif Present (Typ)
|
4376 |
|
|
and then Scope (Typ) = Current_Scope
|
4377 |
|
|
and then Current_Scope = Defining_Entity (Subp)
|
4378 |
|
|
then
|
4379 |
|
|
exit;
|
4380 |
|
|
end if;
|
4381 |
|
|
end if;
|
4382 |
|
|
end;
|
4383 |
|
|
|
4384 |
|
|
-- If not that exception to the exception, then this is
|
4385 |
|
|
-- where we delay the freeze till outside the body.
|
4386 |
|
|
|
4387 |
|
|
Parent_P := Parent (Parent_P);
|
4388 |
|
|
Freeze_Outside := True;
|
4389 |
|
|
|
4390 |
|
|
-- Here if normal case where we are in handled statement
|
4391 |
|
|
-- sequence and want to do the insertion right there.
|
4392 |
|
|
|
4393 |
|
|
else
|
4394 |
|
|
exit;
|
4395 |
|
|
end if;
|
4396 |
|
|
|
4397 |
|
|
-- If parent is a body or a spec or a block, then the current node
|
4398 |
|
|
-- is a statement or declaration and we can insert the freeze node
|
4399 |
|
|
-- before it.
|
4400 |
|
|
|
4401 |
|
|
when N_Package_Specification |
|
4402 |
|
|
N_Package_Body |
|
4403 |
|
|
N_Subprogram_Body |
|
4404 |
|
|
N_Task_Body |
|
4405 |
|
|
N_Protected_Body |
|
4406 |
|
|
N_Entry_Body |
|
4407 |
|
|
N_Block_Statement => exit;
|
4408 |
|
|
|
4409 |
|
|
-- The expander is allowed to define types in any statements list,
|
4410 |
|
|
-- so any of the following parent nodes also mark a freezing point
|
4411 |
|
|
-- if the actual node is in a list of statements or declarations.
|
4412 |
|
|
|
4413 |
|
|
when N_Exception_Handler |
|
4414 |
|
|
N_If_Statement |
|
4415 |
|
|
N_Elsif_Part |
|
4416 |
|
|
N_Case_Statement_Alternative |
|
4417 |
|
|
N_Compilation_Unit_Aux |
|
4418 |
|
|
N_Selective_Accept |
|
4419 |
|
|
N_Accept_Alternative |
|
4420 |
|
|
N_Delay_Alternative |
|
4421 |
|
|
N_Conditional_Entry_Call |
|
4422 |
|
|
N_Entry_Call_Alternative |
|
4423 |
|
|
N_Triggering_Alternative |
|
4424 |
|
|
N_Abortable_Part |
|
4425 |
|
|
N_Freeze_Entity =>
|
4426 |
|
|
|
4427 |
|
|
exit when Is_List_Member (P);
|
4428 |
|
|
|
4429 |
|
|
-- Note: The N_Loop_Statement is a special case. A type that
|
4430 |
|
|
-- appears in the source can never be frozen in a loop (this
|
4431 |
|
|
-- occurs only because of a loop expanded by the expander), so we
|
4432 |
|
|
-- keep on going. Otherwise we terminate the search. Same is true
|
4433 |
|
|
-- of any entity which comes from source. (if they have predefined
|
4434 |
|
|
-- type, that type does not appear to come from source, but the
|
4435 |
|
|
-- entity should not be frozen here).
|
4436 |
|
|
|
4437 |
|
|
when N_Loop_Statement =>
|
4438 |
|
|
exit when not Comes_From_Source (Etype (N))
|
4439 |
|
|
and then (No (Nam) or else not Comes_From_Source (Nam));
|
4440 |
|
|
|
4441 |
|
|
-- For all other cases, keep looking at parents
|
4442 |
|
|
|
4443 |
|
|
when others =>
|
4444 |
|
|
null;
|
4445 |
|
|
end case;
|
4446 |
|
|
|
4447 |
|
|
-- We fall through the case if we did not yet find the proper
|
4448 |
|
|
-- place in the free for inserting the freeze node, so climb!
|
4449 |
|
|
|
4450 |
|
|
P := Parent_P;
|
4451 |
|
|
end loop;
|
4452 |
|
|
|
4453 |
|
|
-- If the expression appears in a record or an initialization procedure,
|
4454 |
|
|
-- the freeze nodes are collected and attached to the current scope, to
|
4455 |
|
|
-- be inserted and analyzed on exit from the scope, to insure that
|
4456 |
|
|
-- generated entities appear in the correct scope. If the expression is
|
4457 |
|
|
-- a default for a discriminant specification, the scope is still void.
|
4458 |
|
|
-- The expression can also appear in the discriminant part of a private
|
4459 |
|
|
-- or concurrent type.
|
4460 |
|
|
|
4461 |
|
|
-- If the expression appears in a constrained subcomponent of an
|
4462 |
|
|
-- enclosing record declaration, the freeze nodes must be attached to
|
4463 |
|
|
-- the outer record type so they can eventually be placed in the
|
4464 |
|
|
-- enclosing declaration list.
|
4465 |
|
|
|
4466 |
|
|
-- The other case requiring this special handling is if we are in a
|
4467 |
|
|
-- default expression, since in that case we are about to freeze a
|
4468 |
|
|
-- static type, and the freeze scope needs to be the outer scope, not
|
4469 |
|
|
-- the scope of the subprogram with the default parameter.
|
4470 |
|
|
|
4471 |
|
|
-- For default expressions and other spec expressions in generic units,
|
4472 |
|
|
-- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
|
4473 |
|
|
-- placing them at the proper place, after the generic unit.
|
4474 |
|
|
|
4475 |
|
|
if (In_Spec_Exp and not Inside_A_Generic)
|
4476 |
|
|
or else Freeze_Outside
|
4477 |
|
|
or else (Is_Type (Current_Scope)
|
4478 |
|
|
and then (not Is_Concurrent_Type (Current_Scope)
|
4479 |
|
|
or else not Has_Completion (Current_Scope)))
|
4480 |
|
|
or else Ekind (Current_Scope) = E_Void
|
4481 |
|
|
then
|
4482 |
|
|
declare
|
4483 |
|
|
Loc : constant Source_Ptr := Sloc (Current_Scope);
|
4484 |
|
|
Freeze_Nodes : List_Id := No_List;
|
4485 |
|
|
Pos : Int := Scope_Stack.Last;
|
4486 |
|
|
|
4487 |
|
|
begin
|
4488 |
|
|
if Present (Desig_Typ) then
|
4489 |
|
|
Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
|
4490 |
|
|
end if;
|
4491 |
|
|
|
4492 |
|
|
if Present (Typ) then
|
4493 |
|
|
Freeze_And_Append (Typ, Loc, Freeze_Nodes);
|
4494 |
|
|
end if;
|
4495 |
|
|
|
4496 |
|
|
if Present (Nam) then
|
4497 |
|
|
Freeze_And_Append (Nam, Loc, Freeze_Nodes);
|
4498 |
|
|
end if;
|
4499 |
|
|
|
4500 |
|
|
-- The current scope may be that of a constrained component of
|
4501 |
|
|
-- an enclosing record declaration, which is above the current
|
4502 |
|
|
-- scope in the scope stack.
|
4503 |
|
|
|
4504 |
|
|
if Is_Record_Type (Scope (Current_Scope)) then
|
4505 |
|
|
Pos := Pos - 1;
|
4506 |
|
|
end if;
|
4507 |
|
|
|
4508 |
|
|
if Is_Non_Empty_List (Freeze_Nodes) then
|
4509 |
|
|
if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
|
4510 |
|
|
Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
|
4511 |
|
|
Freeze_Nodes;
|
4512 |
|
|
else
|
4513 |
|
|
Append_List (Freeze_Nodes, Scope_Stack.Table
|
4514 |
|
|
(Pos).Pending_Freeze_Actions);
|
4515 |
|
|
end if;
|
4516 |
|
|
end if;
|
4517 |
|
|
end;
|
4518 |
|
|
|
4519 |
|
|
return;
|
4520 |
|
|
end if;
|
4521 |
|
|
|
4522 |
|
|
-- Now we have the right place to do the freezing. First, a special
|
4523 |
|
|
-- adjustment, if we are in spec-expression analysis mode, these freeze
|
4524 |
|
|
-- actions must not be thrown away (normally all inserted actions are
|
4525 |
|
|
-- thrown away in this mode. However, the freeze actions are from static
|
4526 |
|
|
-- expressions and one of the important reasons we are doing this
|
4527 |
|
|
-- special analysis is to get these freeze actions. Therefore we turn
|
4528 |
|
|
-- off the In_Spec_Expression mode to propagate these freeze actions.
|
4529 |
|
|
-- This also means they get properly analyzed and expanded.
|
4530 |
|
|
|
4531 |
|
|
In_Spec_Expression := False;
|
4532 |
|
|
|
4533 |
|
|
-- Freeze the designated type of an allocator (RM 13.14(13))
|
4534 |
|
|
|
4535 |
|
|
if Present (Desig_Typ) then
|
4536 |
|
|
Freeze_Before (P, Desig_Typ);
|
4537 |
|
|
end if;
|
4538 |
|
|
|
4539 |
|
|
-- Freeze type of expression (RM 13.14(10)). Note that we took care of
|
4540 |
|
|
-- the enumeration representation clause exception in the loop above.
