1 |
281 |
jeremybenn |
/****************************************************************************
|
2 |
|
|
* *
|
3 |
|
|
* GNAT COMPILER COMPONENTS *
|
4 |
|
|
* *
|
5 |
|
|
* D E C L *
|
6 |
|
|
* *
|
7 |
|
|
* C Implementation File *
|
8 |
|
|
* *
|
9 |
|
|
* Copyright (C) 1992-2009, Free Software Foundation, Inc. *
|
10 |
|
|
* *
|
11 |
|
|
* GNAT is free software; you can redistribute it and/or modify it under *
|
12 |
|
|
* terms of the GNU General Public License as published by the Free Soft- *
|
13 |
|
|
* ware Foundation; either version 3, or (at your option) any later ver- *
|
14 |
|
|
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
|
15 |
|
|
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
|
16 |
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
|
17 |
|
|
* for more details. You should have received a copy of the GNU General *
|
18 |
|
|
* Public License along with GCC; see the file COPYING3. If not see *
|
19 |
|
|
* <http://www.gnu.org/licenses/>. *
|
20 |
|
|
* *
|
21 |
|
|
* GNAT was originally developed by the GNAT team at New York University. *
|
22 |
|
|
* Extensive contributions were provided by Ada Core Technologies Inc. *
|
23 |
|
|
* *
|
24 |
|
|
****************************************************************************/
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "toplev.h"
|
33 |
|
|
#include "ggc.h"
|
34 |
|
|
#include "target.h"
|
35 |
|
|
#include "expr.h"
|
36 |
|
|
#include "tree-inline.h"
|
37 |
|
|
|
38 |
|
|
#include "ada.h"
|
39 |
|
|
#include "types.h"
|
40 |
|
|
#include "atree.h"
|
41 |
|
|
#include "elists.h"
|
42 |
|
|
#include "namet.h"
|
43 |
|
|
#include "nlists.h"
|
44 |
|
|
#include "repinfo.h"
|
45 |
|
|
#include "snames.h"
|
46 |
|
|
#include "stringt.h"
|
47 |
|
|
#include "uintp.h"
|
48 |
|
|
#include "fe.h"
|
49 |
|
|
#include "sinfo.h"
|
50 |
|
|
#include "einfo.h"
|
51 |
|
|
#include "ada-tree.h"
|
52 |
|
|
#include "gigi.h"
|
53 |
|
|
|
54 |
|
|
#ifndef MAX_FIXED_MODE_SIZE
|
55 |
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
|
56 |
|
|
#endif
|
57 |
|
|
|
58 |
|
|
/* Convention_Stdcall should be processed in a specific way on Windows targets
|
59 |
|
|
only. The macro below is a helper to avoid having to check for a Windows
|
60 |
|
|
specific attribute throughout this unit. */
|
61 |
|
|
|
62 |
|
|
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
63 |
|
|
#define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
|
64 |
|
|
#else
|
65 |
|
|
#define Has_Stdcall_Convention(E) (0)
|
66 |
|
|
#endif
|
67 |
|
|
|
68 |
|
|
/* Stack realignment for functions with foreign conventions is provided on a
|
69 |
|
|
per back-end basis now, as it is handled by the prologue expanders and not
|
70 |
|
|
as part of the function's body any more. It might be requested by way of a
|
71 |
|
|
dedicated function type attribute on the targets that support it.
|
72 |
|
|
|
73 |
|
|
We need a way to avoid setting the attribute on the targets that don't
|
74 |
|
|
support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
|
75 |
|
|
|
76 |
|
|
It is defined on targets where the circuitry is available, and indicates
|
77 |
|
|
whether the realignment is needed for 'main'. We use this to decide for
|
78 |
|
|
foreign subprograms as well.
|
79 |
|
|
|
80 |
|
|
It is not defined on targets where the circuitry is not implemented, and
|
81 |
|
|
we just never set the attribute in these cases.
|
82 |
|
|
|
83 |
|
|
Whether it is defined on all targets that would need it in theory is
|
84 |
|
|
not entirely clear. We currently trust the base GCC settings for this
|
85 |
|
|
purpose. */
|
86 |
|
|
|
87 |
|
|
#ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
|
88 |
|
|
#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
|
89 |
|
|
#endif
|
90 |
|
|
|
91 |
|
|
struct incomplete
|
92 |
|
|
{
|
93 |
|
|
struct incomplete *next;
|
94 |
|
|
tree old_type;
|
95 |
|
|
Entity_Id full_type;
|
96 |
|
|
};
|
97 |
|
|
|
98 |
|
|
/* These variables are used to defer recursively expanding incomplete types
|
99 |
|
|
while we are processing an array, a record or a subprogram type. */
|
100 |
|
|
static int defer_incomplete_level = 0;
|
101 |
|
|
static struct incomplete *defer_incomplete_list;
|
102 |
|
|
|
103 |
|
|
/* This variable is used to delay expanding From_With_Type types until the
|
104 |
|
|
end of the spec. */
|
105 |
|
|
static struct incomplete *defer_limited_with;
|
106 |
|
|
|
107 |
|
|
/* These variables are used to defer finalizing types. The element of the
|
108 |
|
|
list is the TYPE_DECL associated with the type. */
|
109 |
|
|
static int defer_finalize_level = 0;
|
110 |
|
|
static VEC (tree,heap) *defer_finalize_list;
|
111 |
|
|
|
112 |
|
|
/* A hash table used to cache the result of annotate_value. */
|
113 |
|
|
static GTY ((if_marked ("tree_int_map_marked_p"),
|
114 |
|
|
param_is (struct tree_int_map))) htab_t annotate_value_cache;
|
115 |
|
|
|
116 |
|
|
enum alias_set_op
|
117 |
|
|
{
|
118 |
|
|
ALIAS_SET_COPY,
|
119 |
|
|
ALIAS_SET_SUBSET,
|
120 |
|
|
ALIAS_SET_SUPERSET
|
121 |
|
|
};
|
122 |
|
|
|
123 |
|
|
static void relate_alias_sets (tree, tree, enum alias_set_op);
|
124 |
|
|
|
125 |
|
|
static bool allocatable_size_p (tree, bool);
|
126 |
|
|
static void prepend_one_attribute_to (struct attrib **,
|
127 |
|
|
enum attr_type, tree, tree, Node_Id);
|
128 |
|
|
static void prepend_attributes (Entity_Id, struct attrib **);
|
129 |
|
|
static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
|
130 |
|
|
static bool is_variable_size (tree);
|
131 |
|
|
static tree elaborate_expression_1 (tree, Entity_Id, tree, bool, bool);
|
132 |
|
|
static tree make_packable_type (tree, bool);
|
133 |
|
|
static tree gnat_to_gnu_component_type (Entity_Id, bool, bool);
|
134 |
|
|
static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
|
135 |
|
|
bool *);
|
136 |
|
|
static tree gnat_to_gnu_field (Entity_Id, tree, int, bool, bool);
|
137 |
|
|
static bool same_discriminant_p (Entity_Id, Entity_Id);
|
138 |
|
|
static bool array_type_has_nonaliased_component (tree, Entity_Id);
|
139 |
|
|
static bool compile_time_known_address_p (Node_Id);
|
140 |
|
|
static bool cannot_be_superflat_p (Node_Id);
|
141 |
|
|
static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
|
142 |
|
|
bool, bool, bool, bool, bool);
|
143 |
|
|
static Uint annotate_value (tree);
|
144 |
|
|
static void annotate_rep (Entity_Id, tree);
|
145 |
|
|
static tree build_position_list (tree, bool, tree, tree, unsigned int, tree);
|
146 |
|
|
static tree build_subst_list (Entity_Id, Entity_Id, bool);
|
147 |
|
|
static tree build_variant_list (tree, tree, tree);
|
148 |
|
|
static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
|
149 |
|
|
static void set_rm_size (Uint, tree, Entity_Id);
|
150 |
|
|
static tree make_type_from_size (tree, tree, bool);
|
151 |
|
|
static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
|
152 |
|
|
static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
|
153 |
|
|
static void check_ok_for_atomic (tree, Entity_Id, bool);
|
154 |
|
|
static int compatible_signatures_p (tree, tree);
|
155 |
|
|
static tree create_field_decl_from (tree, tree, tree, tree, tree, tree);
|
156 |
|
|
static tree get_rep_part (tree);
|
157 |
|
|
static tree get_variant_part (tree);
|
158 |
|
|
static tree create_variant_part_from (tree, tree, tree, tree, tree);
|
159 |
|
|
static void copy_and_substitute_in_size (tree, tree, tree);
|
160 |
|
|
static void rest_of_type_decl_compilation_no_defer (tree);
|
161 |
|
|
|
162 |
|
|
/* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
|
163 |
|
|
entity, return the equivalent GCC tree for that entity (a ..._DECL node)
|
164 |
|
|
and associate the ..._DECL node with the input GNAT defining identifier.
|
165 |
|
|
|
166 |
|
|
If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
|
167 |
|
|
initial value (in GCC tree form). This is optional for a variable. For
|
168 |
|
|
a renamed entity, GNU_EXPR gives the object being renamed.
|
169 |
|
|
|
170 |
|
|
DEFINITION is nonzero if this call is intended for a definition. This is
|
171 |
|
|
used for separate compilation where it is necessary to know whether an
|
172 |
|
|
external declaration or a definition must be created if the GCC equivalent
|
173 |
|
|
was not created previously. The value of 1 is normally used for a nonzero
|
174 |
|
|
DEFINITION, but a value of 2 is used in special circumstances, defined in
|
175 |
|
|
the code. */
|
176 |
|
|
|
177 |
|
|
tree
|
178 |
|
|
gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
|
179 |
|
|
{
|
180 |
|
|
/* Contains the kind of the input GNAT node. */
|
181 |
|
|
const Entity_Kind kind = Ekind (gnat_entity);
|
182 |
|
|
/* True if this is a type. */
|
183 |
|
|
const bool is_type = IN (kind, Type_Kind);
|
184 |
|
|
/* For a type, contains the equivalent GNAT node to be used in gigi. */
|
185 |
|
|
Entity_Id gnat_equiv_type = Empty;
|
186 |
|
|
/* Temporary used to walk the GNAT tree. */
|
187 |
|
|
Entity_Id gnat_temp;
|
188 |
|
|
/* Contains the GCC DECL node which is equivalent to the input GNAT node.
|
189 |
|
|
This node will be associated with the GNAT node by calling at the end
|
190 |
|
|
of the `switch' statement. */
|
191 |
|
|
tree gnu_decl = NULL_TREE;
|
192 |
|
|
/* Contains the GCC type to be used for the GCC node. */
|
193 |
|
|
tree gnu_type = NULL_TREE;
|
194 |
|
|
/* Contains the GCC size tree to be used for the GCC node. */
|
195 |
|
|
tree gnu_size = NULL_TREE;
|
196 |
|
|
/* Contains the GCC name to be used for the GCC node. */
|
197 |
|
|
tree gnu_entity_name;
|
198 |
|
|
/* True if we have already saved gnu_decl as a GNAT association. */
|
199 |
|
|
bool saved = false;
|
200 |
|
|
/* True if we incremented defer_incomplete_level. */
|
201 |
|
|
bool this_deferred = false;
|
202 |
|
|
/* True if we incremented force_global. */
|
203 |
|
|
bool this_global = false;
|
204 |
|
|
/* True if we should check to see if elaborated during processing. */
|
205 |
|
|
bool maybe_present = false;
|
206 |
|
|
/* True if we made GNU_DECL and its type here. */
|
207 |
|
|
bool this_made_decl = false;
|
208 |
|
|
/* True if debug info is requested for this entity. */
|
209 |
|
|
bool debug_info_p = (Needs_Debug_Info (gnat_entity)
|
210 |
|
|
|| debug_info_level == DINFO_LEVEL_VERBOSE);
|
211 |
|
|
/* True if this entity is to be considered as imported. */
|
212 |
|
|
bool imported_p = (Is_Imported (gnat_entity)
|
213 |
|
|
&& No (Address_Clause (gnat_entity)));
|
214 |
|
|
/* Size and alignment of the GCC node, if meaningful. */
|
215 |
|
|
unsigned int esize = 0, align = 0;
|
216 |
|
|
/* Contains the list of attributes directly attached to the entity. */
|
217 |
|
|
struct attrib *attr_list = NULL;
|
218 |
|
|
|
219 |
|
|
/* Since a use of an Itype is a definition, process it as such if it
|
220 |
|
|
is not in a with'ed unit. */
|
221 |
|
|
if (!definition
|
222 |
|
|
&& is_type
|
223 |
|
|
&& Is_Itype (gnat_entity)
|
224 |
|
|
&& !present_gnu_tree (gnat_entity)
|
225 |
|
|
&& In_Extended_Main_Code_Unit (gnat_entity))
|
226 |
|
|
{
|
227 |
|
|
/* Ensure that we are in a subprogram mentioned in the Scope chain of
|
228 |
|
|
this entity, our current scope is global, or we encountered a task
|
229 |
|
|
or entry (where we can't currently accurately check scoping). */
|
230 |
|
|
if (!current_function_decl
|
231 |
|
|
|| DECL_ELABORATION_PROC_P (current_function_decl))
|
232 |
|
|
{
|
233 |
|
|
process_type (gnat_entity);
|
234 |
|
|
return get_gnu_tree (gnat_entity);
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
for (gnat_temp = Scope (gnat_entity);
|
238 |
|
|
Present (gnat_temp);
|
239 |
|
|
gnat_temp = Scope (gnat_temp))
|
240 |
|
|
{
|
241 |
|
|
if (Is_Type (gnat_temp))
|
242 |
|
|
gnat_temp = Underlying_Type (gnat_temp);
|
243 |
|
|
|
244 |
|
|
if (Ekind (gnat_temp) == E_Subprogram_Body)
|
245 |
|
|
gnat_temp
|
246 |
|
|
= Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
|
247 |
|
|
|
248 |
|
|
if (IN (Ekind (gnat_temp), Subprogram_Kind)
|
249 |
|
|
&& Present (Protected_Body_Subprogram (gnat_temp)))
|
250 |
|
|
gnat_temp = Protected_Body_Subprogram (gnat_temp);
|
251 |
|
|
|
252 |
|
|
if (Ekind (gnat_temp) == E_Entry
|
253 |
|
|
|| Ekind (gnat_temp) == E_Entry_Family
|
254 |
|
|
|| Ekind (gnat_temp) == E_Task_Type
|
255 |
|
|
|| (IN (Ekind (gnat_temp), Subprogram_Kind)
|
256 |
|
|
&& present_gnu_tree (gnat_temp)
|
257 |
|
|
&& (current_function_decl
|
258 |
|
|
== gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
|
259 |
|
|
{
|
260 |
|
|
process_type (gnat_entity);
|
261 |
|
|
return get_gnu_tree (gnat_entity);
|
262 |
|
|
}
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* This abort means the Itype has an incorrect scope, i.e. that its
|
266 |
|
|
scope does not correspond to the subprogram it is declared in. */
|
267 |
|
|
gcc_unreachable ();
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
/* If we've already processed this entity, return what we got last time.
|
271 |
|
|
If we are defining the node, we should not have already processed it.
|
272 |
|
|
In that case, we will abort below when we try to save a new GCC tree
|
273 |
|
|
for this object. We also need to handle the case of getting a dummy
|
274 |
|
|
type when a Full_View exists. */
|
275 |
|
|
if ((!definition || (is_type && imported_p))
|
276 |
|
|
&& present_gnu_tree (gnat_entity))
|
277 |
|
|
{
|
278 |
|
|
gnu_decl = get_gnu_tree (gnat_entity);
|
279 |
|
|
|
280 |
|
|
if (TREE_CODE (gnu_decl) == TYPE_DECL
|
281 |
|
|
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
|
282 |
|
|
&& IN (kind, Incomplete_Or_Private_Kind)
|
283 |
|
|
&& Present (Full_View (gnat_entity)))
|
284 |
|
|
{
|
285 |
|
|
gnu_decl
|
286 |
|
|
= gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
|
287 |
|
|
save_gnu_tree (gnat_entity, NULL_TREE, false);
|
288 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, false);
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
return gnu_decl;
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/* If this is a numeric or enumeral type, or an access type, a nonzero
|
295 |
|
|
Esize must be specified unless it was specified by the programmer. */
|
296 |
|
|
gcc_assert (!Unknown_Esize (gnat_entity)
|
297 |
|
|
|| Has_Size_Clause (gnat_entity)
|
298 |
|
|
|| (!IN (kind, Numeric_Kind)
|
299 |
|
|
&& !IN (kind, Enumeration_Kind)
|
300 |
|
|
&& (!IN (kind, Access_Kind)
|
301 |
|
|
|| kind == E_Access_Protected_Subprogram_Type
|
302 |
|
|
|| kind == E_Anonymous_Access_Protected_Subprogram_Type
|
303 |
|
|
|| kind == E_Access_Subtype)));
|
304 |
|
|
|
305 |
|
|
/* The RM size must be specified for all discrete and fixed-point types. */
|
306 |
|
|
gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
|
307 |
|
|
&& Unknown_RM_Size (gnat_entity)));
|
308 |
|
|
|
309 |
|
|
/* If we get here, it means we have not yet done anything with this entity.
|
310 |
|
|
If we are not defining it, it must be a type or an entity that is defined
|
311 |
|
|
elsewhere or externally, otherwise we should have defined it already. */
|
312 |
|
|
gcc_assert (definition
|
313 |
|
|
|| type_annotate_only
|
314 |
|
|
|| is_type
|
315 |
|
|
|| kind == E_Discriminant
|
316 |
|
|
|| kind == E_Component
|
317 |
|
|
|| kind == E_Label
|
318 |
|
|
|| (kind == E_Constant && Present (Full_View (gnat_entity)))
|
319 |
|
|
|| Is_Public (gnat_entity));
|
320 |
|
|
|
321 |
|
|
/* Get the name of the entity and set up the line number and filename of
|
322 |
|
|
the original definition for use in any decl we make. */
|
323 |
|
|
gnu_entity_name = get_entity_name (gnat_entity);
|
324 |
|
|
Sloc_to_locus (Sloc (gnat_entity), &input_location);
|
325 |
|
|
|
326 |
|
|
/* For cases when we are not defining (i.e., we are referencing from
|
327 |
|
|
another compilation unit) public entities, show we are at global level
|
328 |
|
|
for the purpose of computing scopes. Don't do this for components or
|
329 |
|
|
discriminants since the relevant test is whether or not the record is
|
330 |
|
|
being defined. */
|
331 |
|
|
if (!definition
|
332 |
|
|
&& kind != E_Component
|
333 |
|
|
&& kind != E_Discriminant
|
334 |
|
|
&& Is_Public (gnat_entity)
|
335 |
|
|
&& !Is_Statically_Allocated (gnat_entity))
|
336 |
|
|
force_global++, this_global = true;
|
337 |
|
|
|
338 |
|
|
/* Handle any attributes directly attached to the entity. */
|
339 |
|
|
if (Has_Gigi_Rep_Item (gnat_entity))
|
340 |
|
|
prepend_attributes (gnat_entity, &attr_list);
|
341 |
|
|
|
342 |
|
|
/* Do some common processing for types. */
|
343 |
|
|
if (is_type)
|
344 |
|
|
{
|
345 |
|
|
/* Compute the equivalent type to be used in gigi. */
|
346 |
|
|
gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
|
347 |
|
|
|
348 |
|
|
/* Machine_Attributes on types are expected to be propagated to
|
349 |
|
|
subtypes. The corresponding Gigi_Rep_Items are only attached
|
350 |
|
|
to the first subtype though, so we handle the propagation here. */
|
351 |
|
|
if (Base_Type (gnat_entity) != gnat_entity
|
352 |
|
|
&& !Is_First_Subtype (gnat_entity)
|
353 |
|
|
&& Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
|
354 |
|
|
prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
|
355 |
|
|
&attr_list);
|
356 |
|
|
|
357 |
|
|
/* Compute a default value for the size of the type. */
|
358 |
|
|
if (Known_Esize (gnat_entity)
|
359 |
|
|
&& UI_Is_In_Int_Range (Esize (gnat_entity)))
|
360 |
|
|
{
|
361 |
|
|
unsigned int max_esize;
|
362 |
|
|
esize = UI_To_Int (Esize (gnat_entity));
|
363 |
|
|
|
364 |
|
|
if (IN (kind, Float_Kind))
|
365 |
|
|
max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
|
366 |
|
|
else if (IN (kind, Access_Kind))
|
367 |
|
|
max_esize = POINTER_SIZE * 2;
|
368 |
|
|
else
|
369 |
|
|
max_esize = LONG_LONG_TYPE_SIZE;
|
370 |
|
|
|
371 |
|
|
if (esize > max_esize)
|
372 |
|
|
esize = max_esize;
|
373 |
|
|
}
|
374 |
|
|
else
|
375 |
|
|
esize = LONG_LONG_TYPE_SIZE;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
switch (kind)
|
379 |
|
|
{
|
380 |
|
|
case E_Constant:
|
381 |
|
|
/* If this is a use of a deferred constant without address clause,
|
382 |
|
|
get its full definition. */
|
383 |
|
|
if (!definition
|
384 |
|
|
&& No (Address_Clause (gnat_entity))
|
385 |
|
|
&& Present (Full_View (gnat_entity)))
|
386 |
|
|
{
|
387 |
|
|
gnu_decl
|
388 |
|
|
= gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
|
389 |
|
|
saved = true;
|
390 |
|
|
break;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
/* If we have an external constant that we are not defining, get the
|
394 |
|
|
expression that is was defined to represent. We may throw that
|
395 |
|
|
expression away later if it is not a constant. Do not retrieve the
|
396 |
|
|
expression if it is an aggregate or allocator, because in complex
|
397 |
|
|
instantiation contexts it may not be expanded */
|
398 |
|
|
if (!definition
|
399 |
|
|
&& Present (Expression (Declaration_Node (gnat_entity)))
|
400 |
|
|
&& !No_Initialization (Declaration_Node (gnat_entity))
|
401 |
|
|
&& (Nkind (Expression (Declaration_Node (gnat_entity)))
|
402 |
|
|
!= N_Aggregate)
|
403 |
|
|
&& (Nkind (Expression (Declaration_Node (gnat_entity)))
|
404 |
|
|
!= N_Allocator))
|
405 |
|
|
gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
|
406 |
|
|
|
407 |
|
|
/* Ignore deferred constant definitions without address clause since
|
408 |
|
|
they are processed fully in the front-end. If No_Initialization
|
409 |
|
|
is set, this is not a deferred constant but a constant whose value
|
410 |
|
|
is built manually. And constants that are renamings are handled
|
411 |
|
|
like variables. */
|
412 |
|
|
if (definition
|
413 |
|
|
&& !gnu_expr
|
414 |
|
|
&& No (Address_Clause (gnat_entity))
|
415 |
|
|
&& !No_Initialization (Declaration_Node (gnat_entity))
|
416 |
|
|
&& No (Renamed_Object (gnat_entity)))
|
417 |
|
|
{
|
418 |
|
|
gnu_decl = error_mark_node;
|
419 |
|
|
saved = true;
|
420 |
|
|
break;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Ignore constant definitions already marked with the error node. See
|
424 |
|
|
the N_Object_Declaration case of gnat_to_gnu for the rationale. */
|
425 |
|
|
if (definition
|
426 |
|
|
&& gnu_expr
|
427 |
|
|
&& present_gnu_tree (gnat_entity)
|
428 |
|
|
&& get_gnu_tree (gnat_entity) == error_mark_node)
|
429 |
|
|
{
|
430 |
|
|
maybe_present = true;
|
431 |
|
|
break;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
goto object;
|
435 |
|
|
|
436 |
|
|
case E_Exception:
|
437 |
|
|
/* We used to special case VMS exceptions here to directly map them to
|
438 |
|
|
their associated condition code. Since this code had to be masked
|
439 |
|
|
dynamically to strip off the severity bits, this caused trouble in
|
440 |
|
|
the GCC/ZCX case because the "type" pointers we store in the tables
|
441 |
|
|
have to be static. We now don't special case here anymore, and let
|
442 |
|
|
the regular processing take place, which leaves us with a regular
|
443 |
|
|
exception data object for VMS exceptions too. The condition code
|
444 |
|
|
mapping is taken care of by the front end and the bitmasking by the
|
445 |
|
|
runtime library. */
|
446 |
|
|
goto object;
|
447 |
|
|
|
448 |
|
|
case E_Discriminant:
|
449 |
|
|
case E_Component:
|
450 |
|
|
{
|
451 |
|
|
/* The GNAT record where the component was defined. */
|
452 |
|
|
Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
|
453 |
|
|
|
454 |
|
|
/* If the variable is an inherited record component (in the case of
|
455 |
|
|
extended record types), just return the inherited entity, which
|
456 |
|
|
must be a FIELD_DECL. Likewise for discriminants.
|
457 |
|
|
For discriminants of untagged records which have explicit
|
458 |
|
|
stored discriminants, return the entity for the corresponding
|
459 |
|
|
stored discriminant. Also use Original_Record_Component
|
460 |
|
|
if the record has a private extension. */
|
461 |
|
|
if (Present (Original_Record_Component (gnat_entity))
|
462 |
|
|
&& Original_Record_Component (gnat_entity) != gnat_entity)
|
463 |
|
|
{
|
464 |
|
|
gnu_decl
|
465 |
|
|
= gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
|
466 |
|
|
gnu_expr, definition);
|
467 |
|
|
saved = true;
|
468 |
|
|
break;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* If the enclosing record has explicit stored discriminants,
|
472 |
|
|
then it is an untagged record. If the Corresponding_Discriminant
|
473 |
|
|
is not empty then this must be a renamed discriminant and its
|
474 |
|
|
Original_Record_Component must point to the corresponding explicit
|
475 |
|
|
stored discriminant (i.e. we should have taken the previous
|
476 |
|
|
branch). */
|
477 |
|
|
else if (Present (Corresponding_Discriminant (gnat_entity))
|
478 |
|
|
&& Is_Tagged_Type (gnat_record))
|
479 |
|
|
{
|
480 |
|
|
/* A tagged record has no explicit stored discriminants. */
|
481 |
|
|
gcc_assert (First_Discriminant (gnat_record)
|
482 |
|
|
== First_Stored_Discriminant (gnat_record));
|
483 |
|
|
gnu_decl
|
484 |
|
|
= gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
|
485 |
|
|
gnu_expr, definition);
|
486 |
|
|
saved = true;
|
487 |
|
|
break;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
else if (Present (CR_Discriminant (gnat_entity))
|
491 |
|
|
&& type_annotate_only)
|
492 |
|
|
{
|
493 |
|
|
gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
|
494 |
|
|
gnu_expr, definition);
|
495 |
|
|
saved = true;
|
496 |
|
|
break;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* If the enclosing record has explicit stored discriminants, then
|
500 |
|
|
it is an untagged record. If the Corresponding_Discriminant
|
501 |
|
|
is not empty then this must be a renamed discriminant and its
|
502 |
|
|
Original_Record_Component must point to the corresponding explicit
|
503 |
|
|
stored discriminant (i.e. we should have taken the first
|
504 |
|
|
branch). */
|
505 |
|
|
else if (Present (Corresponding_Discriminant (gnat_entity))
|
506 |
|
|
&& (First_Discriminant (gnat_record)
|
507 |
|
|
!= First_Stored_Discriminant (gnat_record)))
|
508 |
|
|
gcc_unreachable ();
|
509 |
|
|
|
510 |
|
|
/* Otherwise, if we are not defining this and we have no GCC type
|
511 |
|
|
for the containing record, make one for it. Then we should
|
512 |
|
|
have made our own equivalent. */
|
513 |
|
|
else if (!definition && !present_gnu_tree (gnat_record))
|
514 |
|
|
{
|
515 |
|
|
/* ??? If this is in a record whose scope is a protected
|
516 |
|
|
type and we have an Original_Record_Component, use it.
|
517 |
|
|
This is a workaround for major problems in protected type
|
518 |
|
|
handling. */
|
519 |
|
|
Entity_Id Scop = Scope (Scope (gnat_entity));
|
520 |
|
|
if ((Is_Protected_Type (Scop)
|
521 |
|
|
|| (Is_Private_Type (Scop)
|
522 |
|
|
&& Present (Full_View (Scop))
|
523 |
|
|
&& Is_Protected_Type (Full_View (Scop))))
|
524 |
|
|
&& Present (Original_Record_Component (gnat_entity)))
|
525 |
|
|
{
|
526 |
|
|
gnu_decl
|
527 |
|
|
= gnat_to_gnu_entity (Original_Record_Component
|
528 |
|
|
(gnat_entity),
|
529 |
|
|
gnu_expr, 0);
|
530 |
|
|
saved = true;
|
531 |
|
|
break;
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
|
535 |
|
|
gnu_decl = get_gnu_tree (gnat_entity);
|
536 |
|
|
saved = true;
|
537 |
|
|
break;
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
else
|
541 |
|
|
/* Here we have no GCC type and this is a reference rather than a
|
542 |
|
|
definition. This should never happen. Most likely the cause is
|
543 |
|
|
reference before declaration in the gnat tree for gnat_entity. */
|
544 |
|
|
gcc_unreachable ();
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
case E_Loop_Parameter:
|
548 |
|
|
case E_Out_Parameter:
|
549 |
|
|
case E_Variable:
|
550 |
|
|
|
551 |
|
|
/* Simple variables, loop variables, Out parameters, and exceptions. */
|
552 |
|
|
object:
|
553 |
|
|
{
|
554 |
|
|
bool used_by_ref = false;
|
555 |
|
|
bool const_flag
|
556 |
|
|
= ((kind == E_Constant || kind == E_Variable)
|
557 |
|
|
&& Is_True_Constant (gnat_entity)
|
558 |
|
|
&& !Treat_As_Volatile (gnat_entity)
|
559 |
|
|
&& (((Nkind (Declaration_Node (gnat_entity))
|
560 |
|
|
== N_Object_Declaration)
|
561 |
|
|
&& Present (Expression (Declaration_Node (gnat_entity))))
|
562 |
|
|
|| Present (Renamed_Object (gnat_entity))));
|
563 |
|
|
bool inner_const_flag = const_flag;
|
564 |
|
|
bool static_p = Is_Statically_Allocated (gnat_entity);
|
565 |
|
|
bool mutable_p = false;
|
566 |
|
|
tree gnu_ext_name = NULL_TREE;
|
567 |
|
|
tree renamed_obj = NULL_TREE;
|
568 |
|
|
tree gnu_object_size;
|
569 |
|
|
|
570 |
|
|
if (Present (Renamed_Object (gnat_entity)) && !definition)
|
571 |
|
|
{
|
572 |
|
|
if (kind == E_Exception)
|
573 |
|
|
gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
|
574 |
|
|
NULL_TREE, 0);
|
575 |
|
|
else
|
576 |
|
|
gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/* Get the type after elaborating the renamed object. */
|
580 |
|
|
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
|
581 |
|
|
|
582 |
|
|
/* For a debug renaming declaration, build a pure debug entity. */
|
583 |
|
|
if (Present (Debug_Renaming_Link (gnat_entity)))
|
584 |
|
|
{
|
585 |
|
|
rtx addr;
|
586 |
|
|
gnu_decl = build_decl (input_location,
|
587 |
|
|
VAR_DECL, gnu_entity_name, gnu_type);
|
588 |
|
|
/* The (MEM (CONST (0))) pattern is prescribed by STABS. */
|
589 |
|
|
if (global_bindings_p ())
|
590 |
|
|
addr = gen_rtx_CONST (VOIDmode, const0_rtx);
|
591 |
|
|
else
|
592 |
|
|
addr = stack_pointer_rtx;
|
593 |
|
|
SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
|
594 |
|
|
gnat_pushdecl (gnu_decl, gnat_entity);
|
595 |
|
|
break;
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
/* If this is a loop variable, its type should be the base type.
|
599 |
|
|
This is because the code for processing a loop determines whether
|
600 |
|
|
a normal loop end test can be done by comparing the bounds of the
|
601 |
|
|
loop against those of the base type, which is presumed to be the
|
602 |
|
|
size used for computation. But this is not correct when the size
|
603 |
|
|
of the subtype is smaller than the type. */
|
604 |
|
|
if (kind == E_Loop_Parameter)
|
605 |
|
|
gnu_type = get_base_type (gnu_type);
|
606 |
|
|
|
607 |
|
|
/* Reject non-renamed objects whose types are unconstrained arrays or
|
608 |
|
|
any object whose type is a dummy type or VOID_TYPE. */
|
609 |
|
|
|
610 |
|
|
if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
|
611 |
|
|
&& No (Renamed_Object (gnat_entity)))
|
612 |
|
|
|| TYPE_IS_DUMMY_P (gnu_type)
|
613 |
|
|
|| TREE_CODE (gnu_type) == VOID_TYPE)
|
614 |
|
|
{
|
615 |
|
|
gcc_assert (type_annotate_only);
|
616 |
|
|
if (this_global)
|
617 |
|
|
force_global--;
|
618 |
|
|
return error_mark_node;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/* If an alignment is specified, use it if valid. Note that exceptions
|
622 |
|
|
are objects but don't have an alignment. We must do this before we
|
623 |
|
|
validate the size, since the alignment can affect the size. */
|
624 |
|
|
if (kind != E_Exception && Known_Alignment (gnat_entity))
|
625 |
|
|
{
|
626 |
|
|
gcc_assert (Present (Alignment (gnat_entity)));
|
627 |
|
|
align = validate_alignment (Alignment (gnat_entity), gnat_entity,
|
628 |
|
|
TYPE_ALIGN (gnu_type));
|
629 |
|
|
/* No point in changing the type if there is an address clause
|
630 |
|
|
as the final type of the object will be a reference type. */
|
631 |
|
|
if (Present (Address_Clause (gnat_entity)))
|
632 |
|
|
align = 0;
|
633 |
|
|
else
|
634 |
|
|
gnu_type
|
635 |
|
|
= maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
|
636 |
|
|
false, false, definition, true);
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
/* If we are defining the object, see if it has a Size value and
|
640 |
|
|
validate it if so. If we are not defining the object and a Size
|
641 |
|
|
clause applies, simply retrieve the value. We don't want to ignore
|
642 |
|
|
the clause and it is expected to have been validated already. Then
|
643 |
|
|
get the new type, if any. */
|
644 |
|
|
if (definition)
|
645 |
|
|
gnu_size = validate_size (Esize (gnat_entity), gnu_type,
|
646 |
|
|
gnat_entity, VAR_DECL, false,
|
647 |
|
|
Has_Size_Clause (gnat_entity));
|
648 |
|
|
else if (Has_Size_Clause (gnat_entity))
|
649 |
|
|
gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
|
650 |
|
|
|
651 |
|
|
if (gnu_size)
|
652 |
|
|
{
|
653 |
|
|
gnu_type
|
654 |
|
|
= make_type_from_size (gnu_type, gnu_size,
|
655 |
|
|
Has_Biased_Representation (gnat_entity));
|
656 |
|
|
|
657 |
|
|
if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
|
658 |
|
|
gnu_size = NULL_TREE;
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
/* If this object has self-referential size, it must be a record with
|
662 |
|
|
a default value. We are supposed to allocate an object of the
|
663 |
|
|
maximum size in this case unless it is a constant with an
|
664 |
|
|
initializing expression, in which case we can get the size from
|
665 |
|
|
that. Note that the resulting size may still be a variable, so
|
666 |
|
|
this may end up with an indirect allocation. */
|
667 |
|
|
if (No (Renamed_Object (gnat_entity))
|
668 |
|
|
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
|
669 |
|
|
{
|
670 |
|
|
if (gnu_expr && kind == E_Constant)
|
671 |
|
|
{
|
672 |
|
|
tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
|
673 |
|
|
if (CONTAINS_PLACEHOLDER_P (size))
|
674 |
|
|
{
|
675 |
|
|
/* If the initializing expression is itself a constant,
|
676 |
|
|
despite having a nominal type with self-referential
|
677 |
|
|
size, we can get the size directly from it. */
|
678 |
|
|
if (TREE_CODE (gnu_expr) == COMPONENT_REF
|
679 |
|
|
&& TYPE_IS_PADDING_P
|
680 |
|
|
(TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
|
681 |
|
|
&& TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
|
682 |
|
|
&& (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
|
683 |
|
|
|| DECL_READONLY_ONCE_ELAB
|
684 |
|
|
(TREE_OPERAND (gnu_expr, 0))))
|
685 |
|
|
gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
|
686 |
|
|
else
|
687 |
|
|
gnu_size
|
688 |
|
|
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
|
689 |
|
|
}
|
690 |
|
|
else
|
691 |
|
|
gnu_size = size;
|
692 |
|
|
}
|
693 |
|
|
/* We may have no GNU_EXPR because No_Initialization is
|
694 |
|
|
set even though there's an Expression. */
|
695 |
|
|
else if (kind == E_Constant
|
696 |
|
|
&& (Nkind (Declaration_Node (gnat_entity))
|
697 |
|
|
== N_Object_Declaration)
|
698 |
|
|
&& Present (Expression (Declaration_Node (gnat_entity))))
|
699 |
|
|
gnu_size
|
700 |
|
|
= TYPE_SIZE (gnat_to_gnu_type
|
701 |
|
|
(Etype
|
702 |
|
|
(Expression (Declaration_Node (gnat_entity)))));
|
703 |
|
|
else
|
704 |
|
|
{
|
705 |
|
|
gnu_size = max_size (TYPE_SIZE (gnu_type), true);
|
706 |
|
|
mutable_p = true;
|
707 |
|
|
}
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* If the size is zero bytes, make it one byte since some linkers have
|
711 |
|
|
trouble with zero-sized objects. If the object will have a
|
712 |
|
|
template, that will make it nonzero so don't bother. Also avoid
|
713 |
|
|
doing that for an object renaming or an object with an address
|
714 |
|
|
clause, as we would lose useful information on the view size
|
715 |
|
|
(e.g. for null array slices) and we are not allocating the object
|
716 |
|
|
here anyway. */
|
717 |
|
|
if (((gnu_size
|
718 |
|
|
&& integer_zerop (gnu_size)
|
719 |
|
|
&& !TREE_OVERFLOW (gnu_size))
|
720 |
|
|
|| (TYPE_SIZE (gnu_type)
|
721 |
|
|
&& integer_zerop (TYPE_SIZE (gnu_type))
|
722 |
|
|
&& !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
|
723 |
|
|
&& (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
|
724 |
|
|
|| !Is_Array_Type (Etype (gnat_entity)))
|
725 |
|
|
&& No (Renamed_Object (gnat_entity))
|
726 |
|
|
&& No (Address_Clause (gnat_entity)))
|
727 |
|
|
gnu_size = bitsize_unit_node;
|
728 |
|
|
|
729 |
|
|
/* If this is an object with no specified size and alignment, and
|
730 |
|
|
if either it is atomic or we are not optimizing alignment for
|
731 |
|
|
space and it is composite and not an exception, an Out parameter
|
732 |
|
|
or a reference to another object, and the size of its type is a
|
733 |
|
|
constant, set the alignment to the smallest one which is not
|
734 |
|
|
smaller than the size, with an appropriate cap. */
|
735 |
|
|
if (!gnu_size && align == 0
|
736 |
|
|
&& (Is_Atomic (gnat_entity)
|
737 |
|
|
|| (!Optimize_Alignment_Space (gnat_entity)
|
738 |
|
|
&& kind != E_Exception
|
739 |
|
|
&& kind != E_Out_Parameter
|
740 |
|
|
&& Is_Composite_Type (Etype (gnat_entity))
|
741 |
|
|
&& !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
|
742 |
|
|
&& !imported_p
|
743 |
|
|
&& No (Renamed_Object (gnat_entity))
|
744 |
|
|
&& No (Address_Clause (gnat_entity))))
|
745 |
|
|
&& TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
|
746 |
|
|
{
|
747 |
|
|
/* No point in jumping through all the hoops needed in order
|
748 |
|
|
to support BIGGEST_ALIGNMENT if we don't really have to.
|
749 |
|
|
So we cap to the smallest alignment that corresponds to
|
750 |
|
|
a known efficient memory access pattern of the target. */
|
751 |
|
|
unsigned int align_cap = Is_Atomic (gnat_entity)
|
752 |
|
|
? BIGGEST_ALIGNMENT
|
753 |
|
|
: get_mode_alignment (ptr_mode);
|
754 |
|
|
|
755 |
|
|
if (!host_integerp (TYPE_SIZE (gnu_type), 1)
|
756 |
|
|
|| compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
|
757 |
|
|
align = align_cap;
|
758 |
|
|
else
|
759 |
|
|
align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
|
760 |
|
|
|
761 |
|
|
/* But make sure not to under-align the object. */
|
762 |
|
|
if (align <= TYPE_ALIGN (gnu_type))
|
763 |
|
|
align = 0;
|
764 |
|
|
|
765 |
|
|
/* And honor the minimum valid atomic alignment, if any. */
|
766 |
|
|
#ifdef MINIMUM_ATOMIC_ALIGNMENT
|
767 |
|
|
else if (align < MINIMUM_ATOMIC_ALIGNMENT)
|
768 |
|
|
align = MINIMUM_ATOMIC_ALIGNMENT;
|
769 |
|
|
#endif
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* If the object is set to have atomic components, find the component
|
773 |
|
|
type and validate it.
|
774 |
|
|
|
775 |
|
|
??? Note that we ignore Has_Volatile_Components on objects; it's
|
776 |
|
|
not at all clear what to do in that case. */
|
777 |
|
|
|
778 |
|
|
if (Has_Atomic_Components (gnat_entity))
|
779 |
|
|
{
|
780 |
|
|
tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
|
781 |
|
|
? TREE_TYPE (gnu_type) : gnu_type);
|
782 |
|
|
|
783 |
|
|
while (TREE_CODE (gnu_inner) == ARRAY_TYPE
|
784 |
|
|
&& TYPE_MULTI_ARRAY_P (gnu_inner))
|
785 |
|
|
gnu_inner = TREE_TYPE (gnu_inner);
|
786 |
|
|
|
787 |
|
|
check_ok_for_atomic (gnu_inner, gnat_entity, true);
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* Now check if the type of the object allows atomic access. Note
|
791 |
|
|
that we must test the type, even if this object has size and
|
792 |
|
|
alignment to allow such access, because we will be going
|
793 |
|
|
inside the padded record to assign to the object. We could fix
|
794 |
|
|
this by always copying via an intermediate value, but it's not
|
795 |
|
|
clear it's worth the effort. */
|
796 |
|
|
if (Is_Atomic (gnat_entity))
|
797 |
|
|
check_ok_for_atomic (gnu_type, gnat_entity, false);
|
798 |
|
|
|
799 |
|
|
/* If this is an aliased object with an unconstrained nominal subtype,
|
800 |
|
|
make a type that includes the template. */
|
801 |
|
|
if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
|
802 |
|
|
&& Is_Array_Type (Etype (gnat_entity))
|
803 |
|
|
&& !type_annotate_only)
|
804 |
|
|
{
|
805 |
|
|
tree gnu_fat
|
806 |
|
|
= TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
|
807 |
|
|
|
808 |
|
|
gnu_type
|
809 |
|
|
= build_unc_object_type_from_ptr (gnu_fat, gnu_type,
|
810 |
|
|
concat_name (gnu_entity_name,
|
811 |
|
|
"UNC"));
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
#ifdef MINIMUM_ATOMIC_ALIGNMENT
|
815 |
|
|
/* If the size is a constant and no alignment is specified, force
|
816 |
|
|
the alignment to be the minimum valid atomic alignment. The
|
817 |
|
|
restriction on constant size avoids problems with variable-size
|
818 |
|
|
temporaries; if the size is variable, there's no issue with
|
819 |
|
|
atomic access. Also don't do this for a constant, since it isn't
|
820 |
|
|
necessary and can interfere with constant replacement. Finally,
|
821 |
|
|
do not do it for Out parameters since that creates an
|
822 |
|
|
size inconsistency with In parameters. */
|
823 |
|
|
if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
|
824 |
|
|
&& !FLOAT_TYPE_P (gnu_type)
|
825 |
|
|
&& !const_flag && No (Renamed_Object (gnat_entity))
|
826 |
|
|
&& !imported_p && No (Address_Clause (gnat_entity))
|
827 |
|
|
&& kind != E_Out_Parameter
|
828 |
|
|
&& (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
|
829 |
|
|
: TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
|
830 |
|
|
align = MINIMUM_ATOMIC_ALIGNMENT;
|
831 |
|
|
#endif
|
832 |
|
|
|
833 |
|
|
/* Make a new type with the desired size and alignment, if needed.
|
834 |
|
|
But do not take into account alignment promotions to compute the
|
835 |
|
|
size of the object. */
|
836 |
|
|
gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
|
837 |
|
|
if (gnu_size || align > 0)
|
838 |
|
|
gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
|
839 |
|
|
false, false, definition,
|
840 |
|
|
gnu_size ? true : false);
|
841 |
|
|
|
842 |
|
|
/* If this is a renaming, avoid as much as possible to create a new
|
843 |
|
|
object. However, in several cases, creating it is required.
|
844 |
|
|
This processing needs to be applied to the raw expression so
|
845 |
|
|
as to make it more likely to rename the underlying object. */
|
846 |
|
|
if (Present (Renamed_Object (gnat_entity)))
|
847 |
|
|
{
|
848 |
|
|
bool create_normal_object = false;
|
849 |
|
|
|
850 |
|
|
/* If the renamed object had padding, strip off the reference
|
851 |
|
|
to the inner object and reset our type. */
|
852 |
|
|
if ((TREE_CODE (gnu_expr) == COMPONENT_REF
|
853 |
|
|
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
|
854 |
|
|
/* Strip useless conversions around the object. */
|
855 |
|
|
|| (TREE_CODE (gnu_expr) == NOP_EXPR
|
856 |
|
|
&& gnat_types_compatible_p
|
857 |
|
|
(TREE_TYPE (gnu_expr),
|
858 |
|
|
TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
|
859 |
|
|
{
|
860 |
|
|
gnu_expr = TREE_OPERAND (gnu_expr, 0);
|
861 |
|
|
gnu_type = TREE_TYPE (gnu_expr);
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Case 1: If this is a constant renaming stemming from a function
|
865 |
|
|
call, treat it as a normal object whose initial value is what
|
866 |
|
|
is being renamed. RM 3.3 says that the result of evaluating a
|
867 |
|
|
function call is a constant object. As a consequence, it can
|
868 |
|
|
be the inner object of a constant renaming. In this case, the
|
869 |
|
|
renaming must be fully instantiated, i.e. it cannot be a mere
|
870 |
|
|
reference to (part of) an existing object. */
|
871 |
|
|
if (const_flag)
|
872 |
|
|
{
|
873 |
|
|
tree inner_object = gnu_expr;
|
874 |
|
|
while (handled_component_p (inner_object))
|
875 |
|
|
inner_object = TREE_OPERAND (inner_object, 0);
|
876 |
|
|
if (TREE_CODE (inner_object) == CALL_EXPR)
|
877 |
|
|
create_normal_object = true;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Otherwise, see if we can proceed with a stabilized version of
|
881 |
|
|
the renamed entity or if we need to make a new object. */
|
882 |
|
|
if (!create_normal_object)
|
883 |
|
|
{
|
884 |
|
|
tree maybe_stable_expr = NULL_TREE;
|
885 |
|
|
bool stable = false;
|
886 |
|
|
|
887 |
|
|
/* Case 2: If the renaming entity need not be materialized and
|
888 |
|
|
the renamed expression is something we can stabilize, use
|
889 |
|
|
that for the renaming. At the global level, we can only do
|
890 |
|
|
this if we know no SAVE_EXPRs need be made, because the
|
891 |
|
|
expression we return might be used in arbitrary conditional
|
892 |
|
|
branches so we must force the SAVE_EXPRs evaluation
|
893 |
|
|
immediately and this requires a function context. */
|
894 |
|
|
if (!Materialize_Entity (gnat_entity)
|
895 |
|
|
&& (!global_bindings_p ()
|
896 |
|
|
|| (staticp (gnu_expr)
|
897 |
|
|
&& !TREE_SIDE_EFFECTS (gnu_expr))))
|
898 |
|
|
{
|
899 |
|
|
maybe_stable_expr
|
900 |
|
|
= maybe_stabilize_reference (gnu_expr, true, &stable);
|
901 |
|
|
|
902 |
|
|
if (stable)
|
903 |
|
|
{
|
904 |
|
|
/* ??? No DECL_EXPR is created so we need to mark
|
905 |
|
|
the expression manually lest it is shared. */
|
906 |
|
|
if (global_bindings_p ())
|
907 |
|
|
MARK_VISITED (maybe_stable_expr);
|
908 |
|
|
gnu_decl = maybe_stable_expr;
|
909 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, true);
|
910 |
|
|
saved = true;
|
911 |
|
|
annotate_object (gnat_entity, gnu_type, NULL_TREE,
|
912 |
|
|
false);
|
913 |
|
|
break;
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
/* The stabilization failed. Keep maybe_stable_expr
|
917 |
|
|
untouched here to let the pointer case below know
|
918 |
|
|
about that failure. */
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
/* Case 3: If this is a constant renaming and creating a
|
922 |
|
|
new object is allowed and cheap, treat it as a normal
|
923 |
|
|
object whose initial value is what is being renamed. */
|
924 |
|
|
if (const_flag
|
925 |
|
|
&& !Is_Composite_Type
|
926 |
|
|
(Underlying_Type (Etype (gnat_entity))))
|
927 |
|
|
;
|
928 |
|
|
|
929 |
|
|
/* Case 4: Make this into a constant pointer to the object we
|
930 |
|
|
are to rename and attach the object to the pointer if it is
|
931 |
|
|
something we can stabilize.
|
932 |
|
|
|
933 |
|
|
From the proper scope, attached objects will be referenced
|
934 |
|
|
directly instead of indirectly via the pointer to avoid
|
935 |
|
|
subtle aliasing problems with non-addressable entities.
|
936 |
|
|
They have to be stable because we must not evaluate the
|
937 |
|
|
variables in the expression every time the renaming is used.
|
938 |
|
|
The pointer is called a "renaming" pointer in this case.
|
939 |
|
|
|
940 |
|
|
In the rare cases where we cannot stabilize the renamed
|
941 |
|
|
object, we just make a "bare" pointer, and the renamed
|
942 |
|
|
entity is always accessed indirectly through it. */
|
943 |
|
|
else
|
944 |
|
|
{
|
945 |
|
|
gnu_type = build_reference_type (gnu_type);
|
946 |
|
|
inner_const_flag = TREE_READONLY (gnu_expr);
|
947 |
|
|
const_flag = true;
|
948 |
|
|
|
949 |
|
|
/* If the previous attempt at stabilizing failed, there
|
950 |
|
|
is no point in trying again and we reuse the result
|
951 |
|
|
without attaching it to the pointer. In this case it
|
952 |
|
|
will only be used as the initializing expression of
|
953 |
|
|
the pointer and thus needs no special treatment with
|
954 |
|
|
regard to multiple evaluations. */
|
955 |
|
|
if (maybe_stable_expr)
|
956 |
|
|
;
|
957 |
|
|
|
958 |
|
|
/* Otherwise, try to stabilize and attach the expression
|
959 |
|
|
to the pointer if the stabilization succeeds.
|
960 |
|
|
|
961 |
|
|
Note that this might introduce SAVE_EXPRs and we don't
|
962 |
|
|
check whether we're at the global level or not. This
|
963 |
|
|
is fine since we are building a pointer initializer and
|
964 |
|
|
neither the pointer nor the initializing expression can
|
965 |
|
|
be accessed before the pointer elaboration has taken
|
966 |
|
|
place in a correct program.
|
967 |
|
|
|
968 |
|
|
These SAVE_EXPRs will be evaluated at the right place
|
969 |
|
|
by either the evaluation of the initializer for the
|
970 |
|
|
non-global case or the elaboration code for the global
|
971 |
|
|
case, and will be attached to the elaboration procedure
|
972 |
|
|
in the latter case. */
|
973 |
|
|
else
|
974 |
|
|
{
|
975 |
|
|
maybe_stable_expr
|
976 |
|
|
= maybe_stabilize_reference (gnu_expr, true, &stable);
|
977 |
|
|
|
978 |
|
|
if (stable)
|
979 |
|
|
renamed_obj = maybe_stable_expr;
|
980 |
|
|
|
981 |
|
|
/* Attaching is actually performed downstream, as soon
|
982 |
|
|
as we have a VAR_DECL for the pointer we make. */
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
gnu_expr
|
986 |
|
|
= build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
|
987 |
|
|
|
988 |
|
|
gnu_size = NULL_TREE;
|
989 |
|
|
used_by_ref = true;
|
990 |
|
|
}
|
991 |
|
|
}
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
/* Make a volatile version of this object's type if we are to make
|
995 |
|
|
the object volatile. We also interpret 13.3(19) conservatively
|
996 |
|
|
and disallow any optimizations for such a non-constant object. */
|
997 |
|
|
if ((Treat_As_Volatile (gnat_entity)
|
998 |
|
|
|| (!const_flag
|
999 |
|
|
&& (Is_Exported (gnat_entity)
|
1000 |
|
|
|| Is_Imported (gnat_entity)
|
1001 |
|
|
|| Present (Address_Clause (gnat_entity)))))
|
1002 |
|
|
&& !TYPE_VOLATILE (gnu_type))
|
1003 |
|
|
gnu_type = build_qualified_type (gnu_type,
|
1004 |
|
|
(TYPE_QUALS (gnu_type)
|
1005 |
|
|
| TYPE_QUAL_VOLATILE));
|
1006 |
|
|
|
1007 |
|
|
/* If we are defining an aliased object whose nominal subtype is
|
1008 |
|
|
unconstrained, the object is a record that contains both the
|
1009 |
|
|
template and the object. If there is an initializer, it will
|
1010 |
|
|
have already been converted to the right type, but we need to
|
1011 |
|
|
create the template if there is no initializer. */
|
1012 |
|
|
if (definition
|
1013 |
|
|
&& !gnu_expr
|
1014 |
|
|
&& TREE_CODE (gnu_type) == RECORD_TYPE
|
1015 |
|
|
&& (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
|
1016 |
|
|
/* Beware that padding might have been introduced above. */
|
1017 |
|
|
|| (TYPE_PADDING_P (gnu_type)
|
1018 |
|
|
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
|
1019 |
|
|
== RECORD_TYPE
|
1020 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P
|
1021 |
|
|
(TREE_TYPE (TYPE_FIELDS (gnu_type))))))
|
1022 |
|
|
{
|
1023 |
|
|
tree template_field
|
1024 |
|
|
= TYPE_PADDING_P (gnu_type)
|
1025 |
|
|
? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
|
1026 |
|
|
: TYPE_FIELDS (gnu_type);
|
1027 |
|
|
|
1028 |
|
|
gnu_expr
|
1029 |
|
|
= gnat_build_constructor
|
1030 |
|
|
(gnu_type,
|
1031 |
|
|
tree_cons
|
1032 |
|
|
(template_field,
|
1033 |
|
|
build_template (TREE_TYPE (template_field),
|
1034 |
|
|
TREE_TYPE (TREE_CHAIN (template_field)),
|
1035 |
|
|
NULL_TREE),
|
1036 |
|
|
NULL_TREE));
|
1037 |
|
|
}
|
1038 |
|
|
|
1039 |
|
|
/* Convert the expression to the type of the object except in the
|
1040 |
|
|
case where the object's type is unconstrained or the object's type
|
1041 |
|
|
is a padded record whose field is of self-referential size. In
|
1042 |
|
|
the former case, converting will generate unnecessary evaluations
|
1043 |
|
|
of the CONSTRUCTOR to compute the size and in the latter case, we
|
1044 |
|
|
want to only copy the actual data. */
|
1045 |
|
|
if (gnu_expr
|
1046 |
|
|
&& TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
|
1047 |
|
|
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
|
1048 |
|
|
&& !(TYPE_IS_PADDING_P (gnu_type)
|
1049 |
|
|
&& CONTAINS_PLACEHOLDER_P
|
1050 |
|
|
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
|
1051 |
|
|
gnu_expr = convert (gnu_type, gnu_expr);
|
1052 |
|
|
|
1053 |
|
|
/* If this is a pointer and it does not have an initializing
|
1054 |
|
|
expression, initialize it to NULL, unless the object is
|
1055 |
|
|
imported. */
|
1056 |
|
|
if (definition
|
1057 |
|
|
&& (POINTER_TYPE_P (gnu_type) || TYPE_IS_FAT_POINTER_P (gnu_type))
|
1058 |
|
|
&& !Is_Imported (gnat_entity) && !gnu_expr)
|
1059 |
|
|
gnu_expr = integer_zero_node;
|
1060 |
|
|
|
1061 |
|
|
/* If we are defining the object and it has an Address clause, we must
|
1062 |
|
|
either get the address expression from the saved GCC tree for the
|
1063 |
|
|
object if it has a Freeze node, or elaborate the address expression
|
1064 |
|
|
here since the front-end has guaranteed that the elaboration has no
|
1065 |
|
|
effects in this case. */
|
1066 |
|
|
if (definition && Present (Address_Clause (gnat_entity)))
|
1067 |
|
|
{
|
1068 |
|
|
tree gnu_address
|
1069 |
|
|
= present_gnu_tree (gnat_entity)
|
1070 |
|
|
? get_gnu_tree (gnat_entity)
|
1071 |
|
|
: gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
|
1072 |
|
|
|
1073 |
|
|
save_gnu_tree (gnat_entity, NULL_TREE, false);
|
1074 |
|
|
|
1075 |
|
|
/* Ignore the size. It's either meaningless or was handled
|
1076 |
|
|
above. */
|
1077 |
|
|
gnu_size = NULL_TREE;
|
1078 |
|
|
/* Convert the type of the object to a reference type that can
|
1079 |
|
|
alias everything as per 13.3(19). */
|
1080 |
|
|
gnu_type
|
1081 |
|
|
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
|
1082 |
|
|
gnu_address = convert (gnu_type, gnu_address);
|
1083 |
|
|
used_by_ref = true;
|
1084 |
|
|
const_flag = !Is_Public (gnat_entity)
|
1085 |
|
|
|| compile_time_known_address_p (Expression (Address_Clause
|
1086 |
|
|
(gnat_entity)));
|
1087 |
|
|
|
1088 |
|
|
/* If this is a deferred constant, the initializer is attached to
|
1089 |
|
|
the full view. */
|
1090 |
|
|
if (kind == E_Constant && Present (Full_View (gnat_entity)))
|
1091 |
|
|
gnu_expr
|
1092 |
|
|
= gnat_to_gnu
|
1093 |
|
|
(Expression (Declaration_Node (Full_View (gnat_entity))));
|
1094 |
|
|
|
1095 |
|
|
/* If we don't have an initializing expression for the underlying
|
1096 |
|
|
variable, the initializing expression for the pointer is the
|
1097 |
|
|
specified address. Otherwise, we have to make a COMPOUND_EXPR
|
1098 |
|
|
to assign both the address and the initial value. */
|
1099 |
|
|
if (!gnu_expr)
|
1100 |
|
|
gnu_expr = gnu_address;
|
1101 |
|
|
else
|
1102 |
|
|
gnu_expr
|
1103 |
|
|
= build2 (COMPOUND_EXPR, gnu_type,
|
1104 |
|
|
build_binary_op
|
1105 |
|
|
(MODIFY_EXPR, NULL_TREE,
|
1106 |
|
|
build_unary_op (INDIRECT_REF, NULL_TREE,
|
1107 |
|
|
gnu_address),
|
1108 |
|
|
gnu_expr),
|
1109 |
|
|
gnu_address);
|
1110 |
|
|
}
|
1111 |
|
|
|
1112 |
|
|
/* If it has an address clause and we are not defining it, mark it
|
1113 |
|
|
as an indirect object. Likewise for Stdcall objects that are
|
1114 |
|
|
imported. */
|
1115 |
|
|
if ((!definition && Present (Address_Clause (gnat_entity)))
|
1116 |
|
|
|| (Is_Imported (gnat_entity)
|
1117 |
|
|
&& Has_Stdcall_Convention (gnat_entity)))
|
1118 |
|
|
{
|
1119 |
|
|
/* Convert the type of the object to a reference type that can
|
1120 |
|
|
alias everything as per 13.3(19). */
|
1121 |
|
|
gnu_type
|
1122 |
|
|
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
|
1123 |
|
|
gnu_size = NULL_TREE;
|
1124 |
|
|
|
1125 |
|
|
/* No point in taking the address of an initializing expression
|
1126 |
|
|
that isn't going to be used. */
|
1127 |
|
|
gnu_expr = NULL_TREE;
|
1128 |
|
|
|
1129 |
|
|
/* If it has an address clause whose value is known at compile
|
1130 |
|
|
time, make the object a CONST_DECL. This will avoid a
|
1131 |
|
|
useless dereference. */
|
1132 |
|
|
if (Present (Address_Clause (gnat_entity)))
|
1133 |
|
|
{
|
1134 |
|
|
Node_Id gnat_address
|
1135 |
|
|
= Expression (Address_Clause (gnat_entity));
|
1136 |
|
|
|
1137 |
|
|
if (compile_time_known_address_p (gnat_address))
|
1138 |
|
|
{
|
1139 |
|
|
gnu_expr = gnat_to_gnu (gnat_address);
|
1140 |
|
|
const_flag = true;
|
1141 |
|
|
}
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
used_by_ref = true;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* If we are at top level and this object is of variable size,
|
1148 |
|
|
make the actual type a hidden pointer to the real type and
|
1149 |
|
|
make the initializer be a memory allocation and initialization.
|
1150 |
|
|
Likewise for objects we aren't defining (presumed to be
|
1151 |
|
|
external references from other packages), but there we do
|
1152 |
|
|
not set up an initialization.
|
1153 |
|
|
|
1154 |
|
|
If the object's size overflows, make an allocator too, so that
|
1155 |
|
|
Storage_Error gets raised. Note that we will never free
|
1156 |
|
|
such memory, so we presume it never will get allocated. */
|
1157 |
|
|
|
1158 |
|
|
if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
|
1159 |
|
|
global_bindings_p () || !definition
|
1160 |
|
|
|| static_p)
|
1161 |
|
|
|| (gnu_size
|
1162 |
|
|
&& ! allocatable_size_p (gnu_size,
|
1163 |
|
|
global_bindings_p () || !definition
|
1164 |
|
|
|| static_p)))
|
1165 |
|
|
{
|
1166 |
|
|
gnu_type = build_reference_type (gnu_type);
|
1167 |
|
|
gnu_size = NULL_TREE;
|
1168 |
|
|
used_by_ref = true;
|
1169 |
|
|
const_flag = true;
|
1170 |
|
|
|
1171 |
|
|
/* In case this was a aliased object whose nominal subtype is
|
1172 |
|
|
unconstrained, the pointer above will be a thin pointer and
|
1173 |
|
|
build_allocator will automatically make the template.
|
1174 |
|
|
|
1175 |
|
|
If we have a template initializer only (that we made above),
|
1176 |
|
|
pretend there is none and rely on what build_allocator creates
|
1177 |
|
|
again anyway. Otherwise (if we have a full initializer), get
|
1178 |
|
|
the data part and feed that to build_allocator.
