1 |
281 |
jeremybenn |
/****************************************************************************
|
2 |
|
|
* *
|
3 |
|
|
* GNAT COMPILER COMPONENTS *
|
4 |
|
|
* *
|
5 |
|
|
* U T I L S *
|
6 |
|
|
* *
|
7 |
|
|
* C Implementation File *
|
8 |
|
|
* *
|
9 |
|
|
* Copyright (C) 1992-2010, Free Software Foundation, Inc. *
|
10 |
|
|
* *
|
11 |
|
|
* GNAT is free software; you can redistribute it and/or modify it under *
|
12 |
|
|
* terms of the GNU General Public License as published by the Free Soft- *
|
13 |
|
|
* ware Foundation; either version 3, or (at your option) any later ver- *
|
14 |
|
|
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
|
15 |
|
|
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
|
16 |
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
|
17 |
|
|
* for more details. You should have received a copy of the GNU General *
|
18 |
|
|
* Public License along with GCC; see the file COPYING3. If not see *
|
19 |
|
|
* <http://www.gnu.org/licenses/>. *
|
20 |
|
|
* *
|
21 |
|
|
* GNAT was originally developed by the GNAT team at New York University. *
|
22 |
|
|
* Extensive contributions were provided by Ada Core Technologies Inc. *
|
23 |
|
|
* *
|
24 |
|
|
****************************************************************************/
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "toplev.h"
|
33 |
|
|
#include "rtl.h"
|
34 |
|
|
#include "output.h"
|
35 |
|
|
#include "ggc.h"
|
36 |
|
|
#include "debug.h"
|
37 |
|
|
#include "convert.h"
|
38 |
|
|
#include "target.h"
|
39 |
|
|
#include "function.h"
|
40 |
|
|
#include "langhooks.h"
|
41 |
|
|
#include "pointer-set.h"
|
42 |
|
|
#include "cgraph.h"
|
43 |
|
|
#include "tree-dump.h"
|
44 |
|
|
#include "tree-inline.h"
|
45 |
|
|
#include "tree-iterator.h"
|
46 |
|
|
#include "gimple.h"
|
47 |
|
|
|
48 |
|
|
#include "ada.h"
|
49 |
|
|
#include "types.h"
|
50 |
|
|
#include "atree.h"
|
51 |
|
|
#include "elists.h"
|
52 |
|
|
#include "namet.h"
|
53 |
|
|
#include "nlists.h"
|
54 |
|
|
#include "stringt.h"
|
55 |
|
|
#include "uintp.h"
|
56 |
|
|
#include "fe.h"
|
57 |
|
|
#include "sinfo.h"
|
58 |
|
|
#include "einfo.h"
|
59 |
|
|
#include "ada-tree.h"
|
60 |
|
|
#include "gigi.h"
|
61 |
|
|
|
62 |
|
|
#ifndef MAX_BITS_PER_WORD
|
63 |
|
|
#define MAX_BITS_PER_WORD BITS_PER_WORD
|
64 |
|
|
#endif
|
65 |
|
|
|
66 |
|
|
/* If nonzero, pretend we are allocating at global level. */
|
67 |
|
|
int force_global;
|
68 |
|
|
|
69 |
|
|
/* The default alignment of "double" floating-point types, i.e. floating
|
70 |
|
|
point types whose size is equal to 64 bits, or 0 if this alignment is
|
71 |
|
|
not specifically capped. */
|
72 |
|
|
int double_float_alignment;
|
73 |
|
|
|
74 |
|
|
/* The default alignment of "double" or larger scalar types, i.e. scalar
|
75 |
|
|
types whose size is greater or equal to 64 bits, or 0 if this alignment
|
76 |
|
|
is not specifically capped. */
|
77 |
|
|
int double_scalar_alignment;
|
78 |
|
|
|
79 |
|
|
/* Tree nodes for the various types and decls we create. */
|
80 |
|
|
tree gnat_std_decls[(int) ADT_LAST];
|
81 |
|
|
|
82 |
|
|
/* Functions to call for each of the possible raise reasons. */
|
83 |
|
|
tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
|
84 |
|
|
|
85 |
|
|
/* Forward declarations for handlers of attributes. */
|
86 |
|
|
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
|
87 |
|
|
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
|
88 |
|
|
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
|
89 |
|
|
static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
|
90 |
|
|
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
|
91 |
|
|
static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
|
92 |
|
|
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
|
93 |
|
|
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
|
94 |
|
|
static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
|
95 |
|
|
static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
|
96 |
|
|
static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);
|
97 |
|
|
|
98 |
|
|
/* Fake handler for attributes we don't properly support, typically because
|
99 |
|
|
they'd require dragging a lot of the common-c front-end circuitry. */
|
100 |
|
|
static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
|
101 |
|
|
|
102 |
|
|
/* Table of machine-independent internal attributes for Ada. We support
|
103 |
|
|
this minimal set of attributes to accommodate the needs of builtins. */
|
104 |
|
|
const struct attribute_spec gnat_internal_attribute_table[] =
|
105 |
|
|
{
|
106 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
107 |
|
|
{ "const", 0, 0, true, false, false, handle_const_attribute },
|
108 |
|
|
{ "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
|
109 |
|
|
{ "pure", 0, 0, true, false, false, handle_pure_attribute },
|
110 |
|
|
{ "no vops", 0, 0, true, false, false, handle_novops_attribute },
|
111 |
|
|
{ "nonnull", 0, -1, false, true, true, handle_nonnull_attribute },
|
112 |
|
|
{ "sentinel", 0, 1, false, true, true, handle_sentinel_attribute },
|
113 |
|
|
{ "noreturn", 0, 0, true, false, false, handle_noreturn_attribute },
|
114 |
|
|
{ "malloc", 0, 0, true, false, false, handle_malloc_attribute },
|
115 |
|
|
{ "type generic", 0, 0, false, true, true, handle_type_generic_attribute },
|
116 |
|
|
|
117 |
|
|
{ "vector_size", 1, 1, false, true, false, handle_vector_size_attribute },
|
118 |
|
|
{ "vector_type", 0, 0, false, true, false, handle_vector_type_attribute },
|
119 |
|
|
{ "may_alias", 0, 0, false, true, false, NULL },
|
120 |
|
|
|
121 |
|
|
/* ??? format and format_arg are heavy and not supported, which actually
|
122 |
|
|
prevents support for stdio builtins, which we however declare as part
|
123 |
|
|
of the common builtins.def contents. */
|
124 |
|
|
{ "format", 3, 3, false, true, true, fake_attribute_handler },
|
125 |
|
|
{ "format_arg", 1, 1, false, true, true, fake_attribute_handler },
|
126 |
|
|
|
127 |
|
|
{ NULL, 0, 0, false, false, false, NULL }
|
128 |
|
|
};
|
129 |
|
|
|
130 |
|
|
/* Associates a GNAT tree node to a GCC tree node. It is used in
|
131 |
|
|
`save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
|
132 |
|
|
of `save_gnu_tree' for more info. */
|
133 |
|
|
static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
|
134 |
|
|
|
135 |
|
|
#define GET_GNU_TREE(GNAT_ENTITY) \
|
136 |
|
|
associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
|
137 |
|
|
|
138 |
|
|
#define SET_GNU_TREE(GNAT_ENTITY,VAL) \
|
139 |
|
|
associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
|
140 |
|
|
|
141 |
|
|
#define PRESENT_GNU_TREE(GNAT_ENTITY) \
|
142 |
|
|
(associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
|
143 |
|
|
|
144 |
|
|
/* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
|
145 |
|
|
static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
|
146 |
|
|
|
147 |
|
|
#define GET_DUMMY_NODE(GNAT_ENTITY) \
|
148 |
|
|
dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
|
149 |
|
|
|
150 |
|
|
#define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
|
151 |
|
|
dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
|
152 |
|
|
|
153 |
|
|
#define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
|
154 |
|
|
(dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
|
155 |
|
|
|
156 |
|
|
/* This variable keeps a table for types for each precision so that we only
|
157 |
|
|
allocate each of them once. Signed and unsigned types are kept separate.
|
158 |
|
|
|
159 |
|
|
Note that these types are only used when fold-const requests something
|
160 |
|
|
special. Perhaps we should NOT share these types; we'll see how it
|
161 |
|
|
goes later. */
|
162 |
|
|
static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
|
163 |
|
|
|
164 |
|
|
/* Likewise for float types, but record these by mode. */
|
165 |
|
|
static GTY(()) tree float_types[NUM_MACHINE_MODES];
|
166 |
|
|
|
167 |
|
|
/* For each binding contour we allocate a binding_level structure to indicate
|
168 |
|
|
the binding depth. */
|
169 |
|
|
|
170 |
|
|
struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
|
171 |
|
|
/* The binding level containing this one (the enclosing binding level). */
|
172 |
|
|
struct gnat_binding_level *chain;
|
173 |
|
|
/* The BLOCK node for this level. */
|
174 |
|
|
tree block;
|
175 |
|
|
/* If nonzero, the setjmp buffer that needs to be updated for any
|
176 |
|
|
variable-sized definition within this context. */
|
177 |
|
|
tree jmpbuf_decl;
|
178 |
|
|
};
|
179 |
|
|
|
180 |
|
|
/* The binding level currently in effect. */
|
181 |
|
|
static GTY(()) struct gnat_binding_level *current_binding_level;
|
182 |
|
|
|
183 |
|
|
/* A chain of gnat_binding_level structures awaiting reuse. */
|
184 |
|
|
static GTY((deletable)) struct gnat_binding_level *free_binding_level;
|
185 |
|
|
|
186 |
|
|
/* An array of global declarations. */
|
187 |
|
|
static GTY(()) VEC(tree,gc) *global_decls;
|
188 |
|
|
|
189 |
|
|
/* An array of builtin function declarations. */
|
190 |
|
|
static GTY(()) VEC(tree,gc) *builtin_decls;
|
191 |
|
|
|
192 |
|
|
/* An array of global renaming pointers. */
|
193 |
|
|
static GTY(()) VEC(tree,gc) *global_renaming_pointers;
|
194 |
|
|
|
195 |
|
|
/* A chain of unused BLOCK nodes. */
|
196 |
|
|
static GTY((deletable)) tree free_block_chain;
|
197 |
|
|
|
198 |
|
|
static tree merge_sizes (tree, tree, tree, bool, bool);
|
199 |
|
|
static tree compute_related_constant (tree, tree);
|
200 |
|
|
static tree split_plus (tree, tree *);
|
201 |
|
|
static tree float_type_for_precision (int, enum machine_mode);
|
202 |
|
|
static tree convert_to_fat_pointer (tree, tree);
|
203 |
|
|
static tree convert_to_thin_pointer (tree, tree);
|
204 |
|
|
static tree make_descriptor_field (const char *,tree, tree, tree);
|
205 |
|
|
static bool potential_alignment_gap (tree, tree, tree);
|
206 |
|
|
|
207 |
|
|
/* Initialize the association of GNAT nodes to GCC trees. */
|
208 |
|
|
|
209 |
|
|
void
|
210 |
|
|
init_gnat_to_gnu (void)
|
211 |
|
|
{
|
212 |
|
|
associate_gnat_to_gnu
|
213 |
|
|
= (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
|
217 |
|
|
which is to be associated with GNAT_ENTITY. Such GCC tree node is always
|
218 |
|
|
a ..._DECL node. If NO_CHECK is true, the latter check is suppressed.
|
219 |
|
|
|
220 |
|
|
If GNU_DECL is zero, a previous association is to be reset. */
|
221 |
|
|
|
222 |
|
|
void
|
223 |
|
|
save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
|
224 |
|
|
{
|
225 |
|
|
/* Check that GNAT_ENTITY is not already defined and that it is being set
|
226 |
|
|
to something which is a decl. Raise gigi 401 if not. Usually, this
|
227 |
|
|
means GNAT_ENTITY is defined twice, but occasionally is due to some
|
228 |
|
|
Gigi problem. */
|
229 |
|
|
gcc_assert (!(gnu_decl
|
230 |
|
|
&& (PRESENT_GNU_TREE (gnat_entity)
|
231 |
|
|
|| (!no_check && !DECL_P (gnu_decl)))));
|
232 |
|
|
|
233 |
|
|
SET_GNU_TREE (gnat_entity, gnu_decl);
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
|
237 |
|
|
Return the ..._DECL node that was associated with it. If there is no tree
|
238 |
|
|
node associated with GNAT_ENTITY, abort.
|
239 |
|
|
|
240 |
|
|
In some cases, such as delayed elaboration or expressions that need to
|
241 |
|
|
be elaborated only once, GNAT_ENTITY is really not an entity. */
|
242 |
|
|
|
243 |
|
|
tree
|
244 |
|
|
get_gnu_tree (Entity_Id gnat_entity)
|
245 |
|
|
{
|
246 |
|
|
gcc_assert (PRESENT_GNU_TREE (gnat_entity));
|
247 |
|
|
return GET_GNU_TREE (gnat_entity);
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
|
251 |
|
|
|
252 |
|
|
bool
|
253 |
|
|
present_gnu_tree (Entity_Id gnat_entity)
|
254 |
|
|
{
|
255 |
|
|
return PRESENT_GNU_TREE (gnat_entity);
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/* Initialize the association of GNAT nodes to GCC trees as dummies. */
|
259 |
|
|
|
260 |
|
|
void
|
261 |
|
|
init_dummy_type (void)
|
262 |
|
|
{
|
263 |
|
|
dummy_node_table
|
264 |
|
|
= (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
/* Make a dummy type corresponding to GNAT_TYPE. */
|
268 |
|
|
|
269 |
|
|
tree
|
270 |
|
|
make_dummy_type (Entity_Id gnat_type)
|
271 |
|
|
{
|
272 |
|
|
Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type);
|
273 |
|
|
tree gnu_type;
|
274 |
|
|
|
275 |
|
|
/* If there is an equivalent type, get its underlying type. */
|
276 |
|
|
if (Present (gnat_underlying))
|
277 |
|
|
gnat_underlying = Underlying_Type (gnat_underlying);
|
278 |
|
|
|
279 |
|
|
/* If there was no equivalent type (can only happen when just annotating
|
280 |
|
|
types) or underlying type, go back to the original type. */
|
281 |
|
|
if (No (gnat_underlying))
|
282 |
|
|
gnat_underlying = gnat_type;
|
283 |
|
|
|
284 |
|
|
/* If it there already a dummy type, use that one. Else make one. */
|
285 |
|
|
if (PRESENT_DUMMY_NODE (gnat_underlying))
|
286 |
|
|
return GET_DUMMY_NODE (gnat_underlying);
|
287 |
|
|
|
288 |
|
|
/* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
|
289 |
|
|
an ENUMERAL_TYPE. */
|
290 |
|
|
gnu_type = make_node (Is_Record_Type (gnat_underlying)
|
291 |
|
|
? tree_code_for_record_type (gnat_underlying)
|
292 |
|
|
: ENUMERAL_TYPE);
|
293 |
|
|
TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
|
294 |
|
|
TYPE_DUMMY_P (gnu_type) = 1;
|
295 |
|
|
TYPE_STUB_DECL (gnu_type)
|
296 |
|
|
= create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
|
297 |
|
|
if (AGGREGATE_TYPE_P (gnu_type))
|
298 |
|
|
TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type);
|
299 |
|
|
|
300 |
|
|
SET_DUMMY_NODE (gnat_underlying, gnu_type);
|
301 |
|
|
|
302 |
|
|
return gnu_type;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
/* Return nonzero if we are currently in the global binding level. */
|
306 |
|
|
|
307 |
|
|
int
|
308 |
|
|
global_bindings_p (void)
|
309 |
|
|
{
|
310 |
|
|
return ((force_global || !current_function_decl) ? -1 : 0);
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
/* Enter a new binding level. */
|
314 |
|
|
|
315 |
|
|
void
|
316 |
|
|
gnat_pushlevel (void)
|
317 |
|
|
{
|
318 |
|
|
struct gnat_binding_level *newlevel = NULL;
|
319 |
|
|
|
320 |
|
|
/* Reuse a struct for this binding level, if there is one. */
|
321 |
|
|
if (free_binding_level)
|
322 |
|
|
{
|
323 |
|
|
newlevel = free_binding_level;
|
324 |
|
|
free_binding_level = free_binding_level->chain;
|
325 |
|
|
}
|
326 |
|
|
else
|
327 |
|
|
newlevel
|
328 |
|
|
= (struct gnat_binding_level *)
|
329 |
|
|
ggc_alloc (sizeof (struct gnat_binding_level));
|
330 |
|
|
|
331 |
|
|
/* Use a free BLOCK, if any; otherwise, allocate one. */
|
332 |
|
|
if (free_block_chain)
|
333 |
|
|
{
|
334 |
|
|
newlevel->block = free_block_chain;
|
335 |
|
|
free_block_chain = BLOCK_CHAIN (free_block_chain);
|
336 |
|
|
BLOCK_CHAIN (newlevel->block) = NULL_TREE;
|
337 |
|
|
}
|
338 |
|
|
else
|
339 |
|
|
newlevel->block = make_node (BLOCK);
|
340 |
|
|
|
341 |
|
|
/* Point the BLOCK we just made to its parent. */
|
342 |
|
|
if (current_binding_level)
|
343 |
|
|
BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
|
344 |
|
|
|
345 |
|
|
BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
|
346 |
|
|
TREE_USED (newlevel->block) = 1;
|
347 |
|
|
|
348 |
|
|
/* Add this level to the front of the chain (stack) of levels that are
|
349 |
|
|
active. */
|
350 |
|
|
newlevel->chain = current_binding_level;
|
351 |
|
|
newlevel->jmpbuf_decl = NULL_TREE;
|
352 |
|
|
current_binding_level = newlevel;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
|
356 |
|
|
and point FNDECL to this BLOCK. */
|
357 |
|
|
|
358 |
|
|
void
|
359 |
|
|
set_current_block_context (tree fndecl)
|
360 |
|
|
{
|
361 |
|
|
BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
|
362 |
|
|
DECL_INITIAL (fndecl) = current_binding_level->block;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* Set the jmpbuf_decl for the current binding level to DECL. */
|
366 |
|
|
|
367 |
|
|
void
|
368 |
|
|
set_block_jmpbuf_decl (tree decl)
|
369 |
|
|
{
|
370 |
|
|
current_binding_level->jmpbuf_decl = decl;
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
/* Get the jmpbuf_decl, if any, for the current binding level. */
|
374 |
|
|
|
375 |
|
|
tree
|
376 |
|
|
get_block_jmpbuf_decl (void)
|
377 |
|
|
{
|
378 |
|
|
return current_binding_level->jmpbuf_decl;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Exit a binding level. Set any BLOCK into the current code group. */
|
382 |
|
|
|
383 |
|
|
void
|
384 |
|
|
gnat_poplevel (void)
|
385 |
|
|
{
|
386 |
|
|
struct gnat_binding_level *level = current_binding_level;
|
387 |
|
|
tree block = level->block;
|
388 |
|
|
|
389 |
|
|
BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
|
390 |
|
|
BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
|
391 |
|
|
|
392 |
|
|
/* If this is a function-level BLOCK don't do anything. Otherwise, if there
|
393 |
|
|
are no variables free the block and merge its subblocks into those of its
|
394 |
|
|
parent block. Otherwise, add it to the list of its parent. */
|
395 |
|
|
if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
|
396 |
|
|
;
|
397 |
|
|
else if (BLOCK_VARS (block) == NULL_TREE)
|
398 |
|
|
{
|
399 |
|
|
BLOCK_SUBBLOCKS (level->chain->block)
|
400 |
|
|
= chainon (BLOCK_SUBBLOCKS (block),
|
401 |
|
|
BLOCK_SUBBLOCKS (level->chain->block));
|
402 |
|
|
BLOCK_CHAIN (block) = free_block_chain;
|
403 |
|
|
free_block_chain = block;
|
404 |
|
|
}
|
405 |
|
|
else
|
406 |
|
|
{
|
407 |
|
|
BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
|
408 |
|
|
BLOCK_SUBBLOCKS (level->chain->block) = block;
|
409 |
|
|
TREE_USED (block) = 1;
|
410 |
|
|
set_block_for_group (block);
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* Free this binding structure. */
|
414 |
|
|
current_binding_level = level->chain;
|
415 |
|
|
level->chain = free_binding_level;
|
416 |
|
|
free_binding_level = level;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
|
420 |
|
|
/* Records a ..._DECL node DECL as belonging to the current lexical scope
|
421 |
|
|
and uses GNAT_NODE for location information and propagating flags. */
|
422 |
|
|
|
423 |
|
|
void
|
424 |
|
|
gnat_pushdecl (tree decl, Node_Id gnat_node)
|
425 |
|
|
{
|
426 |
|
|
/* If this decl is public external or at toplevel, there is no context.
|
427 |
|
|
But PARM_DECLs always go in the level of its function. */
|
428 |
|
|
if (TREE_CODE (decl) != PARM_DECL
|
429 |
|
|
&& ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
|
430 |
|
|
|| global_bindings_p ()))
|
431 |
|
|
DECL_CONTEXT (decl) = 0;
|
432 |
|
|
else
|
433 |
|
|
{
|
434 |
|
|
DECL_CONTEXT (decl) = current_function_decl;
|
435 |
|
|
|
436 |
|
|
/* Functions imported in another function are not really nested.
|
437 |
|
|
For really nested functions mark them initially as needing
|
438 |
|
|
a static chain for uses of that flag before unnesting;
|
439 |
|
|
lower_nested_functions will then recompute it. */
|
440 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
|
441 |
|
|
DECL_STATIC_CHAIN (decl) = 1;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
|
445 |
|
|
|
446 |
|
|
/* Set the location of DECL and emit a declaration for it. */
|
447 |
|
|
if (Present (gnat_node))
|
448 |
|
|
Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
|
449 |
|
|
add_decl_expr (decl, gnat_node);
|
450 |
|
|
|
451 |
|
|
/* Put the declaration on the list. The list of declarations is in reverse
|
452 |
|
|
order. The list will be reversed later. Put global variables in the
|
453 |
|
|
globals list and builtin functions in a dedicated list to speed up
|
454 |
|
|
further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
|
455 |
|
|
the list, as they will cause trouble with the debugger and aren't needed
|
456 |
|
|
anyway. */
|
457 |
|
|
if (TREE_CODE (decl) != TYPE_DECL
|
458 |
|
|
|| TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
|
459 |
|
|
{
|
460 |
|
|
if (global_bindings_p ())
|
461 |
|
|
{
|
462 |
|
|
VEC_safe_push (tree, gc, global_decls, decl);
|
463 |
|
|
|
464 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
|
465 |
|
|
VEC_safe_push (tree, gc, builtin_decls, decl);
|
466 |
|
|
}
|
467 |
|
|
else
|
468 |
|
|
{
|
469 |
|
|
TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
|
470 |
|
|
BLOCK_VARS (current_binding_level->block) = decl;
|
471 |
|
|
}
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* For the declaration of a type, set its name if it either is not already
|
475 |
|
|
set or if the previous type name was not derived from a source name.
|
476 |
|
|
We'd rather have the type named with a real name and all the pointer
|
477 |
|
|
types to the same object have the same POINTER_TYPE node. Code in the
|
478 |
|
|
equivalent function of c-decl.c makes a copy of the type node here, but
|
479 |
|
|
that may cause us trouble with incomplete types. We make an exception
|
480 |
|
|
for fat pointer types because the compiler automatically builds them
|
481 |
|
|
for unconstrained array types and the debugger uses them to represent
|
482 |
|
|
both these and pointers to these. */
|
483 |
|
|
if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
|
484 |
|
|
{
|
485 |
|
|
tree t = TREE_TYPE (decl);
|
486 |
|
|
|
487 |
|
|
if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
|
488 |
|
|
;
|
489 |
|
|
else if (TYPE_IS_FAT_POINTER_P (t))
|
490 |
|
|
{
|
491 |
|
|
tree tt = build_variant_type_copy (t);
|
492 |
|
|
TYPE_NAME (tt) = decl;
|
493 |
|
|
TREE_USED (tt) = TREE_USED (t);
|
494 |
|
|
TREE_TYPE (decl) = tt;
|
495 |
|
|
if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
|
496 |
|
|
DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
|
497 |
|
|
else
|
498 |
|
|
DECL_ORIGINAL_TYPE (decl) = t;
|
499 |
|
|
t = NULL_TREE;
|
500 |
|
|
DECL_ARTIFICIAL (decl) = 0;
|
501 |
|
|
}
|
502 |
|
|
else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
|
503 |
|
|
;
|
504 |
|
|
else
|
505 |
|
|
t = NULL_TREE;
|
506 |
|
|
|
507 |
|
|
/* Propagate the name to all the variants. This is needed for
|
508 |
|
|
the type qualifiers machinery to work properly. */
|
509 |
|
|
if (t)
|
510 |
|
|
for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
|
511 |
|
|
TYPE_NAME (t) = decl;
|
512 |
|
|
}
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
/* Do little here. Set up the standard declarations later after the
|
516 |
|
|
front end has been run. */
|
517 |
|
|
|
518 |
|
|
void
|
519 |
|
|
gnat_init_decl_processing (void)
|
520 |
|
|
{
|
521 |
|
|
/* Make the binding_level structure for global names. */
|
522 |
|
|
current_function_decl = 0;
|
523 |
|
|
current_binding_level = 0;
|
524 |
|
|
free_binding_level = 0;
|
525 |
|
|
gnat_pushlevel ();
|
526 |
|
|
|
527 |
|
|
build_common_tree_nodes (true, true);
|
528 |
|
|
|
529 |
|
|
/* In Ada, we use a signed type for SIZETYPE. Use the signed type
|
530 |
|
|
corresponding to the width of Pmode. In most cases when ptr_mode
|
531 |
|
|
and Pmode differ, C will use the width of ptr_mode for SIZETYPE.
|
532 |
|
|
But we get far better code using the width of Pmode. */
|
533 |
|
|
size_type_node = gnat_type_for_mode (Pmode, 0);
|
534 |
|
|
set_sizetype (size_type_node);
|
535 |
|
|
|
536 |
|
|
/* In Ada, we use an unsigned 8-bit type for the default boolean type. */
|
537 |
|
|
boolean_type_node = make_unsigned_type (8);
|
538 |
|
|
TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
|
539 |
|
|
SET_TYPE_RM_MAX_VALUE (boolean_type_node,
|
540 |
|
|
build_int_cst (boolean_type_node, 1));
|
541 |
|
|
SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
|
542 |
|
|
|
543 |
|
|
build_common_tree_nodes_2 (0);
|
544 |
|
|
boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
|
545 |
|
|
|
546 |
|
|
ptr_void_type_node = build_pointer_type (void_type_node);
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* Record TYPE as a builtin type for Ada. NAME is the name of the type. */
|
550 |
|
|
|
551 |
|
|
void
|
552 |
|
|
record_builtin_type (const char *name, tree type)
|
553 |
|
|
{
|
554 |
|
|
tree type_decl = build_decl (input_location,
|
555 |
|
|
TYPE_DECL, get_identifier (name), type);
|
556 |
|
|
|
557 |
|
|
gnat_pushdecl (type_decl, Empty);
|
558 |
|
|
|
559 |
|
|
if (debug_hooks->type_decl)
|
560 |
|
|
debug_hooks->type_decl (type_decl, false);
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
|
564 |
|
|
finish constructing the record or union type. If REP_LEVEL is zero, this
|
565 |
|
|
record has no representation clause and so will be entirely laid out here.
|
566 |
|
|
If REP_LEVEL is one, this record has a representation clause and has been
|
567 |
|
|
laid out already; only set the sizes and alignment. If REP_LEVEL is two,
|
568 |
|
|
this record is derived from a parent record and thus inherits its layout;
|
569 |
|
|
only make a pass on the fields to finalize them. DEBUG_INFO_P is true if
|
570 |
|
|
we need to write debug information about this type. */
|
571 |
|
|
|
572 |
|
|
void
|
573 |
|
|
finish_record_type (tree record_type, tree field_list, int rep_level,
|
574 |
|
|
bool debug_info_p)
|
575 |
|
|
{
|
576 |
|
|
enum tree_code code = TREE_CODE (record_type);
|
577 |
|
|
tree name = TYPE_NAME (record_type);
|
578 |
|
|
tree ada_size = bitsize_zero_node;
|
579 |
|
|
tree size = bitsize_zero_node;
|
580 |
|
|
bool had_size = TYPE_SIZE (record_type) != 0;
|
581 |
|
|
bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
|
582 |
|
|
bool had_align = TYPE_ALIGN (record_type) != 0;
|
583 |
|
|
tree field;
|
584 |
|
|
|
585 |
|
|
TYPE_FIELDS (record_type) = field_list;
|
586 |
|
|
|
587 |
|
|
/* Always attach the TYPE_STUB_DECL for a record type. It is required to
|
588 |
|
|
generate debug info and have a parallel type. */
|
589 |
|
|
if (name && TREE_CODE (name) == TYPE_DECL)
|
590 |
|
|
name = DECL_NAME (name);
|
591 |
|
|
TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);
|
592 |
|
|
|
593 |
|
|
/* Globally initialize the record first. If this is a rep'ed record,
|
594 |
|
|
that just means some initializations; otherwise, layout the record. */
|
595 |
|
|
if (rep_level > 0)
|
596 |
|
|
{
|
597 |
|
|
TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
|
598 |
|
|
SET_TYPE_MODE (record_type, BLKmode);
|
599 |
|
|
|
600 |
|
|
if (!had_size_unit)
|
601 |
|
|
TYPE_SIZE_UNIT (record_type) = size_zero_node;
|
602 |
|
|
if (!had_size)
|
603 |
|
|
TYPE_SIZE (record_type) = bitsize_zero_node;
|
604 |
|
|
|
605 |
|
|
/* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
|
606 |
|
|
out just like a UNION_TYPE, since the size will be fixed. */
|
607 |
|
|
else if (code == QUAL_UNION_TYPE)
|
608 |
|
|
code = UNION_TYPE;
|
609 |
|
|
}
|
610 |
|
|
else
|
611 |
|
|
{
|
612 |
|
|
/* Ensure there isn't a size already set. There can be in an error
|
613 |
|
|
case where there is a rep clause but all fields have errors and
|
614 |
|
|
no longer have a position. */
|
615 |
|
|
TYPE_SIZE (record_type) = 0;
|
616 |
|
|
layout_type (record_type);
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* At this point, the position and size of each field is known. It was
|
620 |
|
|
either set before entry by a rep clause, or by laying out the type above.