|
4541 |
|
|
|
4542 |
|
|
if Present (Typ) then
|
4543 |
|
|
Freeze_Before (P, Typ);
|
4544 |
|
|
end if;
|
4545 |
|
|
|
4546 |
|
|
-- Freeze name if one is present (RM 13.14(11))
|
4547 |
|
|
|
4548 |
|
|
if Present (Nam) then
|
4549 |
|
|
Freeze_Before (P, Nam);
|
4550 |
|
|
end if;
|
4551 |
|
|
|
4552 |
|
|
-- Restore In_Spec_Expression flag
|
4553 |
|
|
|
4554 |
|
|
In_Spec_Expression := In_Spec_Exp;
|
4555 |
|
|
end Freeze_Expression;
|
4556 |
|
|
|
4557 |
|
|
-----------------------------
|
4558 |
|
|
-- Freeze_Fixed_Point_Type --
|
4559 |
|
|
-----------------------------
|
4560 |
|
|
|
4561 |
|
|
-- Certain fixed-point types and subtypes, including implicit base types
|
4562 |
|
|
-- and declared first subtypes, have not yet set up a range. This is
|
4563 |
|
|
-- because the range cannot be set until the Small and Size values are
|
4564 |
|
|
-- known, and these are not known till the type is frozen.
|
4565 |
|
|
|
4566 |
|
|
-- To signal this case, Scalar_Range contains an unanalyzed syntactic range
|
4567 |
|
|
-- whose bounds are unanalyzed real literals. This routine will recognize
|
4568 |
|
|
-- this case, and transform this range node into a properly typed range
|
4569 |
|
|
-- with properly analyzed and resolved values.
|
4570 |
|
|
|
4571 |
|
|
procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
|
4572 |
|
|
Rng : constant Node_Id := Scalar_Range (Typ);
|
4573 |
|
|
Lo : constant Node_Id := Low_Bound (Rng);
|
4574 |
|
|
Hi : constant Node_Id := High_Bound (Rng);
|
4575 |
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
4576 |
|
|
Brng : constant Node_Id := Scalar_Range (Btyp);
|
4577 |
|
|
BLo : constant Node_Id := Low_Bound (Brng);
|
4578 |
|
|
BHi : constant Node_Id := High_Bound (Brng);
|
4579 |
|
|
Small : constant Ureal := Small_Value (Typ);
|
4580 |
|
|
Loval : Ureal;
|
4581 |
|
|
Hival : Ureal;
|
4582 |
|
|
Atype : Entity_Id;
|
4583 |
|
|
|
4584 |
|
|
Actual_Size : Nat;
|
4585 |
|
|
|
4586 |
|
|
function Fsize (Lov, Hiv : Ureal) return Nat;
|
4587 |
|
|
-- Returns size of type with given bounds. Also leaves these
|
4588 |
|
|
-- bounds set as the current bounds of the Typ.
|
4589 |
|
|
|
4590 |
|
|
-----------
|
4591 |
|
|
-- Fsize --
|
4592 |
|
|
-----------
|
4593 |
|
|
|
4594 |
|
|
function Fsize (Lov, Hiv : Ureal) return Nat is
|
4595 |
|
|
begin
|
4596 |
|
|
Set_Realval (Lo, Lov);
|
4597 |
|
|
Set_Realval (Hi, Hiv);
|
4598 |
|
|
return Minimum_Size (Typ);
|
4599 |
|
|
end Fsize;
|
4600 |
|
|
|
4601 |
|
|
-- Start of processing for Freeze_Fixed_Point_Type
|
4602 |
|
|
|
4603 |
|
|
begin
|
4604 |
|
|
-- If Esize of a subtype has not previously been set, set it now
|
4605 |
|
|
|
4606 |
|
|
if Unknown_Esize (Typ) then
|
4607 |
|
|
Atype := Ancestor_Subtype (Typ);
|
4608 |
|
|
|
4609 |
|
|
if Present (Atype) then
|
4610 |
|
|
Set_Esize (Typ, Esize (Atype));
|
4611 |
|
|
else
|
4612 |
|
|
Set_Esize (Typ, Esize (Base_Type (Typ)));
|
4613 |
|
|
end if;
|
4614 |
|
|
end if;
|
4615 |
|
|
|
4616 |
|
|
-- Immediate return if the range is already analyzed. This means that
|
4617 |
|
|
-- the range is already set, and does not need to be computed by this
|
4618 |
|
|
-- routine.
|
4619 |
|
|
|
4620 |
|
|
if Analyzed (Rng) then
|
4621 |
|
|
return;
|
4622 |
|
|
end if;
|
4623 |
|
|
|
4624 |
|
|
-- Immediate return if either of the bounds raises Constraint_Error
|
4625 |
|
|
|
4626 |
|
|
if Raises_Constraint_Error (Lo)
|
4627 |
|
|
or else Raises_Constraint_Error (Hi)
|
4628 |
|
|
then
|
4629 |
|
|
return;
|
4630 |
|
|
end if;
|
4631 |
|
|
|
4632 |
|
|
Loval := Realval (Lo);
|
4633 |
|
|
Hival := Realval (Hi);
|
4634 |
|
|
|
4635 |
|
|
-- Ordinary fixed-point case
|
4636 |
|
|
|
4637 |
|
|
if Is_Ordinary_Fixed_Point_Type (Typ) then
|
4638 |
|
|
|
4639 |
|
|
-- For the ordinary fixed-point case, we are allowed to fudge the
|
4640 |
|
|
-- end-points up or down by small. Generally we prefer to fudge up,
|
4641 |
|
|
-- i.e. widen the bounds for non-model numbers so that the end points
|
4642 |
|
|
-- are included. However there are cases in which this cannot be
|
4643 |
|
|
-- done, and indeed cases in which we may need to narrow the bounds.
|
4644 |
|
|
-- The following circuit makes the decision.
|
4645 |
|
|
|
4646 |
|
|
-- Note: our terminology here is that Incl_EP means that the bounds
|
4647 |
|
|
-- are widened by Small if necessary to include the end points, and
|
4648 |
|
|
-- Excl_EP means that the bounds are narrowed by Small to exclude the
|
4649 |
|
|
-- end-points if this reduces the size.
|
4650 |
|
|
|
4651 |
|
|
-- Note that in the Incl case, all we care about is including the
|
4652 |
|
|
-- end-points. In the Excl case, we want to narrow the bounds as
|
4653 |
|
|
-- much as permitted by the RM, to give the smallest possible size.
|
4654 |
|
|
|
4655 |
|
|
Fudge : declare
|
4656 |
|
|
Loval_Incl_EP : Ureal;
|
4657 |
|
|
Hival_Incl_EP : Ureal;
|
4658 |
|
|
|
4659 |
|
|
Loval_Excl_EP : Ureal;
|
4660 |
|
|
Hival_Excl_EP : Ureal;
|
4661 |
|
|
|
4662 |
|
|
Size_Incl_EP : Nat;
|
4663 |
|
|
Size_Excl_EP : Nat;
|
4664 |
|
|
|
4665 |
|
|
Model_Num : Ureal;
|
4666 |
|
|
First_Subt : Entity_Id;
|
4667 |
|
|
Actual_Lo : Ureal;
|
4668 |
|
|
Actual_Hi : Ureal;
|
4669 |
|
|
|
4670 |
|
|
begin
|
4671 |
|
|
-- First step. Base types are required to be symmetrical. Right
|
4672 |
|
|
-- now, the base type range is a copy of the first subtype range.
|
4673 |
|
|
-- This will be corrected before we are done, but right away we
|
4674 |
|
|
-- need to deal with the case where both bounds are non-negative.
|
4675 |
|
|
-- In this case, we set the low bound to the negative of the high
|
4676 |
|
|
-- bound, to make sure that the size is computed to include the
|
4677 |
|
|
-- required sign. Note that we do not need to worry about the
|
4678 |
|
|
-- case of both bounds negative, because the sign will be dealt
|
4679 |
|
|
-- with anyway. Furthermore we can't just go making such a bound
|
4680 |
|
|
-- symmetrical, since in a twos-complement system, there is an
|
4681 |
|
|
-- extra negative value which could not be accommodated on the
|
4682 |
|
|
-- positive side.
|
4683 |
|
|
|
4684 |
|
|
if Typ = Btyp
|
4685 |
|
|
and then not UR_Is_Negative (Loval)
|
4686 |
|
|
and then Hival > Loval
|
4687 |
|
|
then
|
4688 |
|
|
Loval := -Hival;
|
4689 |
|
|
Set_Realval (Lo, Loval);
|
4690 |
|
|
end if;
|
4691 |
|
|
|
4692 |
|
|
-- Compute the fudged bounds. If the number is a model number,
|
4693 |
|
|
-- then we do nothing to include it, but we are allowed to backoff
|
4694 |
|
|
-- to the next adjacent model number when we exclude it. If it is
|
4695 |
|
|
-- not a model number then we straddle the two values with the
|
4696 |
|
|
-- model numbers on either side.
|
4697 |
|
|
|
4698 |
|
|
Model_Num := UR_Trunc (Loval / Small) * Small;
|
4699 |
|
|
|
4700 |
|
|
if Loval = Model_Num then
|
4701 |
|
|
Loval_Incl_EP := Model_Num;
|
4702 |
|
|
else
|
4703 |
|
|
Loval_Incl_EP := Model_Num - Small;
|
4704 |
|
|
end if;
|
4705 |
|
|
|
4706 |
|
|
-- The low value excluding the end point is Small greater, but
|
4707 |
|
|
-- we do not do this exclusion if the low value is positive,
|
4708 |
|
|
-- since it can't help the size and could actually hurt by
|
4709 |
|
|
-- crossing the high bound.