|
1179 |
|
|
|
1180 |
|
|
If we are elaborating a mutable object, tell build_allocator to
|
1181 |
|
|
ignore a possibly simpler size from the initializer, if any, as
|
1182 |
|
|
we must allocate the maximum possible size in this case. */
|
1183 |
|
|
|
1184 |
|
|
if (definition)
|
1185 |
|
|
{
|
1186 |
|
|
tree gnu_alloc_type = TREE_TYPE (gnu_type);
|
1187 |
|
|
|
1188 |
|
|
if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
|
1189 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
|
1190 |
|
|
{
|
1191 |
|
|
gnu_alloc_type
|
1192 |
|
|
= TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
|
1193 |
|
|
|
1194 |
|
|
if (TREE_CODE (gnu_expr) == CONSTRUCTOR
|
1195 |
|
|
&& 1 == VEC_length (constructor_elt,
|
1196 |
|
|
CONSTRUCTOR_ELTS (gnu_expr)))
|
1197 |
|
|
gnu_expr = 0;
|
1198 |
|
|
else
|
1199 |
|
|
gnu_expr
|
1200 |
|
|
= build_component_ref
|
1201 |
|
|
(gnu_expr, NULL_TREE,
|
1202 |
|
|
TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
|
1203 |
|
|
false);
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
|
1207 |
|
|
&& TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
|
1208 |
|
|
&& !Is_Imported (gnat_entity))
|
1209 |
|
|
post_error ("?Storage_Error will be raised at run-time!",
|
1210 |
|
|
gnat_entity);
|
1211 |
|
|
|
1212 |
|
|
gnu_expr
|
1213 |
|
|
= build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
|
1214 |
|
|
Empty, Empty, gnat_entity, mutable_p);
|
1215 |
|
|
}
|
1216 |
|
|
else
|
1217 |
|
|
{
|
1218 |
|
|
gnu_expr = NULL_TREE;
|
1219 |
|
|
const_flag = false;
|
1220 |
|
|
}
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
/* If this object would go into the stack and has an alignment larger
|
1224 |
|
|
than the largest stack alignment the back-end can honor, resort to
|
1225 |
|
|
a variable of "aligning type". */
|
1226 |
|
|
if (!global_bindings_p () && !static_p && definition
|
1227 |
|
|
&& !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
|
1228 |
|
|
{
|
1229 |
|
|
/* Create the new variable. No need for extra room before the
|
1230 |
|
|
aligned field as this is in automatic storage. */
|
1231 |
|
|
tree gnu_new_type
|
1232 |
|
|
= make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
|
1233 |
|
|
TYPE_SIZE_UNIT (gnu_type),
|
1234 |
|
|
BIGGEST_ALIGNMENT, 0);
|
1235 |
|
|
tree gnu_new_var
|
1236 |
|
|
= create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
|
1237 |
|
|
NULL_TREE, gnu_new_type, NULL_TREE, false,
|
1238 |
|
|
false, false, false, NULL, gnat_entity);
|
1239 |
|
|
|
1240 |
|
|
/* Initialize the aligned field if we have an initializer. */
|
1241 |
|
|
if (gnu_expr)
|
1242 |
|
|
add_stmt_with_node
|
1243 |
|
|
(build_binary_op (MODIFY_EXPR, NULL_TREE,
|
1244 |
|
|
build_component_ref
|
1245 |
|
|
(gnu_new_var, NULL_TREE,
|
1246 |
|
|
TYPE_FIELDS (gnu_new_type), false),
|
1247 |
|
|
gnu_expr),
|
1248 |
|
|
gnat_entity);
|
1249 |
|
|
|
1250 |
|
|
/* And setup this entity as a reference to the aligned field. */
|
1251 |
|
|
gnu_type = build_reference_type (gnu_type);
|
1252 |
|
|
gnu_expr
|
1253 |
|
|
= build_unary_op
|
1254 |
|
|
(ADDR_EXPR, gnu_type,
|
1255 |
|
|
build_component_ref (gnu_new_var, NULL_TREE,
|
1256 |
|
|
TYPE_FIELDS (gnu_new_type), false));
|
1257 |
|
|
|
1258 |
|
|
gnu_size = NULL_TREE;
|
1259 |
|
|
used_by_ref = true;
|
1260 |
|
|
const_flag = true;
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
if (const_flag)
|
1264 |
|
|
gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
|
1265 |
|
|
| TYPE_QUAL_CONST));
|
1266 |
|
|
|
1267 |
|
|
/* Convert the expression to the type of the object except in the
|
1268 |
|
|
case where the object's type is unconstrained or the object's type
|
1269 |
|
|
is a padded record whose field is of self-referential size. In
|
1270 |
|
|
the former case, converting will generate unnecessary evaluations
|
1271 |
|
|
of the CONSTRUCTOR to compute the size and in the latter case, we
|
1272 |
|
|
want to only copy the actual data. */
|
1273 |
|
|
if (gnu_expr
|
1274 |
|
|
&& TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
|
1275 |
|
|
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
|
1276 |
|
|
&& !(TYPE_IS_PADDING_P (gnu_type)
|
1277 |
|
|
&& CONTAINS_PLACEHOLDER_P
|
1278 |
|
|
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
|
1279 |
|
|
gnu_expr = convert (gnu_type, gnu_expr);
|
1280 |
|
|
|
1281 |
|
|
/* If this name is external or there was a name specified, use it,
|
1282 |
|
|
unless this is a VMS exception object since this would conflict
|
1283 |
|
|
with the symbol we need to export in addition. Don't use the
|
1284 |
|
|
Interface_Name if there is an address clause (see CD30005). */
|
1285 |
|
|
if (!Is_VMS_Exception (gnat_entity)
|
1286 |
|
|
&& ((Present (Interface_Name (gnat_entity))
|
1287 |
|
|
&& No (Address_Clause (gnat_entity)))
|
1288 |
|
|
|| (Is_Public (gnat_entity)
|
1289 |
|
|
&& (!Is_Imported (gnat_entity)
|
1290 |
|
|
|| Is_Exported (gnat_entity)))))
|
1291 |
|
|
gnu_ext_name = create_concat_name (gnat_entity, NULL);
|
1292 |
|
|
|
1293 |
|
|
/* If this is constant initialized to a static constant and the
|
1294 |
|
|
object has an aggregate type, force it to be statically
|
1295 |
|
|
allocated. This will avoid an initialization copy. */
|
1296 |
|
|
if (!static_p && const_flag
|
1297 |
|
|
&& gnu_expr && TREE_CONSTANT (gnu_expr)
|
1298 |
|
|
&& AGGREGATE_TYPE_P (gnu_type)
|
1299 |
|
|
&& host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
|
1300 |
|
|
&& !(TYPE_IS_PADDING_P (gnu_type)
|
1301 |
|
|
&& !host_integerp (TYPE_SIZE_UNIT
|
1302 |
|
|
(TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
|
1303 |
|
|
static_p = true;
|
1304 |
|
|
|
1305 |
|
|
gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
|
1306 |
|
|
gnu_expr, const_flag,
|
1307 |
|
|
Is_Public (gnat_entity),
|
1308 |
|
|
imported_p || !definition,
|
1309 |
|
|
static_p, attr_list, gnat_entity);
|
1310 |
|
|
DECL_BY_REF_P (gnu_decl) = used_by_ref;
|
1311 |
|
|
DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
|
1312 |
|
|
if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
|
1313 |
|
|
{
|
1314 |
|
|
SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
|
1315 |
|
|
if (global_bindings_p ())
|
1316 |
|
|
{
|
1317 |
|
|
DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
|
1318 |
|
|
record_global_renaming_pointer (gnu_decl);
|
1319 |
|
|
}
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
if (definition && DECL_SIZE_UNIT (gnu_decl)
|
1323 |
|
|
&& get_block_jmpbuf_decl ()
|
1324 |
|
|
&& (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
|
1325 |
|
|
|| (flag_stack_check == GENERIC_STACK_CHECK
|
1326 |
|
|
&& compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
|
1327 |
|
|
STACK_CHECK_MAX_VAR_SIZE) > 0)))
|
1328 |
|
|
add_stmt_with_node (build_call_1_expr
|
1329 |
|
|
(update_setjmp_buf_decl,
|
1330 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE,
|
1331 |
|
|
get_block_jmpbuf_decl ())),
|
1332 |
|
|
gnat_entity);
|
1333 |
|
|
|
1334 |
|
|
/* If we are defining an Out parameter and we're not optimizing,
|
1335 |
|
|
create a fake PARM_DECL for debugging purposes and make it
|
1336 |
|
|
point to the VAR_DECL. Suppress debug info for the latter
|
1337 |
|
|
but make sure it will still live on the stack so it can be
|
1338 |
|
|
accessed from within the debugger through the PARM_DECL. */
|
1339 |
|
|
if (kind == E_Out_Parameter && definition && !optimize)
|
1340 |
|
|
{
|
1341 |
|
|
tree param = create_param_decl (gnu_entity_name, gnu_type, false);
|
1342 |
|
|
gnat_pushdecl (param, gnat_entity);
|
1343 |
|
|
SET_DECL_VALUE_EXPR (param, gnu_decl);
|
1344 |
|
|
DECL_HAS_VALUE_EXPR_P (param) = 1;
|
1345 |
|
|
if (debug_info_p)
|
1346 |
|
|
debug_info_p = false;
|
1347 |
|
|
else
|
1348 |
|
|
DECL_IGNORED_P (param) = 1;
|
1349 |
|
|
TREE_ADDRESSABLE (gnu_decl) = 1;
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
/* If this is a public constant or we're not optimizing and we're not
|
1353 |
|
|
making a VAR_DECL for it, make one just for export or debugger use.
|
1354 |
|
|
Likewise if the address is taken or if either the object or type is
|
1355 |
|
|
aliased. Make an external declaration for a reference, unless this
|
1356 |
|
|
is a Standard entity since there no real symbol at the object level
|
1357 |
|
|
for these. */
|
1358 |
|
|
if (TREE_CODE (gnu_decl) == CONST_DECL
|
1359 |
|
|
&& (definition || Sloc (gnat_entity) > Standard_Location)
|
1360 |
|
|
&& ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
|
1361 |
|
|
|| !optimize
|
1362 |
|
|
|| Address_Taken (gnat_entity)
|
1363 |
|
|
|| Is_Aliased (gnat_entity)
|
1364 |
|
|
|| Is_Aliased (Etype (gnat_entity))))
|
1365 |
|
|
{
|
1366 |
|
|
tree gnu_corr_var
|
1367 |
|
|
= create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
|
1368 |
|
|
gnu_expr, true, Is_Public (gnat_entity),
|
1369 |
|
|
!definition, static_p, attr_list,
|
1370 |
|
|
gnat_entity);
|
1371 |
|
|
|
1372 |
|
|
SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
|
1373 |
|
|
|
1374 |
|
|
/* As debugging information will be generated for the variable,
|
1375 |
|
|
do not generate information for the constant. */
|
1376 |
|
|
DECL_IGNORED_P (gnu_decl) = 1;
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
/* If this is declared in a block that contains a block with an
|
1380 |
|
|
exception handler, we must force this variable in memory to
|
1381 |
|
|
suppress an invalid optimization. */
|
1382 |
|
|
if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
|
1383 |
|
|
&& Exception_Mechanism != Back_End_Exceptions)
|
1384 |
|
|
TREE_ADDRESSABLE (gnu_decl) = 1;
|
1385 |
|
|
|
1386 |
|
|
/* Back-annotate Esize and Alignment of the object if not already
|
1387 |
|
|
known. Note that we pick the values of the type, not those of
|
1388 |
|
|
the object, to shield ourselves from low-level platform-dependent
|
1389 |
|
|
adjustments like alignment promotion. This is both consistent with
|
1390 |
|
|
all the treatment above, where alignment and size are set on the
|
1391 |
|
|
type of the object and not on the object directly, and makes it
|
1392 |
|
|
possible to support all confirming representation clauses. */
|
1393 |
|
|
annotate_object (gnat_entity, TREE_TYPE (gnu_decl), gnu_object_size,
|
1394 |
|
|
used_by_ref);
|
1395 |
|
|
}
|
1396 |
|
|
break;
|
1397 |
|
|
|
1398 |
|
|
case E_Void:
|
1399 |
|
|
/* Return a TYPE_DECL for "void" that we previously made. */
|
1400 |
|
|
gnu_decl = TYPE_NAME (void_type_node);
|
1401 |
|
|
break;
|
1402 |
|
|
|
1403 |
|
|
case E_Enumeration_Type:
|
1404 |
|
|
/* A special case: for the types Character and Wide_Character in
|
1405 |
|
|
Standard, we do not list all the literals. So if the literals
|
1406 |
|
|
are not specified, make this an unsigned type. */
|
1407 |
|
|
if (No (First_Literal (gnat_entity)))
|
1408 |
|
|
{
|
1409 |
|
|
gnu_type = make_unsigned_type (esize);
|
1410 |
|
|
TYPE_NAME (gnu_type) = gnu_entity_name;
|
1411 |
|
|
|
1412 |
|
|
/* Set TYPE_STRING_FLAG for Character and Wide_Character types.
|
1413 |
|
|
This is needed by the DWARF-2 back-end to distinguish between
|
1414 |
|
|
unsigned integer types and character types. */
|
1415 |
|
|
TYPE_STRING_FLAG (gnu_type) = 1;
|
1416 |
|
|
break;
|
1417 |
|
|
}
|
1418 |
|
|
|
1419 |
|
|
{
|
1420 |
|
|
/* We have a list of enumeral constants in First_Literal. We make a
|
1421 |
|
|
CONST_DECL for each one and build into GNU_LITERAL_LIST the list to
|
1422 |
|
|
be placed into TYPE_FIELDS. Each node in the list is a TREE_LIST
|
1423 |
|
|
whose TREE_VALUE is the literal name and whose TREE_PURPOSE is the
|
1424 |
|
|
value of the literal. But when we have a regular boolean type, we
|
1425 |
|
|
simplify this a little by using a BOOLEAN_TYPE. */
|
1426 |
|
|
bool is_boolean = Is_Boolean_Type (gnat_entity)
|
1427 |
|
|
&& !Has_Non_Standard_Rep (gnat_entity);
|
1428 |
|
|
tree gnu_literal_list = NULL_TREE;
|
1429 |
|
|
Entity_Id gnat_literal;
|
1430 |
|
|
|
1431 |
|
|
if (Is_Unsigned_Type (gnat_entity))
|
1432 |
|
|
gnu_type = make_unsigned_type (esize);
|
1433 |
|
|
else
|
1434 |
|
|
gnu_type = make_signed_type (esize);
|
1435 |
|
|
|
1436 |
|
|
TREE_SET_CODE (gnu_type, is_boolean ? BOOLEAN_TYPE : ENUMERAL_TYPE);
|
1437 |
|
|
|
1438 |
|
|
for (gnat_literal = First_Literal (gnat_entity);
|
1439 |
|
|
Present (gnat_literal);
|
1440 |
|
|
gnat_literal = Next_Literal (gnat_literal))
|
1441 |
|
|
{
|
1442 |
|
|
tree gnu_value
|
1443 |
|
|
= UI_To_gnu (Enumeration_Rep (gnat_literal), gnu_type);
|
1444 |
|
|
tree gnu_literal
|
1445 |
|
|
= create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
|
1446 |
|
|
gnu_type, gnu_value, true, false, false,
|
1447 |
|
|
false, NULL, gnat_literal);
|
1448 |
|
|
|
1449 |
|
|
save_gnu_tree (gnat_literal, gnu_literal, false);
|
1450 |
|
|
gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
|
1451 |
|
|
gnu_value, gnu_literal_list);
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
if (!is_boolean)
|
1455 |
|
|
TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
|
1456 |
|
|
|
1457 |
|
|
/* Note that the bounds are updated at the end of this function
|
1458 |
|
|
to avoid an infinite recursion since they refer to the type. */
|
1459 |
|
|
}
|
1460 |
|
|
break;
|
1461 |
|
|
|
1462 |
|
|
case E_Signed_Integer_Type:
|
1463 |
|
|
case E_Ordinary_Fixed_Point_Type:
|
1464 |
|
|
case E_Decimal_Fixed_Point_Type:
|
1465 |
|
|
/* For integer types, just make a signed type the appropriate number
|
1466 |
|
|
of bits. */
|
1467 |
|
|
gnu_type = make_signed_type (esize);
|
1468 |
|
|
break;
|
1469 |
|
|
|
1470 |
|
|
case E_Modular_Integer_Type:
|
1471 |
|
|
{
|
1472 |
|
|
/* For modular types, make the unsigned type of the proper number
|
1473 |
|
|
of bits and then set up the modulus, if required. */
|
1474 |
|
|
tree gnu_modulus, gnu_high = NULL_TREE;
|
1475 |
|
|
|
1476 |
|
|
/* Packed array types are supposed to be subtypes only. */
|
1477 |
|
|
gcc_assert (!Is_Packed_Array_Type (gnat_entity));
|
1478 |
|
|
|
1479 |
|
|
gnu_type = make_unsigned_type (esize);
|
1480 |
|
|
|
1481 |
|
|
/* Get the modulus in this type. If it overflows, assume it is because
|
1482 |
|
|
it is equal to 2**Esize. Note that there is no overflow checking
|
1483 |
|
|
done on unsigned type, so we detect the overflow by looking for
|
1484 |
|
|
a modulus of zero, which is otherwise invalid. */
|
1485 |
|
|
gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
|
1486 |
|
|
|
1487 |
|
|
if (!integer_zerop (gnu_modulus))
|
1488 |
|
|
{
|
1489 |
|
|
TYPE_MODULAR_P (gnu_type) = 1;
|
1490 |
|
|
SET_TYPE_MODULUS (gnu_type, gnu_modulus);
|
1491 |
|
|
gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
|
1492 |
|
|
convert (gnu_type, integer_one_node));
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
/* If the upper bound is not maximal, make an extra subtype. */
|
1496 |
|
|
if (gnu_high
|
1497 |
|
|
&& !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
|
1498 |
|
|
{
|
1499 |
|
|
tree gnu_subtype = make_unsigned_type (esize);
|
1500 |
|
|
SET_TYPE_RM_MAX_VALUE (gnu_subtype, gnu_high);
|
1501 |
|
|
TREE_TYPE (gnu_subtype) = gnu_type;
|
1502 |
|
|
TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
|
1503 |
|
|
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
|
1504 |
|
|
gnu_type = gnu_subtype;
|
1505 |
|
|
}
|
1506 |
|
|
}
|
1507 |
|
|
break;
|
1508 |
|
|
|
1509 |
|
|
case E_Signed_Integer_Subtype:
|
1510 |
|
|
case E_Enumeration_Subtype:
|
1511 |
|
|
case E_Modular_Integer_Subtype:
|
1512 |
|
|
case E_Ordinary_Fixed_Point_Subtype:
|
1513 |
|
|
case E_Decimal_Fixed_Point_Subtype:
|
1514 |
|
|
|
1515 |
|
|
/* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
|
1516 |
|
|
not want to call create_range_type since we would like each subtype
|
1517 |
|
|
node to be distinct. ??? Historically this was in preparation for
|
1518 |
|
|
when memory aliasing is implemented, but that's obsolete now given
|
1519 |
|
|
the call to relate_alias_sets below.
|
1520 |
|
|
|
1521 |
|
|
The TREE_TYPE field of the INTEGER_TYPE points to the base type;
|
1522 |
|
|
this fact is used by the arithmetic conversion functions.
|
1523 |
|
|
|
1524 |
|
|
We elaborate the Ancestor_Subtype if it is not in the current unit
|
1525 |
|
|
and one of our bounds is non-static. We do this to ensure consistent
|
1526 |
|
|
naming in the case where several subtypes share the same bounds, by
|
1527 |
|
|
elaborating the first such subtype first, thus using its name. */
|
1528 |
|
|
|
1529 |
|
|
if (!definition
|
1530 |
|
|
&& Present (Ancestor_Subtype (gnat_entity))
|
1531 |
|
|
&& !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
|
1532 |
|
|
&& (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|
1533 |
|
|
|| !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
|
1534 |
|
|
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
|
1535 |
|
|
|
1536 |
|
|
/* Set the precision to the Esize except for bit-packed arrays. */
|
1537 |
|
|
if (Is_Packed_Array_Type (gnat_entity)
|
1538 |
|
|
&& Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
|
1539 |
|
|
esize = UI_To_Int (RM_Size (gnat_entity));
|
1540 |
|
|
|
1541 |
|
|
/* This should be an unsigned type if the base type is unsigned or
|
1542 |
|
|
if the lower bound is constant and non-negative or if the type
|
1543 |
|
|
is biased. */
|
1544 |
|
|
if (Is_Unsigned_Type (Etype (gnat_entity))
|
1545 |
|
|
|| Is_Unsigned_Type (gnat_entity)
|
1546 |
|
|
|| Has_Biased_Representation (gnat_entity))
|
1547 |
|
|
gnu_type = make_unsigned_type (esize);
|
1548 |
|
|
else
|
1549 |
|
|
gnu_type = make_signed_type (esize);
|
1550 |
|
|
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
|
1551 |
|
|
|
1552 |
|
|
SET_TYPE_RM_MIN_VALUE
|
1553 |
|
|
(gnu_type,
|
1554 |
|
|
convert (TREE_TYPE (gnu_type),
|
1555 |
|
|
elaborate_expression (Type_Low_Bound (gnat_entity),
|
1556 |
|
|
gnat_entity, get_identifier ("L"),
|
1557 |
|
|
definition, true,
|
1558 |
|
|
Needs_Debug_Info (gnat_entity))));
|
1559 |
|
|
|
1560 |
|
|
SET_TYPE_RM_MAX_VALUE
|
1561 |
|
|
(gnu_type,
|
1562 |
|
|
convert (TREE_TYPE (gnu_type),
|
1563 |
|
|
elaborate_expression (Type_High_Bound (gnat_entity),
|
1564 |
|
|
gnat_entity, get_identifier ("U"),
|
1565 |
|
|
definition, true,
|
1566 |
|
|
Needs_Debug_Info (gnat_entity))));
|
1567 |
|
|
|
1568 |
|
|
/* One of the above calls might have caused us to be elaborated,
|
1569 |
|
|
so don't blow up if so. */
|
1570 |
|
|
if (present_gnu_tree (gnat_entity))
|
1571 |
|
|
{
|
1572 |
|
|
maybe_present = true;
|
1573 |
|
|
break;
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
TYPE_BIASED_REPRESENTATION_P (gnu_type)
|
1577 |
|
|
= Has_Biased_Representation (gnat_entity);
|
1578 |
|
|
|
1579 |
|
|
/* Attach the TYPE_STUB_DECL in case we have a parallel type. */
|
1580 |
|
|
TYPE_STUB_DECL (gnu_type)
|
1581 |
|
|
= create_type_stub_decl (gnu_entity_name, gnu_type);
|
1582 |
|
|
|
1583 |
|
|
/* Inherit our alias set from what we're a subtype of. Subtypes
|
1584 |
|
|
are not different types and a pointer can designate any instance
|
1585 |
|
|
within a subtype hierarchy. */
|
1586 |
|
|
relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
|
1587 |
|
|
|
1588 |
|
|
/* For a packed array, make the original array type a parallel type. */
|
1589 |
|
|
if (debug_info_p
|
1590 |
|
|
&& Is_Packed_Array_Type (gnat_entity)
|
1591 |
|
|
&& present_gnu_tree (Original_Array_Type (gnat_entity)))
|
1592 |
|
|
add_parallel_type (TYPE_STUB_DECL (gnu_type),
|
1593 |
|
|
gnat_to_gnu_type
|
1594 |
|
|
(Original_Array_Type (gnat_entity)));
|
1595 |
|
|
|
1596 |
|
|
/* If the type we are dealing with represents a bit-packed array,
|
1597 |
|
|
we need to have the bits left justified on big-endian targets
|
1598 |
|
|
and right justified on little-endian targets. We also need to
|
1599 |
|
|
ensure that when the value is read (e.g. for comparison of two
|
1600 |
|
|
such values), we only get the good bits, since the unused bits
|
1601 |
|
|
are uninitialized. Both goals are accomplished by wrapping up
|
1602 |
|
|
the modular type in an enclosing record type. */
|
1603 |
|
|
if (Is_Packed_Array_Type (gnat_entity)
|
1604 |
|
|
&& Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
|
1605 |
|
|
{
|
1606 |
|
|
tree gnu_field_type, gnu_field;
|
1607 |
|
|
|
1608 |
|
|
/* Set the RM size before wrapping up the type. */
|
1609 |
|
|
SET_TYPE_RM_SIZE (gnu_type,
|
1610 |
|
|
UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
|
1611 |
|
|
TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
|
1612 |
|
|
gnu_field_type = gnu_type;
|
1613 |
|
|
|
1614 |
|
|
gnu_type = make_node (RECORD_TYPE);
|
1615 |
|
|
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
|
1616 |
|
|
|
1617 |
|
|
/* Propagate the alignment of the modular type to the record.
|
1618 |
|
|
This means that bit-packed arrays have "ceil" alignment for
|
1619 |
|
|
their size, which may seem counter-intuitive but makes it
|
1620 |
|
|
possible to easily overlay them on modular types. */
|
1621 |
|
|
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
|
1622 |
|
|
TYPE_PACKED (gnu_type) = 1;
|
1623 |
|
|
|
1624 |
|
|
/* Create a stripped-down declaration of the original type, mainly
|
1625 |
|
|
for debugging. */
|
1626 |
|
|
create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
|
1627 |
|
|
debug_info_p, gnat_entity);
|
1628 |
|
|
|
1629 |
|
|
/* Don't notify the field as "addressable", since we won't be taking
|
1630 |
|
|
it's address and it would prevent create_field_decl from making a
|
1631 |
|
|
bitfield. */
|
1632 |
|
|
gnu_field = create_field_decl (get_identifier ("OBJECT"),
|
1633 |
|
|
gnu_field_type, gnu_type, 1, 0, 0, 0);
|
1634 |
|
|
|
1635 |
|
|
/* Do not emit debug info until after the parallel type is added. */
|
1636 |
|
|
finish_record_type (gnu_type, gnu_field, 0, false);
|
1637 |
|
|
TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
|
1638 |
|
|
|
1639 |
|
|
relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
|
1640 |
|
|
|
1641 |
|
|
if (debug_info_p)
|
1642 |
|
|
{
|
1643 |
|
|
/* Make the original array type a parallel type. */
|
1644 |
|
|
if (present_gnu_tree (Original_Array_Type (gnat_entity)))
|
1645 |
|
|
add_parallel_type (TYPE_STUB_DECL (gnu_type),
|
1646 |
|
|
gnat_to_gnu_type
|
1647 |
|
|
(Original_Array_Type (gnat_entity)));
|
1648 |
|
|
|
1649 |
|
|
rest_of_record_type_compilation (gnu_type);
|
1650 |
|
|
}
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
/* If the type we are dealing with has got a smaller alignment than the
|
1654 |
|
|
natural one, we need to wrap it up in a record type and under-align
|
1655 |
|
|
the latter. We reuse the padding machinery for this purpose. */
|
1656 |
|
|
else if (Present (Alignment_Clause (gnat_entity))
|
1657 |
|
|
&& UI_Is_In_Int_Range (Alignment (gnat_entity))
|
1658 |
|
|
&& (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
|
1659 |
|
|
&& align < TYPE_ALIGN (gnu_type))
|
1660 |
|
|
{
|
1661 |
|
|
tree gnu_field_type, gnu_field;
|
1662 |
|
|
|
1663 |
|
|
/* Set the RM size before wrapping up the type. */
|
1664 |
|
|
SET_TYPE_RM_SIZE (gnu_type,
|
1665 |
|
|
UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
|
1666 |
|
|
gnu_field_type = gnu_type;
|
1667 |
|
|
|
1668 |
|
|
gnu_type = make_node (RECORD_TYPE);
|
1669 |
|
|
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
|
1670 |
|
|
|
1671 |
|
|
TYPE_ALIGN (gnu_type) = align;
|
1672 |
|
|
TYPE_PACKED (gnu_type) = 1;
|
1673 |
|
|
|
1674 |
|
|
/* Create a stripped-down declaration of the original type, mainly
|
1675 |
|
|
for debugging. */
|
1676 |
|
|
create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
|
1677 |
|
|
debug_info_p, gnat_entity);
|
1678 |
|
|
|
1679 |
|
|
/* Don't notify the field as "addressable", since we won't be taking
|
1680 |
|
|
it's address and it would prevent create_field_decl from making a
|
1681 |
|
|
bitfield. */
|
1682 |
|
|
gnu_field = create_field_decl (get_identifier ("OBJECT"),
|
1683 |
|
|
gnu_field_type, gnu_type, 1, 0, 0, 0);
|
1684 |
|
|
|
1685 |
|
|
finish_record_type (gnu_type, gnu_field, 0, debug_info_p);
|
1686 |
|
|
TYPE_PADDING_P (gnu_type) = 1;
|
1687 |
|
|
|
1688 |
|
|
relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
|
1689 |
|
|
}
|
1690 |
|
|
|
1691 |
|
|
/* Otherwise reset the alignment lest we computed it above. */
|
1692 |
|
|
else
|
1693 |
|
|
align = 0;
|
1694 |
|
|
|
1695 |
|
|
break;
|
1696 |
|
|
|
1697 |
|
|
case E_Floating_Point_Type:
|
1698 |
|
|
/* If this is a VAX floating-point type, use an integer of the proper
|
1699 |
|
|
size. All the operations will be handled with ASM statements. */
|
1700 |
|
|
if (Vax_Float (gnat_entity))
|
1701 |
|
|
{
|
1702 |
|
|
gnu_type = make_signed_type (esize);
|
1703 |
|
|
TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
|
1704 |
|
|
SET_TYPE_DIGITS_VALUE (gnu_type,
|
1705 |
|
|
UI_To_gnu (Digits_Value (gnat_entity),
|
1706 |
|
|
sizetype));
|
1707 |
|
|
break;
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
/* The type of the Low and High bounds can be our type if this is
|
1711 |
|
|
a type from Standard, so set them at the end of the function. */
|
1712 |
|
|
gnu_type = make_node (REAL_TYPE);
|
1713 |
|
|
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
|
1714 |
|
|
layout_type (gnu_type);
|
1715 |
|
|
break;
|
1716 |
|
|
|
1717 |
|
|
case E_Floating_Point_Subtype:
|
1718 |
|
|
if (Vax_Float (gnat_entity))
|
1719 |
|
|
{
|
1720 |
|
|
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
|
1721 |
|
|
break;
|
1722 |
|
|
}
|
1723 |
|
|
|
1724 |
|
|
{
|
1725 |
|
|
if (!definition
|
1726 |
|
|
&& Present (Ancestor_Subtype (gnat_entity))
|
1727 |
|
|
&& !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
|
1728 |
|
|
&& (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|
1729 |
|
|
|| !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
|
1730 |
|
|
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
|
1731 |
|
|
gnu_expr, 0);
|
1732 |
|
|
|
1733 |
|
|
gnu_type = make_node (REAL_TYPE);
|
1734 |
|
|
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
|
1735 |
|
|
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
|
1736 |
|
|
TYPE_GCC_MIN_VALUE (gnu_type)
|
1737 |
|
|
= TYPE_GCC_MIN_VALUE (TREE_TYPE (gnu_type));
|
1738 |
|
|
TYPE_GCC_MAX_VALUE (gnu_type)
|
1739 |
|
|
= TYPE_GCC_MAX_VALUE (TREE_TYPE (gnu_type));
|
1740 |
|
|
layout_type (gnu_type);
|
1741 |
|
|
|
1742 |
|
|
SET_TYPE_RM_MIN_VALUE
|
1743 |
|
|
(gnu_type,
|
1744 |
|
|
convert (TREE_TYPE (gnu_type),
|
1745 |
|
|
elaborate_expression (Type_Low_Bound (gnat_entity),
|
1746 |
|
|
gnat_entity, get_identifier ("L"),
|
1747 |
|
|
definition, true,
|
1748 |
|
|
Needs_Debug_Info (gnat_entity))));
|
1749 |
|
|
|
1750 |
|
|
SET_TYPE_RM_MAX_VALUE
|
1751 |
|
|
(gnu_type,
|
1752 |
|
|
convert (TREE_TYPE (gnu_type),
|
1753 |
|
|
elaborate_expression (Type_High_Bound (gnat_entity),
|
1754 |
|
|
gnat_entity, get_identifier ("U"),
|
1755 |
|
|
definition, true,
|
1756 |
|
|
Needs_Debug_Info (gnat_entity))));
|
1757 |
|
|
|
1758 |
|
|
/* One of the above calls might have caused us to be elaborated,
|
1759 |
|
|
so don't blow up if so. */
|
1760 |
|
|
if (present_gnu_tree (gnat_entity))
|
1761 |
|
|
{
|
1762 |
|
|
maybe_present = true;
|
1763 |
|
|
break;
|
1764 |
|
|
}
|
1765 |
|
|
|
1766 |
|
|
/* Inherit our alias set from what we're a subtype of, as for
|
1767 |
|
|
integer subtypes. */
|
1768 |
|
|
relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
|
1769 |
|
|
}
|
1770 |
|
|
break;
|
1771 |
|
|
|
1772 |
|
|
/* Array and String Types and Subtypes
|
1773 |
|
|
|
1774 |
|
|
Unconstrained array types are represented by E_Array_Type and
|
1775 |
|
|
constrained array types are represented by E_Array_Subtype. There
|
1776 |
|
|
are no actual objects of an unconstrained array type; all we have
|
1777 |
|
|
are pointers to that type.
|
1778 |
|
|
|
1779 |
|
|
The following fields are defined on array types and subtypes:
|
1780 |
|
|
|
1781 |
|
|
Component_Type Component type of the array.
|
1782 |
|
|
Number_Dimensions Number of dimensions (an int).
|
1783 |
|
|
First_Index Type of first index. */
|
1784 |
|
|
|
1785 |
|
|
case E_String_Type:
|
1786 |
|
|
case E_Array_Type:
|
1787 |
|
|
{
|
1788 |
|
|
Entity_Id gnat_index, gnat_name;
|
1789 |
|
|
const bool convention_fortran_p
|
1790 |
|
|
= (Convention (gnat_entity) == Convention_Fortran);
|
1791 |
|
|
const int ndim = Number_Dimensions (gnat_entity);
|
1792 |
|
|
tree gnu_template_fields = NULL_TREE;
|
1793 |
|
|
tree gnu_template_type = make_node (RECORD_TYPE);
|
1794 |
|
|
tree gnu_template_reference;
|
1795 |
|
|
tree gnu_ptr_template = build_pointer_type (gnu_template_type);
|
1796 |
|
|
tree gnu_fat_type = make_node (RECORD_TYPE);
|
1797 |
|
|
tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
|
1798 |
|
|
tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
|
1799 |
|
|
tree gnu_max_size = size_one_node, gnu_max_size_unit, tem;
|
1800 |
|
|
int index;
|
1801 |
|
|
|
1802 |
|
|
TYPE_NAME (gnu_template_type)
|
1803 |
|
|
= create_concat_name (gnat_entity, "XUB");
|
1804 |
|
|
|
1805 |
|
|
/* Make a node for the array. If we are not defining the array
|
1806 |
|
|
suppress expanding incomplete types. */
|
1807 |
|
|
gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
|
1808 |
|
|
|
1809 |
|
|
if (!definition)
|
1810 |
|
|
{
|
1811 |
|
|
defer_incomplete_level++;
|
1812 |
|
|
this_deferred = true;
|
1813 |
|
|
}
|
1814 |
|
|
|
1815 |
|
|
/* Build the fat pointer type. Use a "void *" object instead of
|
1816 |
|
|
a pointer to the array type since we don't have the array type
|
1817 |
|
|
yet (it will reference the fat pointer via the bounds). */
|
1818 |
|
|
tem = chainon (chainon (NULL_TREE,
|
1819 |
|
|
create_field_decl (get_identifier ("P_ARRAY"),
|
1820 |
|
|
ptr_void_type_node,
|
1821 |
|
|
gnu_fat_type, 0,
|
1822 |
|
|
NULL_TREE, NULL_TREE, 0)),
|
1823 |
|
|
create_field_decl (get_identifier ("P_BOUNDS"),
|
1824 |
|
|
gnu_ptr_template,
|
1825 |
|
|
gnu_fat_type, 0,
|
1826 |
|
|
NULL_TREE, NULL_TREE, 0));
|
1827 |
|
|
|
1828 |
|
|
/* Make sure we can put this into a register. */
|
1829 |
|
|
TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
|
1830 |
|
|
|
1831 |
|
|
/* Do not emit debug info for this record type since the types of its
|
1832 |
|
|
fields are still incomplete at this point. */
|
1833 |
|
|
finish_record_type (gnu_fat_type, tem, 0, false);
|
1834 |
|
|
TYPE_FAT_POINTER_P (gnu_fat_type) = 1;
|
1835 |
|
|
|
1836 |
|
|
/* Build a reference to the template from a PLACEHOLDER_EXPR that
|
1837 |
|
|
is the fat pointer. This will be used to access the individual
|
1838 |
|
|
fields once we build them. */
|
1839 |
|
|
tem = build3 (COMPONENT_REF, gnu_ptr_template,
|
1840 |
|
|
build0 (PLACEHOLDER_EXPR, gnu_fat_type),
|
1841 |
|
|
TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
|
1842 |
|
|
gnu_template_reference
|
1843 |
|
|
= build_unary_op (INDIRECT_REF, gnu_template_type, tem);
|
1844 |
|
|
TREE_READONLY (gnu_template_reference) = 1;
|
1845 |
|
|
|
1846 |
|
|
/* Now create the GCC type for each index and add the fields for that
|
1847 |
|
|
index to the template. */
|
1848 |
|
|
for (index = (convention_fortran_p ? ndim - 1 : 0),
|
1849 |
|
|
gnat_index = First_Index (gnat_entity);
|
1850 |
|
|
|
1851 |
|
|
index += (convention_fortran_p ? - 1 : 1),
|
1852 |
|
|
gnat_index = Next_Index (gnat_index))
|
1853 |
|
|
{
|
1854 |
|
|
char field_name[16];
|
1855 |
|
|
tree gnu_index_base_type
|
1856 |
|
|
= get_unpadded_type (Base_Type (Etype (gnat_index)));
|
1857 |
|
|
tree gnu_low_field, gnu_high_field, gnu_low, gnu_high, gnu_max;
|
1858 |
|
|
|
1859 |
|
|
/* Make the FIELD_DECLs for the low and high bounds of this
|
1860 |
|
|
type and then make extractions of these fields from the
|
1861 |
|
|
template. */
|
1862 |
|
|
sprintf (field_name, "LB%d", index);
|
1863 |
|
|
gnu_low_field = create_field_decl (get_identifier (field_name),
|
1864 |
|
|
gnu_index_base_type,
|
1865 |
|
|
gnu_template_type, 0,
|
1866 |
|
|
NULL_TREE, NULL_TREE, 0);
|
1867 |
|
|
Sloc_to_locus (Sloc (gnat_entity),
|
1868 |
|
|
&DECL_SOURCE_LOCATION (gnu_low_field));
|
1869 |
|
|
|
1870 |
|
|
field_name[0] = 'U';
|
1871 |
|
|
gnu_high_field = create_field_decl (get_identifier (field_name),
|
1872 |
|
|
gnu_index_base_type,
|
1873 |
|
|
gnu_template_type, 0,
|
1874 |
|
|
NULL_TREE, NULL_TREE, 0);
|
1875 |
|
|
Sloc_to_locus (Sloc (gnat_entity),
|
1876 |
|
|
&DECL_SOURCE_LOCATION (gnu_high_field));
|
1877 |
|
|
|
1878 |
|
|
gnu_temp_fields[index] = chainon (gnu_low_field, gnu_high_field);
|
1879 |
|
|
|
1880 |
|
|
/* We can't use build_component_ref here since the template type
|
1881 |
|
|
isn't complete yet. */
|
1882 |
|
|
gnu_low = build3 (COMPONENT_REF, gnu_index_base_type,
|
1883 |
|
|
gnu_template_reference, gnu_low_field,
|
1884 |
|
|
NULL_TREE);
|
1885 |
|
|
gnu_high = build3 (COMPONENT_REF, gnu_index_base_type,
|
1886 |
|
|
gnu_template_reference, gnu_high_field,
|
1887 |
|
|
NULL_TREE);
|
1888 |
|
|
TREE_READONLY (gnu_low) = TREE_READONLY (gnu_high) = 1;
|
1889 |
|
|
|
1890 |
|
|
/* Compute the size of this dimension. */
|
1891 |
|
|
gnu_max
|
1892 |
|
|
= build3 (COND_EXPR, gnu_index_base_type,
|
1893 |
|
|
build2 (GE_EXPR, integer_type_node, gnu_high, gnu_low),
|
1894 |
|
|
gnu_high,
|
1895 |
|
|
build2 (MINUS_EXPR, gnu_index_base_type,
|
1896 |
|
|
gnu_low, fold_convert (gnu_index_base_type,
|
1897 |
|
|
integer_one_node)));
|
1898 |
|
|
|
1899 |
|
|
/* Make a range type with the new range in the Ada base type.
|
1900 |
|
|
Then make an index type with the size range in sizetype. */
|
1901 |
|
|
gnu_index_types[index]
|
1902 |
|
|
= create_index_type (convert (sizetype, gnu_low),
|
1903 |
|
|
convert (sizetype, gnu_max),
|
1904 |
|
|
create_range_type (gnu_index_base_type,
|
1905 |
|
|
gnu_low, gnu_high),
|
1906 |
|
|
gnat_entity);
|
1907 |
|
|
|
1908 |
|
|
/* Update the maximum size of the array in elements. */
|
1909 |
|
|
if (gnu_max_size)
|
1910 |
|
|
{
|
1911 |
|
|
tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
|
1912 |
|
|
tree gnu_min
|
1913 |
|
|
= convert (sizetype, TYPE_MIN_VALUE (gnu_index_type));
|
1914 |
|
|
tree gnu_max
|
1915 |
|
|
= convert (sizetype, TYPE_MAX_VALUE (gnu_index_type));
|
1916 |
|
|
tree gnu_this_max
|
1917 |
|
|
= size_binop (MAX_EXPR,
|
1918 |
|
|
size_binop (PLUS_EXPR, size_one_node,
|
1919 |
|
|
size_binop (MINUS_EXPR,
|
1920 |
|
|
gnu_max, gnu_min)),
|
1921 |
|
|
size_zero_node);
|
1922 |
|
|
|
1923 |
|
|
if (TREE_CODE (gnu_this_max) == INTEGER_CST
|
1924 |
|
|
&& TREE_OVERFLOW (gnu_this_max))
|
1925 |
|
|
gnu_max_size = NULL_TREE;
|
1926 |
|
|
else
|
1927 |
|
|
gnu_max_size
|
1928 |
|
|
= size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
TYPE_NAME (gnu_index_types[index])
|
1932 |
|
|
= create_concat_name (gnat_entity, field_name);
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
for (index = 0; index < ndim; index++)
|
1936 |
|
|
gnu_template_fields
|
1937 |
|
|
= chainon (gnu_template_fields, gnu_temp_fields[index]);
|
1938 |
|
|
|
1939 |
|
|
/* Install all the fields into the template. */
|
1940 |
|
|
finish_record_type (gnu_template_type, gnu_template_fields, 0,
|
1941 |
|
|
debug_info_p);
|
1942 |
|
|
TYPE_READONLY (gnu_template_type) = 1;
|
1943 |
|
|
|
1944 |
|
|
/* Now make the array of arrays and update the pointer to the array
|
1945 |
|
|
in the fat pointer. Note that it is the first field. */
|
1946 |
|
|
tem = gnat_to_gnu_component_type (gnat_entity, definition,
|
1947 |
|
|
debug_info_p);
|
1948 |
|
|
|
1949 |
|
|
/* If Component_Size is not already specified, annotate it with the
|
1950 |
|
|
size of the component. */
|
1951 |
|
|
if (Unknown_Component_Size (gnat_entity))
|
1952 |
|
|
Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
|
1953 |
|
|
|
1954 |
|
|
/* Compute the maximum size of the array in units and bits. */
|
1955 |
|
|
if (gnu_max_size)
|
1956 |
|
|
{
|
1957 |
|
|
gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
|
1958 |
|
|
TYPE_SIZE_UNIT (tem));
|
1959 |
|
|
gnu_max_size = size_binop (MULT_EXPR,
|
1960 |
|
|
convert (bitsizetype, gnu_max_size),
|
1961 |
|
|
TYPE_SIZE (tem));
|
1962 |
|
|
}
|
1963 |
|
|
else
|
1964 |
|
|
gnu_max_size_unit = NULL_TREE;
|
1965 |
|
|
|
1966 |
|
|
/* Now build the array type. */
|
1967 |
|
|
for (index = ndim - 1; index >= 0; index--)
|
1968 |
|
|
{
|
1969 |
|
|
tem = build_array_type (tem, gnu_index_types[index]);
|
1970 |
|
|
TYPE_MULTI_ARRAY_P (tem) = (index > 0);
|
1971 |
|
|
if (array_type_has_nonaliased_component (tem, gnat_entity))
|
1972 |
|
|
TYPE_NONALIASED_COMPONENT (tem) = 1;
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
/* If an alignment is specified, use it if valid. But ignore it
|
1976 |
|
|
for the original type of packed array types. If the alignment
|
1977 |
|
|
was requested with an explicit alignment clause, state so. */
|
1978 |
|
|
if (No (Packed_Array_Type (gnat_entity))
|
1979 |
|
|
&& Known_Alignment (gnat_entity))
|
1980 |
|
|
{
|
1981 |
|
|
TYPE_ALIGN (tem)
|
1982 |
|
|
= validate_alignment (Alignment (gnat_entity), gnat_entity,
|
1983 |
|
|
TYPE_ALIGN (tem));
|
1984 |
|
|
if (Present (Alignment_Clause (gnat_entity)))
|
1985 |
|
|
TYPE_USER_ALIGN (tem) = 1;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
TYPE_CONVENTION_FORTRAN_P (tem) = convention_fortran_p;
|
1989 |
|
|
TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
|
1990 |
|
|
|
1991 |
|
|
/* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
|
1992 |
|
|
corresponding fat pointer. */
|
1993 |
|
|
TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
|
1994 |
|
|
= TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
|
1995 |
|
|
SET_TYPE_MODE (gnu_type, BLKmode);
|
1996 |
|
|
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
|
1997 |
|
|
SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
|
1998 |
|
|
|
1999 |
|
|
/* If the maximum size doesn't overflow, use it. */
|
2000 |
|
|
if (gnu_max_size
|
2001 |
|
|
&& TREE_CODE (gnu_max_size) == INTEGER_CST
|
2002 |
|
|
&& !TREE_OVERFLOW (gnu_max_size)
|
2003 |
|
|
&& TREE_CODE (gnu_max_size_unit) == INTEGER_CST
|
2004 |
|
|
&& !TREE_OVERFLOW (gnu_max_size_unit))
|
2005 |
|
|
{
|
2006 |
|
|
TYPE_SIZE (tem) = size_binop (MIN_EXPR, gnu_max_size,
|
2007 |
|
|
TYPE_SIZE (tem));
|
2008 |
|
|
TYPE_SIZE_UNIT (tem) = size_binop (MIN_EXPR, gnu_max_size_unit,
|
2009 |
|
|
TYPE_SIZE_UNIT (tem));
|
2010 |
|
|
}
|
2011 |
|
|
|
2012 |
|
|
create_type_decl (create_concat_name (gnat_entity, "XUA"),
|
2013 |
|
|
tem, NULL, !Comes_From_Source (gnat_entity),
|
2014 |
|
|
debug_info_p, gnat_entity);
|
2015 |
|
|
|
2016 |
|
|
/* Give the fat pointer type a name. If this is a packed type, tell
|
2017 |
|
|
the debugger how to interpret the underlying bits. */
|
2018 |
|
|
if (Present (Packed_Array_Type (gnat_entity)))
|
2019 |
|
|
gnat_name = Packed_Array_Type (gnat_entity);
|
2020 |
|
|
else
|
2021 |
|
|
gnat_name = gnat_entity;
|
2022 |
|
|
create_type_decl (create_concat_name (gnat_name, "XUP"),
|
2023 |
|
|
gnu_fat_type, NULL, true,
|
2024 |
|
|
debug_info_p, gnat_entity);
|
2025 |
|
|
|
2026 |
|
|
/* Create the type to be used as what a thin pointer designates: an
|
2027 |
|
|
record type for the object and its template with the field offsets
|
2028 |
|
|
shifted to have the template at a negative offset. */
|
2029 |
|
|
tem = build_unc_object_type (gnu_template_type, tem,
|
2030 |
|
|
create_concat_name (gnat_name, "XUT"));
|
2031 |
|
|
shift_unc_components_for_thin_pointers (tem);
|
2032 |
|
|
|
2033 |
|
|
SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
|
2034 |
|
|
TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
|
2035 |
|
|
}
|
2036 |
|
|
break;
|
2037 |
|
|
|
2038 |
|
|
case E_String_Subtype:
|
2039 |
|
|
case E_Array_Subtype:
|
2040 |
|
|
|
2041 |
|
|
/* This is the actual data type for array variables. Multidimensional
|
2042 |
|
|
arrays are implemented as arrays of arrays. Note that arrays which
|
2043 |
|
|
have sparse enumeration subtypes as index components create sparse
|
2044 |
|
|
arrays, which is obviously space inefficient but so much easier to
|
2045 |
|
|
code for now.
|
2046 |
|
|
|
2047 |
|
|
Also note that the subtype never refers to the unconstrained array
|
2048 |
|
|
type, which is somewhat at variance with Ada semantics.
|
2049 |
|
|
|
2050 |
|
|
First check to see if this is simply a renaming of the array type.
|
2051 |
|
|
If so, the result is the array type. */
|
2052 |
|
|
|
2053 |
|
|
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
|
2054 |
|
|
if (!Is_Constrained (gnat_entity))
|
2055 |
|
|
;
|
2056 |
|
|
else
|
2057 |
|
|
{
|
2058 |
|
|
Entity_Id gnat_index, gnat_base_index;
|
2059 |
|
|
const bool convention_fortran_p
|
2060 |
|
|
= (Convention (gnat_entity) == Convention_Fortran);
|
2061 |
|
|
const int ndim = Number_Dimensions (gnat_entity);
|
2062 |
|
|
tree gnu_base_type = gnu_type;
|
2063 |
|
|
tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
|
2064 |
|
|
tree gnu_max_size = size_one_node, gnu_max_size_unit;
|
2065 |
|
|
bool need_index_type_struct = false;
|
2066 |
|
|
int index;
|
2067 |
|
|
|
2068 |
|
|
/* First create the GCC type for each index and find out whether
|
2069 |
|
|
special types are needed for debugging information. */
|
2070 |
|
|
for (index = (convention_fortran_p ? ndim - 1 : 0),
|
2071 |
|
|
gnat_index = First_Index (gnat_entity),
|
2072 |
|
|
gnat_base_index
|
2073 |
|
|
= First_Index (Implementation_Base_Type (gnat_entity));
|
2074 |
|
|
|
2075 |
|
|
index += (convention_fortran_p ? - 1 : 1),
|
2076 |
|
|
gnat_index = Next_Index (gnat_index),
|
2077 |
|
|
gnat_base_index = Next_Index (gnat_base_index))
|
2078 |
|
|
{
|
2079 |
|
|
tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
|
2080 |
|
|
const int prec_comp
|
2081 |
|
|
= compare_tree_int (TYPE_RM_SIZE (gnu_index_type),
|
2082 |
|
|
TYPE_PRECISION (sizetype));
|
2083 |
|
|
const bool subrange_p = (prec_comp < 0)
|
2084 |
|
|
|| (prec_comp == 0
|
2085 |
|
|
&& TYPE_UNSIGNED (gnu_index_type)
|
2086 |
|
|
== TYPE_UNSIGNED (sizetype));
|
2087 |
|
|
const bool wider_p = (prec_comp > 0);
|
2088 |
|
|
tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
|
2089 |
|
|
tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
|
2090 |
|
|
tree gnu_min = convert (sizetype, gnu_orig_min);
|
2091 |
|
|
tree gnu_max = convert (sizetype, gnu_orig_max);
|
2092 |
|
|
tree gnu_base_index_type
|
2093 |
|
|
= get_unpadded_type (Etype (gnat_base_index));
|
2094 |
|
|
tree gnu_base_orig_min = TYPE_MIN_VALUE (gnu_base_index_type);
|
2095 |
|
|
tree gnu_base_orig_max = TYPE_MAX_VALUE (gnu_base_index_type);
|
2096 |
|
|
tree gnu_high, gnu_low;
|
2097 |
|
|
|
2098 |
|
|
/* See if the base array type is already flat. If it is, we
|
2099 |
|
|
are probably compiling an ACATS test but it will cause the
|
2100 |
|
|
code below to malfunction if we don't handle it specially. */
|
2101 |
|
|
if (TREE_CODE (gnu_base_orig_min) == INTEGER_CST
|
2102 |
|
|
&& TREE_CODE (gnu_base_orig_max) == INTEGER_CST
|
2103 |
|
|
&& tree_int_cst_lt (gnu_base_orig_max, gnu_base_orig_min))
|
2104 |
|
|
{
|
2105 |
|
|
gnu_min = size_one_node;
|
2106 |
|
|
gnu_max = size_zero_node;
|
2107 |
|
|
gnu_high = gnu_max;
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
/* Similarly, if one of the values overflows in sizetype and the
|
2111 |
|
|
range is null, use 1..0 for the sizetype bounds. */
|
2112 |
|
|
else if (!subrange_p
|
2113 |
|
|
&& TREE_CODE (gnu_min) == INTEGER_CST
|
2114 |
|
|
&& TREE_CODE (gnu_max) == INTEGER_CST
|
2115 |
|
|
&& (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
|
2116 |
|
|
&& tree_int_cst_lt (gnu_orig_max, gnu_orig_min))
|
2117 |
|
|
{
|
2118 |
|
|
gnu_min = size_one_node;
|
2119 |
|
|
gnu_max = size_zero_node;
|
2120 |
|
|
gnu_high = gnu_max;
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
/* If the minimum and maximum values both overflow in sizetype,
|
2124 |
|
|
but the difference in the original type does not overflow in
|
2125 |
|
|
sizetype, ignore the overflow indication. */
|
2126 |
|
|
else if (!subrange_p
|
2127 |
|
|
&& TREE_CODE (gnu_min) == INTEGER_CST
|
2128 |
|
|
&& TREE_CODE (gnu_max) == INTEGER_CST
|
2129 |
|
|
&& TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
|
2130 |
|
|
&& !TREE_OVERFLOW
|
2131 |
|
|
(convert (sizetype,
|
2132 |
|
|
fold_build2 (MINUS_EXPR, gnu_index_type,
|
2133 |
|
|
gnu_orig_max,
|
2134 |
|
|
gnu_orig_min))))
|
2135 |
|
|
{
|
2136 |
|
|
TREE_OVERFLOW (gnu_min) = 0;
|
2137 |
|
|
TREE_OVERFLOW (gnu_max) = 0;
|
2138 |
|
|
gnu_high = gnu_max;
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/* Compute the size of this dimension in the general case. We
|
2142 |
|
|
need to provide GCC with an upper bound to use but have to
|
2143 |
|
|
deal with the "superflat" case. There are three ways to do
|
2144 |
|
|
this. If we can prove that the array can never be superflat,
|
2145 |
|
|
we can just use the high bound of the index type. */
|
2146 |
|
|
else if (Nkind (gnat_index) == N_Range
|
2147 |
|
|
&& cannot_be_superflat_p (gnat_index))
|
2148 |
|
|
gnu_high = gnu_max;
|
2149 |
|
|
|
2150 |
|
|
/* Otherwise, if we can prove that the low bound minus one and
|
2151 |
|
|
the high bound cannot overflow, we can just use the expression
|
2152 |
|
|
MAX (hb, lb - 1). Similarly, if we can prove that the high
|
2153 |
|
|
bound plus one and the low bound cannot overflow, we can use
|
2154 |
|
|
the high bound as-is and MIN (hb + 1, lb) for the low bound.
|
2155 |
|
|
Otherwise, we have to fall back to the most general expression
|
2156 |
|
|
(hb >= lb) ? hb : lb - 1. Note that the comparison must be
|
2157 |
|
|
done in the original index type, to avoid any overflow during
|
2158 |
|
|
the conversion. */
|
2159 |
|
|
else
|
2160 |
|
|
{
|
2161 |
|
|
gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
|
2162 |
|
|
gnu_low = size_binop (PLUS_EXPR, gnu_max, size_one_node);
|
2163 |
|
|
|
2164 |
|
|
/* If gnu_high is a constant that has overflowed, the low
|
2165 |
|
|
bound is the smallest integer so cannot be the maximum.