|
621 |
|
|
|
622 |
|
|
We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
|
623 |
|
|
to compute the Ada size; the GCC size and alignment (for rep'ed records
|
624 |
|
|
that are not padding types); and the mode (for rep'ed records). We also
|
625 |
|
|
clear the DECL_BIT_FIELD indication for the cases we know have not been
|
626 |
|
|
handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
|
627 |
|
|
|
628 |
|
|
if (code == QUAL_UNION_TYPE)
|
629 |
|
|
field_list = nreverse (field_list);
|
630 |
|
|
|
631 |
|
|
for (field = field_list; field; field = TREE_CHAIN (field))
|
632 |
|
|
{
|
633 |
|
|
tree type = TREE_TYPE (field);
|
634 |
|
|
tree pos = bit_position (field);
|
635 |
|
|
tree this_size = DECL_SIZE (field);
|
636 |
|
|
tree this_ada_size;
|
637 |
|
|
|
638 |
|
|
if ((TREE_CODE (type) == RECORD_TYPE
|
639 |
|
|
|| TREE_CODE (type) == UNION_TYPE
|
640 |
|
|
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
641 |
|
|
&& !TYPE_FAT_POINTER_P (type)
|
642 |
|
|
&& !TYPE_CONTAINS_TEMPLATE_P (type)
|
643 |
|
|
&& TYPE_ADA_SIZE (type))
|
644 |
|
|
this_ada_size = TYPE_ADA_SIZE (type);
|
645 |
|
|
else
|
646 |
|
|
this_ada_size = this_size;
|
647 |
|
|
|
648 |
|
|
/* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
|
649 |
|
|
if (DECL_BIT_FIELD (field)
|
650 |
|
|
&& operand_equal_p (this_size, TYPE_SIZE (type), 0))
|
651 |
|
|
{
|
652 |
|
|
unsigned int align = TYPE_ALIGN (type);
|
653 |
|
|
|
654 |
|
|
/* In the general case, type alignment is required. */
|
655 |
|
|
if (value_factor_p (pos, align))
|
656 |
|
|
{
|
657 |
|
|
/* The enclosing record type must be sufficiently aligned.
|
658 |
|
|
Otherwise, if no alignment was specified for it and it
|
659 |
|
|
has been laid out already, bump its alignment to the
|
660 |
|
|
desired one if this is compatible with its size. */
|
661 |
|
|
if (TYPE_ALIGN (record_type) >= align)
|
662 |
|
|
{
|
663 |
|
|
DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
|
664 |
|
|
DECL_BIT_FIELD (field) = 0;
|
665 |
|
|
}
|
666 |
|
|
else if (!had_align
|
667 |
|
|
&& rep_level == 0
|
668 |
|
|
&& value_factor_p (TYPE_SIZE (record_type), align))
|
669 |
|
|
{
|
670 |
|
|
TYPE_ALIGN (record_type) = align;
|
671 |
|
|
DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
|
672 |
|
|
DECL_BIT_FIELD (field) = 0;
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
/* In the non-strict alignment case, only byte alignment is. */
|
677 |
|
|
if (!STRICT_ALIGNMENT
|
678 |
|
|
&& DECL_BIT_FIELD (field)
|
679 |
|
|
&& value_factor_p (pos, BITS_PER_UNIT))
|
680 |
|
|
DECL_BIT_FIELD (field) = 0;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/* If we still have DECL_BIT_FIELD set at this point, we know that the
|
684 |
|
|
field is technically not addressable. Except that it can actually
|
685 |
|
|
be addressed if it is BLKmode and happens to be properly aligned. */
|
686 |
|
|
if (DECL_BIT_FIELD (field)
|
687 |
|
|
&& !(DECL_MODE (field) == BLKmode
|
688 |
|
|
&& value_factor_p (pos, BITS_PER_UNIT)))
|
689 |
|
|
DECL_NONADDRESSABLE_P (field) = 1;
|
690 |
|
|
|
691 |
|
|
/* A type must be as aligned as its most aligned field that is not
|
692 |
|
|
a bit-field. But this is already enforced by layout_type. */
|
693 |
|
|
if (rep_level > 0 && !DECL_BIT_FIELD (field))
|
694 |
|
|
TYPE_ALIGN (record_type)
|
695 |
|
|
= MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
|
696 |
|
|
|
697 |
|
|
switch (code)
|
698 |
|
|
{
|
699 |
|
|
case UNION_TYPE:
|
700 |
|
|
ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
|
701 |
|
|
size = size_binop (MAX_EXPR, size, this_size);
|
702 |
|
|
break;
|
703 |
|
|
|
704 |
|
|
case QUAL_UNION_TYPE:
|
705 |
|
|
ada_size
|
706 |
|
|
= fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
|
707 |
|
|
this_ada_size, ada_size);
|
708 |
|
|
size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
|
709 |
|
|
this_size, size);
|
710 |
|
|
break;
|
711 |
|
|
|
712 |
|
|
case RECORD_TYPE:
|
713 |
|
|
/* Since we know here that all fields are sorted in order of
|
714 |
|
|
increasing bit position, the size of the record is one
|
715 |
|
|
higher than the ending bit of the last field processed
|
716 |
|
|
unless we have a rep clause, since in that case we might
|
717 |
|
|
have a field outside a QUAL_UNION_TYPE that has a higher ending
|
718 |
|
|
position. So use a MAX in that case. Also, if this field is a
|
719 |
|
|
QUAL_UNION_TYPE, we need to take into account the previous size in
|
720 |
|
|
the case of empty variants. */
|
721 |
|
|
ada_size
|
722 |
|
|
= merge_sizes (ada_size, pos, this_ada_size,
|
723 |
|
|
TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
|
724 |
|
|
size
|
725 |
|
|
= merge_sizes (size, pos, this_size,
|
726 |
|
|
TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
|
727 |
|
|
break;
|
728 |
|
|
|
729 |
|
|
default:
|
730 |
|
|
gcc_unreachable ();
|
731 |
|
|
}
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
if (code == QUAL_UNION_TYPE)
|
735 |
|
|
nreverse (field_list);
|
736 |
|
|
|
737 |
|
|
if (rep_level < 2)
|
738 |
|
|
{
|
739 |
|
|
/* If this is a padding record, we never want to make the size smaller
|
740 |
|
|
than what was specified in it, if any. */
|
741 |
|
|
if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
|
742 |
|
|
size = TYPE_SIZE (record_type);
|
743 |
|
|
|
744 |
|
|
/* Now set any of the values we've just computed that apply. */
|
745 |
|
|
if (!TYPE_FAT_POINTER_P (record_type)
|
746 |
|
|
&& !TYPE_CONTAINS_TEMPLATE_P (record_type))
|
747 |
|
|
SET_TYPE_ADA_SIZE (record_type, ada_size);
|
748 |
|
|
|
749 |
|
|
if (rep_level > 0)
|
750 |
|
|
{
|
751 |
|
|
tree size_unit = had_size_unit
|
752 |
|
|
? TYPE_SIZE_UNIT (record_type)
|
753 |
|
|
: convert (sizetype,
|
754 |
|
|
size_binop (CEIL_DIV_EXPR, size,
|
755 |
|
|
bitsize_unit_node));
|
756 |
|
|
unsigned int align = TYPE_ALIGN (record_type);
|
757 |
|
|
|
758 |
|
|
TYPE_SIZE (record_type) = variable_size (round_up (size, align));
|
759 |
|
|
TYPE_SIZE_UNIT (record_type)
|
760 |
|
|
= variable_size (round_up (size_unit, align / BITS_PER_UNIT));
|
761 |
|
|
|
762 |
|
|
compute_record_mode (record_type);
|
763 |
|
|
}
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
if (debug_info_p)
|
767 |
|
|
rest_of_record_type_compilation (record_type);
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
/* Wrap up compilation of RECORD_TYPE, i.e. output all the debug information
|
771 |
|
|
associated with it. It need not be invoked directly in most cases since
|
772 |
|
|
finish_record_type takes care of doing so, but this can be necessary if
|
773 |
|
|
a parallel type is to be attached to the record type. */
|
774 |
|
|
|
775 |
|
|
void
|
776 |
|
|
rest_of_record_type_compilation (tree record_type)
|
777 |
|
|
{
|
778 |
|
|
tree field_list = TYPE_FIELDS (record_type);
|
779 |
|
|
tree field;
|
780 |
|
|
enum tree_code code = TREE_CODE (record_type);
|
781 |
|
|
bool var_size = false;
|
782 |
|
|
|
783 |
|
|
for (field = field_list; field; field = TREE_CHAIN (field))
|
784 |
|
|
{
|
785 |
|
|
/* We need to make an XVE/XVU record if any field has variable size,
|
786 |
|
|
whether or not the record does. For example, if we have a union,
|
787 |
|
|
it may be that all fields, rounded up to the alignment, have the
|
788 |
|
|
same size, in which case we'll use that size. But the debug
|
789 |
|
|
output routines (except Dwarf2) won't be able to output the fields,
|
790 |
|
|
so we need to make the special record. */
|
791 |
|
|
if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
|
792 |
|
|
/* If a field has a non-constant qualifier, the record will have
|
793 |
|
|
variable size too. */
|
794 |
|
|
|| (code == QUAL_UNION_TYPE
|
795 |
|
|
&& TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
|
796 |
|
|
{
|
797 |
|
|
var_size = true;
|
798 |
|
|
break;
|
799 |
|
|
}
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* If this record is of variable size, rename it so that the
|
803 |
|
|
debugger knows it is and make a new, parallel, record
|
804 |
|
|
that tells the debugger how the record is laid out. See
|
805 |
|
|
exp_dbug.ads. But don't do this for records that are padding
|
806 |
|
|
since they confuse GDB. */
|
807 |
|
|
if (var_size && !TYPE_IS_PADDING_P (record_type))
|
808 |
|
|
{
|
809 |
|
|
tree new_record_type
|
810 |
|
|
= make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
|
811 |
|
|
? UNION_TYPE : TREE_CODE (record_type));
|
812 |
|
|
tree orig_name = TYPE_NAME (record_type), new_name;
|
813 |
|
|
tree last_pos = bitsize_zero_node;
|
814 |
|
|
tree old_field, prev_old_field = NULL_TREE;
|
815 |
|
|
|
816 |
|
|
if (TREE_CODE (orig_name) == TYPE_DECL)
|
817 |
|
|
orig_name = DECL_NAME (orig_name);
|
818 |
|
|
|
819 |
|
|
new_name
|
820 |
|
|
= concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
|
821 |
|
|
? "XVU" : "XVE");
|
822 |
|
|
TYPE_NAME (new_record_type) = new_name;
|
823 |
|
|
TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
|
824 |
|
|
TYPE_STUB_DECL (new_record_type)
|
825 |
|
|
= create_type_stub_decl (new_name, new_record_type);
|
826 |
|
|
DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
|
827 |
|
|
= DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
|
828 |
|
|
TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
|
829 |
|
|
TYPE_SIZE_UNIT (new_record_type)
|
830 |
|
|
= size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
|
831 |
|
|
|
832 |
|
|
add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type);
|
833 |
|
|
|
834 |
|
|
/* Now scan all the fields, replacing each field with a new
|
835 |
|
|
field corresponding to the new encoding. */
|
836 |
|
|
for (old_field = TYPE_FIELDS (record_type); old_field;
|
837 |
|
|
old_field = TREE_CHAIN (old_field))
|
838 |
|
|
{
|
839 |
|
|
tree field_type = TREE_TYPE (old_field);
|
840 |
|
|
tree field_name = DECL_NAME (old_field);
|
841 |
|
|
tree new_field;
|
842 |
|
|
tree curpos = bit_position (old_field);
|
843 |
|
|
bool var = false;
|
844 |
|
|
unsigned int align = 0;
|
845 |
|
|
tree pos;
|
846 |
|
|
|
847 |
|
|
/* See how the position was modified from the last position.
|
848 |
|
|
|
849 |
|
|
There are two basic cases we support: a value was added
|
850 |
|
|
to the last position or the last position was rounded to
|
851 |
|
|
a boundary and they something was added. Check for the
|
852 |
|
|
first case first. If not, see if there is any evidence
|
853 |
|
|
of rounding. If so, round the last position and try
|
854 |
|
|
again.
|
855 |
|
|
|
856 |
|
|
If this is a union, the position can be taken as zero. */
|
857 |
|
|
|
858 |
|
|
/* Some computations depend on the shape of the position expression,
|
859 |
|
|
so strip conversions to make sure it's exposed. */
|
860 |
|
|
curpos = remove_conversions (curpos, true);
|
861 |
|
|
|
862 |
|
|
if (TREE_CODE (new_record_type) == UNION_TYPE)
|
863 |
|
|
pos = bitsize_zero_node, align = 0;
|
864 |
|
|
else
|
865 |
|
|
pos = compute_related_constant (curpos, last_pos);
|
866 |
|
|
|
867 |
|
|
if (!pos && TREE_CODE (curpos) == MULT_EXPR
|
868 |
|
|
&& host_integerp (TREE_OPERAND (curpos, 1), 1))
|
869 |
|
|
{
|
870 |
|
|
tree offset = TREE_OPERAND (curpos, 0);
|
871 |
|
|
align = tree_low_cst (TREE_OPERAND (curpos, 1), 1);
|
872 |
|
|
|
873 |
|
|
/* An offset which is a bitwise AND with a negative power of 2
|
874 |
|
|
means an alignment corresponding to this power of 2. */
|
875 |
|
|
offset = remove_conversions (offset, true);
|
876 |
|
|
if (TREE_CODE (offset) == BIT_AND_EXPR
|
877 |
|
|
&& host_integerp (TREE_OPERAND (offset, 1), 0)
|
878 |
|
|
&& tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0)
|
879 |
|
|
{
|
880 |
|
|
unsigned int pow
|
881 |
|
|
= - tree_low_cst (TREE_OPERAND (offset, 1), 0);
|
882 |
|
|
if (exact_log2 (pow) > 0)
|
883 |
|
|
align *= pow;
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
pos = compute_related_constant (curpos,
|
887 |
|
|
round_up (last_pos, align));
|
888 |
|
|
}
|
889 |
|
|
else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
|
890 |
|
|
&& TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
|
891 |
|
|
&& TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
|
892 |
|
|
&& host_integerp (TREE_OPERAND
|
893 |
|
|
(TREE_OPERAND (curpos, 0), 1),
|
894 |
|
|
1))
|
895 |
|
|
{
|
896 |
|
|
align
|
897 |
|
|
= tree_low_cst
|
898 |
|
|
(TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
|
899 |
|
|
pos = compute_related_constant (curpos,
|
900 |
|
|
round_up (last_pos, align));
|
901 |
|
|
}
|
902 |
|
|
else if (potential_alignment_gap (prev_old_field, old_field,
|
903 |
|
|
pos))
|
904 |
|
|
{
|
905 |
|
|
align = TYPE_ALIGN (field_type);
|
906 |
|
|
pos = compute_related_constant (curpos,
|
907 |
|
|
round_up (last_pos, align));
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* If we can't compute a position, set it to zero.
|
911 |
|
|
|
912 |
|
|
??? We really should abort here, but it's too much work
|
913 |
|
|
to get this correct for all cases. */
|
914 |
|
|
|
915 |
|
|
if (!pos)
|
916 |
|
|
pos = bitsize_zero_node;
|
917 |
|
|
|
918 |
|
|
/* See if this type is variable-sized and make a pointer type
|
919 |
|
|
and indicate the indirection if so. Beware that the debug
|
920 |
|
|
back-end may adjust the position computed above according
|
921 |
|
|
to the alignment of the field type, i.e. the pointer type
|
922 |
|
|
in this case, if we don't preventively counter that. */
|
923 |
|
|
if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
|
924 |
|
|
{
|
925 |
|
|
field_type = build_pointer_type (field_type);
|
926 |
|
|
if (align != 0 && TYPE_ALIGN (field_type) > align)
|
927 |
|
|
{
|
928 |
|
|
field_type = copy_node (field_type);
|
929 |
|
|
TYPE_ALIGN (field_type) = align;
|
930 |
|
|
}
|
931 |
|
|
var = true;
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
/* Make a new field name, if necessary. */
|
935 |
|
|
if (var || align != 0)
|
936 |
|
|
{
|
937 |
|
|
char suffix[16];
|
938 |
|
|
|
939 |
|
|
if (align != 0)
|
940 |
|
|
sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
|
941 |
|
|
align / BITS_PER_UNIT);
|
942 |
|
|
else
|
943 |
|
|
strcpy (suffix, "XVL");
|
944 |
|
|
|
945 |
|
|
field_name = concat_name (field_name, suffix);
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
new_field = create_field_decl (field_name, field_type,
|
949 |
|
|
new_record_type, 0,
|
950 |
|
|
DECL_SIZE (old_field), pos, 0);
|
951 |
|
|
TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
|
952 |
|
|
TYPE_FIELDS (new_record_type) = new_field;
|
953 |
|
|
|
954 |
|
|
/* If old_field is a QUAL_UNION_TYPE, take its size as being
|
955 |
|
|
zero. The only time it's not the last field of the record
|
956 |
|
|
is when there are other components at fixed positions after
|
957 |
|
|
it (meaning there was a rep clause for every field) and we
|
958 |
|
|
want to be able to encode them. */
|
959 |
|
|
last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
|
960 |
|
|
(TREE_CODE (TREE_TYPE (old_field))
|
961 |
|
|
== QUAL_UNION_TYPE)
|
962 |
|
|
? bitsize_zero_node
|
963 |
|
|
: DECL_SIZE (old_field));
|
964 |
|
|
prev_old_field = old_field;
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
TYPE_FIELDS (new_record_type)
|
968 |
|
|
= nreverse (TYPE_FIELDS (new_record_type));
|
969 |
|
|
|
970 |
|
|
rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type));
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type));
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Append PARALLEL_TYPE on the chain of parallel types for decl. */
|
977 |
|
|
|
978 |
|
|
void
|
979 |
|
|
add_parallel_type (tree decl, tree parallel_type)
|
980 |
|
|
{
|
981 |
|
|
tree d = decl;
|
982 |
|
|
|
983 |
|
|
while (DECL_PARALLEL_TYPE (d))
|
984 |
|
|
d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d));
|
985 |
|
|
|
986 |
|
|
SET_DECL_PARALLEL_TYPE (d, parallel_type);
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* Return the parallel type associated to a type, if any. */
|
990 |
|
|
|
991 |
|
|
tree
|
992 |
|
|
get_parallel_type (tree type)
|
993 |
|
|
{
|
994 |
|
|
if (TYPE_STUB_DECL (type))
|
995 |
|
|
return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
|
996 |
|
|
else
|
997 |
|
|
return NULL_TREE;
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
/* Utility function of above to merge LAST_SIZE, the previous size of a record
|
1001 |
|
|
with FIRST_BIT and SIZE that describe a field. SPECIAL is true if this
|
1002 |
|
|
represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and
|
1003 |
|
|
replace a value of zero with the old size. If HAS_REP is true, we take the
|
1004 |
|
|
MAX of the end position of this field with LAST_SIZE. In all other cases,
|
1005 |
|
|
we use FIRST_BIT plus SIZE. Return an expression for the size. */
|
1006 |
|
|
|
1007 |
|
|
static tree
|
1008 |
|
|
merge_sizes (tree last_size, tree first_bit, tree size, bool special,
|
1009 |
|
|
bool has_rep)
|
1010 |
|
|
{
|
1011 |
|
|
tree type = TREE_TYPE (last_size);
|
1012 |
|
|
tree new_size;
|
1013 |
|
|
|
1014 |
|
|
if (!special || TREE_CODE (size) != COND_EXPR)
|
1015 |
|
|
{
|
1016 |
|
|
new_size = size_binop (PLUS_EXPR, first_bit, size);
|
1017 |
|
|
if (has_rep)
|
1018 |
|
|
new_size = size_binop (MAX_EXPR, last_size, new_size);
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
else
|
1022 |
|
|
new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
|
1023 |
|
|
integer_zerop (TREE_OPERAND (size, 1))
|
1024 |
|
|
? last_size : merge_sizes (last_size, first_bit,
|
1025 |
|
|
TREE_OPERAND (size, 1),
|
1026 |
|
|
1, has_rep),
|
1027 |
|
|
integer_zerop (TREE_OPERAND (size, 2))
|
1028 |
|
|
? last_size : merge_sizes (last_size, first_bit,
|
1029 |
|
|
TREE_OPERAND (size, 2),
|
1030 |
|
|
1, has_rep));
|
1031 |
|
|
|
1032 |
|
|
/* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
|
1033 |
|
|
when fed through substitute_in_expr) into thinking that a constant
|
1034 |
|
|
size is not constant. */
|
1035 |
|
|
while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
|
1036 |
|
|
new_size = TREE_OPERAND (new_size, 0);
|
1037 |
|
|
|
1038 |
|
|
return new_size;
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
|
1042 |
|
|
related by the addition of a constant. Return that constant if so. */
|
1043 |
|
|
|
1044 |
|
|
static tree
|
1045 |
|
|
compute_related_constant (tree op0, tree op1)
|
1046 |
|
|
{
|
1047 |
|
|
tree op0_var, op1_var;
|
1048 |
|
|
tree op0_con = split_plus (op0, &op0_var);
|
1049 |
|
|
tree op1_con = split_plus (op1, &op1_var);
|
1050 |
|
|
tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
|
1051 |
|
|
|
1052 |
|
|
if (operand_equal_p (op0_var, op1_var, 0))
|
1053 |
|
|
return result;
|
1054 |
|
|
else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
|
1055 |
|
|
return result;
|
1056 |
|
|
else
|
1057 |
|
|
return 0;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
/* Utility function of above to split a tree OP which may be a sum, into a
|
1061 |
|
|
constant part, which is returned, and a variable part, which is stored
|
1062 |
|
|
in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
|
1063 |
|
|
bitsizetype. */
|
1064 |
|
|
|
1065 |
|
|
static tree
|
1066 |
|
|
split_plus (tree in, tree *pvar)
|
1067 |
|
|
{
|
1068 |
|
|
/* Strip NOPS in order to ease the tree traversal and maximize the
|
1069 |
|
|
potential for constant or plus/minus discovery. We need to be careful
|
1070 |
|
|
to always return and set *pvar to bitsizetype trees, but it's worth
|
1071 |
|
|
the effort. */
|
1072 |
|
|
STRIP_NOPS (in);
|
1073 |
|
|
|
1074 |
|
|
*pvar = convert (bitsizetype, in);
|
1075 |
|
|
|
1076 |
|
|
if (TREE_CODE (in) == INTEGER_CST)
|
1077 |
|
|
{
|
1078 |
|
|
*pvar = bitsize_zero_node;
|
1079 |
|
|
return convert (bitsizetype, in);
|
1080 |
|
|
}
|
1081 |
|
|
else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
|
1082 |
|
|
{
|
1083 |
|
|
tree lhs_var, rhs_var;
|
1084 |
|
|
tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
|
1085 |
|
|
tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
|
1086 |
|
|
|
1087 |
|
|
if (lhs_var == TREE_OPERAND (in, 0)
|
1088 |
|
|
&& rhs_var == TREE_OPERAND (in, 1))
|
1089 |
|
|
return bitsize_zero_node;
|
1090 |
|
|
|
1091 |
|
|
*pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
|
1092 |
|
|
return size_binop (TREE_CODE (in), lhs_con, rhs_con);
|
1093 |
|
|
}
|
1094 |
|
|
else
|
1095 |
|
|
return bitsize_zero_node;
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
|
1099 |
|
|
subprogram. If it is void_type_node, then we are dealing with a procedure,
|
1100 |
|
|
otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
|
1101 |
|
|
PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
|
1102 |
|
|
copy-in/copy-out list to be stored into TYPE_CICO_LIST.
|
1103 |
|
|
RETURNS_UNCONSTRAINED is true if the function returns an unconstrained
|
1104 |
|
|
object. RETURNS_BY_REF is true if the function returns by reference.
|
1105 |
|
|
RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its
|
1106 |
|
|
first parameter) the address of the place to copy its result. */
|
1107 |
|
|
|
1108 |
|
|
tree
|
1109 |
|
|
create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
|
1110 |
|
|
bool returns_unconstrained, bool returns_by_ref,
|
1111 |
|
|
bool returns_by_target_ptr)
|
1112 |
|
|
{
|
1113 |
|
|
/* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
|
1114 |
|
|
the subprogram formal parameters. This list is generated by traversing the
|
1115 |
|
|
input list of PARM_DECL nodes. */
|
1116 |
|
|
tree param_type_list = NULL;
|
1117 |
|
|
tree param_decl;
|
1118 |
|
|
tree type;
|
1119 |
|
|
|
1120 |
|
|
for (param_decl = param_decl_list; param_decl;
|
1121 |
|
|
param_decl = TREE_CHAIN (param_decl))
|
1122 |
|
|
param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
|
1123 |
|
|
param_type_list);
|
1124 |
|
|
|
1125 |
|
|
/* The list of the function parameter types has to be terminated by the void
|
1126 |
|
|
type to signal to the back-end that we are not dealing with a variable
|
1127 |
|
|
parameter subprogram, but that the subprogram has a fixed number of
|
1128 |
|
|
parameters. */
|
1129 |
|
|
param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
|
1130 |
|
|
|
1131 |
|
|
/* The list of argument types has been created in reverse
|
1132 |
|
|
so nreverse it. */
|
1133 |
|
|
param_type_list = nreverse (param_type_list);
|
1134 |
|
|
|
1135 |
|
|
type = build_function_type (return_type, param_type_list);
|
1136 |
|
|
|
1137 |
|
|
/* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
|
1138 |
|
|
or the new type should, make a copy of TYPE. Likewise for
|
1139 |
|
|
RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
|
1140 |
|
|
if (TYPE_CI_CO_LIST (type) || cico_list
|
1141 |
|
|
|| TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
|
1142 |
|
|
|| TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
|
1143 |
|
|
|| TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
|
1144 |
|
|
type = copy_type (type);
|
1145 |
|
|
|
1146 |
|
|
TYPE_CI_CO_LIST (type) = cico_list;
|
1147 |
|
|
TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
|
1148 |
|
|
TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
|
1149 |
|
|
TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
|
1150 |
|
|
return type;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Return a copy of TYPE but safe to modify in any way. */
|
1154 |
|
|
|
1155 |
|
|
tree
|
1156 |
|
|
copy_type (tree type)
|
1157 |
|
|
{
|
1158 |
|
|
tree new_type = copy_node (type);
|
1159 |
|
|
|
1160 |
|
|
/* Unshare the language-specific data. */
|
1161 |
|
|
if (TYPE_LANG_SPECIFIC (type))
|
1162 |
|
|
{
|
1163 |
|
|
TYPE_LANG_SPECIFIC (new_type) = NULL;
|
1164 |
|
|
SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
/* And the contents of the language-specific slot if needed. */
|
1168 |
|
|
if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE)
|
1169 |
|
|
&& TYPE_RM_VALUES (type))
|
1170 |
|
|
{
|
1171 |
|
|
TYPE_RM_VALUES (new_type) = NULL_TREE;
|
1172 |
|
|
SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
|
1173 |
|
|
SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
|
1174 |
|
|
SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
/* copy_node clears this field instead of copying it, because it is
|
1178 |
|
|
aliased with TREE_CHAIN. */
|
1179 |
|
|
TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);
|
1180 |
|
|
|
1181 |
|
|
TYPE_POINTER_TO (new_type) = 0;
|
1182 |
|
|
TYPE_REFERENCE_TO (new_type) = 0;
|
1183 |
|
|
TYPE_MAIN_VARIANT (new_type) = new_type;
|
1184 |
|
|
TYPE_NEXT_VARIANT (new_type) = 0;
|
1185 |
|
|
|
1186 |
|
|
return new_type;
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
/* Return a subtype of sizetype with range MIN to MAX and whose
|
1190 |
|
|
TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position
|
1191 |
|
|
of the associated TYPE_DECL. */
|
1192 |
|
|
|
1193 |
|
|
tree
|
1194 |
|
|
create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
|
1195 |
|
|
{
|
1196 |
|
|
/* First build a type for the desired range. */
|
1197 |
|
|
tree type = build_index_2_type (min, max);
|
1198 |
|
|
|
1199 |
|
|
/* If this type has the TYPE_INDEX_TYPE we want, return it. */
|
1200 |
|
|
if (TYPE_INDEX_TYPE (type) == index)
|
1201 |
|
|
return type;
|
1202 |
|
|
|
1203 |
|
|
/* Otherwise, if TYPE_INDEX_TYPE is set, make a copy. Note that we have
|
1204 |
|
|
no way of sharing these types, but that's only a small hole. */
|
1205 |
|
|
if (TYPE_INDEX_TYPE (type))
|
1206 |
|
|
type = copy_type (type);
|
1207 |
|
|
|
1208 |
|
|
SET_TYPE_INDEX_TYPE (type, index);
|
1209 |
|
|
create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node);
|
1210 |
|
|
|
1211 |
|
|
return type;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL,
|
1215 |
|
|
sizetype is used. */
|
1216 |
|
|
|
1217 |
|
|
tree
|
1218 |
|
|
create_range_type (tree type, tree min, tree max)
|
1219 |
|
|
{
|
1220 |
|
|
tree range_type;
|
1221 |
|
|
|
1222 |
|
|
if (type == NULL_TREE)
|
1223 |
|
|
type = sizetype;
|
1224 |
|
|
|
1225 |
|
|
/* First build a type with the base range. */
|
1226 |
|
|
range_type
|
1227 |
|
|
= build_range_type (type, TYPE_MIN_VALUE (type), TYPE_MAX_VALUE (type));
|
1228 |
|
|
|
1229 |
|
|
min = convert (type, min);
|
1230 |
|
|
max = convert (type, max);
|
1231 |
|
|
|
1232 |
|
|
/* If this type has the TYPE_RM_{MIN,MAX}_VALUE we want, return it. */
|
1233 |
|
|
if (TYPE_RM_MIN_VALUE (range_type)
|
1234 |
|
|
&& TYPE_RM_MAX_VALUE (range_type)
|
1235 |
|
|
&& operand_equal_p (TYPE_RM_MIN_VALUE (range_type), min, 0)
|
1236 |
|
|
&& operand_equal_p (TYPE_RM_MAX_VALUE (range_type), max, 0))
|
1237 |
|
|
return range_type;
|
1238 |
|
|
|
1239 |
|
|
/* Otherwise, if TYPE_RM_{MIN,MAX}_VALUE is set, make a copy. */
|
1240 |
|
|
if (TYPE_RM_MIN_VALUE (range_type) || TYPE_RM_MAX_VALUE (range_type))
|
1241 |
|
|
range_type = copy_type (range_type);
|
1242 |
|
|
|
1243 |
|
|
/* Then set the actual range. */
|
1244 |
|
|
SET_TYPE_RM_MIN_VALUE (range_type, min);
|
1245 |
|
|
SET_TYPE_RM_MAX_VALUE (range_type, max);
|
1246 |
|
|
|
1247 |
|
|
return range_type;
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
/* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of a type.