|
4710 |
|
|
|
4711 |
|
|
if UR_Is_Negative (Loval_Incl_EP) then
|
4712 |
|
|
Loval_Excl_EP := Loval_Incl_EP + Small;
|
4713 |
|
|
|
4714 |
|
|
-- If the value went from negative to zero, then we have the
|
4715 |
|
|
-- case where Loval_Incl_EP is the model number just below
|
4716 |
|
|
-- zero, so we want to stick to the negative value for the
|
4717 |
|
|
-- base type to maintain the condition that the size will
|
4718 |
|
|
-- include signed values.
|
4719 |
|
|
|
4720 |
|
|
if Typ = Btyp
|
4721 |
|
|
and then UR_Is_Zero (Loval_Excl_EP)
|
4722 |
|
|
then
|
4723 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
4724 |
|
|
end if;
|
4725 |
|
|
|
4726 |
|
|
else
|
4727 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
4728 |
|
|
end if;
|
4729 |
|
|
|
4730 |
|
|
-- Similar processing for upper bound and high value
|
4731 |
|
|
|
4732 |
|
|
Model_Num := UR_Trunc (Hival / Small) * Small;
|
4733 |
|
|
|
4734 |
|
|
if Hival = Model_Num then
|
4735 |
|
|
Hival_Incl_EP := Model_Num;
|
4736 |
|
|
else
|
4737 |
|
|
Hival_Incl_EP := Model_Num + Small;
|
4738 |
|
|
end if;
|
4739 |
|
|
|
4740 |
|
|
if UR_Is_Positive (Hival_Incl_EP) then
|
4741 |
|
|
Hival_Excl_EP := Hival_Incl_EP - Small;
|
4742 |
|
|
else
|
4743 |
|
|
Hival_Excl_EP := Hival_Incl_EP;
|
4744 |
|
|
end if;
|
4745 |
|
|
|
4746 |
|
|
-- One further adjustment is needed. In the case of subtypes, we
|
4747 |
|
|
-- cannot go outside the range of the base type, or we get
|
4748 |
|
|
-- peculiarities, and the base type range is already set. This
|
4749 |
|
|
-- only applies to the Incl values, since clearly the Excl values
|
4750 |
|
|
-- are already as restricted as they are allowed to be.
|
4751 |
|
|
|
4752 |
|
|
if Typ /= Btyp then
|
4753 |
|
|
Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
|
4754 |
|
|
Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
|
4755 |
|
|
end if;
|
4756 |
|
|
|
4757 |
|
|
-- Get size including and excluding end points
|
4758 |
|
|
|
4759 |
|
|
Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
|
4760 |
|
|
Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
|
4761 |
|
|
|
4762 |
|
|
-- No need to exclude end-points if it does not reduce size
|
4763 |
|
|
|
4764 |
|
|
if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
|
4765 |
|
|
Loval_Excl_EP := Loval_Incl_EP;
|
4766 |
|
|
end if;
|
4767 |
|
|
|
4768 |
|
|
if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
|
4769 |
|
|
Hival_Excl_EP := Hival_Incl_EP;
|
4770 |
|
|
end if;
|
4771 |
|
|
|
4772 |
|
|
-- Now we set the actual size to be used. We want to use the
|
4773 |
|
|
-- bounds fudged up to include the end-points but only if this
|
4774 |
|
|
-- can be done without violating a specifically given size
|
4775 |
|
|
-- size clause or causing an unacceptable increase in size.
|
4776 |
|
|
|
4777 |
|
|
-- Case of size clause given
|
4778 |
|
|
|
4779 |
|
|
if Has_Size_Clause (Typ) then
|
4780 |
|
|
|
4781 |
|
|
-- Use the inclusive size only if it is consistent with
|
4782 |
|
|
-- the explicitly specified size.
|
4783 |
|
|
|
4784 |
|
|
if Size_Incl_EP <= RM_Size (Typ) then
|
4785 |
|
|
Actual_Lo := Loval_Incl_EP;
|
4786 |
|
|
Actual_Hi := Hival_Incl_EP;
|
4787 |
|
|
Actual_Size := Size_Incl_EP;
|
4788 |
|
|
|
4789 |
|
|
-- If the inclusive size is too large, we try excluding
|
4790 |
|
|
-- the end-points (will be caught later if does not work).
|
4791 |
|
|
|
4792 |
|
|
else
|
4793 |
|
|
Actual_Lo := Loval_Excl_EP;
|
4794 |
|
|
Actual_Hi := Hival_Excl_EP;
|
4795 |
|
|
Actual_Size := Size_Excl_EP;
|
4796 |
|
|
end if;
|
4797 |
|
|
|
4798 |
|
|
-- Case of size clause not given
|
4799 |
|
|
|
4800 |
|
|
else
|
4801 |
|
|
-- If we have a base type whose corresponding first subtype
|
4802 |
|
|
-- has an explicit size that is large enough to include our
|
4803 |
|
|
-- end-points, then do so. There is no point in working hard
|
4804 |
|
|
-- to get a base type whose size is smaller than the specified
|
4805 |
|
|
-- size of the first subtype.
|
4806 |
|
|
|
4807 |
|
|
First_Subt := First_Subtype (Typ);
|
4808 |
|
|
|
4809 |
|
|
if Has_Size_Clause (First_Subt)
|
4810 |
|
|
and then Size_Incl_EP <= Esize (First_Subt)
|
4811 |
|
|
then
|
4812 |
|
|
Actual_Size := Size_Incl_EP;
|
4813 |
|
|
Actual_Lo := Loval_Incl_EP;
|
4814 |
|
|
Actual_Hi := Hival_Incl_EP;
|
4815 |
|
|
|
4816 |
|
|
-- If excluding the end-points makes the size smaller and
|
4817 |
|
|
-- results in a size of 8,16,32,64, then we take the smaller
|
4818 |
|
|
-- size. For the 64 case, this is compulsory. For the other
|
4819 |
|
|
-- cases, it seems reasonable. We like to include end points
|
4820 |
|
|
-- if we can, but not at the expense of moving to the next
|
4821 |
|
|
-- natural boundary of size.
|
4822 |
|
|
|
4823 |
|
|
elsif Size_Incl_EP /= Size_Excl_EP
|
4824 |
|
|
and then
|
4825 |
|
|
(Size_Excl_EP = 8 or else
|
4826 |
|
|
Size_Excl_EP = 16 or else
|
4827 |
|
|
Size_Excl_EP = 32 or else
|
4828 |
|
|
Size_Excl_EP = 64)
|
4829 |
|
|
then
|
4830 |
|
|
Actual_Size := Size_Excl_EP;
|
4831 |
|
|
Actual_Lo := Loval_Excl_EP;
|
4832 |
|
|
Actual_Hi := Hival_Excl_EP;
|
4833 |
|
|
|
4834 |
|
|
-- Otherwise we can definitely include the end points
|
4835 |
|
|
|
4836 |
|
|
else
|
4837 |
|
|
Actual_Size := Size_Incl_EP;
|
4838 |
|
|
Actual_Lo := Loval_Incl_EP;
|
4839 |
|
|
Actual_Hi := Hival_Incl_EP;
|
4840 |
|
|
end if;
|
4841 |
|
|
|
4842 |
|
|
-- One pathological case: normally we never fudge a low bound
|
4843 |
|
|
-- down, since it would seem to increase the size (if it has
|
4844 |
|
|
-- any effect), but for ranges containing single value, or no
|
4845 |
|
|
-- values, the high bound can be small too large. Consider:
|
4846 |
|
|
|
4847 |
|
|
-- type t is delta 2.0**(-14)
|
4848 |
|
|
-- range 131072.0 .. 0;
|
4849 |
|
|
|
4850 |
|
|
-- That lower bound is *just* outside the range of 32 bits, and
|
4851 |
|
|
-- does need fudging down in this case. Note that the bounds
|
4852 |
|
|
-- will always have crossed here, since the high bound will be
|
4853 |
|
|
-- fudged down if necessary, as in the case of:
|
4854 |
|
|
|
4855 |
|
|
-- type t is delta 2.0**(-14)
|
4856 |
|
|
-- range 131072.0 .. 131072.0;
|
4857 |
|
|
|
4858 |
|
|
-- So we detect the situation by looking for crossed bounds,
|
4859 |
|
|
-- and if the bounds are crossed, and the low bound is greater
|
4860 |
|
|
-- than zero, we will always back it off by small, since this
|
4861 |
|
|
-- is completely harmless.
|
4862 |
|
|
|
4863 |
|
|
if Actual_Lo > Actual_Hi then
|
4864 |
|
|
if UR_Is_Positive (Actual_Lo) then
|
4865 |
|
|
Actual_Lo := Loval_Incl_EP - Small;
|
4866 |
|
|
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
|
4867 |
|
|
|
4868 |
|
|
-- And of course, we need to do exactly the same parallel
|
4869 |
|
|
-- fudge for flat ranges in the negative region.