|
2166 |
|
|
If gnu_low is a constant that has overflowed, the high
|
2167 |
|
|
bound is the highest integer so cannot be the minimum. */
|
2168 |
|
|
if ((TREE_CODE (gnu_high) == INTEGER_CST
|
2169 |
|
|
&& TREE_OVERFLOW (gnu_high))
|
2170 |
|
|
|| (TREE_CODE (gnu_low) == INTEGER_CST
|
2171 |
|
|
&& TREE_OVERFLOW (gnu_low)))
|
2172 |
|
|
gnu_high = gnu_max;
|
2173 |
|
|
|
2174 |
|
|
/* If the index type is a subrange and gnu_high a constant
|
2175 |
|
|
that hasn't overflowed, we can use the maximum. */
|
2176 |
|
|
else if (subrange_p && TREE_CODE (gnu_high) == INTEGER_CST)
|
2177 |
|
|
gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
|
2178 |
|
|
|
2179 |
|
|
/* If the index type is a subrange and gnu_low a constant
|
2180 |
|
|
that hasn't overflowed, we can use the minimum. */
|
2181 |
|
|
else if (subrange_p && TREE_CODE (gnu_low) == INTEGER_CST)
|
2182 |
|
|
{
|
2183 |
|
|
gnu_high = gnu_max;
|
2184 |
|
|
gnu_min = size_binop (MIN_EXPR, gnu_min, gnu_low);
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
else
|
2188 |
|
|
gnu_high
|
2189 |
|
|
= build_cond_expr (sizetype,
|
2190 |
|
|
build_binary_op (GE_EXPR,
|
2191 |
|
|
integer_type_node,
|
2192 |
|
|
gnu_orig_max,
|
2193 |
|
|
gnu_orig_min),
|
2194 |
|
|
gnu_max, gnu_high);
|
2195 |
|
|
}
|
2196 |
|
|
|
2197 |
|
|
gnu_index_types[index]
|
2198 |
|
|
= create_index_type (gnu_min, gnu_high, gnu_index_type,
|
2199 |
|
|
gnat_entity);
|
2200 |
|
|
|
2201 |
|
|
/* Update the maximum size of the array in elements. Here we
|
2202 |
|
|
see if any constraint on the index type of the base type
|
2203 |
|
|
can be used in the case of self-referential bound on the
|
2204 |
|
|
index type of the subtype. We look for a non-"infinite"
|
2205 |
|
|
and non-self-referential bound from any type involved and
|
2206 |
|
|
handle each bound separately. */
|
2207 |
|
|
if (gnu_max_size)
|
2208 |
|
|
{
|
2209 |
|
|
tree gnu_base_min = convert (sizetype, gnu_base_orig_min);
|
2210 |
|
|
tree gnu_base_max = convert (sizetype, gnu_base_orig_max);
|
2211 |
|
|
tree gnu_base_index_base_type
|
2212 |
|
|
= get_base_type (gnu_base_index_type);
|
2213 |
|
|
tree gnu_base_base_min
|
2214 |
|
|
= convert (sizetype,
|
2215 |
|
|
TYPE_MIN_VALUE (gnu_base_index_base_type));
|
2216 |
|
|
tree gnu_base_base_max
|
2217 |
|
|
= convert (sizetype,
|
2218 |
|
|
TYPE_MAX_VALUE (gnu_base_index_base_type));
|
2219 |
|
|
|
2220 |
|
|
if (!CONTAINS_PLACEHOLDER_P (gnu_min)
|
2221 |
|
|
|| !(TREE_CODE (gnu_base_min) == INTEGER_CST
|
2222 |
|
|
&& !TREE_OVERFLOW (gnu_base_min)))
|
2223 |
|
|
gnu_base_min = gnu_min;
|
2224 |
|
|
|
2225 |
|
|
if (!CONTAINS_PLACEHOLDER_P (gnu_max)
|
2226 |
|
|
|| !(TREE_CODE (gnu_base_max) == INTEGER_CST
|
2227 |
|
|
&& !TREE_OVERFLOW (gnu_base_max)))
|
2228 |
|
|
gnu_base_max = gnu_max;
|
2229 |
|
|
|
2230 |
|
|
if ((TREE_CODE (gnu_base_min) == INTEGER_CST
|
2231 |
|
|
&& TREE_OVERFLOW (gnu_base_min))
|
2232 |
|
|
|| operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
|
2233 |
|
|
|| (TREE_CODE (gnu_base_max) == INTEGER_CST
|
2234 |
|
|
&& TREE_OVERFLOW (gnu_base_max))
|
2235 |
|
|
|| operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
|
2236 |
|
|
gnu_max_size = NULL_TREE;
|
2237 |
|
|
else
|
2238 |
|
|
{
|
2239 |
|
|
tree gnu_this_max
|
2240 |
|
|
= size_binop (MAX_EXPR,
|
2241 |
|
|
size_binop (PLUS_EXPR, size_one_node,
|
2242 |
|
|
size_binop (MINUS_EXPR,
|
2243 |
|
|
gnu_base_max,
|
2244 |
|
|
gnu_base_min)),
|
2245 |
|
|
size_zero_node);
|
2246 |
|
|
|
2247 |
|
|
if (TREE_CODE (gnu_this_max) == INTEGER_CST
|
2248 |
|
|
&& TREE_OVERFLOW (gnu_this_max))
|
2249 |
|
|
gnu_max_size = NULL_TREE;
|
2250 |
|
|
else
|
2251 |
|
|
gnu_max_size
|
2252 |
|
|
= size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
/* We need special types for debugging information to point to
|
2257 |
|
|
the index types if they have variable bounds, are not integer
|
2258 |
|
|
types, are biased or are wider than sizetype. */
|
2259 |
|
|
if (!integer_onep (gnu_orig_min)
|
2260 |
|
|
|| TREE_CODE (gnu_orig_max) != INTEGER_CST
|
2261 |
|
|
|| TREE_CODE (gnu_index_type) != INTEGER_TYPE
|
2262 |
|
|
|| (TREE_TYPE (gnu_index_type)
|
2263 |
|
|
&& TREE_CODE (TREE_TYPE (gnu_index_type))
|
2264 |
|
|
!= INTEGER_TYPE)
|
2265 |
|
|
|| TYPE_BIASED_REPRESENTATION_P (gnu_index_type)
|
2266 |
|
|
|| wider_p)
|
2267 |
|
|
need_index_type_struct = true;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
/* Then flatten: create the array of arrays. For an array type
|
2271 |
|
|
used to implement a packed array, get the component type from
|
2272 |
|
|
the original array type since the representation clauses that
|
2273 |
|
|
can affect it are on the latter. */
|
2274 |
|
|
if (Is_Packed_Array_Type (gnat_entity)
|
2275 |
|
|
&& !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
|
2276 |
|
|
{
|
2277 |
|
|
gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
|
2278 |
|
|
for (index = ndim - 1; index >= 0; index--)
|
2279 |
|
|
gnu_type = TREE_TYPE (gnu_type);
|
2280 |
|
|
|
2281 |
|
|
/* One of the above calls might have caused us to be elaborated,
|
2282 |
|
|
so don't blow up if so. */
|
2283 |
|
|
if (present_gnu_tree (gnat_entity))
|
2284 |
|
|
{
|
2285 |
|
|
maybe_present = true;
|
2286 |
|
|
break;
|
2287 |
|
|
}
|
2288 |
|
|
}
|
2289 |
|
|
else
|
2290 |
|
|
{
|
2291 |
|
|
gnu_type = gnat_to_gnu_component_type (gnat_entity, definition,
|
2292 |
|
|
debug_info_p);
|
2293 |
|
|
|
2294 |
|
|
/* One of the above calls might have caused us to be elaborated,
|
2295 |
|
|
so don't blow up if so. */
|
2296 |
|
|
if (present_gnu_tree (gnat_entity))
|
2297 |
|
|
{
|
2298 |
|
|
maybe_present = true;
|
2299 |
|
|
break;
|
2300 |
|
|
}
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
/* Compute the maximum size of the array in units and bits. */
|
2304 |
|
|
if (gnu_max_size)
|
2305 |
|
|
{
|
2306 |
|
|
gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
|
2307 |
|
|
TYPE_SIZE_UNIT (gnu_type));
|
2308 |
|
|
gnu_max_size = size_binop (MULT_EXPR,
|
2309 |
|
|
convert (bitsizetype, gnu_max_size),
|
2310 |
|
|
TYPE_SIZE (gnu_type));
|
2311 |
|
|
}
|
2312 |
|
|
else
|
2313 |
|
|
gnu_max_size_unit = NULL_TREE;
|
2314 |
|
|
|
2315 |
|
|
/* Now build the array type. */
|
2316 |
|
|
for (index = ndim - 1; index >= 0; index --)
|
2317 |
|
|
{
|
2318 |
|
|
gnu_type = build_array_type (gnu_type, gnu_index_types[index]);
|
2319 |
|
|
TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
|
2320 |
|
|
if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
|
2321 |
|
|
TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
|
2322 |
|
|
}
|
2323 |
|
|
|
2324 |
|
|
/* Attach the TYPE_STUB_DECL in case we have a parallel type. */
|
2325 |
|
|
TYPE_STUB_DECL (gnu_type)
|
2326 |
|
|
= create_type_stub_decl (gnu_entity_name, gnu_type);
|
2327 |
|
|
|
2328 |
|
|
/* If we are at file level and this is a multi-dimensional array,
|
2329 |
|
|
we need to make a variable corresponding to the stride of the
|
2330 |
|
|
inner dimensions. */
|
2331 |
|
|
if (global_bindings_p () && ndim > 1)
|
2332 |
|
|
{
|
2333 |
|
|
tree gnu_str_name = get_identifier ("ST");
|
2334 |
|
|
tree gnu_arr_type;
|
2335 |
|
|
|
2336 |
|
|
for (gnu_arr_type = TREE_TYPE (gnu_type);
|
2337 |
|
|
TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
|
2338 |
|
|
gnu_arr_type = TREE_TYPE (gnu_arr_type),
|
2339 |
|
|
gnu_str_name = concat_name (gnu_str_name, "ST"))
|
2340 |
|
|
{
|
2341 |
|
|
tree eltype = TREE_TYPE (gnu_arr_type);
|
2342 |
|
|
|
2343 |
|
|
TYPE_SIZE (gnu_arr_type)
|
2344 |
|
|
= elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
|
2345 |
|
|
gnat_entity, gnu_str_name,
|
2346 |
|
|
definition, false);
|
2347 |
|
|
|
2348 |
|
|
/* ??? For now, store the size as a multiple of the
|
2349 |
|
|
alignment of the element type in bytes so that we
|
2350 |
|
|
can see the alignment from the tree. */
|
2351 |
|
|
TYPE_SIZE_UNIT (gnu_arr_type)
|
2352 |
|
|
= build_binary_op
|
2353 |
|
|
(MULT_EXPR, sizetype,
|
2354 |
|
|
elaborate_expression_1
|
2355 |
|
|
(build_binary_op (EXACT_DIV_EXPR, sizetype,
|
2356 |
|
|
TYPE_SIZE_UNIT (gnu_arr_type),
|
2357 |
|
|
size_int (TYPE_ALIGN (eltype)
|
2358 |
|
|
/ BITS_PER_UNIT)),
|
2359 |
|
|
gnat_entity, concat_name (gnu_str_name, "A_U"),
|
2360 |
|
|
definition, false),
|
2361 |
|
|
size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
|
2362 |
|
|
|
2363 |
|
|
/* ??? create_type_decl is not invoked on the inner types so
|
2364 |
|
|
the MULT_EXPR node built above will never be marked. */
|
2365 |
|
|
MARK_VISITED (TYPE_SIZE_UNIT (gnu_arr_type));
|
2366 |
|
|
}
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
/* If we need to write out a record type giving the names of the
|
2370 |
|
|
bounds for debugging purposes, do it now and make the record
|
2371 |
|
|
type a parallel type. This is not needed for a packed array
|
2372 |
|
|
since the bounds are conveyed by the original array type. */
|
2373 |
|
|
if (need_index_type_struct
|
2374 |
|
|
&& debug_info_p
|
2375 |
|
|
&& !Is_Packed_Array_Type (gnat_entity))
|
2376 |
|
|
{
|
2377 |
|
|
tree gnu_bound_rec = make_node (RECORD_TYPE);
|
2378 |
|
|
tree gnu_field_list = NULL_TREE;
|
2379 |
|
|
tree gnu_field;
|
2380 |
|
|
|
2381 |
|
|
TYPE_NAME (gnu_bound_rec)
|
2382 |
|
|
= create_concat_name (gnat_entity, "XA");
|
2383 |
|
|
|
2384 |
|
|
for (index = ndim - 1; index >= 0; index--)
|
2385 |
|
|
{
|
2386 |
|
|
tree gnu_index = TYPE_INDEX_TYPE (gnu_index_types[index]);
|
2387 |
|
|
tree gnu_index_name = TYPE_NAME (gnu_index);
|
2388 |
|
|
|
2389 |
|
|
if (TREE_CODE (gnu_index_name) == TYPE_DECL)
|
2390 |
|
|
gnu_index_name = DECL_NAME (gnu_index_name);
|
2391 |
|
|
|
2392 |
|
|
/* Make sure to reference the types themselves, and not just
|
2393 |
|
|
their names, as the debugger may fall back on them. */
|
2394 |
|
|
gnu_field = create_field_decl (gnu_index_name, gnu_index,
|
2395 |
|
|
gnu_bound_rec,
|
2396 |
|
|
0, NULL_TREE, NULL_TREE, 0);
|
2397 |
|
|
TREE_CHAIN (gnu_field) = gnu_field_list;
|
2398 |
|
|
gnu_field_list = gnu_field;
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
finish_record_type (gnu_bound_rec, gnu_field_list, 0, true);
|
2402 |
|
|
add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
/* Otherwise, for a packed array, make the original array type a
|
2406 |
|
|
parallel type. */
|
2407 |
|
|
else if (debug_info_p
|
2408 |
|
|
&& Is_Packed_Array_Type (gnat_entity)
|
2409 |
|
|
&& present_gnu_tree (Original_Array_Type (gnat_entity)))
|
2410 |
|
|
add_parallel_type (TYPE_STUB_DECL (gnu_type),
|
2411 |
|
|
gnat_to_gnu_type
|
2412 |
|
|
(Original_Array_Type (gnat_entity)));
|
2413 |
|
|
|
2414 |
|
|
TYPE_CONVENTION_FORTRAN_P (gnu_type) = convention_fortran_p;
|
2415 |
|
|
TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
|
2416 |
|
|
= (Is_Packed_Array_Type (gnat_entity)
|
2417 |
|
|
&& Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
|
2418 |
|
|
|
2419 |
|
|
/* If the size is self-referential and the maximum size doesn't
|
2420 |
|
|
overflow, use it. */
|
2421 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
|
2422 |
|
|
&& gnu_max_size
|
2423 |
|
|
&& !(TREE_CODE (gnu_max_size) == INTEGER_CST
|
2424 |
|
|
&& TREE_OVERFLOW (gnu_max_size))
|
2425 |
|
|
&& !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
|
2426 |
|
|
&& TREE_OVERFLOW (gnu_max_size_unit)))
|
2427 |
|
|
{
|
2428 |
|
|
TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
|
2429 |
|
|
TYPE_SIZE (gnu_type));
|
2430 |
|
|
TYPE_SIZE_UNIT (gnu_type)
|
2431 |
|
|
= size_binop (MIN_EXPR, gnu_max_size_unit,
|
2432 |
|
|
TYPE_SIZE_UNIT (gnu_type));
|
2433 |
|
|
}
|
2434 |
|
|
|
2435 |
|
|
/* Set our alias set to that of our base type. This gives all
|
2436 |
|
|
array subtypes the same alias set. */
|
2437 |
|
|
relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
|
2438 |
|
|
|
2439 |
|
|
/* If this is a packed type, make this type the same as the packed
|
2440 |
|
|
array type, but do some adjusting in the type first. */
|
2441 |
|
|
if (Present (Packed_Array_Type (gnat_entity)))
|
2442 |
|
|
{
|
2443 |
|
|
Entity_Id gnat_index;
|
2444 |
|
|
tree gnu_inner;
|
2445 |
|
|
|
2446 |
|
|
/* First finish the type we had been making so that we output
|
2447 |
|
|
debugging information for it. */
|
2448 |
|
|
if (Treat_As_Volatile (gnat_entity))
|
2449 |
|
|
gnu_type
|
2450 |
|
|
= build_qualified_type (gnu_type,
|
2451 |
|
|
TYPE_QUALS (gnu_type)
|
2452 |
|
|
| TYPE_QUAL_VOLATILE);
|
2453 |
|
|
|
2454 |
|
|
/* Make it artificial only if the base type was artificial too.
|
2455 |
|
|
That's sort of "morally" true and will make it possible for
|
2456 |
|
|
the debugger to look it up by name in DWARF, which is needed
|
2457 |
|
|
in order to decode the packed array type. */
|
2458 |
|
|
gnu_decl
|
2459 |
|
|
= create_type_decl (gnu_entity_name, gnu_type, attr_list,
|
2460 |
|
|
!Comes_From_Source (Etype (gnat_entity))
|
2461 |
|
|
&& !Comes_From_Source (gnat_entity),
|
2462 |
|
|
debug_info_p, gnat_entity);
|
2463 |
|
|
|
2464 |
|
|
/* Save it as our equivalent in case the call below elaborates
|
2465 |
|
|
this type again. */
|
2466 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, false);
|
2467 |
|
|
|
2468 |
|
|
gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
|
2469 |
|
|
NULL_TREE, 0);
|
2470 |
|
|
this_made_decl = true;
|
2471 |
|
|
gnu_type = TREE_TYPE (gnu_decl);
|
2472 |
|
|
save_gnu_tree (gnat_entity, NULL_TREE, false);
|
2473 |
|
|
|
2474 |
|
|
gnu_inner = gnu_type;
|
2475 |
|
|
while (TREE_CODE (gnu_inner) == RECORD_TYPE
|
2476 |
|
|
&& (TYPE_JUSTIFIED_MODULAR_P (gnu_inner)
|
2477 |
|
|
|| TYPE_PADDING_P (gnu_inner)))
|
2478 |
|
|
gnu_inner = TREE_TYPE (TYPE_FIELDS (gnu_inner));
|
2479 |
|
|
|
2480 |
|
|
/* We need to attach the index type to the type we just made so
|
2481 |
|
|
that the actual bounds can later be put into a template. */
|
2482 |
|
|
if ((TREE_CODE (gnu_inner) == ARRAY_TYPE
|
2483 |
|
|
&& !TYPE_ACTUAL_BOUNDS (gnu_inner))
|
2484 |
|
|
|| (TREE_CODE (gnu_inner) == INTEGER_TYPE
|
2485 |
|
|
&& !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner)))
|
2486 |
|
|
{
|
2487 |
|
|
if (TREE_CODE (gnu_inner) == INTEGER_TYPE)
|
2488 |
|
|
{
|
2489 |
|
|
/* The TYPE_ACTUAL_BOUNDS field is overloaded with the
|
2490 |
|
|
TYPE_MODULUS for modular types so we make an extra
|
2491 |
|
|
subtype if necessary. */
|
2492 |
|
|
if (TYPE_MODULAR_P (gnu_inner))
|
2493 |
|
|
{
|
2494 |
|
|
tree gnu_subtype
|
2495 |
|
|
= make_unsigned_type (TYPE_PRECISION (gnu_inner));
|
2496 |
|
|
TREE_TYPE (gnu_subtype) = gnu_inner;
|
2497 |
|
|
TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
|
2498 |
|
|
SET_TYPE_RM_MIN_VALUE (gnu_subtype,
|
2499 |
|
|
TYPE_MIN_VALUE (gnu_inner));
|
2500 |
|
|
SET_TYPE_RM_MAX_VALUE (gnu_subtype,
|
2501 |
|
|
TYPE_MAX_VALUE (gnu_inner));
|
2502 |
|
|
gnu_inner = gnu_subtype;
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner) = 1;
|
2506 |
|
|
|
2507 |
|
|
#ifdef ENABLE_CHECKING
|
2508 |
|
|
/* Check for other cases of overloading. */
|
2509 |
|
|
gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner));
|
2510 |
|
|
#endif
|
2511 |
|
|
}
|
2512 |
|
|
|
2513 |
|
|
for (gnat_index = First_Index (gnat_entity);
|
2514 |
|
|
Present (gnat_index);
|
2515 |
|
|
gnat_index = Next_Index (gnat_index))
|
2516 |
|
|
SET_TYPE_ACTUAL_BOUNDS
|
2517 |
|
|
(gnu_inner,
|
2518 |
|
|
tree_cons (NULL_TREE,
|
2519 |
|
|
get_unpadded_type (Etype (gnat_index)),
|
2520 |
|
|
TYPE_ACTUAL_BOUNDS (gnu_inner)));
|
2521 |
|
|
|
2522 |
|
|
if (Convention (gnat_entity) != Convention_Fortran)
|
2523 |
|
|
SET_TYPE_ACTUAL_BOUNDS
|
2524 |
|
|
(gnu_inner, nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner)));
|
2525 |
|
|
|
2526 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE
|
2527 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (gnu_type))
|
2528 |
|
|
TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner;
|
2529 |
|
|
}
|
2530 |
|
|
}
|
2531 |
|
|
|
2532 |
|
|
else
|
2533 |
|
|
/* Abort if packed array with no Packed_Array_Type field set. */
|
2534 |
|
|
gcc_assert (!Is_Packed (gnat_entity));
|
2535 |
|
|
}
|
2536 |
|
|
break;
|
2537 |
|
|
|
2538 |
|
|
case E_String_Literal_Subtype:
|
2539 |
|
|
/* Create the type for a string literal. */
|
2540 |
|
|
{
|
2541 |
|
|
Entity_Id gnat_full_type
|
2542 |
|
|
= (IN (Ekind (Etype (gnat_entity)), Private_Kind)
|
2543 |
|
|
&& Present (Full_View (Etype (gnat_entity)))
|
2544 |
|
|
? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
|
2545 |
|
|
tree gnu_string_type = get_unpadded_type (gnat_full_type);
|
2546 |
|
|
tree gnu_string_array_type
|
2547 |
|
|
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
|
2548 |
|
|
tree gnu_string_index_type
|
2549 |
|
|
= get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
|
2550 |
|
|
(TYPE_DOMAIN (gnu_string_array_type))));
|
2551 |
|
|
tree gnu_lower_bound
|
2552 |
|
|
= convert (gnu_string_index_type,
|
2553 |
|
|
gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
|
2554 |
|
|
int length = UI_To_Int (String_Literal_Length (gnat_entity));
|
2555 |
|
|
tree gnu_length = ssize_int (length - 1);
|
2556 |
|
|
tree gnu_upper_bound
|
2557 |
|
|
= build_binary_op (PLUS_EXPR, gnu_string_index_type,
|
2558 |
|
|
gnu_lower_bound,
|
2559 |
|
|
convert (gnu_string_index_type, gnu_length));
|
2560 |
|
|
tree gnu_index_type
|
2561 |
|
|
= create_index_type (convert (sizetype, gnu_lower_bound),
|
2562 |
|
|
convert (sizetype, gnu_upper_bound),
|
2563 |
|
|
create_range_type (gnu_string_index_type,
|
2564 |
|
|
gnu_lower_bound,
|
2565 |
|
|
gnu_upper_bound),
|
2566 |
|
|
gnat_entity);
|
2567 |
|
|
|
2568 |
|
|
gnu_type
|
2569 |
|
|
= build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
|
2570 |
|
|
gnu_index_type);
|
2571 |
|
|
if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
|
2572 |
|
|
TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
|
2573 |
|
|
relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
|
2574 |
|
|
}
|
2575 |
|
|
break;
|
2576 |
|
|
|
2577 |
|
|
/* Record Types and Subtypes
|
2578 |
|
|
|
2579 |
|
|
The following fields are defined on record types:
|
2580 |
|
|
|
2581 |
|
|
Has_Discriminants True if the record has discriminants
|
2582 |
|
|
First_Discriminant Points to head of list of discriminants
|
2583 |
|
|
First_Entity Points to head of list of fields
|
2584 |
|
|
Is_Tagged_Type True if the record is tagged
|
2585 |
|
|
|
2586 |
|
|
Implementation of Ada records and discriminated records:
|
2587 |
|
|
|
2588 |
|
|
A record type definition is transformed into the equivalent of a C
|
2589 |
|
|
struct definition. The fields that are the discriminants which are
|
2590 |
|
|
found in the Full_Type_Declaration node and the elements of the
|
2591 |
|
|
Component_List found in the Record_Type_Definition node. The
|
2592 |
|
|
Component_List can be a recursive structure since each Variant of
|
2593 |
|
|
the Variant_Part of the Component_List has a Component_List.
|
2594 |
|
|
|
2595 |
|
|
Processing of a record type definition comprises starting the list of
|
2596 |
|
|
field declarations here from the discriminants and the calling the
|
2597 |
|
|
function components_to_record to add the rest of the fields from the
|
2598 |
|
|
component list and return the gnu type node. The function
|
2599 |
|
|
components_to_record will call itself recursively as it traverses
|
2600 |
|
|
the tree. */
|
2601 |
|
|
|
2602 |
|
|
case E_Record_Type:
|
2603 |
|
|
if (Has_Complex_Representation (gnat_entity))
|
2604 |
|
|
{
|
2605 |
|
|
gnu_type
|
2606 |
|
|
= build_complex_type
|
2607 |
|
|
(get_unpadded_type
|
2608 |
|
|
(Etype (Defining_Entity
|
2609 |
|
|
(First (Component_Items
|
2610 |
|
|
(Component_List
|
2611 |
|
|
(Type_Definition
|
2612 |
|
|
(Declaration_Node (gnat_entity)))))))));
|
2613 |
|
|
|
2614 |
|
|
break;
|
2615 |
|
|
}
|
2616 |
|
|
|
2617 |
|
|
{
|
2618 |
|
|
Node_Id full_definition = Declaration_Node (gnat_entity);
|
2619 |
|
|
Node_Id record_definition = Type_Definition (full_definition);
|
2620 |
|
|
Entity_Id gnat_field;
|
2621 |
|
|
tree gnu_field, gnu_field_list = NULL_TREE, gnu_get_parent;
|
2622 |
|
|
/* Set PACKED in keeping with gnat_to_gnu_field. */
|
2623 |
|
|
int packed
|
2624 |
|
|
= Is_Packed (gnat_entity)
|
2625 |
|
|
? 1
|
2626 |
|
|
: Component_Alignment (gnat_entity) == Calign_Storage_Unit
|
2627 |
|
|
? -1
|
2628 |
|
|
: (Known_Alignment (gnat_entity)
|
2629 |
|
|
|| (Strict_Alignment (gnat_entity)
|
2630 |
|
|
&& Known_Static_Esize (gnat_entity)))
|
2631 |
|
|
? -2
|
2632 |
|
|
: 0;
|
2633 |
|
|
bool has_discr = Has_Discriminants (gnat_entity);
|
2634 |
|
|
bool has_rep = Has_Specified_Layout (gnat_entity);
|
2635 |
|
|
bool all_rep = has_rep;
|
2636 |
|
|
bool is_extension
|
2637 |
|
|
= (Is_Tagged_Type (gnat_entity)
|
2638 |
|
|
&& Nkind (record_definition) == N_Derived_Type_Definition);
|
2639 |
|
|
bool is_unchecked_union = Is_Unchecked_Union (gnat_entity);
|
2640 |
|
|
|
2641 |
|
|
/* See if all fields have a rep clause. Stop when we find one
|
2642 |
|
|
that doesn't. */
|
2643 |
|
|
if (all_rep)
|
2644 |
|
|
for (gnat_field = First_Entity (gnat_entity);
|
2645 |
|
|
Present (gnat_field);
|
2646 |
|
|
gnat_field = Next_Entity (gnat_field))
|
2647 |
|
|
if ((Ekind (gnat_field) == E_Component
|
2648 |
|
|
|| Ekind (gnat_field) == E_Discriminant)
|
2649 |
|
|
&& No (Component_Clause (gnat_field)))
|
2650 |
|
|
{
|
2651 |
|
|
all_rep = false;
|
2652 |
|
|
break;
|
2653 |
|
|
}
|
2654 |
|
|
|
2655 |
|
|
/* If this is a record extension, go a level further to find the
|
2656 |
|
|
record definition. Also, verify we have a Parent_Subtype. */
|
2657 |
|
|
if (is_extension)
|
2658 |
|
|
{
|
2659 |
|
|
if (!type_annotate_only
|
2660 |
|
|
|| Present (Record_Extension_Part (record_definition)))
|
2661 |
|
|
record_definition = Record_Extension_Part (record_definition);
|
2662 |
|
|
|
2663 |
|
|
gcc_assert (type_annotate_only
|
2664 |
|
|
|| Present (Parent_Subtype (gnat_entity)));
|
2665 |
|
|
}
|
2666 |
|
|
|
2667 |
|
|
/* Make a node for the record. If we are not defining the record,
|
2668 |
|
|
suppress expanding incomplete types. */
|
2669 |
|
|
gnu_type = make_node (tree_code_for_record_type (gnat_entity));
|
2670 |
|
|
TYPE_NAME (gnu_type) = gnu_entity_name;
|
2671 |
|
|
TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
|
2672 |
|
|
|
2673 |
|
|
if (!definition)
|
2674 |
|
|
{
|
2675 |
|
|
defer_incomplete_level++;
|
2676 |
|
|
this_deferred = true;
|
2677 |
|
|
}
|
2678 |
|
|
|
2679 |
|
|
/* If both a size and rep clause was specified, put the size in
|
2680 |
|
|
the record type now so that it can get the proper mode. */
|
2681 |
|
|
if (has_rep && Known_Esize (gnat_entity))
|
2682 |
|
|
TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
|
2683 |
|
|
|
2684 |
|
|
/* Always set the alignment here so that it can be used to
|
2685 |
|
|
set the mode, if it is making the alignment stricter. If
|
2686 |
|
|
it is invalid, it will be checked again below. If this is to
|
2687 |
|
|
be Atomic, choose a default alignment of a word unless we know
|
2688 |
|
|
the size and it's smaller. */
|
2689 |
|
|
if (Known_Alignment (gnat_entity))
|
2690 |
|
|
TYPE_ALIGN (gnu_type)
|
2691 |
|
|
= validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
|
2692 |
|
|
else if (Is_Atomic (gnat_entity))
|
2693 |
|
|
TYPE_ALIGN (gnu_type)
|
2694 |
|
|
= esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
|
2695 |
|
|
/* If a type needs strict alignment, the minimum size will be the
|
2696 |
|
|
type size instead of the RM size (see validate_size). Cap the
|
2697 |
|
|
alignment, lest it causes this type size to become too large. */
|
2698 |
|
|
else if (Strict_Alignment (gnat_entity)
|
2699 |
|
|
&& Known_Static_Esize (gnat_entity))
|
2700 |
|
|
{
|
2701 |
|
|
unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
|
2702 |
|
|
unsigned int raw_align = raw_size & -raw_size;
|
2703 |
|
|
if (raw_align < BIGGEST_ALIGNMENT)
|
2704 |
|
|
TYPE_ALIGN (gnu_type) = raw_align;
|
2705 |
|
|
}
|
2706 |
|
|
else
|
2707 |
|
|
TYPE_ALIGN (gnu_type) = 0;
|
2708 |
|
|
|
2709 |
|
|
/* If we have a Parent_Subtype, make a field for the parent. If
|
2710 |
|
|
this record has rep clauses, force the position to zero. */
|
2711 |
|
|
if (Present (Parent_Subtype (gnat_entity)))
|
2712 |
|
|
{
|
2713 |
|
|
Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
|
2714 |
|
|
tree gnu_parent;
|
2715 |
|
|
|
2716 |
|
|
/* A major complexity here is that the parent subtype will
|
2717 |
|
|
reference our discriminants in its Discriminant_Constraint
|
2718 |
|
|
list. But those must reference the parent component of this
|
2719 |
|
|
record which is of the parent subtype we have not built yet!
|
2720 |
|
|
To break the circle we first build a dummy COMPONENT_REF which
|
2721 |
|
|
represents the "get to the parent" operation and initialize
|
2722 |
|
|
each of those discriminants to a COMPONENT_REF of the above
|
2723 |
|
|
dummy parent referencing the corresponding discriminant of the
|
2724 |
|
|
base type of the parent subtype. */
|
2725 |
|
|
gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
|
2726 |
|
|
build0 (PLACEHOLDER_EXPR, gnu_type),
|
2727 |
|
|
build_decl (input_location,
|
2728 |
|
|
FIELD_DECL, NULL_TREE,
|
2729 |
|
|
void_type_node),
|
2730 |
|
|
NULL_TREE);
|
2731 |
|
|
|
2732 |
|
|
if (has_discr)
|
2733 |
|
|
for (gnat_field = First_Stored_Discriminant (gnat_entity);
|
2734 |
|
|
Present (gnat_field);
|
2735 |
|
|
gnat_field = Next_Stored_Discriminant (gnat_field))
|
2736 |
|
|
if (Present (Corresponding_Discriminant (gnat_field)))
|
2737 |
|
|
{
|
2738 |
|
|
tree gnu_field
|
2739 |
|
|
= gnat_to_gnu_field_decl (Corresponding_Discriminant
|
2740 |
|
|
(gnat_field));
|
2741 |
|
|
save_gnu_tree
|
2742 |
|
|
(gnat_field,
|
2743 |
|
|
build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
|
2744 |
|
|
gnu_get_parent, gnu_field, NULL_TREE),
|
2745 |
|
|
true);
|
2746 |
|
|
}
|
2747 |
|
|
|
2748 |
|
|
/* Then we build the parent subtype. If it has discriminants but
|
2749 |
|
|
the type itself has unknown discriminants, this means that it
|
2750 |
|
|
doesn't contain information about how the discriminants are
|
2751 |
|
|
derived from those of the ancestor type, so it cannot be used
|
2752 |
|
|
directly. Instead it is built by cloning the parent subtype
|
2753 |
|
|
of the underlying record view of the type, for which the above
|
2754 |
|
|
derivation of discriminants has been made explicit. */
|
2755 |
|
|
if (Has_Discriminants (gnat_parent)
|
2756 |
|
|
&& Has_Unknown_Discriminants (gnat_entity))
|
2757 |
|
|
{
|
2758 |
|
|
Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
|
2759 |
|
|
|
2760 |
|
|
/* If we are defining the type, the underlying record
|
2761 |
|
|
view must already have been elaborated at this point.
|
2762 |
|
|
Otherwise do it now as its parent subtype cannot be
|
2763 |
|
|
technically elaborated on its own. */
|
2764 |
|
|
if (definition)
|
2765 |
|
|
gcc_assert (present_gnu_tree (gnat_uview));
|
2766 |
|
|
else
|
2767 |
|
|
gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
|
2768 |
|
|
|
2769 |
|
|
gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
|
2770 |
|
|
|
2771 |
|
|
/* Substitute the "get to the parent" of the type for that
|
2772 |
|
|
of its underlying record view in the cloned type. */
|
2773 |
|
|
for (gnat_field = First_Stored_Discriminant (gnat_uview);
|
2774 |
|
|
Present (gnat_field);
|
2775 |
|
|
gnat_field = Next_Stored_Discriminant (gnat_field))
|
2776 |
|
|
if (Present (Corresponding_Discriminant (gnat_field)))
|
2777 |
|
|
{
|
2778 |
|
|
tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
|
2779 |
|
|
tree gnu_ref
|
2780 |
|
|
= build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
|
2781 |
|
|
gnu_get_parent, gnu_field, NULL_TREE);
|
2782 |
|
|
gnu_parent
|
2783 |
|
|
= substitute_in_type (gnu_parent, gnu_field, gnu_ref);
|
2784 |
|
|
}
|
2785 |
|
|
}
|
2786 |
|
|
else
|
2787 |
|
|
gnu_parent = gnat_to_gnu_type (gnat_parent);
|
2788 |
|
|
|
2789 |
|
|
/* Finally we fix up both kinds of twisted COMPONENT_REF we have
|
2790 |
|
|
initially built. The discriminants must reference the fields
|
2791 |
|
|
of the parent subtype and not those of its base type for the
|
2792 |
|
|
placeholder machinery to properly work. */
|
2793 |
|
|
if (has_discr)
|
2794 |
|
|
{
|
2795 |
|
|
/* The actual parent subtype is the full view. */
|
2796 |
|
|
if (IN (Ekind (gnat_parent), Private_Kind))
|
2797 |
|
|
{
|
2798 |
|
|
if (Present (Full_View (gnat_parent)))
|
2799 |
|
|
gnat_parent = Full_View (gnat_parent);
|
2800 |
|
|
else
|
2801 |
|
|
gnat_parent = Underlying_Full_View (gnat_parent);
|
2802 |
|
|
}
|
2803 |
|
|
|
2804 |
|
|
for (gnat_field = First_Stored_Discriminant (gnat_entity);
|
2805 |
|
|
Present (gnat_field);
|
2806 |
|
|
gnat_field = Next_Stored_Discriminant (gnat_field))
|
2807 |
|
|
if (Present (Corresponding_Discriminant (gnat_field)))
|
2808 |
|
|
{
|
2809 |
|
|
Entity_Id field = Empty;
|
2810 |
|
|
for (field = First_Stored_Discriminant (gnat_parent);
|
2811 |
|
|
Present (field);
|
2812 |
|
|
field = Next_Stored_Discriminant (field))
|
2813 |
|
|
if (same_discriminant_p (gnat_field, field))
|
2814 |
|
|
break;
|
2815 |
|
|
gcc_assert (Present (field));
|
2816 |
|
|
TREE_OPERAND (get_gnu_tree (gnat_field), 1)
|
2817 |
|
|
= gnat_to_gnu_field_decl (field);
|
2818 |
|
|
}
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
/* The "get to the parent" COMPONENT_REF must be given its
|
2822 |
|
|
proper type... */
|
2823 |
|
|
TREE_TYPE (gnu_get_parent) = gnu_parent;
|
2824 |
|
|
|
2825 |
|
|
/* ...and reference the _Parent field of this record. */
|
2826 |
|
|
gnu_field
|
2827 |
|
|
= create_field_decl (get_identifier
|
2828 |
|
|
(Get_Name_String (Name_uParent)),
|
2829 |
|
|
gnu_parent, gnu_type, 0,
|
2830 |
|
|
has_rep
|
2831 |
|
|
? TYPE_SIZE (gnu_parent) : NULL_TREE,
|
2832 |
|
|
has_rep
|
2833 |
|
|
? bitsize_zero_node : NULL_TREE, 1);
|
2834 |
|
|
DECL_INTERNAL_P (gnu_field) = 1;
|
2835 |
|
|
TREE_OPERAND (gnu_get_parent, 1) = gnu_field;
|
2836 |
|
|
TYPE_FIELDS (gnu_type) = gnu_field;
|
2837 |
|
|
}
|
2838 |
|
|
|
2839 |
|
|
/* Make the fields for the discriminants and put them into the record
|
2840 |
|
|
unless it's an Unchecked_Union. */
|
2841 |
|
|
if (has_discr)
|
2842 |
|
|
for (gnat_field = First_Stored_Discriminant (gnat_entity);
|
2843 |
|
|
Present (gnat_field);
|
2844 |
|
|
gnat_field = Next_Stored_Discriminant (gnat_field))
|
2845 |
|
|
{
|
2846 |
|
|
/* If this is a record extension and this discriminant is the
|
2847 |
|
|
renaming of another discriminant, we've handled it above. */
|
2848 |
|
|
if (Present (Parent_Subtype (gnat_entity))
|
2849 |
|
|
&& Present (Corresponding_Discriminant (gnat_field)))
|
2850 |
|
|
continue;
|
2851 |
|
|
|
2852 |
|
|
gnu_field
|
2853 |
|
|
= gnat_to_gnu_field (gnat_field, gnu_type, packed, definition,
|
2854 |
|
|
debug_info_p);
|
2855 |
|
|
|
2856 |
|
|
/* Make an expression using a PLACEHOLDER_EXPR from the
|
2857 |
|
|
FIELD_DECL node just created and link that with the
|
2858 |
|
|
corresponding GNAT defining identifier. */
|
2859 |
|
|
save_gnu_tree (gnat_field,
|
2860 |
|
|
build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
|
2861 |
|
|
build0 (PLACEHOLDER_EXPR, gnu_type),
|
2862 |
|
|
gnu_field, NULL_TREE),
|
2863 |
|
|
true);
|
2864 |
|
|
|
2865 |
|
|
if (!is_unchecked_union)
|
2866 |
|
|
{
|
2867 |
|
|
TREE_CHAIN (gnu_field) = gnu_field_list;
|
2868 |
|
|
gnu_field_list = gnu_field;
|
2869 |
|
|
}
|
2870 |
|
|
}
|
2871 |
|
|
|
2872 |
|
|
/* Add the fields into the record type and finish it up. */
|
2873 |
|
|
components_to_record (gnu_type, Component_List (record_definition),
|
2874 |
|
|
gnu_field_list, packed, definition, NULL,
|
2875 |
|
|
false, all_rep, is_unchecked_union,
|
2876 |
|
|
debug_info_p, false);
|
2877 |
|
|
|
2878 |
|
|
/* If it is a tagged record force the type to BLKmode to insure that
|
2879 |
|
|
these objects will always be put in memory. Likewise for limited
|
2880 |
|
|
record types. */
|
2881 |
|
|
if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
|
2882 |
|
|
SET_TYPE_MODE (gnu_type, BLKmode);
|
2883 |
|
|
|
2884 |
|
|
/* We used to remove the associations of the discriminants and _Parent
|
2885 |
|
|
for validity checking but we may need them if there's a Freeze_Node
|
2886 |
|
|
for a subtype used in this record. */
|
2887 |
|
|
TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
|
2888 |
|
|
|
2889 |
|
|
/* Fill in locations of fields. */
|
2890 |
|
|
annotate_rep (gnat_entity, gnu_type);
|
2891 |
|
|
|
2892 |
|
|
/* If there are any entities in the chain corresponding to components
|
2893 |
|
|
that we did not elaborate, ensure we elaborate their types if they
|
2894 |
|
|
are Itypes. */
|
2895 |
|
|
for (gnat_temp = First_Entity (gnat_entity);
|
2896 |
|
|
Present (gnat_temp);
|
2897 |
|
|
gnat_temp = Next_Entity (gnat_temp))
|
2898 |
|
|
if ((Ekind (gnat_temp) == E_Component
|
2899 |
|
|
|| Ekind (gnat_temp) == E_Discriminant)
|
2900 |
|
|
&& Is_Itype (Etype (gnat_temp))
|
2901 |
|
|
&& !present_gnu_tree (gnat_temp))
|
2902 |
|
|
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
|
2903 |
|
|
}
|
2904 |
|
|
break;
|
2905 |
|
|
|
2906 |
|
|
case E_Class_Wide_Subtype:
|
2907 |
|
|
/* If an equivalent type is present, that is what we should use.
|
2908 |
|
|
Otherwise, fall through to handle this like a record subtype
|
2909 |
|
|
since it may have constraints. */
|
2910 |
|
|
if (gnat_equiv_type != gnat_entity)
|
2911 |
|
|
{
|
2912 |
|
|
gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
|
2913 |
|
|
maybe_present = true;
|
2914 |
|
|
break;
|
2915 |
|
|
}
|
2916 |
|
|
|
2917 |
|
|
/* ... fall through ... */
|
2918 |
|
|
|
2919 |
|
|
case E_Record_Subtype:
|
2920 |
|
|
/* If Cloned_Subtype is Present it means this record subtype has
|
2921 |
|
|
identical layout to that type or subtype and we should use
|
2922 |
|
|
that GCC type for this one. The front end guarantees that
|
2923 |
|
|
the component list is shared. */
|
2924 |
|
|
if (Present (Cloned_Subtype (gnat_entity)))
|
2925 |
|
|
{
|
2926 |
|
|
gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
|
2927 |
|
|
NULL_TREE, 0);
|
2928 |
|
|
maybe_present = true;
|
2929 |
|
|
break;
|
2930 |
|
|
}
|
2931 |
|
|
|
2932 |
|
|
/* Otherwise, first ensure the base type is elaborated. Then, if we are
|
2933 |
|
|
changing the type, make a new type with each field having the type of
|
2934 |
|
|
the field in the new subtype but the position computed by transforming
|
2935 |
|
|
every discriminant reference according to the constraints. We don't
|
2936 |
|
|
see any difference between private and non-private type here since
|
2937 |
|
|
derivations from types should have been deferred until the completion
|
2938 |
|
|
of the private type. */
|
2939 |
|
|
else
|
2940 |
|
|
{
|
2941 |
|
|
Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
|
2942 |
|
|
tree gnu_base_type;
|
2943 |
|
|
|
2944 |
|
|
if (!definition)
|
2945 |
|
|
{
|
2946 |
|
|
defer_incomplete_level++;
|
2947 |
|
|
this_deferred = true;
|
2948 |
|
|
}
|
2949 |
|
|
|
2950 |
|
|
gnu_base_type = gnat_to_gnu_type (gnat_base_type);
|
2951 |
|
|
|
2952 |
|
|
if (present_gnu_tree (gnat_entity))
|
2953 |
|
|
{
|
2954 |
|
|
maybe_present = true;
|
2955 |
|
|
break;
|
2956 |
|
|
}
|
2957 |
|
|
|
2958 |
|
|
/* When the subtype has discriminants and these discriminants affect
|
2959 |
|
|
the initial shape it has inherited, factor them in. But for an
|
2960 |
|
|
Unchecked_Union (it must be an Itype), just return the type.
|
2961 |
|
|
We can't just test Is_Constrained because private subtypes without
|
2962 |
|
|
discriminants of types with discriminants with default expressions
|
2963 |
|
|
are Is_Constrained but aren't constrained! */
|
2964 |
|
|
if (IN (Ekind (gnat_base_type), Record_Kind)
|
2965 |
|
|
&& !Is_Unchecked_Union (gnat_base_type)
|
2966 |
|
|
&& !Is_For_Access_Subtype (gnat_entity)
|
2967 |
|
|
&& Is_Constrained (gnat_entity)
|
2968 |
|
|
&& Has_Discriminants (gnat_entity)
|
2969 |
|
|
&& Present (Discriminant_Constraint (gnat_entity))
|
2970 |
|
|
&& Stored_Constraint (gnat_entity) != No_Elist)
|
2971 |
|
|
{
|
2972 |
|
|
tree gnu_subst_list
|
2973 |
|
|
= build_subst_list (gnat_entity, gnat_base_type, definition);
|
2974 |
|
|
tree gnu_unpad_base_type, gnu_rep_part, gnu_variant_part, t;
|
2975 |
|
|
tree gnu_variant_list, gnu_pos_list, gnu_field_list = NULL_TREE;
|
2976 |
|
|
bool selected_variant = false;
|
2977 |
|
|
Entity_Id gnat_field;
|
2978 |
|
|
|
2979 |
|
|
gnu_type = make_node (RECORD_TYPE);
|
2980 |
|
|
TYPE_NAME (gnu_type) = gnu_entity_name;
|
2981 |
|
|
|
2982 |
|
|
/* Set the size, alignment and alias set of the new type to
|
2983 |
|
|
match that of the old one, doing required substitutions. */
|
2984 |
|
|
copy_and_substitute_in_size (gnu_type, gnu_base_type,
|
2985 |
|
|
gnu_subst_list);
|
2986 |
|
|
|
2987 |
|
|
if (TYPE_IS_PADDING_P (gnu_base_type))
|
2988 |
|
|
gnu_unpad_base_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
|
2989 |
|
|
else
|
2990 |
|
|
gnu_unpad_base_type = gnu_base_type;
|
2991 |
|
|
|
2992 |
|
|
/* Look for a REP part in the base type. */
|
2993 |
|
|
gnu_rep_part = get_rep_part (gnu_unpad_base_type);
|
2994 |
|
|
|
2995 |
|
|
/* Look for a variant part in the base type. */
|
2996 |
|
|
gnu_variant_part = get_variant_part (gnu_unpad_base_type);
|
2997 |
|
|
|
2998 |
|
|
/* If there is a variant part, we must compute whether the
|
2999 |
|
|
constraints statically select a particular variant. If
|
3000 |
|
|
so, we simply drop the qualified union and flatten the
|
3001 |
|
|
list of fields. Otherwise we'll build a new qualified
|
3002 |
|
|
union for the variants that are still relevant. */
|
3003 |
|
|
if (gnu_variant_part)
|
3004 |
|
|
{
|
3005 |
|
|
gnu_variant_list
|
3006 |
|
|
= build_variant_list (TREE_TYPE (gnu_variant_part),
|
3007 |
|
|
gnu_subst_list, NULL_TREE);
|
3008 |
|
|
|
3009 |
|
|
/* If all the qualifiers are unconditionally true, the
|
3010 |
|
|
innermost variant is statically selected. */
|
3011 |
|
|
selected_variant = true;
|
3012 |
|
|
for (t = gnu_variant_list; t; t = TREE_CHAIN (t))
|
3013 |
|
|
if (!integer_onep (TREE_VEC_ELT (TREE_VALUE (t), 1)))
|
3014 |
|
|
{
|
3015 |
|
|
selected_variant = false;
|
3016 |
|
|
break;
|
3017 |
|
|
}
|
3018 |
|
|
|
3019 |
|
|
/* Otherwise, create the new variants. */
|
3020 |
|
|
if (!selected_variant)
|
3021 |
|
|
for (t = gnu_variant_list; t; t = TREE_CHAIN (t))
|
3022 |
|
|
{
|
3023 |
|
|
tree old_variant = TREE_PURPOSE (t);
|
3024 |
|
|
tree new_variant = make_node (RECORD_TYPE);
|
3025 |
|
|
TYPE_NAME (new_variant)
|
3026 |
|
|
= DECL_NAME (TYPE_NAME (old_variant));
|
3027 |
|
|
copy_and_substitute_in_size (new_variant, old_variant,
|
3028 |
|
|
gnu_subst_list);
|
3029 |
|
|
TREE_VEC_ELT (TREE_VALUE (t), 2) = new_variant;
|
3030 |
|
|
}
|
3031 |
|
|
}
|
3032 |
|
|
else
|
3033 |
|
|
{
|
3034 |
|
|
gnu_variant_list = NULL_TREE;
|
3035 |
|
|
selected_variant = false;
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
gnu_pos_list
|
3039 |
|
|
= build_position_list (gnu_unpad_base_type,
|
3040 |
|
|
gnu_variant_list && !selected_variant,
|
3041 |
|
|
size_zero_node, bitsize_zero_node,
|
3042 |
|
|
BIGGEST_ALIGNMENT, NULL_TREE);
|
3043 |
|
|
|
3044 |
|
|
for (gnat_field = First_Entity (gnat_entity);
|
3045 |
|
|
Present (gnat_field);
|
3046 |
|
|
gnat_field = Next_Entity (gnat_field))
|
3047 |
|
|
if ((Ekind (gnat_field) == E_Component
|
3048 |
|
|
|| Ekind (gnat_field) == E_Discriminant)
|
3049 |
|
|
&& !(Present (Corresponding_Discriminant (gnat_field))
|
3050 |
|
|
&& Is_Tagged_Type (gnat_base_type))
|
3051 |
|
|
&& Underlying_Type (Scope (Original_Record_Component
|
3052 |
|
|
(gnat_field)))
|
3053 |
|
|
== gnat_base_type)
|
3054 |
|
|
{
|
3055 |
|
|
Name_Id gnat_name = Chars (gnat_field);
|
3056 |
|
|
Entity_Id gnat_old_field
|
3057 |
|
|
= Original_Record_Component (gnat_field);
|
3058 |
|
|
tree gnu_old_field
|
3059 |
|
|
= gnat_to_gnu_field_decl (gnat_old_field);
|
3060 |
|
|
tree gnu_context = DECL_CONTEXT (gnu_old_field);
|
3061 |
|
|
tree gnu_field, gnu_field_type, gnu_size;
|
3062 |
|
|
tree gnu_cont_type, gnu_last = NULL_TREE;
|
3063 |
|
|
|
3064 |
|
|
/* If the type is the same, retrieve the GCC type from the
|
3065 |
|
|
old field to take into account possible adjustments. */
|
3066 |
|
|
if (Etype (gnat_field) == Etype (gnat_old_field))
|
3067 |
|
|
gnu_field_type = TREE_TYPE (gnu_old_field);
|
3068 |
|
|
else
|
3069 |
|
|
gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));
|
3070 |
|
|
|
3071 |
|
|
/* If there was a component clause, the field types must be
|
3072 |
|
|
the same for the type and subtype, so copy the data from
|
3073 |
|
|
the old field to avoid recomputation here. Also if the
|
3074 |
|
|
field is justified modular and the optimization in
|
3075 |
|
|
gnat_to_gnu_field was applied. */
|
3076 |
|
|
if (Present (Component_Clause (gnat_old_field))
|
3077 |
|
|
|| (TREE_CODE (gnu_field_type) == RECORD_TYPE
|
3078 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
|
3079 |
|
|
&& TREE_TYPE (TYPE_FIELDS (gnu_field_type))
|
3080 |
|
|
== TREE_TYPE (gnu_old_field)))
|
3081 |
|
|
{
|
3082 |
|
|
gnu_size = DECL_SIZE (gnu_old_field);
|
3083 |
|
|
gnu_field_type = TREE_TYPE (gnu_old_field);
|
3084 |
|
|
}
|
3085 |
|
|
|
3086 |
|
|
/* If the old field was packed and of constant size, we
|
3087 |
|
|
have to get the old size here, as it might differ from
|
3088 |
|
|
what the Etype conveys and the latter might overlap
|
3089 |
|
|
onto the following field. Try to arrange the type for
|
3090 |
|
|
possible better packing along the way. */
|
3091 |
|
|
else if (DECL_PACKED (gnu_old_field)
|
3092 |
|
|
&& TREE_CODE (DECL_SIZE (gnu_old_field))
|
3093 |
|
|
== INTEGER_CST)
|
3094 |
|
|
{
|
3095 |
|
|
gnu_size = DECL_SIZE (gnu_old_field);
|
3096 |
|
|
if (TREE_CODE (gnu_field_type) == RECORD_TYPE
|
3097 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_field_type)
|
3098 |
|
|
&& host_integerp (TYPE_SIZE (gnu_field_type), 1))
|
3099 |
|
|
gnu_field_type
|
3100 |
|
|
= make_packable_type (gnu_field_type, true);
|
3101 |
|
|
}
|
3102 |
|
|
|
3103 |
|
|
else
|
3104 |
|
|
gnu_size = TYPE_SIZE (gnu_field_type);
|
3105 |
|
|
|
3106 |
|
|
/* If the context of the old field is the base type or its
|
3107 |
|
|
REP part (if any), put the field directly in the new
|
3108 |
|
|
type; otherwise look up the context in the variant list
|
3109 |
|
|
and put the field either in the new type if there is a
|
3110 |
|
|
selected variant or in one of the new variants. */
|
3111 |
|
|
if (gnu_context == gnu_unpad_base_type
|
3112 |
|
|
|| (gnu_rep_part
|
3113 |
|
|
&& gnu_context == TREE_TYPE (gnu_rep_part)))
|
3114 |
|
|
gnu_cont_type = gnu_type;
|
3115 |
|
|
else
|
3116 |
|
|
{
|
3117 |
|
|
t = purpose_member (gnu_context, gnu_variant_list);
|
3118 |
|
|
if (t)
|
3119 |
|
|
{
|
3120 |
|
|
if (selected_variant)
|
3121 |
|
|
gnu_cont_type = gnu_type;
|
3122 |
|
|
else
|
3123 |
|
|
gnu_cont_type = TREE_VEC_ELT (TREE_VALUE (t), 2);
|
3124 |
|
|
}
|
3125 |
|
|
else
|
3126 |
|
|
/* The front-end may pass us "ghost" components if
|
3127 |
|
|
it fails to recognize that a constrained subtype
|
3128 |
|
|
is statically constrained. Discard them. */
|
3129 |
|
|
continue;
|
3130 |
|
|
}
|
3131 |
|
|
|
3132 |
|
|
/* Now create the new field modeled on the old one. */
|
3133 |
|
|
gnu_field
|
3134 |
|
|
= create_field_decl_from (gnu_old_field, gnu_field_type,
|
3135 |
|
|
gnu_cont_type, gnu_size,
|
3136 |
|
|
gnu_pos_list, gnu_subst_list);
|
3137 |
|
|
|
3138 |
|
|
/* Put it in one of the new variants directly. */
|
3139 |
|
|
if (gnu_cont_type != gnu_type)
|
3140 |
|
|
{
|
3141 |
|
|
TREE_CHAIN (gnu_field) = TYPE_FIELDS (gnu_cont_type);
|
3142 |
|
|
TYPE_FIELDS (gnu_cont_type) = gnu_field;
|
3143 |
|
|
}
|
3144 |
|
|
|
3145 |
|
|
/* To match the layout crafted in components_to_record,
|
3146 |
|
|
if this is the _Tag or _Parent field, put it before
|
3147 |
|
|
any other fields. */
|
3148 |
|
|
else if (gnat_name == Name_uTag
|
3149 |
|
|
|| gnat_name == Name_uParent)
|
3150 |
|
|
gnu_field_list = chainon (gnu_field_list, gnu_field);
|
3151 |
|
|
|
3152 |
|
|
/* Similarly, if this is the _Controller field, put
|
3153 |
|
|
it before the other fields except for the _Tag or
|
3154 |
|
|
_Parent field. */
|
3155 |
|
|
else if (gnat_name == Name_uController && gnu_last)
|
3156 |
|
|
{
|
3157 |
|
|
TREE_CHAIN (gnu_field) = TREE_CHAIN (gnu_last);
|
3158 |
|
|
TREE_CHAIN (gnu_last) = gnu_field;
|
3159 |
|
|
}
|
3160 |
|
|
|
3161 |
|
|
/* Otherwise, if this is a regular field, put it after
|
3162 |
|
|
the other fields. */
|
3163 |
|
|
else
|
3164 |
|
|
{
|
3165 |
|
|
TREE_CHAIN (gnu_field) = gnu_field_list;
|
3166 |
|
|
gnu_field_list = gnu_field;
|
3167 |
|
|
if (!gnu_last)
|
3168 |
|
|
gnu_last = gnu_field;
|
3169 |
|
|
}
|
3170 |
|
|
|
3171 |
|
|
save_gnu_tree (gnat_field, gnu_field, false);
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
/* If there is a variant list and no selected variant, we need
|
3175 |
|
|
to create the nest of variant parts from the old nest. */
|
3176 |
|
|
if (gnu_variant_list && !selected_variant)
|
3177 |
|
|
{
|
3178 |
|
|
tree new_variant_part
|
3179 |
|
|
= create_variant_part_from (gnu_variant_part,
|
3180 |
|
|
gnu_variant_list, gnu_type,
|
3181 |
|
|
gnu_pos_list, gnu_subst_list);
|
3182 |
|
|
TREE_CHAIN (new_variant_part) = gnu_field_list;
|
3183 |
|
|
gnu_field_list = new_variant_part;
|
3184 |
|
|
}
|
3185 |
|
|
|
3186 |
|
|
/* Now go through the entities again looking for Itypes that
|
3187 |
|
|
we have not elaborated but should (e.g., Etypes of fields
|
3188 |
|
|
that have Original_Components). */
|
3189 |
|
|
for (gnat_field = First_Entity (gnat_entity);
|
3190 |
|
|
Present (gnat_field); gnat_field = Next_Entity (gnat_field))
|
3191 |
|
|
if ((Ekind (gnat_field) == E_Discriminant
|
3192 |
|
|
|| Ekind (gnat_field) == E_Component)
|
3193 |
|
|
&& !present_gnu_tree (Etype (gnat_field)))
|
3194 |
|
|
gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
|
3195 |
|
|
|
3196 |
|
|
/* Do not emit debug info for the type yet since we're going to
|
3197 |
|
|
modify it below. */
|
3198 |
|
|
gnu_field_list = nreverse (gnu_field_list);
|
3199 |
|
|
finish_record_type (gnu_type, gnu_field_list, 2, false);
|
3200 |
|
|
|
3201 |
|
|
/* See the E_Record_Type case for the rationale. */
|
3202 |
|
|
if (Is_Tagged_Type (gnat_entity)
|
3203 |
|
|
|| Is_Limited_Record (gnat_entity))
|
3204 |
|
|
SET_TYPE_MODE (gnu_type, BLKmode);
|
3205 |
|
|
else
|
3206 |
|
|
compute_record_mode (gnu_type);
|
3207 |
|
|
|
3208 |
|
|
TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
|
3209 |
|
|
|
3210 |
|
|
/* Fill in locations of fields. */
|
3211 |
|
|
annotate_rep (gnat_entity, gnu_type);
|
3212 |
|
|
|
3213 |
|
|
/* If debugging information is being written for the type, write
|
3214 |
|
|
a record that shows what we are a subtype of and also make a
|
3215 |
|
|
variable that indicates our size, if still variable. */
|
3216 |
|
|
if (debug_info_p)
|
3217 |
|
|
{
|
3218 |
|
|
tree gnu_subtype_marker = make_node (RECORD_TYPE);
|
3219 |
|
|
tree gnu_unpad_base_name = TYPE_NAME (gnu_unpad_base_type);
|
3220 |
|
|
tree gnu_size_unit = TYPE_SIZE_UNIT (gnu_type);
|
3221 |
|
|
|
3222 |
|
|
if (TREE_CODE (gnu_unpad_base_name) == TYPE_DECL)
|
3223 |
|
|
gnu_unpad_base_name = DECL_NAME (gnu_unpad_base_name);
|
3224 |
|
|
|
3225 |
|
|
TYPE_NAME (gnu_subtype_marker)
|
3226 |
|
|
= create_concat_name (gnat_entity, "XVS");
|
3227 |
|
|
finish_record_type (gnu_subtype_marker,
|
3228 |
|
|
create_field_decl (gnu_unpad_base_name,
|
3229 |
|
|
build_reference_type
|
3230 |
|
|
(gnu_unpad_base_type),
|
3231 |
|
|
gnu_subtype_marker,
|
3232 |
|
|
0, NULL_TREE,
|
3233 |
|
|
NULL_TREE, 0),
|
3234 |
|
|
0, true);
|
3235 |
|
|
|
3236 |
|
|
add_parallel_type (TYPE_STUB_DECL (gnu_type),
|
3237 |
|
|
gnu_subtype_marker);
|
3238 |
|
|
|
3239 |
|
|
if (definition
|
3240 |
|
|
&& TREE_CODE (gnu_size_unit) != INTEGER_CST
|
3241 |
|
|
&& !CONTAINS_PLACEHOLDER_P (gnu_size_unit))
|
3242 |
|
|
create_var_decl (create_concat_name (gnat_entity, "XVZ"),
|
3243 |
|
|
NULL_TREE, sizetype, gnu_size_unit, false,
|
3244 |
|
|
false, false, false, NULL, gnat_entity);
|
3245 |
|
|
}
|
3246 |
|
|
|
3247 |
|
|
/* Now we can finalize it. */
|
3248 |
|
|
rest_of_record_type_compilation (gnu_type);
|
3249 |
|
|
}
|
3250 |
|
|
|
3251 |
|
|
/* Otherwise, go down all the components in the new type and make
|
3252 |
|
|
them equivalent to those in the base type. */
|
3253 |
|
|
else
|
3254 |
|
|
{
|
3255 |
|
|
gnu_type = gnu_base_type;
|
3256 |
|
|
|
3257 |
|
|
for (gnat_temp = First_Entity (gnat_entity);
|
3258 |
|
|
Present (gnat_temp);
|
3259 |
|
|
gnat_temp = Next_Entity (gnat_temp))
|
3260 |
|
|
if ((Ekind (gnat_temp) == E_Discriminant
|
3261 |
|
|
&& !Is_Unchecked_Union (gnat_base_type))
|
3262 |
|
|
|| Ekind (gnat_temp) == E_Component)
|
3263 |
|
|
save_gnu_tree (gnat_temp,
|
3264 |
|
|
gnat_to_gnu_field_decl
|
3265 |
|
|
(Original_Record_Component (gnat_temp)),
|
3266 |
|
|
false);
|
3267 |
|
|
}
|
3268 |
|
|
}
|
3269 |
|
|
break;
|
3270 |
|
|
|
3271 |
|
|
case E_Access_Subprogram_Type:
|
3272 |
|
|
/* Use the special descriptor type for dispatch tables if needed,
|
3273 |
|
|
that is to say for the Prim_Ptr of a-tags.ads and its clones.
|
3274 |
|
|
Note that we are only required to do so for static tables in
|
3275 |
|
|
order to be compatible with the C++ ABI, but Ada 2005 allows
|
3276 |
|
|
to extend library level tagged types at the local level so
|
3277 |
|
|
we do it in the non-static case as well. */
|
3278 |
|
|
if (TARGET_VTABLE_USES_DESCRIPTORS
|
3279 |
|
|
&& Is_Dispatch_Table_Entity (gnat_entity))
|
3280 |
|
|
{
|
3281 |
|
|
gnu_type = fdesc_type_node;
|
3282 |
|
|
gnu_size = TYPE_SIZE (gnu_type);
|
3283 |
|
|
break;
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
/* ... fall through ... */
|
3287 |
|
|
|
3288 |
|
|
case E_Anonymous_Access_Subprogram_Type:
|
3289 |
|
|
/* If we are not defining this entity, and we have incomplete
|
3290 |
|
|
entities being processed above us, make a dummy type and
|
3291 |
|
|
fill it in later. */
|
3292 |
|
|
if (!definition && defer_incomplete_level != 0)
|
3293 |
|
|
{
|
3294 |
|
|
struct incomplete *p
|
3295 |
|
|
= (struct incomplete *) xmalloc (sizeof (struct incomplete));
|
3296 |
|
|
|
3297 |
|
|
gnu_type
|
3298 |
|
|
= build_pointer_type
|
3299 |
|
|
(make_dummy_type (Directly_Designated_Type (gnat_entity)));
|
3300 |
|
|
gnu_decl = create_type_decl (gnu_entity_name, gnu_type, attr_list,
|
3301 |
|
|
!Comes_From_Source (gnat_entity),
|
3302 |
|
|
debug_info_p, gnat_entity);
|
3303 |
|
|
this_made_decl = true;
|
3304 |
|
|
gnu_type = TREE_TYPE (gnu_decl);
|
3305 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, false);
|
3306 |
|
|
saved = true;
|
3307 |
|
|
|
3308 |
|
|
p->old_type = TREE_TYPE (gnu_type);
|
3309 |
|
|
p->full_type = Directly_Designated_Type (gnat_entity);
|
3310 |
|
|
p->next = defer_incomplete_list;
|
3311 |
|
|
defer_incomplete_list = p;
|
3312 |
|
|
break;
|
3313 |
|
|
}
|
3314 |
|
|
|
3315 |
|
|
/* ... fall through ... */
|
3316 |
|
|
|
3317 |
|
|
case E_Allocator_Type:
|
3318 |
|
|
case E_Access_Type:
|
3319 |
|
|
case E_Access_Attribute_Type:
|
3320 |
|
|
case E_Anonymous_Access_Type:
|
3321 |
|
|
case E_General_Access_Type:
|
3322 |
|
|
{
|
3323 |
|
|
Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity);
|
3324 |
|
|
Entity_Id gnat_desig_equiv = Gigi_Equivalent_Type (gnat_desig_type);
|
3325 |
|
|
bool is_from_limited_with
|
3326 |
|
|
= (IN (Ekind (gnat_desig_equiv), Incomplete_Kind)
|
3327 |
|
|
&& From_With_Type (gnat_desig_equiv));
|
3328 |
|
|
|
3329 |
|
|
/* Get the "full view" of this entity. If this is an incomplete
|
3330 |
|
|
entity from a limited with, treat its non-limited view as the full
|
3331 |
|
|
view. Otherwise, if this is an incomplete or private type, use the
|
3332 |
|
|
full view. In the former case, we might point to a private type,
|
3333 |
|
|
in which case, we need its full view. Also, we want to look at the
|
3334 |
|
|
actual type used for the representation, so this takes a total of
|
3335 |
|
|
three steps. */
|
3336 |
|
|
Entity_Id gnat_desig_full_direct_first
|
3337 |
|
|
= (is_from_limited_with ? Non_Limited_View (gnat_desig_equiv)
|
3338 |
|
|
: (IN (Ekind (gnat_desig_equiv), Incomplete_Or_Private_Kind)
|
3339 |
|
|
? Full_View (gnat_desig_equiv) : Empty));
|
3340 |
|
|
Entity_Id gnat_desig_full_direct
|
3341 |
|
|
= ((is_from_limited_with
|
3342 |
|
|
&& Present (gnat_desig_full_direct_first)
|
3343 |
|
|
&& IN (Ekind (gnat_desig_full_direct_first), Private_Kind))
|
3344 |
|
|
? Full_View (gnat_desig_full_direct_first)
|
3345 |
|
|
: gnat_desig_full_direct_first);
|
3346 |
|
|
Entity_Id gnat_desig_full
|
3347 |
|
|
= Gigi_Equivalent_Type (gnat_desig_full_direct);
|
3348 |
|
|
|
3349 |
|
|
/* This the type actually used to represent the designated type,
|
3350 |
|
|
either gnat_desig_full or gnat_desig_equiv. */
|
3351 |
|
|
Entity_Id gnat_desig_rep;
|
3352 |
|
|
|
3353 |
|
|
/* True if this is a pointer to an unconstrained array. */
|
3354 |
|
|
bool is_unconstrained_array;
|
3355 |
|
|
|
3356 |
|
|
/* We want to know if we'll be seeing the freeze node for any
|
3357 |
|
|
incomplete type we may be pointing to. */
|
3358 |
|
|
bool in_main_unit
|
3359 |
|
|
= (Present (gnat_desig_full)
|
3360 |
|
|
? In_Extended_Main_Code_Unit (gnat_desig_full)
|
3361 |
|
|
: In_Extended_Main_Code_Unit (gnat_desig_type));
|
3362 |
|
|
|
3363 |
|
|
/* True if we make a dummy type here. */
|
3364 |
|
|
bool got_fat_p = false;
|
3365 |
|
|
/* True if the dummy is a fat pointer. */
|
3366 |
|
|
bool made_dummy = false;
|
3367 |
|
|
tree gnu_desig_type = NULL_TREE;
|
3368 |
|
|
enum machine_mode p_mode = mode_for_size (esize, MODE_INT, 0);
|
3369 |
|
|
|
3370 |
|
|
if (!targetm.valid_pointer_mode (p_mode))
|
3371 |
|
|
p_mode = ptr_mode;
|
3372 |
|
|
|
3373 |
|
|
/* If either the designated type or its full view is an unconstrained
|
3374 |
|
|
array subtype, replace it with the type it's a subtype of. This
|
3375 |
|
|
avoids problems with multiple copies of unconstrained array types.