|
1251 |
|
|
TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving
|
1252 |
|
|
its data type. */
|
1253 |
|
|
|
1254 |
|
|
tree
|
1255 |
|
|
create_type_stub_decl (tree type_name, tree type)
|
1256 |
|
|
{
|
1257 |
|
|
/* Using a named TYPE_DECL ensures that a type name marker is emitted in
|
1258 |
|
|
STABS while setting DECL_ARTIFICIAL ensures that no DW_TAG_typedef is
|
1259 |
|
|
emitted in DWARF. */
|
1260 |
|
|
tree type_decl = build_decl (input_location,
|
1261 |
|
|
TYPE_DECL, type_name, type);
|
1262 |
|
|
DECL_ARTIFICIAL (type_decl) = 1;
|
1263 |
|
|
return type_decl;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type and TYPE
|
1267 |
|
|
is a ..._TYPE node giving its data type. ARTIFICIAL_P is true if this
|
1268 |
|
|
is a declaration that was generated by the compiler. DEBUG_INFO_P is
|
1269 |
|
|
true if we need to write debug information about this type. GNAT_NODE
|
1270 |
|
|
is used for the position of the decl. */
|
1271 |
|
|
|
1272 |
|
|
tree
|
1273 |
|
|
create_type_decl (tree type_name, tree type, struct attrib *attr_list,
|
1274 |
|
|
bool artificial_p, bool debug_info_p, Node_Id gnat_node)
|
1275 |
|
|
{
|
1276 |
|
|
enum tree_code code = TREE_CODE (type);
|
1277 |
|
|
bool named = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
|
1278 |
|
|
tree type_decl;
|
1279 |
|
|
|
1280 |
|
|
/* Only the builtin TYPE_STUB_DECL should be used for dummy types. */
|
1281 |
|
|
gcc_assert (!TYPE_IS_DUMMY_P (type));
|
1282 |
|
|
|
1283 |
|
|
/* If the type hasn't been named yet, we're naming it; preserve an existing
|
1284 |
|
|
TYPE_STUB_DECL that has been attached to it for some purpose. */
|
1285 |
|
|
if (!named && TYPE_STUB_DECL (type))
|
1286 |
|
|
{
|
1287 |
|
|
type_decl = TYPE_STUB_DECL (type);
|
1288 |
|
|
DECL_NAME (type_decl) = type_name;
|
1289 |
|
|
}
|
1290 |
|
|
else
|
1291 |
|
|
type_decl = build_decl (input_location,
|
1292 |
|
|
TYPE_DECL, type_name, type);
|
1293 |
|
|
|
1294 |
|
|
DECL_ARTIFICIAL (type_decl) = artificial_p;
|
1295 |
|
|
gnat_pushdecl (type_decl, gnat_node);
|
1296 |
|
|
process_attributes (type_decl, attr_list);
|
1297 |
|
|
|
1298 |
|
|
/* If we're naming the type, equate the TYPE_STUB_DECL to the name.
|
1299 |
|
|
This causes the name to be also viewed as a "tag" by the debug
|
1300 |
|
|
back-end, with the advantage that no DW_TAG_typedef is emitted
|
1301 |
|
|
for artificial "tagged" types in DWARF. */
|
1302 |
|
|
if (!named)
|
1303 |
|
|
TYPE_STUB_DECL (type) = type_decl;
|
1304 |
|
|
|
1305 |
|
|
/* Pass the type declaration to the debug back-end unless this is an
|
1306 |
|
|
UNCONSTRAINED_ARRAY_TYPE that the back-end does not support, or a
|
1307 |
|
|
type for which debugging information was not requested, or else an
|
1308 |
|
|
ENUMERAL_TYPE or RECORD_TYPE (except for fat pointers) which are
|
1309 |
|
|
handled separately. And do not pass dummy types either. */
|
1310 |
|
|
if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
|
1311 |
|
|
DECL_IGNORED_P (type_decl) = 1;
|
1312 |
|
|
else if (code != ENUMERAL_TYPE
|
1313 |
|
|
&& (code != RECORD_TYPE || TYPE_FAT_POINTER_P (type))
|
1314 |
|
|
&& !((code == POINTER_TYPE || code == REFERENCE_TYPE)
|
1315 |
|
|
&& TYPE_IS_DUMMY_P (TREE_TYPE (type)))
|
1316 |
|
|
&& !(code == RECORD_TYPE
|
1317 |
|
|
&& TYPE_IS_DUMMY_P
|
1318 |
|
|
(TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))))))
|
1319 |
|
|
rest_of_type_decl_compilation (type_decl);
|
1320 |
|
|
|
1321 |
|
|
return type_decl;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
/* Return a VAR_DECL or CONST_DECL node.
|
1325 |
|
|
|
1326 |
|
|
VAR_NAME gives the name of the variable. ASM_NAME is its assembler name
|
1327 |
|
|
(if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is
|
1328 |
|
|
the GCC tree for an optional initial expression; NULL_TREE if none.
|
1329 |
|
|
|
1330 |
|
|
CONST_FLAG is true if this variable is constant, in which case we might
|
1331 |
|
|
return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
|
1332 |
|
|
|
1333 |
|
|
PUBLIC_FLAG is true if this is for a reference to a public entity or for a
|
1334 |
|
|
definition to be made visible outside of the current compilation unit, for
|
1335 |
|
|
instance variable definitions in a package specification.
|
1336 |
|
|
|
1337 |
|
|
EXTERN_FLAG is true when processing an external variable declaration (as
|
1338 |
|
|
opposed to a definition: no storage is to be allocated for the variable).
|
1339 |
|
|
|
1340 |
|
|
STATIC_FLAG is only relevant when not at top level. In that case
|
1341 |
|
|
it indicates whether to always allocate storage to the variable.
|
1342 |
|
|
|
1343 |
|
|
GNAT_NODE is used for the position of the decl. */
|
1344 |
|
|
|
1345 |
|
|
tree
|
1346 |
|
|
create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
|
1347 |
|
|
bool const_flag, bool public_flag, bool extern_flag,
|
1348 |
|
|
bool static_flag, bool const_decl_allowed_p,
|
1349 |
|
|
struct attrib *attr_list, Node_Id gnat_node)
|
1350 |
|
|
{
|
1351 |
|
|
bool init_const
|
1352 |
|
|
= (var_init != 0
|
1353 |
|
|
&& gnat_types_compatible_p (type, TREE_TYPE (var_init))
|
1354 |
|
|
&& (global_bindings_p () || static_flag
|
1355 |
|
|
? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0
|
1356 |
|
|
: TREE_CONSTANT (var_init)));
|
1357 |
|
|
|
1358 |
|
|
/* Whether we will make TREE_CONSTANT the DECL we produce here, in which
|
1359 |
|
|
case the initializer may be used in-lieu of the DECL node (as done in
|
1360 |
|
|
Identifier_to_gnu). This is useful to prevent the need of elaboration
|
1361 |
|
|
code when an identifier for which such a decl is made is in turn used as
|
1362 |
|
|
an initializer. We used to rely on CONST vs VAR_DECL for this purpose,
|
1363 |
|
|
but extra constraints apply to this choice (see below) and are not
|
1364 |
|
|
relevant to the distinction we wish to make. */
|
1365 |
|
|
bool constant_p = const_flag && init_const;
|
1366 |
|
|
|
1367 |
|
|
/* The actual DECL node. CONST_DECL was initially intended for enumerals
|
1368 |
|
|
and may be used for scalars in general but not for aggregates. */
|
1369 |
|
|
tree var_decl
|
1370 |
|
|
= build_decl (input_location,
|
1371 |
|
|
(constant_p && const_decl_allowed_p
|
1372 |
|
|
&& !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
|
1373 |
|
|
var_name, type);
|
1374 |
|
|
|
1375 |
|
|
/* If this is external, throw away any initializations (they will be done
|
1376 |
|
|
elsewhere) unless this is a constant for which we would like to remain
|
1377 |
|
|
able to get the initializer. If we are defining a global here, leave a
|
1378 |
|
|
constant initialization and save any variable elaborations for the
|
1379 |
|
|
elaboration routine. If we are just annotating types, throw away the
|
1380 |
|
|
initialization if it isn't a constant. */
|
1381 |
|
|
if ((extern_flag && !constant_p)
|
1382 |
|
|
|| (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
|
1383 |
|
|
var_init = NULL_TREE;
|
1384 |
|
|
|
1385 |
|
|
/* At the global level, an initializer requiring code to be generated
|
1386 |
|
|
produces elaboration statements. Check that such statements are allowed,
|
1387 |
|
|
that is, not violating a No_Elaboration_Code restriction. */
|
1388 |
|
|
if (global_bindings_p () && var_init != 0 && !init_const)
|
1389 |
|
|
Check_Elaboration_Code_Allowed (gnat_node);
|
1390 |
|
|
|
1391 |
|
|
DECL_INITIAL (var_decl) = var_init;
|
1392 |
|
|
TREE_READONLY (var_decl) = const_flag;
|
1393 |
|
|
DECL_EXTERNAL (var_decl) = extern_flag;
|
1394 |
|
|
TREE_PUBLIC (var_decl) = public_flag || extern_flag;
|
1395 |
|
|
TREE_CONSTANT (var_decl) = constant_p;
|
1396 |
|
|
TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
|
1397 |
|
|
= TYPE_VOLATILE (type);
|
1398 |
|
|
|
1399 |
|
|
/* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
|
1400 |
|
|
try to fiddle with DECL_COMMON. However, on platforms that don't
|
1401 |
|
|
support global BSS sections, uninitialized global variables would
|
1402 |
|
|
go in DATA instead, thus increasing the size of the executable. */
|
1403 |
|
|
if (!flag_no_common
|
1404 |
|
|
&& TREE_CODE (var_decl) == VAR_DECL
|
1405 |
|
|
&& TREE_PUBLIC (var_decl)
|
1406 |
|
|
&& !have_global_bss_p ())
|
1407 |
|
|
DECL_COMMON (var_decl) = 1;
|
1408 |
|
|
|
1409 |
|
|
/* If it's public and not external, always allocate storage for it.
|
1410 |
|
|
At the global binding level we need to allocate static storage for the
|
1411 |
|
|
variable if and only if it's not external. If we are not at the top level
|
1412 |
|
|
we allocate automatic storage unless requested not to. */
|
1413 |
|
|
TREE_STATIC (var_decl)
|
1414 |
|
|
= !extern_flag && (public_flag || static_flag || global_bindings_p ());
|
1415 |
|
|
|
1416 |
|
|
/* For an external constant whose initializer is not absolute, do not emit
|
1417 |
|
|
debug info. In DWARF this would mean a global relocation in a read-only
|
1418 |
|
|
section which runs afoul of the PE-COFF runtime relocation mechanism. */
|
1419 |
|
|
if (extern_flag
|
1420 |
|
|
&& constant_p
|
1421 |
|
|
&& initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
|
1422 |
|
|
!= null_pointer_node)
|
1423 |
|
|
DECL_IGNORED_P (var_decl) = 1;
|
1424 |
|
|
|
1425 |
|
|
if (TREE_CODE (var_decl) == VAR_DECL)
|
1426 |
|
|
{
|
1427 |
|
|
if (asm_name)
|
1428 |
|
|
SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
|
1429 |
|
|
process_attributes (var_decl, attr_list);
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
/* Add this decl to the current binding level. */
|
1433 |
|
|
gnat_pushdecl (var_decl, gnat_node);
|
1434 |
|
|
|
1435 |
|
|
if (TREE_SIDE_EFFECTS (var_decl))
|
1436 |
|
|
TREE_ADDRESSABLE (var_decl) = 1;
|
1437 |
|
|
|
1438 |
|
|
if (TREE_CODE (var_decl) != CONST_DECL)
|
1439 |
|
|
{
|
1440 |
|
|
if (global_bindings_p ())
|
1441 |
|
|
rest_of_decl_compilation (var_decl, true, 0);
|
1442 |
|
|
}
|
1443 |
|
|
else
|
1444 |
|
|
expand_decl (var_decl);
|
1445 |
|
|
|
1446 |
|
|
return var_decl;
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
/* Return true if TYPE, an aggregate type, contains (or is) an array. */
|
1450 |
|
|
|
1451 |
|
|
static bool
|
1452 |
|
|
aggregate_type_contains_array_p (tree type)
|
1453 |
|
|
{
|
1454 |
|
|
switch (TREE_CODE (type))
|
1455 |
|
|
{
|
1456 |
|
|
case RECORD_TYPE:
|
1457 |
|
|
case UNION_TYPE:
|
1458 |
|
|
case QUAL_UNION_TYPE:
|
1459 |
|
|
{
|
1460 |
|
|
tree field;
|
1461 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
1462 |
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (field))
|
1463 |
|
|
&& aggregate_type_contains_array_p (TREE_TYPE (field)))
|
1464 |
|
|
return true;
|
1465 |
|
|
return false;
|
1466 |
|
|
}
|
1467 |
|
|
|
1468 |
|
|
case ARRAY_TYPE:
|
1469 |
|
|
return true;
|
1470 |
|
|
|
1471 |
|
|
default:
|
1472 |
|
|
gcc_unreachable ();
|
1473 |
|
|
}
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
/* Return a FIELD_DECL node. FIELD_NAME is the field's name, FIELD_TYPE is
|
1477 |
|
|
its type and RECORD_TYPE is the type of the enclosing record. PACKED is
|
1478 |
|
|
1 if the enclosing record is packed, -1 if it has Component_Alignment of
|
1479 |
|
|
Storage_Unit. If SIZE is nonzero, it is the specified size of the field.
|
1480 |
|
|
If POS is nonzero, it is the bit position. If ADDRESSABLE is nonzero, it
|
1481 |
|
|
means we are allowed to take the address of the field; if it is negative,
|
1482 |
|
|
we should not make a bitfield, which is used by make_aligning_type. */
|
1483 |
|
|
|
1484 |
|
|
tree
|
1485 |
|
|
create_field_decl (tree field_name, tree field_type, tree record_type,
|
1486 |
|
|
int packed, tree size, tree pos, int addressable)
|
1487 |
|
|
{
|
1488 |
|
|
tree field_decl = build_decl (input_location,
|
1489 |
|
|
FIELD_DECL, field_name, field_type);
|
1490 |
|
|
|
1491 |
|
|
DECL_CONTEXT (field_decl) = record_type;
|
1492 |
|
|
TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
|
1493 |
|
|
|
1494 |
|
|
/* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
|
1495 |
|
|
byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
|
1496 |
|
|
Likewise for an aggregate without specified position that contains an
|
1497 |
|
|
array, because in this case slices of variable length of this array
|
1498 |
|
|
must be handled by GCC and variable-sized objects need to be aligned
|
1499 |
|
|
to at least a byte boundary. */
|
1500 |
|
|
if (packed && (TYPE_MODE (field_type) == BLKmode
|
1501 |
|
|
|| (!pos
|
1502 |
|
|
&& AGGREGATE_TYPE_P (field_type)
|
1503 |
|
|
&& aggregate_type_contains_array_p (field_type))))
|
1504 |
|
|
DECL_ALIGN (field_decl) = BITS_PER_UNIT;
|
1505 |
|
|
|
1506 |
|
|
/* If a size is specified, use it. Otherwise, if the record type is packed
|
1507 |
|
|
compute a size to use, which may differ from the object's natural size.
|
1508 |
|
|
We always set a size in this case to trigger the checks for bitfield
|
1509 |
|
|
creation below, which is typically required when no position has been
|
1510 |
|
|
specified. */
|
1511 |
|
|
if (size)
|
1512 |
|
|
size = convert (bitsizetype, size);
|
1513 |
|
|
else if (packed == 1)
|
1514 |
|
|
{
|
1515 |
|
|
size = rm_size (field_type);
|
1516 |
|
|
if (TYPE_MODE (field_type) == BLKmode)
|
1517 |
|
|
size = round_up (size, BITS_PER_UNIT);
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/* If we may, according to ADDRESSABLE, make a bitfield if a size is
|
1521 |
|
|
specified for two reasons: first if the size differs from the natural
|
1522 |
|
|
size. Second, if the alignment is insufficient. There are a number of
|
1523 |
|
|
ways the latter can be true.
|
1524 |
|
|
|
1525 |
|
|
We never make a bitfield if the type of the field has a nonconstant size,
|
1526 |
|
|
because no such entity requiring bitfield operations should reach here.
|
1527 |
|
|
|
1528 |
|
|
We do *preventively* make a bitfield when there might be the need for it
|
1529 |
|
|
but we don't have all the necessary information to decide, as is the case
|
1530 |
|
|
of a field with no specified position in a packed record.
|
1531 |
|
|
|
1532 |
|
|
We also don't look at STRICT_ALIGNMENT here, and rely on later processing
|
1533 |
|
|
in layout_decl or finish_record_type to clear the bit_field indication if
|
1534 |
|
|
it is in fact not needed. */
|
1535 |
|
|
if (addressable >= 0
|
1536 |
|
|
&& size
|
1537 |
|
|
&& TREE_CODE (size) == INTEGER_CST
|
1538 |
|
|
&& TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
|
1539 |
|
|
&& (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
|
1540 |
|
|
|| (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
|
1541 |
|
|
|| packed
|
1542 |
|
|
|| (TYPE_ALIGN (record_type) != 0
|
1543 |
|
|
&& TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
|
1544 |
|
|
{
|
1545 |
|
|
DECL_BIT_FIELD (field_decl) = 1;
|
1546 |
|
|
DECL_SIZE (field_decl) = size;
|
1547 |
|
|
if (!packed && !pos)
|
1548 |
|
|
{
|
1549 |
|
|
if (TYPE_ALIGN (record_type) != 0
|
1550 |
|
|
&& TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))
|
1551 |
|
|
DECL_ALIGN (field_decl) = TYPE_ALIGN (record_type);
|
1552 |
|
|
else
|
1553 |
|
|
DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
|
1554 |
|
|
}
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
|
1558 |
|
|
|
1559 |
|
|
/* Bump the alignment if need be, either for bitfield/packing purposes or
|
1560 |
|
|
to satisfy the type requirements if no such consideration applies. When
|
1561 |
|
|
we get the alignment from the type, indicate if this is from an explicit
|
1562 |
|
|
user request, which prevents stor-layout from lowering it later on. */
|
1563 |
|
|
{
|
1564 |
|
|
unsigned int bit_align
|
1565 |
|
|
= (DECL_BIT_FIELD (field_decl) ? 1
|
1566 |
|
|
: packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);
|
1567 |
|
|
|
1568 |
|
|
if (bit_align > DECL_ALIGN (field_decl))
|
1569 |
|
|
DECL_ALIGN (field_decl) = bit_align;
|
1570 |
|
|
else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
|
1571 |
|
|
{
|
1572 |
|
|
DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
|
1573 |
|
|
DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
|
1574 |
|
|
}
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
if (pos)
|
1578 |
|
|
{
|
1579 |
|
|
/* We need to pass in the alignment the DECL is known to have.
|
1580 |
|
|
This is the lowest-order bit set in POS, but no more than
|
1581 |
|
|
the alignment of the record, if one is specified. Note
|
1582 |
|
|
that an alignment of 0 is taken as infinite. */
|
1583 |
|
|
unsigned int known_align;
|
1584 |
|
|
|
1585 |
|
|
if (host_integerp (pos, 1))
|
1586 |
|
|
known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
|
1587 |
|
|
else
|
1588 |
|
|
known_align = BITS_PER_UNIT;
|
1589 |
|
|
|
1590 |
|
|
if (TYPE_ALIGN (record_type)
|
1591 |
|
|
&& (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
|
1592 |
|
|
known_align = TYPE_ALIGN (record_type);
|
1593 |
|
|
|
1594 |
|
|
layout_decl (field_decl, known_align);
|
1595 |
|
|
SET_DECL_OFFSET_ALIGN (field_decl,
|
1596 |
|
|
host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
|
1597 |
|
|
: BITS_PER_UNIT);
|
1598 |
|
|
pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
|
1599 |
|
|
&DECL_FIELD_BIT_OFFSET (field_decl),
|
1600 |
|
|
DECL_OFFSET_ALIGN (field_decl), pos);
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
/* In addition to what our caller says, claim the field is addressable if we
|
1604 |
|
|
know that its type is not suitable.
|
1605 |
|
|
|
1606 |
|
|
The field may also be "technically" nonaddressable, meaning that even if
|
1607 |
|
|
we attempt to take the field's address we will actually get the address
|
1608 |
|
|
of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
|
1609 |
|
|
value we have at this point is not accurate enough, so we don't account
|
1610 |
|
|
for this here and let finish_record_type decide. */
|
1611 |
|
|
if (!addressable && !type_for_nonaliased_component_p (field_type))
|
1612 |
|
|
addressable = 1;
|
1613 |
|
|
|
1614 |
|
|
DECL_NONADDRESSABLE_P (field_decl) = !addressable;
|
1615 |
|
|
|
1616 |
|
|
return field_decl;
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
/* Return a PARM_DECL node. PARAM_NAME is the name of the parameter and
|
1620 |
|
|
PARAM_TYPE is its type. READONLY is true if the parameter is readonly
|
1621 |
|
|
(either an In parameter or an address of a pass-by-ref parameter). */
|
1622 |
|
|
|
1623 |
|
|
tree
|
1624 |
|
|
create_param_decl (tree param_name, tree param_type, bool readonly)
|
1625 |
|
|
{
|
1626 |
|
|
tree param_decl = build_decl (input_location,
|
1627 |
|
|
PARM_DECL, param_name, param_type);
|
1628 |
|
|
|
1629 |
|
|
/* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
|
1630 |
|
|
can lead to various ABI violations. */
|
1631 |
|
|
if (targetm.calls.promote_prototypes (NULL_TREE)
|
1632 |
|
|
&& INTEGRAL_TYPE_P (param_type)
|
1633 |
|
|
&& TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
|
1634 |
|
|
{
|
1635 |
|
|
/* We have to be careful about biased types here. Make a subtype
|
1636 |
|
|
of integer_type_node with the proper biasing. */
|
1637 |
|
|
if (TREE_CODE (param_type) == INTEGER_TYPE
|
1638 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (param_type))
|
1639 |
|
|
{
|
1640 |
|
|
tree subtype
|
1641 |
|
|
= make_unsigned_type (TYPE_PRECISION (integer_type_node));
|
1642 |
|
|
TREE_TYPE (subtype) = integer_type_node;
|
1643 |
|
|
TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
|
1644 |
|
|
SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (param_type));
|
1645 |
|
|
SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (param_type));
|
1646 |
|
|
param_type = subtype;
|
1647 |
|
|
}
|
1648 |
|
|
else
|
1649 |
|
|
param_type = integer_type_node;
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
DECL_ARG_TYPE (param_decl) = param_type;
|
1653 |
|
|
TREE_READONLY (param_decl) = readonly;
|
1654 |
|
|
return param_decl;
|
1655 |
|
|
}
|
1656 |
|
|
|
1657 |
|
|
/* Given a DECL and ATTR_LIST, process the listed attributes. */
|
1658 |
|
|
|
1659 |
|
|
void
|
1660 |
|
|
process_attributes (tree decl, struct attrib *attr_list)
|
1661 |
|
|
{
|
1662 |
|
|
for (; attr_list; attr_list = attr_list->next)
|
1663 |
|
|
switch (attr_list->type)
|
1664 |
|
|
{
|
1665 |
|
|
case ATTR_MACHINE_ATTRIBUTE:
|
1666 |
|
|
decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
|
1667 |
|
|
NULL_TREE),
|
1668 |
|
|
ATTR_FLAG_TYPE_IN_PLACE);
|
1669 |
|
|
break;
|
1670 |
|
|
|
1671 |
|
|
case ATTR_LINK_ALIAS:
|
1672 |
|
|
if (! DECL_EXTERNAL (decl))
|
1673 |
|
|
{
|
1674 |
|
|
TREE_STATIC (decl) = 1;
|
1675 |
|
|
assemble_alias (decl, attr_list->name);
|
1676 |
|
|
}
|
1677 |
|
|
break;
|
1678 |
|
|
|
1679 |
|
|
case ATTR_WEAK_EXTERNAL:
|
1680 |
|
|
if (SUPPORTS_WEAK)
|
1681 |
|
|
declare_weak (decl);
|
1682 |
|
|
else
|
1683 |
|
|
post_error ("?weak declarations not supported on this target",
|
1684 |
|
|
attr_list->error_point);
|
1685 |
|
|
break;
|
1686 |
|
|
|
1687 |
|
|
case ATTR_LINK_SECTION:
|
1688 |
|
|
if (targetm.have_named_sections)
|
1689 |
|
|
{
|
1690 |
|
|
DECL_SECTION_NAME (decl)
|
1691 |
|
|
= build_string (IDENTIFIER_LENGTH (attr_list->name),
|
1692 |
|
|
IDENTIFIER_POINTER (attr_list->name));
|
1693 |
|
|
DECL_COMMON (decl) = 0;
|
1694 |
|
|
}
|
1695 |
|
|
else
|
1696 |
|
|
post_error ("?section attributes are not supported for this target",
|
1697 |
|
|
attr_list->error_point);
|
1698 |
|
|
break;
|
1699 |
|
|
|
1700 |
|
|
case ATTR_LINK_CONSTRUCTOR:
|
1701 |
|
|
DECL_STATIC_CONSTRUCTOR (decl) = 1;
|
1702 |
|
|
TREE_USED (decl) = 1;
|
1703 |
|
|
break;
|
1704 |
|
|
|
1705 |
|
|
case ATTR_LINK_DESTRUCTOR:
|
1706 |
|
|
DECL_STATIC_DESTRUCTOR (decl) = 1;
|
1707 |
|
|
TREE_USED (decl) = 1;
|
1708 |
|
|
break;
|
1709 |
|
|
|
1710 |
|
|
case ATTR_THREAD_LOCAL_STORAGE:
|
1711 |
|
|
DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
|
1712 |
|
|
DECL_COMMON (decl) = 0;
|
1713 |
|
|
break;
|
1714 |
|
|
}
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
/* Record DECL as a global renaming pointer. */
|
1718 |
|
|
|
1719 |
|
|
void
|
1720 |
|
|
record_global_renaming_pointer (tree decl)
|
1721 |
|
|
{
|
1722 |
|
|
gcc_assert (DECL_RENAMED_OBJECT (decl));
|
1723 |
|
|
VEC_safe_push (tree, gc, global_renaming_pointers, decl);
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* Invalidate the global renaming pointers. */
|
1727 |
|
|
|
1728 |
|
|
void
|
1729 |
|
|
invalidate_global_renaming_pointers (void)
|
1730 |
|
|
{
|
1731 |
|
|
unsigned int i;
|
1732 |
|
|
tree iter;
|
1733 |
|
|
|
1734 |
|
|
for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++)
|
1735 |
|
|
SET_DECL_RENAMED_OBJECT (iter, NULL_TREE);
|
1736 |
|
|
|
1737 |
|
|
VEC_free (tree, gc, global_renaming_pointers);
|
1738 |
|
|
}
|
1739 |
|
|
|
1740 |
|
|
/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
|
1741 |
|
|
a power of 2. */
|
1742 |
|
|
|
1743 |
|
|
bool
|
1744 |
|
|
value_factor_p (tree value, HOST_WIDE_INT factor)
|
1745 |
|
|
{
|
1746 |
|
|
if (host_integerp (value, 1))
|
1747 |
|
|
return tree_low_cst (value, 1) % factor == 0;
|
1748 |
|
|
|
1749 |
|
|
if (TREE_CODE (value) == MULT_EXPR)
|
1750 |
|
|
return (value_factor_p (TREE_OPERAND (value, 0), factor)
|
1751 |
|
|
|| value_factor_p (TREE_OPERAND (value, 1), factor));
|
1752 |
|
|
|
1753 |
|
|
return false;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
|
1757 |
|
|
unless we can prove these 2 fields are laid out in such a way that no gap
|
1758 |
|
|
exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
|
1759 |
|
|
is the distance in bits between the end of PREV_FIELD and the starting
|
1760 |
|
|
position of CURR_FIELD. It is ignored if null. */
|
1761 |
|
|
|
1762 |
|
|
static bool
|
1763 |
|
|
potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
|
1764 |
|
|
{
|
1765 |
|
|
/* If this is the first field of the record, there cannot be any gap */
|
1766 |
|
|
if (!prev_field)
|
1767 |
|
|
return false;
|
1768 |
|
|
|
1769 |
|
|
/* If the previous field is a union type, then return False: The only
|
1770 |
|
|
time when such a field is not the last field of the record is when
|
1771 |
|
|
there are other components at fixed positions after it (meaning there
|
1772 |
|
|
was a rep clause for every field), in which case we don't want the
|
1773 |
|
|
alignment constraint to override them. */
|
1774 |
|
|
if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
|
1775 |
|
|
return false;
|
1776 |
|
|
|
1777 |
|
|
/* If the distance between the end of prev_field and the beginning of
|
1778 |
|
|
curr_field is constant, then there is a gap if the value of this
|
1779 |
|
|
constant is not null. */
|
1780 |
|
|
if (offset && host_integerp (offset, 1))
|
1781 |
|
|
return !integer_zerop (offset);
|
1782 |
|
|
|
1783 |
|
|
/* If the size and position of the previous field are constant,
|
1784 |
|
|
then check the sum of this size and position. There will be a gap
|
1785 |
|
|
iff it is not multiple of the current field alignment. */
|
1786 |
|
|
if (host_integerp (DECL_SIZE (prev_field), 1)
|
1787 |
|
|
&& host_integerp (bit_position (prev_field), 1))
|
1788 |
|
|
return ((tree_low_cst (bit_position (prev_field), 1)
|
1789 |
|
|
+ tree_low_cst (DECL_SIZE (prev_field), 1))
|
1790 |
|
|
% DECL_ALIGN (curr_field) != 0);
|
1791 |
|
|
|
1792 |
|
|
/* If both the position and size of the previous field are multiples
|
1793 |
|
|
of the current field alignment, there cannot be any gap. */
|
1794 |
|
|
if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
|
1795 |
|
|
&& value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
|
1796 |
|
|
return false;
|
1797 |
|
|
|
1798 |
|
|
/* Fallback, return that there may be a potential gap */
|
1799 |
|
|
return true;
|
1800 |
|
|
}
|
1801 |
|
|
|
1802 |
|
|
/* Returns a LABEL_DECL node for LABEL_NAME. */
|
1803 |
|
|
|
1804 |
|
|
tree
|
1805 |
|
|
create_label_decl (tree label_name)
|
1806 |
|
|
{
|
1807 |
|
|
tree label_decl = build_decl (input_location,
|
1808 |
|
|
LABEL_DECL, label_name, void_type_node);
|
1809 |
|
|
|
1810 |
|
|
DECL_CONTEXT (label_decl) = current_function_decl;
|
1811 |
|
|
DECL_MODE (label_decl) = VOIDmode;
|
1812 |
|
|
DECL_SOURCE_LOCATION (label_decl) = input_location;
|
1813 |
|
|
|
1814 |
|
|
return label_decl;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
|
1818 |
|
|
ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
|
1819 |
|
|
node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
|
1820 |
|
|
PARM_DECL nodes chained through the TREE_CHAIN field).
|
1821 |
|
|
|
1822 |
|
|
INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
|
1823 |
|
|
appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
|
1824 |
|
|
|
1825 |
|
|
tree
|
1826 |
|
|
create_subprog_decl (tree subprog_name, tree asm_name,
|
1827 |
|
|
tree subprog_type, tree param_decl_list, bool inline_flag,
|
1828 |
|
|
bool public_flag, bool extern_flag,
|
1829 |
|
|
struct attrib *attr_list, Node_Id gnat_node)
|
1830 |
|
|
{
|
1831 |
|
|
tree return_type = TREE_TYPE (subprog_type);
|
1832 |
|
|
tree subprog_decl = build_decl (input_location,
|
1833 |
|
|
FUNCTION_DECL, subprog_name, subprog_type);
|
1834 |
|
|
|
1835 |
|
|
/* If this is a non-inline function nested inside an inlined external
|
1836 |
|
|
function, we cannot honor both requests without cloning the nested
|
1837 |
|
|
function in the current unit since it is private to the other unit.