|
4870 |
|
|
|
4871 |
|
|
elsif UR_Is_Negative (Actual_Hi) then
|
4872 |
|
|
Actual_Hi := Hival_Incl_EP + Small;
|
4873 |
|
|
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
|
4874 |
|
|
end if;
|
4875 |
|
|
end if;
|
4876 |
|
|
end if;
|
4877 |
|
|
|
4878 |
|
|
Set_Realval (Lo, Actual_Lo);
|
4879 |
|
|
Set_Realval (Hi, Actual_Hi);
|
4880 |
|
|
end Fudge;
|
4881 |
|
|
|
4882 |
|
|
-- For the decimal case, none of this fudging is required, since there
|
4883 |
|
|
-- are no end-point problems in the decimal case (the end-points are
|
4884 |
|
|
-- always included).
|
4885 |
|
|
|
4886 |
|
|
else
|
4887 |
|
|
Actual_Size := Fsize (Loval, Hival);
|
4888 |
|
|
end if;
|
4889 |
|
|
|
4890 |
|
|
-- At this stage, the actual size has been calculated and the proper
|
4891 |
|
|
-- required bounds are stored in the low and high bounds.
|
4892 |
|
|
|
4893 |
|
|
if Actual_Size > 64 then
|
4894 |
|
|
Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
|
4895 |
|
|
Error_Msg_N
|
4896 |
|
|
("size required (^) for type& too large, maximum allowed is 64",
|
4897 |
|
|
Typ);
|
4898 |
|
|
Actual_Size := 64;
|
4899 |
|
|
end if;
|
4900 |
|
|
|
4901 |
|
|
-- Check size against explicit given size
|
4902 |
|
|
|
4903 |
|
|
if Has_Size_Clause (Typ) then
|
4904 |
|
|
if Actual_Size > RM_Size (Typ) then
|
4905 |
|
|
Error_Msg_Uint_1 := RM_Size (Typ);
|
4906 |
|
|
Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
|
4907 |
|
|
Error_Msg_NE
|
4908 |
|
|
("size given (^) for type& too small, minimum allowed is ^",
|
4909 |
|
|
Size_Clause (Typ), Typ);
|
4910 |
|
|
|
4911 |
|
|
else
|
4912 |
|
|
Actual_Size := UI_To_Int (Esize (Typ));
|
4913 |
|
|
end if;
|
4914 |
|
|
|
4915 |
|
|
-- Increase size to next natural boundary if no size clause given
|
4916 |
|
|
|
4917 |
|
|
else
|
4918 |
|
|
if Actual_Size <= 8 then
|
4919 |
|
|
Actual_Size := 8;
|
4920 |
|
|
elsif Actual_Size <= 16 then
|
4921 |
|
|
Actual_Size := 16;
|
4922 |
|
|
elsif Actual_Size <= 32 then
|
4923 |
|
|
Actual_Size := 32;
|
4924 |
|
|
else
|
4925 |
|
|
Actual_Size := 64;
|
4926 |
|
|
end if;
|
4927 |
|
|
|
4928 |
|
|
Init_Esize (Typ, Actual_Size);
|
4929 |
|
|
Adjust_Esize_For_Alignment (Typ);
|
4930 |
|
|
end if;
|
4931 |
|
|
|
4932 |
|
|
-- If we have a base type, then expand the bounds so that they extend to
|
4933 |
|
|
-- the full width of the allocated size in bits, to avoid junk range
|
4934 |
|
|
-- checks on intermediate computations.
|
4935 |
|
|
|
4936 |
|
|
if Base_Type (Typ) = Typ then
|
4937 |
|
|
Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
|
4938 |
|
|
Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
|
4939 |
|
|
end if;
|
4940 |
|
|
|
4941 |
|
|
-- Final step is to reanalyze the bounds using the proper type
|
4942 |
|
|
-- and set the Corresponding_Integer_Value fields of the literals.
|
4943 |
|
|
|
4944 |
|
|
Set_Etype (Lo, Empty);
|
4945 |
|
|
Set_Analyzed (Lo, False);
|
4946 |
|
|
Analyze (Lo);
|
4947 |
|
|
|
4948 |
|
|
-- Resolve with universal fixed if the base type, and the base type if
|
4949 |
|
|
-- it is a subtype. Note we can't resolve the base type with itself,
|
4950 |
|
|
-- that would be a reference before definition.
|
4951 |
|
|
|
4952 |
|
|
if Typ = Btyp then
|
4953 |
|
|
Resolve (Lo, Universal_Fixed);
|
4954 |
|
|
else
|
4955 |
|
|
Resolve (Lo, Btyp);
|
4956 |
|
|
end if;
|
4957 |
|
|
|
4958 |
|
|
-- Set corresponding integer value for bound
|
4959 |
|
|
|
4960 |
|
|
Set_Corresponding_Integer_Value
|
4961 |
|
|
(Lo, UR_To_Uint (Realval (Lo) / Small));
|
4962 |
|
|
|
4963 |
|
|
-- Similar processing for high bound
|
4964 |
|
|
|
4965 |
|
|
Set_Etype (Hi, Empty);
|
4966 |
|
|
Set_Analyzed (Hi, False);
|
4967 |
|
|
Analyze (Hi);
|
4968 |
|
|
|
4969 |
|
|
if Typ = Btyp then
|
4970 |
|
|
Resolve (Hi, Universal_Fixed);
|
4971 |
|
|
else
|
4972 |
|
|
Resolve (Hi, Btyp);
|
4973 |
|
|
end if;
|
4974 |
|
|
|
4975 |
|
|
Set_Corresponding_Integer_Value
|
4976 |
|
|
(Hi, UR_To_Uint (Realval (Hi) / Small));
|
4977 |
|
|
|
4978 |
|
|
-- Set type of range to correspond to bounds
|
4979 |
|
|
|
4980 |
|
|
Set_Etype (Rng, Etype (Lo));
|
4981 |
|
|
|
4982 |
|
|
-- Set Esize to calculated size if not set already
|
4983 |
|
|
|
4984 |
|
|
if Unknown_Esize (Typ) then
|
4985 |
|
|
Init_Esize (Typ, Actual_Size);
|
4986 |
|
|
end if;
|
4987 |
|
|
|
4988 |
|
|
-- Set RM_Size if not already set. If already set, check value
|
4989 |
|
|
|
4990 |
|
|
declare
|
4991 |
|
|
Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
|
4992 |
|
|
|
4993 |
|
|
begin
|
4994 |
|
|
if RM_Size (Typ) /= Uint_0 then
|
4995 |
|
|
if RM_Size (Typ) < Minsiz then
|
4996 |
|
|
Error_Msg_Uint_1 := RM_Size (Typ);
|
4997 |
|
|
Error_Msg_Uint_2 := Minsiz;
|
4998 |
|
|
Error_Msg_NE
|
4999 |
|
|
("size given (^) for type& too small, minimum allowed is ^",
|
5000 |
|
|
Size_Clause (Typ), Typ);
|
5001 |
|
|
end if;
|
5002 |
|
|
|
5003 |
|
|
else
|
5004 |
|
|
Set_RM_Size (Typ, Minsiz);
|
5005 |
|
|
end if;
|
5006 |
|
|
end;
|
5007 |
|
|
end Freeze_Fixed_Point_Type;
|
5008 |
|
|
|
5009 |
|
|
------------------
|
5010 |
|
|
-- Freeze_Itype --
|
5011 |
|
|
------------------
|
5012 |
|
|
|
5013 |
|
|
procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
|
5014 |
|
|
L : List_Id;
|
5015 |
|
|
|
5016 |
|
|
begin
|
5017 |
|
|
Set_Has_Delayed_Freeze (T);
|
5018 |
|
|
L := Freeze_Entity (T, Sloc (N));
|
5019 |
|
|
|
5020 |
|
|
if Is_Non_Empty_List (L) then
|
5021 |
|
|
Insert_Actions (N, L);
|
5022 |
|
|
end if;
|
5023 |
|
|
end Freeze_Itype;
|
5024 |
|
|
|
5025 |
|
|
--------------------------
|
5026 |
|
|
-- Freeze_Static_Object --
|
5027 |
|
|
--------------------------
|
5028 |
|
|
|
5029 |
|
|
procedure Freeze_Static_Object (E : Entity_Id) is
|
5030 |
|
|
|
5031 |
|
|
Cannot_Be_Static : exception;
|
5032 |
|
|
-- Exception raised if the type of a static object cannot be made
|
5033 |
|
|
-- static. This happens if the type depends on non-global objects.
|
5034 |
|
|
|
5035 |
|
|
procedure Ensure_Expression_Is_SA (N : Node_Id);
|
5036 |
|
|
-- Called to ensure that an expression used as part of a type definition
|
5037 |
|
|
-- is statically allocatable, which means that the expression type is
|
5038 |
|
|
-- statically allocatable, and the expression is either static, or a
|
5039 |
|
|
-- reference to a library level constant.
|
5040 |
|
|
|
5041 |
|
|
procedure Ensure_Type_Is_SA (Typ : Entity_Id);
|
5042 |
|
|
-- Called to mark a type as static, checking that it is possible
|
5043 |
|
|
-- to set the type as static. If it is not possible, then the
|
5044 |
|
|
-- exception Cannot_Be_Static is raised.