|
3376 |
|
|
Likewise, if the designated type is a subtype of an incomplete
|
3377 |
|
|
record type, use the parent type to avoid order of elaboration
|
3378 |
|
|
issues. This can lose some code efficiency, but there is no
|
3379 |
|
|
alternative. */
|
3380 |
|
|
if (Ekind (gnat_desig_equiv) == E_Array_Subtype
|
3381 |
|
|
&& ! Is_Constrained (gnat_desig_equiv))
|
3382 |
|
|
gnat_desig_equiv = Etype (gnat_desig_equiv);
|
3383 |
|
|
if (Present (gnat_desig_full)
|
3384 |
|
|
&& ((Ekind (gnat_desig_full) == E_Array_Subtype
|
3385 |
|
|
&& ! Is_Constrained (gnat_desig_full))
|
3386 |
|
|
|| (Ekind (gnat_desig_full) == E_Record_Subtype
|
3387 |
|
|
&& Ekind (Etype (gnat_desig_full)) == E_Record_Type)))
|
3388 |
|
|
gnat_desig_full = Etype (gnat_desig_full);
|
3389 |
|
|
|
3390 |
|
|
/* Now set the type that actually marks the representation of
|
3391 |
|
|
the designated type and also flag whether we have a unconstrained
|
3392 |
|
|
array. */
|
3393 |
|
|
gnat_desig_rep = gnat_desig_full ? gnat_desig_full : gnat_desig_equiv;
|
3394 |
|
|
is_unconstrained_array
|
3395 |
|
|
= (Is_Array_Type (gnat_desig_rep)
|
3396 |
|
|
&& ! Is_Constrained (gnat_desig_rep));
|
3397 |
|
|
|
3398 |
|
|
/* If we are pointing to an incomplete type whose completion is an
|
3399 |
|
|
unconstrained array, make a fat pointer type. The two types in our
|
3400 |
|
|
fields will be pointers to dummy nodes and will be replaced in
|
3401 |
|
|
update_pointer_to. Similarly, if the type itself is a dummy type or
|
3402 |
|
|
an unconstrained array. Also make a dummy TYPE_OBJECT_RECORD_TYPE
|
3403 |
|
|
in case we have any thin pointers to it. */
|
3404 |
|
|
if (is_unconstrained_array
|
3405 |
|
|
&& (Present (gnat_desig_full)
|
3406 |
|
|
|| (present_gnu_tree (gnat_desig_equiv)
|
3407 |
|
|
&& TYPE_IS_DUMMY_P (TREE_TYPE
|
3408 |
|
|
(get_gnu_tree (gnat_desig_equiv))))
|
3409 |
|
|
|| (No (gnat_desig_full) && ! in_main_unit
|
3410 |
|
|
&& defer_incomplete_level != 0
|
3411 |
|
|
&& ! present_gnu_tree (gnat_desig_equiv))
|
3412 |
|
|
|| (in_main_unit && is_from_limited_with
|
3413 |
|
|
&& Present (Freeze_Node (gnat_desig_rep)))))
|
3414 |
|
|
{
|
3415 |
|
|
tree gnu_old;
|
3416 |
|
|
|
3417 |
|
|
if (present_gnu_tree (gnat_desig_rep))
|
3418 |
|
|
gnu_old = TREE_TYPE (get_gnu_tree (gnat_desig_rep));
|
3419 |
|
|
else
|
3420 |
|
|
{
|
3421 |
|
|
gnu_old = make_dummy_type (gnat_desig_rep);
|
3422 |
|
|
|
3423 |
|
|
/* Show the dummy we get will be a fat pointer. */
|
3424 |
|
|
got_fat_p = made_dummy = true;
|
3425 |
|
|
}
|
3426 |
|
|
|
3427 |
|
|
/* If the call above got something that has a pointer, that
|
3428 |
|
|
pointer is our type. This could have happened either
|
3429 |
|
|
because the type was elaborated or because somebody
|
3430 |
|
|
else executed the code below. */
|
3431 |
|
|
gnu_type = TYPE_POINTER_TO (gnu_old);
|
3432 |
|
|
if (!gnu_type)
|
3433 |
|
|
{
|
3434 |
|
|
tree gnu_template_type = make_node (ENUMERAL_TYPE);
|
3435 |
|
|
tree gnu_ptr_template = build_pointer_type (gnu_template_type);
|
3436 |
|
|
tree gnu_array_type = make_node (ENUMERAL_TYPE);
|
3437 |
|
|
tree gnu_ptr_array = build_pointer_type (gnu_array_type);
|
3438 |
|
|
tree fields;
|
3439 |
|
|
|
3440 |
|
|
TYPE_NAME (gnu_template_type)
|
3441 |
|
|
= create_concat_name (gnat_desig_equiv, "XUB");
|
3442 |
|
|
TYPE_DUMMY_P (gnu_template_type) = 1;
|
3443 |
|
|
|
3444 |
|
|
TYPE_NAME (gnu_array_type)
|
3445 |
|
|
= create_concat_name (gnat_desig_equiv, "XUA");
|
3446 |
|
|
TYPE_DUMMY_P (gnu_array_type) = 1;
|
3447 |
|
|
|
3448 |
|
|
gnu_type = make_node (RECORD_TYPE);
|
3449 |
|
|
SET_TYPE_UNCONSTRAINED_ARRAY (gnu_type, gnu_old);
|
3450 |
|
|
TYPE_POINTER_TO (gnu_old) = gnu_type;
|
3451 |
|
|
|
3452 |
|
|
Sloc_to_locus (Sloc (gnat_entity), &input_location);
|
3453 |
|
|
fields
|
3454 |
|
|
= chainon (chainon (NULL_TREE,
|
3455 |
|
|
create_field_decl
|
3456 |
|
|
(get_identifier ("P_ARRAY"),
|
3457 |
|
|
gnu_ptr_array,
|
3458 |
|
|
gnu_type, 0, 0, 0, 0)),
|
3459 |
|
|
create_field_decl (get_identifier ("P_BOUNDS"),
|
3460 |
|
|
gnu_ptr_template,
|
3461 |
|
|
gnu_type, 0, 0, 0, 0));
|
3462 |
|
|
|
3463 |
|
|
/* Make sure we can place this into a register. */
|
3464 |
|
|
TYPE_ALIGN (gnu_type)
|
3465 |
|
|
= MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
|
3466 |
|
|
TYPE_FAT_POINTER_P (gnu_type) = 1;
|
3467 |
|
|
|
3468 |
|
|
/* Do not emit debug info for this record type since the types
|
3469 |
|
|
of its fields are incomplete. */
|
3470 |
|
|
finish_record_type (gnu_type, fields, 0, false);
|
3471 |
|
|
|
3472 |
|
|
TYPE_OBJECT_RECORD_TYPE (gnu_old) = make_node (RECORD_TYPE);
|
3473 |
|
|
TYPE_NAME (TYPE_OBJECT_RECORD_TYPE (gnu_old))
|
3474 |
|
|
= create_concat_name (gnat_desig_equiv, "XUT");
|
3475 |
|
|
TYPE_DUMMY_P (TYPE_OBJECT_RECORD_TYPE (gnu_old)) = 1;
|
3476 |
|
|
}
|
3477 |
|
|
}
|
3478 |
|
|
|
3479 |
|
|
/* If we already know what the full type is, use it. */
|
3480 |
|
|
else if (Present (gnat_desig_full)
|
3481 |
|
|
&& present_gnu_tree (gnat_desig_full))
|
3482 |
|
|
gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full));
|
3483 |
|
|
|
3484 |
|
|
/* Get the type of the thing we are to point to and build a pointer
|
3485 |
|
|
to it. If it is a reference to an incomplete or private type with a
|
3486 |
|
|
full view that is a record, make a dummy type node and get the
|
3487 |
|
|
actual type later when we have verified it is safe. */
|
3488 |
|
|
else if ((! in_main_unit
|
3489 |
|
|
&& ! present_gnu_tree (gnat_desig_equiv)
|
3490 |
|
|
&& Present (gnat_desig_full)
|
3491 |
|
|
&& ! present_gnu_tree (gnat_desig_full)
|
3492 |
|
|
&& Is_Record_Type (gnat_desig_full))
|
3493 |
|
|
/* Likewise if we are pointing to a record or array and we
|
3494 |
|
|
are to defer elaborating incomplete types. We do this
|
3495 |
|
|
since this access type may be the full view of some
|
3496 |
|
|
private type. Note that the unconstrained array case is
|
3497 |
|
|
handled above. */
|
3498 |
|
|
|| ((! in_main_unit || imported_p)
|
3499 |
|
|
&& defer_incomplete_level != 0
|
3500 |
|
|
&& ! present_gnu_tree (gnat_desig_equiv)
|
3501 |
|
|
&& ((Is_Record_Type (gnat_desig_rep)
|
3502 |
|
|
|| Is_Array_Type (gnat_desig_rep))))
|
3503 |
|
|
/* If this is a reference from a limited_with type back to our
|
3504 |
|
|
main unit and there's a Freeze_Node for it, either we have
|
3505 |
|
|
already processed the declaration and made the dummy type,
|
3506 |
|
|
in which case we just reuse the latter, or we have not yet,
|
3507 |
|
|
in which case we make the dummy type and it will be reused
|
3508 |
|
|
when the declaration is processed. In both cases, the
|
3509 |
|
|
pointer eventually created below will be automatically
|
3510 |
|
|
adjusted when the Freeze_Node is processed. Note that the
|
3511 |
|
|
unconstrained array case is handled above. */
|
3512 |
|
|
|| (in_main_unit && is_from_limited_with
|
3513 |
|
|
&& Present (Freeze_Node (gnat_desig_rep))))
|
3514 |
|
|
{
|
3515 |
|
|
gnu_desig_type = make_dummy_type (gnat_desig_equiv);
|
3516 |
|
|
made_dummy = true;
|
3517 |
|
|
}
|
3518 |
|
|
|
3519 |
|
|
/* Otherwise handle the case of a pointer to itself. */
|
3520 |
|
|
else if (gnat_desig_equiv == gnat_entity)
|
3521 |
|
|
{
|
3522 |
|
|
gnu_type
|
3523 |
|
|
= build_pointer_type_for_mode (void_type_node, p_mode,
|
3524 |
|
|
No_Strict_Aliasing (gnat_entity));
|
3525 |
|
|
TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type;
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
/* If expansion is disabled, the equivalent type of a concurrent
|
3529 |
|
|
type is absent, so build a dummy pointer type. */
|
3530 |
|
|
else if (type_annotate_only && No (gnat_desig_equiv))
|
3531 |
|
|
gnu_type = ptr_void_type_node;
|
3532 |
|
|
|
3533 |
|
|
/* Finally, handle the straightforward case where we can just
|
3534 |
|
|
elaborate our designated type and point to it. */
|
3535 |
|
|
else
|
3536 |
|
|
gnu_desig_type = gnat_to_gnu_type (gnat_desig_equiv);
|
3537 |
|
|
|
3538 |
|
|
/* It is possible that a call to gnat_to_gnu_type above resolved our
|
3539 |
|
|
type. If so, just return it. */
|
3540 |
|
|
if (present_gnu_tree (gnat_entity))
|
3541 |
|
|
{
|
3542 |
|
|
maybe_present = true;
|
3543 |
|
|
break;
|
3544 |
|
|
}
|
3545 |
|
|
|
3546 |
|
|
/* If we have a GCC type for the designated type, possibly modify it
|
3547 |
|
|
if we are pointing only to constant objects and then make a pointer
|
3548 |
|
|
to it. Don't do this for unconstrained arrays. */
|
3549 |
|
|
if (!gnu_type && gnu_desig_type)
|
3550 |
|
|
{
|
3551 |
|
|
if (Is_Access_Constant (gnat_entity)
|
3552 |
|
|
&& TREE_CODE (gnu_desig_type) != UNCONSTRAINED_ARRAY_TYPE)
|
3553 |
|
|
{
|
3554 |
|
|
gnu_desig_type
|
3555 |
|
|
= build_qualified_type
|
3556 |
|
|
(gnu_desig_type,
|
3557 |
|
|
TYPE_QUALS (gnu_desig_type) | TYPE_QUAL_CONST);
|
3558 |
|
|
|
3559 |
|
|
/* Some extra processing is required if we are building a
|
3560 |
|
|
pointer to an incomplete type (in the GCC sense). We might
|
3561 |
|
|
have such a type if we just made a dummy, or directly out
|
3562 |
|
|
of the call to gnat_to_gnu_type above if we are processing
|
3563 |
|
|
an access type for a record component designating the
|
3564 |
|
|
record type itself. */
|
3565 |
|
|
if (TYPE_MODE (gnu_desig_type) == VOIDmode)
|
3566 |
|
|
{
|
3567 |
|
|
/* We must ensure that the pointer to variant we make will
|
3568 |
|
|
be processed by update_pointer_to when the initial type
|
3569 |
|
|
is completed. Pretend we made a dummy and let further
|
3570 |
|
|
processing act as usual. */
|
3571 |
|
|
made_dummy = true;
|
3572 |
|
|
|
3573 |
|
|
/* We must ensure that update_pointer_to will not retrieve
|
3574 |
|
|
the dummy variant when building a properly qualified
|
3575 |
|
|
version of the complete type. We take advantage of the
|
3576 |
|
|
fact that get_qualified_type is requiring TYPE_NAMEs to
|
3577 |
|
|
match to influence build_qualified_type and then also
|
3578 |
|
|
update_pointer_to here. */
|
3579 |
|
|
TYPE_NAME (gnu_desig_type)
|
3580 |
|
|
= create_concat_name (gnat_desig_type, "INCOMPLETE_CST");
|
3581 |
|
|
}
|
3582 |
|
|
}
|
3583 |
|
|
|
3584 |
|
|
gnu_type
|
3585 |
|
|
= build_pointer_type_for_mode (gnu_desig_type, p_mode,
|
3586 |
|
|
No_Strict_Aliasing (gnat_entity));
|
3587 |
|
|
}
|
3588 |
|
|
|
3589 |
|
|
/* If we are not defining this object and we made a dummy pointer,
|
3590 |
|
|
save our current definition, evaluate the actual type, and replace
|
3591 |
|
|
the tentative type we made with the actual one. If we are to defer
|
3592 |
|
|
actually looking up the actual type, make an entry in the
|
3593 |
|
|
deferred list. If this is from a limited with, we have to defer
|
3594 |
|
|
to the end of the current spec in two cases: first if the
|
3595 |
|
|
designated type is in the current unit and second if the access
|
3596 |
|
|
type is. */
|
3597 |
|
|
if ((! in_main_unit || is_from_limited_with) && made_dummy)
|
3598 |
|
|
{
|
3599 |
|
|
tree gnu_old_type
|
3600 |
|
|
= TYPE_IS_FAT_POINTER_P (gnu_type)
|
3601 |
|
|
? TYPE_UNCONSTRAINED_ARRAY (gnu_type) : TREE_TYPE (gnu_type);
|
3602 |
|
|
|
3603 |
|
|
if (esize == POINTER_SIZE
|
3604 |
|
|
&& (got_fat_p || TYPE_IS_FAT_POINTER_P (gnu_type)))
|
3605 |
|
|
gnu_type
|
3606 |
|
|
= build_pointer_type
|
3607 |
|
|
(TYPE_OBJECT_RECORD_TYPE
|
3608 |
|
|
(TYPE_UNCONSTRAINED_ARRAY (gnu_type)));
|
3609 |
|
|
|
3610 |
|
|
gnu_decl = create_type_decl (gnu_entity_name, gnu_type, attr_list,
|
3611 |
|
|
!Comes_From_Source (gnat_entity),
|
3612 |
|
|
debug_info_p, gnat_entity);
|
3613 |
|
|
this_made_decl = true;
|
3614 |
|
|
gnu_type = TREE_TYPE (gnu_decl);
|
3615 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, false);
|
3616 |
|
|
saved = true;
|
3617 |
|
|
|
3618 |
|
|
if (defer_incomplete_level == 0
|
3619 |
|
|
&& ! (is_from_limited_with
|
3620 |
|
|
&& (in_main_unit
|
3621 |
|
|
|| In_Extended_Main_Code_Unit (gnat_entity))))
|
3622 |
|
|
update_pointer_to (TYPE_MAIN_VARIANT (gnu_old_type),
|
3623 |
|
|
gnat_to_gnu_type (gnat_desig_equiv));
|
3624 |
|
|
|
3625 |
|
|
/* Note that the call to gnat_to_gnu_type here might have
|
3626 |
|
|
updated gnu_old_type directly, in which case it is not a
|
3627 |
|
|
dummy type any more when we get into update_pointer_to.
|
3628 |
|
|
|
3629 |
|
|
This may happen for instance when the designated type is a
|
3630 |
|
|
record type, because their elaboration starts with an
|
3631 |
|
|
initial node from make_dummy_type, which may yield the same
|
3632 |
|
|
node as the one we got.
|
3633 |
|
|
|
3634 |
|
|
Besides, variants of this non-dummy type might have been
|
3635 |
|
|
created along the way. update_pointer_to is expected to
|
3636 |
|
|
properly take care of those situations. */
|
3637 |
|
|
else
|
3638 |
|
|
{
|
3639 |
|
|
struct incomplete *p
|
3640 |
|
|
= (struct incomplete *) xmalloc (sizeof
|
3641 |
|
|
(struct incomplete));
|
3642 |
|
|
struct incomplete **head
|
3643 |
|
|
= (is_from_limited_with
|
3644 |
|
|
&& (in_main_unit
|
3645 |
|
|
|| In_Extended_Main_Code_Unit (gnat_entity))
|
3646 |
|
|
? &defer_limited_with : &defer_incomplete_list);
|
3647 |
|
|
|
3648 |
|
|
p->old_type = gnu_old_type;
|
3649 |
|
|
p->full_type = gnat_desig_equiv;
|
3650 |
|
|
p->next = *head;
|
3651 |
|
|
*head = p;
|
3652 |
|
|
}
|
3653 |
|
|
}
|
3654 |
|
|
}
|
3655 |
|
|
break;
|
3656 |
|
|
|
3657 |
|
|
case E_Access_Protected_Subprogram_Type:
|
3658 |
|
|
case E_Anonymous_Access_Protected_Subprogram_Type:
|
3659 |
|
|
if (type_annotate_only && No (gnat_equiv_type))
|
3660 |
|
|
gnu_type = ptr_void_type_node;
|
3661 |
|
|
else
|
3662 |
|
|
{
|
3663 |
|
|
/* The runtime representation is the equivalent type. */
|
3664 |
|
|
gnu_type = gnat_to_gnu_type (gnat_equiv_type);
|
3665 |
|
|
maybe_present = true;
|
3666 |
|
|
}
|
3667 |
|
|
|
3668 |
|
|
if (Is_Itype (Directly_Designated_Type (gnat_entity))
|
3669 |
|
|
&& !present_gnu_tree (Directly_Designated_Type (gnat_entity))
|
3670 |
|
|
&& No (Freeze_Node (Directly_Designated_Type (gnat_entity)))
|
3671 |
|
|
&& !Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity))))
|
3672 |
|
|
gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
|
3673 |
|
|
NULL_TREE, 0);
|
3674 |
|
|
|
3675 |
|
|
break;
|
3676 |
|
|
|
3677 |
|
|
case E_Access_Subtype:
|
3678 |
|
|
|
3679 |
|
|
/* We treat this as identical to its base type; any constraint is
|
3680 |
|
|
meaningful only to the front end.
|
3681 |
|
|
|
3682 |
|
|
The designated type must be elaborated as well, if it does
|
3683 |
|
|
not have its own freeze node. Designated (sub)types created
|
3684 |
|
|
for constrained components of records with discriminants are
|
3685 |
|
|
not frozen by the front end and thus not elaborated by gigi,
|
3686 |
|
|
because their use may appear before the base type is frozen,
|
3687 |
|
|
and because it is not clear that they are needed anywhere in
|
3688 |
|
|
Gigi. With the current model, there is no correct place where
|
3689 |
|
|
they could be elaborated. */
|
3690 |
|
|
|
3691 |
|
|
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
|
3692 |
|
|
if (Is_Itype (Directly_Designated_Type (gnat_entity))
|
3693 |
|
|
&& !present_gnu_tree (Directly_Designated_Type (gnat_entity))
|
3694 |
|
|
&& Is_Frozen (Directly_Designated_Type (gnat_entity))
|
3695 |
|
|
&& No (Freeze_Node (Directly_Designated_Type (gnat_entity))))
|
3696 |
|
|
{
|
3697 |
|
|
/* If we are not defining this entity, and we have incomplete
|
3698 |
|
|
entities being processed above us, make a dummy type and
|
3699 |
|
|
elaborate it later. */
|
3700 |
|
|
if (!definition && defer_incomplete_level != 0)
|
3701 |
|
|
{
|
3702 |
|
|
struct incomplete *p
|
3703 |
|
|
= (struct incomplete *) xmalloc (sizeof (struct incomplete));
|
3704 |
|
|
tree gnu_ptr_type
|
3705 |
|
|
= build_pointer_type
|
3706 |
|
|
(make_dummy_type (Directly_Designated_Type (gnat_entity)));
|
3707 |
|
|
|
3708 |
|
|
p->old_type = TREE_TYPE (gnu_ptr_type);
|
3709 |
|
|
p->full_type = Directly_Designated_Type (gnat_entity);
|
3710 |
|
|
p->next = defer_incomplete_list;
|
3711 |
|
|
defer_incomplete_list = p;
|
3712 |
|
|
}
|
3713 |
|
|
else if (!IN (Ekind (Base_Type
|
3714 |
|
|
(Directly_Designated_Type (gnat_entity))),
|
3715 |
|
|
Incomplete_Or_Private_Kind))
|
3716 |
|
|
gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
|
3717 |
|
|
NULL_TREE, 0);
|
3718 |
|
|
}
|
3719 |
|
|
|
3720 |
|
|
maybe_present = true;
|
3721 |
|
|
break;
|
3722 |
|
|
|
3723 |
|
|
/* Subprogram Entities
|
3724 |
|
|
|
3725 |
|
|
The following access functions are defined for subprograms (functions
|
3726 |
|
|
or procedures):
|
3727 |
|
|
|
3728 |
|
|
First_Formal The first formal parameter.
|
3729 |
|
|
Is_Imported Indicates that the subprogram has appeared in
|
3730 |
|
|
an INTERFACE or IMPORT pragma. For now we
|
3731 |
|
|
assume that the external language is C.
|
3732 |
|
|
Is_Exported Likewise but for an EXPORT pragma.
|
3733 |
|
|
Is_Inlined True if the subprogram is to be inlined.
|
3734 |
|
|
|
3735 |
|
|
In addition for function subprograms we have:
|
3736 |
|
|
|
3737 |
|
|
Etype Return type of the function.
|
3738 |
|
|
|
3739 |
|
|
Each parameter is first checked by calling must_pass_by_ref on its
|
3740 |
|
|
type to determine if it is passed by reference. For parameters which
|
3741 |
|
|
are copied in, if they are Ada In Out or Out parameters, their return
|
3742 |
|
|
value becomes part of a record which becomes the return type of the
|
3743 |
|
|
function (C function - note that this applies only to Ada procedures
|
3744 |
|
|
so there is no Ada return type). Additional code to store back the
|
3745 |
|
|
parameters will be generated on the caller side. This transformation
|
3746 |
|
|
is done here, not in the front-end.
|
3747 |
|
|
|
3748 |
|
|
The intended result of the transformation can be seen from the
|
3749 |
|
|
equivalent source rewritings that follow:
|
3750 |
|
|
|
3751 |
|
|
struct temp {int a,b};
|
3752 |
|
|
procedure P (A,B: In Out ...) is temp P (int A,B)
|
3753 |
|
|
begin {
|
3754 |
|
|
.. ..
|
3755 |
|
|
end P; return {A,B};
|
3756 |
|
|
}
|
3757 |
|
|
|
3758 |
|
|
temp t;
|
3759 |
|
|
P(X,Y); t = P(X,Y);
|
3760 |
|
|
X = t.a , Y = t.b;
|
3761 |
|
|
|
3762 |
|
|
For subprogram types we need to perform mainly the same conversions to
|
3763 |
|
|
GCC form that are needed for procedures and function declarations. The
|
3764 |
|
|
only difference is that at the end, we make a type declaration instead
|
3765 |
|
|
of a function declaration. */
|
3766 |
|
|
|
3767 |
|
|
case E_Subprogram_Type:
|
3768 |
|
|
case E_Function:
|
3769 |
|
|
case E_Procedure:
|
3770 |
|
|
{
|
3771 |
|
|
/* The first GCC parameter declaration (a PARM_DECL node). The
|
3772 |
|
|
PARM_DECL nodes are chained through the TREE_CHAIN field, so this
|
3773 |
|
|
actually is the head of this parameter list. */
|
3774 |
|
|
tree gnu_param_list = NULL_TREE;
|
3775 |
|
|
/* Likewise for the stub associated with an exported procedure. */
|
3776 |
|
|
tree gnu_stub_param_list = NULL_TREE;
|
3777 |
|
|
/* The type returned by a function. If the subprogram is a procedure
|
3778 |
|
|
this type should be void_type_node. */
|
3779 |
|
|
tree gnu_return_type = void_type_node;
|
3780 |
|
|
/* List of fields in return type of procedure with copy-in copy-out
|
3781 |
|
|
parameters. */
|
3782 |
|
|
tree gnu_field_list = NULL_TREE;
|
3783 |
|
|
/* Non-null for subprograms containing parameters passed by copy-in
|
3784 |
|
|
copy-out (Ada In Out or Out parameters not passed by reference),
|
3785 |
|
|
in which case it is the list of nodes used to specify the values of
|
3786 |
|
|
the in out/out parameters that are returned as a record upon
|
3787 |
|
|
procedure return. The TREE_PURPOSE of an element of this list is
|
3788 |
|
|
a field of the record and the TREE_VALUE is the PARM_DECL
|
3789 |
|
|
corresponding to that field. This list will be saved in the
|
3790 |
|
|
TYPE_CI_CO_LIST field of the FUNCTION_TYPE node we create. */
|
3791 |
|
|
tree gnu_return_list = NULL_TREE;
|
3792 |
|
|
/* If an import pragma asks to map this subprogram to a GCC builtin,
|
3793 |
|
|
this is the builtin DECL node. */
|
3794 |
|
|
tree gnu_builtin_decl = NULL_TREE;
|
3795 |
|
|
/* For the stub associated with an exported procedure. */
|
3796 |
|
|
tree gnu_stub_type = NULL_TREE, gnu_stub_name = NULL_TREE;
|
3797 |
|
|
tree gnu_ext_name = create_concat_name (gnat_entity, NULL);
|
3798 |
|
|
Entity_Id gnat_param;
|
3799 |
|
|
bool inline_flag = Is_Inlined (gnat_entity);
|
3800 |
|
|
bool public_flag = Is_Public (gnat_entity) || imported_p;
|
3801 |
|
|
bool extern_flag
|
3802 |
|
|
= (Is_Public (gnat_entity) && !definition) || imported_p;
|
3803 |
|
|
|
3804 |
|
|
/* The semantics of "pure" in Ada essentially matches that of "const"
|
3805 |
|
|
in the back-end. In particular, both properties are orthogonal to
|
3806 |
|
|
the "nothrow" property if the EH circuitry is explicit in the
|
3807 |
|
|
internal representation of the back-end. If we are to completely
|
3808 |
|
|
hide the EH circuitry from it, we need to declare that calls to pure
|
3809 |
|
|
Ada subprograms that can throw have side effects since they can
|
3810 |
|
|
trigger an "abnormal" transfer of control flow; thus they can be
|
3811 |
|
|
neither "const" nor "pure" in the back-end sense. */
|
3812 |
|
|
bool const_flag
|
3813 |
|
|
= (Exception_Mechanism == Back_End_Exceptions
|
3814 |
|
|
&& Is_Pure (gnat_entity));
|
3815 |
|
|
|
3816 |
|
|
bool volatile_flag = No_Return (gnat_entity);
|
3817 |
|
|
bool returns_by_ref = false;
|
3818 |
|
|
bool returns_unconstrained = false;
|
3819 |
|
|
bool returns_by_target_ptr = false;
|
3820 |
|
|
bool has_copy_in_out = false;
|
3821 |
|
|
bool has_stub = false;
|
3822 |
|
|
int parmnum;
|
3823 |
|
|
|
3824 |
|
|
/* A parameter may refer to this type, so defer completion of any
|
3825 |
|
|
incomplete types. */
|
3826 |
|
|
if (kind == E_Subprogram_Type && !definition)
|
3827 |
|
|
{
|
3828 |
|
|
defer_incomplete_level++;
|
3829 |
|
|
this_deferred = true;
|
3830 |
|
|
}
|
3831 |
|
|
|
3832 |
|
|
/* If the subprogram has an alias, it is probably inherited, so
|
3833 |
|
|
we can use the original one. If the original "subprogram"
|
3834 |
|
|
is actually an enumeration literal, it may be the first use
|
3835 |
|
|
of its type, so we must elaborate that type now. */
|
3836 |
|
|
if (Present (Alias (gnat_entity)))
|
3837 |
|
|
{
|
3838 |
|
|
if (Ekind (Alias (gnat_entity)) == E_Enumeration_Literal)
|
3839 |
|
|
gnat_to_gnu_entity (Etype (Alias (gnat_entity)), NULL_TREE, 0);
|
3840 |
|
|
|
3841 |
|
|
gnu_decl = gnat_to_gnu_entity (Alias (gnat_entity),
|
3842 |
|
|
gnu_expr, 0);
|
3843 |
|
|
|
3844 |
|
|
/* Elaborate any Itypes in the parameters of this entity. */
|
3845 |
|
|
for (gnat_temp = First_Formal_With_Extras (gnat_entity);
|
3846 |
|
|
Present (gnat_temp);
|
3847 |
|
|
gnat_temp = Next_Formal_With_Extras (gnat_temp))
|
3848 |
|
|
if (Is_Itype (Etype (gnat_temp)))
|
3849 |
|
|
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
|
3850 |
|
|
|
3851 |
|
|
break;
|
3852 |
|
|
}
|
3853 |
|
|
|
3854 |
|
|
/* If this subprogram is expectedly bound to a GCC builtin, fetch the
|
3855 |
|
|
corresponding DECL node.
|
3856 |
|
|
|
3857 |
|
|
We still want the parameter associations to take place because the
|
3858 |
|
|
proper generation of calls depends on it (a GNAT parameter without
|
3859 |
|
|
a corresponding GCC tree has a very specific meaning), so we don't
|
3860 |
|
|
just break here. */
|
3861 |
|
|
if (Convention (gnat_entity) == Convention_Intrinsic)
|
3862 |
|
|
gnu_builtin_decl = builtin_decl_for (gnu_ext_name);
|
3863 |
|
|
|
3864 |
|
|
/* ??? What if we don't find the builtin node above ? warn ? err ?
|
3865 |
|
|
In the current state we neither warn nor err, and calls will just
|
3866 |
|
|
be handled as for regular subprograms. */
|
3867 |
|
|
|
3868 |
|
|
if (kind == E_Function || kind == E_Subprogram_Type)
|
3869 |
|
|
gnu_return_type = gnat_to_gnu_type (Etype (gnat_entity));
|
3870 |
|
|
|
3871 |
|
|
/* If this function returns by reference, make the actual
|
3872 |
|
|
return type of this function the pointer and mark the decl. */
|
3873 |
|
|
if (Returns_By_Ref (gnat_entity))
|
3874 |
|
|
{
|
3875 |
|
|
returns_by_ref = true;
|
3876 |
|
|
gnu_return_type = build_pointer_type (gnu_return_type);
|
3877 |
|
|
}
|
3878 |
|
|
|
3879 |
|
|
/* If the Mechanism is By_Reference, ensure the return type uses
|
3880 |
|
|
the machine's by-reference mechanism, which may not the same
|
3881 |
|
|
as above (e.g., it might be by passing a fake parameter). */
|
3882 |
|
|
else if (kind == E_Function
|
3883 |
|
|
&& Mechanism (gnat_entity) == By_Reference)
|
3884 |
|
|
{
|
3885 |
|
|
TREE_ADDRESSABLE (gnu_return_type) = 1;
|
3886 |
|
|
|
3887 |
|
|
/* We expect this bit to be reset by gigi shortly, so can avoid a
|
3888 |
|
|
type node copy here. This actually also prevents troubles with
|
3889 |
|
|
the generation of debug information for the function, because
|
3890 |
|
|
we might have issued such info for this type already, and would
|
3891 |
|
|
be attaching a distinct type node to the function if we made a
|
3892 |
|
|
copy here. */
|
3893 |
|
|
}
|
3894 |
|
|
|
3895 |
|
|
/* If we are supposed to return an unconstrained array,
|
3896 |
|
|
actually return a fat pointer and make a note of that. Return
|
3897 |
|
|
a pointer to an unconstrained record of variable size. */
|
3898 |
|
|
else if (TREE_CODE (gnu_return_type) == UNCONSTRAINED_ARRAY_TYPE)
|
3899 |
|
|
{
|
3900 |
|
|
gnu_return_type = TREE_TYPE (gnu_return_type);
|
3901 |
|
|
returns_unconstrained = true;
|
3902 |
|
|
}
|
3903 |
|
|
|
3904 |
|
|
/* If the type requires a transient scope, the result is allocated
|
3905 |
|
|
on the secondary stack, so the result type of the function is
|
3906 |
|
|
just a pointer. */
|
3907 |
|
|
else if (Requires_Transient_Scope (Etype (gnat_entity)))
|
3908 |
|
|
{
|
3909 |
|
|
gnu_return_type = build_pointer_type (gnu_return_type);
|
3910 |
|
|
returns_unconstrained = true;
|
3911 |
|
|
}
|
3912 |
|
|
|
3913 |
|
|
/* If the type is a padded type and the underlying type would not
|
3914 |
|
|
be passed by reference or this function has a foreign convention,
|
3915 |
|
|
return the underlying type. */
|
3916 |
|
|
else if (TYPE_IS_PADDING_P (gnu_return_type)
|
3917 |
|
|
&& (!default_pass_by_ref (TREE_TYPE
|
3918 |
|
|
(TYPE_FIELDS (gnu_return_type)))
|
3919 |
|
|
|| Has_Foreign_Convention (gnat_entity)))
|
3920 |
|
|
gnu_return_type = TREE_TYPE (TYPE_FIELDS (gnu_return_type));
|
3921 |
|
|
|
3922 |
|
|
/* If the return type has a non-constant size, we convert the function
|
3923 |
|
|
into a procedure and its caller will pass a pointer to an object as
|
3924 |
|
|
the first parameter when we call the function. This can happen for
|
3925 |
|
|
an unconstrained type with a maximum size or a constrained type with
|
3926 |
|
|
a size not known at compile time. */
|
3927 |
|
|
if (TYPE_SIZE_UNIT (gnu_return_type)
|
3928 |
|
|
&& !TREE_CONSTANT (TYPE_SIZE_UNIT (gnu_return_type)))
|
3929 |
|
|
{
|
3930 |
|
|
returns_by_target_ptr = true;
|
3931 |
|
|
gnu_param_list
|
3932 |
|
|
= create_param_decl (get_identifier ("TARGET"),
|
3933 |
|
|
build_reference_type (gnu_return_type),
|
3934 |
|
|
true);
|
3935 |
|
|
gnu_return_type = void_type_node;
|
3936 |
|
|
}
|
3937 |
|
|
|
3938 |
|
|
/* If the return type has a size that overflows, we cannot have
|
3939 |
|
|
a function that returns that type. This usage doesn't make
|
3940 |
|
|
sense anyway, so give an error here. */
|
3941 |
|
|
if (TYPE_SIZE_UNIT (gnu_return_type)
|
3942 |
|
|
&& TREE_CONSTANT (TYPE_SIZE_UNIT (gnu_return_type))
|
3943 |
|
|
&& TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_return_type)))
|
3944 |
|
|
{
|
3945 |
|
|
post_error ("cannot return type whose size overflows",
|
3946 |
|
|
gnat_entity);
|
3947 |
|
|
gnu_return_type = copy_node (gnu_return_type);
|
3948 |
|
|
TYPE_SIZE (gnu_return_type) = bitsize_zero_node;
|
3949 |
|
|
TYPE_SIZE_UNIT (gnu_return_type) = size_zero_node;
|
3950 |
|
|
TYPE_MAIN_VARIANT (gnu_return_type) = gnu_return_type;
|
3951 |
|
|
TYPE_NEXT_VARIANT (gnu_return_type) = NULL_TREE;
|
3952 |
|
|
}
|
3953 |
|
|
|
3954 |
|
|
/* Look at all our parameters and get the type of
|
3955 |
|
|
each. While doing this, build a copy-out structure if
|
3956 |
|
|
we need one. */
|
3957 |
|
|
|
3958 |
|
|
/* Loop over the parameters and get their associated GCC tree.
|
3959 |
|
|
While doing this, build a copy-out structure if we need one. */
|
3960 |
|
|
for (gnat_param = First_Formal_With_Extras (gnat_entity), parmnum = 0;
|
3961 |
|
|
Present (gnat_param);
|
3962 |
|
|
gnat_param = Next_Formal_With_Extras (gnat_param), parmnum++)
|
3963 |
|
|
{
|
3964 |
|
|
tree gnu_param_name = get_entity_name (gnat_param);
|
3965 |
|
|
tree gnu_param_type = gnat_to_gnu_type (Etype (gnat_param));
|
3966 |
|
|
tree gnu_param, gnu_field;
|
3967 |
|
|
bool copy_in_copy_out = false;
|
3968 |
|
|
Mechanism_Type mech = Mechanism (gnat_param);
|
3969 |
|
|
|
3970 |
|
|
/* Builtins are expanded inline and there is no real call sequence
|
3971 |
|
|
involved. So the type expected by the underlying expander is
|
3972 |
|
|
always the type of each argument "as is". */
|
3973 |
|
|
if (gnu_builtin_decl)
|
3974 |
|
|
mech = By_Copy;
|
3975 |
|
|
/* Handle the first parameter of a valued procedure specially. */
|
3976 |
|
|
else if (Is_Valued_Procedure (gnat_entity) && parmnum == 0)
|
3977 |
|
|
mech = By_Copy_Return;
|
3978 |
|
|
/* Otherwise, see if a Mechanism was supplied that forced this
|
3979 |
|
|
parameter to be passed one way or another. */
|
3980 |
|
|
else if (mech == Default
|
3981 |
|
|
|| mech == By_Copy || mech == By_Reference)
|
3982 |
|
|
;
|
3983 |
|
|
else if (By_Descriptor_Last <= mech && mech <= By_Descriptor)
|
3984 |
|
|
mech = By_Descriptor;
|
3985 |
|
|
|
3986 |
|
|
else if (By_Short_Descriptor_Last <= mech &&
|
3987 |
|
|
mech <= By_Short_Descriptor)
|
3988 |
|
|
mech = By_Short_Descriptor;
|
3989 |
|
|
|
3990 |
|
|
else if (mech > 0)
|
3991 |
|
|
{
|
3992 |
|
|
if (TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE
|
3993 |
|
|
|| TREE_CODE (TYPE_SIZE (gnu_param_type)) != INTEGER_CST
|
3994 |
|
|
|| 0 < compare_tree_int (TYPE_SIZE (gnu_param_type),
|
3995 |
|
|
mech))
|
3996 |
|
|
mech = By_Reference;
|
3997 |
|
|
else
|
3998 |
|
|
mech = By_Copy;
|
3999 |
|
|
}
|
4000 |
|
|
else
|
4001 |
|
|
{
|
4002 |
|
|
post_error ("unsupported mechanism for&", gnat_param);
|
4003 |
|
|
mech = Default;
|
4004 |
|
|
}
|
4005 |
|
|
|
4006 |
|
|
gnu_param
|
4007 |
|
|
= gnat_to_gnu_param (gnat_param, mech, gnat_entity,
|
4008 |
|
|
Has_Foreign_Convention (gnat_entity),
|
4009 |
|
|
©_in_copy_out);
|
4010 |
|
|
|
4011 |
|
|
/* We are returned either a PARM_DECL or a type if no parameter
|
4012 |
|
|
needs to be passed; in either case, adjust the type. */
|
4013 |
|
|
if (DECL_P (gnu_param))
|
4014 |
|
|
gnu_param_type = TREE_TYPE (gnu_param);
|
4015 |
|
|
else
|
4016 |
|
|
{
|
4017 |
|
|
gnu_param_type = gnu_param;
|
4018 |
|
|
gnu_param = NULL_TREE;
|
4019 |
|
|
}
|
4020 |
|
|
|
4021 |
|
|
if (gnu_param)
|
4022 |
|
|
{
|
4023 |
|
|
/* If it's an exported subprogram, we build a parameter list
|
4024 |
|
|
in parallel, in case we need to emit a stub for it. */
|
4025 |
|
|
if (Is_Exported (gnat_entity))
|
4026 |
|
|
{
|
4027 |
|
|
gnu_stub_param_list
|
4028 |
|
|
= chainon (gnu_param, gnu_stub_param_list);
|
4029 |
|
|
/* Change By_Descriptor parameter to By_Reference for
|
4030 |
|
|
the internal version of an exported subprogram. */
|
4031 |
|
|
if (mech == By_Descriptor || mech == By_Short_Descriptor)
|
4032 |
|
|
{
|
4033 |
|
|
gnu_param
|
4034 |
|
|
= gnat_to_gnu_param (gnat_param, By_Reference,
|
4035 |
|
|
gnat_entity, false,
|
4036 |
|
|
©_in_copy_out);
|
4037 |
|
|
has_stub = true;
|
4038 |
|
|
}
|
4039 |
|
|
else
|
4040 |
|
|
gnu_param = copy_node (gnu_param);
|
4041 |
|
|
}
|
4042 |
|
|
|
4043 |
|
|
gnu_param_list = chainon (gnu_param, gnu_param_list);
|
4044 |
|
|
Sloc_to_locus (Sloc (gnat_param),
|
4045 |
|
|
&DECL_SOURCE_LOCATION (gnu_param));
|
4046 |
|
|
save_gnu_tree (gnat_param, gnu_param, false);
|
4047 |
|
|
|
4048 |
|
|
/* If a parameter is a pointer, this function may modify
|
4049 |
|
|
memory through it and thus shouldn't be considered
|
4050 |
|
|
a const function. Also, the memory may be modified
|
4051 |
|
|
between two calls, so they can't be CSE'ed. The latter
|
4052 |
|
|
case also handles by-ref parameters. */
|
4053 |
|
|
if (POINTER_TYPE_P (gnu_param_type)
|
4054 |
|
|
|| TYPE_IS_FAT_POINTER_P (gnu_param_type))
|
4055 |
|
|
const_flag = false;
|
4056 |
|
|
}
|
4057 |
|
|
|
4058 |
|
|
if (copy_in_copy_out)
|
4059 |
|
|
{
|
4060 |
|
|
if (!has_copy_in_out)
|
4061 |
|
|
{
|
4062 |
|
|
gcc_assert (TREE_CODE (gnu_return_type) == VOID_TYPE);
|
4063 |
|
|
gnu_return_type = make_node (RECORD_TYPE);
|
4064 |
|
|
TYPE_NAME (gnu_return_type) = get_identifier ("RETURN");
|
4065 |
|
|
has_copy_in_out = true;
|
4066 |
|
|
}
|
4067 |
|
|
|
4068 |
|
|
gnu_field = create_field_decl (gnu_param_name, gnu_param_type,
|
4069 |
|
|
gnu_return_type, 0, 0, 0, 0);
|
4070 |
|
|
Sloc_to_locus (Sloc (gnat_param),
|
4071 |
|
|
&DECL_SOURCE_LOCATION (gnu_field));
|
4072 |
|
|
TREE_CHAIN (gnu_field) = gnu_field_list;
|
4073 |
|
|
gnu_field_list = gnu_field;
|
4074 |
|
|
gnu_return_list = tree_cons (gnu_field, gnu_param,
|
4075 |
|
|
gnu_return_list);
|
4076 |
|
|
}
|
4077 |
|
|
}
|
4078 |
|
|
|
4079 |
|
|
/* Do not compute record for out parameters if subprogram is
|
4080 |
|
|
stubbed since structures are incomplete for the back-end. */
|
4081 |
|
|
if (gnu_field_list && Convention (gnat_entity) != Convention_Stubbed)
|
4082 |
|
|
finish_record_type (gnu_return_type, nreverse (gnu_field_list),
|
4083 |
|
|
0, debug_info_p);
|
4084 |
|
|
|
4085 |
|
|
/* If we have a CICO list but it has only one entry, we convert
|
4086 |
|
|
this function into a function that simply returns that one
|
4087 |
|
|
object. */
|
4088 |
|
|
if (list_length (gnu_return_list) == 1)
|
4089 |
|
|
gnu_return_type = TREE_TYPE (TREE_PURPOSE (gnu_return_list));
|
4090 |
|
|
|
4091 |
|
|
if (Has_Stdcall_Convention (gnat_entity))
|
4092 |
|
|
prepend_one_attribute_to
|
4093 |
|
|
(&attr_list, ATTR_MACHINE_ATTRIBUTE,
|
4094 |
|
|
get_identifier ("stdcall"), NULL_TREE,
|
4095 |
|
|
gnat_entity);
|
4096 |
|
|
|
4097 |
|
|
/* If we are on a target where stack realignment is needed for 'main'
|
4098 |
|
|
to honor GCC's implicit expectations (stack alignment greater than
|
4099 |
|
|
what the base ABI guarantees), ensure we do the same for foreign
|
4100 |
|
|
convention subprograms as they might be used as callbacks from code
|
4101 |
|
|
breaking such expectations. Note that this applies to task entry
|
4102 |
|
|
points in particular. */
|
4103 |
|
|
if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
|
4104 |
|
|
&& Has_Foreign_Convention (gnat_entity))
|
4105 |
|
|
prepend_one_attribute_to
|
4106 |
|
|
(&attr_list, ATTR_MACHINE_ATTRIBUTE,
|
4107 |
|
|
get_identifier ("force_align_arg_pointer"), NULL_TREE,
|
4108 |
|
|
gnat_entity);
|
4109 |
|
|
|
4110 |
|
|
/* The lists have been built in reverse. */
|
4111 |
|
|
gnu_param_list = nreverse (gnu_param_list);
|
4112 |
|
|
if (has_stub)
|
4113 |
|
|
gnu_stub_param_list = nreverse (gnu_stub_param_list);
|
4114 |
|
|
gnu_return_list = nreverse (gnu_return_list);
|
4115 |
|
|
|
4116 |
|
|
if (Ekind (gnat_entity) == E_Function)
|
4117 |
|
|
Set_Mechanism (gnat_entity,
|
4118 |
|
|
(returns_by_ref || returns_unconstrained
|
4119 |
|
|
? By_Reference : By_Copy));
|
4120 |
|
|
gnu_type
|
4121 |
|
|
= create_subprog_type (gnu_return_type, gnu_param_list,
|
4122 |
|
|
gnu_return_list, returns_unconstrained,
|
4123 |
|
|
returns_by_ref, returns_by_target_ptr);
|
4124 |
|
|
|
4125 |
|
|
if (has_stub)
|
4126 |
|
|
gnu_stub_type
|
4127 |
|
|
= create_subprog_type (gnu_return_type, gnu_stub_param_list,
|
4128 |
|
|
gnu_return_list, returns_unconstrained,
|
4129 |
|
|
returns_by_ref, returns_by_target_ptr);
|
4130 |
|
|
|
4131 |
|
|
/* A subprogram (something that doesn't return anything) shouldn't
|
4132 |
|
|
be considered const since there would be no reason for such a
|
4133 |
|
|
subprogram. Note that procedures with Out (or In Out) parameters
|
4134 |
|
|
have already been converted into a function with a return type. */
|
4135 |
|
|
if (TREE_CODE (gnu_return_type) == VOID_TYPE)
|
4136 |
|
|
const_flag = false;
|
4137 |
|
|
|
4138 |
|
|
gnu_type
|
4139 |
|
|
= build_qualified_type (gnu_type,
|
4140 |
|
|
TYPE_QUALS (gnu_type)
|
4141 |
|
|
| (TYPE_QUAL_CONST * const_flag)
|
4142 |
|
|
| (TYPE_QUAL_VOLATILE * volatile_flag));
|
4143 |
|
|
|
4144 |
|
|
Sloc_to_locus (Sloc (gnat_entity), &input_location);
|
4145 |
|
|
|
4146 |
|
|
if (has_stub)
|
4147 |
|
|
gnu_stub_type
|
4148 |
|
|
= build_qualified_type (gnu_stub_type,
|
4149 |
|
|
TYPE_QUALS (gnu_stub_type)
|
4150 |
|
|
| (TYPE_QUAL_CONST * const_flag)
|
4151 |
|
|
| (TYPE_QUAL_VOLATILE * volatile_flag));
|
4152 |
|
|
|
4153 |
|
|
/* If we have a builtin decl for that function, check the signatures
|
4154 |
|
|
compatibilities. If the signatures are compatible, use the builtin
|
4155 |
|
|
decl. If they are not, we expect the checker predicate to have
|
4156 |
|
|
posted the appropriate errors, and just continue with what we have
|
4157 |
|
|
so far. */
|
4158 |
|
|
if (gnu_builtin_decl)
|
4159 |
|
|
{
|
4160 |
|
|
tree gnu_builtin_type = TREE_TYPE (gnu_builtin_decl);
|
4161 |
|
|
|
4162 |
|
|
if (compatible_signatures_p (gnu_type, gnu_builtin_type))
|
4163 |
|
|
{
|
4164 |
|
|
gnu_decl = gnu_builtin_decl;
|
4165 |
|
|
gnu_type = gnu_builtin_type;
|
4166 |
|
|
break;
|
4167 |
|
|
}
|
4168 |
|
|
}
|
4169 |
|
|
|
4170 |
|
|
/* If there was no specified Interface_Name and the external and
|
4171 |
|
|
internal names of the subprogram are the same, only use the
|
4172 |
|
|
internal name to allow disambiguation of nested subprograms. */
|
4173 |
|
|
if (No (Interface_Name (gnat_entity))
|
4174 |
|
|
&& gnu_ext_name == gnu_entity_name)
|
4175 |
|
|
gnu_ext_name = NULL_TREE;
|
4176 |
|
|
|
4177 |
|
|
/* If we are defining the subprogram and it has an Address clause
|
4178 |
|
|
we must get the address expression from the saved GCC tree for the
|
4179 |
|
|
subprogram if it has a Freeze_Node. Otherwise, we elaborate
|
4180 |
|
|
the address expression here since the front-end has guaranteed
|
4181 |
|
|
in that case that the elaboration has no effects. If there is
|
4182 |
|
|
an Address clause and we are not defining the object, just
|
4183 |
|
|
make it a constant. */
|
4184 |
|
|
if (Present (Address_Clause (gnat_entity)))
|
4185 |
|
|
{
|
4186 |
|
|
tree gnu_address = NULL_TREE;
|
4187 |
|
|
|
4188 |
|
|
if (definition)
|
4189 |
|
|
gnu_address
|
4190 |
|
|
= (present_gnu_tree (gnat_entity)
|
4191 |
|
|
? get_gnu_tree (gnat_entity)
|
4192 |
|
|
: gnat_to_gnu (Expression (Address_Clause (gnat_entity))));
|
4193 |
|
|
|
4194 |
|
|
save_gnu_tree (gnat_entity, NULL_TREE, false);
|
4195 |
|
|
|
4196 |
|
|
/* Convert the type of the object to a reference type that can
|
4197 |
|
|
alias everything as per 13.3(19). */
|
4198 |
|
|
gnu_type
|
4199 |
|
|
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
|
4200 |
|
|
if (gnu_address)
|
4201 |
|
|
gnu_address = convert (gnu_type, gnu_address);
|
4202 |
|
|
|
4203 |
|
|
gnu_decl
|
4204 |
|
|
= create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
|
4205 |
|
|
gnu_address, false, Is_Public (gnat_entity),
|
4206 |
|
|
extern_flag, false, NULL, gnat_entity);
|
4207 |
|
|
DECL_BY_REF_P (gnu_decl) = 1;
|
4208 |
|
|
}
|
4209 |
|
|
|
4210 |
|
|
else if (kind == E_Subprogram_Type)
|
4211 |
|
|
gnu_decl = create_type_decl (gnu_entity_name, gnu_type, attr_list,
|
4212 |
|
|
!Comes_From_Source (gnat_entity),
|
4213 |
|
|
debug_info_p, gnat_entity);
|
4214 |
|
|
else
|
4215 |
|
|
{
|
4216 |
|
|
if (has_stub)
|
4217 |
|
|
{
|
4218 |
|
|
gnu_stub_name = gnu_ext_name;
|
4219 |
|
|
gnu_ext_name = create_concat_name (gnat_entity, "internal");
|
4220 |
|
|
public_flag = false;
|
4221 |
|
|
}
|
4222 |
|
|
|
4223 |
|
|
gnu_decl = create_subprog_decl (gnu_entity_name, gnu_ext_name,
|
4224 |
|
|
gnu_type, gnu_param_list,
|
4225 |
|
|
inline_flag, public_flag,
|
4226 |
|
|
extern_flag, attr_list,
|
4227 |
|
|
gnat_entity);
|
4228 |
|
|
if (has_stub)
|
4229 |
|
|
{
|
4230 |
|
|
tree gnu_stub_decl
|
4231 |
|
|
= create_subprog_decl (gnu_entity_name, gnu_stub_name,
|
4232 |
|
|
gnu_stub_type, gnu_stub_param_list,
|
4233 |
|
|
inline_flag, true,
|
4234 |
|
|
extern_flag, attr_list,
|
4235 |
|
|
gnat_entity);
|
4236 |
|
|
SET_DECL_FUNCTION_STUB (gnu_decl, gnu_stub_decl);
|
4237 |
|
|
}
|
4238 |
|
|
|
4239 |
|
|
/* This is unrelated to the stub built right above. */
|
4240 |
|
|
DECL_STUBBED_P (gnu_decl)
|
4241 |
|
|
= Convention (gnat_entity) == Convention_Stubbed;
|
4242 |
|
|
}
|
4243 |
|
|
}
|
4244 |
|
|
break;
|
4245 |
|
|
|
4246 |
|
|
case E_Incomplete_Type:
|
4247 |
|
|
case E_Incomplete_Subtype:
|
4248 |
|
|
case E_Private_Type:
|
4249 |
|
|
case E_Private_Subtype:
|
4250 |
|
|
case E_Limited_Private_Type:
|
4251 |
|
|
case E_Limited_Private_Subtype:
|
4252 |
|
|
case E_Record_Type_With_Private:
|
4253 |
|
|
case E_Record_Subtype_With_Private:
|
4254 |
|
|
{
|
4255 |
|
|
/* Get the "full view" of this entity. If this is an incomplete
|
4256 |
|
|
entity from a limited with, treat its non-limited view as the
|
4257 |
|
|
full view. Otherwise, use either the full view or the underlying
|
4258 |
|
|
full view, whichever is present. This is used in all the tests
|
4259 |
|
|
below. */
|
4260 |
|
|
Entity_Id full_view
|
4261 |
|
|
= (IN (Ekind (gnat_entity), Incomplete_Kind)
|
4262 |
|
|
&& From_With_Type (gnat_entity))
|
4263 |
|
|
? Non_Limited_View (gnat_entity)
|
4264 |
|
|
: Present (Full_View (gnat_entity))
|
4265 |
|
|
? Full_View (gnat_entity)
|
4266 |
|
|
: Underlying_Full_View (gnat_entity);
|
4267 |
|
|
|
4268 |
|
|
/* If this is an incomplete type with no full view, it must be a Taft
|
4269 |
|
|
Amendment type, in which case we return a dummy type. Otherwise,
|
4270 |
|
|
just get the type from its Etype. */
|
4271 |
|
|
if (No (full_view))
|
4272 |
|
|
{
|
4273 |
|
|
if (kind == E_Incomplete_Type)
|
4274 |
|
|
{
|
4275 |
|
|
gnu_type = make_dummy_type (gnat_entity);
|
4276 |
|
|
gnu_decl = TYPE_STUB_DECL (gnu_type);
|
4277 |
|
|
}
|
4278 |
|
|
else
|
4279 |
|
|
{
|
4280 |
|
|
gnu_decl = gnat_to_gnu_entity (Etype (gnat_entity),
|
4281 |
|
|
NULL_TREE, 0);
|
4282 |
|
|
maybe_present = true;
|
4283 |
|
|
}
|
4284 |
|
|
break;
|
4285 |
|
|
}
|
4286 |
|
|
|
4287 |
|
|
/* If we already made a type for the full view, reuse it. */
|
4288 |
|
|
else if (present_gnu_tree (full_view))
|
4289 |
|
|
{
|
4290 |
|
|
gnu_decl = get_gnu_tree (full_view);
|
4291 |
|
|
break;
|
4292 |
|
|
}
|
4293 |
|
|
|
4294 |
|
|
/* Otherwise, if we are not defining the type now, get the type
|
4295 |
|
|
from the full view. But always get the type from the full view
|
4296 |
|
|
for define on use types, since otherwise we won't see them! */
|
4297 |
|
|
else if (!definition
|
4298 |
|
|
|| (Is_Itype (full_view)
|
4299 |
|
|
&& No (Freeze_Node (gnat_entity)))
|
4300 |
|
|
|| (Is_Itype (gnat_entity)
|
4301 |
|
|
&& No (Freeze_Node (full_view))))
|
4302 |
|
|
{
|
4303 |
|
|
gnu_decl = gnat_to_gnu_entity (full_view, NULL_TREE, 0);
|
4304 |
|
|
maybe_present = true;
|
4305 |
|
|
break;
|
4306 |
|
|
}
|
4307 |
|
|
|
4308 |
|
|
/* For incomplete types, make a dummy type entry which will be
|
4309 |
|
|
replaced later. Save it as the full declaration's type so
|
4310 |
|
|
we can do any needed updates when we see it. */
|
4311 |
|
|
gnu_type = make_dummy_type (gnat_entity);
|
4312 |
|
|
gnu_decl = TYPE_STUB_DECL (gnu_type);
|
4313 |
|
|
save_gnu_tree (full_view, gnu_decl, 0);
|
4314 |
|
|
break;
|
4315 |
|
|
}
|
4316 |
|
|
|
4317 |
|
|
/* Simple class_wide types are always viewed as their root_type
|
4318 |
|
|
by Gigi unless an Equivalent_Type is specified. */
|
4319 |
|
|
case E_Class_Wide_Type:
|
4320 |
|
|
gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
|
4321 |
|
|
maybe_present = true;
|
4322 |
|
|
break;
|
4323 |
|
|
|
4324 |
|
|
case E_Task_Type:
|
4325 |
|
|
case E_Task_Subtype:
|
4326 |
|
|
case E_Protected_Type:
|
4327 |
|
|
case E_Protected_Subtype:
|
4328 |
|
|
if (type_annotate_only && No (gnat_equiv_type))
|
4329 |
|
|
gnu_type = void_type_node;
|
4330 |
|
|
else
|
4331 |
|
|
gnu_type = gnat_to_gnu_type (gnat_equiv_type);
|
4332 |
|
|
|
4333 |
|
|
maybe_present = true;
|
4334 |
|
|
break;
|
4335 |
|
|
|
4336 |
|
|
case E_Label:
|
4337 |
|
|
gnu_decl = create_label_decl (gnu_entity_name);
|
4338 |
|
|
break;
|
4339 |
|
|
|
4340 |
|
|
case E_Block:
|
4341 |
|
|
case E_Loop:
|
4342 |
|
|
/* Nothing at all to do here, so just return an ERROR_MARK and claim
|
4343 |
|
|
we've already saved it, so we don't try to. */
|
4344 |
|
|
gnu_decl = error_mark_node;
|
4345 |
|
|
saved = true;
|
4346 |
|
|
break;
|
4347 |
|
|
|
4348 |
|
|
default:
|
4349 |
|
|
gcc_unreachable ();
|
4350 |
|
|
}
|
4351 |
|
|
|
4352 |
|
|
/* If we had a case where we evaluated another type and it might have
|
4353 |
|
|
defined this one, handle it here. */
|
4354 |
|
|
if (maybe_present && present_gnu_tree (gnat_entity))
|
4355 |
|
|
{
|
4356 |
|
|
gnu_decl = get_gnu_tree (gnat_entity);
|
4357 |
|
|
saved = true;
|
4358 |
|
|
}
|
4359 |
|
|
|
4360 |
|
|
/* If we are processing a type and there is either no decl for it or
|
4361 |
|
|
we just made one, do some common processing for the type, such as
|
4362 |
|
|
handling alignment and possible padding. */
|
4363 |
|
|
if (is_type && (!gnu_decl || this_made_decl))
|
4364 |
|
|
{
|
4365 |
|
|
if (Is_Tagged_Type (gnat_entity)
|
4366 |
|
|
|| Is_Class_Wide_Equivalent_Type (gnat_entity))
|
4367 |
|
|
TYPE_ALIGN_OK (gnu_type) = 1;
|
4368 |
|
|
|
4369 |
|
|
if (AGGREGATE_TYPE_P (gnu_type) && Is_By_Reference_Type (gnat_entity))
|
4370 |
|
|
TYPE_BY_REFERENCE_P (gnu_type) = 1;
|
4371 |
|
|
|
4372 |
|
|
/* ??? Don't set the size for a String_Literal since it is either
|
4373 |
|
|
confirming or we don't handle it properly (if the low bound is
|
4374 |
|
|
non-constant). */
|
4375 |
|
|
if (!gnu_size && kind != E_String_Literal_Subtype)
|
4376 |
|
|
gnu_size = validate_size (Esize (gnat_entity), gnu_type, gnat_entity,
|
4377 |
|
|
TYPE_DECL, false,
|
4378 |
|
|
Has_Size_Clause (gnat_entity));
|
4379 |
|
|
|
4380 |
|
|
/* If a size was specified, see if we can make a new type of that size
|
4381 |
|
|
by rearranging the type, for example from a fat to a thin pointer. */
|
4382 |
|
|
if (gnu_size)
|
4383 |
|
|
{
|
4384 |
|
|
gnu_type
|
4385 |
|
|
= make_type_from_size (gnu_type, gnu_size,
|
4386 |
|
|
Has_Biased_Representation (gnat_entity));
|
4387 |
|
|
|
4388 |
|
|
if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0)
|
4389 |
|
|
&& operand_equal_p (rm_size (gnu_type), gnu_size, 0))
|
4390 |
|
|
gnu_size = 0;
|
4391 |
|
|
}
|
4392 |
|
|
|
4393 |
|
|
/* If the alignment hasn't already been processed and this is
|
4394 |
|
|
not an unconstrained array, see if an alignment is specified.