|
1838 |
|
|
We could inline the nested function as well but it's probably better
|
1839 |
|
|
to err on the side of too little inlining. */
|
1840 |
|
|
if (!inline_flag
|
1841 |
|
|
&& current_function_decl
|
1842 |
|
|
&& DECL_DECLARED_INLINE_P (current_function_decl)
|
1843 |
|
|
&& DECL_EXTERNAL (current_function_decl))
|
1844 |
|
|
DECL_DECLARED_INLINE_P (current_function_decl) = 0;
|
1845 |
|
|
|
1846 |
|
|
DECL_EXTERNAL (subprog_decl) = extern_flag;
|
1847 |
|
|
TREE_PUBLIC (subprog_decl) = public_flag;
|
1848 |
|
|
TREE_STATIC (subprog_decl) = 1;
|
1849 |
|
|
TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
|
1850 |
|
|
TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
|
1851 |
|
|
TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
|
1852 |
|
|
DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag;
|
1853 |
|
|
DECL_ARGUMENTS (subprog_decl) = param_decl_list;
|
1854 |
|
|
DECL_RESULT (subprog_decl) = build_decl (input_location,
|
1855 |
|
|
RESULT_DECL, 0, return_type);
|
1856 |
|
|
DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
|
1857 |
|
|
DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
|
1858 |
|
|
|
1859 |
|
|
/* TREE_ADDRESSABLE is set on the result type to request the use of the
|
1860 |
|
|
target by-reference return mechanism. This is not supported all the
|
1861 |
|
|
way down to RTL expansion with GCC 4, which ICEs on temporary creation
|
1862 |
|
|
attempts with such a type and expects DECL_BY_REFERENCE to be set on
|
1863 |
|
|
the RESULT_DECL instead - see gnat_genericize for more details. */
|
1864 |
|
|
if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl))))
|
1865 |
|
|
{
|
1866 |
|
|
tree result_decl = DECL_RESULT (subprog_decl);
|
1867 |
|
|
|
1868 |
|
|
TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0;
|
1869 |
|
|
DECL_BY_REFERENCE (result_decl) = 1;
|
1870 |
|
|
}
|
1871 |
|
|
|
1872 |
|
|
if (asm_name)
|
1873 |
|
|
{
|
1874 |
|
|
SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
|
1875 |
|
|
|
1876 |
|
|
/* The expand_main_function circuitry expects "main_identifier_node" to
|
1877 |
|
|
designate the DECL_NAME of the 'main' entry point, in turn expected
|
1878 |
|
|
to be declared as the "main" function literally by default. Ada
|
1879 |
|
|
program entry points are typically declared with a different name
|
1880 |
|
|
within the binder generated file, exported as 'main' to satisfy the
|
1881 |
|
|
system expectations. Force main_identifier_node in this case. */
|
1882 |
|
|
if (asm_name == main_identifier_node)
|
1883 |
|
|
DECL_NAME (subprog_decl) = main_identifier_node;
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
process_attributes (subprog_decl, attr_list);
|
1887 |
|
|
|
1888 |
|
|
/* Add this decl to the current binding level. */
|
1889 |
|
|
gnat_pushdecl (subprog_decl, gnat_node);
|
1890 |
|
|
|
1891 |
|
|
/* Output the assembler code and/or RTL for the declaration. */
|
1892 |
|
|
rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
|
1893 |
|
|
|
1894 |
|
|
return subprog_decl;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
|
1898 |
|
|
body. This routine needs to be invoked before processing the declarations
|
1899 |
|
|
appearing in the subprogram. */
|
1900 |
|
|
|
1901 |
|
|
void
|
1902 |
|
|
begin_subprog_body (tree subprog_decl)
|
1903 |
|
|
{
|
1904 |
|
|
tree param_decl;
|
1905 |
|
|
|
1906 |
|
|
current_function_decl = subprog_decl;
|
1907 |
|
|
announce_function (subprog_decl);
|
1908 |
|
|
|
1909 |
|
|
/* Enter a new binding level and show that all the parameters belong to
|
1910 |
|
|
this function. */
|
1911 |
|
|
gnat_pushlevel ();
|
1912 |
|
|
for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
|
1913 |
|
|
param_decl = TREE_CHAIN (param_decl))
|
1914 |
|
|
DECL_CONTEXT (param_decl) = subprog_decl;
|
1915 |
|
|
|
1916 |
|
|
make_decl_rtl (subprog_decl);
|
1917 |
|
|
|
1918 |
|
|
/* We handle pending sizes via the elaboration of types, so we don't need to
|
1919 |
|
|
save them. This causes them to be marked as part of the outer function
|
1920 |
|
|
and then discarded. */
|
1921 |
|
|
get_pending_sizes ();
|
1922 |
|
|
}
|
1923 |
|
|
|
1924 |
|
|
|
1925 |
|
|
/* Helper for the genericization callback. Return a dereference of VAL
|
1926 |
|
|
if it is of a reference type. */
|
1927 |
|
|
|
1928 |
|
|
static tree
|
1929 |
|
|
convert_from_reference (tree val)
|
1930 |
|
|
{
|
1931 |
|
|
tree value_type, ref;
|
1932 |
|
|
|
1933 |
|
|
if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE)
|
1934 |
|
|
return val;
|
1935 |
|
|
|
1936 |
|
|
value_type = TREE_TYPE (TREE_TYPE (val));
|
1937 |
|
|
ref = build1 (INDIRECT_REF, value_type, val);
|
1938 |
|
|
|
1939 |
|
|
/* See if what we reference is CONST or VOLATILE, which requires
|
1940 |
|
|
looking into array types to get to the component type. */
|
1941 |
|
|
|
1942 |
|
|
while (TREE_CODE (value_type) == ARRAY_TYPE)
|
1943 |
|
|
value_type = TREE_TYPE (value_type);
|
1944 |
|
|
|
1945 |
|
|
TREE_READONLY (ref)
|
1946 |
|
|
= (TYPE_QUALS (value_type) & TYPE_QUAL_CONST);
|
1947 |
|
|
TREE_THIS_VOLATILE (ref)
|
1948 |
|
|
= (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE);
|
1949 |
|
|
|
1950 |
|
|
TREE_SIDE_EFFECTS (ref)
|
1951 |
|
|
= (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val));
|
1952 |
|
|
|
1953 |
|
|
return ref;
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
/* Helper for the genericization callback. Returns true if T denotes
|
1957 |
|
|
a RESULT_DECL with DECL_BY_REFERENCE set. */
|
1958 |
|
|
|
1959 |
|
|
static inline bool
|
1960 |
|
|
is_byref_result (tree t)
|
1961 |
|
|
{
|
1962 |
|
|
return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t));
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
|
1966 |
|
|
/* Tree walking callback for gnat_genericize. Currently ...
|
1967 |
|
|
|
1968 |
|
|
o Adjust references to the function's DECL_RESULT if it is marked
|
1969 |
|
|
DECL_BY_REFERENCE and so has had its type turned into a reference
|
1970 |
|
|
type at the end of the function compilation. */
|
1971 |
|
|
|
1972 |
|
|
static tree
|
1973 |
|
|
gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data)
|
1974 |
|
|
{
|
1975 |
|
|
/* This implementation is modeled after what the C++ front-end is
|
1976 |
|
|
doing, basis of the downstream passes behavior. */
|
1977 |
|
|
|
1978 |
|
|
tree stmt = *stmt_p;
|
1979 |
|
|
struct pointer_set_t *p_set = (struct pointer_set_t*) data;
|
1980 |
|
|
|
1981 |
|
|
/* If we have a direct mention of the result decl, dereference. */
|
1982 |
|
|
if (is_byref_result (stmt))
|
1983 |
|
|
{
|
1984 |
|
|
*stmt_p = convert_from_reference (stmt);
|
1985 |
|
|
*walk_subtrees = 0;
|
1986 |
|
|
return NULL;
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
/* Otherwise, no need to walk the same tree twice. */
|
1990 |
|
|
if (pointer_set_contains (p_set, stmt))
|
1991 |
|
|
{
|
1992 |
|
|
*walk_subtrees = 0;
|
1993 |
|
|
return NULL_TREE;
|
1994 |
|
|
}
|
1995 |
|
|
|
1996 |
|
|
/* If we are taking the address of what now is a reference, just get the
|
1997 |
|
|
reference value. */
|
1998 |
|
|
if (TREE_CODE (stmt) == ADDR_EXPR
|
1999 |
|
|
&& is_byref_result (TREE_OPERAND (stmt, 0)))
|
2000 |
|
|
{
|
2001 |
|
|
*stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0));
|
2002 |
|
|
*walk_subtrees = 0;
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
/* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */
|
2006 |
|
|
else if (TREE_CODE (stmt) == RETURN_EXPR
|
2007 |
|
|
&& TREE_OPERAND (stmt, 0)
|
2008 |
|
|
&& is_byref_result (TREE_OPERAND (stmt, 0)))
|
2009 |
|
|
*walk_subtrees = 0;
|
2010 |
|
|
|
2011 |
|
|
/* Don't look inside trees that cannot embed references of interest. */
|
2012 |
|
|
else if (IS_TYPE_OR_DECL_P (stmt))
|
2013 |
|
|
*walk_subtrees = 0;
|
2014 |
|
|
|
2015 |
|
|
pointer_set_insert (p_set, *stmt_p);
|
2016 |
|
|
|
2017 |
|
|
return NULL;
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
/* Perform lowering of Ada trees to GENERIC. In particular:
|
2021 |
|
|
|
2022 |
|
|
o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl
|
2023 |
|
|
and adjust all the references to this decl accordingly. */
|
2024 |
|
|
|
2025 |
|
|
static void
|
2026 |
|
|
gnat_genericize (tree fndecl)
|
2027 |
|
|
{
|
2028 |
|
|
/* Prior to GCC 4, an explicit By_Reference result mechanism for a function
|
2029 |
|
|
was handled by simply setting TREE_ADDRESSABLE on the result type.
|
2030 |
|
|
Everything required to actually pass by invisible ref using the target
|
2031 |
|
|
mechanism (e.g. extra parameter) was handled at RTL expansion time.
|
2032 |
|
|
|
2033 |
|
|
This doesn't work with GCC 4 any more for several reasons. First, the
|
2034 |
|
|
gimplification process might need the creation of temporaries of this
|
2035 |
|
|
type, and the gimplifier ICEs on such attempts. Second, the middle-end
|
2036 |
|
|
now relies on a different attribute for such cases (DECL_BY_REFERENCE on
|
2037 |
|
|
RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to
|
2038 |
|
|
be explicitly accounted for by the front-end in the function body.
|
2039 |
|
|
|
2040 |
|
|
We achieve the complete transformation in two steps:
|
2041 |
|
|
|
2042 |
|
|
1/ create_subprog_decl performs early attribute tweaks: it clears
|
2043 |
|
|
TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on
|
2044 |
|
|
the result decl. The former ensures that the bit isn't set in the GCC
|
2045 |
|
|
tree saved for the function, so prevents ICEs on temporary creation.
|
2046 |
|
|
The latter we use here to trigger the rest of the processing.
|
2047 |
|
|
|
2048 |
|
|
2/ This function performs the type transformation on the result decl
|
2049 |
|
|
and adjusts all the references to this decl from the function body
|
2050 |
|
|
accordingly.
|
2051 |
|
|
|
2052 |
|
|
Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end
|
2053 |
|
|
strategy, which escapes the gimplifier temporary creation issues by
|
2054 |
|
|
creating it's own temporaries using TARGET_EXPR nodes. Our way relies
|
2055 |
|
|
on simple specific support code in aggregate_value_p to look at the
|
2056 |
|
|
target function result decl explicitly. */
|
2057 |
|
|
|
2058 |
|
|
struct pointer_set_t *p_set;
|
2059 |
|
|
tree decl_result = DECL_RESULT (fndecl);
|
2060 |
|
|
|
2061 |
|
|
if (!DECL_BY_REFERENCE (decl_result))
|
2062 |
|
|
return;
|
2063 |
|
|
|
2064 |
|
|
/* Make the DECL_RESULT explicitly by-reference and adjust all the
|
2065 |
|
|
occurrences in the function body using the common tree-walking facility.
|
2066 |
|
|
We want to see every occurrence of the result decl to adjust the
|
2067 |
|
|
referencing tree, so need to use our own pointer set to control which
|
2068 |
|
|
trees should be visited again or not. */
|
2069 |
|
|
|
2070 |
|
|
p_set = pointer_set_create ();
|
2071 |
|
|
|
2072 |
|
|
TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result));
|
2073 |
|
|
TREE_ADDRESSABLE (decl_result) = 0;
|
2074 |
|
|
relayout_decl (decl_result);
|
2075 |
|
|
|
2076 |
|
|
walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL);
|
2077 |
|
|
|
2078 |
|
|
pointer_set_destroy (p_set);
|
2079 |
|
|
}
|
2080 |
|
|
|
2081 |
|
|
/* Finish the definition of the current subprogram BODY and finalize it. */
|
2082 |
|
|
|
2083 |
|
|
void
|
2084 |
|
|
end_subprog_body (tree body)
|
2085 |
|
|
{
|
2086 |
|
|
tree fndecl = current_function_decl;
|
2087 |
|
|
|
2088 |
|
|
/* Mark the BLOCK for this level as being for this function and pop the
|
2089 |
|
|
level. Since the vars in it are the parameters, clear them. */
|
2090 |
|
|
BLOCK_VARS (current_binding_level->block) = 0;
|
2091 |
|
|
BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
|
2092 |
|
|
DECL_INITIAL (fndecl) = current_binding_level->block;
|
2093 |
|
|
gnat_poplevel ();
|
2094 |
|
|
|
2095 |
|
|
/* We handle pending sizes via the elaboration of types, so we don't
|
2096 |
|
|
need to save them. */
|
2097 |
|
|
get_pending_sizes ();
|
2098 |
|
|
|
2099 |
|
|
/* Mark the RESULT_DECL as being in this subprogram. */
|
2100 |
|
|
DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
|
2101 |
|
|
|
2102 |
|
|
DECL_SAVED_TREE (fndecl) = body;
|
2103 |
|
|
|
2104 |
|
|
current_function_decl = DECL_CONTEXT (fndecl);
|
2105 |
|
|
set_cfun (NULL);
|
2106 |
|
|
|
2107 |
|
|
/* We cannot track the location of errors past this point. */
|
2108 |
|
|
error_gnat_node = Empty;
|
2109 |
|
|
|
2110 |
|
|
/* If we're only annotating types, don't actually compile this function. */
|
2111 |
|
|
if (type_annotate_only)
|
2112 |
|
|
return;
|
2113 |
|
|
|
2114 |
|
|
/* Perform the required pre-gimplification transformations on the tree. */
|
2115 |
|
|
gnat_genericize (fndecl);
|
2116 |
|
|
|
2117 |
|
|
/* Dump functions before gimplification. */
|
2118 |
|
|
dump_function (TDI_original, fndecl);
|
2119 |
|
|
|
2120 |
|
|
/* ??? This special handling of nested functions is probably obsolete. */
|
2121 |
|
|
if (!DECL_CONTEXT (fndecl))
|
2122 |
|
|
cgraph_finalize_function (fndecl, false);
|
2123 |
|
|
else
|
2124 |
|
|
/* Register this function with cgraph just far enough to get it
|
2125 |
|
|
added to our parent's nested function list. */
|
2126 |
|
|
(void) cgraph_node (fndecl);
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
tree
|
2130 |
|
|
gnat_builtin_function (tree decl)
|
2131 |
|
|
{
|
2132 |
|
|
gnat_pushdecl (decl, Empty);
|
2133 |
|
|
return decl;
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
/* Return an integer type with the number of bits of precision given by
|
2137 |
|
|
PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
|
2138 |
|
|
it is a signed type. */
|
2139 |
|
|
|
2140 |
|
|
tree
|
2141 |
|
|
gnat_type_for_size (unsigned precision, int unsignedp)
|
2142 |
|
|
{
|
2143 |
|
|
tree t;
|
2144 |
|
|
char type_name[20];
|
2145 |
|
|
|
2146 |
|
|
if (precision <= 2 * MAX_BITS_PER_WORD
|
2147 |
|
|
&& signed_and_unsigned_types[precision][unsignedp])
|
2148 |
|
|
return signed_and_unsigned_types[precision][unsignedp];
|
2149 |
|
|
|
2150 |
|
|
if (unsignedp)
|
2151 |
|
|
t = make_unsigned_type (precision);
|
2152 |
|
|
else
|
2153 |
|
|
t = make_signed_type (precision);
|
2154 |
|
|
|
2155 |
|
|
if (precision <= 2 * MAX_BITS_PER_WORD)
|
2156 |
|
|
signed_and_unsigned_types[precision][unsignedp] = t;
|
2157 |
|
|
|
2158 |
|
|
if (!TYPE_NAME (t))
|
2159 |
|
|
{
|
2160 |
|
|
sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
|
2161 |
|
|
TYPE_NAME (t) = get_identifier (type_name);
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
return t;
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
/* Likewise for floating-point types. */
|
2168 |
|
|
|
2169 |
|
|
static tree
|
2170 |
|
|
float_type_for_precision (int precision, enum machine_mode mode)
|
2171 |
|
|
{
|
2172 |
|
|
tree t;
|
2173 |
|
|
char type_name[20];
|
2174 |
|
|
|
2175 |
|
|
if (float_types[(int) mode])
|
2176 |
|
|
return float_types[(int) mode];
|
2177 |
|
|
|
2178 |
|
|
float_types[(int) mode] = t = make_node (REAL_TYPE);
|
2179 |
|
|
TYPE_PRECISION (t) = precision;
|
2180 |
|
|
layout_type (t);
|
2181 |
|
|
|
2182 |
|
|
gcc_assert (TYPE_MODE (t) == mode);
|
2183 |
|
|
if (!TYPE_NAME (t))
|
2184 |
|
|
{
|
2185 |
|
|
sprintf (type_name, "FLOAT_%d", precision);
|
2186 |
|
|
TYPE_NAME (t) = get_identifier (type_name);
|
2187 |
|
|
}
|
2188 |
|
|
|
2189 |
|
|
return t;
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
/* Return a data type that has machine mode MODE. UNSIGNEDP selects
|
2193 |
|
|
an unsigned type; otherwise a signed type is returned. */
|
2194 |
|
|
|
2195 |
|
|
tree
|
2196 |
|
|
gnat_type_for_mode (enum machine_mode mode, int unsignedp)
|
2197 |
|
|
{
|
2198 |
|
|
if (mode == BLKmode)
|
2199 |
|
|
return NULL_TREE;
|
2200 |
|
|
|
2201 |
|
|
if (mode == VOIDmode)
|
2202 |
|
|
return void_type_node;
|
2203 |
|
|
|
2204 |
|
|
if (COMPLEX_MODE_P (mode))
|
2205 |
|
|
return NULL_TREE;
|
2206 |
|
|
|
2207 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
2208 |
|
|
return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
|
2209 |
|
|
|
2210 |
|
|
if (SCALAR_INT_MODE_P (mode))
|
2211 |
|
|
return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
|
2212 |
|
|
|
2213 |
|
|
if (VECTOR_MODE_P (mode))
|
2214 |
|
|
{
|
2215 |
|
|
enum machine_mode inner_mode = GET_MODE_INNER (mode);
|
2216 |
|
|
tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
|
2217 |
|
|
if (inner_type)
|
2218 |
|
|
return build_vector_type_for_mode (inner_type, mode);
|
2219 |
|
|
}
|
2220 |
|
|
|
2221 |
|
|
return NULL_TREE;
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
/* Return the unsigned version of a TYPE_NODE, a scalar type. */
|
2225 |
|
|
|
2226 |
|
|
tree
|
2227 |
|
|
gnat_unsigned_type (tree type_node)
|
2228 |
|
|
{
|
2229 |
|
|
tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
|
2230 |
|
|
|
2231 |
|
|
if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
|
2232 |
|
|
{
|
2233 |
|
|
type = copy_node (type);
|
2234 |
|
|
TREE_TYPE (type) = type_node;
|
2235 |
|
|
}
|
2236 |
|
|
else if (TREE_TYPE (type_node)
|
2237 |
|
|
&& TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
|
2238 |
|
|
&& TYPE_MODULAR_P (TREE_TYPE (type_node)))
|
2239 |
|
|
{
|
2240 |
|
|
type = copy_node (type);
|
2241 |
|
|
TREE_TYPE (type) = TREE_TYPE (type_node);
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
return type;
|
2245 |
|
|
}
|
2246 |
|
|
|
2247 |
|
|
/* Return the signed version of a TYPE_NODE, a scalar type. */
|
2248 |
|
|
|
2249 |
|
|
tree
|
2250 |
|
|
gnat_signed_type (tree type_node)
|
2251 |
|
|
{
|
2252 |
|
|
tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
|
2253 |
|
|
|
2254 |
|
|
if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
|
2255 |
|
|
{
|
2256 |
|
|
type = copy_node (type);
|
2257 |
|
|
TREE_TYPE (type) = type_node;
|
2258 |
|
|
}
|
2259 |
|
|
else if (TREE_TYPE (type_node)
|
2260 |
|
|
&& TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
|
2261 |
|
|
&& TYPE_MODULAR_P (TREE_TYPE (type_node)))
|
2262 |
|
|
{
|
2263 |
|
|
type = copy_node (type);
|
2264 |
|
|
TREE_TYPE (type) = TREE_TYPE (type_node);
|
2265 |
|
|
}
|
2266 |
|
|
|
2267 |
|
|
return type;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
|
2271 |
|
|
transparently converted to each other. */
|
2272 |
|
|
|
2273 |
|
|
int
|
2274 |
|
|
gnat_types_compatible_p (tree t1, tree t2)
|
2275 |
|
|
{
|
2276 |
|
|
enum tree_code code;
|
2277 |
|
|
|
2278 |
|
|
/* This is the default criterion. */
|
2279 |
|
|
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
|
2280 |
|
|
return 1;
|
2281 |
|
|
|
2282 |
|
|
/* We only check structural equivalence here. */
|
2283 |
|
|
if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
|
2284 |
|
|
return 0;
|
2285 |
|
|
|
2286 |
|
|
/* Vector types are also compatible if they have the same number of subparts
|
2287 |
|
|
and the same form of (scalar) element type. */
|
2288 |
|
|
if (code == VECTOR_TYPE
|
2289 |
|
|
&& TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
|
2290 |
|
|
&& TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
|
2291 |
|
|
&& TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
|
2292 |
|
|
return 1;
|
2293 |
|
|
|
2294 |
|
|
/* Array types are also compatible if they are constrained and have
|
2295 |
|
|
the same component type and the same domain. */
|
2296 |
|
|
if (code == ARRAY_TYPE
|
2297 |
|
|
&& TREE_TYPE (t1) == TREE_TYPE (t2)
|
2298 |
|
|
&& (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
|
2299 |
|
|
|| (TYPE_DOMAIN (t1)
|
2300 |
|
|
&& TYPE_DOMAIN (t2)
|
2301 |
|
|
&& tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
|
2302 |
|
|
TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
|
2303 |
|
|
&& tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
|
2304 |
|
|
TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))))
|
2305 |
|
|
return 1;
|
2306 |
|
|
|
2307 |
|
|
/* Padding record types are also compatible if they pad the same
|
2308 |
|
|
type and have the same constant size. */
|
2309 |
|
|
if (code == RECORD_TYPE
|
2310 |
|
|
&& TYPE_PADDING_P (t1) && TYPE_PADDING_P (t2)
|
2311 |
|
|
&& TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2))
|
2312 |
|
|
&& tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
|
2313 |
|
|
return 1;
|
2314 |
|
|
|
2315 |
|
|
return 0;
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
/* EXP is an expression for the size of an object. If this size contains
|
2319 |
|
|
discriminant references, replace them with the maximum (if MAX_P) or
|
2320 |
|
|
minimum (if !MAX_P) possible value of the discriminant. */
|
2321 |
|
|
|
2322 |
|
|
tree
|
2323 |
|
|
max_size (tree exp, bool max_p)
|
2324 |
|
|
{
|
2325 |
|
|
enum tree_code code = TREE_CODE (exp);
|
2326 |
|
|
tree type = TREE_TYPE (exp);
|
2327 |
|
|
|
2328 |
|
|
switch (TREE_CODE_CLASS (code))
|
2329 |
|
|
{
|
2330 |
|
|
case tcc_declaration:
|
2331 |
|
|
case tcc_constant:
|
2332 |
|
|
return exp;
|
2333 |
|
|
|
2334 |
|
|
case tcc_vl_exp:
|
2335 |
|
|
if (code == CALL_EXPR)
|
2336 |
|
|
{
|
2337 |
|
|
tree t, *argarray;
|
2338 |
|
|
int n, i;
|
2339 |
|
|
|
2340 |
|
|
t = maybe_inline_call_in_expr (exp);
|
2341 |
|
|
if (t)
|
2342 |
|
|
return max_size (t, max_p);
|
2343 |
|
|
|
2344 |
|
|
n = call_expr_nargs (exp);
|
2345 |
|
|
gcc_assert (n > 0);
|
2346 |
|
|
argarray = (tree *) alloca (n * sizeof (tree));
|
2347 |
|
|
for (i = 0; i < n; i++)
|
2348 |
|
|
argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
|
2349 |
|
|
return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
|
2350 |
|
|
}
|
2351 |
|
|
break;
|
2352 |
|
|
|
2353 |
|
|
case tcc_reference:
|
2354 |
|
|
/* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
|
2355 |
|
|
modify. Otherwise, we treat it like a variable. */
|
2356 |
|
|
if (!CONTAINS_PLACEHOLDER_P (exp))
|
2357 |
|
|
return exp;
|
2358 |
|
|
|
2359 |
|
|
type = TREE_TYPE (TREE_OPERAND (exp, 1));
|
2360 |
|
|
return
|
2361 |
|
|
max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
|
2362 |
|
|
|
2363 |
|
|
case tcc_comparison:
|
2364 |
|
|
return max_p ? size_one_node : size_zero_node;
|
2365 |
|
|
|
2366 |
|
|
case tcc_unary:
|
2367 |
|
|
case tcc_binary:
|
2368 |
|
|
case tcc_expression:
|
2369 |
|
|
switch (TREE_CODE_LENGTH (code))
|
2370 |
|
|
{
|
2371 |
|
|
case 1:
|
2372 |
|
|
if (code == NON_LVALUE_EXPR)
|
2373 |
|
|
return max_size (TREE_OPERAND (exp, 0), max_p);
|
2374 |
|
|
else
|
2375 |
|
|
return
|
2376 |
|
|
fold_build1 (code, type,
|
2377 |
|
|
max_size (TREE_OPERAND (exp, 0),
|
2378 |
|
|
code == NEGATE_EXPR ? !max_p : max_p));
|
2379 |
|
|
|
2380 |
|
|
case 2:
|
2381 |
|
|
if (code == COMPOUND_EXPR)
|
2382 |
|
|
return max_size (TREE_OPERAND (exp, 1), max_p);
|
2383 |
|
|
|
2384 |
|
|
/* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
|
2385 |
|
|
may provide a tighter bound on max_size. */
|
2386 |
|
|
if (code == MINUS_EXPR
|
2387 |
|
|
&& TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
|
2388 |
|
|
{
|
2389 |
|
|
tree lhs = fold_build2 (MINUS_EXPR, type,
|
2390 |
|
|
TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
|
2391 |
|
|
TREE_OPERAND (exp, 1));
|
2392 |
|
|
tree rhs = fold_build2 (MINUS_EXPR, type,
|
2393 |
|
|
TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
|
2394 |
|
|
TREE_OPERAND (exp, 1));
|
2395 |
|
|
return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
|
2396 |
|
|
max_size (lhs, max_p),
|
2397 |
|
|
max_size (rhs, max_p));
|
2398 |
|
|
}
|
2399 |
|
|
|
2400 |
|
|
{
|
2401 |
|
|
tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
|
2402 |
|
|
tree rhs = max_size (TREE_OPERAND (exp, 1),
|
2403 |
|
|
code == MINUS_EXPR ? !max_p : max_p);
|
2404 |
|
|
|
2405 |
|
|
/* Special-case wanting the maximum value of a MIN_EXPR.
|
2406 |
|
|
In that case, if one side overflows, return the other.
|
2407 |
|
|
sizetype is signed, but we know sizes are non-negative.