|
5045 |
|
|
|
5046 |
|
|
-----------------------------
|
5047 |
|
|
-- Ensure_Expression_Is_SA --
|
5048 |
|
|
-----------------------------
|
5049 |
|
|
|
5050 |
|
|
procedure Ensure_Expression_Is_SA (N : Node_Id) is
|
5051 |
|
|
Ent : Entity_Id;
|
5052 |
|
|
|
5053 |
|
|
begin
|
5054 |
|
|
Ensure_Type_Is_SA (Etype (N));
|
5055 |
|
|
|
5056 |
|
|
if Is_Static_Expression (N) then
|
5057 |
|
|
return;
|
5058 |
|
|
|
5059 |
|
|
elsif Nkind (N) = N_Identifier then
|
5060 |
|
|
Ent := Entity (N);
|
5061 |
|
|
|
5062 |
|
|
if Present (Ent)
|
5063 |
|
|
and then Ekind (Ent) = E_Constant
|
5064 |
|
|
and then Is_Library_Level_Entity (Ent)
|
5065 |
|
|
then
|
5066 |
|
|
return;
|
5067 |
|
|
end if;
|
5068 |
|
|
end if;
|
5069 |
|
|
|
5070 |
|
|
raise Cannot_Be_Static;
|
5071 |
|
|
end Ensure_Expression_Is_SA;
|
5072 |
|
|
|
5073 |
|
|
-----------------------
|
5074 |
|
|
-- Ensure_Type_Is_SA --
|
5075 |
|
|
-----------------------
|
5076 |
|
|
|
5077 |
|
|
procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
|
5078 |
|
|
N : Node_Id;
|
5079 |
|
|
C : Entity_Id;
|
5080 |
|
|
|
5081 |
|
|
begin
|
5082 |
|
|
-- If type is library level, we are all set
|
5083 |
|
|
|
5084 |
|
|
if Is_Library_Level_Entity (Typ) then
|
5085 |
|
|
return;
|
5086 |
|
|
end if;
|
5087 |
|
|
|
5088 |
|
|
-- We are also OK if the type already marked as statically allocated,
|
5089 |
|
|
-- which means we processed it before.
|
5090 |
|
|
|
5091 |
|
|
if Is_Statically_Allocated (Typ) then
|
5092 |
|
|
return;
|
5093 |
|
|
end if;
|
5094 |
|
|
|
5095 |
|
|
-- Mark type as statically allocated
|
5096 |
|
|
|
5097 |
|
|
Set_Is_Statically_Allocated (Typ);
|
5098 |
|
|
|
5099 |
|
|
-- Check that it is safe to statically allocate this type
|
5100 |
|
|
|
5101 |
|
|
if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
|
5102 |
|
|
Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
|
5103 |
|
|
Ensure_Expression_Is_SA (Type_High_Bound (Typ));
|
5104 |
|
|
|
5105 |
|
|
elsif Is_Array_Type (Typ) then
|
5106 |
|
|
N := First_Index (Typ);
|
5107 |
|
|
while Present (N) loop
|
5108 |
|
|
Ensure_Type_Is_SA (Etype (N));
|
5109 |
|
|
Next_Index (N);
|
5110 |
|
|
end loop;
|
5111 |
|
|
|
5112 |
|
|
Ensure_Type_Is_SA (Component_Type (Typ));
|
5113 |
|
|
|
5114 |
|
|
elsif Is_Access_Type (Typ) then
|
5115 |
|
|
if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
|
5116 |
|
|
|
5117 |
|
|
declare
|
5118 |
|
|
F : Entity_Id;
|
5119 |
|
|
T : constant Entity_Id := Etype (Designated_Type (Typ));
|
5120 |
|
|
|
5121 |
|
|
begin
|
5122 |
|
|
if T /= Standard_Void_Type then
|
5123 |
|
|
Ensure_Type_Is_SA (T);
|
5124 |
|
|
end if;
|
5125 |
|
|
|
5126 |
|
|
F := First_Formal (Designated_Type (Typ));
|
5127 |
|
|
|
5128 |
|
|
while Present (F) loop
|
5129 |
|
|
Ensure_Type_Is_SA (Etype (F));
|
5130 |
|
|
Next_Formal (F);
|
5131 |
|
|
end loop;
|
5132 |
|
|
end;
|
5133 |
|
|
|
5134 |
|
|
else
|
5135 |
|
|
Ensure_Type_Is_SA (Designated_Type (Typ));
|
5136 |
|
|
end if;
|
5137 |
|
|
|
5138 |
|
|
elsif Is_Record_Type (Typ) then
|
5139 |
|
|
C := First_Entity (Typ);
|
5140 |
|
|
while Present (C) loop
|
5141 |
|
|
if Ekind (C) = E_Discriminant
|
5142 |
|
|
or else Ekind (C) = E_Component
|
5143 |
|
|
then
|
5144 |
|
|
Ensure_Type_Is_SA (Etype (C));
|
5145 |
|
|
|
5146 |
|
|
elsif Is_Type (C) then
|
5147 |
|
|
Ensure_Type_Is_SA (C);
|
5148 |
|
|
end if;
|
5149 |
|
|
|
5150 |
|
|
Next_Entity (C);
|
5151 |
|
|
end loop;
|
5152 |
|
|
|
5153 |
|
|
elsif Ekind (Typ) = E_Subprogram_Type then
|
5154 |
|
|
Ensure_Type_Is_SA (Etype (Typ));
|
5155 |
|
|
|
5156 |
|
|
C := First_Formal (Typ);
|
5157 |
|
|
while Present (C) loop
|
5158 |
|
|
Ensure_Type_Is_SA (Etype (C));
|
5159 |
|
|
Next_Formal (C);
|
5160 |
|
|
end loop;
|
5161 |
|
|
|
5162 |
|
|
else
|
5163 |
|
|
raise Cannot_Be_Static;
|
5164 |
|
|
end if;
|
5165 |
|
|
end Ensure_Type_Is_SA;
|
5166 |
|
|
|
5167 |
|
|
-- Start of processing for Freeze_Static_Object
|
5168 |
|
|
|
5169 |
|
|
begin
|
5170 |
|
|
Ensure_Type_Is_SA (Etype (E));
|
5171 |
|
|
|
5172 |
|
|
exception
|
5173 |
|
|
when Cannot_Be_Static =>
|
5174 |
|
|
|
5175 |
|
|
-- If the object that cannot be static is imported or exported, then
|
5176 |
|
|
-- issue an error message saying that this object cannot be imported
|
5177 |
|
|
-- or exported. If it has an address clause it is an overlay in the
|
5178 |
|
|
-- current partition and the static requirement is not relevant.
|
5179 |
|
|
|
5180 |
|
|
if Is_Imported (E) and then No (Address_Clause (E)) then
|
5181 |
|
|
Error_Msg_N
|
5182 |
|
|
("& cannot be imported (local type is not constant)", E);
|
5183 |
|
|
|
5184 |
|
|
-- Otherwise must be exported, something is wrong if compiler
|
5185 |
|
|
-- is marking something as statically allocated which cannot be).
|
5186 |
|
|
|
5187 |
|
|
else pragma Assert (Is_Exported (E));
|
5188 |
|
|
Error_Msg_N
|
5189 |
|
|
("& cannot be exported (local type is not constant)", E);
|
5190 |
|
|
end if;
|
5191 |
|
|
end Freeze_Static_Object;
|
5192 |
|
|
|
5193 |
|
|
-----------------------
|
5194 |
|
|
-- Freeze_Subprogram --
|
5195 |
|
|
-----------------------
|
5196 |
|
|
|
5197 |
|
|
procedure Freeze_Subprogram (E : Entity_Id) is
|
5198 |
|
|
Retype : Entity_Id;
|
5199 |
|
|
F : Entity_Id;
|
5200 |
|
|
|
5201 |
|
|
begin
|
5202 |
|
|
-- Subprogram may not have an address clause unless it is imported
|
5203 |
|
|
|
5204 |
|
|
if Present (Address_Clause (E)) then
|
5205 |
|
|
if not Is_Imported (E) then
|
5206 |
|
|
Error_Msg_N
|
5207 |
|
|
("address clause can only be given " &
|
5208 |
|
|
"for imported subprogram",
|
5209 |
|
|
Name (Address_Clause (E)));
|
5210 |
|
|
end if;
|
5211 |
|
|
end if;
|
5212 |
|
|
|
5213 |
|
|
-- Reset the Pure indication on an imported subprogram unless an
|
5214 |
|
|
-- explicit Pure_Function pragma was present. We do this because
|
5215 |
|
|
-- otherwise it is an insidious error to call a non-pure function from
|
5216 |
|
|
-- pure unit and have calls mysteriously optimized away. What happens
|
5217 |
|
|
-- here is that the Import can bypass the normal check to ensure that
|
5218 |
|
|
-- pure units call only pure subprograms.
|
5219 |
|
|
|
5220 |
|
|
if Is_Imported (E)
|
5221 |
|
|
and then Is_Pure (E)
|
5222 |
|
|
and then not Has_Pragma_Pure_Function (E)
|
5223 |
|
|
then
|
5224 |
|
|
Set_Is_Pure (E, False);
|
5225 |
|
|
end if;
|
5226 |
|
|
|
5227 |
|
|
-- For non-foreign convention subprograms, this is where we create
|
5228 |
|
|
-- the extra formals (for accessibility level and constrained bit
|
5229 |
|
|
-- information). We delay this till the freeze point precisely so
|
5230 |
|
|
-- that we know the convention!