|
4395 |
|
|
If not, we pick a default alignment for atomic objects. */
|
4396 |
|
|
if (align != 0 || TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
|
4397 |
|
|
;
|
4398 |
|
|
else if (Known_Alignment (gnat_entity))
|
4399 |
|
|
{
|
4400 |
|
|
align = validate_alignment (Alignment (gnat_entity), gnat_entity,
|
4401 |
|
|
TYPE_ALIGN (gnu_type));
|
4402 |
|
|
|
4403 |
|
|
/* Warn on suspiciously large alignments. This should catch
|
4404 |
|
|
errors about the (alignment,byte)/(size,bit) discrepancy. */
|
4405 |
|
|
if (align > BIGGEST_ALIGNMENT && Has_Alignment_Clause (gnat_entity))
|
4406 |
|
|
{
|
4407 |
|
|
tree size;
|
4408 |
|
|
|
4409 |
|
|
/* If a size was specified, take it into account. Otherwise
|
4410 |
|
|
use the RM size for records as the type size has already
|
4411 |
|
|
been adjusted to the alignment. */
|
4412 |
|
|
if (gnu_size)
|
4413 |
|
|
size = gnu_size;
|
4414 |
|
|
else if ((TREE_CODE (gnu_type) == RECORD_TYPE
|
4415 |
|
|
|| TREE_CODE (gnu_type) == UNION_TYPE
|
4416 |
|
|
|| TREE_CODE (gnu_type) == QUAL_UNION_TYPE)
|
4417 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_type))
|
4418 |
|
|
size = rm_size (gnu_type);
|
4419 |
|
|
else
|
4420 |
|
|
size = TYPE_SIZE (gnu_type);
|
4421 |
|
|
|
4422 |
|
|
/* Consider an alignment as suspicious if the alignment/size
|
4423 |
|
|
ratio is greater or equal to the byte/bit ratio. */
|
4424 |
|
|
if (host_integerp (size, 1)
|
4425 |
|
|
&& align >= TREE_INT_CST_LOW (size) * BITS_PER_UNIT)
|
4426 |
|
|
post_error_ne ("?suspiciously large alignment specified for&",
|
4427 |
|
|
Expression (Alignment_Clause (gnat_entity)),
|
4428 |
|
|
gnat_entity);
|
4429 |
|
|
}
|
4430 |
|
|
}
|
4431 |
|
|
else if (Is_Atomic (gnat_entity) && !gnu_size
|
4432 |
|
|
&& host_integerp (TYPE_SIZE (gnu_type), 1)
|
4433 |
|
|
&& integer_pow2p (TYPE_SIZE (gnu_type)))
|
4434 |
|
|
align = MIN (BIGGEST_ALIGNMENT,
|
4435 |
|
|
tree_low_cst (TYPE_SIZE (gnu_type), 1));
|
4436 |
|
|
else if (Is_Atomic (gnat_entity) && gnu_size
|
4437 |
|
|
&& host_integerp (gnu_size, 1)
|
4438 |
|
|
&& integer_pow2p (gnu_size))
|
4439 |
|
|
align = MIN (BIGGEST_ALIGNMENT, tree_low_cst (gnu_size, 1));
|
4440 |
|
|
|
4441 |
|
|
/* See if we need to pad the type. If we did, and made a record,
|
4442 |
|
|
the name of the new type may be changed. So get it back for
|
4443 |
|
|
us when we make the new TYPE_DECL below. */
|
4444 |
|
|
if (gnu_size || align > 0)
|
4445 |
|
|
gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
|
4446 |
|
|
false, !gnu_decl, definition, false);
|
4447 |
|
|
|
4448 |
|
|
if (TYPE_IS_PADDING_P (gnu_type))
|
4449 |
|
|
{
|
4450 |
|
|
gnu_entity_name = TYPE_NAME (gnu_type);
|
4451 |
|
|
if (TREE_CODE (gnu_entity_name) == TYPE_DECL)
|
4452 |
|
|
gnu_entity_name = DECL_NAME (gnu_entity_name);
|
4453 |
|
|
}
|
4454 |
|
|
|
4455 |
|
|
set_rm_size (RM_Size (gnat_entity), gnu_type, gnat_entity);
|
4456 |
|
|
|
4457 |
|
|
/* If we are at global level, GCC will have applied variable_size to
|
4458 |
|
|
the type, but that won't have done anything. So, if it's not
|
4459 |
|
|
a constant or self-referential, call elaborate_expression_1 to
|
4460 |
|
|
make a variable for the size rather than calculating it each time.
|
4461 |
|
|
Handle both the RM size and the actual size. */
|
4462 |
|
|
if (global_bindings_p ()
|
4463 |
|
|
&& TYPE_SIZE (gnu_type)
|
4464 |
|
|
&& !TREE_CONSTANT (TYPE_SIZE (gnu_type))
|
4465 |
|
|
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
|
4466 |
|
|
{
|
4467 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE
|
4468 |
|
|
&& operand_equal_p (TYPE_ADA_SIZE (gnu_type),
|
4469 |
|
|
TYPE_SIZE (gnu_type), 0))
|
4470 |
|
|
{
|
4471 |
|
|
TYPE_SIZE (gnu_type)
|
4472 |
|
|
= elaborate_expression_1 (TYPE_SIZE (gnu_type),
|
4473 |
|
|
gnat_entity, get_identifier ("SIZE"),
|
4474 |
|
|
definition, false);
|
4475 |
|
|
SET_TYPE_ADA_SIZE (gnu_type, TYPE_SIZE (gnu_type));
|
4476 |
|
|
}
|
4477 |
|
|
else
|
4478 |
|
|
{
|
4479 |
|
|
TYPE_SIZE (gnu_type)
|
4480 |
|
|
= elaborate_expression_1 (TYPE_SIZE (gnu_type),
|
4481 |
|
|
gnat_entity, get_identifier ("SIZE"),
|
4482 |
|
|
definition, false);
|
4483 |
|
|
|
4484 |
|
|
/* ??? For now, store the size as a multiple of the alignment
|
4485 |
|
|
in bytes so that we can see the alignment from the tree. */
|
4486 |
|
|
TYPE_SIZE_UNIT (gnu_type)
|
4487 |
|
|
= build_binary_op
|
4488 |
|
|
(MULT_EXPR, sizetype,
|
4489 |
|
|
elaborate_expression_1
|
4490 |
|
|
(build_binary_op (EXACT_DIV_EXPR, sizetype,
|
4491 |
|
|
TYPE_SIZE_UNIT (gnu_type),
|
4492 |
|
|
size_int (TYPE_ALIGN (gnu_type)
|
4493 |
|
|
/ BITS_PER_UNIT)),
|
4494 |
|
|
gnat_entity, get_identifier ("SIZE_A_UNIT"),
|
4495 |
|
|
definition, false),
|
4496 |
|
|
size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
|
4497 |
|
|
|
4498 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE)
|
4499 |
|
|
SET_TYPE_ADA_SIZE
|
4500 |
|
|
(gnu_type,
|
4501 |
|
|
elaborate_expression_1 (TYPE_ADA_SIZE (gnu_type),
|
4502 |
|
|
gnat_entity,
|
4503 |
|
|
get_identifier ("RM_SIZE"),
|
4504 |
|
|
definition, false));
|
4505 |
|
|
}
|
4506 |
|
|
}
|
4507 |
|
|
|
4508 |
|
|
/* If this is a record type or subtype, call elaborate_expression_1 on
|
4509 |
|
|
any field position. Do this for both global and local types.
|
4510 |
|
|
Skip any fields that we haven't made trees for to avoid problems with
|
4511 |
|
|
class wide types. */
|
4512 |
|
|
if (IN (kind, Record_Kind))
|
4513 |
|
|
for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
|
4514 |
|
|
gnat_temp = Next_Entity (gnat_temp))
|
4515 |
|
|
if (Ekind (gnat_temp) == E_Component && present_gnu_tree (gnat_temp))
|
4516 |
|
|
{
|
4517 |
|
|
tree gnu_field = get_gnu_tree (gnat_temp);
|
4518 |
|
|
|
4519 |
|
|
/* ??? Unfortunately, GCC needs to be able to prove the
|
4520 |
|
|
alignment of this offset and if it's a variable, it can't.
|
4521 |
|
|
In GCC 3.4, we'll use DECL_OFFSET_ALIGN in some way, but
|
4522 |
|
|
right now, we have to put in an explicit multiply and
|
4523 |
|
|
divide by that value. */
|
4524 |
|
|
if (!CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (gnu_field)))
|
4525 |
|
|
{
|
4526 |
|
|
DECL_FIELD_OFFSET (gnu_field)
|
4527 |
|
|
= build_binary_op
|
4528 |
|
|
(MULT_EXPR, sizetype,
|
4529 |
|
|
elaborate_expression_1
|
4530 |
|
|
(build_binary_op (EXACT_DIV_EXPR, sizetype,
|
4531 |
|
|
DECL_FIELD_OFFSET (gnu_field),
|
4532 |
|
|
size_int (DECL_OFFSET_ALIGN (gnu_field)
|
4533 |
|
|
/ BITS_PER_UNIT)),
|
4534 |
|
|
gnat_temp, get_identifier ("OFFSET"),
|
4535 |
|
|
definition, false),
|
4536 |
|
|
size_int (DECL_OFFSET_ALIGN (gnu_field) / BITS_PER_UNIT));
|
4537 |
|
|
|
4538 |
|
|
/* ??? The context of gnu_field is not necessarily gnu_type so
|
4539 |
|
|
the MULT_EXPR node built above may not be marked by the call
|
4540 |
|
|
to create_type_decl below. */
|
4541 |
|
|
if (global_bindings_p ())
|
4542 |
|
|
MARK_VISITED (DECL_FIELD_OFFSET (gnu_field));
|
4543 |
|
|
}
|
4544 |
|
|
}
|
4545 |
|
|
|
4546 |
|
|
if (Treat_As_Volatile (gnat_entity))
|
4547 |
|
|
gnu_type
|
4548 |
|
|
= build_qualified_type (gnu_type,
|
4549 |
|
|
TYPE_QUALS (gnu_type) | TYPE_QUAL_VOLATILE);
|
4550 |
|
|
|
4551 |
|
|
if (Is_Atomic (gnat_entity))
|
4552 |
|
|
check_ok_for_atomic (gnu_type, gnat_entity, false);
|
4553 |
|
|
|
4554 |
|
|
if (Present (Alignment_Clause (gnat_entity)))
|
4555 |
|
|
TYPE_USER_ALIGN (gnu_type) = 1;
|
4556 |
|
|
|
4557 |
|
|
if (Universal_Aliasing (gnat_entity))
|
4558 |
|
|
TYPE_UNIVERSAL_ALIASING_P (TYPE_MAIN_VARIANT (gnu_type)) = 1;
|
4559 |
|
|
|
4560 |
|
|
if (!gnu_decl)
|
4561 |
|
|
gnu_decl = create_type_decl (gnu_entity_name, gnu_type, attr_list,
|
4562 |
|
|
!Comes_From_Source (gnat_entity),
|
4563 |
|
|
debug_info_p, gnat_entity);
|
4564 |
|
|
else
|
4565 |
|
|
{
|
4566 |
|
|
TREE_TYPE (gnu_decl) = gnu_type;
|
4567 |
|
|
TYPE_STUB_DECL (gnu_type) = gnu_decl;
|
4568 |
|
|
}
|
4569 |
|
|
}
|
4570 |
|
|
|
4571 |
|
|
if (is_type && !TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl)))
|
4572 |
|
|
{
|
4573 |
|
|
gnu_type = TREE_TYPE (gnu_decl);
|
4574 |
|
|
|
4575 |
|
|
/* If this is a derived type, relate its alias set to that of its parent
|
4576 |
|
|
to avoid troubles when a call to an inherited primitive is inlined in
|
4577 |
|
|
a context where a derived object is accessed. The inlined code works
|
4578 |
|
|
on the parent view so the resulting code may access the same object
|
4579 |
|
|
using both the parent and the derived alias sets, which thus have to
|
4580 |
|
|
conflict. As the same issue arises with component references, the
|
4581 |
|
|
parent alias set also has to conflict with composite types enclosing
|
4582 |
|
|
derived components. For instance, if we have:
|
4583 |
|
|
|
4584 |
|
|
type D is new T;
|
4585 |
|
|
type R is record
|
4586 |
|
|
Component : D;
|
4587 |
|
|
end record;
|
4588 |
|
|
|
4589 |
|
|
we want T to conflict with both D and R, in addition to R being a
|
4590 |
|
|
superset of D by record/component construction.
|
4591 |
|
|
|
4592 |
|
|
One way to achieve this is to perform an alias set copy from the
|
4593 |
|
|
parent to the derived type. This is not quite appropriate, though,
|
4594 |
|
|
as we don't want separate derived types to conflict with each other:
|
4595 |
|
|
|
4596 |
|
|
type I1 is new Integer;
|
4597 |
|
|
type I2 is new Integer;
|
4598 |
|
|
|
4599 |
|
|
We want I1 and I2 to both conflict with Integer but we do not want
|
4600 |
|
|
I1 to conflict with I2, and an alias set copy on derivation would
|
4601 |
|
|
have that effect.
|
4602 |
|
|
|
4603 |
|
|
The option chosen is to make the alias set of the derived type a
|
4604 |
|
|
superset of that of its parent type. It trivially fulfills the
|
4605 |
|
|
simple requirement for the Integer derivation example above, and
|
4606 |
|
|
the component case as well by superset transitivity:
|
4607 |
|
|
|
4608 |
|
|
superset superset
|
4609 |
|
|
R ----------> D ----------> T
|
4610 |
|
|
|
4611 |
|
|
However, for composite types, conversions between derived types are
|
4612 |
|
|
translated into VIEW_CONVERT_EXPRs so a sequence like:
|
4613 |
|
|
|
4614 |
|
|
type Comp1 is new Comp;
|
4615 |
|
|
type Comp2 is new Comp;
|
4616 |
|
|
procedure Proc (C : Comp1);
|
4617 |
|
|
|
4618 |
|
|
C : Comp2;
|
4619 |
|
|
Proc (Comp1 (C));
|
4620 |
|
|
|
4621 |
|
|
is translated into:
|
4622 |
|
|
|
4623 |
|
|
C : Comp2;
|
4624 |
|
|
Proc ((Comp1 &) &VIEW_CONVERT_EXPR <Comp1> (C));
|
4625 |
|
|
|
4626 |
|
|
and gimplified into:
|
4627 |
|
|
|
4628 |
|
|
C : Comp2;
|
4629 |
|
|
Comp1 *C.0;
|
4630 |
|
|
C.0 = (Comp1 *) &C;
|
4631 |
|
|
Proc (C.0);
|
4632 |
|
|
|
4633 |
|
|
i.e. generates code involving type punning. Therefore, Comp1 needs
|
4634 |
|
|
to conflict with Comp2 and an alias set copy is required.
|
4635 |
|
|
|
4636 |
|
|
The language rules ensure the parent type is already frozen here. */
|
4637 |
|
|
if (Is_Derived_Type (gnat_entity))
|
4638 |
|
|
{
|
4639 |
|
|
tree gnu_parent_type = gnat_to_gnu_type (Etype (gnat_entity));
|
4640 |
|
|
relate_alias_sets (gnu_type, gnu_parent_type,
|
4641 |
|
|
Is_Composite_Type (gnat_entity)
|
4642 |
|
|
? ALIAS_SET_COPY : ALIAS_SET_SUPERSET);
|
4643 |
|
|
}
|
4644 |
|
|
|
4645 |
|
|
/* Back-annotate the Alignment of the type if not already in the
|
4646 |
|
|
tree. Likewise for sizes. */
|
4647 |
|
|
if (Unknown_Alignment (gnat_entity))
|
4648 |
|
|
{
|
4649 |
|
|
unsigned int double_align, align;
|
4650 |
|
|
bool is_capped_double, align_clause;
|
4651 |
|
|
|
4652 |
|
|
/* If the default alignment of "double" or larger scalar types is
|
4653 |
|
|
specifically capped and this is not an array with an alignment
|
4654 |
|
|
clause on the component type, return the cap. */
|
4655 |
|
|
if ((double_align = double_float_alignment) > 0)
|
4656 |
|
|
is_capped_double
|
4657 |
|
|
= is_double_float_or_array (gnat_entity, &align_clause);
|
4658 |
|
|
else if ((double_align = double_scalar_alignment) > 0)
|
4659 |
|
|
is_capped_double
|
4660 |
|
|
= is_double_scalar_or_array (gnat_entity, &align_clause);
|
4661 |
|
|
else
|
4662 |
|
|
is_capped_double = align_clause = false;
|
4663 |
|
|
|
4664 |
|
|
if (is_capped_double && !align_clause)
|
4665 |
|
|
align = double_align;
|
4666 |
|
|
else
|
4667 |
|
|
align = TYPE_ALIGN (gnu_type) / BITS_PER_UNIT;
|
4668 |
|
|
|
4669 |
|
|
Set_Alignment (gnat_entity, UI_From_Int (align));
|
4670 |
|
|
}
|
4671 |
|
|
|
4672 |
|
|
if (Unknown_Esize (gnat_entity) && TYPE_SIZE (gnu_type))
|
4673 |
|
|
{
|
4674 |
|
|
/* If the size is self-referential, we annotate the maximum
|
4675 |
|
|
value of that size. */
|
4676 |
|
|
tree gnu_size = TYPE_SIZE (gnu_type);
|
4677 |
|
|
|
4678 |
|
|
if (CONTAINS_PLACEHOLDER_P (gnu_size))
|
4679 |
|
|
gnu_size = max_size (gnu_size, true);
|
4680 |
|
|
|
4681 |
|
|
Set_Esize (gnat_entity, annotate_value (gnu_size));
|
4682 |
|
|
|
4683 |
|
|
if (type_annotate_only && Is_Tagged_Type (gnat_entity))
|
4684 |
|
|
{
|
4685 |
|
|
/* In this mode the tag and the parent components are not
|
4686 |
|
|
generated by the front-end, so the sizes must be adjusted
|
4687 |
|
|
explicitly now. */
|
4688 |
|
|
int size_offset, new_size;
|
4689 |
|
|
|
4690 |
|
|
if (Is_Derived_Type (gnat_entity))
|
4691 |
|
|
{
|
4692 |
|
|
size_offset
|
4693 |
|
|
= UI_To_Int (Esize (Etype (Base_Type (gnat_entity))));
|
4694 |
|
|
Set_Alignment (gnat_entity,
|
4695 |
|
|
Alignment (Etype (Base_Type (gnat_entity))));
|
4696 |
|
|
}
|
4697 |
|
|
else
|
4698 |
|
|
size_offset = POINTER_SIZE;
|
4699 |
|
|
|
4700 |
|
|
new_size = UI_To_Int (Esize (gnat_entity)) + size_offset;
|
4701 |
|
|
Set_Esize (gnat_entity,
|
4702 |
|
|
UI_From_Int (((new_size + (POINTER_SIZE - 1))
|
4703 |
|
|
/ POINTER_SIZE) * POINTER_SIZE));
|
4704 |
|
|
Set_RM_Size (gnat_entity, Esize (gnat_entity));
|
4705 |
|
|
}
|
4706 |
|
|
}
|
4707 |
|
|
|
4708 |
|
|
if (Unknown_RM_Size (gnat_entity) && rm_size (gnu_type))
|
4709 |
|
|
Set_RM_Size (gnat_entity, annotate_value (rm_size (gnu_type)));
|
4710 |
|
|
}
|
4711 |
|
|
|
4712 |
|
|
if (!Comes_From_Source (gnat_entity) && DECL_P (gnu_decl))
|
4713 |
|
|
DECL_ARTIFICIAL (gnu_decl) = 1;
|
4714 |
|
|
|
4715 |
|
|
if (!debug_info_p && DECL_P (gnu_decl)
|
4716 |
|
|
&& TREE_CODE (gnu_decl) != FUNCTION_DECL
|
4717 |
|
|
&& No (Renamed_Object (gnat_entity)))
|
4718 |
|
|
DECL_IGNORED_P (gnu_decl) = 1;
|
4719 |
|
|
|
4720 |
|
|
/* If we haven't already, associate the ..._DECL node that we just made with
|
4721 |
|
|
the input GNAT entity node. */
|
4722 |
|
|
if (!saved)
|
4723 |
|
|
save_gnu_tree (gnat_entity, gnu_decl, false);
|
4724 |
|
|
|
4725 |
|
|
/* If this is an enumeration or floating-point type, we were not able to set
|
4726 |
|
|
the bounds since they refer to the type. These are always static. */
|
4727 |
|
|
if ((kind == E_Enumeration_Type && Present (First_Literal (gnat_entity)))
|
4728 |
|
|
|| (kind == E_Floating_Point_Type && !Vax_Float (gnat_entity)))
|
4729 |
|
|
{
|
4730 |
|
|
tree gnu_scalar_type = gnu_type;
|
4731 |
|
|
tree gnu_low_bound, gnu_high_bound;
|
4732 |
|
|
|
4733 |
|
|
/* If this is a padded type, we need to use the underlying type. */
|
4734 |
|
|
if (TYPE_IS_PADDING_P (gnu_scalar_type))
|
4735 |
|
|
gnu_scalar_type = TREE_TYPE (TYPE_FIELDS (gnu_scalar_type));
|
4736 |
|
|
|
4737 |
|
|
/* If this is a floating point type and we haven't set a floating
|
4738 |
|
|
point type yet, use this in the evaluation of the bounds. */
|
4739 |
|
|
if (!longest_float_type_node && kind == E_Floating_Point_Type)
|
4740 |
|
|
longest_float_type_node = gnu_scalar_type;
|
4741 |
|
|
|
4742 |
|
|
gnu_low_bound = gnat_to_gnu (Type_Low_Bound (gnat_entity));
|
4743 |
|
|
gnu_high_bound = gnat_to_gnu (Type_High_Bound (gnat_entity));
|
4744 |
|
|
|
4745 |
|
|
if (kind == E_Enumeration_Type)
|
4746 |
|
|
{
|
4747 |
|
|
/* Enumeration types have specific RM bounds. */
|
4748 |
|
|
SET_TYPE_RM_MIN_VALUE (gnu_scalar_type, gnu_low_bound);
|
4749 |
|
|
SET_TYPE_RM_MAX_VALUE (gnu_scalar_type, gnu_high_bound);
|
4750 |
|
|
|
4751 |
|
|
/* Write full debugging information. Since this has both a
|
4752 |
|
|
typedef and a tag, avoid outputting the name twice. */
|
4753 |
|
|
DECL_ARTIFICIAL (gnu_decl) = 1;
|
4754 |
|
|
rest_of_type_decl_compilation (gnu_decl);
|
4755 |
|
|
}
|
4756 |
|
|
|
4757 |
|
|
else
|
4758 |
|
|
{
|
4759 |
|
|
/* Floating-point types don't have specific RM bounds. */
|
4760 |
|
|
TYPE_GCC_MIN_VALUE (gnu_scalar_type) = gnu_low_bound;
|
4761 |
|
|
TYPE_GCC_MAX_VALUE (gnu_scalar_type) = gnu_high_bound;
|
4762 |
|
|
}
|
4763 |
|
|
}
|
4764 |
|
|
|
4765 |
|
|
/* If we deferred processing of incomplete types, re-enable it. If there
|
4766 |
|
|
were no other disables and we have some to process, do so. */
|
4767 |
|
|
if (this_deferred && --defer_incomplete_level == 0)
|
4768 |
|
|
{
|
4769 |
|
|
if (defer_incomplete_list)
|
4770 |
|
|
{
|
4771 |
|
|
struct incomplete *incp, *next;
|
4772 |
|
|
|
4773 |
|
|
/* We are back to level 0 for the deferring of incomplete types.
|
4774 |
|
|
But processing these incomplete types below may itself require
|
4775 |
|
|
deferring, so preserve what we have and restart from scratch. */
|
4776 |
|
|
incp = defer_incomplete_list;
|
4777 |
|
|
defer_incomplete_list = NULL;
|
4778 |
|
|
|
4779 |
|
|
/* For finalization, however, all types must be complete so we
|
4780 |
|
|
cannot do the same because deferred incomplete types may end up
|
4781 |
|
|
referencing each other. Process them all recursively first. */
|
4782 |
|
|
defer_finalize_level++;
|
4783 |
|
|
|
4784 |
|
|
for (; incp; incp = next)
|
4785 |
|
|
{
|
4786 |
|
|
next = incp->next;
|
4787 |
|
|
|
4788 |
|
|
if (incp->old_type)
|
4789 |
|
|
update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type),
|
4790 |
|
|
gnat_to_gnu_type (incp->full_type));
|
4791 |
|
|
free (incp);
|
4792 |
|
|
}
|
4793 |
|
|
|
4794 |
|
|
defer_finalize_level--;
|
4795 |
|
|
}
|
4796 |
|
|
|
4797 |
|
|
/* All the deferred incomplete types have been processed so we can
|
4798 |
|
|
now proceed with the finalization of the deferred types. */
|
4799 |
|
|
if (defer_finalize_level == 0 && defer_finalize_list)
|
4800 |
|
|
{
|
4801 |
|
|
unsigned int i;
|
4802 |
|
|
tree t;
|
4803 |
|
|
|
4804 |
|
|
for (i = 0; VEC_iterate (tree, defer_finalize_list, i, t); i++)
|
4805 |
|
|
rest_of_type_decl_compilation_no_defer (t);
|
4806 |
|
|
|
4807 |
|
|
VEC_free (tree, heap, defer_finalize_list);
|
4808 |
|
|
}
|
4809 |
|
|
}
|
4810 |
|
|
|
4811 |
|
|
/* If we are not defining this type, see if it's in the incomplete list.
|
4812 |
|
|
If so, handle that list entry now. */
|
4813 |
|
|
else if (!definition)
|
4814 |
|
|
{
|
4815 |
|
|
struct incomplete *incp;
|
4816 |
|
|
|
4817 |
|
|
for (incp = defer_incomplete_list; incp; incp = incp->next)
|
4818 |
|
|
if (incp->old_type && incp->full_type == gnat_entity)
|
4819 |
|
|
{
|
4820 |
|
|
update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type),
|
4821 |
|
|
TREE_TYPE (gnu_decl));
|
4822 |
|
|
incp->old_type = NULL_TREE;
|
4823 |
|
|
}
|
4824 |
|
|
}
|
4825 |
|
|
|
4826 |
|
|
if (this_global)
|
4827 |
|
|
force_global--;
|
4828 |
|
|
|
4829 |
|
|
/* If this is a packed array type whose original array type is itself
|
4830 |
|
|
an Itype without freeze node, make sure the latter is processed. */
|
4831 |
|
|
if (Is_Packed_Array_Type (gnat_entity)
|
4832 |
|
|
&& Is_Itype (Original_Array_Type (gnat_entity))
|
4833 |
|
|
&& No (Freeze_Node (Original_Array_Type (gnat_entity)))
|
4834 |
|
|
&& !present_gnu_tree (Original_Array_Type (gnat_entity)))
|
4835 |
|
|
gnat_to_gnu_entity (Original_Array_Type (gnat_entity), NULL_TREE, 0);
|
4836 |
|
|
|
4837 |
|
|
return gnu_decl;
|
4838 |
|
|
}
|
4839 |
|
|
|
4840 |
|
|
/* Similar, but if the returned value is a COMPONENT_REF, return the
|
4841 |
|
|
FIELD_DECL. */
|
4842 |
|
|
|
4843 |
|
|
tree
|
4844 |
|
|
gnat_to_gnu_field_decl (Entity_Id gnat_entity)
|
4845 |
|
|
{
|
4846 |
|
|
tree gnu_field = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0);
|
4847 |
|
|
|
4848 |
|
|
if (TREE_CODE (gnu_field) == COMPONENT_REF)
|
4849 |
|
|
gnu_field = TREE_OPERAND (gnu_field, 1);
|
4850 |
|
|
|
4851 |
|
|
return gnu_field;
|
4852 |
|
|
}
|
4853 |
|
|
|
4854 |
|
|
/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type. Return
|
4855 |
|
|
the GCC type corresponding to that entity. */
|
4856 |
|
|
|
4857 |
|
|
tree
|
4858 |
|
|
gnat_to_gnu_type (Entity_Id gnat_entity)
|
4859 |
|
|
{
|
4860 |
|
|
tree gnu_decl;
|
4861 |
|
|
|
4862 |
|
|
/* The back end never attempts to annotate generic types. */
|
4863 |
|
|
if (Is_Generic_Type (gnat_entity) && type_annotate_only)
|
4864 |
|
|
return void_type_node;
|
4865 |
|
|
|
4866 |
|
|
gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0);
|
4867 |
|
|
gcc_assert (TREE_CODE (gnu_decl) == TYPE_DECL);
|
4868 |
|
|
|
4869 |
|
|
return TREE_TYPE (gnu_decl);
|
4870 |
|
|
}
|
4871 |
|
|
|
4872 |
|
|
/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type. Return
|
4873 |
|
|
the unpadded version of the GCC type corresponding to that entity. */
|
4874 |
|
|
|
4875 |
|
|
tree
|
4876 |
|
|
get_unpadded_type (Entity_Id gnat_entity)
|
4877 |
|
|
{
|
4878 |
|
|
tree type = gnat_to_gnu_type (gnat_entity);
|
4879 |
|
|
|
4880 |
|
|
if (TYPE_IS_PADDING_P (type))
|
4881 |
|
|
type = TREE_TYPE (TYPE_FIELDS (type));
|
4882 |
|
|
|
4883 |
|
|
return type;
|
4884 |
|
|
}
|
4885 |
|
|
|
4886 |
|
|
/* Wrap up compilation of DECL, a TYPE_DECL, possibly deferring it.
|
4887 |
|
|
Every TYPE_DECL generated for a type definition must be passed
|
4888 |
|
|
to this function once everything else has been done for it. */
|
4889 |
|
|
|
4890 |
|
|
void
|
4891 |
|
|
rest_of_type_decl_compilation (tree decl)
|
4892 |
|
|
{
|
4893 |
|
|
/* We need to defer finalizing the type if incomplete types
|
4894 |
|
|
are being deferred or if they are being processed. */
|
4895 |
|
|
if (defer_incomplete_level || defer_finalize_level)
|
4896 |
|
|
VEC_safe_push (tree, heap, defer_finalize_list, decl);
|
4897 |
|
|
else
|
4898 |
|
|
rest_of_type_decl_compilation_no_defer (decl);
|
4899 |
|
|
}
|
4900 |
|
|
|
4901 |
|
|
/* Same as above but without deferring the compilation. This
|
4902 |
|
|
function should not be invoked directly on a TYPE_DECL. */
|
4903 |
|
|
|
4904 |
|
|
static void
|
4905 |
|
|
rest_of_type_decl_compilation_no_defer (tree decl)
|
4906 |
|
|
{
|
4907 |
|
|
const int toplev = global_bindings_p ();
|
4908 |
|
|
tree t = TREE_TYPE (decl);
|
4909 |
|
|
|
4910 |
|
|
rest_of_decl_compilation (decl, toplev, 0);
|
4911 |
|
|
|
4912 |
|
|
/* Now process all the variants. This is needed for STABS. */
|
4913 |
|
|
for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
|
4914 |
|
|
{
|
4915 |
|
|
if (t == TREE_TYPE (decl))
|
4916 |
|
|
continue;
|
4917 |
|
|
|
4918 |
|
|
if (!TYPE_STUB_DECL (t))
|
4919 |
|
|
TYPE_STUB_DECL (t) = create_type_stub_decl (DECL_NAME (decl), t);
|
4920 |
|
|
|
4921 |
|
|
rest_of_type_compilation (t, toplev);
|
4922 |
|
|
}
|
4923 |
|
|
}
|
4924 |
|
|
|
4925 |
|
|
/* Finalize any From_With_Type incomplete types. We do this after processing
|
4926 |
|
|
our compilation unit and after processing its spec, if this is a body. */
|
4927 |
|
|
|
4928 |
|
|
void
|
4929 |
|
|
finalize_from_with_types (void)
|
4930 |
|
|
{
|
4931 |
|
|
struct incomplete *incp = defer_limited_with;
|
4932 |
|
|
struct incomplete *next;
|
4933 |
|
|
|
4934 |
|
|
defer_limited_with = 0;
|
4935 |
|
|
for (; incp; incp = next)
|
4936 |
|
|
{
|
4937 |
|
|
next = incp->next;
|
4938 |
|
|
|
4939 |
|
|
if (incp->old_type != 0)
|
4940 |
|
|
update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type),
|
4941 |
|
|
gnat_to_gnu_type (incp->full_type));
|
4942 |
|
|
free (incp);
|
4943 |
|
|
}
|
4944 |
|
|
}
|
4945 |
|
|
|
4946 |
|
|
/* Return the equivalent type to be used for GNAT_ENTITY, if it's a
|
4947 |
|
|
kind of type (such E_Task_Type) that has a different type which Gigi
|
4948 |
|
|
uses for its representation. If the type does not have a special type
|
4949 |
|
|
for its representation, return GNAT_ENTITY. If a type is supposed to
|
4950 |
|
|
exist, but does not, abort unless annotating types, in which case
|
4951 |
|
|
return Empty. If GNAT_ENTITY is Empty, return Empty. */
|
4952 |
|
|
|
4953 |
|
|
Entity_Id
|
4954 |
|
|
Gigi_Equivalent_Type (Entity_Id gnat_entity)
|
4955 |
|
|
{
|
4956 |
|
|
Entity_Id gnat_equiv = gnat_entity;
|
4957 |
|
|
|
4958 |
|
|
if (No (gnat_entity))
|
4959 |
|
|
return gnat_entity;
|
4960 |
|
|
|
4961 |
|
|
switch (Ekind (gnat_entity))
|
4962 |
|
|
{
|
4963 |
|
|
case E_Class_Wide_Subtype:
|
4964 |
|
|
if (Present (Equivalent_Type (gnat_entity)))
|
4965 |
|
|
gnat_equiv = Equivalent_Type (gnat_entity);
|
4966 |
|
|
break;
|
4967 |
|
|
|
4968 |
|
|
case E_Access_Protected_Subprogram_Type:
|
4969 |
|
|
case E_Anonymous_Access_Protected_Subprogram_Type:
|
4970 |
|
|
gnat_equiv = Equivalent_Type (gnat_entity);
|
4971 |
|
|
break;
|
4972 |
|
|
|
4973 |
|
|
case E_Class_Wide_Type:
|
4974 |
|
|
gnat_equiv = Root_Type (gnat_entity);
|
4975 |
|
|
break;
|
4976 |
|
|
|
4977 |
|
|
case E_Task_Type:
|
4978 |
|
|
case E_Task_Subtype:
|
4979 |
|
|
case E_Protected_Type:
|
4980 |
|
|
case E_Protected_Subtype:
|
4981 |
|
|
gnat_equiv = Corresponding_Record_Type (gnat_entity);
|
4982 |
|
|
break;
|
4983 |
|
|
|
4984 |
|
|
default:
|
4985 |
|
|
break;
|
4986 |
|
|
}
|
4987 |
|
|
|
4988 |
|
|
gcc_assert (Present (gnat_equiv) || type_annotate_only);
|
4989 |
|
|
return gnat_equiv;
|
4990 |
|
|
}
|
4991 |
|
|
|
4992 |
|
|
/* Return a GCC tree for a type corresponding to the component type of the
|
4993 |
|
|
array type or subtype GNAT_ARRAY. DEFINITION is true if this component
|
4994 |
|
|
is for an array being defined. DEBUG_INFO_P is true if we need to write
|
4995 |
|
|
debug information for other types that we may create in the process. */
|
4996 |
|
|
|
4997 |
|
|
static tree
|
4998 |
|
|
gnat_to_gnu_component_type (Entity_Id gnat_array, bool definition,
|
4999 |
|
|
bool debug_info_p)
|
5000 |
|
|
{
|
5001 |
|
|
tree gnu_type = gnat_to_gnu_type (Component_Type (gnat_array));
|
5002 |
|
|
tree gnu_comp_size;
|
5003 |
|
|
|
5004 |
|
|
/* Try to get a smaller form of the component if needed. */
|
5005 |
|
|
if ((Is_Packed (gnat_array)
|
5006 |
|
|
|| Has_Component_Size_Clause (gnat_array))
|
5007 |
|
|
&& !Is_Bit_Packed_Array (gnat_array)
|
5008 |
|
|
&& !Has_Aliased_Components (gnat_array)
|
5009 |
|
|
&& !Strict_Alignment (Component_Type (gnat_array))
|
5010 |
|
|
&& TREE_CODE (gnu_type) == RECORD_TYPE
|
5011 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_type)
|
5012 |
|
|
&& host_integerp (TYPE_SIZE (gnu_type), 1))
|
5013 |
|
|
gnu_type = make_packable_type (gnu_type, false);
|
5014 |
|
|
|
5015 |
|
|
if (Has_Atomic_Components (gnat_array))
|
5016 |
|
|
check_ok_for_atomic (gnu_type, gnat_array, true);
|
5017 |
|
|
|
5018 |
|
|
/* Get and validate any specified Component_Size. */
|
5019 |
|
|
gnu_comp_size
|
5020 |
|
|
= validate_size (Component_Size (gnat_array), gnu_type, gnat_array,
|
5021 |
|
|
Is_Bit_Packed_Array (gnat_array) ? TYPE_DECL : VAR_DECL,
|
5022 |
|
|
true, Has_Component_Size_Clause (gnat_array));
|
5023 |
|
|
|
5024 |
|
|
/* If the array has aliased components and the component size can be zero,
|
5025 |
|
|
force at least unit size to ensure that the components have distinct
|
5026 |
|
|
addresses. */
|
5027 |
|
|
if (!gnu_comp_size
|
5028 |
|
|
&& Has_Aliased_Components (gnat_array)
|
5029 |
|
|
&& (integer_zerop (TYPE_SIZE (gnu_type))
|
5030 |
|
|
|| (TREE_CODE (gnu_type) == ARRAY_TYPE
|
5031 |
|
|
&& !TREE_CONSTANT (TYPE_SIZE (gnu_type)))))
|
5032 |
|
|
gnu_comp_size
|
5033 |
|
|
= size_binop (MAX_EXPR, TYPE_SIZE (gnu_type), bitsize_unit_node);
|
5034 |
|
|
|
5035 |
|
|
/* If the component type is a RECORD_TYPE that has a self-referential size,
|
5036 |
|
|
then use the maximum size for the component size. */
|
5037 |
|
|
if (!gnu_comp_size
|
5038 |
|
|
&& TREE_CODE (gnu_type) == RECORD_TYPE
|
5039 |
|
|
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
|
5040 |
|
|
gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
|
5041 |
|
|
|
5042 |
|
|
/* Honor the component size. This is not needed for bit-packed arrays. */
|
5043 |
|
|
if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_array))
|
5044 |
|
|
{
|
5045 |
|
|
tree orig_type = gnu_type;
|
5046 |
|
|
unsigned int max_align;
|
5047 |
|
|
|
5048 |
|
|
/* If an alignment is specified, use it as a cap on the component type
|
5049 |
|
|
so that it can be honored for the whole type. But ignore it for the
|
5050 |
|
|
original type of packed array types. */
|
5051 |
|
|
if (No (Packed_Array_Type (gnat_array)) && Known_Alignment (gnat_array))
|
5052 |
|
|
max_align = validate_alignment (Alignment (gnat_array), gnat_array, 0);
|
5053 |
|
|
else
|
5054 |
|
|
max_align = 0;
|
5055 |
|
|
|
5056 |
|
|
gnu_type = make_type_from_size (gnu_type, gnu_comp_size, false);
|
5057 |
|
|
if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
|
5058 |
|
|
gnu_type = orig_type;
|
5059 |
|
|
else
|
5060 |
|
|
orig_type = gnu_type;
|
5061 |
|
|
|
5062 |
|
|
gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0, gnat_array,
|
5063 |
|
|
true, false, definition, true);
|
5064 |
|
|
|
5065 |
|
|
/* If a padding record was made, declare it now since it will never be
|
5066 |
|
|
declared otherwise. This is necessary to ensure that its subtrees
|
5067 |
|
|
are properly marked. */
|
5068 |
|
|
if (gnu_type != orig_type && !DECL_P (TYPE_NAME (gnu_type)))
|
5069 |
|
|
create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL, true,
|
5070 |
|
|
debug_info_p, gnat_array);
|
5071 |
|
|
}
|
5072 |
|
|
|
5073 |
|
|
if (Has_Volatile_Components (Base_Type (gnat_array)))
|
5074 |
|
|
gnu_type
|
5075 |
|
|
= build_qualified_type (gnu_type,
|
5076 |
|
|
TYPE_QUALS (gnu_type) | TYPE_QUAL_VOLATILE);
|
5077 |
|
|
|
5078 |
|
|
return gnu_type;
|
5079 |
|
|
}
|
5080 |
|
|
|
5081 |
|
|
/* Return a GCC tree for a parameter corresponding to GNAT_PARAM and
|
5082 |
|
|
using MECH as its passing mechanism, to be placed in the parameter
|
5083 |
|
|
list built for GNAT_SUBPROG. Assume a foreign convention for the
|
5084 |
|
|
latter if FOREIGN is true. Also set CICO to true if the parameter
|
5085 |
|
|
must use the copy-in copy-out implementation mechanism.
|
5086 |
|
|
|
5087 |
|
|
The returned tree is a PARM_DECL, except for those cases where no
|
5088 |
|
|
parameter needs to be actually passed to the subprogram; the type
|
5089 |
|
|
of this "shadow" parameter is then returned instead. */
|
5090 |
|
|
|
5091 |
|
|
static tree
|
5092 |
|
|
gnat_to_gnu_param (Entity_Id gnat_param, Mechanism_Type mech,
|
5093 |
|
|
Entity_Id gnat_subprog, bool foreign, bool *cico)
|
5094 |
|
|
{
|
5095 |
|
|
tree gnu_param_name = get_entity_name (gnat_param);
|
5096 |
|
|
tree gnu_param_type = gnat_to_gnu_type (Etype (gnat_param));
|
5097 |
|
|
tree gnu_param_type_alt = NULL_TREE;
|
5098 |
|
|
bool in_param = (Ekind (gnat_param) == E_In_Parameter);
|
5099 |
|
|
/* The parameter can be indirectly modified if its address is taken. */
|
5100 |
|
|
bool ro_param = in_param && !Address_Taken (gnat_param);
|
5101 |
|
|
bool by_return = false, by_component_ptr = false, by_ref = false;
|
5102 |
|
|
tree gnu_param;
|
5103 |
|
|
|
5104 |
|
|
/* Copy-return is used only for the first parameter of a valued procedure.
|
5105 |
|
|
It's a copy mechanism for which a parameter is never allocated. */
|
5106 |
|
|
if (mech == By_Copy_Return)
|
5107 |
|
|
{
|
5108 |
|
|
gcc_assert (Ekind (gnat_param) == E_Out_Parameter);
|
5109 |
|
|
mech = By_Copy;
|
5110 |
|
|
by_return = true;
|
5111 |
|
|
}
|
5112 |
|
|
|
5113 |
|
|
/* If this is either a foreign function or if the underlying type won't
|
5114 |
|
|
be passed by reference, strip off possible padding type. */
|
5115 |
|
|
if (TYPE_IS_PADDING_P (gnu_param_type))
|
5116 |
|
|
{
|
5117 |
|
|
tree unpadded_type = TREE_TYPE (TYPE_FIELDS (gnu_param_type));
|
5118 |
|
|
|
5119 |
|
|
if (mech == By_Reference
|
5120 |
|
|
|| foreign
|
5121 |
|
|
|| (!must_pass_by_ref (unpadded_type)
|
5122 |
|
|
&& (mech == By_Copy || !default_pass_by_ref (unpadded_type))))
|
5123 |
|
|
gnu_param_type = unpadded_type;
|
5124 |
|
|
}
|
5125 |
|
|
|
5126 |
|
|
/* If this is a read-only parameter, make a variant of the type that is
|
5127 |
|
|
read-only. ??? However, if this is an unconstrained array, that type
|
5128 |
|
|
can be very complex, so skip it for now. Likewise for any other
|
5129 |
|
|
self-referential type. */
|
5130 |
|
|
if (ro_param
|
5131 |
|
|
&& TREE_CODE (gnu_param_type) != UNCONSTRAINED_ARRAY_TYPE
|
5132 |
|
|
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_param_type)))
|
5133 |
|
|
gnu_param_type = build_qualified_type (gnu_param_type,
|
5134 |
|
|
(TYPE_QUALS (gnu_param_type)
|
5135 |
|
|
| TYPE_QUAL_CONST));
|
5136 |
|
|
|
5137 |
|
|
/* For foreign conventions, pass arrays as pointers to the element type.
|
5138 |
|
|
First check for unconstrained array and get the underlying array. */
|
5139 |
|
|
if (foreign && TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE)
|
5140 |
|
|
gnu_param_type
|
5141 |
|
|
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_param_type))));
|
5142 |
|
|
|
5143 |
|
|
/* VMS descriptors are themselves passed by reference. */
|
5144 |
|
|
if (mech == By_Short_Descriptor ||
|
5145 |
|
|
(mech == By_Descriptor && TARGET_ABI_OPEN_VMS && !TARGET_MALLOC64))
|
5146 |
|
|
gnu_param_type
|
5147 |
|
|
= build_pointer_type (build_vms_descriptor32 (gnu_param_type,
|
5148 |
|
|
Mechanism (gnat_param),
|
5149 |
|
|
gnat_subprog));
|
5150 |
|
|
else if (mech == By_Descriptor)
|
5151 |
|
|
{
|
5152 |
|
|
/* Build both a 32-bit and 64-bit descriptor, one of which will be
|
5153 |
|
|
chosen in fill_vms_descriptor. */
|
5154 |
|
|
gnu_param_type_alt
|
5155 |
|
|
= build_pointer_type (build_vms_descriptor32 (gnu_param_type,
|
5156 |
|
|
Mechanism (gnat_param),
|
5157 |
|
|
gnat_subprog));
|
5158 |
|
|
gnu_param_type
|
5159 |
|
|
= build_pointer_type (build_vms_descriptor (gnu_param_type,
|
5160 |
|
|
Mechanism (gnat_param),
|
5161 |
|
|
gnat_subprog));
|
5162 |
|
|
}
|
5163 |
|
|
|
5164 |
|
|
/* Arrays are passed as pointers to element type for foreign conventions. */
|
5165 |
|
|
else if (foreign
|
5166 |
|
|
&& mech != By_Copy
|
5167 |
|
|
&& TREE_CODE (gnu_param_type) == ARRAY_TYPE)
|
5168 |
|
|
{
|
5169 |
|
|
/* Strip off any multi-dimensional entries, then strip
|
5170 |
|
|
off the last array to get the component type. */
|
5171 |
|
|
while (TREE_CODE (TREE_TYPE (gnu_param_type)) == ARRAY_TYPE
|
5172 |
|
|
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_param_type)))
|
5173 |
|
|
gnu_param_type = TREE_TYPE (gnu_param_type);
|
5174 |
|
|
|
5175 |
|
|
by_component_ptr = true;
|
5176 |
|
|
gnu_param_type = TREE_TYPE (gnu_param_type);
|
5177 |
|
|
|
5178 |
|
|
if (ro_param)
|
5179 |
|
|
gnu_param_type = build_qualified_type (gnu_param_type,
|
5180 |
|
|
(TYPE_QUALS (gnu_param_type)
|
5181 |
|
|
| TYPE_QUAL_CONST));
|
5182 |
|
|
|
5183 |
|
|
gnu_param_type = build_pointer_type (gnu_param_type);
|
5184 |
|
|
}
|
5185 |
|
|
|
5186 |
|
|
/* Fat pointers are passed as thin pointers for foreign conventions. */
|
5187 |
|
|
else if (foreign && TYPE_IS_FAT_POINTER_P (gnu_param_type))
|
5188 |
|
|
gnu_param_type
|
5189 |
|
|
= make_type_from_size (gnu_param_type, size_int (POINTER_SIZE), 0);
|
5190 |
|
|
|
5191 |
|
|
/* If we must pass or were requested to pass by reference, do so.
|
5192 |
|
|
If we were requested to pass by copy, do so.
|
5193 |
|
|
Otherwise, for foreign conventions, pass In Out or Out parameters
|
5194 |
|
|
or aggregates by reference. For COBOL and Fortran, pass all
|
5195 |
|
|
integer and FP types that way too. For Convention Ada, use
|
5196 |
|
|
the standard Ada default. */
|
5197 |
|
|
else if (must_pass_by_ref (gnu_param_type)
|
5198 |
|
|
|| mech == By_Reference
|
5199 |
|
|
|| (mech != By_Copy
|
5200 |
|
|
&& ((foreign
|
5201 |
|
|
&& (!in_param || AGGREGATE_TYPE_P (gnu_param_type)))
|
5202 |
|
|
|| (foreign
|
5203 |
|
|
&& (Convention (gnat_subprog) == Convention_Fortran
|
5204 |
|
|
|| Convention (gnat_subprog) == Convention_COBOL)
|
5205 |
|
|
&& (INTEGRAL_TYPE_P (gnu_param_type)
|
5206 |
|
|
|| FLOAT_TYPE_P (gnu_param_type)))
|
5207 |
|
|
|| (!foreign
|
5208 |
|
|
&& default_pass_by_ref (gnu_param_type)))))
|
5209 |
|
|
{
|
5210 |
|
|
gnu_param_type = build_reference_type (gnu_param_type);
|
5211 |
|
|
by_ref = true;
|
5212 |
|
|
}
|
5213 |
|
|
|
5214 |
|
|
/* Pass In Out or Out parameters using copy-in copy-out mechanism. */
|
5215 |
|
|
else if (!in_param)
|
5216 |
|
|
*cico = true;
|
5217 |
|
|
|
5218 |
|
|
if (mech == By_Copy && (by_ref || by_component_ptr))
|
5219 |
|
|
post_error ("?cannot pass & by copy", gnat_param);
|
5220 |
|
|
|
5221 |
|
|
/* If this is an Out parameter that isn't passed by reference and isn't
|
5222 |
|
|
a pointer or aggregate, we don't make a PARM_DECL for it. Instead,
|
5223 |
|
|
it will be a VAR_DECL created when we process the procedure, so just
|
5224 |
|
|
return its type. For the special parameter of a valued procedure,
|
5225 |
|
|
never pass it in.
|
5226 |
|
|
|
5227 |
|
|
An exception is made to cover the RM-6.4.1 rule requiring "by copy"
|
5228 |
|
|
Out parameters with discriminants or implicit initial values to be
|
5229 |
|
|
handled like In Out parameters. These type are normally built as
|
5230 |
|
|
aggregates, hence passed by reference, except for some packed arrays
|
5231 |
|
|
which end up encoded in special integer types.
|
5232 |
|
|
|
5233 |
|
|
The exception we need to make is then for packed arrays of records
|
5234 |
|
|
with discriminants or implicit initial values. We have no light/easy
|
5235 |
|
|
way to check for the latter case, so we merely check for packed arrays
|
5236 |
|
|
of records. This may lead to useless copy-in operations, but in very
|
5237 |
|
|
rare cases only, as these would be exceptions in a set of already
|
5238 |
|
|
exceptional situations. */
|
5239 |
|
|
if (Ekind (gnat_param) == E_Out_Parameter
|
5240 |
|
|
&& !by_ref
|
5241 |
|
|
&& (by_return
|
5242 |
|
|
|| (mech != By_Descriptor
|
5243 |
|
|
&& mech != By_Short_Descriptor
|
5244 |
|
|
&& !POINTER_TYPE_P (gnu_param_type)
|
5245 |
|
|
&& !AGGREGATE_TYPE_P (gnu_param_type)))
|
5246 |
|
|
&& !(Is_Array_Type (Etype (gnat_param))
|
5247 |
|
|
&& Is_Packed (Etype (gnat_param))
|
5248 |
|
|
&& Is_Composite_Type (Component_Type (Etype (gnat_param)))))
|
5249 |
|
|
return gnu_param_type;
|
5250 |
|
|
|
5251 |
|
|
gnu_param = create_param_decl (gnu_param_name, gnu_param_type,
|
5252 |
|
|
ro_param || by_ref || by_component_ptr);
|
5253 |
|
|
DECL_BY_REF_P (gnu_param) = by_ref;
|
5254 |
|
|
DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr;
|
5255 |
|
|
DECL_BY_DESCRIPTOR_P (gnu_param) = (mech == By_Descriptor ||
|
5256 |
|
|
mech == By_Short_Descriptor);
|
5257 |
|
|
DECL_POINTS_TO_READONLY_P (gnu_param)
|
5258 |
|
|
= (ro_param && (by_ref || by_component_ptr));
|
5259 |
|
|
|
5260 |
|
|
/* Save the alternate descriptor type, if any. */
|
5261 |
|
|
if (gnu_param_type_alt)
|
5262 |
|
|
SET_DECL_PARM_ALT_TYPE (gnu_param, gnu_param_type_alt);
|
5263 |
|
|
|
5264 |
|
|
/* If no Mechanism was specified, indicate what we're using, then
|
5265 |
|
|
back-annotate it. */
|
5266 |
|
|
if (mech == Default)
|
5267 |
|
|
mech = (by_ref || by_component_ptr) ? By_Reference : By_Copy;
|
5268 |
|
|
|
5269 |
|
|
Set_Mechanism (gnat_param, mech);
|
5270 |
|
|
return gnu_param;
|
5271 |
|
|
}
|
5272 |
|
|
|
5273 |
|
|
/* Return true if DISCR1 and DISCR2 represent the same discriminant. */
|
5274 |
|
|
|
5275 |
|
|
static bool
|
5276 |
|
|
same_discriminant_p (Entity_Id discr1, Entity_Id discr2)
|
5277 |
|
|
{
|
5278 |
|
|
while (Present (Corresponding_Discriminant (discr1)))
|
5279 |
|
|
discr1 = Corresponding_Discriminant (discr1);
|
5280 |
|
|
|
5281 |
|
|
while (Present (Corresponding_Discriminant (discr2)))
|
5282 |
|
|
discr2 = Corresponding_Discriminant (discr2);
|
5283 |
|
|
|
5284 |
|
|
return
|
5285 |
|
|
Original_Record_Component (discr1) == Original_Record_Component (discr2);
|
5286 |
|
|
}
|
5287 |
|
|
|
5288 |
|
|
/* Return true if the array type GNU_TYPE, which represents a dimension of
|
5289 |
|
|
GNAT_TYPE, has a non-aliased component in the back-end sense. */
|
5290 |
|
|
|
5291 |
|
|
static bool
|
5292 |
|
|
array_type_has_nonaliased_component (tree gnu_type, Entity_Id gnat_type)
|
5293 |
|
|
{
|
5294 |
|
|
/* If the array type is not the innermost dimension of the GNAT type,
|
5295 |
|
|
then it has a non-aliased component. */
|
5296 |
|
|
if (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE
|
5297 |
|
|
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)))
|
5298 |
|
|
return true;
|
5299 |
|
|
|
5300 |
|
|
/* If the array type has an aliased component in the front-end sense,
|
5301 |
|
|
then it also has an aliased component in the back-end sense. */
|
5302 |
|
|
if (Has_Aliased_Components (gnat_type))
|
5303 |
|
|
return false;
|
5304 |
|
|
|
5305 |
|
|
/* If this is a derived type, then it has a non-aliased component if
|
5306 |
|
|
and only if its parent type also has one. */
|
5307 |
|
|
if (Is_Derived_Type (gnat_type))
|
5308 |
|
|
{
|
5309 |
|
|
tree gnu_parent_type = gnat_to_gnu_type (Etype (gnat_type));
|
5310 |
|
|
int index;
|
5311 |
|
|
if (TREE_CODE (gnu_parent_type) == UNCONSTRAINED_ARRAY_TYPE)
|
5312 |
|
|
gnu_parent_type
|
5313 |
|
|
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_parent_type))));
|
5314 |
|
|
for (index = Number_Dimensions (gnat_type) - 1; index > 0; index--)
|
5315 |
|
|
gnu_parent_type = TREE_TYPE (gnu_parent_type);
|
5316 |
|
|
return TYPE_NONALIASED_COMPONENT (gnu_parent_type);
|
5317 |
|
|
}
|
5318 |
|
|
|
5319 |
|
|
/* Otherwise, rely exclusively on properties of the element type. */
|
5320 |
|
|
return type_for_nonaliased_component_p (TREE_TYPE (gnu_type));
|
5321 |
|
|
}
|
5322 |
|
|
|
5323 |
|
|
/* Return true if GNAT_ADDRESS is a value known at compile-time. */
|
5324 |
|
|
|
5325 |
|
|
static bool
|
5326 |
|
|
compile_time_known_address_p (Node_Id gnat_address)
|
5327 |
|
|
{
|
5328 |
|
|
/* Catch System'To_Address. */
|
5329 |
|
|
if (Nkind (gnat_address) == N_Unchecked_Type_Conversion)
|
5330 |
|
|
gnat_address = Expression (gnat_address);
|
5331 |
|
|
|
5332 |
|
|
return Compile_Time_Known_Value (gnat_address);
|
5333 |
|
|
}
|
5334 |
|
|
|
5335 |
|
|
/* Return true if GNAT_RANGE, a N_Range node, cannot be superflat, i.e.
|
5336 |
|
|
cannot verify HB < LB-1 when LB and HB are the low and high bounds. */
|
5337 |
|
|
|
5338 |
|
|
static bool
|
5339 |
|
|
cannot_be_superflat_p (Node_Id gnat_range)
|
5340 |
|
|
{
|
5341 |
|
|
Node_Id gnat_lb = Low_Bound (gnat_range), gnat_hb = High_Bound (gnat_range);
|
5342 |
|
|
Node_Id scalar_range;
|
5343 |
|
|
|
5344 |
|
|
tree gnu_lb, gnu_hb;
|
5345 |
|
|
|
5346 |
|
|
/* If the low bound is not constant, try to find an upper bound. */
|
5347 |
|
|
while (Nkind (gnat_lb) != N_Integer_Literal
|
5348 |
|
|
&& (Ekind (Etype (gnat_lb)) == E_Signed_Integer_Subtype
|
5349 |
|
|
|| Ekind (Etype (gnat_lb)) == E_Modular_Integer_Subtype)
|
5350 |
|
|
&& (scalar_range = Scalar_Range (Etype (gnat_lb)))
|
5351 |
|
|
&& (Nkind (scalar_range) == N_Signed_Integer_Type_Definition
|
5352 |
|
|
|| Nkind (scalar_range) == N_Range))
|
5353 |
|
|
gnat_lb = High_Bound (scalar_range);
|
5354 |
|
|
|
5355 |
|
|
/* If the high bound is not constant, try to find a lower bound. */
|
5356 |
|
|
while (Nkind (gnat_hb) != N_Integer_Literal
|
5357 |
|
|
&& (Ekind (Etype (gnat_hb)) == E_Signed_Integer_Subtype
|
5358 |
|
|
|| Ekind (Etype (gnat_hb)) == E_Modular_Integer_Subtype)
|
5359 |
|
|
&& (scalar_range = Scalar_Range (Etype (gnat_hb)))
|
5360 |
|
|
&& (Nkind (scalar_range) == N_Signed_Integer_Type_Definition
|
5361 |
|
|
|| Nkind (scalar_range) == N_Range))
|
5362 |
|
|
gnat_hb = Low_Bound (scalar_range);
|
5363 |
|
|
|
5364 |
|
|
if (!(Nkind (gnat_lb) == N_Integer_Literal
|
5365 |
|
|
&& Nkind (gnat_hb) == N_Integer_Literal))
|
5366 |
|
|
return false;
|
5367 |
|
|
|
5368 |
|
|
gnu_lb = UI_To_gnu (Intval (gnat_lb), bitsizetype);
|
5369 |
|
|
gnu_hb = UI_To_gnu (Intval (gnat_hb), bitsizetype);
|
5370 |
|
|
|
5371 |
|
|
/* If the low bound is the smallest integer, nothing can be smaller. */
|
5372 |
|
|
gnu_lb = size_binop (MINUS_EXPR, gnu_lb, bitsize_one_node);
|
5373 |
|
|
if (TREE_OVERFLOW (gnu_lb))
|
5374 |
|
|
return true;
|
5375 |
|
|
|
5376 |
|
|
return (tree_int_cst_lt (gnu_hb, gnu_lb) == 0);
|
5377 |
|
|
}
|
5378 |
|
|
|
5379 |
|
|
/* Given GNAT_ENTITY, elaborate all expressions that are required to
|
5380 |
|
|
be elaborated at the point of its definition, but do nothing else. */
|
5381 |
|
|
|
5382 |
|
|
void
|
5383 |
|
|
elaborate_entity (Entity_Id gnat_entity)
|
5384 |
|
|
{
|
5385 |
|
|
switch (Ekind (gnat_entity))
|
5386 |
|
|
{
|
5387 |
|
|
case E_Signed_Integer_Subtype:
|
5388 |
|
|
case E_Modular_Integer_Subtype:
|
5389 |
|
|
case E_Enumeration_Subtype:
|
5390 |
|
|
case E_Ordinary_Fixed_Point_Subtype:
|
5391 |
|
|
case E_Decimal_Fixed_Point_Subtype:
|
5392 |
|
|
case E_Floating_Point_Subtype:
|
5393 |
|
|
{
|
5394 |
|
|
Node_Id gnat_lb = Type_Low_Bound (gnat_entity);
|
5395 |
|
|
Node_Id gnat_hb = Type_High_Bound (gnat_entity);
|
5396 |
|
|
|
5397 |
|
|
/* ??? Tests to avoid Constraint_Error in static expressions
|
5398 |
|
|
are needed until after the front stops generating bogus
|
5399 |
|
|
conversions on bounds of real types. */
|
5400 |
|
|
if (!Raises_Constraint_Error (gnat_lb))
|
5401 |
|
|
elaborate_expression (gnat_lb, gnat_entity, get_identifier ("L"),
|
5402 |
|
|
true, false, Needs_Debug_Info (gnat_entity));
|
5403 |
|
|
if (!Raises_Constraint_Error (gnat_hb))
|
5404 |
|
|
elaborate_expression (gnat_hb, gnat_entity, get_identifier ("U"),
|
5405 |
|
|
true, false, Needs_Debug_Info (gnat_entity));
|
5406 |
|
|
break;
|
5407 |
|
|
}
|
5408 |
|
|
|
5409 |
|
|
case E_Record_Type:
|
5410 |
|
|
{
|
5411 |
|
|
Node_Id full_definition = Declaration_Node (gnat_entity);
|
5412 |
|
|
Node_Id record_definition = Type_Definition (full_definition);
|
5413 |
|
|
|
5414 |
|
|
/* If this is a record extension, go a level further to find the
|
5415 |
|
|
record definition. */
|
5416 |
|
|
if (Nkind (record_definition) == N_Derived_Type_Definition)
|
5417 |
|
|
record_definition = Record_Extension_Part (record_definition);
|
5418 |
|
|
}
|
5419 |
|
|
break;
|
5420 |
|
|
|
5421 |
|
|
case E_Record_Subtype:
|
5422 |
|
|
case E_Private_Subtype:
|
5423 |
|
|
case E_Limited_Private_Subtype:
|
5424 |
|
|
case E_Record_Subtype_With_Private:
|
5425 |
|
|
if (Is_Constrained (gnat_entity)
|
5426 |
|
|
&& Has_Discriminants (gnat_entity)
|
5427 |
|
|
&& Present (Discriminant_Constraint (gnat_entity)))
|
5428 |
|
|
{
|
5429 |
|
|
Node_Id gnat_discriminant_expr;
|
5430 |
|
|
Entity_Id gnat_field;
|
5431 |
|
|
|
5432 |
|
|
for (gnat_field
|
5433 |
|
|
= First_Discriminant (Implementation_Base_Type (gnat_entity)),
|
5434 |
|
|
gnat_discriminant_expr
|
5435 |
|
|
= First_Elmt (Discriminant_Constraint (gnat_entity));
|
5436 |
|
|
Present (gnat_field);
|
5437 |
|
|
gnat_field = Next_Discriminant (gnat_field),
|
5438 |
|
|
gnat_discriminant_expr = Next_Elmt (gnat_discriminant_expr))
|
5439 |
|
|
/* ??? For now, ignore access discriminants. */
|
5440 |
|
|
if (!Is_Access_Type (Etype (Node (gnat_discriminant_expr))))
|
5441 |
|
|
elaborate_expression (Node (gnat_discriminant_expr),
|
5442 |
|
|
gnat_entity, get_entity_name (gnat_field),
|
5443 |
|
|
true, false, false);
|
5444 |
|
|
}
|
5445 |
|
|
break;
|
5446 |
|
|
|
5447 |
|
|
}
|
5448 |
|
|
}
|
5449 |
|
|
|
5450 |
|
|
/* Mark GNAT_ENTITY as going out of scope at this point. Recursively mark
|
5451 |
|
|
any entities on its entity chain similarly. */
|
5452 |
|
|
|
5453 |
|
|
void
|
5454 |
|
|
mark_out_of_scope (Entity_Id gnat_entity)
|
5455 |
|
|
{
|
5456 |
|
|
Entity_Id gnat_sub_entity;
|
5457 |
|
|
unsigned int kind = Ekind (gnat_entity);
|
5458 |
|
|
|
5459 |
|
|
/* If this has an entity list, process all in the list. */
|
5460 |
|
|
if (IN (kind, Class_Wide_Kind) || IN (kind, Concurrent_Kind)
|
5461 |
|
|
|| IN (kind, Private_Kind)
|
5462 |
|
|
|| kind == E_Block || kind == E_Entry || kind == E_Entry_Family
|
5463 |
|
|
|| kind == E_Function || kind == E_Generic_Function
|
5464 |
|
|
|| kind == E_Generic_Package || kind == E_Generic_Procedure
|
5465 |
|
|
|| kind == E_Loop || kind == E_Operator || kind == E_Package
|
5466 |
|
|
|| kind == E_Package_Body || kind == E_Procedure
|
5467 |
|
|
|| kind == E_Record_Type || kind == E_Record_Subtype
|
5468 |
|
|
|| kind == E_Subprogram_Body || kind == E_Subprogram_Type)
|
5469 |
|
|
for (gnat_sub_entity = First_Entity (gnat_entity);
|
5470 |
|
|
Present (gnat_sub_entity);
|
5471 |
|
|
gnat_sub_entity = Next_Entity (gnat_sub_entity))
|
5472 |
|
|
if (Scope (gnat_sub_entity) == gnat_entity
|
5473 |
|
|
&& gnat_sub_entity != gnat_entity)
|
5474 |
|
|
mark_out_of_scope (gnat_sub_entity);
|
5475 |
|
|
|
5476 |
|
|
/* Now clear this if it has been defined, but only do so if it isn't
|
5477 |
|
|
a subprogram or parameter. We could refine this, but it isn't
|
5478 |
|
|
worth it. If this is statically allocated, it is supposed to
|
5479 |
|
|
hang around out of cope. */
|
5480 |
|
|
if (present_gnu_tree (gnat_entity) && !Is_Statically_Allocated (gnat_entity)
|
5481 |
|
|
&& kind != E_Procedure && kind != E_Function && !IN (kind, Formal_Kind))
|
5482 |
|
|
{
|
5483 |
|
|
save_gnu_tree (gnat_entity, NULL_TREE, true);
|
5484 |
|
|
save_gnu_tree (gnat_entity, error_mark_node, true);
|
5485 |
|
|
}
|
5486 |
|
|
}
|
5487 |
|
|
|
5488 |
|
|
/* Relate the alias sets of GNU_NEW_TYPE and GNU_OLD_TYPE according to OP.