|
2408 |
|
|
Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
|
2409 |
|
|
overflowing or the maximum possible value and the RHS
|
2410 |
|
|
a variable. */
|
2411 |
|
|
if (max_p
|
2412 |
|
|
&& code == MIN_EXPR
|
2413 |
|
|
&& TREE_CODE (rhs) == INTEGER_CST
|
2414 |
|
|
&& TREE_OVERFLOW (rhs))
|
2415 |
|
|
return lhs;
|
2416 |
|
|
else if (max_p
|
2417 |
|
|
&& code == MIN_EXPR
|
2418 |
|
|
&& TREE_CODE (lhs) == INTEGER_CST
|
2419 |
|
|
&& TREE_OVERFLOW (lhs))
|
2420 |
|
|
return rhs;
|
2421 |
|
|
else if ((code == MINUS_EXPR || code == PLUS_EXPR)
|
2422 |
|
|
&& ((TREE_CODE (lhs) == INTEGER_CST
|
2423 |
|
|
&& TREE_OVERFLOW (lhs))
|
2424 |
|
|
|| operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
|
2425 |
|
|
&& !TREE_CONSTANT (rhs))
|
2426 |
|
|
return lhs;
|
2427 |
|
|
else
|
2428 |
|
|
return fold_build2 (code, type, lhs, rhs);
|
2429 |
|
|
}
|
2430 |
|
|
|
2431 |
|
|
case 3:
|
2432 |
|
|
if (code == SAVE_EXPR)
|
2433 |
|
|
return exp;
|
2434 |
|
|
else if (code == COND_EXPR)
|
2435 |
|
|
return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
|
2436 |
|
|
max_size (TREE_OPERAND (exp, 1), max_p),
|
2437 |
|
|
max_size (TREE_OPERAND (exp, 2), max_p));
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
/* Other tree classes cannot happen. */
|
2441 |
|
|
default:
|
2442 |
|
|
break;
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
gcc_unreachable ();
|
2446 |
|
|
}
|
2447 |
|
|
|
2448 |
|
|
/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
|
2449 |
|
|
EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
|
2450 |
|
|
Return a constructor for the template. */
|
2451 |
|
|
|
2452 |
|
|
tree
|
2453 |
|
|
build_template (tree template_type, tree array_type, tree expr)
|
2454 |
|
|
{
|
2455 |
|
|
tree template_elts = NULL_TREE;
|
2456 |
|
|
tree bound_list = NULL_TREE;
|
2457 |
|
|
tree field;
|
2458 |
|
|
|
2459 |
|
|
while (TREE_CODE (array_type) == RECORD_TYPE
|
2460 |
|
|
&& (TYPE_PADDING_P (array_type)
|
2461 |
|
|
|| TYPE_JUSTIFIED_MODULAR_P (array_type)))
|
2462 |
|
|
array_type = TREE_TYPE (TYPE_FIELDS (array_type));
|
2463 |
|
|
|
2464 |
|
|
if (TREE_CODE (array_type) == ARRAY_TYPE
|
2465 |
|
|
|| (TREE_CODE (array_type) == INTEGER_TYPE
|
2466 |
|
|
&& TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
|
2467 |
|
|
bound_list = TYPE_ACTUAL_BOUNDS (array_type);
|
2468 |
|
|
|
2469 |
|
|
/* First make the list for a CONSTRUCTOR for the template. Go down the
|
2470 |
|
|
field list of the template instead of the type chain because this
|
2471 |
|
|
array might be an Ada array of arrays and we can't tell where the
|
2472 |
|
|
nested arrays stop being the underlying object. */
|
2473 |
|
|
|
2474 |
|
|
for (field = TYPE_FIELDS (template_type); field;
|
2475 |
|
|
(bound_list
|
2476 |
|
|
? (bound_list = TREE_CHAIN (bound_list))
|
2477 |
|
|
: (array_type = TREE_TYPE (array_type))),
|
2478 |
|
|
field = TREE_CHAIN (TREE_CHAIN (field)))
|
2479 |
|
|
{
|
2480 |
|
|
tree bounds, min, max;
|
2481 |
|
|
|
2482 |
|
|
/* If we have a bound list, get the bounds from there. Likewise
|
2483 |
|
|
for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
|
2484 |
|
|
DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
|
2485 |
|
|
This will give us a maximum range. */
|
2486 |
|
|
if (bound_list)
|
2487 |
|
|
bounds = TREE_VALUE (bound_list);
|
2488 |
|
|
else if (TREE_CODE (array_type) == ARRAY_TYPE)
|
2489 |
|
|
bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
|
2490 |
|
|
else if (expr && TREE_CODE (expr) == PARM_DECL
|
2491 |
|
|
&& DECL_BY_COMPONENT_PTR_P (expr))
|
2492 |
|
|
bounds = TREE_TYPE (field);
|
2493 |
|
|
else
|
2494 |
|
|
gcc_unreachable ();
|
2495 |
|
|
|
2496 |
|
|
min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
|
2497 |
|
|
max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds));
|
2498 |
|
|
|
2499 |
|
|
/* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
|
2500 |
|
|
substitute it from OBJECT. */
|
2501 |
|
|
min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
|
2502 |
|
|
max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
|
2503 |
|
|
|
2504 |
|
|
template_elts = tree_cons (TREE_CHAIN (field), max,
|
2505 |
|
|
tree_cons (field, min, template_elts));
|
2506 |
|
|
}
|
2507 |
|
|
|
2508 |
|
|
return gnat_build_constructor (template_type, nreverse (template_elts));
|
2509 |
|
|
}
|
2510 |
|
|
|
2511 |
|
|
/* Build a 32bit VMS descriptor from a Mechanism_Type, which must specify
|
2512 |
|
|
a descriptor type, and the GCC type of an object. Each FIELD_DECL
|
2513 |
|
|
in the type contains in its DECL_INITIAL the expression to use when
|
2514 |
|
|
a constructor is made for the type. GNAT_ENTITY is an entity used
|
2515 |
|
|
to print out an error message if the mechanism cannot be applied to
|
2516 |
|
|
an object of that type and also for the name. */
|
2517 |
|
|
|
2518 |
|
|
tree
|
2519 |
|
|
build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
|
2520 |
|
|
{
|
2521 |
|
|
tree record_type = make_node (RECORD_TYPE);
|
2522 |
|
|
tree pointer32_type;
|
2523 |
|
|
tree field_list = 0;
|
2524 |
|
|
int klass;
|
2525 |
|
|
int dtype = 0;
|
2526 |
|
|
tree inner_type;
|
2527 |
|
|
int ndim;
|
2528 |
|
|
int i;
|
2529 |
|
|
tree *idx_arr;
|
2530 |
|
|
tree tem;
|
2531 |
|
|
|
2532 |
|
|
/* If TYPE is an unconstrained array, use the underlying array type. */
|
2533 |
|
|
if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
|
2534 |
|
|
type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
|
2535 |
|
|
|
2536 |
|
|
/* If this is an array, compute the number of dimensions in the array,
|
2537 |
|
|
get the index types, and point to the inner type. */
|
2538 |
|
|
if (TREE_CODE (type) != ARRAY_TYPE)
|
2539 |
|
|
ndim = 0;
|
2540 |
|
|
else
|
2541 |
|
|
for (ndim = 1, inner_type = type;
|
2542 |
|
|
TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
|
2543 |
|
|
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
|
2544 |
|
|
ndim++, inner_type = TREE_TYPE (inner_type))
|
2545 |
|
|
;
|
2546 |
|
|
|
2547 |
|
|
idx_arr = (tree *) alloca (ndim * sizeof (tree));
|
2548 |
|
|
|
2549 |
|
|
if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA
|
2550 |
|
|
&& TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
|
2551 |
|
|
for (i = ndim - 1, inner_type = type;
|
2552 |
|
|
i >= 0;
|
2553 |
|
|
i--, inner_type = TREE_TYPE (inner_type))
|
2554 |
|
|
idx_arr[i] = TYPE_DOMAIN (inner_type);
|
2555 |
|
|
else
|
2556 |
|
|
for (i = 0, inner_type = type;
|
2557 |
|
|
i < ndim;
|
2558 |
|
|
i++, inner_type = TREE_TYPE (inner_type))
|
2559 |
|
|
idx_arr[i] = TYPE_DOMAIN (inner_type);
|
2560 |
|
|
|
2561 |
|
|
/* Now get the DTYPE value. */
|
2562 |
|
|
switch (TREE_CODE (type))
|
2563 |
|
|
{
|
2564 |
|
|
case INTEGER_TYPE:
|
2565 |
|
|
case ENUMERAL_TYPE:
|
2566 |
|
|
case BOOLEAN_TYPE:
|
2567 |
|
|
if (TYPE_VAX_FLOATING_POINT_P (type))
|
2568 |
|
|
switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
|
2569 |
|
|
{
|
2570 |
|
|
case 6:
|
2571 |
|
|
dtype = 10;
|
2572 |
|
|
break;
|
2573 |
|
|
case 9:
|
2574 |
|
|
dtype = 11;
|
2575 |
|
|
break;
|
2576 |
|
|
case 15:
|
2577 |
|
|
dtype = 27;
|
2578 |
|
|
break;
|
2579 |
|
|
}
|
2580 |
|
|
else
|
2581 |
|
|
switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
|
2582 |
|
|
{
|
2583 |
|
|
case 8:
|
2584 |
|
|
dtype = TYPE_UNSIGNED (type) ? 2 : 6;
|
2585 |
|
|
break;
|
2586 |
|
|
case 16:
|
2587 |
|
|
dtype = TYPE_UNSIGNED (type) ? 3 : 7;
|
2588 |
|
|
break;
|
2589 |
|
|
case 32:
|
2590 |
|
|
dtype = TYPE_UNSIGNED (type) ? 4 : 8;
|
2591 |
|
|
break;
|
2592 |
|
|
case 64:
|
2593 |
|
|
dtype = TYPE_UNSIGNED (type) ? 5 : 9;
|
2594 |
|
|
break;
|
2595 |
|
|
case 128:
|
2596 |
|
|
dtype = TYPE_UNSIGNED (type) ? 25 : 26;
|
2597 |
|
|
break;
|
2598 |
|
|
}
|
2599 |
|
|
break;
|
2600 |
|
|
|
2601 |
|
|
case REAL_TYPE:
|
2602 |
|
|
dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
|
2603 |
|
|
break;
|
2604 |
|
|
|
2605 |
|
|
case COMPLEX_TYPE:
|
2606 |
|
|
if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
|
2607 |
|
|
&& TYPE_VAX_FLOATING_POINT_P (type))
|
2608 |
|
|
switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
|
2609 |
|
|
{
|
2610 |
|
|
case 6:
|
2611 |
|
|
dtype = 12;
|
2612 |
|
|
break;
|
2613 |
|
|
case 9:
|
2614 |
|
|
dtype = 13;
|
2615 |
|
|
break;
|
2616 |
|
|
case 15:
|
2617 |
|
|
dtype = 29;
|
2618 |
|
|
}
|
2619 |
|
|
else
|
2620 |
|
|
dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
|
2621 |
|
|
break;
|
2622 |
|
|
|
2623 |
|
|
case ARRAY_TYPE:
|
2624 |
|
|
dtype = 14;
|
2625 |
|
|
break;
|
2626 |
|
|
|
2627 |
|
|
default:
|
2628 |
|
|
break;
|
2629 |
|
|
}
|
2630 |
|
|
|
2631 |
|
|
/* Get the CLASS value. */
|
2632 |
|
|
switch (mech)
|
2633 |
|
|
{
|
2634 |
|
|
case By_Descriptor_A:
|
2635 |
|
|
case By_Short_Descriptor_A:
|
2636 |
|
|
klass = 4;
|
2637 |
|
|
break;
|
2638 |
|
|
case By_Descriptor_NCA:
|
2639 |
|
|
case By_Short_Descriptor_NCA:
|
2640 |
|
|
klass = 10;
|
2641 |
|
|
break;
|
2642 |
|
|
case By_Descriptor_SB:
|
2643 |
|
|
case By_Short_Descriptor_SB:
|
2644 |
|
|
klass = 15;
|
2645 |
|
|
break;
|
2646 |
|
|
case By_Descriptor:
|
2647 |
|
|
case By_Short_Descriptor:
|
2648 |
|
|
case By_Descriptor_S:
|
2649 |
|
|
case By_Short_Descriptor_S:
|
2650 |
|
|
default:
|
2651 |
|
|
klass = 1;
|
2652 |
|
|
break;
|
2653 |
|
|
}
|
2654 |
|
|
|
2655 |
|
|
/* Make the type for a descriptor for VMS. The first four fields
|
2656 |
|
|
are the same for all types. */
|
2657 |
|
|
|
2658 |
|
|
field_list
|
2659 |
|
|
= chainon (field_list,
|
2660 |
|
|
make_descriptor_field
|
2661 |
|
|
("LENGTH", gnat_type_for_size (16, 1), record_type,
|
2662 |
|
|
size_in_bytes ((mech == By_Descriptor_A ||
|
2663 |
|
|
mech == By_Short_Descriptor_A)
|
2664 |
|
|
? inner_type : type)));
|
2665 |
|
|
|
2666 |
|
|
field_list = chainon (field_list,
|
2667 |
|
|
make_descriptor_field ("DTYPE",
|
2668 |
|
|
gnat_type_for_size (8, 1),
|
2669 |
|
|
record_type, size_int (dtype)));
|
2670 |
|
|
field_list = chainon (field_list,
|
2671 |
|
|
make_descriptor_field ("CLASS",
|
2672 |
|
|
gnat_type_for_size (8, 1),
|
2673 |
|
|
record_type, size_int (klass)));
|
2674 |
|
|
|
2675 |
|
|
/* Of course this will crash at run-time if the address space is not
|
2676 |
|
|
within the low 32 bits, but there is nothing else we can do. */
|
2677 |
|
|
pointer32_type = build_pointer_type_for_mode (type, SImode, false);
|
2678 |
|
|
|
2679 |
|
|
field_list
|
2680 |
|
|
= chainon (field_list,
|
2681 |
|
|
make_descriptor_field
|
2682 |
|
|
("POINTER", pointer32_type, record_type,
|
2683 |
|
|
build_unary_op (ADDR_EXPR,
|
2684 |
|
|
pointer32_type,
|
2685 |
|
|
build0 (PLACEHOLDER_EXPR, type))));
|
2686 |
|
|
|
2687 |
|
|
switch (mech)
|
2688 |
|
|
{
|
2689 |
|
|
case By_Descriptor:
|
2690 |
|
|
case By_Short_Descriptor:
|
2691 |
|
|
case By_Descriptor_S:
|
2692 |
|
|
case By_Short_Descriptor_S:
|
2693 |
|
|
break;
|
2694 |
|
|
|
2695 |
|
|
case By_Descriptor_SB:
|
2696 |
|
|
case By_Short_Descriptor_SB:
|
2697 |
|
|
field_list
|
2698 |
|
|
= chainon (field_list,
|
2699 |
|
|
make_descriptor_field
|
2700 |
|
|
("SB_L1", gnat_type_for_size (32, 1), record_type,
|
2701 |
|
|
TREE_CODE (type) == ARRAY_TYPE
|
2702 |
|
|
? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
|
2703 |
|
|
field_list
|
2704 |
|
|
= chainon (field_list,
|
2705 |
|
|
make_descriptor_field
|
2706 |
|
|
("SB_U1", gnat_type_for_size (32, 1), record_type,
|
2707 |
|
|
TREE_CODE (type) == ARRAY_TYPE
|
2708 |
|
|
? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
|
2709 |
|
|
break;
|
2710 |
|
|
|
2711 |
|
|
case By_Descriptor_A:
|
2712 |
|
|
case By_Short_Descriptor_A:
|
2713 |
|
|
case By_Descriptor_NCA:
|
2714 |
|
|
case By_Short_Descriptor_NCA:
|
2715 |
|
|
field_list = chainon (field_list,
|
2716 |
|
|
make_descriptor_field ("SCALE",
|
2717 |
|
|
gnat_type_for_size (8, 1),
|
2718 |
|
|
record_type,
|
2719 |
|
|
size_zero_node));
|
2720 |
|
|
|
2721 |
|
|
field_list = chainon (field_list,
|
2722 |
|
|
make_descriptor_field ("DIGITS",
|
2723 |
|
|
gnat_type_for_size (8, 1),
|
2724 |
|
|
record_type,
|
2725 |
|
|
size_zero_node));
|
2726 |
|
|
|
2727 |
|
|
field_list
|
2728 |
|
|
= chainon (field_list,
|
2729 |
|
|
make_descriptor_field
|
2730 |
|
|
("AFLAGS", gnat_type_for_size (8, 1), record_type,
|
2731 |
|
|
size_int ((mech == By_Descriptor_NCA ||
|
2732 |
|
|
mech == By_Short_Descriptor_NCA)
|
2733 |
|
|
? 0
|
2734 |
|
|
/* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
|
2735 |
|
|
: (TREE_CODE (type) == ARRAY_TYPE
|
2736 |
|
|
&& TYPE_CONVENTION_FORTRAN_P (type)
|
2737 |
|
|
? 224 : 192))));
|
2738 |
|
|
|
2739 |
|
|
field_list = chainon (field_list,
|
2740 |
|
|
make_descriptor_field ("DIMCT",
|
2741 |
|
|
gnat_type_for_size (8, 1),
|
2742 |
|
|
record_type,
|
2743 |
|
|
size_int (ndim)));
|
2744 |
|
|
|
2745 |
|
|
field_list = chainon (field_list,
|
2746 |
|
|
make_descriptor_field ("ARSIZE",
|
2747 |
|
|
gnat_type_for_size (32, 1),
|
2748 |
|
|
record_type,
|
2749 |
|
|
size_in_bytes (type)));
|
2750 |
|
|
|
2751 |
|
|
/* Now build a pointer to the 0,0,0... element. */
|
2752 |
|
|
tem = build0 (PLACEHOLDER_EXPR, type);
|
2753 |
|
|
for (i = 0, inner_type = type; i < ndim;
|
2754 |
|
|
i++, inner_type = TREE_TYPE (inner_type))
|
2755 |
|
|
tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
|
2756 |
|
|
convert (TYPE_DOMAIN (inner_type), size_zero_node),
|
2757 |
|
|
NULL_TREE, NULL_TREE);
|
2758 |
|
|
|
2759 |
|
|
field_list
|
2760 |
|
|
= chainon (field_list,
|
2761 |
|
|
make_descriptor_field
|
2762 |
|
|
("A0",
|
2763 |
|
|
build_pointer_type_for_mode (inner_type, SImode, false),
|
2764 |
|
|
record_type,
|
2765 |
|
|
build1 (ADDR_EXPR,
|
2766 |
|
|
build_pointer_type_for_mode (inner_type, SImode,
|
2767 |
|
|
false),
|
2768 |
|
|
tem)));
|
2769 |
|
|
|
2770 |
|
|
/* Next come the addressing coefficients. */
|
2771 |
|
|
tem = size_one_node;
|
2772 |
|
|
for (i = 0; i < ndim; i++)
|
2773 |
|
|
{
|
2774 |
|
|
char fname[3];
|
2775 |
|
|
tree idx_length
|
2776 |
|
|
= size_binop (MULT_EXPR, tem,
|
2777 |
|
|
size_binop (PLUS_EXPR,
|
2778 |
|
|
size_binop (MINUS_EXPR,
|
2779 |
|
|
TYPE_MAX_VALUE (idx_arr[i]),
|
2780 |
|
|
TYPE_MIN_VALUE (idx_arr[i])),
|
2781 |
|
|
size_int (1)));
|
2782 |
|
|
|
2783 |
|
|
fname[0] = ((mech == By_Descriptor_NCA ||
|
2784 |
|
|
mech == By_Short_Descriptor_NCA) ? 'S' : 'M');
|
2785 |
|
|
fname[1] = '0' + i, fname[2] = 0;
|
2786 |
|
|
field_list
|
2787 |
|
|
= chainon (field_list,
|
2788 |
|
|
make_descriptor_field (fname,
|
2789 |
|
|
gnat_type_for_size (32, 1),
|
2790 |
|
|
record_type, idx_length));
|
2791 |
|
|
|
2792 |
|
|
if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA)
|
2793 |
|
|
tem = idx_length;
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
/* Finally here are the bounds. */
|
2797 |
|
|
for (i = 0; i < ndim; i++)
|
2798 |
|
|
{
|
2799 |
|
|
char fname[3];
|
2800 |
|
|
|
2801 |
|
|
fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
|
2802 |
|
|
field_list
|
2803 |
|
|
= chainon (field_list,
|
2804 |
|
|
make_descriptor_field
|
2805 |
|
|
(fname, gnat_type_for_size (32, 1), record_type,
|
2806 |
|
|
TYPE_MIN_VALUE (idx_arr[i])));
|
2807 |
|
|
|
2808 |
|
|
fname[0] = 'U';
|
2809 |
|
|
field_list
|
2810 |
|
|
= chainon (field_list,
|
2811 |
|
|
make_descriptor_field
|
2812 |
|
|
(fname, gnat_type_for_size (32, 1), record_type,
|
2813 |
|
|
TYPE_MAX_VALUE (idx_arr[i])));
|
2814 |
|
|
}
|
2815 |
|
|
break;
|
2816 |
|
|
|
2817 |
|
|
default:
|
2818 |
|
|
post_error ("unsupported descriptor type for &", gnat_entity);
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
TYPE_NAME (record_type) = create_concat_name (gnat_entity, "DESC");
|
2822 |
|
|
finish_record_type (record_type, field_list, 0, false);
|
2823 |
|
|
return record_type;
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
/* Build a 64bit VMS descriptor from a Mechanism_Type, which must specify
|
2827 |
|
|
a descriptor type, and the GCC type of an object. Each FIELD_DECL
|
2828 |
|
|
in the type contains in its DECL_INITIAL the expression to use when
|
2829 |
|
|
a constructor is made for the type. GNAT_ENTITY is an entity used
|
2830 |
|
|
to print out an error message if the mechanism cannot be applied to
|
2831 |
|
|
an object of that type and also for the name. */
|
2832 |
|
|
|
2833 |
|
|
tree
|
2834 |
|
|
build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
|
2835 |
|
|
{
|
2836 |
|
|
tree record64_type = make_node (RECORD_TYPE);
|
2837 |
|
|
tree pointer64_type;
|
2838 |
|
|
tree field_list64 = 0;
|
2839 |
|
|
int klass;
|
2840 |
|
|
int dtype = 0;
|
2841 |
|
|
tree inner_type;
|
2842 |
|
|
int ndim;
|
2843 |
|
|
int i;
|
2844 |
|
|
tree *idx_arr;
|
2845 |
|
|
tree tem;
|
2846 |
|
|
|
2847 |
|
|
/* If TYPE is an unconstrained array, use the underlying array type. */
|
2848 |
|
|
if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
|
2849 |
|
|
type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
|
2850 |
|
|
|
2851 |
|
|
/* If this is an array, compute the number of dimensions in the array,
|
2852 |
|
|
get the index types, and point to the inner type. */
|
2853 |
|
|
if (TREE_CODE (type) != ARRAY_TYPE)
|
2854 |
|
|
ndim = 0;
|
2855 |
|
|
else
|
2856 |
|
|
for (ndim = 1, inner_type = type;
|
2857 |
|
|
TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
|
2858 |
|
|
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
|
2859 |
|
|
ndim++, inner_type = TREE_TYPE (inner_type))
|
2860 |
|
|
;
|
2861 |
|
|
|
2862 |
|
|
idx_arr = (tree *) alloca (ndim * sizeof (tree));
|
2863 |
|
|
|
2864 |
|
|
if (mech != By_Descriptor_NCA
|
2865 |
|
|
&& TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
|
2866 |
|
|
for (i = ndim - 1, inner_type = type;
|
2867 |
|
|
i >= 0;
|
2868 |
|
|
i--, inner_type = TREE_TYPE (inner_type))
|
2869 |
|
|
idx_arr[i] = TYPE_DOMAIN (inner_type);
|
2870 |
|
|
else
|
2871 |
|
|
for (i = 0, inner_type = type;
|
2872 |
|
|
i < ndim;
|
2873 |
|
|
i++, inner_type = TREE_TYPE (inner_type))
|
2874 |
|
|
idx_arr[i] = TYPE_DOMAIN (inner_type);
|
2875 |
|
|
|
2876 |
|
|
/* Now get the DTYPE value. */
|
2877 |
|
|
switch (TREE_CODE (type))
|
2878 |
|
|
{
|
2879 |
|
|
case INTEGER_TYPE:
|
2880 |
|
|
case ENUMERAL_TYPE:
|
2881 |
|
|
case BOOLEAN_TYPE:
|
2882 |
|
|
if (TYPE_VAX_FLOATING_POINT_P (type))
|
2883 |
|
|
switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
|
2884 |
|
|
{
|
2885 |
|
|
case 6:
|
2886 |
|
|
dtype = 10;
|
2887 |
|
|
break;
|
2888 |
|
|
case 9:
|
2889 |
|
|
dtype = 11;
|
2890 |
|
|
break;
|
2891 |
|
|
case 15:
|
2892 |
|
|
dtype = 27;
|
2893 |
|
|
break;
|
2894 |
|
|
}
|
2895 |
|
|
else
|
2896 |
|
|
switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
|
2897 |
|
|
{
|
2898 |
|
|
case 8:
|
2899 |
|
|
dtype = TYPE_UNSIGNED (type) ? 2 : 6;
|
2900 |
|
|
break;
|
2901 |
|
|
case 16:
|
2902 |
|
|
dtype = TYPE_UNSIGNED (type) ? 3 : 7;
|
2903 |
|
|
break;
|
2904 |
|
|
case 32:
|
2905 |
|
|
dtype = TYPE_UNSIGNED (type) ? 4 : 8;
|
2906 |
|
|
break;
|
2907 |
|
|
case 64:
|
2908 |
|
|
dtype = TYPE_UNSIGNED (type) ? 5 : 9;
|
2909 |
|
|
break;
|
2910 |
|
|
case 128:
|
2911 |
|
|
dtype = TYPE_UNSIGNED (type) ? 25 : 26;
|
2912 |
|
|
break;
|
2913 |
|
|
}
|
2914 |
|
|
break;
|
2915 |
|
|
|
2916 |
|
|
case REAL_TYPE:
|
2917 |
|
|
dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
|
2918 |
|
|
break;
|
2919 |
|
|
|
2920 |
|
|
case COMPLEX_TYPE:
|
2921 |
|
|
if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
|
2922 |
|
|
&& TYPE_VAX_FLOATING_POINT_P (type))
|
2923 |
|
|
switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
|
2924 |
|
|
{
|
2925 |
|
|
case 6:
|
2926 |
|
|
dtype = 12;
|
2927 |
|
|
break;
|
2928 |
|
|
case 9:
|
2929 |
|
|
dtype = 13;
|
2930 |
|
|
break;
|
2931 |
|
|
case 15:
|
2932 |
|
|
dtype = 29;
|
2933 |
|
|
}
|
2934 |
|
|
else
|
2935 |
|
|
dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
|
2936 |
|
|
break;
|
2937 |
|
|
|
2938 |
|
|
case ARRAY_TYPE:
|
2939 |
|
|
dtype = 14;
|
2940 |
|
|
break;
|
2941 |
|
|
|
2942 |
|
|
default:
|
2943 |
|
|
break;
|
2944 |
|
|
}
|
2945 |
|
|
|
2946 |
|
|
/* Get the CLASS value. */
|
2947 |
|
|
switch (mech)
|
2948 |
|
|
{
|
2949 |
|
|
case By_Descriptor_A:
|
2950 |
|
|
klass = 4;
|
2951 |
|
|
break;
|
2952 |
|
|
case By_Descriptor_NCA:
|
2953 |
|
|
klass = 10;
|
2954 |
|
|
break;
|
2955 |
|
|
case By_Descriptor_SB:
|
2956 |
|
|
klass = 15;
|
2957 |
|
|
break;
|
2958 |
|
|
case By_Descriptor:
|
2959 |
|
|
case By_Descriptor_S:
|
2960 |
|
|
default:
|
2961 |
|
|
klass = 1;
|
2962 |
|
|
break;
|
2963 |
|
|
}
|
2964 |
|
|
|
2965 |
|
|
/* Make the type for a 64bit descriptor for VMS. The first six fields
|
2966 |
|
|
are the same for all types. */
|
2967 |
|
|
|
2968 |
|
|
field_list64 = chainon (field_list64,
|
2969 |
|
|
make_descriptor_field ("MBO",
|
2970 |
|
|
gnat_type_for_size (16, 1),
|
2971 |
|
|
record64_type, size_int (1)));
|
2972 |
|
|
|
2973 |
|
|
field_list64 = chainon (field_list64,
|
2974 |
|
|
make_descriptor_field ("DTYPE",
|
2975 |
|
|
gnat_type_for_size (8, 1),
|
2976 |
|
|
record64_type, size_int (dtype)));
|
2977 |
|
|
field_list64 = chainon (field_list64,
|
2978 |
|
|
make_descriptor_field ("CLASS",
|
2979 |
|
|
gnat_type_for_size (8, 1),
|
2980 |
|
|
record64_type, size_int (klass)));
|
2981 |
|
|
|
2982 |
|
|
field_list64 = chainon (field_list64,
|
2983 |
|
|
make_descriptor_field ("MBMO",
|
2984 |
|
|
gnat_type_for_size (32, 1),
|
2985 |
|
|
record64_type, ssize_int (-1)));
|
2986 |
|
|
|
2987 |
|
|
field_list64
|
2988 |
|
|
= chainon (field_list64,
|
2989 |
|
|
make_descriptor_field
|
2990 |
|
|
("LENGTH", gnat_type_for_size (64, 1), record64_type,
|
2991 |
|
|
size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
|
2992 |
|
|
|
2993 |
|
|
pointer64_type = build_pointer_type_for_mode (type, DImode, false);
|
2994 |
|
|
|
2995 |
|
|
field_list64
|
2996 |
|
|
= chainon (field_list64,
|
2997 |
|
|
make_descriptor_field
|
2998 |
|
|
("POINTER", pointer64_type, record64_type,
|
2999 |
|
|
build_unary_op (ADDR_EXPR,
|
3000 |
|
|
pointer64_type,
|
3001 |
|
|
build0 (PLACEHOLDER_EXPR, type))));
|
3002 |
|
|
|
3003 |
|
|
switch (mech)
|
3004 |
|
|
{
|
3005 |
|
|
case By_Descriptor:
|
3006 |
|
|
case By_Descriptor_S:
|
3007 |
|
|
break;
|
3008 |
|
|
|
3009 |
|
|
case By_Descriptor_SB:
|
3010 |
|
|
field_list64
|
3011 |
|
|
= chainon (field_list64,
|
3012 |
|
|
make_descriptor_field
|
3013 |
|
|
("SB_L1", gnat_type_for_size (64, 1), record64_type,
|
3014 |
|
|
TREE_CODE (type) == ARRAY_TYPE
|
3015 |
|
|
? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
|
3016 |
|
|
field_list64
|
3017 |
|
|
= chainon (field_list64,
|
3018 |
|
|
make_descriptor_field
|
3019 |
|
|
("SB_U1", gnat_type_for_size (64, 1), record64_type,
|
3020 |
|
|
TREE_CODE (type) == ARRAY_TYPE
|
3021 |
|
|
? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
|
3022 |
|
|
break;
|
3023 |
|
|
|
3024 |
|
|
case By_Descriptor_A:
|
3025 |
|
|
case By_Descriptor_NCA:
|
3026 |
|
|
field_list64 = chainon (field_list64,
|
3027 |
|
|
make_descriptor_field ("SCALE",
|
3028 |
|
|
gnat_type_for_size (8, 1),
|
3029 |
|
|
record64_type,
|
3030 |
|
|
size_zero_node));
|
3031 |
|
|
|
3032 |
|
|
field_list64 = chainon (field_list64,
|
3033 |
|
|
make_descriptor_field ("DIGITS",
|
3034 |
|
|
gnat_type_for_size (8, 1),
|
3035 |
|
|
record64_type,
|
3036 |
|
|
size_zero_node));
|
3037 |
|
|
|
3038 |
|
|
field_list64
|
3039 |
|
|
= chainon (field_list64,
|
3040 |
|
|
make_descriptor_field
|
3041 |
|
|
("AFLAGS", gnat_type_for_size (8, 1), record64_type,
|
3042 |
|
|
size_int (mech == By_Descriptor_NCA
|
3043 |
|
|
? 0
|
3044 |
|
|
/* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
|
3045 |
|
|
: (TREE_CODE (type) == ARRAY_TYPE
|
3046 |
|
|
&& TYPE_CONVENTION_FORTRAN_P (type)
|
3047 |
|
|
? 224 : 192))));
|
3048 |
|
|
|
3049 |
|
|
field_list64 = chainon (field_list64,
|
3050 |
|
|
make_descriptor_field ("DIMCT",
|
3051 |
|
|
gnat_type_for_size (8, 1),
|
3052 |
|
|
record64_type,
|
3053 |
|
|
size_int (ndim)));
|
3054 |
|
|
|
3055 |
|
|
field_list64 = chainon (field_list64,
|
3056 |
|
|
make_descriptor_field ("MBZ",
|
3057 |
|
|
gnat_type_for_size (32, 1),
|
3058 |
|
|
record64_type,
|
3059 |
|
|
size_int (0)));
|
3060 |
|
|
field_list64 = chainon (field_list64,
|
3061 |
|
|
make_descriptor_field ("ARSIZE",
|
3062 |
|
|
gnat_type_for_size (64, 1),
|
3063 |
|
|
record64_type,
|
3064 |
|
|
size_in_bytes (type)));
|
3065 |
|
|
|
3066 |
|
|
/* Now build a pointer to the 0,0,0... element. */
|
3067 |
|
|
tem = build0 (PLACEHOLDER_EXPR, type);
|
3068 |
|
|
for (i = 0, inner_type = type; i < ndim;
|
3069 |
|
|
i++, inner_type = TREE_TYPE (inner_type))
|
3070 |
|
|
tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
|
3071 |
|
|
convert (TYPE_DOMAIN (inner_type), size_zero_node),
|
3072 |
|
|
NULL_TREE, NULL_TREE);
|
3073 |
|
|
|
3074 |
|
|
field_list64
|
3075 |
|
|
= chainon (field_list64,
|
3076 |
|
|
make_descriptor_field
|
3077 |
|
|
("A0",
|
3078 |
|
|
build_pointer_type_for_mode (inner_type, DImode, false),
|
3079 |
|
|
record64_type,
|
3080 |
|
|
build1 (ADDR_EXPR,
|
3081 |
|
|
build_pointer_type_for_mode (inner_type, DImode,
|
3082 |
|
|
false),
|
3083 |
|
|
tem)));
|
3084 |
|
|
|
3085 |
|
|
/* Next come the addressing coefficients. */
|
3086 |
|
|
tem = size_one_node;
|
3087 |
|
|
for (i = 0; i < ndim; i++)
|
3088 |
|
|
{
|
3089 |
|
|
char fname[3];
|
3090 |
|
|
tree idx_length
|
3091 |
|
|
= size_binop (MULT_EXPR, tem,
|
3092 |
|
|
size_binop (PLUS_EXPR,
|
3093 |
|
|
size_binop (MINUS_EXPR,
|
3094 |
|
|
TYPE_MAX_VALUE (idx_arr[i]),
|
3095 |
|
|
TYPE_MIN_VALUE (idx_arr[i])),
|
3096 |
|
|
size_int (1)));
|
3097 |
|
|
|
3098 |
|
|
fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
|
3099 |
|
|
fname[1] = '0' + i, fname[2] = 0;
|
3100 |
|