|
5231 |
|
|
|
5232 |
|
|
if not Has_Foreign_Convention (E) then
|
5233 |
|
|
Create_Extra_Formals (E);
|
5234 |
|
|
Set_Mechanisms (E);
|
5235 |
|
|
|
5236 |
|
|
-- If this is convention Ada and a Valued_Procedure, that's odd
|
5237 |
|
|
|
5238 |
|
|
if Ekind (E) = E_Procedure
|
5239 |
|
|
and then Is_Valued_Procedure (E)
|
5240 |
|
|
and then Convention (E) = Convention_Ada
|
5241 |
|
|
and then Warn_On_Export_Import
|
5242 |
|
|
then
|
5243 |
|
|
Error_Msg_N
|
5244 |
|
|
("?Valued_Procedure has no effect for convention Ada", E);
|
5245 |
|
|
Set_Is_Valued_Procedure (E, False);
|
5246 |
|
|
end if;
|
5247 |
|
|
|
5248 |
|
|
-- Case of foreign convention
|
5249 |
|
|
|
5250 |
|
|
else
|
5251 |
|
|
Set_Mechanisms (E);
|
5252 |
|
|
|
5253 |
|
|
-- For foreign conventions, warn about return of an
|
5254 |
|
|
-- unconstrained array.
|
5255 |
|
|
|
5256 |
|
|
-- Note: we *do* allow a return by descriptor for the VMS case,
|
5257 |
|
|
-- though here there is probably more to be done ???
|
5258 |
|
|
|
5259 |
|
|
if Ekind (E) = E_Function then
|
5260 |
|
|
Retype := Underlying_Type (Etype (E));
|
5261 |
|
|
|
5262 |
|
|
-- If no return type, probably some other error, e.g. a
|
5263 |
|
|
-- missing full declaration, so ignore.
|
5264 |
|
|
|
5265 |
|
|
if No (Retype) then
|
5266 |
|
|
null;
|
5267 |
|
|
|
5268 |
|
|
-- If the return type is generic, we have emitted a warning
|
5269 |
|
|
-- earlier on, and there is nothing else to check here. Specific
|
5270 |
|
|
-- instantiations may lead to erroneous behavior.
|
5271 |
|
|
|
5272 |
|
|
elsif Is_Generic_Type (Etype (E)) then
|
5273 |
|
|
null;
|
5274 |
|
|
|
5275 |
|
|
-- Display warning if returning unconstrained array
|
5276 |
|
|
|
5277 |
|
|
elsif Is_Array_Type (Retype)
|
5278 |
|
|
and then not Is_Constrained (Retype)
|
5279 |
|
|
|
5280 |
|
|
-- Exclude cases where descriptor mechanism is set, since the
|
5281 |
|
|
-- VMS descriptor mechanisms allow such unconstrained returns.
|
5282 |
|
|
|
5283 |
|
|
and then Mechanism (E) not in Descriptor_Codes
|
5284 |
|
|
|
5285 |
|
|
-- Check appropriate warning is enabled (should we check for
|
5286 |
|
|
-- Warnings (Off) on specific entities here, probably so???)
|
5287 |
|
|
|
5288 |
|
|
and then Warn_On_Export_Import
|
5289 |
|
|
|
5290 |
|
|
-- Exclude the VM case, since return of unconstrained arrays
|
5291 |
|
|
-- is properly handled in both the JVM and .NET cases.
|
5292 |
|
|
|
5293 |
|
|
and then VM_Target = No_VM
|
5294 |
|
|
then
|
5295 |
|
|
Error_Msg_N
|
5296 |
|
|
("?foreign convention function& should not return " &
|
5297 |
|
|
"unconstrained array", E);
|
5298 |
|
|
return;
|
5299 |
|
|
end if;
|
5300 |
|
|
end if;
|
5301 |
|
|
|
5302 |
|
|
-- If any of the formals for an exported foreign convention
|
5303 |
|
|
-- subprogram have defaults, then emit an appropriate warning since
|
5304 |
|
|
-- this is odd (default cannot be used from non-Ada code)
|
5305 |
|
|
|
5306 |
|
|
if Is_Exported (E) then
|
5307 |
|
|
F := First_Formal (E);
|
5308 |
|
|
while Present (F) loop
|
5309 |
|
|
if Warn_On_Export_Import
|
5310 |
|
|
and then Present (Default_Value (F))
|
5311 |
|
|
then
|
5312 |
|
|
Error_Msg_N
|
5313 |
|
|
("?parameter cannot be defaulted in non-Ada call",
|
5314 |
|
|
Default_Value (F));
|
5315 |
|
|
end if;
|
5316 |
|
|
|
5317 |
|
|
Next_Formal (F);
|
5318 |
|
|
end loop;
|
5319 |
|
|
end if;
|
5320 |
|
|
end if;
|
5321 |
|
|
|
5322 |
|
|
-- For VMS, descriptor mechanisms for parameters are allowed only for
|
5323 |
|
|
-- imported/exported subprograms. Moreover, the NCA descriptor is not
|
5324 |
|
|
-- allowed for parameters of exported subprograms.
|
5325 |
|
|
|
5326 |
|
|
if OpenVMS_On_Target then
|
5327 |
|
|
if Is_Exported (E) then
|
5328 |
|
|
F := First_Formal (E);
|
5329 |
|
|
while Present (F) loop
|
5330 |
|
|
if Mechanism (F) = By_Descriptor_NCA then
|
5331 |
|
|
Error_Msg_N
|
5332 |
|
|
("'N'C'A' descriptor for parameter not permitted", F);
|
5333 |
|
|
Error_Msg_N
|
5334 |
|
|
("\can only be used for imported subprogram", F);
|
5335 |
|
|
end if;
|
5336 |
|
|
|
5337 |
|
|
Next_Formal (F);
|
5338 |
|
|
end loop;
|
5339 |
|
|
|
5340 |
|
|
elsif not Is_Imported (E) then
|
5341 |
|
|
F := First_Formal (E);
|
5342 |
|
|
while Present (F) loop
|
5343 |
|
|
if Mechanism (F) in Descriptor_Codes then
|
5344 |
|
|
Error_Msg_N
|
5345 |
|
|
("descriptor mechanism for parameter not permitted", F);
|
5346 |
|
|
Error_Msg_N
|
5347 |
|
|
("\can only be used for imported/exported subprogram", F);
|
5348 |
|
|
end if;
|
5349 |
|
|
|
5350 |
|
|
Next_Formal (F);
|
5351 |
|
|
end loop;
|
5352 |
|
|
end if;
|
5353 |
|
|
end if;
|
5354 |
|
|
|
5355 |
|
|
-- Pragma Inline_Always is disallowed for dispatching subprograms
|
5356 |
|
|
-- because the address of such subprograms is saved in the dispatch
|
5357 |
|
|
-- table to support dispatching calls, and dispatching calls cannot
|
5358 |
|
|
-- be inlined. This is consistent with the restriction against using
|
5359 |
|
|
-- 'Access or 'Address on an Inline_Always subprogram.
|
5360 |
|
|
|
5361 |
|
|
if Is_Dispatching_Operation (E)
|
5362 |
|
|
and then Has_Pragma_Inline_Always (E)
|
5363 |
|
|
then
|
5364 |
|
|
Error_Msg_N
|
5365 |
|
|
("pragma Inline_Always not allowed for dispatching subprograms", E);
|
5366 |
|
|
end if;
|
5367 |
|
|
|
5368 |
|
|
-- Because of the implicit representation of inherited predefined
|
5369 |
|
|
-- operators in the front-end, the overriding status of the operation
|
5370 |
|
|
-- may be affected when a full view of a type is analyzed, and this is
|
5371 |
|
|
-- not captured by the analysis of the corresponding type declaration.
|
5372 |
|
|
-- Therefore the correctness of a not-overriding indicator must be
|
5373 |
|
|
-- rechecked when the subprogram is frozen.
|
5374 |
|
|
|
5375 |
|
|
if Nkind (E) = N_Defining_Operator_Symbol
|
5376 |
|
|
and then not Error_Posted (Parent (E))
|
5377 |
|
|
then
|
5378 |
|
|
Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
|
5379 |
|
|
end if;
|
5380 |
|
|
end Freeze_Subprogram;
|
5381 |
|
|
|
5382 |
|
|
----------------------
|
5383 |
|
|
-- Is_Fully_Defined --
|
5384 |
|
|
----------------------
|
5385 |
|
|
|
5386 |
|
|
function Is_Fully_Defined (T : Entity_Id) return Boolean is
|
5387 |
|
|
begin
|
5388 |
|
|
if Ekind (T) = E_Class_Wide_Type then
|
5389 |
|
|
return Is_Fully_Defined (Etype (T));
|
5390 |
|
|
|
5391 |
|
|
elsif Is_Array_Type (T) then
|
5392 |
|
|
return Is_Fully_Defined (Component_Type (T));
|
5393 |
|
|
|
5394 |
|
|
elsif Is_Record_Type (T)
|
5395 |
|
|
and not Is_Private_Type (T)
|
5396 |
|
|
then
|
5397 |
|
|
-- Verify that the record type has no components with private types
|
5398 |
|
|
-- without completion.