|
5489 |
|
|
If this is a multi-dimensional array type, do this recursively.
|
5490 |
|
|
|
5491 |
|
|
OP may be
|
5492 |
|
|
- ALIAS_SET_COPY: the new set is made a copy of the old one.
|
5493 |
|
|
- ALIAS_SET_SUPERSET: the new set is made a superset of the old one.
|
5494 |
|
|
- ALIAS_SET_SUBSET: the new set is made a subset of the old one. */
|
5495 |
|
|
|
5496 |
|
|
static void
|
5497 |
|
|
relate_alias_sets (tree gnu_new_type, tree gnu_old_type, enum alias_set_op op)
|
5498 |
|
|
{
|
5499 |
|
|
/* Remove any padding from GNU_OLD_TYPE. It doesn't matter in the case
|
5500 |
|
|
of a one-dimensional array, since the padding has the same alias set
|
5501 |
|
|
as the field type, but if it's a multi-dimensional array, we need to
|
5502 |
|
|
see the inner types. */
|
5503 |
|
|
while (TREE_CODE (gnu_old_type) == RECORD_TYPE
|
5504 |
|
|
&& (TYPE_JUSTIFIED_MODULAR_P (gnu_old_type)
|
5505 |
|
|
|| TYPE_PADDING_P (gnu_old_type)))
|
5506 |
|
|
gnu_old_type = TREE_TYPE (TYPE_FIELDS (gnu_old_type));
|
5507 |
|
|
|
5508 |
|
|
/* Unconstrained array types are deemed incomplete and would thus be given
|
5509 |
|
|
alias set 0. Retrieve the underlying array type. */
|
5510 |
|
|
if (TREE_CODE (gnu_old_type) == UNCONSTRAINED_ARRAY_TYPE)
|
5511 |
|
|
gnu_old_type
|
5512 |
|
|
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_old_type))));
|
5513 |
|
|
if (TREE_CODE (gnu_new_type) == UNCONSTRAINED_ARRAY_TYPE)
|
5514 |
|
|
gnu_new_type
|
5515 |
|
|
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_new_type))));
|
5516 |
|
|
|
5517 |
|
|
if (TREE_CODE (gnu_new_type) == ARRAY_TYPE
|
5518 |
|
|
&& TREE_CODE (TREE_TYPE (gnu_new_type)) == ARRAY_TYPE
|
5519 |
|
|
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_new_type)))
|
5520 |
|
|
relate_alias_sets (TREE_TYPE (gnu_new_type), TREE_TYPE (gnu_old_type), op);
|
5521 |
|
|
|
5522 |
|
|
switch (op)
|
5523 |
|
|
{
|
5524 |
|
|
case ALIAS_SET_COPY:
|
5525 |
|
|
/* The alias set shouldn't be copied between array types with different
|
5526 |
|
|
aliasing settings because this can break the aliasing relationship
|
5527 |
|
|
between the array type and its element type. */
|
5528 |
|
|
#ifndef ENABLE_CHECKING
|
5529 |
|
|
if (flag_strict_aliasing)
|
5530 |
|
|
#endif
|
5531 |
|
|
gcc_assert (!(TREE_CODE (gnu_new_type) == ARRAY_TYPE
|
5532 |
|
|
&& TREE_CODE (gnu_old_type) == ARRAY_TYPE
|
5533 |
|
|
&& TYPE_NONALIASED_COMPONENT (gnu_new_type)
|
5534 |
|
|
!= TYPE_NONALIASED_COMPONENT (gnu_old_type)));
|
5535 |
|
|
|
5536 |
|
|
TYPE_ALIAS_SET (gnu_new_type) = get_alias_set (gnu_old_type);
|
5537 |
|
|
break;
|
5538 |
|
|
|
5539 |
|
|
case ALIAS_SET_SUBSET:
|
5540 |
|
|
case ALIAS_SET_SUPERSET:
|
5541 |
|
|
{
|
5542 |
|
|
alias_set_type old_set = get_alias_set (gnu_old_type);
|
5543 |
|
|
alias_set_type new_set = get_alias_set (gnu_new_type);
|
5544 |
|
|
|
5545 |
|
|
/* Do nothing if the alias sets conflict. This ensures that we
|
5546 |
|
|
never call record_alias_subset several times for the same pair
|
5547 |
|
|
or at all for alias set 0. */
|
5548 |
|
|
if (!alias_sets_conflict_p (old_set, new_set))
|
5549 |
|
|
{
|
5550 |
|
|
if (op == ALIAS_SET_SUBSET)
|
5551 |
|
|
record_alias_subset (old_set, new_set);
|
5552 |
|
|
else
|
5553 |
|
|
record_alias_subset (new_set, old_set);
|
5554 |
|
|
}
|
5555 |
|
|
}
|
5556 |
|
|
break;
|
5557 |
|
|
|
5558 |
|
|
default:
|
5559 |
|
|
gcc_unreachable ();
|
5560 |
|
|
}
|
5561 |
|
|
|
5562 |
|
|
record_component_aliases (gnu_new_type);
|
5563 |
|
|
}
|
5564 |
|
|
|
5565 |
|
|
/* Return true if the size represented by GNU_SIZE can be handled by an
|
5566 |
|
|
allocation. If STATIC_P is true, consider only what can be done with a
|
5567 |
|
|
static allocation. */
|
5568 |
|
|
|
5569 |
|
|
static bool
|
5570 |
|
|
allocatable_size_p (tree gnu_size, bool static_p)
|
5571 |
|
|
{
|
5572 |
|
|
HOST_WIDE_INT our_size;
|
5573 |
|
|
|
5574 |
|
|
/* If this is not a static allocation, the only case we want to forbid
|
5575 |
|
|
is an overflowing size. That will be converted into a raise a
|
5576 |
|
|
Storage_Error. */
|
5577 |
|
|
if (!static_p)
|
5578 |
|
|
return !(TREE_CODE (gnu_size) == INTEGER_CST
|
5579 |
|
|
&& TREE_OVERFLOW (gnu_size));
|
5580 |
|
|
|
5581 |
|
|
/* Otherwise, we need to deal with both variable sizes and constant
|
5582 |
|
|
sizes that won't fit in a host int. We use int instead of HOST_WIDE_INT
|
5583 |
|
|
since assemblers may not like very large sizes. */
|
5584 |
|
|
if (!host_integerp (gnu_size, 1))
|
5585 |
|
|
return false;
|
5586 |
|
|
|
5587 |
|
|
our_size = tree_low_cst (gnu_size, 1);
|
5588 |
|
|
return (int) our_size == our_size;
|
5589 |
|
|
}
|
5590 |
|
|
|
5591 |
|
|
/* Prepend to ATTR_LIST an entry for an attribute with provided TYPE,
|
5592 |
|
|
NAME, ARGS and ERROR_POINT. */
|
5593 |
|
|
|
5594 |
|
|
static void
|
5595 |
|
|
prepend_one_attribute_to (struct attrib ** attr_list,
|
5596 |
|
|
enum attr_type attr_type,
|
5597 |
|
|
tree attr_name,
|
5598 |
|
|
tree attr_args,
|
5599 |
|
|
Node_Id attr_error_point)
|
5600 |
|
|
{
|
5601 |
|
|
struct attrib * attr = (struct attrib *) xmalloc (sizeof (struct attrib));
|
5602 |
|
|
|
5603 |
|
|
attr->type = attr_type;
|
5604 |
|
|
attr->name = attr_name;
|
5605 |
|
|
attr->args = attr_args;
|
5606 |
|
|
attr->error_point = attr_error_point;
|
5607 |
|
|
|
5608 |
|
|
attr->next = *attr_list;
|
5609 |
|
|
*attr_list = attr;
|
5610 |
|
|
}
|
5611 |
|
|
|
5612 |
|
|
/* Prepend to ATTR_LIST the list of attributes for GNAT_ENTITY, if any. */
|
5613 |
|
|
|
5614 |
|
|
static void
|
5615 |
|
|
prepend_attributes (Entity_Id gnat_entity, struct attrib ** attr_list)
|
5616 |
|
|
{
|
5617 |
|
|
Node_Id gnat_temp;
|
5618 |
|
|
|
5619 |
|
|
/* Attributes are stored as Representation Item pragmas. */
|
5620 |
|
|
|
5621 |
|
|
for (gnat_temp = First_Rep_Item (gnat_entity); Present (gnat_temp);
|
5622 |
|
|
gnat_temp = Next_Rep_Item (gnat_temp))
|
5623 |
|
|
if (Nkind (gnat_temp) == N_Pragma)
|
5624 |
|
|
{
|
5625 |
|
|
tree gnu_arg0 = NULL_TREE, gnu_arg1 = NULL_TREE;
|
5626 |
|
|
Node_Id gnat_assoc = Pragma_Argument_Associations (gnat_temp);
|
5627 |
|
|
enum attr_type etype;
|
5628 |
|
|
|
5629 |
|
|
/* Map the kind of pragma at hand. Skip if this is not one
|
5630 |
|
|
we know how to handle. */
|
5631 |
|
|
|
5632 |
|
|
switch (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_temp))))
|
5633 |
|
|
{
|
5634 |
|
|
case Pragma_Machine_Attribute:
|
5635 |
|
|
etype = ATTR_MACHINE_ATTRIBUTE;
|
5636 |
|
|
break;
|
5637 |
|
|
|
5638 |
|
|
case Pragma_Linker_Alias:
|
5639 |
|
|
etype = ATTR_LINK_ALIAS;
|
5640 |
|
|
break;
|
5641 |
|
|
|
5642 |
|
|
case Pragma_Linker_Section:
|
5643 |
|
|
etype = ATTR_LINK_SECTION;
|
5644 |
|
|
break;
|
5645 |
|
|
|
5646 |
|
|
case Pragma_Linker_Constructor:
|
5647 |
|
|
etype = ATTR_LINK_CONSTRUCTOR;
|
5648 |
|
|
break;
|
5649 |
|
|
|
5650 |
|
|
case Pragma_Linker_Destructor:
|
5651 |
|
|
etype = ATTR_LINK_DESTRUCTOR;
|
5652 |
|
|
break;
|
5653 |
|
|
|
5654 |
|
|
case Pragma_Weak_External:
|
5655 |
|
|
etype = ATTR_WEAK_EXTERNAL;
|
5656 |
|
|
break;
|
5657 |
|
|
|
5658 |
|
|
case Pragma_Thread_Local_Storage:
|
5659 |
|
|
etype = ATTR_THREAD_LOCAL_STORAGE;
|
5660 |
|
|
break;
|
5661 |
|
|
|
5662 |
|
|
default:
|
5663 |
|
|
continue;
|
5664 |
|
|
}
|
5665 |
|
|
|
5666 |
|
|
/* See what arguments we have and turn them into GCC trees for
|
5667 |
|
|
attribute handlers. These expect identifier for strings. We
|
5668 |
|
|
handle at most two arguments, static expressions only. */
|
5669 |
|
|
|
5670 |
|
|
if (Present (gnat_assoc) && Present (First (gnat_assoc)))
|
5671 |
|
|
{
|
5672 |
|
|
Node_Id gnat_arg0 = Next (First (gnat_assoc));
|
5673 |
|
|
Node_Id gnat_arg1 = Empty;
|
5674 |
|
|
|
5675 |
|
|
if (Present (gnat_arg0)
|
5676 |
|
|
&& Is_Static_Expression (Expression (gnat_arg0)))
|
5677 |
|
|
{
|
5678 |
|
|
gnu_arg0 = gnat_to_gnu (Expression (gnat_arg0));
|
5679 |
|
|
|
5680 |
|
|
if (TREE_CODE (gnu_arg0) == STRING_CST)
|
5681 |
|
|
gnu_arg0 = get_identifier (TREE_STRING_POINTER (gnu_arg0));
|
5682 |
|
|
|
5683 |
|
|
gnat_arg1 = Next (gnat_arg0);
|
5684 |
|
|
}
|
5685 |
|
|
|
5686 |
|
|
if (Present (gnat_arg1)
|
5687 |
|
|
&& Is_Static_Expression (Expression (gnat_arg1)))
|
5688 |
|
|
{
|
5689 |
|
|
gnu_arg1 = gnat_to_gnu (Expression (gnat_arg1));
|
5690 |
|
|
|
5691 |
|
|
if (TREE_CODE (gnu_arg1) == STRING_CST)
|
5692 |
|
|
gnu_arg1 = get_identifier (TREE_STRING_POINTER (gnu_arg1));
|
5693 |
|
|
}
|
5694 |
|
|
}
|
5695 |
|
|
|
5696 |
|
|
/* Prepend to the list now. Make a list of the argument we might
|
5697 |
|
|
have, as GCC expects it. */
|
5698 |
|
|
prepend_one_attribute_to
|
5699 |
|
|
(attr_list,
|
5700 |
|
|
etype, gnu_arg0,
|
5701 |
|
|
(gnu_arg1 != NULL_TREE)
|
5702 |
|
|
? build_tree_list (NULL_TREE, gnu_arg1) : NULL_TREE,
|
5703 |
|
|
Present (Next (First (gnat_assoc)))
|
5704 |
|
|
? Expression (Next (First (gnat_assoc))) : gnat_temp);
|
5705 |
|
|
}
|
5706 |
|
|
}
|
5707 |
|
|
|
5708 |
|
|
/* Called when we need to protect a variable object using a SAVE_EXPR. */
|
5709 |
|
|
|
5710 |
|
|
tree
|
5711 |
|
|
maybe_variable (tree gnu_operand)
|
5712 |
|
|
{
|
5713 |
|
|
if (TREE_CONSTANT (gnu_operand)
|
5714 |
|
|
|| TREE_READONLY (gnu_operand)
|
5715 |
|
|
|| TREE_CODE (gnu_operand) == SAVE_EXPR
|
5716 |
|
|
|| TREE_CODE (gnu_operand) == NULL_EXPR)
|
5717 |
|
|
return gnu_operand;
|
5718 |
|
|
|
5719 |
|
|
if (TREE_CODE (gnu_operand) == UNCONSTRAINED_ARRAY_REF)
|
5720 |
|
|
{
|
5721 |
|
|
tree gnu_result
|
5722 |
|
|
= build1 (UNCONSTRAINED_ARRAY_REF, TREE_TYPE (gnu_operand),
|
5723 |
|
|
variable_size (TREE_OPERAND (gnu_operand, 0)));
|
5724 |
|
|
|
5725 |
|
|
TREE_READONLY (gnu_result) = TREE_STATIC (gnu_result)
|
5726 |
|
|
= TYPE_READONLY (TREE_TYPE (TREE_TYPE (gnu_operand)));
|
5727 |
|
|
return gnu_result;
|
5728 |
|
|
}
|
5729 |
|
|
|
5730 |
|
|
return variable_size (gnu_operand);
|
5731 |
|
|
}
|
5732 |
|
|
|
5733 |
|
|
/* Given a GNAT tree GNAT_EXPR, for an expression which is a value within a
|
5734 |
|
|
type definition (either a bound or a discriminant value) for GNAT_ENTITY,
|
5735 |
|
|
return the GCC tree to use for that expression. GNU_NAME is the suffix
|
5736 |
|
|
to use if a variable needs to be created and DEFINITION is true if this
|
5737 |
|
|
is a definition of GNAT_ENTITY. If NEED_VALUE is true, we need a result;
|
5738 |
|
|
otherwise, we are just elaborating the expression for side-effects. If
|
5739 |
|
|
NEED_DEBUG is true, we need a variable for debugging purposes even if it
|
5740 |
|
|
isn't needed for code generation. */
|
5741 |
|
|
|
5742 |
|
|
static tree
|
5743 |
|
|
elaborate_expression (Node_Id gnat_expr, Entity_Id gnat_entity, tree gnu_name,
|
5744 |
|
|
bool definition, bool need_value, bool need_debug)
|
5745 |
|
|
{
|
5746 |
|
|
tree gnu_expr;
|
5747 |
|
|
|
5748 |
|
|
/* If we already elaborated this expression (e.g. it was involved
|
5749 |
|
|
in the definition of a private type), use the old value. */
|
5750 |
|
|
if (present_gnu_tree (gnat_expr))
|
5751 |
|
|
return get_gnu_tree (gnat_expr);
|
5752 |
|
|
|
5753 |
|
|
/* If we don't need a value and this is static or a discriminant,
|
5754 |
|
|
we don't need to do anything. */
|
5755 |
|
|
if (!need_value
|
5756 |
|
|
&& (Is_OK_Static_Expression (gnat_expr)
|
5757 |
|
|
|| (Nkind (gnat_expr) == N_Identifier
|
5758 |
|
|
&& Ekind (Entity (gnat_expr)) == E_Discriminant)))
|
5759 |
|
|
return NULL_TREE;
|
5760 |
|
|
|
5761 |
|
|
/* If it's a static expression, we don't need a variable for debugging. */
|
5762 |
|
|
if (need_debug && Is_OK_Static_Expression (gnat_expr))
|
5763 |
|
|
need_debug = false;
|
5764 |
|
|
|
5765 |
|
|
/* Otherwise, convert this tree to its GCC equivalent and elaborate it. */
|
5766 |
|
|
gnu_expr = elaborate_expression_1 (gnat_to_gnu (gnat_expr), gnat_entity,
|
5767 |
|
|
gnu_name, definition, need_debug);
|
5768 |
|
|
|
5769 |
|
|
/* Save the expression in case we try to elaborate this entity again. Since
|
5770 |
|
|
it's not a DECL, don't check it. Don't save if it's a discriminant. */
|
5771 |
|
|
if (!CONTAINS_PLACEHOLDER_P (gnu_expr))
|
5772 |
|
|
save_gnu_tree (gnat_expr, gnu_expr, true);
|
5773 |
|
|
|
5774 |
|
|
return need_value ? gnu_expr : error_mark_node;
|
5775 |
|
|
}
|
5776 |
|
|
|
5777 |
|
|
/* Similar, but take a GNU expression and always return a result. */
|
5778 |
|
|
|
5779 |
|
|
static tree
|
5780 |
|
|
elaborate_expression_1 (tree gnu_expr, Entity_Id gnat_entity, tree gnu_name,
|
5781 |
|
|
bool definition, bool need_debug)
|
5782 |
|
|
{
|
5783 |
|
|
/* Skip any conversions and simple arithmetics to see if the expression
|
5784 |
|
|
is a read-only variable.
|
5785 |
|
|
??? This really should remain read-only, but we have to think about
|
5786 |
|
|
the typing of the tree here. */
|
5787 |
|
|
tree gnu_inner_expr
|
5788 |
|
|
= skip_simple_arithmetic (remove_conversions (gnu_expr, true));
|
5789 |
|
|
tree gnu_decl = NULL_TREE;
|
5790 |
|
|
bool expr_global = Is_Public (gnat_entity) || global_bindings_p ();
|
5791 |
|
|
bool expr_variable;
|
5792 |
|
|
|
5793 |
|
|
/* In most cases, we won't see a naked FIELD_DECL because a discriminant
|
5794 |
|
|
reference will have been replaced with a COMPONENT_REF when the type
|
5795 |
|
|
is being elaborated. However, there are some cases involving child
|
5796 |
|
|
types where we will. So convert it to a COMPONENT_REF. We hope it
|
5797 |
|
|
will be at the highest level of the expression in these cases. */
|
5798 |
|
|
if (TREE_CODE (gnu_expr) == FIELD_DECL)
|
5799 |
|
|
gnu_expr = build3 (COMPONENT_REF, TREE_TYPE (gnu_expr),
|
5800 |
|
|
build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (gnu_expr)),
|
5801 |
|
|
gnu_expr, NULL_TREE);
|
5802 |
|
|
|
5803 |
|
|
/* If GNU_EXPR is neither a placeholder nor a constant, nor a variable
|
5804 |
|
|
that is read-only, make a variable that is initialized to contain the
|
5805 |
|
|
bound when the package containing the definition is elaborated. If
|
5806 |
|
|
this entity is defined at top level and a bound or discriminant value
|
5807 |
|
|
isn't a constant or a reference to a discriminant, replace the bound
|
5808 |
|
|
by the variable; otherwise use a SAVE_EXPR if needed. Note that we
|
5809 |
|
|
rely here on the fact that an expression cannot contain both the
|
5810 |
|
|
discriminant and some other variable. */
|
5811 |
|
|
expr_variable = (!CONSTANT_CLASS_P (gnu_expr)
|
5812 |
|
|
&& !(TREE_CODE (gnu_inner_expr) == VAR_DECL
|
5813 |
|
|
&& (TREE_READONLY (gnu_inner_expr)
|
5814 |
|
|
|| DECL_READONLY_ONCE_ELAB (gnu_inner_expr)))
|
5815 |
|
|
&& !CONTAINS_PLACEHOLDER_P (gnu_expr));
|
5816 |
|
|
|
5817 |
|
|
/* If GNU_EXPR contains a discriminant, we can't elaborate a variable. */
|
5818 |
|
|
if (need_debug && CONTAINS_PLACEHOLDER_P (gnu_expr))
|
5819 |
|
|
need_debug = false;
|
5820 |
|
|
|
5821 |
|
|
/* Now create the variable if we need it. */
|
5822 |
|
|
if (need_debug || (expr_variable && expr_global))
|
5823 |
|
|
gnu_decl
|
5824 |
|
|
= create_var_decl (create_concat_name (gnat_entity,
|
5825 |
|
|
IDENTIFIER_POINTER (gnu_name)),
|
5826 |
|
|
NULL_TREE, TREE_TYPE (gnu_expr), gnu_expr,
|
5827 |
|
|
!need_debug, Is_Public (gnat_entity),
|
5828 |
|
|
!definition, false, NULL, gnat_entity);
|
5829 |
|
|
|
5830 |
|
|
/* We only need to use this variable if we are in global context since GCC
|
5831 |
|
|
can do the right thing in the local case. */
|
5832 |
|
|
if (expr_global && expr_variable)
|
5833 |
|
|
return gnu_decl;
|
5834 |
|
|
|
5835 |
|
|
return expr_variable ? maybe_variable (gnu_expr) : gnu_expr;
|
5836 |
|
|
}
|
5837 |
|
|
|
5838 |
|
|
/* Create a record type that contains a SIZE bytes long field of TYPE with a
|
5839 |
|
|
starting bit position so that it is aligned to ALIGN bits, and leaving at
|
5840 |
|
|
least ROOM bytes free before the field. BASE_ALIGN is the alignment the
|
5841 |
|
|
record is guaranteed to get. */
|
5842 |
|
|
|
5843 |
|
|
tree
|
5844 |
|
|
make_aligning_type (tree type, unsigned int align, tree size,
|
5845 |
|
|
unsigned int base_align, int room)
|
5846 |
|
|
{
|
5847 |
|
|
/* We will be crafting a record type with one field at a position set to be
|
5848 |
|
|
the next multiple of ALIGN past record'address + room bytes. We use a
|
5849 |
|
|
record placeholder to express record'address. */
|
5850 |
|
|
|
5851 |
|
|
tree record_type = make_node (RECORD_TYPE);
|
5852 |
|
|
tree record = build0 (PLACEHOLDER_EXPR, record_type);
|
5853 |
|
|
|
5854 |
|
|
tree record_addr_st
|
5855 |
|
|
= convert (sizetype, build_unary_op (ADDR_EXPR, NULL_TREE, record));
|
5856 |
|
|
|
5857 |
|
|
/* The diagram below summarizes the shape of what we manipulate:
|
5858 |
|
|
|
5859 |
|
|
<--------- pos ---------->
|
5860 |
|
|
{ +------------+-------------+-----------------+
|
5861 |
|
|
record =>{ |############| ... | field (type) |
|
5862 |
|
|
{ +------------+-------------+-----------------+
|
5863 |
|
|
|<-- room -->|<- voffset ->|<---- size ----->|
|
5864 |
|
|
o o
|
5865 |
|
|
| |
|
5866 |
|
|
record_addr vblock_addr
|
5867 |
|
|
|
5868 |
|
|
Every length is in sizetype bytes there, except "pos" which has to be
|
5869 |
|
|
set as a bit position in the GCC tree for the record. */
|
5870 |
|
|
|
5871 |
|
|
tree room_st = size_int (room);
|
5872 |
|
|
tree vblock_addr_st = size_binop (PLUS_EXPR, record_addr_st, room_st);
|
5873 |
|
|
tree voffset_st, pos, field;
|
5874 |
|
|
|
5875 |
|
|
tree name = TYPE_NAME (type);
|
5876 |
|
|
|
5877 |
|
|
if (TREE_CODE (name) == TYPE_DECL)
|
5878 |
|
|
name = DECL_NAME (name);
|
5879 |
|
|
|
5880 |
|
|
TYPE_NAME (record_type) = concat_name (name, "_ALIGN");
|
5881 |
|
|
|
5882 |
|
|
/* Compute VOFFSET and then POS. The next byte position multiple of some
|
5883 |
|
|
alignment after some address is obtained by "and"ing the alignment minus
|
5884 |
|
|
1 with the two's complement of the address. */
|
5885 |
|
|
|
5886 |
|
|
voffset_st = size_binop (BIT_AND_EXPR,
|
5887 |
|
|
size_diffop (size_zero_node, vblock_addr_st),
|
5888 |
|
|
ssize_int ((align / BITS_PER_UNIT) - 1));
|
5889 |
|
|
|
5890 |
|
|
/* POS = (ROOM + VOFFSET) * BIT_PER_UNIT, in bitsizetype. */
|
5891 |
|
|
|
5892 |
|
|
pos = size_binop (MULT_EXPR,
|
5893 |
|
|
convert (bitsizetype,
|
5894 |
|
|
size_binop (PLUS_EXPR, room_st, voffset_st)),
|
5895 |
|
|
bitsize_unit_node);
|
5896 |
|
|
|
5897 |
|
|
/* Craft the GCC record representation. We exceptionally do everything
|
5898 |
|
|
manually here because 1) our generic circuitry is not quite ready to
|
5899 |
|
|
handle the complex position/size expressions we are setting up, 2) we
|
5900 |
|
|
have a strong simplifying factor at hand: we know the maximum possible
|
5901 |
|
|
value of voffset, and 3) we have to set/reset at least the sizes in
|
5902 |
|
|
accordance with this maximum value anyway, as we need them to convey
|
5903 |
|
|
what should be "alloc"ated for this type.
|
5904 |
|
|
|
5905 |
|
|
Use -1 as the 'addressable' indication for the field to prevent the
|
5906 |
|
|
creation of a bitfield. We don't need one, it would have damaging
|
5907 |
|
|
consequences on the alignment computation, and create_field_decl would
|
5908 |
|
|
make one without this special argument, for instance because of the
|
5909 |
|
|
complex position expression. */
|
5910 |
|
|
|
5911 |
|
|
field = create_field_decl (get_identifier ("F"), type, record_type,
|
5912 |
|
|
1, size, pos, -1);
|
5913 |
|
|
TYPE_FIELDS (record_type) = field;
|
5914 |
|
|
|
5915 |
|
|
TYPE_ALIGN (record_type) = base_align;
|
5916 |
|
|
TYPE_USER_ALIGN (record_type) = 1;
|
5917 |
|
|
|
5918 |
|
|
TYPE_SIZE (record_type)
|
5919 |
|
|
= size_binop (PLUS_EXPR,
|
5920 |
|
|
size_binop (MULT_EXPR, convert (bitsizetype, size),
|
5921 |
|
|
bitsize_unit_node),
|
5922 |
|
|
bitsize_int (align + room * BITS_PER_UNIT));
|
5923 |
|
|
TYPE_SIZE_UNIT (record_type)
|
5924 |
|
|
= size_binop (PLUS_EXPR, size,
|
5925 |
|
|
size_int (room + align / BITS_PER_UNIT));
|
5926 |
|
|
|
5927 |
|
|
SET_TYPE_MODE (record_type, BLKmode);
|
5928 |
|
|
|
5929 |
|
|
relate_alias_sets (record_type, type, ALIAS_SET_COPY);
|
5930 |
|
|
return record_type;
|
5931 |
|
|
}
|
5932 |
|
|
|
5933 |
|
|
/* Return the result of rounding T up to ALIGN. */
|
5934 |
|
|
|
5935 |
|
|
static inline unsigned HOST_WIDE_INT
|
5936 |
|
|
round_up_to_align (unsigned HOST_WIDE_INT t, unsigned int align)
|
5937 |
|
|
{
|
5938 |
|
|
t += align - 1;
|
5939 |
|
|
t /= align;
|
5940 |
|
|
t *= align;
|
5941 |
|
|
return t;
|
5942 |
|
|
}
|
5943 |
|
|
|
5944 |
|
|
/* TYPE is a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE that is being used
|
5945 |
|
|
as the field type of a packed record if IN_RECORD is true, or as the
|
5946 |
|
|
component type of a packed array if IN_RECORD is false. See if we can
|
5947 |
|
|
rewrite it either as a type that has a non-BLKmode, which we can pack
|
5948 |
|
|
tighter in the packed record case, or as a smaller type. If so, return
|
5949 |
|
|
the new type. If not, return the original type. */
|
5950 |
|
|
|
5951 |
|
|
static tree
|
5952 |
|
|
make_packable_type (tree type, bool in_record)
|
5953 |
|
|
{
|
5954 |
|
|
unsigned HOST_WIDE_INT size = tree_low_cst (TYPE_SIZE (type), 1);
|
5955 |
|
|
unsigned HOST_WIDE_INT new_size;
|
5956 |
|
|
tree new_type, old_field, field_list = NULL_TREE;
|
5957 |
|
|
|
5958 |
|
|
/* No point in doing anything if the size is zero. */
|
5959 |
|
|
if (size == 0)
|
5960 |
|
|
return type;
|
5961 |
|
|
|
5962 |
|
|
new_type = make_node (TREE_CODE (type));
|
5963 |
|
|
|
5964 |
|
|
/* Copy the name and flags from the old type to that of the new.
|
5965 |
|
|
Note that we rely on the pointer equality created here for
|
5966 |
|
|
TYPE_NAME to look through conversions in various places. */
|
5967 |
|
|
TYPE_NAME (new_type) = TYPE_NAME (type);
|
5968 |
|
|
TYPE_JUSTIFIED_MODULAR_P (new_type) = TYPE_JUSTIFIED_MODULAR_P (type);
|
5969 |
|
|
TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type);
|
5970 |
|
|
if (TREE_CODE (type) == RECORD_TYPE)
|
5971 |
|
|
TYPE_PADDING_P (new_type) = TYPE_PADDING_P (type);
|
5972 |
|
|
|
5973 |
|
|
/* If we are in a record and have a small size, set the alignment to
|
5974 |
|
|
try for an integral mode. Otherwise set it to try for a smaller
|
5975 |
|
|
type with BLKmode. */
|
5976 |
|
|
if (in_record && size <= MAX_FIXED_MODE_SIZE)
|
5977 |
|
|
{
|
5978 |
|
|
TYPE_ALIGN (new_type) = ceil_alignment (size);
|
5979 |
|
|
new_size = round_up_to_align (size, TYPE_ALIGN (new_type));
|
5980 |
|
|
}
|
5981 |
|
|
else
|
5982 |
|
|
{
|
5983 |
|
|
unsigned HOST_WIDE_INT align;
|
5984 |
|
|
|
5985 |
|
|
/* Do not try to shrink the size if the RM size is not constant. */
|
5986 |
|
|
if (TYPE_CONTAINS_TEMPLATE_P (type)
|
5987 |
|
|
|| !host_integerp (TYPE_ADA_SIZE (type), 1))
|
5988 |
|
|
return type;
|
5989 |
|
|
|
5990 |
|
|
/* Round the RM size up to a unit boundary to get the minimal size
|
5991 |
|
|
for a BLKmode record. Give up if it's already the size. */
|
5992 |
|
|
new_size = TREE_INT_CST_LOW (TYPE_ADA_SIZE (type));
|
5993 |
|
|
new_size = round_up_to_align (new_size, BITS_PER_UNIT);
|
5994 |
|
|
if (new_size == size)
|
5995 |
|
|
return type;
|
5996 |
|
|
|
5997 |
|
|
align = new_size & -new_size;
|
5998 |
|
|
TYPE_ALIGN (new_type) = MIN (TYPE_ALIGN (type), align);
|
5999 |
|
|
}
|
6000 |
|
|
|
6001 |
|
|
TYPE_USER_ALIGN (new_type) = 1;
|
6002 |
|
|
|
6003 |
|
|
/* Now copy the fields, keeping the position and size as we don't want
|
6004 |
|
|
to change the layout by propagating the packedness downwards. */
|
6005 |
|
|
for (old_field = TYPE_FIELDS (type); old_field;
|
6006 |
|
|
old_field = TREE_CHAIN (old_field))
|
6007 |
|
|
{
|
6008 |
|
|
tree new_field_type = TREE_TYPE (old_field);
|
6009 |
|
|
tree new_field, new_size;
|
6010 |
|
|
|
6011 |
|
|
if ((TREE_CODE (new_field_type) == RECORD_TYPE
|
6012 |
|
|
|| TREE_CODE (new_field_type) == UNION_TYPE
|
6013 |
|
|
|| TREE_CODE (new_field_type) == QUAL_UNION_TYPE)
|
6014 |
|
|
&& !TYPE_FAT_POINTER_P (new_field_type)
|
6015 |
|
|
&& host_integerp (TYPE_SIZE (new_field_type), 1))
|
6016 |
|
|
new_field_type = make_packable_type (new_field_type, true);
|
6017 |
|
|
|
6018 |
|
|
/* However, for the last field in a not already packed record type
|
6019 |
|
|
that is of an aggregate type, we need to use the RM size in the
|
6020 |
|
|
packable version of the record type, see finish_record_type. */
|
6021 |
|
|
if (!TREE_CHAIN (old_field)
|
6022 |
|
|
&& !TYPE_PACKED (type)
|
6023 |
|
|
&& (TREE_CODE (new_field_type) == RECORD_TYPE
|
6024 |
|
|
|| TREE_CODE (new_field_type) == UNION_TYPE
|
6025 |
|
|
|| TREE_CODE (new_field_type) == QUAL_UNION_TYPE)
|
6026 |
|
|
&& !TYPE_FAT_POINTER_P (new_field_type)
|
6027 |
|
|
&& !TYPE_CONTAINS_TEMPLATE_P (new_field_type)
|
6028 |
|
|
&& TYPE_ADA_SIZE (new_field_type))
|
6029 |
|
|
new_size = TYPE_ADA_SIZE (new_field_type);
|
6030 |
|
|
else
|
6031 |
|
|
new_size = DECL_SIZE (old_field);
|
6032 |
|
|
|
6033 |
|
|
new_field = create_field_decl (DECL_NAME (old_field), new_field_type,
|
6034 |
|
|
new_type, TYPE_PACKED (type), new_size,
|
6035 |
|
|
bit_position (old_field),
|
6036 |
|
|
!DECL_NONADDRESSABLE_P (old_field));
|
6037 |
|
|
|
6038 |
|
|
DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field);
|
6039 |
|
|
SET_DECL_ORIGINAL_FIELD
|
6040 |
|
|
(new_field, (DECL_ORIGINAL_FIELD (old_field)
|
6041 |
|
|
? DECL_ORIGINAL_FIELD (old_field) : old_field));
|
6042 |
|
|
|
6043 |
|
|
if (TREE_CODE (new_type) == QUAL_UNION_TYPE)
|
6044 |
|
|
DECL_QUALIFIER (new_field) = DECL_QUALIFIER (old_field);
|
6045 |
|
|
|
6046 |
|
|
TREE_CHAIN (new_field) = field_list;
|
6047 |
|
|
field_list = new_field;
|
6048 |
|
|
}
|
6049 |
|
|
|
6050 |
|
|
finish_record_type (new_type, nreverse (field_list), 2, false);
|
6051 |
|
|
relate_alias_sets (new_type, type, ALIAS_SET_COPY);
|
6052 |
|
|
|
6053 |
|
|
/* If this is a padding record, we never want to make the size smaller
|
6054 |
|
|
than what was specified. For QUAL_UNION_TYPE, also copy the size. */
|
6055 |
|
|
if (TYPE_IS_PADDING_P (type) || TREE_CODE (type) == QUAL_UNION_TYPE)
|
6056 |
|
|
{
|
6057 |
|
|
TYPE_SIZE (new_type) = TYPE_SIZE (type);
|
6058 |
|
|
TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type);
|
6059 |
|
|
new_size = size;
|
6060 |
|
|
}
|
6061 |
|
|
else
|
6062 |
|
|
{
|
6063 |
|
|
TYPE_SIZE (new_type) = bitsize_int (new_size);
|
6064 |
|
|
TYPE_SIZE_UNIT (new_type)
|
6065 |
|
|
= size_int ((new_size + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
|
6066 |
|
|
}
|
6067 |
|
|
|
6068 |
|
|
if (!TYPE_CONTAINS_TEMPLATE_P (type))
|
6069 |
|
|
SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (type));
|
6070 |
|
|
|
6071 |
|
|
compute_record_mode (new_type);
|
6072 |
|
|
|
6073 |
|
|
/* Try harder to get a packable type if necessary, for example
|
6074 |
|
|
in case the record itself contains a BLKmode field. */
|
6075 |
|
|
if (in_record && TYPE_MODE (new_type) == BLKmode)
|
6076 |
|
|
SET_TYPE_MODE (new_type,
|
6077 |
|
|
mode_for_size_tree (TYPE_SIZE (new_type), MODE_INT, 1));
|
6078 |
|
|
|
6079 |
|
|
/* If neither the mode nor the size has shrunk, return the old type. */
|
6080 |
|
|
if (TYPE_MODE (new_type) == BLKmode && new_size >= size)
|
6081 |
|
|
return type;
|
6082 |
|
|
|
6083 |
|
|
return new_type;
|
6084 |
|
|
}
|
6085 |
|
|
|
6086 |
|
|
/* Ensure that TYPE has SIZE and ALIGN. Make and return a new padded type
|
6087 |
|
|
if needed. We have already verified that SIZE and TYPE are large enough.
|
6088 |
|
|
GNAT_ENTITY is used to name the resulting record and to issue a warning.
|
6089 |
|
|
IS_COMPONENT_TYPE is true if this is being done for the component type
|
6090 |
|
|
of an array. IS_USER_TYPE is true if we must complete the original type.
|
6091 |
|
|
DEFINITION is true if this type is being defined. SAME_RM_SIZE is true
|
6092 |
|
|
if the RM size of the resulting type is to be set to SIZE too; otherwise,
|
6093 |
|
|
it's set to the RM size of the original type. */
|
6094 |
|
|
|
6095 |
|
|
tree
|
6096 |
|
|
maybe_pad_type (tree type, tree size, unsigned int align,
|
6097 |
|
|
Entity_Id gnat_entity, bool is_component_type,
|
6098 |
|
|
bool is_user_type, bool definition, bool same_rm_size)
|
6099 |
|
|
{
|
6100 |
|
|
tree orig_rm_size = same_rm_size ? NULL_TREE : rm_size (type);
|
6101 |
|
|
tree orig_size = TYPE_SIZE (type);
|
6102 |
|
|
tree record, field;
|
6103 |
|
|
|
6104 |
|
|
/* If TYPE is a padded type, see if it agrees with any size and alignment
|
6105 |
|
|
we were given. If so, return the original type. Otherwise, strip
|
6106 |
|
|
off the padding, since we will either be returning the inner type
|
6107 |
|
|
or repadding it. If no size or alignment is specified, use that of
|
6108 |
|
|
the original padded type. */
|
6109 |
|
|
if (TYPE_IS_PADDING_P (type))
|
6110 |
|
|
{
|
6111 |
|
|
if ((!size
|
6112 |
|
|
|| operand_equal_p (round_up (size,
|
6113 |
|
|
MAX (align, TYPE_ALIGN (type))),
|
6114 |
|
|
round_up (TYPE_SIZE (type),
|
6115 |
|
|
MAX (align, TYPE_ALIGN (type))),
|
6116 |
|
|
0))
|
6117 |
|
|
&& (align == 0 || align == TYPE_ALIGN (type)))
|
6118 |
|
|
return type;
|
6119 |
|
|
|
6120 |
|
|
if (!size)
|
6121 |
|
|
size = TYPE_SIZE (type);
|
6122 |
|
|
if (align == 0)
|
6123 |
|
|
align = TYPE_ALIGN (type);
|
6124 |
|
|
|
6125 |
|
|
type = TREE_TYPE (TYPE_FIELDS (type));
|
6126 |
|
|
orig_size = TYPE_SIZE (type);
|
6127 |
|
|
}
|
6128 |
|
|
|
6129 |
|
|
/* If the size is either not being changed or is being made smaller (which
|
6130 |
|
|
is not done here and is only valid for bitfields anyway), show the size
|
6131 |
|
|
isn't changing. Likewise, clear the alignment if it isn't being
|
6132 |
|
|
changed. Then return if we aren't doing anything. */
|
6133 |
|
|
if (size
|
6134 |
|
|
&& (operand_equal_p (size, orig_size, 0)
|
6135 |
|
|
|| (TREE_CODE (orig_size) == INTEGER_CST
|
6136 |
|
|
&& tree_int_cst_lt (size, orig_size))))
|
6137 |
|
|
size = NULL_TREE;
|
6138 |
|
|
|
6139 |
|
|
if (align == TYPE_ALIGN (type))
|
6140 |
|
|
align = 0;
|
6141 |
|
|
|
6142 |
|
|
if (align == 0 && !size)
|
6143 |
|
|
return type;
|
6144 |
|
|
|
6145 |
|
|
/* If requested, complete the original type and give it a name. */
|
6146 |
|
|
if (is_user_type)
|
6147 |
|
|
create_type_decl (get_entity_name (gnat_entity), type,
|
6148 |
|
|
NULL, !Comes_From_Source (gnat_entity),
|
6149 |
|
|
!(TYPE_NAME (type)
|
6150 |
|
|
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
6151 |
|
|
&& DECL_IGNORED_P (TYPE_NAME (type))),
|
6152 |
|
|
gnat_entity);
|
6153 |
|
|
|
6154 |
|
|
/* We used to modify the record in place in some cases, but that could
|
6155 |
|
|
generate incorrect debugging information. So make a new record
|
6156 |
|
|
type and name. */
|
6157 |
|
|
record = make_node (RECORD_TYPE);
|
6158 |
|
|
TYPE_PADDING_P (record) = 1;
|
6159 |
|
|
|
6160 |
|
|
if (Present (gnat_entity))
|
6161 |
|
|
TYPE_NAME (record) = create_concat_name (gnat_entity, "PAD");
|
6162 |
|
|
|
6163 |
|
|
TYPE_VOLATILE (record)
|
6164 |
|
|
= Present (gnat_entity) && Treat_As_Volatile (gnat_entity);
|
6165 |
|
|
|
6166 |
|
|
TYPE_ALIGN (record) = align;
|
6167 |
|
|
TYPE_SIZE (record) = size ? size : orig_size;
|
6168 |
|
|
TYPE_SIZE_UNIT (record)
|
6169 |
|
|
= convert (sizetype,
|
6170 |
|
|
size_binop (CEIL_DIV_EXPR, TYPE_SIZE (record),
|
6171 |
|
|
bitsize_unit_node));
|
6172 |
|
|
|
6173 |
|
|
/* If we are changing the alignment and the input type is a record with
|
6174 |
|
|
BLKmode and a small constant size, try to make a form that has an
|
6175 |
|
|
integral mode. This might allow the padding record to also have an
|
6176 |
|
|
integral mode, which will be much more efficient. There is no point
|
6177 |
|
|
in doing so if a size is specified unless it is also a small constant
|
6178 |
|
|
size and it is incorrect to do so if we cannot guarantee that the mode
|
6179 |
|
|
will be naturally aligned since the field must always be addressable.
|
6180 |
|
|
|
6181 |
|
|
??? This might not always be a win when done for a stand-alone object:
|
6182 |
|
|
since the nominal and the effective type of the object will now have
|
6183 |
|
|
different modes, a VIEW_CONVERT_EXPR will be required for converting
|
6184 |
|
|
between them and it might be hard to overcome afterwards, including
|
6185 |
|
|
at the RTL level when the stand-alone object is accessed as a whole. */
|
6186 |
|
|
if (align != 0
|
6187 |
|
|
&& TREE_CODE (type) == RECORD_TYPE
|
6188 |
|
|
&& TYPE_MODE (type) == BLKmode
|
6189 |
|
|
&& TREE_CODE (orig_size) == INTEGER_CST
|
6190 |
|
|
&& !TREE_OVERFLOW (orig_size)
|
6191 |
|
|
&& compare_tree_int (orig_size, MAX_FIXED_MODE_SIZE) <= 0
|
6192 |
|
|
&& (!size
|
6193 |
|
|
|| (TREE_CODE (size) == INTEGER_CST
|
6194 |
|
|
&& compare_tree_int (size, MAX_FIXED_MODE_SIZE) <= 0)))
|
6195 |
|
|
{
|
6196 |
|
|
tree packable_type = make_packable_type (type, true);
|
6197 |
|
|
if (TYPE_MODE (packable_type) != BLKmode
|
6198 |
|
|
&& align >= TYPE_ALIGN (packable_type))
|
6199 |
|
|
type = packable_type;
|
6200 |
|
|
}
|
6201 |
|
|
|
6202 |
|
|
/* Now create the field with the original size. */
|
6203 |
|
|
field = create_field_decl (get_identifier ("F"), type, record, 0,
|
6204 |
|
|
orig_size, bitsize_zero_node, 1);
|
6205 |
|
|
DECL_INTERNAL_P (field) = 1;
|
6206 |
|
|
|
6207 |
|
|
/* Do not emit debug info until after the auxiliary record is built. */
|
6208 |
|
|
finish_record_type (record, field, 1, false);
|
6209 |
|
|
|
6210 |
|
|
/* Set the same size for its RM size if requested; otherwise reuse
|
6211 |
|
|
the RM size of the original type. */
|
6212 |
|
|
SET_TYPE_ADA_SIZE (record, same_rm_size ? size : orig_rm_size);
|
6213 |
|
|
|
6214 |
|
|
/* Unless debugging information isn't being written for the input type,
|
6215 |
|
|
write a record that shows what we are a subtype of and also make a
|
6216 |
|
|
variable that indicates our size, if still variable. */
|
6217 |
|
|
if (TREE_CODE (orig_size) != INTEGER_CST
|
6218 |
|
|
&& TYPE_NAME (record)
|
6219 |
|
|
&& TYPE_NAME (type)
|
6220 |
|
|
&& !(TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
6221 |
|
|
&& DECL_IGNORED_P (TYPE_NAME (type))))
|
6222 |
|
|
{
|
6223 |
|
|
tree marker = make_node (RECORD_TYPE);
|
6224 |
|
|
tree name = TYPE_NAME (record);
|
6225 |
|
|
tree orig_name = TYPE_NAME (type);
|
6226 |
|
|
|
6227 |
|
|
if (TREE_CODE (name) == TYPE_DECL)
|
6228 |
|
|
name = DECL_NAME (name);
|
6229 |
|
|
|
6230 |
|
|
if (TREE_CODE (orig_name) == TYPE_DECL)
|
6231 |
|
|
orig_name = DECL_NAME (orig_name);
|
6232 |
|
|
|
6233 |
|
|
TYPE_NAME (marker) = concat_name (name, "XVS");
|
6234 |
|
|
finish_record_type (marker,
|
6235 |
|
|
create_field_decl (orig_name,
|
6236 |
|
|
build_reference_type (type),
|
6237 |
|
|
marker, 0, NULL_TREE, NULL_TREE,
|
6238 |
|
|
0),
|
6239 |
|
|
0, true);
|
6240 |
|
|
|
6241 |
|
|
add_parallel_type (TYPE_STUB_DECL (record), marker);
|
6242 |
|
|
|
6243 |
|
|
if (definition && size && TREE_CODE (size) != INTEGER_CST)
|
6244 |
|
|
create_var_decl (concat_name (name, "XVZ"), NULL_TREE, sizetype,
|
6245 |
|
|
TYPE_SIZE_UNIT (record), false, false, false,
|
6246 |
|
|
false, NULL, gnat_entity);
|
6247 |
|
|
}
|
6248 |
|
|
|
6249 |
|
|
rest_of_record_type_compilation (record);
|
6250 |
|
|
|
6251 |
|
|
/* If the size was widened explicitly, maybe give a warning. Take the
|
6252 |
|
|
original size as the maximum size of the input if there was an
|
6253 |
|
|
unconstrained record involved and round it up to the specified alignment,
|
6254 |
|
|
if one was specified. */
|
6255 |
|
|
if (CONTAINS_PLACEHOLDER_P (orig_size))
|
6256 |
|
|
orig_size = max_size (orig_size, true);
|
6257 |
|
|
|
6258 |
|
|
if (align)
|
6259 |
|
|
orig_size = round_up (orig_size, align);
|
6260 |
|
|
|
6261 |
|
|
if (Present (gnat_entity)
|
6262 |
|
|
&& size
|
6263 |
|
|
&& TREE_CODE (size) != MAX_EXPR
|
6264 |
|
|
&& !operand_equal_p (size, orig_size, 0)
|
6265 |
|
|
&& !(TREE_CODE (size) == INTEGER_CST
|
6266 |
|
|
&& TREE_CODE (orig_size) == INTEGER_CST
|
6267 |
|
|
&& tree_int_cst_lt (size, orig_size)))
|
6268 |
|
|
{
|
6269 |
|
|
Node_Id gnat_error_node = Empty;
|
6270 |
|
|
|
6271 |
|
|
if (Is_Packed_Array_Type (gnat_entity))
|
6272 |
|
|
gnat_entity = Original_Array_Type (gnat_entity);
|
6273 |
|
|
|
6274 |
|
|
if ((Ekind (gnat_entity) == E_Component
|
6275 |
|
|
|| Ekind (gnat_entity) == E_Discriminant)
|
6276 |
|
|
&& Present (Component_Clause (gnat_entity)))
|
6277 |
|
|
gnat_error_node = Last_Bit (Component_Clause (gnat_entity));
|
6278 |
|
|
else if (Present (Size_Clause (gnat_entity)))
|
6279 |
|
|
gnat_error_node = Expression (Size_Clause (gnat_entity));
|
6280 |
|
|
|
6281 |
|
|
/* Generate message only for entities that come from source, since
|
6282 |
|
|
if we have an entity created by expansion, the message will be
|
6283 |
|
|
generated for some other corresponding source entity. */
|
6284 |
|
|
if (Comes_From_Source (gnat_entity))
|
6285 |
|
|
{
|
6286 |
|
|
if (Present (gnat_error_node))
|
6287 |
|
|
post_error_ne_tree ("{^ }bits of & unused?",
|
6288 |
|
|
gnat_error_node, gnat_entity,
|
6289 |
|
|
size_diffop (size, orig_size));
|
6290 |
|
|
else if (is_component_type)
|
6291 |
|
|
post_error_ne_tree ("component of& padded{ by ^ bits}?",
|
6292 |
|
|
gnat_entity, gnat_entity,
|
6293 |
|
|
size_diffop (size, orig_size));
|
6294 |
|
|
}
|
6295 |
|
|
}
|
6296 |
|
|
|
6297 |
|
|
return record;
|
6298 |
|
|
}
|
6299 |
|
|
|
6300 |
|
|
/* Given a GNU tree and a GNAT list of choices, generate an expression to test
|
6301 |
|
|
the value passed against the list of choices. */
|
6302 |
|
|
|
6303 |
|
|
tree
|
6304 |
|
|
choices_to_gnu (tree operand, Node_Id choices)
|
6305 |
|
|
{
|
6306 |
|
|
Node_Id choice;
|
6307 |
|
|
Node_Id gnat_temp;
|
6308 |
|
|
tree result = integer_zero_node;
|
6309 |
|
|
tree this_test, low = 0, high = 0, single = 0;
|
6310 |
|
|
|
6311 |
|
|
for (choice = First (choices); Present (choice); choice = Next (choice))
|
6312 |
|
|
{
|
6313 |
|
|
switch (Nkind (choice))
|
6314 |
|
|
{
|
6315 |
|
|
case N_Range:
|
6316 |
|
|
low = gnat_to_gnu (Low_Bound (choice));
|
6317 |
|
|
high = gnat_to_gnu (High_Bound (choice));
|
6318 |
|
|
|
6319 |
|
|
/* There's no good type to use here, so we might as well use
|
6320 |
|
|
integer_type_node. */
|
6321 |
|
|
this_test
|
6322 |
|
|
= build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
|
6323 |
|
|
build_binary_op (GE_EXPR, integer_type_node,
|
6324 |
|
|
operand, low),
|
6325 |
|
|
build_binary_op (LE_EXPR, integer_type_node,
|
6326 |
|
|
operand, high));
|
6327 |
|
|
|
6328 |
|
|
break;
|
6329 |
|
|
|
6330 |
|
|
case N_Subtype_Indication:
|
6331 |
|
|
gnat_temp = Range_Expression (Constraint (choice));
|
6332 |
|
|
low = gnat_to_gnu (Low_Bound (gnat_temp));
|
6333 |
|
|
high = gnat_to_gnu (High_Bound (gnat_temp));
|
6334 |
|
|
|
6335 |
|
|
this_test
|
6336 |
|
|
= build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
|
6337 |
|
|
build_binary_op (GE_EXPR, integer_type_node,
|
6338 |
|
|
operand, low),
|
6339 |
|
|
build_binary_op (LE_EXPR, integer_type_node,
|
6340 |
|
|
operand, high));
|
6341 |
|
|
break;
|
6342 |
|
|
|
6343 |
|
|
case N_Identifier:
|
6344 |
|
|
case N_Expanded_Name:
|
6345 |
|
|
/* This represents either a subtype range, an enumeration
|
6346 |
|
|
literal, or a constant Ekind says which. If an enumeration
|
6347 |
|
|
literal or constant, fall through to the next case. */
|
6348 |
|
|
if (Ekind (Entity (choice)) != E_Enumeration_Literal
|
6349 |
|
|
&& Ekind (Entity (choice)) != E_Constant)
|
6350 |
|
|
{
|
6351 |
|
|
tree type = gnat_to_gnu_type (Entity (choice));
|
6352 |
|
|
|
6353 |
|
|
low = TYPE_MIN_VALUE (type);
|
6354 |
|
|
high = TYPE_MAX_VALUE (type);
|
6355 |
|
|
|
6356 |
|
|
this_test
|
6357 |
|
|
= build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
|
6358 |
|
|
build_binary_op (GE_EXPR, integer_type_node,
|
6359 |
|
|
operand, low),
|
6360 |
|
|
build_binary_op (LE_EXPR, integer_type_node,
|
6361 |
|
|
operand, high));
|
6362 |
|
|
break;
|
6363 |
|
|
}
|
6364 |
|
|
|
6365 |
|
|
/* ... fall through ... */
|
6366 |
|
|
|
6367 |
|
|
case N_Character_Literal:
|
6368 |
|
|
case N_Integer_Literal:
|
6369 |
|
|
single = gnat_to_gnu (choice);
|
6370 |
|
|
this_test = build_binary_op (EQ_EXPR, integer_type_node, operand,
|
6371 |
|
|
single);
|
6372 |
|
|
break;
|
6373 |
|
|
|
6374 |
|
|
case N_Others_Choice:
|
6375 |
|
|
this_test = integer_one_node;
|
6376 |
|
|
break;
|
6377 |
|
|
|
6378 |
|
|
default:
|
6379 |
|
|
gcc_unreachable ();
|
6380 |
|
|
}
|
6381 |
|
|
|
6382 |
|
|
result = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node,
|
6383 |
|
|
result, this_test);
|
6384 |
|
|
}
|
6385 |
|
|
|
6386 |
|
|
return result;
|
6387 |
|
|
}
|
6388 |
|
|
|
6389 |
|
|
/* Adjust PACKED setting as passed to gnat_to_gnu_field for a field of
|
6390 |
|
|
type FIELD_TYPE to be placed in RECORD_TYPE. Return the result. */
|
6391 |
|
|
|
6392 |
|
|
static int
|
6393 |
|
|
adjust_packed (tree field_type, tree record_type, int packed)
|
6394 |
|
|
{
|
6395 |
|
|
/* If the field contains an item of variable size, we cannot pack it
|
6396 |
|
|
because we cannot create temporaries of non-fixed size in case
|
6397 |
|
|
we need to take the address of the field. See addressable_p and
|
6398 |
|
|
the notes on the addressability issues for further details. */
|
6399 |
|
|
if (is_variable_size (field_type))
|
6400 |
|
|
return 0;
|
6401 |
|
|
|
6402 |
|
|
/* If the alignment of the record is specified and the field type
|
6403 |
|
|
is over-aligned, request Storage_Unit alignment for the field. */
|
6404 |
|
|
if (packed == -2)
|
6405 |
|
|
{
|
6406 |
|
|
if (TYPE_ALIGN (field_type) > TYPE_ALIGN (record_type))
|
6407 |
|
|
return -1;
|
6408 |
|
|
else
|
6409 |
|
|
return 0;
|
6410 |
|
|
}
|
6411 |
|
|
|
6412 |
|
|
return packed;
|
6413 |
|
|
}
|
6414 |
|
|
|
6415 |
|
|
/* Return a GCC tree for a field corresponding to GNAT_FIELD to be
|
6416 |
|
|
placed in GNU_RECORD_TYPE.
|
6417 |
|
|
|
6418 |
|
|
PACKED is 1 if the enclosing record is packed, -1 if the enclosing
|
6419 |
|
|
record has Component_Alignment of Storage_Unit, -2 if the enclosing
|
6420 |
|
|
record has a specified alignment.
|
6421 |
|
|
|
6422 |
|
|
DEFINITION is true if this field is for a record being defined.
|
6423 |
|
|
|
6424 |
|
|
DEBUG_INFO_P is true if we need to write debug information for types
|
6425 |
|
|
that we may create in the process. */
|
6426 |
|
|
|
6427 |
|
|
static tree
|
6428 |
|
|
gnat_to_gnu_field (Entity_Id gnat_field, tree gnu_record_type, int packed,
|
6429 |
|
|
bool definition, bool debug_info_p)
|
6430 |
|
|
{
|
6431 |
|
|
tree gnu_field_id = get_entity_name (gnat_field);
|
6432 |
|
|
tree gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));
|
6433 |
|
|
tree gnu_field, gnu_size, gnu_pos;
|
6434 |
|
|
bool needs_strict_alignment
|
6435 |
|
|
= (Is_Aliased (gnat_field) || Strict_Alignment (Etype (gnat_field))
|
6436 |
|
|
|| Treat_As_Volatile (gnat_field));
|
6437 |
|
|
|
6438 |
|
|
/* If this field requires strict alignment, we cannot pack it because
|
6439 |
|
|
it would very likely be under-aligned in the record. */
|
6440 |
|
|
if (needs_strict_alignment)
|
6441 |
|
|
packed = 0;
|
6442 |
|
|
else
|
6443 |
|
|
packed = adjust_packed (gnu_field_type, gnu_record_type, packed);
|
6444 |
|
|
|
6445 |
|
|
/* If a size is specified, use it. Otherwise, if the record type is packed,
|
6446 |
|
|
use the official RM size. See "Handling of Type'Size Values" in Einfo
|
6447 |
|
|
for further details. */
|
6448 |
|
|
if (Known_Static_Esize (gnat_field))
|
6449 |
|
|
gnu_size = validate_size (Esize (gnat_field), gnu_field_type,
|
6450 |
|
|
gnat_field, FIELD_DECL, false, true);
|
6451 |
|
|
else if (packed == 1)
|
6452 |
|
|
gnu_size = validate_size (RM_Size (Etype (gnat_field)), gnu_field_type,
|
6453 |
|
|
gnat_field, FIELD_DECL, false, true);
|
6454 |
|
|
else
|
6455 |
|
|
gnu_size = NULL_TREE;
|
6456 |
|
|
|
6457 |
|
|
/* If we have a specified size that is smaller than that of the field's type,
|
6458 |
|
|
or a position is specified, and the field's type is a record that doesn't
|
6459 |
|
|
require strict alignment, see if we can get either an integral mode form
|
6460 |
|
|
of the type or a smaller form. If we can, show a size was specified for
|
6461 |
|
|
the field if there wasn't one already, so we know to make this a bitfield
|
6462 |
|
|
and avoid making things wider.