|
field_list64
|
3101 |
|
|
= chainon (field_list64,
|
3102 |
|
|
make_descriptor_field (fname,
|
3103 |
|
|
gnat_type_for_size (64, 1),
|
3104 |
|
|
record64_type, idx_length));
|
3105 |
|
|
|
3106 |
|
|
if (mech == By_Descriptor_NCA)
|
3107 |
|
|
tem = idx_length;
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
/* Finally here are the bounds. */
|
3111 |
|
|
for (i = 0; i < ndim; i++)
|
3112 |
|
|
{
|
3113 |
|
|
char fname[3];
|
3114 |
|
|
|
3115 |
|
|
fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
|
3116 |
|
|
field_list64
|
3117 |
|
|
= chainon (field_list64,
|
3118 |
|
|
make_descriptor_field
|
3119 |
|
|
(fname, gnat_type_for_size (64, 1), record64_type,
|
3120 |
|
|
TYPE_MIN_VALUE (idx_arr[i])));
|
3121 |
|
|
|
3122 |
|
|
fname[0] = 'U';
|
3123 |
|
|
field_list64
|
3124 |
|
|
= chainon (field_list64,
|
3125 |
|
|
make_descriptor_field
|
3126 |
|
|
(fname, gnat_type_for_size (64, 1), record64_type,
|
3127 |
|
|
TYPE_MAX_VALUE (idx_arr[i])));
|
3128 |
|
|
}
|
3129 |
|
|
break;
|
3130 |
|
|
|
3131 |
|
|
default:
|
3132 |
|
|
post_error ("unsupported descriptor type for &", gnat_entity);
|
3133 |
|
|
}
|
3134 |
|
|
|
3135 |
|
|
TYPE_NAME (record64_type) = create_concat_name (gnat_entity, "DESC64");
|
3136 |
|
|
finish_record_type (record64_type, field_list64, 0, false);
|
3137 |
|
|
return record64_type;
|
3138 |
|
|
}
|
3139 |
|
|
|
3140 |
|
|
/* Utility routine for above code to make a field. */
|
3141 |
|
|
|
3142 |
|
|
static tree
|
3143 |
|
|
make_descriptor_field (const char *name, tree type,
|
3144 |
|
|
tree rec_type, tree initial)
|
3145 |
|
|
{
|
3146 |
|
|
tree field
|
3147 |
|
|
= create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
|
3148 |
|
|
|
3149 |
|
|
DECL_INITIAL (field) = initial;
|
3150 |
|
|
return field;
|
3151 |
|
|
}
|
3152 |
|
|
|
3153 |
|
|
/* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a
|
3154 |
|
|
regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
|
3155 |
|
|
which the VMS descriptor is passed. */
|
3156 |
|
|
|
3157 |
|
|
static tree
|
3158 |
|
|
convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
|
3159 |
|
|
{
|
3160 |
|
|
tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
|
3161 |
|
|
tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
|
3162 |
|
|
/* The CLASS field is the 3rd field in the descriptor. */
|
3163 |
|
|
tree klass = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
|
3164 |
|
|
/* The POINTER field is the 6th field in the descriptor. */
|
3165 |
|
|
tree pointer64 = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (klass)));
|
3166 |
|
|
|
3167 |
|
|
/* Retrieve the value of the POINTER field. */
|
3168 |
|
|
tree gnu_expr64
|
3169 |
|
|
= build3 (COMPONENT_REF, TREE_TYPE (pointer64), desc, pointer64, NULL_TREE);
|
3170 |
|
|
|
3171 |
|
|
if (POINTER_TYPE_P (gnu_type))
|
3172 |
|
|
return convert (gnu_type, gnu_expr64);
|
3173 |
|
|
|
3174 |
|
|
else if (TYPE_IS_FAT_POINTER_P (gnu_type))
|
3175 |
|
|
{
|
3176 |
|
|
tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
|
3177 |
|
|
tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
|
3178 |
|
|
tree template_type = TREE_TYPE (p_bounds_type);
|
3179 |
|
|
tree min_field = TYPE_FIELDS (template_type);
|
3180 |
|
|
tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
|
3181 |
|
|
tree template_tree, template_addr, aflags, dimct, t, u;
|
3182 |
|
|
/* See the head comment of build_vms_descriptor. */
|
3183 |
|
|
int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass));
|
3184 |
|
|
tree lfield, ufield;
|
3185 |
|
|
|
3186 |
|
|
/* Convert POINTER to the type of the P_ARRAY field. */
|
3187 |
|
|
gnu_expr64 = convert (p_array_type, gnu_expr64);
|
3188 |
|
|
|
3189 |
|
|
switch (iklass)
|
3190 |
|
|
{
|
3191 |
|
|
case 1: /* Class S */
|
3192 |
|
|
case 15: /* Class SB */
|
3193 |
|
|
/* Build {1, LENGTH} template; LENGTH64 is the 5th field. */
|
3194 |
|
|
t = TREE_CHAIN (TREE_CHAIN (klass));
|
3195 |
|
|
t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3196 |
|
|
t = tree_cons (min_field,
|
3197 |
|
|
convert (TREE_TYPE (min_field), integer_one_node),
|
3198 |
|
|
tree_cons (max_field,
|
3199 |
|
|
convert (TREE_TYPE (max_field), t),
|
3200 |
|
|
NULL_TREE));
|
3201 |
|
|
template_tree = gnat_build_constructor (template_type, t);
|
3202 |
|
|
template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree);
|
3203 |
|
|
|
3204 |
|
|
/* For class S, we are done. */
|
3205 |
|
|
if (iklass == 1)
|
3206 |
|
|
break;
|
3207 |
|
|
|
3208 |
|
|
/* Test that we really have a SB descriptor, like DEC Ada. */
|
3209 |
|
|
t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL);
|
3210 |
|
|
u = convert (TREE_TYPE (klass), DECL_INITIAL (klass));
|
3211 |
|
|
u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
|
3212 |
|
|
/* If so, there is already a template in the descriptor and
|
3213 |
|
|
it is located right after the POINTER field. The fields are
|
3214 |
|
|
64bits so they must be repacked. */
|
3215 |
|
|
t = TREE_CHAIN (pointer64);
|
3216 |
|
|
lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3217 |
|
|
lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
|
3218 |
|
|
|
3219 |
|
|
t = TREE_CHAIN (t);
|
3220 |
|
|
ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3221 |
|
|
ufield = convert
|
3222 |
|
|
(TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
|
3223 |
|
|
|
3224 |
|
|
/* Build the template in the form of a constructor. */
|
3225 |
|
|
t = tree_cons (TYPE_FIELDS (template_type), lfield,
|
3226 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
|
3227 |
|
|
ufield, NULL_TREE));
|
3228 |
|
|
template_tree = gnat_build_constructor (template_type, t);
|
3229 |
|
|
|
3230 |
|
|
/* Otherwise use the {1, LENGTH} template we build above. */
|
3231 |
|
|
template_addr = build3 (COND_EXPR, p_bounds_type, u,
|
3232 |
|
|
build_unary_op (ADDR_EXPR, p_bounds_type,
|
3233 |
|
|
template_tree),
|
3234 |
|
|
template_addr);
|
3235 |
|
|
break;
|
3236 |
|
|
|
3237 |
|
|
case 4: /* Class A */
|
3238 |
|
|
/* The AFLAGS field is the 3rd field after the pointer in the
|
3239 |
|
|
descriptor. */
|
3240 |
|
|
t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer64)));
|
3241 |
|
|
aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3242 |
|
|
/* The DIMCT field is the next field in the descriptor after
|
3243 |
|
|
aflags. */
|
3244 |
|
|
t = TREE_CHAIN (t);
|
3245 |
|
|
dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3246 |
|
|
/* Raise CONSTRAINT_ERROR if either more than 1 dimension
|
3247 |
|
|
or FL_COEFF or FL_BOUNDS not set. */
|
3248 |
|
|
u = build_int_cst (TREE_TYPE (aflags), 192);
|
3249 |
|
|
u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
|
3250 |
|
|
build_binary_op (NE_EXPR, integer_type_node,
|
3251 |
|
|
dimct,
|
3252 |
|
|
convert (TREE_TYPE (dimct),
|
3253 |
|
|
size_one_node)),
|
3254 |
|
|
build_binary_op (NE_EXPR, integer_type_node,
|
3255 |
|
|
build2 (BIT_AND_EXPR,
|
3256 |
|
|
TREE_TYPE (aflags),
|
3257 |
|
|
aflags, u),
|
3258 |
|
|
u));
|
3259 |
|
|
/* There is already a template in the descriptor and it is located
|
3260 |
|
|
in block 3. The fields are 64bits so they must be repacked. */
|
3261 |
|
|
t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN
|
3262 |
|
|
(t)))));
|
3263 |
|
|
lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3264 |
|
|
lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
|
3265 |
|
|
|
3266 |
|
|
t = TREE_CHAIN (t);
|
3267 |
|
|
ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3268 |
|
|
ufield = convert
|
3269 |
|
|
(TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
|
3270 |
|
|
|
3271 |
|
|
/* Build the template in the form of a constructor. */
|
3272 |
|
|
t = tree_cons (TYPE_FIELDS (template_type), lfield,
|
3273 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
|
3274 |
|
|
ufield, NULL_TREE));
|
3275 |
|
|
template_tree = gnat_build_constructor (template_type, t);
|
3276 |
|
|
template_tree = build3 (COND_EXPR, template_type, u,
|
3277 |
|
|
build_call_raise (CE_Length_Check_Failed, Empty,
|
3278 |
|
|
N_Raise_Constraint_Error),
|
3279 |
|
|
template_tree);
|
3280 |
|
|
template_addr
|
3281 |
|
|
= build_unary_op (ADDR_EXPR, p_bounds_type, template_tree);
|
3282 |
|
|
break;
|
3283 |
|
|
|
3284 |
|
|
case 10: /* Class NCA */
|
3285 |
|
|
default:
|
3286 |
|
|
post_error ("unsupported descriptor type for &", gnat_subprog);
|
3287 |
|
|
template_addr = integer_zero_node;
|
3288 |
|
|
break;
|
3289 |
|
|
}
|
3290 |
|
|
|
3291 |
|
|
/* Build the fat pointer in the form of a constructor. */
|
3292 |
|
|
t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr64,
|
3293 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
|
3294 |
|
|
template_addr, NULL_TREE));
|
3295 |
|
|
return gnat_build_constructor (gnu_type, t);
|
3296 |
|
|
}
|
3297 |
|
|
|
3298 |
|
|
else
|
3299 |
|
|
gcc_unreachable ();
|
3300 |
|
|
}
|
3301 |
|
|
|
3302 |
|
|
/* Convert GNU_EXPR, a pointer to a 32bit VMS descriptor, to GNU_TYPE, a
|
3303 |
|
|
regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
|
3304 |
|
|
which the VMS descriptor is passed. */
|
3305 |
|
|
|
3306 |
|
|
static tree
|
3307 |
|
|
convert_vms_descriptor32 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
|
3308 |
|
|
{
|
3309 |
|
|
tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
|
3310 |
|
|
tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
|
3311 |
|
|
/* The CLASS field is the 3rd field in the descriptor. */
|
3312 |
|
|
tree klass = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
|
3313 |
|
|
/* The POINTER field is the 4th field in the descriptor. */
|
3314 |
|
|
tree pointer = TREE_CHAIN (klass);
|
3315 |
|
|
|
3316 |
|
|
/* Retrieve the value of the POINTER field. */
|
3317 |
|
|
tree gnu_expr32
|
3318 |
|
|
= build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE);
|
3319 |
|
|
|
3320 |
|
|
if (POINTER_TYPE_P (gnu_type))
|
3321 |
|
|
return convert (gnu_type, gnu_expr32);
|
3322 |
|
|
|
3323 |
|
|
else if (TYPE_IS_FAT_POINTER_P (gnu_type))
|
3324 |
|
|
{
|
3325 |
|
|
tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
|
3326 |
|
|
tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
|
3327 |
|
|
tree template_type = TREE_TYPE (p_bounds_type);
|
3328 |
|
|
tree min_field = TYPE_FIELDS (template_type);
|
3329 |
|
|
tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
|
3330 |
|
|
tree template_tree, template_addr, aflags, dimct, t, u;
|
3331 |
|
|
/* See the head comment of build_vms_descriptor. */
|
3332 |
|
|
int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass));
|
3333 |
|
|
|
3334 |
|
|
/* Convert POINTER to the type of the P_ARRAY field. */
|
3335 |
|
|
gnu_expr32 = convert (p_array_type, gnu_expr32);
|
3336 |
|
|
|
3337 |
|
|
switch (iklass)
|
3338 |
|
|
{
|
3339 |
|
|
case 1: /* Class S */
|
3340 |
|
|
case 15: /* Class SB */
|
3341 |
|
|
/* Build {1, LENGTH} template; LENGTH is the 1st field. */
|
3342 |
|
|
t = TYPE_FIELDS (desc_type);
|
3343 |
|
|
t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3344 |
|
|
t = tree_cons (min_field,
|
3345 |
|
|
convert (TREE_TYPE (min_field), integer_one_node),
|
3346 |
|
|
tree_cons (max_field,
|
3347 |
|
|
convert (TREE_TYPE (max_field), t),
|
3348 |
|
|
NULL_TREE));
|
3349 |
|
|
template_tree = gnat_build_constructor (template_type, t);
|
3350 |
|
|
template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree);
|
3351 |
|
|
|
3352 |
|
|
/* For class S, we are done. */
|
3353 |
|
|
if (iklass == 1)
|
3354 |
|
|
break;
|
3355 |
|
|
|
3356 |
|
|
/* Test that we really have a SB descriptor, like DEC Ada. */
|
3357 |
|
|
t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL);
|
3358 |
|
|
u = convert (TREE_TYPE (klass), DECL_INITIAL (klass));
|
3359 |
|
|
u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
|
3360 |
|
|
/* If so, there is already a template in the descriptor and
|
3361 |
|
|
it is located right after the POINTER field. */
|
3362 |
|
|
t = TREE_CHAIN (pointer);
|
3363 |
|
|
template_tree
|
3364 |
|
|
= build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3365 |
|
|
/* Otherwise use the {1, LENGTH} template we build above. */
|
3366 |
|
|
template_addr = build3 (COND_EXPR, p_bounds_type, u,
|
3367 |
|
|
build_unary_op (ADDR_EXPR, p_bounds_type,
|
3368 |
|
|
template_tree),
|
3369 |
|
|
template_addr);
|
3370 |
|
|
break;
|
3371 |
|
|
|
3372 |
|
|
case 4: /* Class A */
|
3373 |
|
|
/* The AFLAGS field is the 7th field in the descriptor. */
|
3374 |
|
|
t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer)));
|
3375 |
|
|
aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3376 |
|
|
/* The DIMCT field is the 8th field in the descriptor. */
|
3377 |
|
|
t = TREE_CHAIN (t);
|
3378 |
|
|
dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3379 |
|
|
/* Raise CONSTRAINT_ERROR if either more than 1 dimension
|
3380 |
|
|
or FL_COEFF or FL_BOUNDS not set. */
|
3381 |
|
|
u = build_int_cst (TREE_TYPE (aflags), 192);
|
3382 |
|
|
u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
|
3383 |
|
|
build_binary_op (NE_EXPR, integer_type_node,
|
3384 |
|
|
dimct,
|
3385 |
|
|
convert (TREE_TYPE (dimct),
|
3386 |
|
|
size_one_node)),
|
3387 |
|
|
build_binary_op (NE_EXPR, integer_type_node,
|
3388 |
|
|
build2 (BIT_AND_EXPR,
|
3389 |
|
|
TREE_TYPE (aflags),
|
3390 |
|
|
aflags, u),
|
3391 |
|
|
u));
|
3392 |
|
|
/* There is already a template in the descriptor and it is
|
3393 |
|
|
located at the start of block 3 (12th field). */
|
3394 |
|
|
t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (t))));
|
3395 |
|
|
template_tree
|
3396 |
|
|
= build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
|
3397 |
|
|
template_tree = build3 (COND_EXPR, TREE_TYPE (t), u,
|
3398 |
|
|
build_call_raise (CE_Length_Check_Failed, Empty,
|
3399 |
|
|
N_Raise_Constraint_Error),
|
3400 |
|
|
template_tree);
|
3401 |
|
|
template_addr
|
3402 |
|
|
= build_unary_op (ADDR_EXPR, p_bounds_type, template_tree);
|
3403 |
|
|
break;
|
3404 |
|
|
|
3405 |
|
|
case 10: /* Class NCA */
|
3406 |
|
|
default:
|
3407 |
|
|
post_error ("unsupported descriptor type for &", gnat_subprog);
|
3408 |
|
|
template_addr = integer_zero_node;
|
3409 |
|
|
break;
|
3410 |
|
|
}
|
3411 |
|
|
|
3412 |
|
|
/* Build the fat pointer in the form of a constructor. */
|
3413 |
|
|
t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr32,
|
3414 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
|
3415 |
|
|
template_addr, NULL_TREE));
|
3416 |
|
|
|
3417 |
|
|
return gnat_build_constructor (gnu_type, t);
|
3418 |
|
|
}
|
3419 |
|
|
|
3420 |
|
|
else
|
3421 |
|
|
gcc_unreachable ();
|
3422 |
|
|
}
|
3423 |
|
|
|
3424 |
|
|
/* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular
|
3425 |
|
|
pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit)
|
3426 |
|
|
pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the
|
3427 |
|
|
VMS descriptor is passed. */
|
3428 |
|
|
|
3429 |
|
|
static tree
|
3430 |
|
|
convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type,
|
3431 |
|
|
Entity_Id gnat_subprog)
|
3432 |
|
|
{
|
3433 |
|
|
tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
|
3434 |
|
|
tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
|
3435 |
|
|
tree mbo = TYPE_FIELDS (desc_type);
|
3436 |
|
|
const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo));
|
3437 |
|
|
tree mbmo = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (mbo)));
|
3438 |
|
|
tree is64bit, gnu_expr32, gnu_expr64;
|
3439 |
|
|
|
3440 |
|
|
/* If the field name is not MBO, it must be 32-bit and no alternate.
|
3441 |
|
|
Otherwise primary must be 64-bit and alternate 32-bit. */
|
3442 |
|
|
if (strcmp (mbostr, "MBO") != 0)
|
3443 |
|
|
return convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
|
3444 |
|
|
|
3445 |
|
|
/* Build the test for 64-bit descriptor. */
|
3446 |
|
|
mbo = build3 (COMPONENT_REF, TREE_TYPE (mbo), desc, mbo, NULL_TREE);
|
3447 |
|
|
mbmo = build3 (COMPONENT_REF, TREE_TYPE (mbmo), desc, mbmo, NULL_TREE);
|
3448 |
|
|
is64bit
|
3449 |
|
|
= build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
|
3450 |
|
|
build_binary_op (EQ_EXPR, integer_type_node,
|
3451 |
|
|
convert (integer_type_node, mbo),
|
3452 |
|
|
integer_one_node),
|
3453 |
|
|
build_binary_op (EQ_EXPR, integer_type_node,
|
3454 |
|
|
convert (integer_type_node, mbmo),
|
3455 |
|
|
integer_minus_one_node));
|
3456 |
|
|
|
3457 |
|
|
/* Build the 2 possible end results. */
|
3458 |
|
|
gnu_expr64 = convert_vms_descriptor64 (gnu_type, gnu_expr, gnat_subprog);
|
3459 |
|
|
gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr);
|
3460 |
|
|
gnu_expr32 = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
|
3461 |
|
|
|
3462 |
|
|
return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32);
|
3463 |
|
|
}
|
3464 |
|
|
|
3465 |
|
|
/* Build a stub for the subprogram specified by the GCC tree GNU_SUBPROG
|
3466 |
|
|
and the GNAT node GNAT_SUBPROG. */
|
3467 |
|
|
|
3468 |
|
|
void
|
3469 |
|
|
build_function_stub (tree gnu_subprog, Entity_Id gnat_subprog)
|
3470 |
|
|
{
|
3471 |
|
|
tree gnu_subprog_type, gnu_subprog_addr, gnu_subprog_call;
|
3472 |
|
|
tree gnu_stub_param, gnu_param_list, gnu_arg_types, gnu_param;
|
3473 |
|
|
tree gnu_stub_decl = DECL_FUNCTION_STUB (gnu_subprog);
|
3474 |
|
|
tree gnu_body;
|
3475 |
|
|
|
3476 |
|
|
gnu_subprog_type = TREE_TYPE (gnu_subprog);
|
3477 |
|
|
gnu_param_list = NULL_TREE;
|
3478 |
|
|
|
3479 |
|
|
begin_subprog_body (gnu_stub_decl);
|
3480 |
|
|
gnat_pushlevel ();
|
3481 |
|
|
|
3482 |
|
|
start_stmt_group ();
|
3483 |
|
|
|
3484 |
|
|
/* Loop over the parameters of the stub and translate any of them
|
3485 |
|
|
passed by descriptor into a by reference one. */
|
3486 |
|
|
for (gnu_stub_param = DECL_ARGUMENTS (gnu_stub_decl),
|
3487 |
|
|
gnu_arg_types = TYPE_ARG_TYPES (gnu_subprog_type);
|
3488 |
|
|
gnu_stub_param;
|
3489 |
|
|
gnu_stub_param = TREE_CHAIN (gnu_stub_param),
|
3490 |
|
|
gnu_arg_types = TREE_CHAIN (gnu_arg_types))
|
3491 |
|
|
{
|
3492 |
|
|
if (DECL_BY_DESCRIPTOR_P (gnu_stub_param))
|
3493 |
|
|
gnu_param
|
3494 |
|
|
= convert_vms_descriptor (TREE_VALUE (gnu_arg_types),
|
3495 |
|
|
gnu_stub_param,
|
3496 |
|
|
DECL_PARM_ALT_TYPE (gnu_stub_param),
|
3497 |
|
|
gnat_subprog);
|
3498 |
|
|
else
|
3499 |
|
|
gnu_param = gnu_stub_param;
|
3500 |
|
|
|
3501 |
|
|
gnu_param_list = tree_cons (NULL_TREE, gnu_param, gnu_param_list);
|
3502 |
|
|
}
|
3503 |
|
|
|
3504 |
|
|
gnu_body = end_stmt_group ();
|
3505 |
|
|
|
3506 |
|
|
/* Invoke the internal subprogram. */
|
3507 |
|
|
gnu_subprog_addr = build1 (ADDR_EXPR, build_pointer_type (gnu_subprog_type),
|
3508 |
|
|
gnu_subprog);
|
3509 |
|
|
gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type),
|
3510 |
|
|
gnu_subprog_addr,
|
3511 |
|
|
nreverse (gnu_param_list));
|
3512 |
|
|
|
3513 |
|
|
/* Propagate the return value, if any. */
|
3514 |
|
|
if (VOID_TYPE_P (TREE_TYPE (gnu_subprog_type)))
|
3515 |
|
|
append_to_statement_list (gnu_subprog_call, &gnu_body);
|
3516 |
|
|
else
|
3517 |
|
|
append_to_statement_list (build_return_expr (DECL_RESULT (gnu_stub_decl),
|
3518 |
|
|
gnu_subprog_call),
|
3519 |
|
|
&gnu_body);
|
3520 |
|
|
|
3521 |
|
|
gnat_poplevel ();
|
3522 |
|
|
|
3523 |
|
|
allocate_struct_function (gnu_stub_decl, false);
|
3524 |
|
|
end_subprog_body (gnu_body);
|
3525 |
|
|
}
|
3526 |
|
|
|
3527 |
|
|
/* Build a type to be used to represent an aliased object whose nominal
|
3528 |
|
|
type is an unconstrained array. This consists of a RECORD_TYPE containing
|
3529 |
|
|
a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
|
3530 |
|
|
ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
|
3531 |
|
|
is used to represent an arbitrary unconstrained object. Use NAME
|
3532 |
|
|
as the name of the record. */
|
3533 |
|
|
|
3534 |
|
|
tree
|
3535 |
|
|
build_unc_object_type (tree template_type, tree object_type, tree name)
|
3536 |
|
|
{
|
3537 |
|
|
tree type = make_node (RECORD_TYPE);
|
3538 |
|
|
tree template_field = create_field_decl (get_identifier ("BOUNDS"),
|
3539 |
|
|
template_type, type, 0, 0, 0, 1);
|
3540 |
|
|
tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
|
3541 |
|
|
type, 0, 0, 0, 1);
|
3542 |
|
|
|
3543 |
|
|
TYPE_NAME (type) = name;
|
3544 |
|
|
TYPE_CONTAINS_TEMPLATE_P (type) = 1;
|
3545 |
|
|
finish_record_type (type,
|
3546 |
|
|
chainon (chainon (NULL_TREE, template_field),
|
3547 |
|
|
array_field),
|
3548 |
|
|
0, true);
|
3549 |
|
|
|
3550 |
|
|
return type;
|
3551 |
|
|
}
|
3552 |
|
|
|
3553 |
|
|
/* Same, taking a thin or fat pointer type instead of a template type. */
|
3554 |
|
|
|
3555 |
|
|
tree
|
3556 |
|
|
build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
|
3557 |
|
|
tree name)
|
3558 |
|
|
{
|
3559 |
|
|
tree template_type;
|
3560 |
|
|
|
3561 |
|
|
gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
|
3562 |
|
|
|
3563 |
|
|
template_type
|
3564 |
|
|
= (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type)
|
3565 |
|
|
? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
|
3566 |
|
|
: TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
|
3567 |
|
|
return build_unc_object_type (template_type, object_type, name);
|
3568 |
|
|
}
|
3569 |
|
|
|
3570 |
|
|
/* Shift the component offsets within an unconstrained object TYPE to make it
|
3571 |
|
|
suitable for use as a designated type for thin pointers. */
|
3572 |
|
|
|
3573 |
|
|
void
|
3574 |
|
|
shift_unc_components_for_thin_pointers (tree type)
|
3575 |
|
|
{
|
3576 |
|
|
/* Thin pointer values designate the ARRAY data of an unconstrained object,
|
3577 |
|
|
allocated past the BOUNDS template. The designated type is adjusted to
|
3578 |
|
|
have ARRAY at position zero and the template at a negative offset, so
|
3579 |
|
|
that COMPONENT_REFs on (*thin_ptr) designate the proper location. */
|
3580 |
|
|
|
3581 |
|
|
tree bounds_field = TYPE_FIELDS (type);
|
3582 |
|
|
tree array_field = TREE_CHAIN (TYPE_FIELDS (type));
|
3583 |
|
|
|
3584 |
|
|
DECL_FIELD_OFFSET (bounds_field)
|
3585 |
|
|
= size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field));
|
3586 |
|
|
|
3587 |
|
|
DECL_FIELD_OFFSET (array_field) = size_zero_node;
|
3588 |
|
|
DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node;
|
3589 |
|
|
}
|
3590 |
|
|
|
3591 |
|
|
/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.
|
3592 |
|
|
In the normal case this is just two adjustments, but we have more to
|
3593 |
|
|
do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE. */
|
3594 |
|
|
|
3595 |
|
|
void
|
3596 |
|
|
update_pointer_to (tree old_type, tree new_type)
|
3597 |
|
|
{
|
3598 |
|
|
tree ptr = TYPE_POINTER_TO (old_type);
|
3599 |
|
|
tree ref = TYPE_REFERENCE_TO (old_type);
|
3600 |
|
|
tree ptr1, ref1;
|
3601 |
|
|
tree type;
|
3602 |
|
|
|
3603 |
|
|
/* If this is the main variant, process all the other variants first. */
|
3604 |
|
|
if (TYPE_MAIN_VARIANT (old_type) == old_type)
|
3605 |
|
|
for (type = TYPE_NEXT_VARIANT (old_type); type;
|
3606 |
|
|
type = TYPE_NEXT_VARIANT (type))
|
3607 |
|
|
update_pointer_to (type, new_type);
|
3608 |
|
|
|
3609 |
|
|
/* If no pointers and no references, we are done. */
|
3610 |
|
|
if (!ptr && !ref)
|
3611 |
|
|
return;
|
3612 |
|
|
|
3613 |
|
|
/* Merge the old type qualifiers in the new type.
|
3614 |
|
|
|
3615 |
|
|
Each old variant has qualifiers for specific reasons, and the new
|
3616 |
|
|
designated type as well. Each set of qualifiers represents useful
|
3617 |
|
|
information grabbed at some point, and merging the two simply unifies
|
3618 |
|
|
these inputs into the final type description.
|
3619 |
|
|
|
3620 |
|
|
Consider for instance a volatile type frozen after an access to constant
|
3621 |
|
|
type designating it; after the designated type's freeze, we get here with
|
3622 |
|
|
a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created
|
3623 |
|
|
when the access type was processed. We will make a volatile and readonly
|
3624 |
|
|
designated type, because that's what it really is.
|
3625 |
|
|
|
3626 |
|
|
We might also get here for a non-dummy OLD_TYPE variant with different
|
3627 |
|
|
qualifiers than those of NEW_TYPE, for instance in some cases of pointers
|
3628 |
|
|
to private record type elaboration (see the comments around the call to
|
3629 |
|
|
this routine in gnat_to_gnu_entity <E_Access_Type>). We have to merge
|
3630 |
|
|
the qualifiers in those cases too, to avoid accidentally discarding the
|
3631 |
|
|
initial set, and will often end up with OLD_TYPE == NEW_TYPE then. */
|
3632 |
|
|
new_type
|
3633 |
|
|
= build_qualified_type (new_type,
|
3634 |
|
|
TYPE_QUALS (old_type) | TYPE_QUALS (new_type));
|
3635 |
|
|
|
3636 |
|
|
/* If old type and new type are identical, there is nothing to do. */
|
3637 |
|
|
if (old_type == new_type)
|
3638 |
|
|
return;
|
3639 |
|
|
|
3640 |
|
|
/* Otherwise, first handle the simple case. */
|
3641 |
|
|
if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
|
3642 |
|
|
{
|
3643 |
|
|
TYPE_POINTER_TO (new_type) = ptr;
|
3644 |
|
|
TYPE_REFERENCE_TO (new_type) = ref;
|
3645 |
|
|
|
3646 |
|
|
for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
|
3647 |
|
|
for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
|
3648 |
|
|
ptr1 = TYPE_NEXT_VARIANT (ptr1))
|
3649 |
|
|
TREE_TYPE (ptr1) = new_type;
|
3650 |
|
|
|
3651 |
|
|
for (; ref; ref = TYPE_NEXT_REF_TO (ref))
|
3652 |
|
|
for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
|
3653 |
|
|
ref1 = TYPE_NEXT_VARIANT (ref1))
|
3654 |
|
|
TREE_TYPE (ref1) = new_type;
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/* Now deal with the unconstrained array case. In this case the "pointer"
|
3658 |
|
|
is actually a RECORD_TYPE where both fields are pointers to dummy nodes.