|
5399 |
|
|
|
5400 |
|
|
declare
|
5401 |
|
|
Comp : Entity_Id;
|
5402 |
|
|
|
5403 |
|
|
begin
|
5404 |
|
|
Comp := First_Component (T);
|
5405 |
|
|
|
5406 |
|
|
while Present (Comp) loop
|
5407 |
|
|
if not Is_Fully_Defined (Etype (Comp)) then
|
5408 |
|
|
return False;
|
5409 |
|
|
end if;
|
5410 |
|
|
|
5411 |
|
|
Next_Component (Comp);
|
5412 |
|
|
end loop;
|
5413 |
|
|
return True;
|
5414 |
|
|
end;
|
5415 |
|
|
|
5416 |
|
|
else
|
5417 |
|
|
return not Is_Private_Type (T)
|
5418 |
|
|
or else Present (Full_View (Base_Type (T)));
|
5419 |
|
|
end if;
|
5420 |
|
|
end Is_Fully_Defined;
|
5421 |
|
|
|
5422 |
|
|
---------------------------------
|
5423 |
|
|
-- Process_Default_Expressions --
|
5424 |
|
|
---------------------------------
|
5425 |
|
|
|
5426 |
|
|
procedure Process_Default_Expressions
|
5427 |
|
|
(E : Entity_Id;
|
5428 |
|
|
After : in out Node_Id)
|
5429 |
|
|
is
|
5430 |
|
|
Loc : constant Source_Ptr := Sloc (E);
|
5431 |
|
|
Dbody : Node_Id;
|
5432 |
|
|
Formal : Node_Id;
|
5433 |
|
|
Dcopy : Node_Id;
|
5434 |
|
|
Dnam : Entity_Id;
|
5435 |
|
|
|
5436 |
|
|
begin
|
5437 |
|
|
Set_Default_Expressions_Processed (E);
|
5438 |
|
|
|
5439 |
|
|
-- A subprogram instance and its associated anonymous subprogram share
|
5440 |
|
|
-- their signature. The default expression functions are defined in the
|
5441 |
|
|
-- wrapper packages for the anonymous subprogram, and should not be
|
5442 |
|
|
-- generated again for the instance.
|
5443 |
|
|
|
5444 |
|
|
if Is_Generic_Instance (E)
|
5445 |
|
|
and then Present (Alias (E))
|
5446 |
|
|
and then Default_Expressions_Processed (Alias (E))
|
5447 |
|
|
then
|
5448 |
|
|
return;
|
5449 |
|
|
end if;
|
5450 |
|
|
|
5451 |
|
|
Formal := First_Formal (E);
|
5452 |
|
|
while Present (Formal) loop
|
5453 |
|
|
if Present (Default_Value (Formal)) then
|
5454 |
|
|
|
5455 |
|
|
-- We work with a copy of the default expression because we
|
5456 |
|
|
-- do not want to disturb the original, since this would mess
|
5457 |
|
|
-- up the conformance checking.
|
5458 |
|
|
|
5459 |
|
|
Dcopy := New_Copy_Tree (Default_Value (Formal));
|
5460 |
|
|
|
5461 |
|
|
-- The analysis of the expression may generate insert actions,
|
5462 |
|
|
-- which of course must not be executed. We wrap those actions
|
5463 |
|
|
-- in a procedure that is not called, and later on eliminated.
|
5464 |
|
|
-- The following cases have no side-effects, and are analyzed
|
5465 |
|
|
-- directly.
|
5466 |
|
|
|
5467 |
|
|
if Nkind (Dcopy) = N_Identifier
|
5468 |
|
|
or else Nkind (Dcopy) = N_Expanded_Name
|
5469 |
|
|
or else Nkind (Dcopy) = N_Integer_Literal
|
5470 |
|
|
or else (Nkind (Dcopy) = N_Real_Literal
|
5471 |
|
|
and then not Vax_Float (Etype (Dcopy)))
|
5472 |
|
|
or else Nkind (Dcopy) = N_Character_Literal
|
5473 |
|
|
or else Nkind (Dcopy) = N_String_Literal
|
5474 |
|
|
or else Known_Null (Dcopy)
|
5475 |
|
|
or else (Nkind (Dcopy) = N_Attribute_Reference
|
5476 |
|
|
and then
|
5477 |
|
|
Attribute_Name (Dcopy) = Name_Null_Parameter)
|
5478 |
|
|
then
|
5479 |
|
|
|
5480 |
|
|
-- If there is no default function, we must still do a full
|
5481 |
|
|
-- analyze call on the default value, to ensure that all error
|
5482 |
|
|
-- checks are performed, e.g. those associated with static
|
5483 |
|
|
-- evaluation. Note: this branch will always be taken if the
|
5484 |
|
|
-- analyzer is turned off (but we still need the error checks).
|
5485 |
|
|
|
5486 |
|
|
-- Note: the setting of parent here is to meet the requirement
|
5487 |
|
|
-- that we can only analyze the expression while attached to
|
5488 |
|
|
-- the tree. Really the requirement is that the parent chain
|
5489 |
|
|
-- be set, we don't actually need to be in the tree.
|
5490 |
|
|
|
5491 |
|
|
Set_Parent (Dcopy, Declaration_Node (Formal));
|
5492 |
|
|
Analyze (Dcopy);
|
5493 |
|
|
|
5494 |
|
|
-- Default expressions are resolved with their own type if the
|
5495 |
|
|
-- context is generic, to avoid anomalies with private types.
|
5496 |
|
|
|
5497 |
|
|
if Ekind (Scope (E)) = E_Generic_Package then
|
5498 |
|
|
Resolve (Dcopy);
|
5499 |
|
|
else
|
5500 |
|
|
Resolve (Dcopy, Etype (Formal));
|
5501 |
|
|
end if;
|
5502 |
|
|
|
5503 |
|
|
-- If that resolved expression will raise constraint error,
|
5504 |
|
|
-- then flag the default value as raising constraint error.
|
5505 |
|
|
-- This allows a proper error message on the calls.
|
5506 |
|
|
|
5507 |
|
|
if Raises_Constraint_Error (Dcopy) then
|
5508 |
|
|
Set_Raises_Constraint_Error (Default_Value (Formal));
|
5509 |
|
|
end if;
|
5510 |
|
|
|
5511 |
|
|
-- If the default is a parameterless call, we use the name of
|
5512 |
|
|
-- the called function directly, and there is no body to build.
|
5513 |
|
|
|
5514 |
|
|
elsif Nkind (Dcopy) = N_Function_Call
|
5515 |
|
|
and then No (Parameter_Associations (Dcopy))
|
5516 |
|
|
then
|
5517 |
|
|
null;
|
5518 |
|
|
|
5519 |
|
|
-- Else construct and analyze the body of a wrapper procedure
|
5520 |
|
|
-- that contains an object declaration to hold the expression.
|
5521 |
|
|
-- Given that this is done only to complete the analysis, it
|
5522 |
|
|
-- simpler to build a procedure than a function which might
|
5523 |
|
|
-- involve secondary stack expansion.
|
5524 |
|
|
|
5525 |
|
|
else
|
5526 |
|
|
Dnam :=
|
5527 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
|
5528 |
|
|
|
5529 |
|
|
Dbody :=
|
5530 |
|
|
Make_Subprogram_Body (Loc,
|
5531 |
|
|
Specification =>
|
5532 |
|
|
Make_Procedure_Specification (Loc,
|
5533 |
|
|
Defining_Unit_Name => Dnam),
|
5534 |
|
|
|
5535 |
|
|
Declarations => New_List (
|
5536 |
|
|
Make_Object_Declaration (Loc,
|
5537 |
|
|
Defining_Identifier =>
|
5538 |
|
|
Make_Defining_Identifier (Loc,
|
5539 |
|
|
New_Internal_Name ('T')),
|
5540 |
|
|
Object_Definition =>
|
5541 |
|
|
New_Occurrence_Of (Etype (Formal), Loc),
|
5542 |
|
|
Expression => New_Copy_Tree (Dcopy))),
|
5543 |
|
|
|
5544 |
|
|
Handled_Statement_Sequence =>
|
5545 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
5546 |
|
|
Statements => New_List));
|
5547 |
|
|
|
5548 |
|
|
Set_Scope (Dnam, Scope (E));
|
5549 |
|
|
Set_Assignment_OK (First (Declarations (Dbody)));
|
5550 |
|
|
Set_Is_Eliminated (Dnam);
|
5551 |
|
|
Insert_After (After, Dbody);
|
5552 |
|
|
Analyze (Dbody);
|
5553 |
|
|
After := Dbody;
|
5554 |
|
|
end if;
|
5555 |
|
|
end if;
|
5556 |
|
|
|
5557 |
|
|
Next_Formal (Formal);
|
5558 |
|
|
end loop;
|
5559 |
|
|
end Process_Default_Expressions;
|
5560 |
|
|
|
5561 |
|
|
----------------------------------------
|
5562 |
|
|
-- Set_Component_Alignment_If_Not_Set --
|
5563 |
|
|
----------------------------------------
|
5564 |
|
|
|
5565 |
|
|
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
|
5566 |
|
|
begin
|
5567 |
|
|
-- Ignore if not base type, subtypes don't need anything
|
5568 |
|
|
|
5569 |
|
|
if Typ /= Base_Type (Typ) then
|
5570 |
|
|
return;
|
5571 |
|
|
end if;
|
5572 |
|
|
|
5573 |
|
|
-- Do not override existing representation
|
5574 |
|
|
|
5575 |
|
|
if Is_Packed (Typ) then
|
5576 |
|
|
return;
|
5577 |
|
|
|
5578 |
|
|
elsif Has_Specified_Layout (Typ) then
|
5579 |
|
|
return;
|
5580 |
|
|
|
5581 |
|
|
elsif Component_Alignment (Typ) /= Calign_Default then
|
5582 |
|
|
return;
|
5583 |
|
|
|
5584 |
|
|
else
|
5585 |
|
|
Set_Component_Alignment
|
5586 |
|
|
(Typ, Scope_Stack.Table
|
5587 |
|
|
(Scope_Stack.Last).Component_Alignment_Default);
|
5588 |
|
|
end if;
|
5589 |
|
|
end Set_Component_Alignment_If_Not_Set;
|
5590 |
|
|
|
5591 |
|
|
------------------
|
5592 |
|
|
-- Undelay_Type --
|
5593 |
|
|
------------------
|
5594 |
|
|
|
5595 |
|
|
procedure Undelay_Type (T : Entity_Id) is
|
5596 |
|
|
begin
|
5597 |
|
|
Set_Has_Delayed_Freeze (T, False);
|
5598 |
|
|
Set_Freeze_Node (T, Empty);
|
5599 |
|
|
|
5600 |
|
|
-- Since we don't want T to have a Freeze_Node, we don't want its
|
5601 |
|
|
-- Full_View or Corresponding_Record_Type to have one either.