|
6463 |
|
|
|
6464 |
|
|
Changing to an integral mode form is useful when the record is packed as
|
6465 |
|
|
we can then place the field at a non-byte-aligned position and so achieve
|
6466 |
|
|
tighter packing. This is in addition required if the field shares a byte
|
6467 |
|
|
with another field and the front-end lets the back-end handle the access
|
6468 |
|
|
to the field, because GCC cannot handle non-byte-aligned BLKmode fields.
|
6469 |
|
|
|
6470 |
|
|
Changing to a smaller form is required if the specified size is smaller
|
6471 |
|
|
than that of the field's type and the type contains sub-fields that are
|
6472 |
|
|
padded, in order to avoid generating accesses to these sub-fields that
|
6473 |
|
|
are wider than the field.
|
6474 |
|
|
|
6475 |
|
|
We avoid the transformation if it is not required or potentially useful,
|
6476 |
|
|
as it might entail an increase of the field's alignment and have ripple
|
6477 |
|
|
effects on the outer record type. A typical case is a field known to be
|
6478 |
|
|
byte-aligned and not to share a byte with another field. */
|
6479 |
|
|
if (!needs_strict_alignment
|
6480 |
|
|
&& TREE_CODE (gnu_field_type) == RECORD_TYPE
|
6481 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_field_type)
|
6482 |
|
|
&& host_integerp (TYPE_SIZE (gnu_field_type), 1)
|
6483 |
|
|
&& (packed == 1
|
6484 |
|
|
|| (gnu_size
|
6485 |
|
|
&& (tree_int_cst_lt (gnu_size, TYPE_SIZE (gnu_field_type))
|
6486 |
|
|
|| (Present (Component_Clause (gnat_field))
|
6487 |
|
|
&& !(UI_To_Int (Component_Bit_Offset (gnat_field))
|
6488 |
|
|
% BITS_PER_UNIT == 0
|
6489 |
|
|
&& value_factor_p (gnu_size, BITS_PER_UNIT)))))))
|
6490 |
|
|
{
|
6491 |
|
|
tree gnu_packable_type = make_packable_type (gnu_field_type, true);
|
6492 |
|
|
if (gnu_packable_type != gnu_field_type)
|
6493 |
|
|
{
|
6494 |
|
|
gnu_field_type = gnu_packable_type;
|
6495 |
|
|
if (!gnu_size)
|
6496 |
|
|
gnu_size = rm_size (gnu_field_type);
|
6497 |
|
|
}
|
6498 |
|
|
}
|
6499 |
|
|
|
6500 |
|
|
/* If we are packing the record and the field is BLKmode, round the
|
6501 |
|
|
size up to a byte boundary. */
|
6502 |
|
|
if (packed && TYPE_MODE (gnu_field_type) == BLKmode && gnu_size)
|
6503 |
|
|
gnu_size = round_up (gnu_size, BITS_PER_UNIT);
|
6504 |
|
|
|
6505 |
|
|
if (Present (Component_Clause (gnat_field)))
|
6506 |
|
|
{
|
6507 |
|
|
Entity_Id gnat_parent
|
6508 |
|
|
= Parent_Subtype (Underlying_Type (Scope (gnat_field)));
|
6509 |
|
|
|
6510 |
|
|
gnu_pos = UI_To_gnu (Component_Bit_Offset (gnat_field), bitsizetype);
|
6511 |
|
|
gnu_size = validate_size (Esize (gnat_field), gnu_field_type,
|
6512 |
|
|
gnat_field, FIELD_DECL, false, true);
|
6513 |
|
|
|
6514 |
|
|
/* Ensure the position does not overlap with the parent subtype, if there
|
6515 |
|
|
is one. This test is omitted if the parent of the tagged type has a
|
6516 |
|
|
full rep clause since, in this case, component clauses are allowed to
|
6517 |
|
|
overlay the space allocated for the parent type and the front-end has
|
6518 |
|
|
checked that there are no overlapping components. */
|
6519 |
|
|
if (Present (gnat_parent) && !Is_Fully_Repped_Tagged_Type (gnat_parent))
|
6520 |
|
|
{
|
6521 |
|
|
tree gnu_parent = gnat_to_gnu_type (gnat_parent);
|
6522 |
|
|
|
6523 |
|
|
if (TREE_CODE (TYPE_SIZE (gnu_parent)) == INTEGER_CST
|
6524 |
|
|
&& tree_int_cst_lt (gnu_pos, TYPE_SIZE (gnu_parent)))
|
6525 |
|
|
{
|
6526 |
|
|
post_error_ne_tree
|
6527 |
|
|
("offset of& must be beyond parent{, minimum allowed is ^}",
|
6528 |
|
|
First_Bit (Component_Clause (gnat_field)), gnat_field,
|
6529 |
|
|
TYPE_SIZE_UNIT (gnu_parent));
|
6530 |
|
|
}
|
6531 |
|
|
}
|
6532 |
|
|
|
6533 |
|
|
/* If this field needs strict alignment, ensure the record is
|
6534 |
|
|
sufficiently aligned and that that position and size are
|
6535 |
|
|
consistent with the alignment. */
|
6536 |
|
|
if (needs_strict_alignment)
|
6537 |
|
|
{
|
6538 |
|
|
TYPE_ALIGN (gnu_record_type)
|
6539 |
|
|
= MAX (TYPE_ALIGN (gnu_record_type), TYPE_ALIGN (gnu_field_type));
|
6540 |
|
|
|
6541 |
|
|
if (gnu_size
|
6542 |
|
|
&& !operand_equal_p (gnu_size, TYPE_SIZE (gnu_field_type), 0))
|
6543 |
|
|
{
|
6544 |
|
|
if (Is_Atomic (gnat_field) || Is_Atomic (Etype (gnat_field)))
|
6545 |
|
|
post_error_ne_tree
|
6546 |
|
|
("atomic field& must be natural size of type{ (^)}",
|
6547 |
|
|
Last_Bit (Component_Clause (gnat_field)), gnat_field,
|
6548 |
|
|
TYPE_SIZE (gnu_field_type));
|
6549 |
|
|
|
6550 |
|
|
else if (Is_Aliased (gnat_field))
|
6551 |
|
|
post_error_ne_tree
|
6552 |
|
|
("size of aliased field& must be ^ bits",
|
6553 |
|
|
Last_Bit (Component_Clause (gnat_field)), gnat_field,
|
6554 |
|
|
TYPE_SIZE (gnu_field_type));
|
6555 |
|
|
|
6556 |
|
|
else if (Strict_Alignment (Etype (gnat_field)))
|
6557 |
|
|
post_error_ne_tree
|
6558 |
|
|
("size of & with aliased or tagged components not ^ bits",
|
6559 |
|
|
Last_Bit (Component_Clause (gnat_field)), gnat_field,
|
6560 |
|
|
TYPE_SIZE (gnu_field_type));
|
6561 |
|
|
|
6562 |
|
|
gnu_size = NULL_TREE;
|
6563 |
|
|
}
|
6564 |
|
|
|
6565 |
|
|
if (!integer_zerop (size_binop
|
6566 |
|
|
(TRUNC_MOD_EXPR, gnu_pos,
|
6567 |
|
|
bitsize_int (TYPE_ALIGN (gnu_field_type)))))
|
6568 |
|
|
{
|
6569 |
|
|
if (Is_Aliased (gnat_field))
|
6570 |
|
|
post_error_ne_num
|
6571 |
|
|
("position of aliased field& must be multiple of ^ bits",
|
6572 |
|
|
First_Bit (Component_Clause (gnat_field)), gnat_field,
|
6573 |
|
|
TYPE_ALIGN (gnu_field_type));
|
6574 |
|
|
|
6575 |
|
|
else if (Treat_As_Volatile (gnat_field))
|
6576 |
|
|
post_error_ne_num
|
6577 |
|
|
("position of volatile field& must be multiple of ^ bits",
|
6578 |
|
|
First_Bit (Component_Clause (gnat_field)), gnat_field,
|
6579 |
|
|
TYPE_ALIGN (gnu_field_type));
|
6580 |
|
|
|
6581 |
|
|
else if (Strict_Alignment (Etype (gnat_field)))
|
6582 |
|
|
post_error_ne_num
|
6583 |
|
|
("position of & with aliased or tagged components not multiple of ^ bits",
|
6584 |
|
|
First_Bit (Component_Clause (gnat_field)), gnat_field,
|
6585 |
|
|
TYPE_ALIGN (gnu_field_type));
|
6586 |
|
|
|
6587 |
|
|
else
|
6588 |
|
|
gcc_unreachable ();
|
6589 |
|
|
|
6590 |
|
|
gnu_pos = NULL_TREE;
|
6591 |
|
|
}
|
6592 |
|
|
}
|
6593 |
|
|
|
6594 |
|
|
if (Is_Atomic (gnat_field))
|
6595 |
|
|
check_ok_for_atomic (gnu_field_type, gnat_field, false);
|
6596 |
|
|
}
|
6597 |
|
|
|
6598 |
|
|
/* If the record has rep clauses and this is the tag field, make a rep
|
6599 |
|
|
clause for it as well. */
|
6600 |
|
|
else if (Has_Specified_Layout (Scope (gnat_field))
|
6601 |
|
|
&& Chars (gnat_field) == Name_uTag)
|
6602 |
|
|
{
|
6603 |
|
|
gnu_pos = bitsize_zero_node;
|
6604 |
|
|
gnu_size = TYPE_SIZE (gnu_field_type);
|
6605 |
|
|
}
|
6606 |
|
|
|
6607 |
|
|
else
|
6608 |
|
|
gnu_pos = NULL_TREE;
|
6609 |
|
|
|
6610 |
|
|
/* We need to make the size the maximum for the type if it is
|
6611 |
|
|
self-referential and an unconstrained type. In that case, we can't
|
6612 |
|
|
pack the field since we can't make a copy to align it. */
|
6613 |
|
|
if (TREE_CODE (gnu_field_type) == RECORD_TYPE
|
6614 |
|
|
&& !gnu_size
|
6615 |
|
|
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_field_type))
|
6616 |
|
|
&& !Is_Constrained (Underlying_Type (Etype (gnat_field))))
|
6617 |
|
|
{
|
6618 |
|
|
gnu_size = max_size (TYPE_SIZE (gnu_field_type), true);
|
6619 |
|
|
packed = 0;
|
6620 |
|
|
}
|
6621 |
|
|
|
6622 |
|
|
/* If a size is specified, adjust the field's type to it. */
|
6623 |
|
|
if (gnu_size)
|
6624 |
|
|
{
|
6625 |
|
|
tree orig_field_type;
|
6626 |
|
|
|
6627 |
|
|
/* If the field's type is justified modular, we would need to remove
|
6628 |
|
|
the wrapper to (better) meet the layout requirements. However we
|
6629 |
|
|
can do so only if the field is not aliased to preserve the unique
|
6630 |
|
|
layout and if the prescribed size is not greater than that of the
|
6631 |
|
|
packed array to preserve the justification. */
|
6632 |
|
|
if (!needs_strict_alignment
|
6633 |
|
|
&& TREE_CODE (gnu_field_type) == RECORD_TYPE
|
6634 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
|
6635 |
|
|
&& tree_int_cst_compare (gnu_size, TYPE_ADA_SIZE (gnu_field_type))
|
6636 |
|
|
<= 0)
|
6637 |
|
|
gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type));
|
6638 |
|
|
|
6639 |
|
|
gnu_field_type
|
6640 |
|
|
= make_type_from_size (gnu_field_type, gnu_size,
|
6641 |
|
|
Has_Biased_Representation (gnat_field));
|
6642 |
|
|
|
6643 |
|
|
orig_field_type = gnu_field_type;
|
6644 |
|
|
gnu_field_type = maybe_pad_type (gnu_field_type, gnu_size, 0, gnat_field,
|
6645 |
|
|
false, false, definition, true);
|
6646 |
|
|
|
6647 |
|
|
/* If a padding record was made, declare it now since it will never be
|
6648 |
|
|
declared otherwise. This is necessary to ensure that its subtrees
|
6649 |
|
|
are properly marked. */
|
6650 |
|
|
if (gnu_field_type != orig_field_type
|
6651 |
|
|
&& !DECL_P (TYPE_NAME (gnu_field_type)))
|
6652 |
|
|
create_type_decl (TYPE_NAME (gnu_field_type), gnu_field_type, NULL,
|
6653 |
|
|
true, debug_info_p, gnat_field);
|
6654 |
|
|
}
|
6655 |
|
|
|
6656 |
|
|
/* Otherwise (or if there was an error), don't specify a position. */
|
6657 |
|
|
else
|
6658 |
|
|
gnu_pos = NULL_TREE;
|
6659 |
|
|
|
6660 |
|
|
gcc_assert (TREE_CODE (gnu_field_type) != RECORD_TYPE
|
6661 |
|
|
|| !TYPE_CONTAINS_TEMPLATE_P (gnu_field_type));
|
6662 |
|
|
|
6663 |
|
|
/* Now create the decl for the field. */
|
6664 |
|
|
gnu_field = create_field_decl (gnu_field_id, gnu_field_type, gnu_record_type,
|
6665 |
|
|
packed, gnu_size, gnu_pos,
|
6666 |
|
|
Is_Aliased (gnat_field));
|
6667 |
|
|
Sloc_to_locus (Sloc (gnat_field), &DECL_SOURCE_LOCATION (gnu_field));
|
6668 |
|
|
TREE_THIS_VOLATILE (gnu_field) = Treat_As_Volatile (gnat_field);
|
6669 |
|
|
|
6670 |
|
|
if (Ekind (gnat_field) == E_Discriminant)
|
6671 |
|
|
DECL_DISCRIMINANT_NUMBER (gnu_field)
|
6672 |
|
|
= UI_To_gnu (Discriminant_Number (gnat_field), sizetype);
|
6673 |
|
|
|
6674 |
|
|
return gnu_field;
|
6675 |
|
|
}
|
6676 |
|
|
|
6677 |
|
|
/* Return true if TYPE is a type with variable size, a padding type with a
|
6678 |
|
|
field of variable size or is a record that has a field such a field. */
|
6679 |
|
|
|
6680 |
|
|
static bool
|
6681 |
|
|
is_variable_size (tree type)
|
6682 |
|
|
{
|
6683 |
|
|
tree field;
|
6684 |
|
|
|
6685 |
|
|
if (!TREE_CONSTANT (TYPE_SIZE (type)))
|
6686 |
|
|
return true;
|
6687 |
|
|
|
6688 |
|
|
if (TYPE_IS_PADDING_P (type)
|
6689 |
|
|
&& !TREE_CONSTANT (DECL_SIZE (TYPE_FIELDS (type))))
|
6690 |
|
|
return true;
|
6691 |
|
|
|
6692 |
|
|
if (TREE_CODE (type) != RECORD_TYPE
|
6693 |
|
|
&& TREE_CODE (type) != UNION_TYPE
|
6694 |
|
|
&& TREE_CODE (type) != QUAL_UNION_TYPE)
|
6695 |
|
|
return false;
|
6696 |
|
|
|
6697 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
6698 |
|
|
if (is_variable_size (TREE_TYPE (field)))
|
6699 |
|
|
return true;
|
6700 |
|
|
|
6701 |
|
|
return false;
|
6702 |
|
|
}
|
6703 |
|
|
|
6704 |
|
|
/* qsort comparer for the bit positions of two record components. */
|
6705 |
|
|
|
6706 |
|
|
static int
|
6707 |
|
|
compare_field_bitpos (const PTR rt1, const PTR rt2)
|
6708 |
|
|
{
|
6709 |
|
|
const_tree const field1 = * (const_tree const *) rt1;
|
6710 |
|
|
const_tree const field2 = * (const_tree const *) rt2;
|
6711 |
|
|
const int ret
|
6712 |
|
|
= tree_int_cst_compare (bit_position (field1), bit_position (field2));
|
6713 |
|
|
|
6714 |
|
|
return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
|
6715 |
|
|
}
|
6716 |
|
|
|
6717 |
|
|
/* Translate and chain the GNAT_COMPONENT_LIST to the GNU_FIELD_LIST, set
|
6718 |
|
|
the result as the field list of GNU_RECORD_TYPE and finish it up. When
|
6719 |
|
|
called from gnat_to_gnu_entity during the processing of a record type
|
6720 |
|
|
definition, the GCC node for the parent, if any, will be the single field
|
6721 |
|
|
of GNU_RECORD_TYPE and the GCC nodes for the discriminants will be on the
|
6722 |
|
|
GNU_FIELD_LIST. The other calls to this function are recursive calls for
|
6723 |
|
|
the component list of a variant and, in this case, GNU_FIELD_LIST is empty.
|
6724 |
|
|
|
6725 |
|
|
PACKED is 1 if this is for a packed record, -1 if this is for a record
|
6726 |
|
|
with Component_Alignment of Storage_Unit, -2 if this is for a record
|
6727 |
|
|
with a specified alignment.
|
6728 |
|
|
|
6729 |
|
|
DEFINITION is true if we are defining this record type.
|
6730 |
|
|
|
6731 |
|
|
P_GNU_REP_LIST, if nonzero, is a pointer to a list to which each field
|
6732 |
|
|
with a rep clause is to be added; in this case, that is all that should
|
6733 |
|
|
be done with such fields.
|
6734 |
|
|
|
6735 |
|
|
CANCEL_ALIGNMENT is true if the alignment should be zeroed before laying
|
6736 |
|
|
out the record. This means the alignment only serves to force fields to
|
6737 |
|
|
be bitfields, but not to require the record to be that aligned. This is
|
6738 |
|
|
used for variants.
|
6739 |
|
|
|
6740 |
|
|
ALL_REP is true if a rep clause is present for all the fields.
|
6741 |
|
|
|
6742 |
|
|
UNCHECKED_UNION is true if we are building this type for a record with a
|
6743 |
|
|
Pragma Unchecked_Union.
|
6744 |
|
|
|
6745 |
|
|
DEBUG_INFO_P is true if we need to write debug information about the type.
|
6746 |
|
|
|
6747 |
|
|
MAYBE_UNUSED is true if this type may be unused in the end; this doesn't
|
6748 |
|
|
mean that its contents may be unused as well, but only the container. */
|
6749 |
|
|
|
6750 |
|
|
|
6751 |
|
|
static void
|
6752 |
|
|
components_to_record (tree gnu_record_type, Node_Id gnat_component_list,
|
6753 |
|
|
tree gnu_field_list, int packed, bool definition,
|
6754 |
|
|
tree *p_gnu_rep_list, bool cancel_alignment,
|
6755 |
|
|
bool all_rep, bool unchecked_union, bool debug_info_p,
|
6756 |
|
|
bool maybe_unused)
|
6757 |
|
|
{
|
6758 |
|
|
bool all_rep_and_size = all_rep && TYPE_SIZE (gnu_record_type);
|
6759 |
|
|
bool layout_with_rep = false;
|
6760 |
|
|
Node_Id component_decl, variant_part;
|
6761 |
|
|
tree gnu_our_rep_list = NULL_TREE;
|
6762 |
|
|
tree gnu_field, gnu_next, gnu_last = tree_last (gnu_field_list);
|
6763 |
|
|
|
6764 |
|
|
/* For each component referenced in a component declaration create a GCC
|
6765 |
|
|
field and add it to the list, skipping pragmas in the GNAT list. */
|
6766 |
|
|
if (Present (Component_Items (gnat_component_list)))
|
6767 |
|
|
for (component_decl
|
6768 |
|
|
= First_Non_Pragma (Component_Items (gnat_component_list));
|
6769 |
|
|
Present (component_decl);
|
6770 |
|
|
component_decl = Next_Non_Pragma (component_decl))
|
6771 |
|
|
{
|
6772 |
|
|
Entity_Id gnat_field = Defining_Entity (component_decl);
|
6773 |
|
|
Name_Id gnat_name = Chars (gnat_field);
|
6774 |
|
|
|
6775 |
|
|
/* If present, the _Parent field must have been created as the single
|
6776 |
|
|
field of the record type. Put it before any other fields. */
|
6777 |
|
|
if (gnat_name == Name_uParent)
|
6778 |
|
|
{
|
6779 |
|
|
gnu_field = TYPE_FIELDS (gnu_record_type);
|
6780 |
|
|
gnu_field_list = chainon (gnu_field_list, gnu_field);
|
6781 |
|
|
}
|
6782 |
|
|
else
|
6783 |
|
|
{
|
6784 |
|
|
gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed,
|
6785 |
|
|
definition, debug_info_p);
|
6786 |
|
|
|
6787 |
|
|
/* If this is the _Tag field, put it before any other fields. */
|
6788 |
|
|
if (gnat_name == Name_uTag)
|
6789 |
|
|
gnu_field_list = chainon (gnu_field_list, gnu_field);
|
6790 |
|
|
|
6791 |
|
|
/* If this is the _Controller field, put it before the other
|
6792 |
|
|
fields except for the _Tag or _Parent field. */
|
6793 |
|
|
else if (gnat_name == Name_uController && gnu_last)
|
6794 |
|
|
{
|
6795 |
|
|
TREE_CHAIN (gnu_field) = TREE_CHAIN (gnu_last);
|
6796 |
|
|
TREE_CHAIN (gnu_last) = gnu_field;
|
6797 |
|
|
}
|
6798 |
|
|
|
6799 |
|
|
/* If this is a regular field, put it after the other fields. */
|
6800 |
|
|
else
|
6801 |
|
|
{
|
6802 |
|
|
TREE_CHAIN (gnu_field) = gnu_field_list;
|
6803 |
|
|
gnu_field_list = gnu_field;
|
6804 |
|
|
if (!gnu_last)
|
6805 |
|
|
gnu_last = gnu_field;
|
6806 |
|
|
}
|
6807 |
|
|
}
|
6808 |
|
|
|
6809 |
|
|
save_gnu_tree (gnat_field, gnu_field, false);
|
6810 |
|
|
}
|
6811 |
|
|
|
6812 |
|
|
/* At the end of the component list there may be a variant part. */
|
6813 |
|
|
variant_part = Variant_Part (gnat_component_list);
|
6814 |
|
|
|
6815 |
|
|
/* We create a QUAL_UNION_TYPE for the variant part since the variants are
|
6816 |
|
|
mutually exclusive and should go in the same memory. To do this we need
|
6817 |
|
|
to treat each variant as a record whose elements are created from the
|
6818 |
|
|
component list for the variant. So here we create the records from the
|
6819 |
|
|
lists for the variants and put them all into the QUAL_UNION_TYPE.
|
6820 |
|
|
If this is an Unchecked_Union, we make a UNION_TYPE instead or
|
6821 |
|
|
use GNU_RECORD_TYPE if there are no fields so far. */
|
6822 |
|
|
if (Present (variant_part))
|
6823 |
|
|
{
|
6824 |
|
|
Node_Id gnat_discr = Name (variant_part), variant;
|
6825 |
|
|
tree gnu_discr = gnat_to_gnu (gnat_discr);
|
6826 |
|
|
tree gnu_name = TYPE_NAME (gnu_record_type);
|
6827 |
|
|
tree gnu_var_name
|
6828 |
|
|
= concat_name (get_identifier (Get_Name_String (Chars (gnat_discr))),
|
6829 |
|
|
"XVN");
|
6830 |
|
|
tree gnu_union_type, gnu_union_name, gnu_union_field;
|
6831 |
|
|
tree gnu_variant_list = NULL_TREE;
|
6832 |
|
|
|
6833 |
|
|
if (TREE_CODE (gnu_name) == TYPE_DECL)
|
6834 |
|
|
gnu_name = DECL_NAME (gnu_name);
|
6835 |
|
|
|
6836 |
|
|
gnu_union_name
|
6837 |
|
|
= concat_name (gnu_name, IDENTIFIER_POINTER (gnu_var_name));
|
6838 |
|
|
|
6839 |
|
|
/* Reuse an enclosing union if all fields are in the variant part
|
6840 |
|
|
and there is no representation clause on the record, to match
|
6841 |
|
|
the layout of C unions. There is an associated check below. */
|
6842 |
|
|
if (!gnu_field_list
|
6843 |
|
|
&& TREE_CODE (gnu_record_type) == UNION_TYPE
|
6844 |
|
|
&& !TYPE_PACKED (gnu_record_type))
|
6845 |
|
|
gnu_union_type = gnu_record_type;
|
6846 |
|
|
else
|
6847 |
|
|
{
|
6848 |
|
|
gnu_union_type
|
6849 |
|
|
= make_node (unchecked_union ? UNION_TYPE : QUAL_UNION_TYPE);
|
6850 |
|
|
|
6851 |
|
|
TYPE_NAME (gnu_union_type) = gnu_union_name;
|
6852 |
|
|
TYPE_ALIGN (gnu_union_type) = 0;
|
6853 |
|
|
TYPE_PACKED (gnu_union_type) = TYPE_PACKED (gnu_record_type);
|
6854 |
|
|
}
|
6855 |
|
|
|
6856 |
|
|
for (variant = First_Non_Pragma (Variants (variant_part));
|
6857 |
|
|
Present (variant);
|
6858 |
|
|
variant = Next_Non_Pragma (variant))
|
6859 |
|
|
{
|
6860 |
|
|
tree gnu_variant_type = make_node (RECORD_TYPE);
|
6861 |
|
|
tree gnu_inner_name;
|
6862 |
|
|
tree gnu_qual;
|
6863 |
|
|
|
6864 |
|
|
Get_Variant_Encoding (variant);
|
6865 |
|
|
gnu_inner_name = get_identifier_with_length (Name_Buffer, Name_Len);
|
6866 |
|
|
TYPE_NAME (gnu_variant_type)
|
6867 |
|
|
= concat_name (gnu_union_name,
|
6868 |
|
|
IDENTIFIER_POINTER (gnu_inner_name));
|
6869 |
|
|
|
6870 |
|
|
/* Set the alignment of the inner type in case we need to make
|
6871 |
|
|
inner objects into bitfields, but then clear it out so the
|
6872 |
|
|
record actually gets only the alignment required. */
|
6873 |
|
|
TYPE_ALIGN (gnu_variant_type) = TYPE_ALIGN (gnu_record_type);
|
6874 |
|
|
TYPE_PACKED (gnu_variant_type) = TYPE_PACKED (gnu_record_type);
|
6875 |
|
|
|
6876 |
|
|
/* Similarly, if the outer record has a size specified and all
|
6877 |
|
|
fields have record rep clauses, we can propagate the size
|
6878 |
|
|
into the variant part. */
|
6879 |
|
|
if (all_rep_and_size)
|
6880 |
|
|
{
|
6881 |
|
|
TYPE_SIZE (gnu_variant_type) = TYPE_SIZE (gnu_record_type);
|
6882 |
|
|
TYPE_SIZE_UNIT (gnu_variant_type)
|
6883 |
|
|
= TYPE_SIZE_UNIT (gnu_record_type);
|
6884 |
|
|
}
|
6885 |
|
|
|
6886 |
|
|
/* Add the fields into the record type for the variant. Note that
|
6887 |
|
|
we aren't sure to really use it at this point, see below. */
|
6888 |
|
|
components_to_record (gnu_variant_type, Component_List (variant),
|
6889 |
|
|
NULL_TREE, packed, definition,
|
6890 |
|
|
&gnu_our_rep_list, !all_rep_and_size, all_rep,
|
6891 |
|
|
unchecked_union, debug_info_p, true);
|
6892 |
|
|
|
6893 |
|
|
gnu_qual = choices_to_gnu (gnu_discr, Discrete_Choices (variant));
|
6894 |
|
|
|
6895 |
|
|
Set_Present_Expr (variant, annotate_value (gnu_qual));
|
6896 |
|
|
|
6897 |
|
|
/* If this is an Unchecked_Union and we have exactly one field,
|
6898 |
|
|
use this field directly to match the layout of C unions. */
|
6899 |
|
|
if (unchecked_union
|
6900 |
|
|
&& TYPE_FIELDS (gnu_variant_type)
|
6901 |
|
|
&& !TREE_CHAIN (TYPE_FIELDS (gnu_variant_type)))
|
6902 |
|
|
gnu_field = TYPE_FIELDS (gnu_variant_type);
|
6903 |
|
|
else
|
6904 |
|
|
{
|
6905 |
|
|
/* Deal with packedness like in gnat_to_gnu_field. */
|
6906 |
|
|
int field_packed
|
6907 |
|
|
= adjust_packed (gnu_variant_type, gnu_record_type, packed);
|
6908 |
|
|
|
6909 |
|
|
/* Finalize the record type now. We used to throw away
|
6910 |
|
|
empty records but we no longer do that because we need
|
6911 |
|
|
them to generate complete debug info for the variant;
|
6912 |
|
|
otherwise, the union type definition will be lacking
|
6913 |
|
|
the fields associated with these empty variants. */
|
6914 |
|
|
rest_of_record_type_compilation (gnu_variant_type);
|
6915 |
|
|
create_type_decl (TYPE_NAME (gnu_variant_type), gnu_variant_type,
|
6916 |
|
|
NULL, true, debug_info_p, gnat_component_list);
|
6917 |
|
|
|
6918 |
|
|
gnu_field = create_field_decl (gnu_inner_name, gnu_variant_type,
|
6919 |
|
|
gnu_union_type, field_packed,
|
6920 |
|
|
(all_rep_and_size
|
6921 |
|
|
? TYPE_SIZE (gnu_variant_type)
|
6922 |
|
|
: 0),
|
6923 |
|
|
(all_rep_and_size
|
6924 |
|
|
? bitsize_zero_node : 0),
|
6925 |
|
|
0);
|
6926 |
|
|
|
6927 |
|
|
DECL_INTERNAL_P (gnu_field) = 1;
|
6928 |
|
|
|
6929 |
|
|
if (!unchecked_union)
|
6930 |
|
|
DECL_QUALIFIER (gnu_field) = gnu_qual;
|
6931 |
|
|
}
|
6932 |
|
|
|
6933 |
|
|
TREE_CHAIN (gnu_field) = gnu_variant_list;
|
6934 |
|
|
gnu_variant_list = gnu_field;
|
6935 |
|
|
}
|
6936 |
|
|
|
6937 |
|
|
/* Only make the QUAL_UNION_TYPE if there are non-empty variants. */
|
6938 |
|
|
if (gnu_variant_list)
|
6939 |
|
|
{
|
6940 |
|
|
int union_field_packed;
|
6941 |
|
|
|
6942 |
|
|
if (all_rep_and_size)
|
6943 |
|
|
{
|
6944 |
|
|
TYPE_SIZE (gnu_union_type) = TYPE_SIZE (gnu_record_type);
|
6945 |
|
|
TYPE_SIZE_UNIT (gnu_union_type)
|
6946 |
|
|
= TYPE_SIZE_UNIT (gnu_record_type);
|
6947 |
|
|
}
|
6948 |
|
|
|
6949 |
|
|
finish_record_type (gnu_union_type, nreverse (gnu_variant_list),
|
6950 |
|
|
all_rep_and_size ? 1 : 0, debug_info_p);
|
6951 |
|
|
|
6952 |
|
|
/* If GNU_UNION_TYPE is our record type, it means we must have an
|
6953 |
|
|
Unchecked_Union with no fields. Verify that and, if so, just
|
6954 |
|
|
return. */
|
6955 |
|
|
if (gnu_union_type == gnu_record_type)
|
6956 |
|
|
{
|
6957 |
|
|
gcc_assert (unchecked_union
|
6958 |
|
|
&& !gnu_field_list
|
6959 |
|
|
&& !gnu_our_rep_list);
|
6960 |
|
|
return;
|
6961 |
|
|
}
|
6962 |
|
|
|
6963 |
|
|
create_type_decl (TYPE_NAME (gnu_union_type), gnu_union_type,
|
6964 |
|
|
NULL, true, debug_info_p, gnat_component_list);
|
6965 |
|
|
|
6966 |
|
|
/* Deal with packedness like in gnat_to_gnu_field. */
|
6967 |
|
|
union_field_packed
|
6968 |
|
|
= adjust_packed (gnu_union_type, gnu_record_type, packed);
|
6969 |
|
|
|
6970 |
|
|
gnu_union_field
|
6971 |
|
|
= create_field_decl (gnu_var_name, gnu_union_type, gnu_record_type,
|
6972 |
|
|
union_field_packed,
|
6973 |
|
|
all_rep ? TYPE_SIZE (gnu_union_type) : 0,
|
6974 |
|
|
all_rep ? bitsize_zero_node : 0, 0);
|
6975 |
|
|
|
6976 |
|
|
DECL_INTERNAL_P (gnu_union_field) = 1;
|
6977 |
|
|
TREE_CHAIN (gnu_union_field) = gnu_field_list;
|
6978 |
|
|
gnu_field_list = gnu_union_field;
|
6979 |
|
|
}
|
6980 |
|
|
}
|
6981 |
|
|
|
6982 |
|
|
/* Scan GNU_FIELD_LIST and see if any fields have rep clauses. If they
|
6983 |
|
|
do, pull them out and put them into GNU_OUR_REP_LIST. We have to do
|
6984 |
|
|
this in a separate pass since we want to handle the discriminants but
|
6985 |
|
|
can't play with them until we've used them in debugging data above.
|
6986 |
|
|
|
6987 |
|
|
??? If we then reorder them, debugging information will be wrong but
|
6988 |
|
|
there's nothing that can be done about this at the moment. */
|
6989 |
|
|
gnu_last = NULL_TREE;
|
6990 |
|
|
for (gnu_field = gnu_field_list; gnu_field; gnu_field = gnu_next)
|
6991 |
|
|
{
|
6992 |
|
|
gnu_next = TREE_CHAIN (gnu_field);
|
6993 |
|
|
|
6994 |
|
|
if (DECL_FIELD_OFFSET (gnu_field))
|
6995 |
|
|
{
|
6996 |
|
|
if (!gnu_last)
|
6997 |
|
|
gnu_field_list = gnu_next;
|
6998 |
|
|
else
|
6999 |
|
|
TREE_CHAIN (gnu_last) = gnu_next;
|
7000 |
|
|
|
7001 |
|
|
TREE_CHAIN (gnu_field) = gnu_our_rep_list;
|
7002 |
|
|
gnu_our_rep_list = gnu_field;
|
7003 |
|
|
}
|
7004 |
|
|
else
|
7005 |
|
|
gnu_last = gnu_field;
|
7006 |
|
|
}
|
7007 |
|
|
|
7008 |
|
|
/* If we have any fields in our rep'ed field list and it is not the case that
|
7009 |
|
|
all the fields in the record have rep clauses and P_REP_LIST is nonzero,
|
7010 |
|
|
set it and ignore these fields. */
|
7011 |
|
|
if (gnu_our_rep_list && p_gnu_rep_list && !all_rep)
|
7012 |
|
|
*p_gnu_rep_list = chainon (*p_gnu_rep_list, gnu_our_rep_list);
|
7013 |
|
|
|
7014 |
|
|
/* Otherwise, sort the fields by bit position and put them into their own
|
7015 |
|
|
record, before the others, if we also have fields without rep clauses. */
|
7016 |
|
|
else if (gnu_our_rep_list)
|
7017 |
|
|
{
|
7018 |
|
|
tree gnu_rep_type
|
7019 |
|
|
= (gnu_field_list ? make_node (RECORD_TYPE) : gnu_record_type);
|
7020 |
|
|
int i, len = list_length (gnu_our_rep_list);
|
7021 |
|
|
tree *gnu_arr = (tree *) alloca (sizeof (tree) * len);
|
7022 |
|
|
|
7023 |
|
|
for (gnu_field = gnu_our_rep_list, i = 0;
|
7024 |
|
|
gnu_field;
|
7025 |
|
|
gnu_field = TREE_CHAIN (gnu_field), i++)
|
7026 |
|
|
gnu_arr[i] = gnu_field;
|
7027 |
|
|
|
7028 |
|
|
qsort (gnu_arr, len, sizeof (tree), compare_field_bitpos);
|
7029 |
|
|
|
7030 |
|
|
/* Put the fields in the list in order of increasing position, which
|
7031 |
|
|
means we start from the end. */
|
7032 |
|
|
gnu_our_rep_list = NULL_TREE;
|
7033 |
|
|
for (i = len - 1; i >= 0; i--)
|
7034 |
|
|
{
|
7035 |
|
|
TREE_CHAIN (gnu_arr[i]) = gnu_our_rep_list;
|
7036 |
|
|
gnu_our_rep_list = gnu_arr[i];
|
7037 |
|
|
DECL_CONTEXT (gnu_arr[i]) = gnu_rep_type;
|
7038 |
|
|
}
|
7039 |
|
|
|
7040 |
|
|
if (gnu_field_list)
|
7041 |
|
|
{
|
7042 |
|
|
finish_record_type (gnu_rep_type, gnu_our_rep_list, 1, debug_info_p);
|
7043 |
|
|
gnu_field
|
7044 |
|
|
= create_field_decl (get_identifier ("REP"), gnu_rep_type,
|
7045 |
|
|
gnu_record_type, 0, NULL_TREE, NULL_TREE, 1);
|
7046 |
|
|
DECL_INTERNAL_P (gnu_field) = 1;
|
7047 |
|
|
gnu_field_list = chainon (gnu_field_list, gnu_field);
|
7048 |
|
|
}
|
7049 |
|
|
else
|
7050 |
|
|
{
|
7051 |
|
|
layout_with_rep = true;
|
7052 |
|
|
gnu_field_list = nreverse (gnu_our_rep_list);
|
7053 |
|
|
}
|
7054 |
|
|
}
|
7055 |
|
|
|
7056 |
|
|
if (cancel_alignment)
|
7057 |
|
|
TYPE_ALIGN (gnu_record_type) = 0;
|
7058 |
|
|
|
7059 |
|
|
finish_record_type (gnu_record_type, nreverse (gnu_field_list),
|
7060 |
|
|
layout_with_rep ? 1 : 0, debug_info_p && !maybe_unused);
|
7061 |
|
|
}
|
7062 |
|
|
|
7063 |
|
|
/* Given GNU_SIZE, a GCC tree representing a size, return a Uint to be
|
7064 |
|
|
placed into an Esize, Component_Bit_Offset, or Component_Size value
|
7065 |
|
|
in the GNAT tree. */
|
7066 |
|
|
|
7067 |
|
|
static Uint
|
7068 |
|
|
annotate_value (tree gnu_size)
|
7069 |
|
|
{
|
7070 |
|
|
int len = TREE_CODE_LENGTH (TREE_CODE (gnu_size));
|
7071 |
|
|
TCode tcode;
|
7072 |
|
|
Node_Ref_Or_Val ops[3], ret;
|
7073 |
|
|
int i;
|
7074 |
|
|
int size;
|
7075 |
|
|
struct tree_int_map **h = NULL;
|
7076 |
|
|
|
7077 |
|
|
/* See if we've already saved the value for this node. */
|
7078 |
|
|
if (EXPR_P (gnu_size))
|
7079 |
|
|
{
|
7080 |
|
|
struct tree_int_map in;
|
7081 |
|
|
if (!annotate_value_cache)
|
7082 |
|
|
annotate_value_cache = htab_create_ggc (512, tree_int_map_hash,
|
7083 |
|
|
tree_int_map_eq, 0);
|
7084 |
|
|
in.base.from = gnu_size;
|
7085 |
|
|
h = (struct tree_int_map **)
|
7086 |
|
|
htab_find_slot (annotate_value_cache, &in, INSERT);
|
7087 |
|
|
|
7088 |
|
|
if (*h)
|
7089 |
|
|
return (Node_Ref_Or_Val) (*h)->to;
|
7090 |
|
|
}
|
7091 |
|
|
|
7092 |
|
|
/* If we do not return inside this switch, TCODE will be set to the
|
7093 |
|
|
code to use for a Create_Node operand and LEN (set above) will be
|
7094 |
|
|
the number of recursive calls for us to make. */
|
7095 |
|
|
|
7096 |
|
|
switch (TREE_CODE (gnu_size))
|
7097 |
|
|
{
|
7098 |
|
|
case INTEGER_CST:
|
7099 |
|
|
if (TREE_OVERFLOW (gnu_size))
|
7100 |
|
|
return No_Uint;
|
7101 |
|
|
|
7102 |
|
|
/* This may have come from a conversion from some smaller type,
|
7103 |
|
|
so ensure this is in bitsizetype. */
|
7104 |
|
|
gnu_size = convert (bitsizetype, gnu_size);
|
7105 |
|
|
|
7106 |
|
|
/* For negative values, use NEGATE_EXPR of the supplied value. */
|
7107 |
|
|
if (tree_int_cst_sgn (gnu_size) < 0)
|
7108 |
|
|
{
|
7109 |
|
|
/* The ridiculous code below is to handle the case of the largest
|
7110 |
|
|
negative integer. */
|
7111 |
|
|
tree negative_size = size_diffop (bitsize_zero_node, gnu_size);
|
7112 |
|
|
bool adjust = false;
|
7113 |
|
|
tree temp;
|
7114 |
|
|
|
7115 |
|
|
if (TREE_OVERFLOW (negative_size))
|
7116 |
|
|
{
|
7117 |
|
|
negative_size
|
7118 |
|
|
= size_binop (MINUS_EXPR, bitsize_zero_node,
|
7119 |
|
|
size_binop (PLUS_EXPR, gnu_size,
|
7120 |
|
|
bitsize_one_node));
|
7121 |
|
|
adjust = true;
|
7122 |
|
|
}
|
7123 |
|
|
|
7124 |
|
|
temp = build1 (NEGATE_EXPR, bitsizetype, negative_size);
|
7125 |
|
|
if (adjust)
|
7126 |
|
|
temp = build2 (MINUS_EXPR, bitsizetype, temp, bitsize_one_node);
|
7127 |
|
|
|
7128 |
|
|
return annotate_value (temp);
|
7129 |
|
|
}
|
7130 |
|
|
|
7131 |
|
|
if (!host_integerp (gnu_size, 1))
|
7132 |
|
|
return No_Uint;
|
7133 |
|
|
|
7134 |
|
|
size = tree_low_cst (gnu_size, 1);
|
7135 |
|
|
|
7136 |
|
|
/* This peculiar test is to make sure that the size fits in an int
|
7137 |
|
|
on machines where HOST_WIDE_INT is not "int". */
|
7138 |
|
|
if (tree_low_cst (gnu_size, 1) == size)
|
7139 |
|
|
return UI_From_Int (size);
|
7140 |
|
|
else
|
7141 |
|
|
return No_Uint;
|
7142 |
|
|
|
7143 |
|
|
case COMPONENT_REF:
|
7144 |
|
|
/* The only case we handle here is a simple discriminant reference. */
|
7145 |
|
|
if (TREE_CODE (TREE_OPERAND (gnu_size, 0)) == PLACEHOLDER_EXPR
|
7146 |
|
|
&& TREE_CODE (TREE_OPERAND (gnu_size, 1)) == FIELD_DECL
|
7147 |
|
|
&& DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1)))
|
7148 |
|
|
return Create_Node (Discrim_Val,
|
7149 |
|
|
annotate_value (DECL_DISCRIMINANT_NUMBER
|
7150 |
|
|
(TREE_OPERAND (gnu_size, 1))),
|
7151 |
|
|
No_Uint, No_Uint);
|
7152 |
|
|
else
|
7153 |
|
|
return No_Uint;
|
7154 |
|
|
|
7155 |
|
|
CASE_CONVERT: case NON_LVALUE_EXPR:
|
7156 |
|
|
return annotate_value (TREE_OPERAND (gnu_size, 0));
|
7157 |
|
|
|
7158 |
|
|
/* Now just list the operations we handle. */
|
7159 |
|
|
case COND_EXPR: tcode = Cond_Expr; break;
|
7160 |
|
|
case PLUS_EXPR: tcode = Plus_Expr; break;
|
7161 |
|
|
case MINUS_EXPR: tcode = Minus_Expr; break;
|
7162 |
|
|
case MULT_EXPR: tcode = Mult_Expr; break;
|
7163 |
|
|
case TRUNC_DIV_EXPR: tcode = Trunc_Div_Expr; break;
|
7164 |
|
|
case CEIL_DIV_EXPR: tcode = Ceil_Div_Expr; break;
|
7165 |
|
|
case FLOOR_DIV_EXPR: tcode = Floor_Div_Expr; break;
|
7166 |
|
|
case TRUNC_MOD_EXPR: tcode = Trunc_Mod_Expr; break;
|
7167 |
|
|
case CEIL_MOD_EXPR: tcode = Ceil_Mod_Expr; break;
|
7168 |
|
|
case FLOOR_MOD_EXPR: tcode = Floor_Mod_Expr; break;
|
7169 |
|
|
case EXACT_DIV_EXPR: tcode = Exact_Div_Expr; break;
|
7170 |
|
|
case NEGATE_EXPR: tcode = Negate_Expr; break;
|
7171 |
|
|
case MIN_EXPR: tcode = Min_Expr; break;
|
7172 |
|
|
case MAX_EXPR: tcode = Max_Expr; break;
|
7173 |
|
|
case ABS_EXPR: tcode = Abs_Expr; break;
|
7174 |
|
|
case TRUTH_ANDIF_EXPR: tcode = Truth_Andif_Expr; break;
|
7175 |
|
|
case TRUTH_ORIF_EXPR: tcode = Truth_Orif_Expr; break;
|
7176 |
|
|
case TRUTH_AND_EXPR: tcode = Truth_And_Expr; break;
|
7177 |
|
|
case TRUTH_OR_EXPR: tcode = Truth_Or_Expr; break;
|
7178 |
|
|
case TRUTH_XOR_EXPR: tcode = Truth_Xor_Expr; break;
|
7179 |
|
|
case TRUTH_NOT_EXPR: tcode = Truth_Not_Expr; break;
|
7180 |
|
|
case BIT_AND_EXPR: tcode = Bit_And_Expr; break;
|
7181 |
|
|
case LT_EXPR: tcode = Lt_Expr; break;
|
7182 |
|
|
case LE_EXPR: tcode = Le_Expr; break;
|
7183 |
|
|
case GT_EXPR: tcode = Gt_Expr; break;
|
7184 |
|
|
case GE_EXPR: tcode = Ge_Expr; break;
|
7185 |
|
|
case EQ_EXPR: tcode = Eq_Expr; break;
|
7186 |
|
|
case NE_EXPR: tcode = Ne_Expr; break;
|
7187 |
|
|
|
7188 |
|
|
case CALL_EXPR:
|
7189 |
|
|
{
|
7190 |
|
|
tree t = maybe_inline_call_in_expr (gnu_size);
|
7191 |
|
|
if (t)
|
7192 |
|
|
return annotate_value (t);
|
7193 |
|
|
}
|
7194 |
|
|
|
7195 |
|
|
/* Fall through... */
|
7196 |
|
|
|
7197 |
|
|
default:
|
7198 |
|
|
return No_Uint;
|
7199 |
|
|
}
|
7200 |
|
|
|
7201 |
|
|
/* Now get each of the operands that's relevant for this code. If any
|
7202 |
|
|
cannot be expressed as a repinfo node, say we can't. */
|
7203 |
|
|
for (i = 0; i < 3; i++)
|
7204 |
|
|
ops[i] = No_Uint;
|
7205 |
|
|
|
7206 |
|
|
for (i = 0; i < len; i++)
|
7207 |
|
|
{
|
7208 |
|
|
ops[i] = annotate_value (TREE_OPERAND (gnu_size, i));
|
7209 |
|
|
if (ops[i] == No_Uint)
|
7210 |
|
|
return No_Uint;
|
7211 |
|
|
}
|
7212 |
|
|
|
7213 |
|
|
ret = Create_Node (tcode, ops[0], ops[1], ops[2]);
|
7214 |
|
|
|
7215 |
|
|
/* Save the result in the cache. */
|
7216 |
|
|
if (h)
|
7217 |
|
|
{
|
7218 |
|
|
*h = GGC_NEW (struct tree_int_map);
|
7219 |
|
|
(*h)->base.from = gnu_size;
|
7220 |
|
|
(*h)->to = ret;
|
7221 |
|
|
}
|
7222 |
|
|
|
7223 |
|
|
return ret;
|
7224 |
|
|
}
|
7225 |
|
|
|
7226 |
|
|
/* Given GNAT_ENTITY, an object (constant, variable, parameter, exception)
|
7227 |
|
|
and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the
|
7228 |
|
|
size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null.
|
7229 |
|
|
BY_REF is true if the object is used by reference. */
|
7230 |
|
|
|
7231 |
|
|
void
|
7232 |
|
|
annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, bool by_ref)
|
7233 |
|
|
{
|
7234 |
|
|
if (by_ref)
|
7235 |
|
|
{
|
7236 |
|
|
if (TYPE_IS_FAT_POINTER_P (gnu_type))
|
7237 |
|
|
gnu_type = TYPE_UNCONSTRAINED_ARRAY (gnu_type);
|
7238 |
|
|
else
|
7239 |
|
|
gnu_type = TREE_TYPE (gnu_type);
|
7240 |
|
|
}
|
7241 |
|
|
|
7242 |
|
|
if (Unknown_Esize (gnat_entity))
|
7243 |
|
|
{
|
7244 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE
|
7245 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
|
7246 |
|
|
size = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
|
7247 |
|
|
else if (!size)
|
7248 |
|
|
size = TYPE_SIZE (gnu_type);
|
7249 |
|
|
|
7250 |
|
|
if (size)
|
7251 |
|
|
Set_Esize (gnat_entity, annotate_value (size));
|
7252 |
|
|
}
|
7253 |
|
|
|
7254 |
|
|
if (Unknown_Alignment (gnat_entity))
|
7255 |
|
|
Set_Alignment (gnat_entity,
|
7256 |
|
|
UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
|
7257 |
|
|
}
|
7258 |
|
|
|
7259 |
|
|
/* Return first element of field list whose TREE_PURPOSE is ELEM or whose
|
7260 |
|
|
DECL_ORIGINAL_FIELD of TREE_PURPOSE is ELEM. Return NULL_TREE if there
|
7261 |
|
|
is no such element in the list. */
|
7262 |
|
|
|
7263 |
|
|
static tree
|
7264 |
|
|
purpose_member_field (const_tree elem, tree list)
|
7265 |
|
|
{
|
7266 |
|
|
while (list)
|
7267 |
|
|
{
|
7268 |
|
|
tree field = TREE_PURPOSE (list);
|
7269 |
|
|
if (elem == field || elem == DECL_ORIGINAL_FIELD (field))
|
7270 |
|
|
return list;
|
7271 |
|
|
list = TREE_CHAIN (list);
|
7272 |
|
|
}
|
7273 |
|
|
return NULL_TREE;
|
7274 |
|
|
}
|
7275 |
|
|
|
7276 |
|
|
/* Given GNAT_ENTITY, a record type, and GNU_TYPE, its corresponding GCC type,
|
7277 |
|
|
set Component_Bit_Offset and Esize of the components to the position and
|
7278 |
|
|
size used by Gigi. */
|
7279 |
|
|
|
7280 |
|
|
static void
|
7281 |
|
|
annotate_rep (Entity_Id gnat_entity, tree gnu_type)
|
7282 |
|
|
{
|
7283 |
|
|
Entity_Id gnat_field;
|
7284 |
|
|
tree gnu_list;
|
7285 |
|
|
|
7286 |
|
|
/* We operate by first making a list of all fields and their position (we
|
7287 |
|
|
can get the size easily) and then update all the sizes in the tree. */
|
7288 |
|
|
gnu_list
|
7289 |
|
|
= build_position_list (gnu_type, false, size_zero_node, bitsize_zero_node,
|
7290 |
|
|
BIGGEST_ALIGNMENT, NULL_TREE);
|
7291 |
|
|
|
7292 |
|
|
for (gnat_field = First_Entity (gnat_entity);
|
7293 |
|
|
Present (gnat_field);
|
7294 |
|
|
gnat_field = Next_Entity (gnat_field))
|
7295 |
|
|
if (Ekind (gnat_field) == E_Component
|
7296 |
|
|
|| (Ekind (gnat_field) == E_Discriminant
|
7297 |
|
|
&& !Is_Unchecked_Union (Scope (gnat_field))))
|
7298 |
|
|
{
|
7299 |
|
|
tree t = purpose_member_field (gnat_to_gnu_field_decl (gnat_field),
|
7300 |
|
|
gnu_list);
|
7301 |
|
|
if (t)
|
7302 |
|
|
{
|
7303 |
|
|
tree parent_offset;
|
7304 |
|
|
|
7305 |
|
|
if (type_annotate_only && Is_Tagged_Type (gnat_entity))
|
7306 |
|
|
{
|
7307 |
|
|
/* In this mode the tag and parent components are not
|
7308 |
|
|
generated, so we add the appropriate offset to each
|
7309 |
|
|
component. For a component appearing in the current
|
7310 |
|
|
extension, the offset is the size of the parent. */
|
7311 |
|
|
if (Is_Derived_Type (gnat_entity)
|
7312 |
|
|
&& Original_Record_Component (gnat_field) == gnat_field)
|
7313 |
|
|
parent_offset
|
7314 |
|
|
= UI_To_gnu (Esize (Etype (Base_Type (gnat_entity))),
|
7315 |
|
|
bitsizetype);
|
7316 |
|
|
else
|
7317 |
|
|
parent_offset = bitsize_int (POINTER_SIZE);
|
7318 |
|
|
}
|
7319 |
|
|
else
|
7320 |
|
|
parent_offset = bitsize_zero_node;
|
7321 |
|
|
|
7322 |
|
|
Set_Component_Bit_Offset
|
7323 |
|
|
(gnat_field,
|
7324 |
|
|
annotate_value
|
7325 |
|
|
(size_binop (PLUS_EXPR,
|
7326 |
|
|
bit_from_pos (TREE_VEC_ELT (TREE_VALUE (t), 0),
|
7327 |
|
|
TREE_VEC_ELT (TREE_VALUE (t), 2)),
|
7328 |
|
|
parent_offset)));
|
7329 |
|
|
|
7330 |
|
|
Set_Esize (gnat_field,
|
7331 |
|
|
annotate_value (DECL_SIZE (TREE_PURPOSE (t))));
|
7332 |
|
|
}
|
7333 |
|
|
else if (Is_Tagged_Type (gnat_entity) && Is_Derived_Type (gnat_entity))
|
7334 |
|
|
{
|
7335 |
|
|
/* If there is no entry, this is an inherited component whose
|
7336 |
|
|
position is the same as in the parent type. */
|
7337 |
|
|
Set_Component_Bit_Offset
|
7338 |
|
|
(gnat_field,
|
7339 |
|
|
Component_Bit_Offset (Original_Record_Component (gnat_field)));
|
7340 |
|
|
|
7341 |
|
|
Set_Esize (gnat_field,
|
7342 |
|
|
Esize (Original_Record_Component (gnat_field)));
|
7343 |
|
|
}
|
7344 |
|
|
}
|
7345 |
|
|
}
|
7346 |
|
|
|
7347 |
|
|
/* Scan all fields in GNU_TYPE and return a TREE_LIST where TREE_PURPOSE is
|
7348 |
|
|
the FIELD_DECL and TREE_VALUE a TREE_VEC containing the byte position, the
|
7349 |
|
|
value to be placed into DECL_OFFSET_ALIGN and the bit position. The list
|
7350 |
|
|
of fields is flattened, except for variant parts if DO_NOT_FLATTEN_VARIANT
|
7351 |
|
|
is set to true. GNU_POS is to be added to the position, GNU_BITPOS to the
|
7352 |
|
|
bit position, OFFSET_ALIGN is the present offset alignment. GNU_LIST is a
|
7353 |
|
|
pre-existing list to be chained to the newly created entries. */
|
7354 |
|
|
|
7355 |
|
|
static tree
|
7356 |
|
|
build_position_list (tree gnu_type, bool do_not_flatten_variant, tree gnu_pos,
|
7357 |
|
|
tree gnu_bitpos, unsigned int offset_align, tree gnu_list)
|
7358 |
|
|
{
|
7359 |
|
|
tree gnu_field;
|
7360 |
|
|
|
7361 |
|
|
for (gnu_field = TYPE_FIELDS (gnu_type);
|
7362 |
|
|
gnu_field;
|
7363 |
|
|
gnu_field = TREE_CHAIN (gnu_field))
|
7364 |
|
|
{
|
7365 |
|
|
tree gnu_our_bitpos = size_binop (PLUS_EXPR, gnu_bitpos,
|
7366 |
|
|
DECL_FIELD_BIT_OFFSET (gnu_field));
|
7367 |
|
|
tree gnu_our_offset = size_binop (PLUS_EXPR, gnu_pos,
|
7368 |
|
|
DECL_FIELD_OFFSET (gnu_field));
|
7369 |
|
|
unsigned int our_offset_align
|
7370 |
|
|
= MIN (offset_align, DECL_OFFSET_ALIGN (gnu_field));
|
7371 |
|
|
tree v = make_tree_vec (3);
|
7372 |
|
|
|
7373 |
|
|
TREE_VEC_ELT (v, 0) = gnu_our_offset;
|
7374 |
|
|
TREE_VEC_ELT (v, 1) = size_int (our_offset_align);
|
7375 |
|
|
TREE_VEC_ELT (v, 2) = gnu_our_bitpos;
|
7376 |
|
|
gnu_list = tree_cons (gnu_field, v, gnu_list);
|
7377 |
|
|
|
7378 |
|
|
/* Recurse on internal fields, flattening the nested fields except for
|
7379 |
|
|
those in the variant part, if requested. */
|
7380 |
|
|
if (DECL_INTERNAL_P (gnu_field))
|
7381 |
|
|
{
|
7382 |
|
|
tree gnu_field_type = TREE_TYPE (gnu_field);
|
7383 |
|
|
if (do_not_flatten_variant
|
7384 |
|
|
&& TREE_CODE (gnu_field_type) == QUAL_UNION_TYPE)
|
7385 |
|
|
gnu_list
|
7386 |
|
|
= build_position_list (gnu_field_type, do_not_flatten_variant,
|
7387 |
|
|
size_zero_node, bitsize_zero_node,
|
7388 |
|
|
BIGGEST_ALIGNMENT, gnu_list);
|
7389 |
|
|
else
|
7390 |
|
|
gnu_list
|
7391 |
|
|
= build_position_list (gnu_field_type, do_not_flatten_variant,
|
7392 |
|
|
gnu_our_offset, gnu_our_bitpos,
|
7393 |
|
|
our_offset_align, gnu_list);
|
7394 |
|
|
}
|
7395 |
|
|
}
|
7396 |
|
|
|
7397 |
|
|
return gnu_list;
|
7398 |
|
|
}
|
7399 |
|
|
|
7400 |
|
|
/* Return a TREE_LIST describing the substitutions needed to reflect the
|
7401 |
|
|
discriminant substitutions from GNAT_TYPE to GNAT_SUBTYPE. They can
|
7402 |
|
|
be in any order. TREE_PURPOSE gives the tree for the discriminant and
|
7403 |
|
|
TREE_VALUE is the replacement value. They are in the form of operands
|
7404 |
|
|
to SUBSTITUTE_IN_EXPR. DEFINITION is true if this is for a definition
|
7405 |
|
|
of GNAT_SUBTYPE. */
|
7406 |
|
|
|
7407 |
|
|
static tree
|
7408 |
|
|
build_subst_list (Entity_Id gnat_subtype, Entity_Id gnat_type, bool definition)
|
7409 |
|
|
{
|
7410 |
|
|
tree gnu_list = NULL_TREE;
|
7411 |
|
|
Entity_Id gnat_discrim;
|
7412 |
|
|
Node_Id gnat_value;
|
7413 |
|
|
|
7414 |
|
|
for (gnat_discrim = First_Stored_Discriminant (gnat_type),
|
7415 |
|
|
gnat_value = First_Elmt (Stored_Constraint (gnat_subtype));
|
7416 |
|
|
Present (gnat_discrim);
|
7417 |
|
|
gnat_discrim = Next_Stored_Discriminant (gnat_discrim),
|
7418 |
|
|
gnat_value = Next_Elmt (gnat_value))
|
7419 |
|
|
/* Ignore access discriminants. */
|
7420 |
|
|
if (!Is_Access_Type (Etype (Node (gnat_value))))
|
7421 |
|
|
{
|
7422 |
|
|
tree gnu_field = gnat_to_gnu_field_decl (gnat_discrim);
|
7423 |
|
|
gnu_list = tree_cons (gnu_field,
|
7424 |
|
|
convert (TREE_TYPE (gnu_field),
|
7425 |
|
|
elaborate_expression
|
7426 |
|
|
(Node (gnat_value), gnat_subtype,
|
7427 |
|
|
get_entity_name (gnat_discrim),
|
7428 |
|
|
definition, true, false)),
|
7429 |
|
|
gnu_list);
|
7430 |
|
|
}
|
7431 |
|
|
|
7432 |
|
|
return gnu_list;
|
7433 |
|
|
}
|
7434 |
|
|
|
7435 |
|
|
/* Scan all fields in QUAL_UNION_TYPE and return a TREE_LIST describing the
|
7436 |
|
|
variants of QUAL_UNION_TYPE that are still relevant after applying the
|
7437 |
|
|
substitutions described in SUBST_LIST. TREE_PURPOSE is the type of the
|
7438 |
|
|
variant and TREE_VALUE is a TREE_VEC containing the field, the new value
|
7439 |
|
|
of the qualifier and NULL_TREE respectively. GNU_LIST is a pre-existing
|
7440 |
|
|
list to be chained to the newly created entries. */
|
7441 |
|
|
|
7442 |
|
|
static tree
|
7443 |
|
|
build_variant_list (tree qual_union_type, tree subst_list, tree gnu_list)
|
7444 |
|
|
{
|
7445 |
|
|
tree gnu_field;
|
7446 |
|
|
|
7447 |
|
|
for (gnu_field = TYPE_FIELDS (qual_union_type);
|
7448 |
|
|
gnu_field;
|
7449 |
|
|
gnu_field = TREE_CHAIN (gnu_field))
|
7450 |
|
|
{
|
7451 |
|
|
tree t, qual = DECL_QUALIFIER (gnu_field);
|
7452 |
|
|
|
7453 |
|
|
for (t = subst_list; t; t = TREE_CHAIN (t))
|
7454 |
|
|
qual = SUBSTITUTE_IN_EXPR (qual, TREE_PURPOSE (t), TREE_VALUE (t));
|
7455 |
|
|
|
7456 |
|
|
/* If the new qualifier is not unconditionally false, its variant may
|
7457 |
|
|
still be accessed. */
|
7458 |
|
|
if (!integer_zerop (qual))
|
7459 |
|
|
{
|
7460 |
|
|
tree variant_type = TREE_TYPE (gnu_field), variant_subpart;
|
7461 |
|
|
tree v = make_tree_vec (3);
|
7462 |
|
|
TREE_VEC_ELT (v, 0) = gnu_field;
|
7463 |
|
|
TREE_VEC_ELT (v, 1) = qual;
|
7464 |
|
|
TREE_VEC_ELT (v, 2) = NULL_TREE;
|
7465 |
|
|
gnu_list = tree_cons (variant_type, v, gnu_list);
|
7466 |
|
|
|
7467 |
|
|
/* Recurse on the variant subpart of the variant, if any. */
|
7468 |
|
|
variant_subpart = get_variant_part (variant_type);
|
7469 |
|
|
if (variant_subpart)
|
7470 |
|
|
gnu_list = build_variant_list (TREE_TYPE (variant_subpart),
|
7471 |
|
|
subst_list, gnu_list);
|
7472 |
|
|
|
7473 |
|
|
/* If the new qualifier is unconditionally true, the subsequent
|
7474 |
|
|
variants cannot be accessed. */
|
7475 |
|
|
if (integer_onep (qual))
|
7476 |
|
|
break;
|
7477 |
|
|
}
|
7478 |
|
|
}
|
7479 |
|
|
|
7480 |
|
|
return gnu_list;
|
7481 |
|
|
}
|
7482 |
|
|
|
7483 |
|
|
/* UINT_SIZE is a Uint giving the specified size for an object of GNU_TYPE
|
7484 |
|
|
corresponding to GNAT_OBJECT. If size is valid, return a tree corresponding
|
7485 |
|
|
to its value. Otherwise return 0. KIND is VAR_DECL is we are specifying
|
7486 |
|
|
the size for an object, TYPE_DECL for the size of a type, and FIELD_DECL
|
7487 |
|
|
for the size of a field. COMPONENT_P is true if we are being called
|
7488 |
|
|
to process the Component_Size of GNAT_OBJECT. This is used for error
|
7489 |
|
|
message handling and to indicate to use the object size of GNU_TYPE.