|
3659 |
|
|
Turn them into pointers to the correct types using update_pointer_to. */
|
3660 |
|
|
else if (!TYPE_IS_FAT_POINTER_P (ptr))
|
3661 |
|
|
gcc_unreachable ();
|
3662 |
|
|
|
3663 |
|
|
else
|
3664 |
|
|
{
|
3665 |
|
|
tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
|
3666 |
|
|
tree array_field = TYPE_FIELDS (ptr);
|
3667 |
|
|
tree bounds_field = TREE_CHAIN (TYPE_FIELDS (ptr));
|
3668 |
|
|
tree new_ptr = TYPE_POINTER_TO (new_type);
|
3669 |
|
|
tree new_ref;
|
3670 |
|
|
tree var;
|
3671 |
|
|
|
3672 |
|
|
/* Make pointers to the dummy template point to the real template. */
|
3673 |
|
|
update_pointer_to
|
3674 |
|
|
(TREE_TYPE (TREE_TYPE (bounds_field)),
|
3675 |
|
|
TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_ptr)))));
|
3676 |
|
|
|
3677 |
|
|
/* The references to the template bounds present in the array type
|
3678 |
|
|
are made through a PLACEHOLDER_EXPR of type NEW_PTR. Since we
|
3679 |
|
|
are updating PTR to make it a full replacement for NEW_PTR as
|
3680 |
|
|
pointer to NEW_TYPE, we must rework the PLACEHOLDER_EXPR so as
|
3681 |
|
|
to make it of type PTR. */
|
3682 |
|
|
new_ref = build3 (COMPONENT_REF, TREE_TYPE (bounds_field),
|
3683 |
|
|
build0 (PLACEHOLDER_EXPR, ptr),
|
3684 |
|
|
bounds_field, NULL_TREE);
|
3685 |
|
|
|
3686 |
|
|
/* Create the new array for the new PLACEHOLDER_EXPR and make pointers
|
3687 |
|
|
to the dummy array point to it. */
|
3688 |
|
|
update_pointer_to
|
3689 |
|
|
(TREE_TYPE (TREE_TYPE (array_field)),
|
3690 |
|
|
substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))),
|
3691 |
|
|
TREE_CHAIN (TYPE_FIELDS (new_ptr)), new_ref));
|
3692 |
|
|
|
3693 |
|
|
/* Make PTR the pointer to NEW_TYPE. */
|
3694 |
|
|
TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
|
3695 |
|
|
= TREE_TYPE (new_type) = ptr;
|
3696 |
|
|
|
3697 |
|
|
/* And show the original pointer NEW_PTR to the debugger. This is the
|
3698 |
|
|
counterpart of the equivalent processing in gnat_pushdecl when the
|
3699 |
|
|
unconstrained array type is frozen after access types to it. Note
|
3700 |
|
|
that update_pointer_to can be invoked multiple times on the same
|
3701 |
|
|
couple of types because of the type variants. */
|
3702 |
|
|
if (TYPE_NAME (ptr)
|
3703 |
|
|
&& TREE_CODE (TYPE_NAME (ptr)) == TYPE_DECL
|
3704 |
|
|
&& !DECL_ORIGINAL_TYPE (TYPE_NAME (ptr)))
|
3705 |
|
|
{
|
3706 |
|
|
DECL_ORIGINAL_TYPE (TYPE_NAME (ptr)) = new_ptr;
|
3707 |
|
|
DECL_ARTIFICIAL (TYPE_NAME (ptr)) = 0;
|
3708 |
|
|
}
|
3709 |
|
|
for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
|
3710 |
|
|
SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
|
3711 |
|
|
|
3712 |
|
|
/* Now handle updating the allocation record, what the thin pointer
|
3713 |
|
|
points to. Update all pointers from the old record into the new
|
3714 |
|
|
one, update the type of the array field, and recompute the size. */
|
3715 |
|
|
update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
|
3716 |
|
|
|
3717 |
|
|
TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
|
3718 |
|
|
= TREE_TYPE (TREE_TYPE (array_field));
|
3719 |
|
|
|
3720 |
|
|
/* The size recomputation needs to account for alignment constraints, so
|
3721 |
|
|
we let layout_type work it out. This will reset the field offsets to
|
3722 |
|
|
what they would be in a regular record, so we shift them back to what
|
3723 |
|
|
we want them to be for a thin pointer designated type afterwards. */
|
3724 |
|
|
DECL_SIZE (TYPE_FIELDS (new_obj_rec)) = 0;
|
3725 |
|
|
DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) = 0;
|
3726 |
|
|
TYPE_SIZE (new_obj_rec) = 0;
|
3727 |
|
|
layout_type (new_obj_rec);
|
3728 |
|
|
|
3729 |
|
|
shift_unc_components_for_thin_pointers (new_obj_rec);
|
3730 |
|
|
|
3731 |
|
|
/* We are done, at last. */
|
3732 |
|
|
rest_of_record_type_compilation (ptr);
|
3733 |
|
|
}
|
3734 |
|
|
}
|
3735 |
|
|
|
3736 |
|
|
/* Convert EXPR, a pointer to a constrained array, into a pointer to an
|
3737 |
|
|
unconstrained one. This involves making or finding a template. */
|
3738 |
|
|
|
3739 |
|
|
static tree
|
3740 |
|
|
convert_to_fat_pointer (tree type, tree expr)
|
3741 |
|
|
{
|
3742 |
|
|
tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
|
3743 |
|
|
tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
|
3744 |
|
|
tree etype = TREE_TYPE (expr);
|
3745 |
|
|
tree template_tree;
|
3746 |
|
|
|
3747 |
|
|
/* If EXPR is null, make a fat pointer that contains null pointers to the
|
3748 |
|
|
template and array. */
|
3749 |
|
|
if (integer_zerop (expr))
|
3750 |
|
|
return
|
3751 |
|
|
gnat_build_constructor
|
3752 |
|
|
(type,
|
3753 |
|
|
tree_cons (TYPE_FIELDS (type),
|
3754 |
|
|
convert (p_array_type, expr),
|
3755 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
|
3756 |
|
|
convert (build_pointer_type (template_type),
|
3757 |
|
|
expr),
|
3758 |
|
|
NULL_TREE)));
|
3759 |
|
|
|
3760 |
|
|
/* If EXPR is a thin pointer, make template and data from the record.. */
|
3761 |
|
|
else if (TYPE_IS_THIN_POINTER_P (etype))
|
3762 |
|
|
{
|
3763 |
|
|
tree fields = TYPE_FIELDS (TREE_TYPE (etype));
|
3764 |
|
|
|
3765 |
|
|
expr = save_expr (expr);
|
3766 |
|
|
if (TREE_CODE (expr) == ADDR_EXPR)
|
3767 |
|
|
expr = TREE_OPERAND (expr, 0);
|
3768 |
|
|
else
|
3769 |
|
|
expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
|
3770 |
|
|
|
3771 |
|
|
template_tree = build_component_ref (expr, NULL_TREE, fields, false);
|
3772 |
|
|
expr = build_unary_op (ADDR_EXPR, NULL_TREE,
|
3773 |
|
|
build_component_ref (expr, NULL_TREE,
|
3774 |
|
|
TREE_CHAIN (fields), false));
|
3775 |
|
|
}
|
3776 |
|
|
|
3777 |
|
|
/* Otherwise, build the constructor for the template. */
|
3778 |
|
|
else
|
3779 |
|
|
template_tree = build_template (template_type, TREE_TYPE (etype), expr);
|
3780 |
|
|
|
3781 |
|
|
/* The final result is a constructor for the fat pointer.
|
3782 |
|
|
|
3783 |
|
|
If EXPR is an argument of a foreign convention subprogram, the type it
|
3784 |
|
|
points to is directly the component type. In this case, the expression
|
3785 |
|
|
type may not match the corresponding FIELD_DECL type at this point, so we
|
3786 |
|
|
call "convert" here to fix that up if necessary. This type consistency is
|
3787 |
|
|
required, for instance because it ensures that possible later folding of
|
3788 |
|
|
COMPONENT_REFs against this constructor always yields something of the
|
3789 |
|
|
same type as the initial reference.
|
3790 |
|
|
|
3791 |
|
|
Note that the call to "build_template" above is still fine because it
|
3792 |
|
|
will only refer to the provided TEMPLATE_TYPE in this case. */
|
3793 |
|
|
return
|
3794 |
|
|
gnat_build_constructor
|
3795 |
|
|
(type,
|
3796 |
|
|
tree_cons (TYPE_FIELDS (type),
|
3797 |
|
|
convert (p_array_type, expr),
|
3798 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
|
3799 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE,
|
3800 |
|
|
template_tree),
|
3801 |
|
|
NULL_TREE)));
|
3802 |
|
|
}
|
3803 |
|
|
|
3804 |
|
|
/* Convert to a thin pointer type, TYPE. The only thing we know how to convert
|
3805 |
|
|
is something that is a fat pointer, so convert to it first if it EXPR
|
3806 |
|
|
is not already a fat pointer. */
|
3807 |
|
|
|
3808 |
|
|
static tree
|
3809 |
|
|
convert_to_thin_pointer (tree type, tree expr)
|
3810 |
|
|
{
|
3811 |
|
|
if (!TYPE_IS_FAT_POINTER_P (TREE_TYPE (expr)))
|
3812 |
|
|
expr
|
3813 |
|
|
= convert_to_fat_pointer
|
3814 |
|
|
(TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
|
3815 |
|
|
|
3816 |
|
|
/* We get the pointer to the data and use a NOP_EXPR to make it the
|
3817 |
|
|
proper GCC type. */
|
3818 |
|
|
expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)),
|
3819 |
|
|
false);
|
3820 |
|
|
expr = build1 (NOP_EXPR, type, expr);
|
3821 |
|
|
|
3822 |
|
|
return expr;
|
3823 |
|
|
}
|
3824 |
|
|
|
3825 |
|
|
/* Create an expression whose value is that of EXPR,
|
3826 |
|
|
converted to type TYPE. The TREE_TYPE of the value
|
3827 |
|
|
is always TYPE. This function implements all reasonable
|
3828 |
|
|
conversions; callers should filter out those that are
|
3829 |
|
|
not permitted by the language being compiled. */
|
3830 |
|
|
|
3831 |
|
|
tree
|
3832 |
|
|
convert (tree type, tree expr)
|
3833 |
|
|
{
|
3834 |
|
|
enum tree_code code = TREE_CODE (type);
|
3835 |
|
|
tree etype = TREE_TYPE (expr);
|
3836 |
|
|
enum tree_code ecode = TREE_CODE (etype);
|
3837 |
|
|
|
3838 |
|
|
/* If EXPR is already the right type, we are done. */
|
3839 |
|
|
if (type == etype)
|
3840 |
|
|
return expr;
|
3841 |
|
|
|
3842 |
|
|
/* If both input and output have padding and are of variable size, do this
|
3843 |
|
|
as an unchecked conversion. Likewise if one is a mere variant of the
|
3844 |
|
|
other, so we avoid a pointless unpad/repad sequence. */
|
3845 |
|
|
else if (code == RECORD_TYPE && ecode == RECORD_TYPE
|
3846 |
|
|
&& TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
|
3847 |
|
|
&& (!TREE_CONSTANT (TYPE_SIZE (type))
|
3848 |
|
|
|| !TREE_CONSTANT (TYPE_SIZE (etype))
|
3849 |
|
|
|| gnat_types_compatible_p (type, etype)
|
3850 |
|
|
|| TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
|
3851 |
|
|
== TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
|
3852 |
|
|
;
|
3853 |
|
|
|
3854 |
|
|
/* If the output type has padding, convert to the inner type and make a
|
3855 |
|
|
constructor to build the record, unless a variable size is involved. */
|
3856 |
|
|
else if (code == RECORD_TYPE && TYPE_PADDING_P (type))
|
3857 |
|
|
{
|
3858 |
|
|
/* If we previously converted from another type and our type is
|
3859 |
|
|
of variable size, remove the conversion to avoid the need for
|
3860 |
|
|
variable-sized temporaries. Likewise for a conversion between
|
3861 |
|
|
original and packable version. */
|
3862 |
|
|
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
3863 |
|
|
&& (!TREE_CONSTANT (TYPE_SIZE (type))
|
3864 |
|
|
|| (ecode == RECORD_TYPE
|
3865 |
|
|
&& TYPE_NAME (etype)
|
3866 |
|
|
== TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
|
3867 |
|
|
expr = TREE_OPERAND (expr, 0);
|
3868 |
|
|
|
3869 |
|
|
/* If we are just removing the padding from expr, convert the original
|
3870 |
|
|
object if we have variable size in order to avoid the need for some
|
3871 |
|
|
variable-sized temporaries. Likewise if the padding is a variant
|
3872 |
|
|
of the other, so we avoid a pointless unpad/repad sequence. */
|
3873 |
|
|
if (TREE_CODE (expr) == COMPONENT_REF
|
3874 |
|
|
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
|
3875 |
|
|
&& (!TREE_CONSTANT (TYPE_SIZE (type))
|
3876 |
|
|
|| gnat_types_compatible_p (type,
|
3877 |
|
|
TREE_TYPE (TREE_OPERAND (expr, 0)))
|
3878 |
|
|
|| (ecode == RECORD_TYPE
|
3879 |
|
|
&& TYPE_NAME (etype)
|
3880 |
|
|
== TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
|
3881 |
|
|
return convert (type, TREE_OPERAND (expr, 0));
|
3882 |
|
|
|
3883 |
|
|
/* If the inner type is of self-referential size and the expression type
|
3884 |
|
|
is a record, do this as an unchecked conversion. But first pad the
|
3885 |
|
|
expression if possible to have the same size on both sides. */
|
3886 |
|
|
if (TREE_CODE (etype) == RECORD_TYPE
|
3887 |
|
|
&& CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
|
3888 |
|
|
{
|
3889 |
|
|
if (TREE_CONSTANT (TYPE_SIZE (etype)))
|
3890 |
|
|
expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
|
3891 |
|
|
false, false, false, true), expr);
|
3892 |
|
|
return unchecked_convert (type, expr, false);
|
3893 |
|
|
}
|
3894 |
|
|
|
3895 |
|
|
/* If we are converting between array types with variable size, do the
|
3896 |
|
|
final conversion as an unchecked conversion, again to avoid the need
|
3897 |
|
|
for some variable-sized temporaries. If valid, this conversion is
|
3898 |
|
|
very likely purely technical and without real effects. */
|
3899 |
|
|
if (TREE_CODE (etype) == ARRAY_TYPE
|
3900 |
|
|
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == ARRAY_TYPE
|
3901 |
|
|
&& !TREE_CONSTANT (TYPE_SIZE (etype))
|
3902 |
|
|
&& !TREE_CONSTANT (TYPE_SIZE (type)))
|
3903 |
|
|
return unchecked_convert (type,
|
3904 |
|
|
convert (TREE_TYPE (TYPE_FIELDS (type)),
|
3905 |
|
|
expr),
|
3906 |
|
|
false);
|
3907 |
|
|
|
3908 |
|
|
return
|
3909 |
|
|
gnat_build_constructor (type,
|
3910 |
|
|
tree_cons (TYPE_FIELDS (type),
|
3911 |
|
|
convert (TREE_TYPE
|
3912 |
|
|
(TYPE_FIELDS (type)),
|
3913 |
|
|
expr),
|
3914 |
|
|
NULL_TREE));
|
3915 |
|
|
}
|
3916 |
|
|
|
3917 |
|
|
/* If the input type has padding, remove it and convert to the output type.
|
3918 |
|
|
The conditions ordering is arranged to ensure that the output type is not
|
3919 |
|
|
a padding type here, as it is not clear whether the conversion would
|
3920 |
|
|
always be correct if this was to happen. */
|
3921 |
|
|
else if (ecode == RECORD_TYPE && TYPE_PADDING_P (etype))
|
3922 |
|
|
{
|
3923 |
|
|
tree unpadded;
|
3924 |
|
|
|
3925 |
|
|
/* If we have just converted to this padded type, just get the
|
3926 |
|
|
inner expression. */
|
3927 |
|
|
if (TREE_CODE (expr) == CONSTRUCTOR
|
3928 |
|
|
&& !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr))
|
3929 |
|
|
&& VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index
|
3930 |
|
|
== TYPE_FIELDS (etype))
|
3931 |
|
|
unpadded
|
3932 |
|
|
= VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value;
|
3933 |
|
|
|
3934 |
|
|
/* Otherwise, build an explicit component reference. */
|
3935 |
|
|
else
|
3936 |
|
|
unpadded
|
3937 |
|
|
= build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false);
|
3938 |
|
|
|
3939 |
|
|
return convert (type, unpadded);
|
3940 |
|
|
}
|
3941 |
|
|
|
3942 |
|
|
/* If the input is a biased type, adjust first. */
|
3943 |
|
|
if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
|
3944 |
|
|
return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
|
3945 |
|
|
fold_convert (TREE_TYPE (etype),
|
3946 |
|
|
expr),
|
3947 |
|
|
TYPE_MIN_VALUE (etype)));
|
3948 |
|
|
|
3949 |
|
|
/* If the input is a justified modular type, we need to extract the actual
|
3950 |
|
|
object before converting it to any other type with the exceptions of an
|
3951 |
|
|
unconstrained array or of a mere type variant. It is useful to avoid the
|
3952 |
|
|
extraction and conversion in the type variant case because it could end
|
3953 |
|
|
up replacing a VAR_DECL expr by a constructor and we might be about the
|
3954 |
|
|
take the address of the result. */
|
3955 |
|
|
if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
|
3956 |
|
|
&& code != UNCONSTRAINED_ARRAY_TYPE
|
3957 |
|
|
&& TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
|
3958 |
|
|
return convert (type, build_component_ref (expr, NULL_TREE,
|
3959 |
|
|
TYPE_FIELDS (etype), false));
|
3960 |
|
|
|
3961 |
|
|
/* If converting to a type that contains a template, convert to the data
|
3962 |
|
|
type and then build the template. */
|
3963 |
|
|
if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
|
3964 |
|
|
{
|
3965 |
|
|
tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
|
3966 |
|
|
|
3967 |
|
|
/* If the source already has a template, get a reference to the
|
3968 |
|
|
associated array only, as we are going to rebuild a template
|
3969 |
|
|
for the target type anyway. */
|
3970 |
|
|
expr = maybe_unconstrained_array (expr);
|
3971 |
|
|
|
3972 |
|
|
return
|
3973 |
|
|
gnat_build_constructor
|
3974 |
|
|
(type,
|
3975 |
|
|
tree_cons (TYPE_FIELDS (type),
|
3976 |
|
|
build_template (TREE_TYPE (TYPE_FIELDS (type)),
|
3977 |
|
|
obj_type, NULL_TREE),
|
3978 |
|
|
tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
|
3979 |
|
|
convert (obj_type, expr), NULL_TREE)));
|
3980 |
|
|
}
|
3981 |
|
|
|
3982 |
|
|
/* There are some special cases of expressions that we process
|
3983 |
|
|
specially. */
|
3984 |
|
|
switch (TREE_CODE (expr))
|
3985 |
|
|
{
|
3986 |
|
|
case ERROR_MARK:
|
3987 |
|
|
return expr;
|
3988 |
|
|
|
3989 |
|
|
case NULL_EXPR:
|
3990 |
|
|
/* Just set its type here. For TRANSFORM_EXPR, we will do the actual
|
3991 |
|
|
conversion in gnat_expand_expr. NULL_EXPR does not represent
|
3992 |
|
|
and actual value, so no conversion is needed. */
|
3993 |
|
|
expr = copy_node (expr);
|
3994 |
|
|
TREE_TYPE (expr) = type;
|
3995 |
|
|
return expr;
|
3996 |
|
|
|
3997 |
|
|
case STRING_CST:
|
3998 |
|
|
/* If we are converting a STRING_CST to another constrained array type,
|
3999 |
|
|
just make a new one in the proper type. */
|
4000 |
|
|
if (code == ecode && AGGREGATE_TYPE_P (etype)
|
4001 |
|
|
&& !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
|
4002 |
|
|
&& TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
|
4003 |
|
|
{
|
4004 |
|
|
expr = copy_node (expr);
|
4005 |
|
|
TREE_TYPE (expr) = type;
|
4006 |
|
|
return expr;
|
4007 |
|
|
}
|
4008 |
|
|
break;
|
4009 |
|
|
|
4010 |
|
|
case VECTOR_CST:
|
4011 |
|
|
/* If we are converting a VECTOR_CST to a mere variant type, just make
|
4012 |
|
|
a new one in the proper type. */
|
4013 |
|
|
if (code == ecode && gnat_types_compatible_p (type, etype))
|
4014 |
|
|
{
|
4015 |
|
|
expr = copy_node (expr);
|
4016 |
|
|
TREE_TYPE (expr) = type;
|
4017 |
|
|
return expr;
|
4018 |
|
|
}
|
4019 |
|
|
|
4020 |
|
|
case CONSTRUCTOR:
|
4021 |
|
|
/* If we are converting a CONSTRUCTOR to a mere variant type, just make
|
4022 |
|
|
a new one in the proper type. */
|
4023 |
|
|
if (code == ecode && gnat_types_compatible_p (type, etype))
|
4024 |
|
|
{
|
4025 |
|
|
expr = copy_node (expr);
|
4026 |
|
|
TREE_TYPE (expr) = type;
|
4027 |
|
|
return expr;
|
4028 |
|
|
}
|
4029 |
|
|
|
4030 |
|
|
/* Likewise for a conversion between original and packable version, but
|
4031 |
|
|
we have to work harder in order to preserve type consistency. */
|
4032 |
|
|
if (code == ecode
|
4033 |
|
|
&& code == RECORD_TYPE
|
4034 |
|
|
&& TYPE_NAME (type) == TYPE_NAME (etype))
|
4035 |
|
|
{
|
4036 |
|
|
VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr);
|
4037 |
|
|
unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e);
|
4038 |
|
|
VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, len);
|
4039 |
|
|
tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
|
4040 |
|
|
unsigned HOST_WIDE_INT idx;
|
4041 |
|
|
tree index, value;
|
4042 |
|
|
|
4043 |
|
|
/* Whether we need to clear TREE_CONSTANT et al. on the output
|
4044 |
|
|
constructor when we convert in place. */
|
4045 |
|
|
bool clear_constant = false;
|
4046 |
|
|
|
4047 |
|
|
FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
|
4048 |
|
|
{
|
4049 |
|
|
constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
|
4050 |
|
|
/* We expect only simple constructors. Otherwise, punt. */
|
4051 |
|
|
if (!(index == efield || index == DECL_ORIGINAL_FIELD (efield)))
|
4052 |
|
|
break;
|
4053 |
|
|
elt->index = field;
|
4054 |
|
|
elt->value = convert (TREE_TYPE (field), value);
|
4055 |
|
|
|
4056 |
|
|
/* If packing has made this field a bitfield and the input
|
4057 |
|
|
value couldn't be emitted statically any more, we need to
|
4058 |
|
|
clear TREE_CONSTANT on our output. */
|
4059 |
|
|
if (!clear_constant && TREE_CONSTANT (expr)
|
4060 |
|
|
&& !CONSTRUCTOR_BITFIELD_P (efield)
|
4061 |
|
|
&& CONSTRUCTOR_BITFIELD_P (field)
|
4062 |
|
|
&& !initializer_constant_valid_for_bitfield_p (value))
|
4063 |
|
|
clear_constant = true;
|
4064 |
|
|
|
4065 |
|
|
efield = TREE_CHAIN (efield);
|
4066 |
|
|
field = TREE_CHAIN (field);
|
4067 |
|
|
}
|
4068 |
|
|
|
4069 |
|
|
/* If we have been able to match and convert all the input fields
|
4070 |
|
|
to their output type, convert in place now. We'll fallback to a
|
4071 |
|
|
view conversion downstream otherwise. */
|
4072 |
|
|
if (idx == len)
|
4073 |
|
|
{
|
4074 |
|
|
expr = copy_node (expr);
|
4075 |
|
|
TREE_TYPE (expr) = type;
|
4076 |
|
|
CONSTRUCTOR_ELTS (expr) = v;
|
4077 |
|
|
if (clear_constant)
|
4078 |
|
|
TREE_CONSTANT (expr) = TREE_STATIC (expr) = false;
|
4079 |
|
|
return expr;
|
4080 |
|
|
}
|
4081 |
|
|
}
|
4082 |
|
|
|
4083 |
|
|
/* Likewise for a conversion between array type and vector type with a
|
4084 |
|
|
compatible representative array. */
|
4085 |
|
|
else if (code == VECTOR_TYPE
|
4086 |
|
|
&& ecode == ARRAY_TYPE
|
4087 |
|
|
&& gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
|
4088 |
|
|
etype))
|
4089 |
|
|
{
|
4090 |
|
|
VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr);
|
4091 |
|
|
unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e);
|
4092 |
|
|
VEC(constructor_elt,gc) *v;
|
4093 |
|
|
unsigned HOST_WIDE_INT ix;
|
4094 |
|
|
tree value;
|
4095 |
|
|
|
4096 |
|
|
/* Build a VECTOR_CST from a *constant* array constructor. */
|
4097 |
|
|
if (TREE_CONSTANT (expr))
|
4098 |
|
|
{
|
4099 |
|
|
bool constant_p = true;
|
4100 |
|
|
|
4101 |
|
|
/* Iterate through elements and check if all constructor
|
4102 |
|
|
elements are *_CSTs. */
|
4103 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
|
4104 |
|
|
if (!CONSTANT_CLASS_P (value))
|
4105 |
|
|
{
|
4106 |
|
|
constant_p = false;
|
4107 |
|
|
break;
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
if (constant_p)
|
4111 |
|
|
return build_vector_from_ctor (type,
|
4112 |
|
|
CONSTRUCTOR_ELTS (expr));
|
4113 |
|
|
}
|
4114 |
|
|
|
4115 |
|
|
/* Otherwise, build a regular vector constructor. */
|
4116 |
|
|
v = VEC_alloc (constructor_elt, gc, len);
|
4117 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
|
4118 |
|
|
{
|
4119 |
|
|
constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
|
4120 |
|
|
elt->index = NULL_TREE;
|
4121 |
|
|
elt->value = value;
|
4122 |
|
|
}
|
4123 |
|
|
expr = copy_node (expr);
|
4124 |
|
|
TREE_TYPE (expr) = type;
|
4125 |
|
|
CONSTRUCTOR_ELTS (expr) = v;
|
4126 |
|
|
return expr;
|
4127 |
|
|
}
|
4128 |
|
|
break;
|
4129 |
|
|
|
4130 |
|
|
case UNCONSTRAINED_ARRAY_REF:
|
4131 |
|
|
/* Convert this to the type of the inner array by getting the address of
|
4132 |
|
|
the array from the template. */
|
4133 |
|
|
expr = build_unary_op (INDIRECT_REF, NULL_TREE,
|
4134 |
|
|
build_component_ref (TREE_OPERAND (expr, 0),
|
4135 |
|
|
get_identifier ("P_ARRAY"),
|
4136 |
|
|
NULL_TREE, false));
|
4137 |
|
|
etype = TREE_TYPE (expr);
|
4138 |
|
|
ecode = TREE_CODE (etype);
|
4139 |
|
|
break;
|
4140 |
|
|
|
4141 |
|
|
case VIEW_CONVERT_EXPR:
|
4142 |
|
|
{
|
4143 |
|
|
/* GCC 4.x is very sensitive to type consistency overall, and view
|
4144 |
|
|
conversions thus are very frequent. Even though just "convert"ing
|
4145 |
|
|
the inner operand to the output type is fine in most cases, it
|
4146 |
|
|
might expose unexpected input/output type mismatches in special
|
4147 |
|
|
circumstances so we avoid such recursive calls when we can. */
|
4148 |
|
|
tree op0 = TREE_OPERAND (expr, 0);
|
4149 |
|
|
|
4150 |
|
|
/* If we are converting back to the original type, we can just
|
4151 |
|
|
lift the input conversion. This is a common occurrence with
|
4152 |
|
|
switches back-and-forth amongst type variants. */
|
4153 |
|
|
if (type == TREE_TYPE (op0))
|
4154 |
|
|
return op0;
|
4155 |
|
|
|
4156 |
|
|
/* Otherwise, if we're converting between two aggregate or vector
|
4157 |
|
|
types, we might be allowed to substitute the VIEW_CONVERT_EXPR
|
4158 |
|
|
target type in place or to just convert the inner expression. */
|
4159 |
|
|
if ((AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
|
4160 |
|
|
|| (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (etype)))
|
4161 |
|
|
{
|
4162 |
|
|
/* If we are converting between mere variants, we can just
|
4163 |
|
|
substitute the VIEW_CONVERT_EXPR in place. */
|
4164 |
|
|
if (gnat_types_compatible_p (type, etype))
|
4165 |
|
|
return build1 (VIEW_CONVERT_EXPR, type, op0);
|
4166 |
|
|
|
4167 |
|
|
/* Otherwise, we may just bypass the input view conversion unless
|
4168 |
|
|
one of the types is a fat pointer, which is handled by
|
4169 |
|
|
specialized code below which relies on exact type matching. */
|
4170 |
|
|
else if (!TYPE_IS_FAT_POINTER_P (type)
|
4171 |
|
|
&& !TYPE_IS_FAT_POINTER_P (etype))
|
4172 |
|
|
return convert (type, op0);
|
4173 |
|
|
}
|
4174 |
|
|
}
|
4175 |
|
|
break;
|
4176 |
|
|
|
4177 |
|
|
case INDIRECT_REF:
|
4178 |
|
|
/* If both types are record types, just convert the pointer and
|
4179 |
|
|
make a new INDIRECT_REF.