|
5602 |
|
|
|
5603 |
|
|
-- ??? Fundamentally, this whole handling is a kludge. What we really
|
5604 |
|
|
-- want is to be sure that for an Itype that's part of record R and is a
|
5605 |
|
|
-- subtype of type T, that it's frozen after the later of the freeze
|
5606 |
|
|
-- points of R and T. We have no way of doing that directly, so what we
|
5607 |
|
|
-- do is force most such Itypes to be frozen as part of freezing R via
|
5608 |
|
|
-- this procedure and only delay the ones that need to be delayed
|
5609 |
|
|
-- (mostly the designated types of access types that are defined as part
|
5610 |
|
|
-- of the record).
|
5611 |
|
|
|
5612 |
|
|
if Is_Private_Type (T)
|
5613 |
|
|
and then Present (Full_View (T))
|
5614 |
|
|
and then Is_Itype (Full_View (T))
|
5615 |
|
|
and then Is_Record_Type (Scope (Full_View (T)))
|
5616 |
|
|
then
|
5617 |
|
|
Undelay_Type (Full_View (T));
|
5618 |
|
|
end if;
|
5619 |
|
|
|
5620 |
|
|
if Is_Concurrent_Type (T)
|
5621 |
|
|
and then Present (Corresponding_Record_Type (T))
|
5622 |
|
|
and then Is_Itype (Corresponding_Record_Type (T))
|
5623 |
|
|
and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
|
5624 |
|
|
then
|
5625 |
|
|
Undelay_Type (Corresponding_Record_Type (T));
|
5626 |
|
|
end if;
|
5627 |
|
|
end Undelay_Type;
|
5628 |
|
|
|
5629 |
|
|
------------------
|
5630 |
|
|
-- Warn_Overlay --
|
5631 |
|
|
------------------
|
5632 |
|
|
|
5633 |
|
|
procedure Warn_Overlay
|
5634 |
|
|
(Expr : Node_Id;
|
5635 |
|
|
Typ : Entity_Id;
|
5636 |
|
|
Nam : Entity_Id)
|
5637 |
|
|
is
|
5638 |
|
|
Ent : constant Entity_Id := Entity (Nam);
|
5639 |
|
|
-- The object to which the address clause applies
|
5640 |
|
|
|
5641 |
|
|
Init : Node_Id;
|
5642 |
|
|
Old : Entity_Id := Empty;
|
5643 |
|
|
Decl : Node_Id;
|
5644 |
|
|
|
5645 |
|
|
begin
|
5646 |
|
|
-- No warning if address clause overlay warnings are off
|
5647 |
|
|
|
5648 |
|
|
if not Address_Clause_Overlay_Warnings then
|
5649 |
|
|
return;
|
5650 |
|
|
end if;
|
5651 |
|
|
|
5652 |
|
|
-- No warning if there is an explicit initialization
|
5653 |
|
|
|
5654 |
|
|
Init := Original_Node (Expression (Declaration_Node (Ent)));
|
5655 |
|
|
|
5656 |
|
|
if Present (Init) and then Comes_From_Source (Init) then
|
5657 |
|
|
return;
|
5658 |
|
|
end if;
|
5659 |
|
|
|
5660 |
|
|
-- We only give the warning for non-imported entities of a type for
|
5661 |
|
|
-- which a non-null base init proc is defined, or for objects of access
|
5662 |
|
|
-- types with implicit null initialization, or when Initialize_Scalars
|
5663 |
|
|
-- applies and the type is scalar or a string type (the latter being
|
5664 |
|
|
-- tested for because predefined String types are initialized by inline
|
5665 |
|
|
-- code rather than by an init_proc).
|
5666 |
|
|
|
5667 |
|
|
if Present (Expr)
|
5668 |
|
|
and then not Is_Imported (Ent)
|
5669 |
|
|
and then (Has_Non_Null_Base_Init_Proc (Typ)
|
5670 |
|
|
or else Is_Access_Type (Typ)
|
5671 |
|
|
or else (Init_Or_Norm_Scalars
|
5672 |
|
|
and then (Is_Scalar_Type (Typ)
|
5673 |
|
|
or else Is_String_Type (Typ))))
|
5674 |
|
|
then
|
5675 |
|
|
if Nkind (Expr) = N_Attribute_Reference
|
5676 |
|
|
and then Is_Entity_Name (Prefix (Expr))
|
5677 |
|
|
then
|
5678 |
|
|
Old := Entity (Prefix (Expr));
|
5679 |
|
|
|
5680 |
|
|
elsif Is_Entity_Name (Expr)
|
5681 |
|
|
and then Ekind (Entity (Expr)) = E_Constant
|
5682 |
|
|
then
|
5683 |
|
|
Decl := Declaration_Node (Entity (Expr));
|
5684 |
|
|
|
5685 |
|
|
if Nkind (Decl) = N_Object_Declaration
|
5686 |
|
|
and then Present (Expression (Decl))
|
5687 |
|
|
and then Nkind (Expression (Decl)) = N_Attribute_Reference
|
5688 |
|
|
and then Is_Entity_Name (Prefix (Expression (Decl)))
|
5689 |
|
|
then
|
5690 |
|
|
Old := Entity (Prefix (Expression (Decl)));
|
5691 |
|
|
|
5692 |
|
|
elsif Nkind (Expr) = N_Function_Call then
|
5693 |
|
|
return;
|
5694 |
|
|
end if;
|
5695 |
|
|
|
5696 |
|
|
-- A function call (most likely to To_Address) is probably not an
|
5697 |
|
|
-- overlay, so skip warning. Ditto if the function call was inlined
|
5698 |
|
|
-- and transformed into an entity.
|
5699 |
|
|
|
5700 |
|
|
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
|
5701 |
|
|
return;
|
5702 |
|
|
end if;
|
5703 |
|
|
|
5704 |
|
|
Decl := Next (Parent (Expr));
|
5705 |
|
|
|
5706 |
|
|
-- If a pragma Import follows, we assume that it is for the current
|
5707 |
|
|
-- target of the address clause, and skip the warning.
|
5708 |
|
|
|
5709 |
|
|
if Present (Decl)
|
5710 |
|
|
and then Nkind (Decl) = N_Pragma
|
5711 |
|
|
and then Pragma_Name (Decl) = Name_Import
|
5712 |
|
|
then
|
5713 |
|
|
return;
|
5714 |
|
|
end if;
|
5715 |
|
|
|
5716 |
|
|
if Present (Old) then
|
5717 |
|
|
Error_Msg_Node_2 := Old;
|
5718 |
|
|
Error_Msg_N
|
5719 |
|
|
("default initialization of & may modify &?",
|
5720 |
|
|
Nam);
|
5721 |
|
|
else
|
5722 |
|
|
Error_Msg_N
|
5723 |
|
|
("default initialization of & may modify overlaid storage?",
|
5724 |
|
|
Nam);
|
5725 |
|
|
end if;
|
5726 |
|
|
|
5727 |
|
|
-- Add friendly warning if initialization comes from a packed array
|
5728 |
|
|
-- component.
|
5729 |
|
|
|
5730 |
|
|
if Is_Record_Type (Typ) then
|
5731 |
|
|
declare
|
5732 |
|
|
Comp : Entity_Id;
|
5733 |
|
|
|
5734 |
|
|
begin
|
5735 |
|
|
Comp := First_Component (Typ);
|
5736 |
|
|
|
5737 |
|
|
while Present (Comp) loop
|
5738 |
|
|
if Nkind (Parent (Comp)) = N_Component_Declaration
|
5739 |
|
|
and then Present (Expression (Parent (Comp)))
|
5740 |
|
|
then
|
5741 |
|
|
exit;
|
5742 |
|
|
elsif Is_Array_Type (Etype (Comp))
|
5743 |
|
|
and then Present (Packed_Array_Type (Etype (Comp)))
|
5744 |
|
|
then
|
5745 |
|
|
Error_Msg_NE
|
5746 |
|
|
("\packed array component& " &
|
5747 |
|
|
"will be initialized to zero?",
|
5748 |
|
|
Nam, Comp);
|
5749 |
|
|
exit;
|
5750 |
|
|
else
|
5751 |
|
|
Next_Component (Comp);
|
5752 |
|
|
end if;
|
5753 |
|
|
end loop;
|
5754 |
|
|
end;
|
5755 |
|
|
end if;
|
5756 |
|
|
|
5757 |
|
|
Error_Msg_N
|
5758 |
|
|
("\use pragma Import for & to " &
|
5759 |
|
|
"suppress initialization (RM B.1(24))?",
|
5760 |
|
|
Nam);
|
5761 |
|
|
end if;
|
5762 |
|
|
end Warn_Overlay;
|
5763 |
|
|
|
5764 |
|
|
end Freeze;
|