|
7490 |
|
|
ZERO_OK is true if a size of zero is permitted; if ZERO_OK is false,
|
7491 |
|
|
it means that a size of zero should be treated as an unspecified size. */
|
7492 |
|
|
|
7493 |
|
|
static tree
|
7494 |
|
|
validate_size (Uint uint_size, tree gnu_type, Entity_Id gnat_object,
|
7495 |
|
|
enum tree_code kind, bool component_p, bool zero_ok)
|
7496 |
|
|
{
|
7497 |
|
|
Node_Id gnat_error_node;
|
7498 |
|
|
tree type_size, size;
|
7499 |
|
|
|
7500 |
|
|
if (kind == VAR_DECL
|
7501 |
|
|
/* If a type needs strict alignment, a component of this type in
|
7502 |
|
|
a packed record cannot be packed and thus uses the type size. */
|
7503 |
|
|
|| (kind == TYPE_DECL && Strict_Alignment (gnat_object)))
|
7504 |
|
|
type_size = TYPE_SIZE (gnu_type);
|
7505 |
|
|
else
|
7506 |
|
|
type_size = rm_size (gnu_type);
|
7507 |
|
|
|
7508 |
|
|
/* Find the node to use for errors. */
|
7509 |
|
|
if ((Ekind (gnat_object) == E_Component
|
7510 |
|
|
|| Ekind (gnat_object) == E_Discriminant)
|
7511 |
|
|
&& Present (Component_Clause (gnat_object)))
|
7512 |
|
|
gnat_error_node = Last_Bit (Component_Clause (gnat_object));
|
7513 |
|
|
else if (Present (Size_Clause (gnat_object)))
|
7514 |
|
|
gnat_error_node = Expression (Size_Clause (gnat_object));
|
7515 |
|
|
else
|
7516 |
|
|
gnat_error_node = gnat_object;
|
7517 |
|
|
|
7518 |
|
|
/* Return 0 if no size was specified, either because Esize was not Present
|
7519 |
|
|
or the specified size was zero. */
|
7520 |
|
|
if (No (uint_size) || uint_size == No_Uint)
|
7521 |
|
|
return NULL_TREE;
|
7522 |
|
|
|
7523 |
|
|
/* Get the size as a tree. Issue an error if a size was specified but
|
7524 |
|
|
cannot be represented in sizetype. */
|
7525 |
|
|
size = UI_To_gnu (uint_size, bitsizetype);
|
7526 |
|
|
if (TREE_OVERFLOW (size))
|
7527 |
|
|
{
|
7528 |
|
|
post_error_ne (component_p ? "component size of & is too large"
|
7529 |
|
|
: "size of & is too large",
|
7530 |
|
|
gnat_error_node, gnat_object);
|
7531 |
|
|
return NULL_TREE;
|
7532 |
|
|
}
|
7533 |
|
|
|
7534 |
|
|
/* Ignore a negative size since that corresponds to our back-annotation.
|
7535 |
|
|
Also ignore a zero size if it is not permitted. */
|
7536 |
|
|
if (tree_int_cst_sgn (size) < 0 || (integer_zerop (size) && !zero_ok))
|
7537 |
|
|
return NULL_TREE;
|
7538 |
|
|
|
7539 |
|
|
/* The size of objects is always a multiple of a byte. */
|
7540 |
|
|
if (kind == VAR_DECL
|
7541 |
|
|
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR, size, bitsize_unit_node)))
|
7542 |
|
|
{
|
7543 |
|
|
if (component_p)
|
7544 |
|
|
post_error_ne ("component size for& is not a multiple of Storage_Unit",
|
7545 |
|
|
gnat_error_node, gnat_object);
|
7546 |
|
|
else
|
7547 |
|
|
post_error_ne ("size for& is not a multiple of Storage_Unit",
|
7548 |
|
|
gnat_error_node, gnat_object);
|
7549 |
|
|
return NULL_TREE;
|
7550 |
|
|
}
|
7551 |
|
|
|
7552 |
|
|
/* If this is an integral type or a packed array type, the front-end has
|
7553 |
|
|
verified the size, so we need not do it here (which would entail
|
7554 |
|
|
checking against the bounds). However, if this is an aliased object,
|
7555 |
|
|
it may not be smaller than the type of the object. */
|
7556 |
|
|
if ((INTEGRAL_TYPE_P (gnu_type) || TYPE_IS_PACKED_ARRAY_TYPE_P (gnu_type))
|
7557 |
|
|
&& !(kind == VAR_DECL && Is_Aliased (gnat_object)))
|
7558 |
|
|
return size;
|
7559 |
|
|
|
7560 |
|
|
/* If the object is a record that contains a template, add the size of
|
7561 |
|
|
the template to the specified size. */
|
7562 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE
|
7563 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
|
7564 |
|
|
size = size_binop (PLUS_EXPR, DECL_SIZE (TYPE_FIELDS (gnu_type)), size);
|
7565 |
|
|
|
7566 |
|
|
/* Modify the size of the type to be that of the maximum size if it has a
|
7567 |
|
|
discriminant. */
|
7568 |
|
|
if (type_size && CONTAINS_PLACEHOLDER_P (type_size))
|
7569 |
|
|
type_size = max_size (type_size, true);
|
7570 |
|
|
|
7571 |
|
|
/* If this is an access type or a fat pointer, the minimum size is that given
|
7572 |
|
|
by the smallest integral mode that's valid for pointers. */
|
7573 |
|
|
if (TREE_CODE (gnu_type) == POINTER_TYPE || TYPE_IS_FAT_POINTER_P (gnu_type))
|
7574 |
|
|
{
|
7575 |
|
|
enum machine_mode p_mode;
|
7576 |
|
|
|
7577 |
|
|
for (p_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
7578 |
|
|
!targetm.valid_pointer_mode (p_mode);
|
7579 |
|
|
p_mode = GET_MODE_WIDER_MODE (p_mode))
|
7580 |
|
|
;
|
7581 |
|
|
|
7582 |
|
|
type_size = bitsize_int (GET_MODE_BITSIZE (p_mode));
|
7583 |
|
|
}
|
7584 |
|
|
|
7585 |
|
|
/* If the size of the object is a constant, the new size must not be
|
7586 |
|
|
smaller. */
|
7587 |
|
|
if (TREE_CODE (type_size) != INTEGER_CST
|
7588 |
|
|
|| TREE_OVERFLOW (type_size)
|
7589 |
|
|
|| tree_int_cst_lt (size, type_size))
|
7590 |
|
|
{
|
7591 |
|
|
if (component_p)
|
7592 |
|
|
post_error_ne_tree
|
7593 |
|
|
("component size for& too small{, minimum allowed is ^}",
|
7594 |
|
|
gnat_error_node, gnat_object, type_size);
|
7595 |
|
|
else
|
7596 |
|
|
post_error_ne_tree ("size for& too small{, minimum allowed is ^}",
|
7597 |
|
|
gnat_error_node, gnat_object, type_size);
|
7598 |
|
|
|
7599 |
|
|
if (kind == VAR_DECL && !component_p
|
7600 |
|
|
&& TREE_CODE (rm_size (gnu_type)) == INTEGER_CST
|
7601 |
|
|
&& !tree_int_cst_lt (size, rm_size (gnu_type)))
|
7602 |
|
|
post_error_ne_tree_2
|
7603 |
|
|
("\\size of ^ is not a multiple of alignment (^ bits)",
|
7604 |
|
|
gnat_error_node, gnat_object, rm_size (gnu_type),
|
7605 |
|
|
TYPE_ALIGN (gnu_type));
|
7606 |
|
|
|
7607 |
|
|
else if (INTEGRAL_TYPE_P (gnu_type))
|
7608 |
|
|
post_error_ne ("\\size would be legal if & were not aliased!",
|
7609 |
|
|
gnat_error_node, gnat_object);
|
7610 |
|
|
|
7611 |
|
|
return NULL_TREE;
|
7612 |
|
|
}
|
7613 |
|
|
|
7614 |
|
|
return size;
|
7615 |
|
|
}
|
7616 |
|
|
|
7617 |
|
|
/* Similarly, but both validate and process a value of RM size. This
|
7618 |
|
|
routine is only called for types. */
|
7619 |
|
|
|
7620 |
|
|
static void
|
7621 |
|
|
set_rm_size (Uint uint_size, tree gnu_type, Entity_Id gnat_entity)
|
7622 |
|
|
{
|
7623 |
|
|
/* Only issue an error if a Value_Size clause was explicitly given.
|
7624 |
|
|
Otherwise, we'd be duplicating an error on the Size clause. */
|
7625 |
|
|
Node_Id gnat_attr_node
|
7626 |
|
|
= Get_Attribute_Definition_Clause (gnat_entity, Attr_Value_Size);
|
7627 |
|
|
tree old_size = rm_size (gnu_type), size;
|
7628 |
|
|
|
7629 |
|
|
/* Do nothing if no size was specified, either because RM size was not
|
7630 |
|
|
Present or if the specified size was zero. */
|
7631 |
|
|
if (No (uint_size) || uint_size == No_Uint)
|
7632 |
|
|
return;
|
7633 |
|
|
|
7634 |
|
|
/* Get the size as a tree. Issue an error if a size was specified but
|
7635 |
|
|
cannot be represented in sizetype. */
|
7636 |
|
|
size = UI_To_gnu (uint_size, bitsizetype);
|
7637 |
|
|
if (TREE_OVERFLOW (size))
|
7638 |
|
|
{
|
7639 |
|
|
if (Present (gnat_attr_node))
|
7640 |
|
|
post_error_ne ("Value_Size of & is too large", gnat_attr_node,
|
7641 |
|
|
gnat_entity);
|
7642 |
|
|
return;
|
7643 |
|
|
}
|
7644 |
|
|
|
7645 |
|
|
/* Ignore a negative size since that corresponds to our back-annotation.
|
7646 |
|
|
Also ignore a zero size unless a Value_Size clause exists, or a size
|
7647 |
|
|
clause exists, or this is an integer type, in which case the front-end
|
7648 |
|
|
will have always set it. */
|
7649 |
|
|
if (tree_int_cst_sgn (size) < 0
|
7650 |
|
|
|| (integer_zerop (size)
|
7651 |
|
|
&& No (gnat_attr_node)
|
7652 |
|
|
&& !Has_Size_Clause (gnat_entity)
|
7653 |
|
|
&& !Is_Discrete_Or_Fixed_Point_Type (gnat_entity)))
|
7654 |
|
|
return;
|
7655 |
|
|
|
7656 |
|
|
/* If the old size is self-referential, get the maximum size. */
|
7657 |
|
|
if (CONTAINS_PLACEHOLDER_P (old_size))
|
7658 |
|
|
old_size = max_size (old_size, true);
|
7659 |
|
|
|
7660 |
|
|
/* If the size of the object is a constant, the new size must not be smaller
|
7661 |
|
|
(the front-end has verified this for scalar and packed array types). */
|
7662 |
|
|
if (TREE_CODE (old_size) != INTEGER_CST
|
7663 |
|
|
|| TREE_OVERFLOW (old_size)
|
7664 |
|
|
|| (AGGREGATE_TYPE_P (gnu_type)
|
7665 |
|
|
&& !(TREE_CODE (gnu_type) == ARRAY_TYPE
|
7666 |
|
|
&& TYPE_PACKED_ARRAY_TYPE_P (gnu_type))
|
7667 |
|
|
&& !(TYPE_IS_PADDING_P (gnu_type)
|
7668 |
|
|
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type))) == ARRAY_TYPE
|
7669 |
|
|
&& TYPE_PACKED_ARRAY_TYPE_P (TREE_TYPE (TYPE_FIELDS (gnu_type))))
|
7670 |
|
|
&& tree_int_cst_lt (size, old_size)))
|
7671 |
|
|
{
|
7672 |
|
|
if (Present (gnat_attr_node))
|
7673 |
|
|
post_error_ne_tree
|
7674 |
|
|
("Value_Size for& too small{, minimum allowed is ^}",
|
7675 |
|
|
gnat_attr_node, gnat_entity, old_size);
|
7676 |
|
|
return;
|
7677 |
|
|
}
|
7678 |
|
|
|
7679 |
|
|
/* Otherwise, set the RM size proper for integral types... */
|
7680 |
|
|
if ((TREE_CODE (gnu_type) == INTEGER_TYPE
|
7681 |
|
|
&& Is_Discrete_Or_Fixed_Point_Type (gnat_entity))
|
7682 |
|
|
|| (TREE_CODE (gnu_type) == ENUMERAL_TYPE
|
7683 |
|
|
|| TREE_CODE (gnu_type) == BOOLEAN_TYPE))
|
7684 |
|
|
SET_TYPE_RM_SIZE (gnu_type, size);
|
7685 |
|
|
|
7686 |
|
|
/* ...or the Ada size for record and union types. */
|
7687 |
|
|
else if ((TREE_CODE (gnu_type) == RECORD_TYPE
|
7688 |
|
|
|| TREE_CODE (gnu_type) == UNION_TYPE
|
7689 |
|
|
|| TREE_CODE (gnu_type) == QUAL_UNION_TYPE)
|
7690 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_type))
|
7691 |
|
|
SET_TYPE_ADA_SIZE (gnu_type, size);
|
7692 |
|
|
}
|
7693 |
|
|
|
7694 |
|
|
/* Given a type TYPE, return a new type whose size is appropriate for SIZE.
|
7695 |
|
|
If TYPE is the best type, return it. Otherwise, make a new type. We
|
7696 |
|
|
only support new integral and pointer types. FOR_BIASED is true if
|
7697 |
|
|
we are making a biased type. */
|
7698 |
|
|
|
7699 |
|
|
static tree
|
7700 |
|
|
make_type_from_size (tree type, tree size_tree, bool for_biased)
|
7701 |
|
|
{
|
7702 |
|
|
unsigned HOST_WIDE_INT size;
|
7703 |
|
|
bool biased_p;
|
7704 |
|
|
tree new_type;
|
7705 |
|
|
|
7706 |
|
|
/* If size indicates an error, just return TYPE to avoid propagating
|
7707 |
|
|
the error. Likewise if it's too large to represent. */
|
7708 |
|
|
if (!size_tree || !host_integerp (size_tree, 1))
|
7709 |
|
|
return type;
|
7710 |
|
|
|
7711 |
|
|
size = tree_low_cst (size_tree, 1);
|
7712 |
|
|
|
7713 |
|
|
switch (TREE_CODE (type))
|
7714 |
|
|
{
|
7715 |
|
|
case INTEGER_TYPE:
|
7716 |
|
|
case ENUMERAL_TYPE:
|
7717 |
|
|
case BOOLEAN_TYPE:
|
7718 |
|
|
biased_p = (TREE_CODE (type) == INTEGER_TYPE
|
7719 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (type));
|
7720 |
|
|
|
7721 |
|
|
/* Integer types with precision 0 are forbidden. */
|
7722 |
|
|
if (size == 0)
|
7723 |
|
|
size = 1;
|
7724 |
|
|
|
7725 |
|
|
/* Only do something if the type is not a packed array type and
|
7726 |
|
|
doesn't already have the proper size. */
|
7727 |
|
|
if (TYPE_PACKED_ARRAY_TYPE_P (type)
|
7728 |
|
|
|| (TYPE_PRECISION (type) == size && biased_p == for_biased))
|
7729 |
|
|
break;
|
7730 |
|
|
|
7731 |
|
|
biased_p |= for_biased;
|
7732 |
|
|
if (size > LONG_LONG_TYPE_SIZE)
|
7733 |
|
|
size = LONG_LONG_TYPE_SIZE;
|
7734 |
|
|
|
7735 |
|
|
if (TYPE_UNSIGNED (type) || biased_p)
|
7736 |
|
|
new_type = make_unsigned_type (size);
|
7737 |
|
|
else
|
7738 |
|
|
new_type = make_signed_type (size);
|
7739 |
|
|
TREE_TYPE (new_type) = TREE_TYPE (type) ? TREE_TYPE (type) : type;
|
7740 |
|
|
SET_TYPE_RM_MIN_VALUE (new_type,
|
7741 |
|
|
convert (TREE_TYPE (new_type),
|
7742 |
|
|
TYPE_MIN_VALUE (type)));
|
7743 |
|
|
SET_TYPE_RM_MAX_VALUE (new_type,
|
7744 |
|
|
convert (TREE_TYPE (new_type),
|
7745 |
|
|
TYPE_MAX_VALUE (type)));
|
7746 |
|
|
/* Propagate the name to avoid creating a fake subrange type. */
|
7747 |
|
|
if (TYPE_NAME (type))
|
7748 |
|
|
{
|
7749 |
|
|
if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
|
7750 |
|
|
TYPE_NAME (new_type) = DECL_NAME (TYPE_NAME (type));
|
7751 |
|
|
else
|
7752 |
|
|
TYPE_NAME (new_type) = TYPE_NAME (type);
|
7753 |
|
|
}
|
7754 |
|
|
TYPE_BIASED_REPRESENTATION_P (new_type) = biased_p;
|
7755 |
|
|
SET_TYPE_RM_SIZE (new_type, bitsize_int (size));
|
7756 |
|
|
return new_type;
|
7757 |
|
|
|
7758 |
|
|
case RECORD_TYPE:
|
7759 |
|
|
/* Do something if this is a fat pointer, in which case we
|
7760 |
|
|
may need to return the thin pointer. */
|
7761 |
|
|
if (TYPE_FAT_POINTER_P (type) && size < POINTER_SIZE * 2)
|
7762 |
|
|
{
|
7763 |
|
|
enum machine_mode p_mode = mode_for_size (size, MODE_INT, 0);
|
7764 |
|
|
if (!targetm.valid_pointer_mode (p_mode))
|
7765 |
|
|
p_mode = ptr_mode;
|
7766 |
|
|
return
|
7767 |
|
|
build_pointer_type_for_mode
|
7768 |
|
|
(TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type)),
|
7769 |
|
|
p_mode, 0);
|
7770 |
|
|
}
|
7771 |
|
|
break;
|
7772 |
|
|
|
7773 |
|
|
case POINTER_TYPE:
|
7774 |
|
|
/* Only do something if this is a thin pointer, in which case we
|
7775 |
|
|
may need to return the fat pointer. */
|
7776 |
|
|
if (TYPE_IS_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2)
|
7777 |
|
|
return
|
7778 |
|
|
build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)));
|
7779 |
|
|
break;
|
7780 |
|
|
|
7781 |
|
|
default:
|
7782 |
|
|
break;
|
7783 |
|
|
}
|
7784 |
|
|
|
7785 |
|
|
return type;
|
7786 |
|
|
}
|
7787 |
|
|
|
7788 |
|
|
/* ALIGNMENT is a Uint giving the alignment specified for GNAT_ENTITY,
|
7789 |
|
|
a type or object whose present alignment is ALIGN. If this alignment is
|
7790 |
|
|
valid, return it. Otherwise, give an error and return ALIGN. */
|
7791 |
|
|
|
7792 |
|
|
static unsigned int
|
7793 |
|
|
validate_alignment (Uint alignment, Entity_Id gnat_entity, unsigned int align)
|
7794 |
|
|
{
|
7795 |
|
|
unsigned int max_allowed_alignment = get_target_maximum_allowed_alignment ();
|
7796 |
|
|
unsigned int new_align;
|
7797 |
|
|
Node_Id gnat_error_node;
|
7798 |
|
|
|
7799 |
|
|
/* Don't worry about checking alignment if alignment was not specified
|
7800 |
|
|
by the source program and we already posted an error for this entity. */
|
7801 |
|
|
if (Error_Posted (gnat_entity) && !Has_Alignment_Clause (gnat_entity))
|
7802 |
|
|
return align;
|
7803 |
|
|
|
7804 |
|
|
/* Post the error on the alignment clause if any. Note, for the implicit
|
7805 |
|
|
base type of an array type, the alignment clause is on the first
|
7806 |
|
|
subtype. */
|
7807 |
|
|
if (Present (Alignment_Clause (gnat_entity)))
|
7808 |
|
|
gnat_error_node = Expression (Alignment_Clause (gnat_entity));
|
7809 |
|
|
|
7810 |
|
|
else if (Is_Itype (gnat_entity)
|
7811 |
|
|
&& Is_Array_Type (gnat_entity)
|
7812 |
|
|
&& Etype (gnat_entity) == gnat_entity
|
7813 |
|
|
&& Present (Alignment_Clause (First_Subtype (gnat_entity))))
|
7814 |
|
|
gnat_error_node =
|
7815 |
|
|
Expression (Alignment_Clause (First_Subtype (gnat_entity)));
|
7816 |
|
|
|
7817 |
|
|
else
|
7818 |
|
|
gnat_error_node = gnat_entity;
|
7819 |
|
|
|
7820 |
|
|
/* Within GCC, an alignment is an integer, so we must make sure a value is
|
7821 |
|
|
specified that fits in that range. Also, there is an upper bound to
|
7822 |
|
|
alignments we can support/allow. */
|
7823 |
|
|
if (!UI_Is_In_Int_Range (alignment)
|
7824 |
|
|
|| ((new_align = UI_To_Int (alignment)) > max_allowed_alignment))
|
7825 |
|
|
post_error_ne_num ("largest supported alignment for& is ^",
|
7826 |
|
|
gnat_error_node, gnat_entity, max_allowed_alignment);
|
7827 |
|
|
else if (!(Present (Alignment_Clause (gnat_entity))
|
7828 |
|
|
&& From_At_Mod (Alignment_Clause (gnat_entity)))
|
7829 |
|
|
&& new_align * BITS_PER_UNIT < align)
|
7830 |
|
|
{
|
7831 |
|
|
unsigned int double_align;
|
7832 |
|
|
bool is_capped_double, align_clause;
|
7833 |
|
|
|
7834 |
|
|
/* If the default alignment of "double" or larger scalar types is
|
7835 |
|
|
specifically capped and the new alignment is above the cap, do
|
7836 |
|
|
not post an error and change the alignment only if there is an
|
7837 |
|
|
alignment clause; this makes it possible to have the associated
|
7838 |
|
|
GCC type overaligned by default for performance reasons. */
|
7839 |
|
|
if ((double_align = double_float_alignment) > 0)
|
7840 |
|
|
{
|
7841 |
|
|
Entity_Id gnat_type
|
7842 |
|
|
= Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
|
7843 |
|
|
is_capped_double
|
7844 |
|
|
= is_double_float_or_array (gnat_type, &align_clause);
|
7845 |
|
|
}
|
7846 |
|
|
else if ((double_align = double_scalar_alignment) > 0)
|
7847 |
|
|
{
|
7848 |
|
|
Entity_Id gnat_type
|
7849 |
|
|
= Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
|
7850 |
|
|
is_capped_double
|
7851 |
|
|
= is_double_scalar_or_array (gnat_type, &align_clause);
|
7852 |
|
|
}
|
7853 |
|
|
else
|
7854 |
|
|
is_capped_double = align_clause = false;
|
7855 |
|
|
|
7856 |
|
|
if (is_capped_double && new_align >= double_align)
|
7857 |
|
|
{
|
7858 |
|
|
if (align_clause)
|
7859 |
|
|
align = new_align * BITS_PER_UNIT;
|
7860 |
|
|
}
|
7861 |
|
|
else
|
7862 |
|
|
{
|
7863 |
|
|
if (is_capped_double)
|
7864 |
|
|
align = double_align * BITS_PER_UNIT;
|
7865 |
|
|
|
7866 |
|
|
post_error_ne_num ("alignment for& must be at least ^",
|
7867 |
|
|
gnat_error_node, gnat_entity,
|
7868 |
|
|
align / BITS_PER_UNIT);
|
7869 |
|
|
}
|
7870 |
|
|
}
|
7871 |
|
|
else
|
7872 |
|
|
{
|
7873 |
|
|
new_align = (new_align > 0 ? new_align * BITS_PER_UNIT : 1);
|
7874 |
|
|
if (new_align > align)
|
7875 |
|
|
align = new_align;
|
7876 |
|
|
}
|
7877 |
|
|
|
7878 |
|
|
return align;
|
7879 |
|
|
}
|
7880 |
|
|
|
7881 |
|
|
/* Return the smallest alignment not less than SIZE. */
|
7882 |
|
|
|
7883 |
|
|
static unsigned int
|
7884 |
|
|
ceil_alignment (unsigned HOST_WIDE_INT size)
|
7885 |
|
|
{
|
7886 |
|
|
return (unsigned int) 1 << (floor_log2 (size - 1) + 1);
|
7887 |
|
|
}
|
7888 |
|
|
|
7889 |
|
|
/* Verify that OBJECT, a type or decl, is something we can implement
|
7890 |
|
|
atomically. If not, give an error for GNAT_ENTITY. COMP_P is true
|
7891 |
|
|
if we require atomic components. */
|
7892 |
|
|
|
7893 |
|
|
static void
|
7894 |
|
|
check_ok_for_atomic (tree object, Entity_Id gnat_entity, bool comp_p)
|
7895 |
|
|
{
|
7896 |
|
|
Node_Id gnat_error_point = gnat_entity;
|
7897 |
|
|
Node_Id gnat_node;
|
7898 |
|
|
enum machine_mode mode;
|
7899 |
|
|
unsigned int align;
|
7900 |
|
|
tree size;
|
7901 |
|
|
|
7902 |
|
|
/* There are three case of what OBJECT can be. It can be a type, in which
|
7903 |
|
|
case we take the size, alignment and mode from the type. It can be a
|
7904 |
|
|
declaration that was indirect, in which case the relevant values are
|
7905 |
|
|
that of the type being pointed to, or it can be a normal declaration,
|
7906 |
|
|
in which case the values are of the decl. The code below assumes that
|
7907 |
|
|
OBJECT is either a type or a decl. */
|
7908 |
|
|
if (TYPE_P (object))
|
7909 |
|
|
{
|
7910 |
|
|
/* If this is an anonymous base type, nothing to check. Error will be
|
7911 |
|
|
reported on the source type. */
|
7912 |
|
|
if (!Comes_From_Source (gnat_entity))
|
7913 |
|
|
return;
|
7914 |
|
|
|
7915 |
|
|
mode = TYPE_MODE (object);
|
7916 |
|
|
align = TYPE_ALIGN (object);
|
7917 |
|
|
size = TYPE_SIZE (object);
|
7918 |
|
|
}
|
7919 |
|
|
else if (DECL_BY_REF_P (object))
|
7920 |
|
|
{
|
7921 |
|
|
mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (object)));
|
7922 |
|
|
align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (object)));
|
7923 |
|
|
size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (object)));
|
7924 |
|
|
}
|
7925 |
|
|
else
|
7926 |
|
|
{
|
7927 |
|
|
mode = DECL_MODE (object);
|
7928 |
|
|
align = DECL_ALIGN (object);
|
7929 |
|
|
size = DECL_SIZE (object);
|
7930 |
|
|
}
|
7931 |
|
|
|
7932 |
|
|
/* Consider all floating-point types atomic and any types that that are
|
7933 |
|
|
represented by integers no wider than a machine word. */
|
7934 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
7935 |
|
|
|| ((GET_MODE_CLASS (mode) == MODE_INT
|
7936 |
|
|
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
7937 |
|
|
&& GET_MODE_BITSIZE (mode) <= BITS_PER_WORD))
|
7938 |
|
|
return;
|
7939 |
|
|
|
7940 |
|
|
/* For the moment, also allow anything that has an alignment equal
|
7941 |
|
|
to its size and which is smaller than a word. */
|
7942 |
|
|
if (size && TREE_CODE (size) == INTEGER_CST
|
7943 |
|
|
&& compare_tree_int (size, align) == 0
|
7944 |
|
|
&& align <= BITS_PER_WORD)
|
7945 |
|
|
return;
|
7946 |
|
|
|
7947 |
|
|
for (gnat_node = First_Rep_Item (gnat_entity); Present (gnat_node);
|
7948 |
|
|
gnat_node = Next_Rep_Item (gnat_node))
|
7949 |
|
|
{
|
7950 |
|
|
if (!comp_p && Nkind (gnat_node) == N_Pragma
|
7951 |
|
|
&& (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)))
|
7952 |
|
|
== Pragma_Atomic))
|
7953 |
|
|
gnat_error_point = First (Pragma_Argument_Associations (gnat_node));
|
7954 |
|
|
else if (comp_p && Nkind (gnat_node) == N_Pragma
|
7955 |
|
|
&& (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)))
|
7956 |
|
|
== Pragma_Atomic_Components))
|
7957 |
|
|
gnat_error_point = First (Pragma_Argument_Associations (gnat_node));
|
7958 |
|
|
}
|
7959 |
|
|
|
7960 |
|
|
if (comp_p)
|
7961 |
|
|
post_error_ne ("atomic access to component of & cannot be guaranteed",
|
7962 |
|
|
gnat_error_point, gnat_entity);
|
7963 |
|
|
else
|
7964 |
|
|
post_error_ne ("atomic access to & cannot be guaranteed",
|
7965 |
|
|
gnat_error_point, gnat_entity);
|
7966 |
|
|
}
|
7967 |
|
|
|
7968 |
|
|
/* Check if FTYPE1 and FTYPE2, two potentially different function type nodes,
|
7969 |
|
|
have compatible signatures so that a call using one type may be safely
|
7970 |
|
|
issued if the actual target function type is the other. Return 1 if it is
|
7971 |
|
|
the case, 0 otherwise, and post errors on the incompatibilities.
|
7972 |
|
|
|
7973 |
|
|
This is used when an Ada subprogram is mapped onto a GCC builtin, to ensure
|
7974 |
|
|
that calls to the subprogram will have arguments suitable for the later
|
7975 |
|
|
underlying builtin expansion. */
|
7976 |
|
|
|
7977 |
|
|
static int
|
7978 |
|
|
compatible_signatures_p (tree ftype1, tree ftype2)
|
7979 |
|
|
{
|
7980 |
|
|
/* As of now, we only perform very trivial tests and consider it's the
|
7981 |
|
|
programmer's responsibility to ensure the type correctness in the Ada
|
7982 |
|
|
declaration, as in the regular Import cases.
|
7983 |
|
|
|
7984 |
|
|
Mismatches typically result in either error messages from the builtin
|
7985 |
|
|
expander, internal compiler errors, or in a real call sequence. This
|
7986 |
|
|
should be refined to issue diagnostics helping error detection and
|
7987 |
|
|
correction. */
|
7988 |
|
|
|
7989 |
|
|
/* Almost fake test, ensuring a use of each argument. */
|
7990 |
|
|
if (ftype1 == ftype2)
|
7991 |
|
|
return 1;
|
7992 |
|
|
|
7993 |
|
|
return 1;
|
7994 |
|
|
}
|
7995 |
|
|
|
7996 |
|
|
/* Return a FIELD_DECL node modeled on OLD_FIELD. FIELD_TYPE is its type
|
7997 |
|
|
and RECORD_TYPE is the type of the parent. If SIZE is nonzero, it is the
|
7998 |
|
|
specified size for this field. POS_LIST is a position list describing
|
7999 |
|
|
the layout of OLD_FIELD and SUBST_LIST a substitution list to be applied
|
8000 |
|
|
to this layout. */
|
8001 |
|
|
|
8002 |
|
|
static tree
|
8003 |
|
|
create_field_decl_from (tree old_field, tree field_type, tree record_type,
|
8004 |
|
|
tree size, tree pos_list, tree subst_list)
|
8005 |
|
|
{
|
8006 |
|
|
tree t = TREE_VALUE (purpose_member (old_field, pos_list));
|
8007 |
|
|
tree pos = TREE_VEC_ELT (t, 0), bitpos = TREE_VEC_ELT (t, 2);
|
8008 |
|
|
unsigned int offset_align = tree_low_cst (TREE_VEC_ELT (t, 1), 1);
|
8009 |
|
|
tree new_pos, new_field;
|
8010 |
|
|
|
8011 |
|
|
if (CONTAINS_PLACEHOLDER_P (pos))
|
8012 |
|
|
for (t = subst_list; t; t = TREE_CHAIN (t))
|
8013 |
|
|
pos = SUBSTITUTE_IN_EXPR (pos, TREE_PURPOSE (t), TREE_VALUE (t));
|
8014 |
|
|
|
8015 |
|
|
/* If the position is now a constant, we can set it as the position of the
|
8016 |
|
|
field when we make it. Otherwise, we need to deal with it specially. */
|
8017 |
|
|
if (TREE_CONSTANT (pos))
|
8018 |
|
|
new_pos = bit_from_pos (pos, bitpos);
|
8019 |
|
|
else
|
8020 |
|
|
new_pos = NULL_TREE;
|
8021 |
|
|
|
8022 |
|
|
new_field
|
8023 |
|
|
= create_field_decl (DECL_NAME (old_field), field_type, record_type,
|
8024 |
|
|
DECL_PACKED (old_field), size, new_pos,
|
8025 |
|
|
!DECL_NONADDRESSABLE_P (old_field));
|
8026 |
|
|
|
8027 |
|
|
if (!new_pos)
|
8028 |
|
|
{
|
8029 |
|
|
normalize_offset (&pos, &bitpos, offset_align);
|
8030 |
|
|
DECL_FIELD_OFFSET (new_field) = pos;
|
8031 |
|
|
DECL_FIELD_BIT_OFFSET (new_field) = bitpos;
|
8032 |
|
|
SET_DECL_OFFSET_ALIGN (new_field, offset_align);
|
8033 |
|
|
DECL_SIZE (new_field) = size;
|
8034 |
|
|
DECL_SIZE_UNIT (new_field)
|
8035 |
|
|
= convert (sizetype,
|
8036 |
|
|
size_binop (CEIL_DIV_EXPR, size, bitsize_unit_node));
|
8037 |
|
|
layout_decl (new_field, DECL_OFFSET_ALIGN (new_field));
|
8038 |
|
|
}
|
8039 |
|
|
|
8040 |
|
|
DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field);
|
8041 |
|
|
t = DECL_ORIGINAL_FIELD (old_field);
|
8042 |
|
|
SET_DECL_ORIGINAL_FIELD (new_field, t ? t : old_field);
|
8043 |
|
|
DECL_DISCRIMINANT_NUMBER (new_field) = DECL_DISCRIMINANT_NUMBER (old_field);
|
8044 |
|
|
TREE_THIS_VOLATILE (new_field) = TREE_THIS_VOLATILE (old_field);
|
8045 |
|
|
|
8046 |
|
|
return new_field;
|
8047 |
|
|
}
|
8048 |
|
|
|
8049 |
|
|
/* Return the REP part of RECORD_TYPE, if any. Otherwise return NULL. */
|
8050 |
|
|
|
8051 |
|
|
static tree
|
8052 |
|
|
get_rep_part (tree record_type)
|
8053 |
|
|
{
|
8054 |
|
|
tree field = TYPE_FIELDS (record_type);
|
8055 |
|
|
|
8056 |
|
|
/* The REP part is the first field, internal, another record, and its name
|
8057 |
|
|
doesn't start with an underscore (i.e. is not generated by the FE). */
|
8058 |
|
|
if (DECL_INTERNAL_P (field)
|
8059 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|
8060 |
|
|
&& IDENTIFIER_POINTER (DECL_NAME (field)) [0] != '_')
|
8061 |
|
|
return field;
|
8062 |
|
|
|
8063 |
|
|
return NULL_TREE;
|
8064 |
|
|
}
|
8065 |
|
|
|
8066 |
|
|
/* Return the variant part of RECORD_TYPE, if any. Otherwise return NULL. */
|
8067 |
|
|
|
8068 |
|
|
static tree
|
8069 |
|
|
get_variant_part (tree record_type)
|
8070 |
|
|
{
|
8071 |
|
|
tree field;
|
8072 |
|
|
|
8073 |
|
|
/* The variant part is the only internal field that is a qualified union. */
|
8074 |
|
|
for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field))
|
8075 |
|
|
if (DECL_INTERNAL_P (field)
|
8076 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE)
|
8077 |
|
|
return field;
|
8078 |
|
|
|
8079 |
|
|
return NULL_TREE;
|
8080 |
|
|
}
|
8081 |
|
|
|
8082 |
|
|
/* Return a new variant part modeled on OLD_VARIANT_PART. VARIANT_LIST is
|
8083 |
|
|
the list of variants to be used and RECORD_TYPE is the type of the parent.
|
8084 |
|
|
POS_LIST is a position list describing the layout of fields present in
|
8085 |
|
|
OLD_VARIANT_PART and SUBST_LIST a substitution list to be applied to this
|
8086 |
|
|
layout. */
|
8087 |
|
|
|
8088 |
|
|
static tree
|
8089 |
|
|
create_variant_part_from (tree old_variant_part, tree variant_list,
|
8090 |
|
|
tree record_type, tree pos_list, tree subst_list)
|
8091 |
|
|
{
|
8092 |
|
|
tree offset = DECL_FIELD_OFFSET (old_variant_part);
|
8093 |
|
|
tree bitpos = DECL_FIELD_BIT_OFFSET (old_variant_part);
|
8094 |
|
|
tree old_union_type = TREE_TYPE (old_variant_part);
|
8095 |
|
|
tree new_union_type, new_variant_part, t;
|
8096 |
|
|
tree union_field_list = NULL_TREE;
|
8097 |
|
|
|
8098 |
|
|
/* First create the type of the variant part from that of the old one. */
|
8099 |
|
|
new_union_type = make_node (QUAL_UNION_TYPE);
|
8100 |
|
|
TYPE_NAME (new_union_type) = DECL_NAME (TYPE_NAME (old_union_type));
|
8101 |
|
|
|
8102 |
|
|
/* If the position of the variant part is constant, subtract it from the
|
8103 |
|
|
size of the type of the parent to get the new size. This manual CSE
|
8104 |
|
|
reduces the code size when not optimizing. */
|
8105 |
|
|
if (TREE_CODE (offset) == INTEGER_CST && TREE_CODE (bitpos) == INTEGER_CST)
|
8106 |
|
|
{
|
8107 |
|
|
tree first_bit = bit_from_pos (offset, bitpos);
|
8108 |
|
|
TYPE_SIZE (new_union_type)
|
8109 |
|
|
= size_binop (MINUS_EXPR, TYPE_SIZE (record_type), first_bit);
|
8110 |
|
|
TYPE_SIZE_UNIT (new_union_type)
|
8111 |
|
|
= size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (record_type),
|
8112 |
|
|
byte_from_pos (offset, bitpos));
|
8113 |
|
|
SET_TYPE_ADA_SIZE (new_union_type,
|
8114 |
|
|
size_binop (MINUS_EXPR, TYPE_ADA_SIZE (record_type),
|
8115 |
|
|
first_bit));
|
8116 |
|
|
TYPE_ALIGN (new_union_type) = TYPE_ALIGN (old_union_type);
|
8117 |
|
|
relate_alias_sets (new_union_type, old_union_type, ALIAS_SET_COPY);
|
8118 |
|
|
}
|
8119 |
|
|
else
|
8120 |
|
|
copy_and_substitute_in_size (new_union_type, old_union_type, subst_list);
|
8121 |
|
|
|
8122 |
|
|
/* Now finish up the new variants and populate the union type. */
|
8123 |
|
|
for (t = variant_list; t; t = TREE_CHAIN (t))
|
8124 |
|
|
{
|
8125 |
|
|
tree old_field = TREE_VEC_ELT (TREE_VALUE (t), 0), new_field;
|
8126 |
|
|
tree old_variant, old_variant_subpart, new_variant, field_list;
|
8127 |
|
|
|
8128 |
|
|
/* Skip variants that don't belong to this nesting level. */
|
8129 |
|
|
if (DECL_CONTEXT (old_field) != old_union_type)
|
8130 |
|
|
continue;
|
8131 |
|
|
|
8132 |
|
|
/* Retrieve the list of fields already added to the new variant. */
|
8133 |
|
|
new_variant = TREE_VEC_ELT (TREE_VALUE (t), 2);
|
8134 |
|
|
field_list = TYPE_FIELDS (new_variant);
|
8135 |
|
|
|
8136 |
|
|
/* If the old variant had a variant subpart, we need to create a new
|
8137 |
|
|
variant subpart and add it to the field list. */
|
8138 |
|
|
old_variant = TREE_PURPOSE (t);
|
8139 |
|
|
old_variant_subpart = get_variant_part (old_variant);
|
8140 |
|
|
if (old_variant_subpart)
|
8141 |
|
|
{
|
8142 |
|
|
tree new_variant_subpart
|
8143 |
|
|
= create_variant_part_from (old_variant_subpart, variant_list,
|
8144 |
|
|
new_variant, pos_list, subst_list);
|
8145 |
|
|
TREE_CHAIN (new_variant_subpart) = field_list;
|
8146 |
|
|
field_list = new_variant_subpart;
|
8147 |
|
|
}
|
8148 |
|
|
|
8149 |
|
|
/* Finish up the new variant and create the field. No need for debug
|
8150 |
|
|
info thanks to the XVS type. */
|
8151 |
|
|
finish_record_type (new_variant, nreverse (field_list), 2, false);
|
8152 |
|
|
compute_record_mode (new_variant);
|
8153 |
|
|
create_type_decl (TYPE_NAME (new_variant), new_variant, NULL,
|
8154 |
|
|
true, false, Empty);
|
8155 |
|
|
|
8156 |
|
|
new_field
|
8157 |
|
|
= create_field_decl_from (old_field, new_variant, new_union_type,
|
8158 |
|
|
TYPE_SIZE (new_variant),
|
8159 |
|
|
pos_list, subst_list);
|
8160 |
|
|
DECL_QUALIFIER (new_field) = TREE_VEC_ELT (TREE_VALUE (t), 1);
|
8161 |
|
|
DECL_INTERNAL_P (new_field) = 1;
|
8162 |
|
|
TREE_CHAIN (new_field) = union_field_list;
|
8163 |
|
|
union_field_list = new_field;
|
8164 |
|
|
}
|
8165 |
|
|
|
8166 |
|
|
/* Finish up the union type and create the variant part. No need for debug
|
8167 |
|
|
info thanks to the XVS type. */
|
8168 |
|
|
finish_record_type (new_union_type, union_field_list, 2, false);
|
8169 |
|
|
compute_record_mode (new_union_type);
|
8170 |
|
|
create_type_decl (TYPE_NAME (new_union_type), new_union_type, NULL,
|
8171 |
|
|
true, false, Empty);
|
8172 |
|
|
|
8173 |
|
|
new_variant_part
|
8174 |
|
|
= create_field_decl_from (old_variant_part, new_union_type, record_type,
|
8175 |
|
|
TYPE_SIZE (new_union_type),
|
8176 |
|
|
pos_list, subst_list);
|
8177 |
|
|
DECL_INTERNAL_P (new_variant_part) = 1;
|
8178 |
|
|
|
8179 |
|
|
/* With multiple discriminants it is possible for an inner variant to be
|
8180 |
|
|
statically selected while outer ones are not; in this case, the list
|
8181 |
|
|
of fields of the inner variant is not flattened and we end up with a
|
8182 |
|
|
qualified union with a single member. Drop the useless container. */
|
8183 |
|
|
if (!TREE_CHAIN (union_field_list))
|
8184 |
|
|
{
|
8185 |
|
|
DECL_CONTEXT (union_field_list) = record_type;
|
8186 |
|
|
DECL_FIELD_OFFSET (union_field_list)
|
8187 |
|
|
= DECL_FIELD_OFFSET (new_variant_part);
|
8188 |
|
|
DECL_FIELD_BIT_OFFSET (union_field_list)
|
8189 |
|
|
= DECL_FIELD_BIT_OFFSET (new_variant_part);
|
8190 |
|
|
SET_DECL_OFFSET_ALIGN (union_field_list,
|
8191 |
|
|
DECL_OFFSET_ALIGN (new_variant_part));
|
8192 |
|
|
new_variant_part = union_field_list;
|
8193 |
|
|
}
|
8194 |
|
|
|
8195 |
|
|
return new_variant_part;
|
8196 |
|
|
}
|
8197 |
|
|
|
8198 |
|
|
/* Copy the size (and alignment and alias set) from OLD_TYPE to NEW_TYPE,
|
8199 |
|
|
which are both RECORD_TYPE, after applying the substitutions described
|
8200 |
|
|
in SUBST_LIST. */
|
8201 |
|
|
|
8202 |
|
|
static void
|
8203 |
|
|
copy_and_substitute_in_size (tree new_type, tree old_type, tree subst_list)
|
8204 |
|
|
{
|
8205 |
|
|
tree t;
|
8206 |
|
|
|
8207 |
|
|
TYPE_SIZE (new_type) = TYPE_SIZE (old_type);
|
8208 |
|
|
TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (old_type);
|
8209 |
|
|
SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (old_type));
|
8210 |
|
|
TYPE_ALIGN (new_type) = TYPE_ALIGN (old_type);
|
8211 |
|
|
relate_alias_sets (new_type, old_type, ALIAS_SET_COPY);
|
8212 |
|
|
|
8213 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (new_type)))
|
8214 |
|
|
for (t = subst_list; t; t = TREE_CHAIN (t))
|
8215 |
|
|
TYPE_SIZE (new_type)
|
8216 |
|
|
= SUBSTITUTE_IN_EXPR (TYPE_SIZE (new_type),
|
8217 |
|
|
TREE_PURPOSE (t),
|
8218 |
|
|
TREE_VALUE (t));
|
8219 |
|
|
|
8220 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (new_type)))
|
8221 |
|
|
for (t = subst_list; t; t = TREE_CHAIN (t))
|
8222 |
|
|
TYPE_SIZE_UNIT (new_type)
|
8223 |
|
|
= SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (new_type),
|
8224 |
|
|
TREE_PURPOSE (t),
|
8225 |
|
|
TREE_VALUE (t));
|
8226 |
|
|
|
8227 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (new_type)))
|
8228 |
|
|
for (t = subst_list; t; t = TREE_CHAIN (t))
|
8229 |
|
|
SET_TYPE_ADA_SIZE
|
8230 |
|
|
(new_type, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (new_type),
|
8231 |
|
|
TREE_PURPOSE (t),
|
8232 |
|
|
TREE_VALUE (t)));
|
8233 |
|
|
|
8234 |
|
|
/* Finalize the size. */
|
8235 |
|
|
TYPE_SIZE (new_type) = variable_size (TYPE_SIZE (new_type));
|
8236 |
|
|
TYPE_SIZE_UNIT (new_type) = variable_size (TYPE_SIZE_UNIT (new_type));
|
8237 |
|
|
}
|
8238 |
|
|
|
8239 |
|
|
/* Given a type T, a FIELD_DECL F, and a replacement value R, return a
|
8240 |
|
|
type with all size expressions that contain F in a PLACEHOLDER_EXPR
|
8241 |
|
|
updated by replacing F with R.
|
8242 |
|
|
|
8243 |
|
|
The function doesn't update the layout of the type, i.e. it assumes
|
8244 |
|
|
that the substitution is purely formal. That's why the replacement
|
8245 |
|
|
value R must itself contain a PLACEHOLDER_EXPR. */
|
8246 |
|
|
|
8247 |
|
|
tree
|
8248 |
|
|
substitute_in_type (tree t, tree f, tree r)
|
8249 |
|
|
{
|
8250 |
|
|
tree nt;
|
8251 |
|
|
|
8252 |
|
|
gcc_assert (CONTAINS_PLACEHOLDER_P (r));
|
8253 |
|
|
|
8254 |
|
|
switch (TREE_CODE (t))
|
8255 |
|
|
{
|
8256 |
|
|
case INTEGER_TYPE:
|
8257 |
|
|
case ENUMERAL_TYPE:
|
8258 |
|
|
case BOOLEAN_TYPE:
|
8259 |
|
|
case REAL_TYPE:
|
8260 |
|
|
|
8261 |
|
|
/* First the domain types of arrays. */
|
8262 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_GCC_MIN_VALUE (t))
|
8263 |
|
|
|| CONTAINS_PLACEHOLDER_P (TYPE_GCC_MAX_VALUE (t)))
|
8264 |
|
|
{
|
8265 |
|
|
tree low = SUBSTITUTE_IN_EXPR (TYPE_GCC_MIN_VALUE (t), f, r);
|
8266 |
|
|
tree high = SUBSTITUTE_IN_EXPR (TYPE_GCC_MAX_VALUE (t), f, r);
|
8267 |
|
|
|
8268 |
|
|
if (low == TYPE_GCC_MIN_VALUE (t) && high == TYPE_GCC_MAX_VALUE (t))
|
8269 |
|
|
return t;
|
8270 |
|
|
|
8271 |
|
|
nt = copy_type (t);
|
8272 |
|
|
TYPE_GCC_MIN_VALUE (nt) = low;
|
8273 |
|
|
TYPE_GCC_MAX_VALUE (nt) = high;
|
8274 |
|
|
|
8275 |
|
|
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_INDEX_TYPE (t))
|
8276 |
|
|
SET_TYPE_INDEX_TYPE
|
8277 |
|
|
(nt, substitute_in_type (TYPE_INDEX_TYPE (t), f, r));
|
8278 |
|
|
|
8279 |
|
|
return nt;
|
8280 |
|
|
}
|
8281 |
|
|
|
8282 |
|
|
/* Then the subtypes. */
|
8283 |
|
|
if (CONTAINS_PLACEHOLDER_P (TYPE_RM_MIN_VALUE (t))
|
8284 |
|
|
|| CONTAINS_PLACEHOLDER_P (TYPE_RM_MAX_VALUE (t)))
|
8285 |
|
|
{
|
8286 |
|
|
tree low = SUBSTITUTE_IN_EXPR (TYPE_RM_MIN_VALUE (t), f, r);
|
8287 |
|
|
tree high = SUBSTITUTE_IN_EXPR (TYPE_RM_MAX_VALUE (t), f, r);
|
8288 |
|
|
|
8289 |
|
|
if (low == TYPE_RM_MIN_VALUE (t) && high == TYPE_RM_MAX_VALUE (t))
|
8290 |
|
|
return t;
|
8291 |
|
|
|
8292 |
|
|
nt = copy_type (t);
|
8293 |
|
|
SET_TYPE_RM_MIN_VALUE (nt, low);
|
8294 |
|
|
SET_TYPE_RM_MAX_VALUE (nt, high);
|
8295 |
|
|
|
8296 |
|
|
return nt;
|
8297 |
|
|
}
|
8298 |
|
|
|
8299 |
|
|
return t;
|
8300 |
|
|
|
8301 |
|
|
case COMPLEX_TYPE:
|
8302 |
|
|
nt = substitute_in_type (TREE_TYPE (t), f, r);
|
8303 |
|
|
if (nt == TREE_TYPE (t))
|
8304 |
|
|
return t;
|
8305 |
|
|
|
8306 |
|
|
return build_complex_type (nt);
|
8307 |
|
|
|
8308 |
|
|
case OFFSET_TYPE:
|
8309 |
|
|
case METHOD_TYPE:
|
8310 |
|
|
case FUNCTION_TYPE:
|
8311 |
|
|
case LANG_TYPE:
|
8312 |
|
|
/* These should never show up here. */
|
8313 |
|
|
gcc_unreachable ();
|
8314 |
|
|
|
8315 |
|
|
case ARRAY_TYPE:
|
8316 |
|
|
{
|
8317 |
|
|
tree component = substitute_in_type (TREE_TYPE (t), f, r);
|
8318 |
|
|
tree domain = substitute_in_type (TYPE_DOMAIN (t), f, r);
|
8319 |
|
|
|
8320 |
|
|
if (component == TREE_TYPE (t) && domain == TYPE_DOMAIN (t))
|
8321 |
|
|
return t;
|
8322 |
|
|
|
8323 |
|
|
nt = build_array_type (component, domain);
|
8324 |
|
|
TYPE_ALIGN (nt) = TYPE_ALIGN (t);
|
8325 |
|
|
TYPE_USER_ALIGN (nt) = TYPE_USER_ALIGN (t);
|
8326 |
|
|
SET_TYPE_MODE (nt, TYPE_MODE (t));
|
8327 |
|
|
TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
|
8328 |
|
|
TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
|
8329 |
|
|
TYPE_NONALIASED_COMPONENT (nt) = TYPE_NONALIASED_COMPONENT (t);
|
8330 |
|
|
TYPE_MULTI_ARRAY_P (nt) = TYPE_MULTI_ARRAY_P (t);
|
8331 |
|
|
TYPE_CONVENTION_FORTRAN_P (nt) = TYPE_CONVENTION_FORTRAN_P (t);
|
8332 |
|
|
return nt;
|
8333 |
|
|
}
|
8334 |
|
|
|
8335 |
|
|
case RECORD_TYPE:
|
8336 |
|
|
case UNION_TYPE:
|
8337 |
|
|
case QUAL_UNION_TYPE:
|
8338 |
|
|
{
|
8339 |
|
|
bool changed_field = false;
|
8340 |
|
|
tree field;
|
8341 |
|
|
|
8342 |
|
|
/* Start out with no fields, make new fields, and chain them
|
8343 |
|
|
in. If we haven't actually changed the type of any field,
|
8344 |
|
|
discard everything we've done and return the old type. */
|
8345 |
|
|
nt = copy_type (t);
|
8346 |
|
|
TYPE_FIELDS (nt) = NULL_TREE;
|
8347 |
|
|
|
8348 |
|
|
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
8349 |
|
|
{
|
8350 |
|
|
tree new_field = copy_node (field), new_n;
|
8351 |
|
|
|
8352 |
|
|
new_n = substitute_in_type (TREE_TYPE (field), f, r);
|
8353 |
|
|
if (new_n != TREE_TYPE (field))
|
8354 |
|
|
{
|
8355 |
|
|
TREE_TYPE (new_field) = new_n;
|
8356 |
|
|
changed_field = true;
|
8357 |
|
|
}
|
8358 |
|
|
|
8359 |
|
|
new_n = SUBSTITUTE_IN_EXPR (DECL_FIELD_OFFSET (field), f, r);
|
8360 |
|
|
if (new_n != DECL_FIELD_OFFSET (field))
|
8361 |
|
|
{
|
8362 |
|
|
DECL_FIELD_OFFSET (new_field) = new_n;
|
8363 |
|
|
changed_field = true;
|
8364 |
|
|
}
|
8365 |
|
|
|
8366 |
|
|
/* Do the substitution inside the qualifier, if any. */
|
8367 |
|
|
if (TREE_CODE (t) == QUAL_UNION_TYPE)
|
8368 |
|
|
{
|
8369 |
|
|
new_n = SUBSTITUTE_IN_EXPR (DECL_QUALIFIER (field), f, r);
|
8370 |
|
|
if (new_n != DECL_QUALIFIER (field))
|
8371 |
|
|
{
|
8372 |
|
|
DECL_QUALIFIER (new_field) = new_n;
|
8373 |
|
|
changed_field = true;
|
8374 |
|
|
}
|
8375 |
|
|
}
|
8376 |
|
|
|
8377 |
|
|
DECL_CONTEXT (new_field) = nt;
|
8378 |
|
|
SET_DECL_ORIGINAL_FIELD (new_field,
|
8379 |
|
|
(DECL_ORIGINAL_FIELD (field)
|
8380 |
|
|
? DECL_ORIGINAL_FIELD (field) : field));
|
8381 |
|
|
|
8382 |
|
|
TREE_CHAIN (new_field) = TYPE_FIELDS (nt);
|
8383 |
|
|
TYPE_FIELDS (nt) = new_field;
|
8384 |
|
|
}
|
8385 |
|
|
|
8386 |
|
|
if (!changed_field)
|
8387 |
|
|
return t;
|
8388 |
|
|
|
8389 |
|
|
TYPE_FIELDS (nt) = nreverse (TYPE_FIELDS (nt));
|
8390 |
|
|
TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
|
8391 |
|
|
TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
|
8392 |
|
|
SET_TYPE_ADA_SIZE (nt, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (t), f, r));
|
8393 |
|
|
return nt;
|
8394 |
|
|
}
|
8395 |
|
|
|
8396 |
|
|
default:
|
8397 |
|
|
return t;
|
8398 |
|
|
}
|
8399 |
|
|
}
|
8400 |
|
|
|
8401 |
|
|
/* Return the RM size of GNU_TYPE. This is the actual number of bits
|
8402 |
|
|
needed to represent the object. */
|
8403 |
|
|
|
8404 |
|
|
tree
|
8405 |
|
|
rm_size (tree gnu_type)
|
8406 |
|
|
{
|
8407 |
|
|
/* For integral types, we store the RM size explicitly. */
|
8408 |
|
|
if (INTEGRAL_TYPE_P (gnu_type) && TYPE_RM_SIZE (gnu_type))
|
8409 |
|
|
return TYPE_RM_SIZE (gnu_type);
|
8410 |
|
|
|
8411 |
|
|
/* Return the RM size of the actual data plus the size of the template. */
|
8412 |
|
|
if (TREE_CODE (gnu_type) == RECORD_TYPE
|
8413 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
|
8414 |
|
|
return
|
8415 |
|
|
size_binop (PLUS_EXPR,
|
8416 |
|
|
rm_size (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)))),
|
8417 |
|
|
DECL_SIZE (TYPE_FIELDS (gnu_type)));
|
8418 |
|
|
|
8419 |
|
|
/* For record types, we store the size explicitly. */
|
8420 |
|
|
if ((TREE_CODE (gnu_type) == RECORD_TYPE
|
8421 |
|
|
|| TREE_CODE (gnu_type) == UNION_TYPE
|
8422 |
|
|
|| TREE_CODE (gnu_type) == QUAL_UNION_TYPE)
|
8423 |
|
|
&& !TYPE_FAT_POINTER_P (gnu_type)
|
8424 |
|
|
&& TYPE_ADA_SIZE (gnu_type))
|
8425 |
|
|
return TYPE_ADA_SIZE (gnu_type);
|
8426 |
|
|
|
8427 |
|
|
/* For other types, this is just the size. */
|
8428 |
|
|
return TYPE_SIZE (gnu_type);
|
8429 |
|
|
}
|
8430 |
|
|
|
8431 |
|
|
/* Return the name to be used for GNAT_ENTITY. If a type, create a
|
8432 |
|
|
fully-qualified name, possibly with type information encoding.
|
8433 |
|
|
Otherwise, return the name. */
|
8434 |
|
|
|
8435 |
|
|
tree
|
8436 |
|
|
get_entity_name (Entity_Id gnat_entity)
|
8437 |
|
|
{
|
8438 |
|
|
Get_Encoded_Name (gnat_entity);
|
8439 |
|
|
return get_identifier_with_length (Name_Buffer, Name_Len);
|
8440 |
|
|
}
|
8441 |
|
|
|
8442 |
|
|
/* Return an identifier representing the external name to be used for
|
8443 |
|
|
GNAT_ENTITY. If SUFFIX is specified, the name is followed by "___"
|
8444 |
|
|
and the specified suffix. */
|
8445 |
|
|
|
8446 |
|
|
tree
|
8447 |
|
|
create_concat_name (Entity_Id gnat_entity, const char *suffix)
|
8448 |
|
|
{
|
8449 |
|
|
Entity_Kind kind = Ekind (gnat_entity);
|
8450 |
|
|
|
8451 |
|
|
if (suffix)
|
8452 |
|
|
{
|
8453 |
|
|
String_Template temp = {1, strlen (suffix)};
|
8454 |
|
|
Fat_Pointer fp = {suffix, &temp};
|
8455 |
|
|
Get_External_Name_With_Suffix (gnat_entity, fp);
|
8456 |
|
|
}
|
8457 |
|
|
else
|
8458 |
|
|
Get_External_Name (gnat_entity, 0);
|
8459 |
|
|
|
8460 |
|
|
/* A variable using the Stdcall convention lives in a DLL. We adjust
|
8461 |
|
|
its name to use the jump table, the _imp__NAME contains the address
|
8462 |
|
|
for the NAME variable. */
|
8463 |
|
|
if ((kind == E_Variable || kind == E_Constant)
|
8464 |
|
|
&& Has_Stdcall_Convention (gnat_entity))
|
8465 |
|
|
{
|
8466 |
|
|
const int len = 6 + Name_Len;
|
8467 |
|
|
char *new_name = (char *) alloca (len + 1);
|
8468 |
|
|
strcpy (new_name, "_imp__");
|
8469 |
|
|
strcat (new_name, Name_Buffer);
|
8470 |
|
|
return get_identifier_with_length (new_name, len);
|
8471 |
|
|
}
|
8472 |
|
|
|
8473 |
|
|
return get_identifier_with_length (Name_Buffer, Name_Len);
|
8474 |
|
|
}
|
8475 |
|
|
|
8476 |
|
|
/* Given GNU_NAME, an IDENTIFIER_NODE containing a name and SUFFIX, a
|
8477 |
|
|
string, return a new IDENTIFIER_NODE that is the concatenation of
|
8478 |
|
|
the name followed by "___" and the specified suffix. */
|
8479 |
|
|
|
8480 |
|
|
tree
|
8481 |
|
|
concat_name (tree gnu_name, const char *suffix)
|
8482 |
|
|
{
|
8483 |
|
|
const int len = IDENTIFIER_LENGTH (gnu_name) + 3 + strlen (suffix);
|
8484 |
|
|
char *new_name = (char *) alloca (len + 1);
|
8485 |
|
|
strcpy (new_name, IDENTIFIER_POINTER (gnu_name));
|
8486 |
|
|
strcat (new_name, "___");
|
8487 |
|
|
strcat (new_name, suffix);
|
8488 |
|
|
return get_identifier_with_length (new_name, len);
|
8489 |
|
|
}
|
8490 |
|
|
|
8491 |
|
|
#include "gt-ada-decl.h"
|