|
4180 |
|
|
|
4181 |
|
|
??? Disable this for now since it causes problems with the
|
4182 |
|
|
code in build_binary_op for MODIFY_EXPR which wants to
|
4183 |
|
|
strip off conversions. But that code really is a mess and
|
4184 |
|
|
we need to do this a much better way some time. */
|
4185 |
|
|
if (0
|
4186 |
|
|
&& (TREE_CODE (type) == RECORD_TYPE
|
4187 |
|
|
|| TREE_CODE (type) == UNION_TYPE)
|
4188 |
|
|
&& (TREE_CODE (etype) == RECORD_TYPE
|
4189 |
|
|
|| TREE_CODE (etype) == UNION_TYPE)
|
4190 |
|
|
&& !TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype))
|
4191 |
|
|
return build_unary_op (INDIRECT_REF, NULL_TREE,
|
4192 |
|
|
convert (build_pointer_type (type),
|
4193 |
|
|
TREE_OPERAND (expr, 0)));
|
4194 |
|
|
break;
|
4195 |
|
|
|
4196 |
|
|
default:
|
4197 |
|
|
break;
|
4198 |
|
|
}
|
4199 |
|
|
|
4200 |
|
|
/* Check for converting to a pointer to an unconstrained array. */
|
4201 |
|
|
if (TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype))
|
4202 |
|
|
return convert_to_fat_pointer (type, expr);
|
4203 |
|
|
|
4204 |
|
|
/* If we are converting between two aggregate or vector types that are mere
|
4205 |
|
|
variants, just make a VIEW_CONVERT_EXPR. Likewise when we are converting
|
4206 |
|
|
to a vector type from its representative array type. */
|
4207 |
|
|
else if ((code == ecode
|
4208 |
|
|
&& (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type))
|
4209 |
|
|
&& gnat_types_compatible_p (type, etype))
|
4210 |
|
|
|| (code == VECTOR_TYPE
|
4211 |
|
|
&& ecode == ARRAY_TYPE
|
4212 |
|
|
&& gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
|
4213 |
|
|
etype)))
|
4214 |
|
|
return build1 (VIEW_CONVERT_EXPR, type, expr);
|
4215 |
|
|
|
4216 |
|
|
/* In all other cases of related types, make a NOP_EXPR. */
|
4217 |
|
|
else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
|
4218 |
|
|
|| (code == INTEGER_CST && ecode == INTEGER_CST
|
4219 |
|
|
&& (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
|
4220 |
|
|
return fold_convert (type, expr);
|
4221 |
|
|
|
4222 |
|
|
switch (code)
|
4223 |
|
|
{
|
4224 |
|
|
case VOID_TYPE:
|
4225 |
|
|
return fold_build1 (CONVERT_EXPR, type, expr);
|
4226 |
|
|
|
4227 |
|
|
case INTEGER_TYPE:
|
4228 |
|
|
if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
|
4229 |
|
|
&& (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
|
4230 |
|
|
|| (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
|
4231 |
|
|
return unchecked_convert (type, expr, false);
|
4232 |
|
|
else if (TYPE_BIASED_REPRESENTATION_P (type))
|
4233 |
|
|
return fold_convert (type,
|
4234 |
|
|
fold_build2 (MINUS_EXPR, TREE_TYPE (type),
|
4235 |
|
|
convert (TREE_TYPE (type), expr),
|
4236 |
|
|
TYPE_MIN_VALUE (type)));
|
4237 |
|
|
|
4238 |
|
|
/* ... fall through ... */
|
4239 |
|
|
|
4240 |
|
|
case ENUMERAL_TYPE:
|
4241 |
|
|
case BOOLEAN_TYPE:
|
4242 |
|
|
/* If we are converting an additive expression to an integer type
|
4243 |
|
|
with lower precision, be wary of the optimization that can be
|
4244 |
|
|
applied by convert_to_integer. There are 2 problematic cases:
|
4245 |
|
|
- if the first operand was originally of a biased type,
|
4246 |
|
|
because we could be recursively called to convert it
|
4247 |
|
|
to an intermediate type and thus rematerialize the
|
4248 |
|
|
additive operator endlessly,
|
4249 |
|
|
- if the expression contains a placeholder, because an
|
4250 |
|
|
intermediate conversion that changes the sign could
|
4251 |
|
|
be inserted and thus introduce an artificial overflow
|
4252 |
|
|
at compile time when the placeholder is substituted. */
|
4253 |
|
|
if (code == INTEGER_TYPE
|
4254 |
|
|
&& ecode == INTEGER_TYPE
|
4255 |
|
|
&& TYPE_PRECISION (type) < TYPE_PRECISION (etype)
|
4256 |
|
|
&& (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
|
4257 |
|
|
{
|
4258 |
|
|
tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
4259 |
|
|
|
4260 |
|
|
if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
|
4261 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
|
4262 |
|
|
|| CONTAINS_PLACEHOLDER_P (expr))
|
4263 |
|
|
return build1 (NOP_EXPR, type, expr);
|
4264 |
|
|
}
|
4265 |
|
|
|
4266 |
|
|
return fold (convert_to_integer (type, expr));
|
4267 |
|
|
|
4268 |
|
|
case POINTER_TYPE:
|
4269 |
|
|
case REFERENCE_TYPE:
|
4270 |
|
|
/* If converting between two pointers to records denoting
|
4271 |
|
|
both a template and type, adjust if needed to account
|
4272 |
|
|
for any differing offsets, since one might be negative. */
|
4273 |
|
|
if (TYPE_IS_THIN_POINTER_P (etype) && TYPE_IS_THIN_POINTER_P (type))
|
4274 |
|
|
{
|
4275 |
|
|
tree bit_diff
|
4276 |
|
|
= size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
|
4277 |
|
|
bit_position (TYPE_FIELDS (TREE_TYPE (type))));
|
4278 |
|
|
tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
|
4279 |
|
|
sbitsize_int (BITS_PER_UNIT));
|
4280 |
|
|
|
4281 |
|
|
expr = build1 (NOP_EXPR, type, expr);
|
4282 |
|
|
TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
|
4283 |
|
|
if (integer_zerop (byte_diff))
|
4284 |
|
|
return expr;
|
4285 |
|
|
|
4286 |
|
|
return build_binary_op (POINTER_PLUS_EXPR, type, expr,
|
4287 |
|
|
fold (convert (sizetype, byte_diff)));
|
4288 |
|
|
}
|
4289 |
|
|
|
4290 |
|
|
/* If converting to a thin pointer, handle specially. */
|
4291 |
|
|
if (TYPE_IS_THIN_POINTER_P (type)
|
4292 |
|
|
&& TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
|
4293 |
|
|
return convert_to_thin_pointer (type, expr);
|
4294 |
|
|
|
4295 |
|
|
/* If converting fat pointer to normal pointer, get the pointer to the
|
4296 |
|
|
array and then convert it. */
|
4297 |
|
|
else if (TYPE_IS_FAT_POINTER_P (etype))
|
4298 |
|
|
expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
|
4299 |
|
|
NULL_TREE, false);
|
4300 |
|
|
|
4301 |
|
|
return fold (convert_to_pointer (type, expr));
|
4302 |
|
|
|
4303 |
|
|
case REAL_TYPE:
|
4304 |
|
|
return fold (convert_to_real (type, expr));
|
4305 |
|
|
|
4306 |
|
|
case RECORD_TYPE:
|
4307 |
|
|
if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
|
4308 |
|
|
return
|
4309 |
|
|
gnat_build_constructor
|
4310 |
|
|
(type, tree_cons (TYPE_FIELDS (type),
|
4311 |
|
|
convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
|
4312 |
|
|
NULL_TREE));
|
4313 |
|
|
|
4314 |
|
|
/* ... fall through ... */
|
4315 |
|
|
|
4316 |
|
|
case ARRAY_TYPE:
|
4317 |
|
|
/* In these cases, assume the front-end has validated the conversion.
|
4318 |
|
|
If the conversion is valid, it will be a bit-wise conversion, so
|
4319 |
|
|
it can be viewed as an unchecked conversion. */
|
4320 |
|
|
return unchecked_convert (type, expr, false);
|
4321 |
|
|
|
4322 |
|
|
case UNION_TYPE:
|
4323 |
|
|
/* This is a either a conversion between a tagged type and some
|
4324 |
|
|
subtype, which we have to mark as a UNION_TYPE because of
|
4325 |
|
|
overlapping fields or a conversion of an Unchecked_Union. */
|
4326 |
|
|
return unchecked_convert (type, expr, false);
|
4327 |
|
|
|
4328 |
|
|
case UNCONSTRAINED_ARRAY_TYPE:
|
4329 |
|
|
/* If the input is a VECTOR_TYPE, convert to the representative
|
4330 |
|
|
array type first. */
|
4331 |
|
|
if (ecode == VECTOR_TYPE)
|
4332 |
|
|
{
|
4333 |
|
|
expr = convert (TYPE_REPRESENTATIVE_ARRAY (etype), expr);
|
4334 |
|
|
etype = TREE_TYPE (expr);
|
4335 |
|
|
ecode = TREE_CODE (etype);
|
4336 |
|
|
}
|
4337 |
|
|
|
4338 |
|
|
/* If EXPR is a constrained array, take its address, convert it to a
|
4339 |
|
|
fat pointer, and then dereference it. Likewise if EXPR is a
|
4340 |
|
|
record containing both a template and a constrained array.
|
4341 |
|
|
Note that a record representing a justified modular type
|
4342 |
|
|
always represents a packed constrained array. */
|
4343 |
|
|
if (ecode == ARRAY_TYPE
|
4344 |
|
|
|| (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
|
4345 |
|
|
|| (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
|
4346 |
|
|
|| (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
|
4347 |
|
|
return
|
4348 |
|
|
build_unary_op
|
4349 |
|
|
(INDIRECT_REF, NULL_TREE,
|
4350 |
|
|
convert_to_fat_pointer (TREE_TYPE (type),
|
4351 |
|
|
build_unary_op (ADDR_EXPR,
|
4352 |
|
|
NULL_TREE, expr)));
|
4353 |
|
|
|
4354 |
|
|
/* Do something very similar for converting one unconstrained
|
4355 |
|
|
array to another. */
|
4356 |
|
|
else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
|
4357 |
|
|
return
|
4358 |
|
|
build_unary_op (INDIRECT_REF, NULL_TREE,
|
4359 |
|
|
convert (TREE_TYPE (type),
|
4360 |
|
|
build_unary_op (ADDR_EXPR,
|
4361 |
|
|
NULL_TREE, expr)));
|
4362 |
|
|
else
|
4363 |
|
|
gcc_unreachable ();
|
4364 |
|
|
|
4365 |
|
|
case COMPLEX_TYPE:
|
4366 |
|
|
return fold (convert_to_complex (type, expr));
|
4367 |
|
|
|
4368 |
|
|
default:
|
4369 |
|
|
gcc_unreachable ();
|
4370 |
|
|
}
|
4371 |
|
|
}
|
4372 |
|
|
|
4373 |
|
|
/* Remove all conversions that are done in EXP. This includes converting
|
4374 |
|
|
from a padded type or to a justified modular type. If TRUE_ADDRESS
|
4375 |
|
|
is true, always return the address of the containing object even if
|
4376 |
|
|
the address is not bit-aligned. */
|
4377 |
|
|
|
4378 |
|
|
tree
|
4379 |
|
|
remove_conversions (tree exp, bool true_address)
|
4380 |
|
|
{
|
4381 |
|
|
switch (TREE_CODE (exp))
|
4382 |
|
|
{
|
4383 |
|
|
case CONSTRUCTOR:
|
4384 |
|
|
if (true_address
|
4385 |
|
|
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
|
4386 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
|
4387 |
|
|
return
|
4388 |
|
|
remove_conversions (VEC_index (constructor_elt,
|
4389 |
|
|
CONSTRUCTOR_ELTS (exp), 0)->value,
|
4390 |
|
|
true);
|
4391 |
|
|
break;
|
4392 |
|
|
|
4393 |
|
|
case COMPONENT_REF:
|
4394 |
|
|
if (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
4395 |
|
|
return remove_conversions (TREE_OPERAND (exp, 0), true_address);
|
4396 |
|
|
break;
|
4397 |
|
|
|
4398 |
|
|
case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR:
|
4399 |
|
|
CASE_CONVERT:
|
4400 |
|
|
return remove_conversions (TREE_OPERAND (exp, 0), true_address);
|
4401 |
|
|
|
4402 |
|
|
default:
|
4403 |
|
|
break;
|
4404 |
|
|
}
|
4405 |
|
|
|
4406 |
|
|
return exp;
|
4407 |
|
|
}
|
4408 |
|
|
|
4409 |
|
|
/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
|
4410 |
|
|
refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
|
4411 |
|
|
likewise return an expression pointing to the underlying array. */
|
4412 |
|
|
|
4413 |
|
|
tree
|
4414 |
|
|
maybe_unconstrained_array (tree exp)
|
4415 |
|
|
{
|
4416 |
|
|
enum tree_code code = TREE_CODE (exp);
|
4417 |
|
|
tree new_exp;
|
4418 |
|
|
|
4419 |
|
|
switch (TREE_CODE (TREE_TYPE (exp)))
|
4420 |
|
|
{
|
4421 |
|
|
case UNCONSTRAINED_ARRAY_TYPE:
|
4422 |
|
|
if (code == UNCONSTRAINED_ARRAY_REF)
|
4423 |
|
|
{
|
4424 |
|
|
new_exp
|
4425 |
|
|
= build_unary_op (INDIRECT_REF, NULL_TREE,
|
4426 |
|
|
build_component_ref (TREE_OPERAND (exp, 0),
|
4427 |
|
|
get_identifier ("P_ARRAY"),
|
4428 |
|
|
NULL_TREE, false));
|
4429 |
|
|
TREE_READONLY (new_exp) = TREE_STATIC (new_exp)
|
4430 |
|
|
= TREE_READONLY (exp);
|
4431 |
|
|
return new_exp;
|
4432 |
|
|
}
|
4433 |
|
|
|
4434 |
|
|
else if (code == NULL_EXPR)
|
4435 |
|
|
return build1 (NULL_EXPR,
|
4436 |
|
|
TREE_TYPE (TREE_TYPE (TYPE_FIELDS
|
4437 |
|
|
(TREE_TYPE (TREE_TYPE (exp))))),
|
4438 |
|
|
TREE_OPERAND (exp, 0));
|
4439 |
|
|
|
4440 |
|
|
case RECORD_TYPE:
|
4441 |
|
|
/* If this is a padded type, convert to the unpadded type and see if
|
4442 |
|
|
it contains a template. */
|
4443 |
|
|
if (TYPE_PADDING_P (TREE_TYPE (exp)))
|
4444 |
|
|
{
|
4445 |
|
|
new_exp = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
|
4446 |
|
|
if (TREE_CODE (TREE_TYPE (new_exp)) == RECORD_TYPE
|
4447 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new_exp)))
|
4448 |
|
|
return
|
4449 |
|
|
build_component_ref (new_exp, NULL_TREE,
|
4450 |
|
|
TREE_CHAIN
|
4451 |
|
|
(TYPE_FIELDS (TREE_TYPE (new_exp))),
|
4452 |
|
|
0);
|
4453 |
|
|
}
|
4454 |
|
|
else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
|
4455 |
|
|
return
|
4456 |
|
|
build_component_ref (exp, NULL_TREE,
|
4457 |
|
|
TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
|
4458 |
|
|
break;
|
4459 |
|
|
|
4460 |
|
|
default:
|
4461 |
|
|
break;
|
4462 |
|
|
}
|
4463 |
|
|
|
4464 |
|
|
return exp;
|
4465 |
|
|
}
|
4466 |
|
|
|
4467 |
|
|
/* If EXP's type is a VECTOR_TYPE, return EXP converted to the associated
|
4468 |
|
|
TYPE_REPRESENTATIVE_ARRAY. */
|
4469 |
|
|
|
4470 |
|
|
tree
|
4471 |
|
|
maybe_vector_array (tree exp)
|
4472 |
|
|
{
|
4473 |
|
|
tree etype = TREE_TYPE (exp);
|
4474 |
|
|
|
4475 |
|
|
if (VECTOR_TYPE_P (etype))
|
4476 |
|
|
exp = convert (TYPE_REPRESENTATIVE_ARRAY (etype), exp);
|
4477 |
|
|
|
4478 |
|
|
return exp;
|
4479 |
|
|
}
|
4480 |
|
|
|
4481 |
|
|
/* Return true if EXPR is an expression that can be folded as an operand
|
4482 |
|
|
of a VIEW_CONVERT_EXPR. See ada-tree.h for a complete rationale. */
|
4483 |
|
|
|
4484 |
|
|
static bool
|
4485 |
|
|
can_fold_for_view_convert_p (tree expr)
|
4486 |
|
|
{
|
4487 |
|
|
tree t1, t2;
|
4488 |
|
|
|
4489 |
|
|
/* The folder will fold NOP_EXPRs between integral types with the same
|
4490 |
|
|
precision (in the middle-end's sense). We cannot allow it if the
|
4491 |
|
|
types don't have the same precision in the Ada sense as well. */
|
4492 |
|
|
if (TREE_CODE (expr) != NOP_EXPR)
|
4493 |
|
|
return true;
|
4494 |
|
|
|
4495 |
|
|
t1 = TREE_TYPE (expr);
|
4496 |
|
|
t2 = TREE_TYPE (TREE_OPERAND (expr, 0));
|
4497 |
|
|
|
4498 |
|
|
/* Defer to the folder for non-integral conversions. */
|
4499 |
|
|
if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
|
4500 |
|
|
return true;
|
4501 |
|
|
|
4502 |
|
|
/* Only fold conversions that preserve both precisions. */
|
4503 |
|
|
if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
|
4504 |
|
|
&& operand_equal_p (rm_size (t1), rm_size (t2), 0))
|
4505 |
|
|
return true;
|
4506 |
|
|
|
4507 |
|
|
return false;
|
4508 |
|
|
}
|
4509 |
|
|
|
4510 |
|
|
/* Return an expression that does an unchecked conversion of EXPR to TYPE.
|
4511 |
|
|
If NOTRUNC_P is true, truncation operations should be suppressed.
|
4512 |
|
|
|
4513 |
|
|
Special care is required with (source or target) integral types whose
|
4514 |
|
|
precision is not equal to their size, to make sure we fetch or assign
|
4515 |
|
|
the value bits whose location might depend on the endianness, e.g.
|
4516 |
|
|
|
4517 |
|
|
Rmsize : constant := 8;
|
4518 |
|
|
subtype Int is Integer range 0 .. 2 ** Rmsize - 1;
|
4519 |
|
|
|
4520 |
|
|
type Bit_Array is array (1 .. Rmsize) of Boolean;
|
4521 |
|
|
pragma Pack (Bit_Array);
|
4522 |
|
|
|
4523 |
|
|
function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);
|
4524 |
|
|
|
4525 |
|
|
Value : Int := 2#1000_0001#;
|
4526 |
|
|
Vbits : Bit_Array := To_Bit_Array (Value);
|
4527 |
|
|
|
4528 |
|
|
we expect the 8 bits at Vbits'Address to always contain Value, while
|
4529 |
|
|
their original location depends on the endianness, at Value'Address
|
4530 |
|
|
on a little-endian architecture but not on a big-endian one. */
|
4531 |
|
|
|
4532 |
|
|
tree
|
4533 |
|
|
unchecked_convert (tree type, tree expr, bool notrunc_p)
|
4534 |
|
|
{
|
4535 |
|
|
tree etype = TREE_TYPE (expr);
|
4536 |
|
|
|
4537 |
|
|
/* If the expression is already the right type, we are done. */
|
4538 |
|
|
if (etype == type)
|
4539 |
|
|
return expr;
|
4540 |
|
|
|
4541 |
|
|
/* If both types types are integral just do a normal conversion.
|
4542 |
|
|
Likewise for a conversion to an unconstrained array. */
|
4543 |
|
|
if ((((INTEGRAL_TYPE_P (type)
|
4544 |
|
|
&& !(TREE_CODE (type) == INTEGER_TYPE
|
4545 |
|
|
&& TYPE_VAX_FLOATING_POINT_P (type)))
|
4546 |
|
|
|| (POINTER_TYPE_P (type) && ! TYPE_IS_THIN_POINTER_P (type))
|
4547 |
|
|
|| (TREE_CODE (type) == RECORD_TYPE
|
4548 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (type)))
|
4549 |
|
|
&& ((INTEGRAL_TYPE_P (etype)
|
4550 |
|
|
&& !(TREE_CODE (etype) == INTEGER_TYPE
|
4551 |
|
|
&& TYPE_VAX_FLOATING_POINT_P (etype)))
|
4552 |
|
|
|| (POINTER_TYPE_P (etype) && !TYPE_IS_THIN_POINTER_P (etype))
|
4553 |
|
|
|| (TREE_CODE (etype) == RECORD_TYPE
|
4554 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (etype))))
|
4555 |
|
|
|| TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
|
4556 |
|
|
{
|
4557 |
|
|
if (TREE_CODE (etype) == INTEGER_TYPE
|
4558 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (etype))
|
4559 |
|
|
{
|
4560 |
|
|
tree ntype = copy_type (etype);
|
4561 |
|
|
TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
|
4562 |
|
|
TYPE_MAIN_VARIANT (ntype) = ntype;
|
4563 |
|
|
expr = build1 (NOP_EXPR, ntype, expr);
|
4564 |
|
|
}
|
4565 |
|
|
|
4566 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE
|
4567 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (type))
|
4568 |
|
|
{
|
4569 |
|
|
tree rtype = copy_type (type);
|
4570 |
|
|
TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
|
4571 |
|
|
TYPE_MAIN_VARIANT (rtype) = rtype;
|
4572 |
|
|
expr = convert (rtype, expr);
|
4573 |
|
|
expr = build1 (NOP_EXPR, type, expr);
|
4574 |
|
|
}
|
4575 |
|
|
else
|
4576 |
|
|
expr = convert (type, expr);
|
4577 |
|
|
}
|
4578 |
|
|
|
4579 |
|
|
/* If we are converting to an integral type whose precision is not equal
|
4580 |
|
|
to its size, first unchecked convert to a record that contains an
|
4581 |
|
|
object of the output type. Then extract the field. */
|
4582 |
|
|
else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
|
4583 |
|
|
&& 0 != compare_tree_int (TYPE_RM_SIZE (type),
|
4584 |
|
|
GET_MODE_BITSIZE (TYPE_MODE (type))))
|
4585 |
|
|
{
|
4586 |
|
|
tree rec_type = make_node (RECORD_TYPE);
|
4587 |
|
|
tree field = create_field_decl (get_identifier ("OBJ"), type,
|
4588 |
|
|
rec_type, 1, 0, 0, 0);
|
4589 |
|
|
|
4590 |
|
|
TYPE_FIELDS (rec_type) = field;
|
4591 |
|
|
layout_type (rec_type);
|
4592 |
|
|
|
4593 |
|
|
expr = unchecked_convert (rec_type, expr, notrunc_p);
|
4594 |
|
|
expr = build_component_ref (expr, NULL_TREE, field, 0);
|
4595 |
|
|
}
|
4596 |
|
|
|
4597 |
|
|
/* Similarly if we are converting from an integral type whose precision
|
4598 |
|
|
is not equal to its size. */
|
4599 |
|
|
else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype)
|
4600 |
|
|
&& 0 != compare_tree_int (TYPE_RM_SIZE (etype),
|
4601 |
|
|
GET_MODE_BITSIZE (TYPE_MODE (etype))))
|
4602 |
|
|
{
|
4603 |
|
|
tree rec_type = make_node (RECORD_TYPE);
|
4604 |
|
|
tree field
|
4605 |
|
|
= create_field_decl (get_identifier ("OBJ"), etype, rec_type,
|
4606 |
|
|
1, 0, 0, 0);
|
4607 |
|
|
|
4608 |
|
|
TYPE_FIELDS (rec_type) = field;
|
4609 |
|
|
layout_type (rec_type);
|
4610 |
|
|
|
4611 |
|
|
expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
|
4612 |
|
|
expr = unchecked_convert (type, expr, notrunc_p);
|
4613 |
|
|
}
|
4614 |
|
|
|
4615 |
|
|
/* We have a special case when we are converting between two unconstrained
|
4616 |
|
|
array types. In that case, take the address, convert the fat pointer
|
4617 |
|
|
types, and dereference. */
|
4618 |
|
|
else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
|
4619 |
|
|
&& TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
|
4620 |
|
|
expr = build_unary_op (INDIRECT_REF, NULL_TREE,
|
4621 |
|
|
build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
|
4622 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE,
|
4623 |
|
|
expr)));
|
4624 |
|
|
|
4625 |
|
|
/* Another special case is when we are converting to a vector type from its
|
4626 |
|
|
representative array type; this a regular conversion. */
|
4627 |
|
|
else if (TREE_CODE (type) == VECTOR_TYPE
|
4628 |
|
|
&& TREE_CODE (etype) == ARRAY_TYPE
|
4629 |
|
|
&& gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
|
4630 |
|
|
etype))
|
4631 |
|
|
expr = convert (type, expr);
|
4632 |
|
|
|
4633 |
|
|
else
|
4634 |
|
|
{
|
4635 |
|
|
expr = maybe_unconstrained_array (expr);
|
4636 |
|
|
etype = TREE_TYPE (expr);
|
4637 |
|
|
if (can_fold_for_view_convert_p (expr))
|
4638 |
|
|
expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
|
4639 |
|
|
else
|
4640 |
|
|
expr = build1 (VIEW_CONVERT_EXPR, type, expr);
|
4641 |
|
|
}
|
4642 |
|
|
|
4643 |
|
|
/* If the result is an integral type whose precision is not equal to its
|
4644 |
|
|
size, sign- or zero-extend the result. We need not do this if the input
|
4645 |
|
|
is an integral type of the same precision and signedness or if the output
|
4646 |
|
|
is a biased type or if both the input and output are unsigned. */
|
4647 |
|
|
if (!notrunc_p
|
4648 |
|
|
&& INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
|
4649 |
|
|
&& !(TREE_CODE (type) == INTEGER_TYPE
|
4650 |
|
|
&& TYPE_BIASED_REPRESENTATION_P (type))
|
4651 |
|
|
&& 0 != compare_tree_int (TYPE_RM_SIZE (type),
|
4652 |
|
|
GET_MODE_BITSIZE (TYPE_MODE (type)))
|
4653 |
|
|
&& !(INTEGRAL_TYPE_P (etype)
|
4654 |
|
|
&& TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
|
4655 |
|
|
&& operand_equal_p (TYPE_RM_SIZE (type),
|
4656 |
|
|
(TYPE_RM_SIZE (etype) != 0
|
4657 |
|
|
? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
|
4658 |
|
|
0))
|
4659 |
|
|
&& !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
|
4660 |
|
|
{
|
4661 |
|
|
tree base_type = gnat_type_for_mode (TYPE_MODE (type),
|
4662 |
|
|
TYPE_UNSIGNED (type));
|
4663 |
|
|
tree shift_expr
|
4664 |
|
|
= convert (base_type,
|
4665 |
|
|
size_binop (MINUS_EXPR,
|
4666 |
|
|
bitsize_int
|
4667 |
|
|
(GET_MODE_BITSIZE (TYPE_MODE (type))),
|
4668 |
|
|
TYPE_RM_SIZE (type)));
|
4669 |
|
|
expr
|
4670 |
|
|
= convert (type,
|
4671 |
|
|
build_binary_op (RSHIFT_EXPR, base_type,
|
4672 |
|
|
build_binary_op (LSHIFT_EXPR, base_type,
|
4673 |
|
|
convert (base_type, expr),
|
4674 |
|
|
shift_expr),
|
4675 |
|
|
shift_expr));
|
4676 |
|
|
}
|
4677 |
|
|
|
4678 |
|
|
/* An unchecked conversion should never raise Constraint_Error. The code
|
4679 |
|
|
below assumes that GCC's conversion routines overflow the same way that
|
4680 |
|
|
the underlying hardware does. This is probably true. In the rare case
|
4681 |
|
|
when it is false, we can rely on the fact that such conversions are
|
4682 |
|
|
erroneous anyway. */
|
4683 |
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
4684 |
|
|
TREE_OVERFLOW (expr) = 0;
|
4685 |
|
|
|
4686 |
|
|
/* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
|
4687 |
|
|
show no longer constant. */
|
4688 |
|
|
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
4689 |
|
|
&& !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
|
4690 |
|
|
OEP_ONLY_CONST))
|
4691 |
|
|
TREE_CONSTANT (expr) = 0;
|
4692 |
|
|
|
4693 |
|
|
return expr;
|
4694 |
|
|
}
|
4695 |
|
|
|
4696 |
|
|
/* Return the appropriate GCC tree code for the specified GNAT_TYPE,
|
4697 |
|
|
the latter being a record type as predicated by Is_Record_Type. */
|
4698 |
|
|
|
4699 |
|
|
enum tree_code
|
4700 |
|
|
tree_code_for_record_type (Entity_Id gnat_type)
|
4701 |
|
|
{
|
4702 |
|
|
Node_Id component_list
|
4703 |
|
|
= Component_List (Type_Definition
|
4704 |
|
|
(Declaration_Node
|
4705 |
|
|
(Implementation_Base_Type (gnat_type))));
|
4706 |
|
|
Node_Id component;
|
4707 |
|
|
|
4708 |
|
|
/* Make this a UNION_TYPE unless it's either not an Unchecked_Union or
|
4709 |
|
|
we have a non-discriminant field outside a variant. In either case,
|
4710 |
|
|
it's a RECORD_TYPE. */
|
4711 |
|
|
|
4712 |
|
|
if (!Is_Unchecked_Union (gnat_type))
|
4713 |
|
|
return RECORD_TYPE;
|
4714 |
|
|
|
4715 |
|
|
for (component = First_Non_Pragma (Component_Items (component_list));
|
4716 |
|
|
Present (component);
|
4717 |
|
|
component = Next_Non_Pragma (component))
|
4718 |
|
|
if (Ekind (Defining_Entity (component)) == E_Component)
|
4719 |
|
|
return RECORD_TYPE;
|
4720 |
|
|
|
4721 |
|
|
return UNION_TYPE;
|
4722 |
|
|
}
|
4723 |
|
|
|
4724 |
|
|
/* Return true if GNAT_TYPE is a "double" floating-point type, i.e. whose
|
4725 |
|
|
size is equal to 64 bits, or an array of such a type. Set ALIGN_CLAUSE
|
4726 |
|
|
according to the presence of an alignment clause on the type or, if it
|
4727 |
|
|
is an array, on the component type. */
|
4728 |
|
|
|
4729 |
|
|
bool
|
4730 |
|
|
is_double_float_or_array (Entity_Id gnat_type, bool *align_clause)
|
4731 |
|
|
{
|
4732 |
|
|
gnat_type = Underlying_Type (gnat_type);
|
4733 |
|
|
|
4734 |
|
|
*align_clause = Present (Alignment_Clause (gnat_type));
|
4735 |
|
|
|
4736 |
|
|
if (Is_Array_Type (gnat_type))
|
4737 |
|
|
{
|
4738 |
|
|
gnat_type = Underlying_Type (Component_Type (gnat_type));
|
4739 |
|
|
if (Present (Alignment_Clause (gnat_type)))
|
4740 |
|
|
*align_clause = true;
|
4741 |
|
|
}
|
4742 |
|
|
|
4743 |
|
|
if (!Is_Floating_Point_Type (gnat_type))
|
4744 |
|
|
return false;
|
4745 |
|
|
|
4746 |
|
|
if (UI_To_Int (Esize (gnat_type)) != 64)
|
4747 |
|
|
return false;
|
4748 |
|
|
|
4749 |
|
|
return true;
|
4750 |
|
|
}
|
4751 |
|
|
|
4752 |
|
|
/* Return true if GNAT_TYPE is a "double" or larger scalar type, i.e. whose
|
4753 |
|
|
size is greater or equal to 64 bits, or an array of such a type. Set
|
4754 |
|
|
ALIGN_CLAUSE according to the presence of an alignment clause on the
|
4755 |
|
|
type or, if it is an array, on the component type. */
|
4756 |
|
|
|
4757 |
|
|
bool
|
4758 |
|
|
is_double_scalar_or_array (Entity_Id gnat_type, bool *align_clause)
|
4759 |
|
|
{
|
4760 |
|
|
gnat_type = Underlying_Type (gnat_type);
|
4761 |
|
|
|
4762 |
|
|
*align_clause = Present (Alignment_Clause (gnat_type));
|
4763 |
|
|
|
4764 |
|
|
if (Is_Array_Type (gnat_type))
|
4765 |
|
|
{
|
4766 |
|
|
gnat_type = Underlying_Type (Component_Type (gnat_type));
|
4767 |
|
|
if (Present (Alignment_Clause (gnat_type)))
|
4768 |
|
|
*align_clause = true;
|
4769 |
|
|
}
|
4770 |
|
|
|
4771 |
|
|
if (!Is_Scalar_Type (gnat_type))
|
4772 |
|
|
return false;
|
4773 |
|
|
|
4774 |
|
|
if (UI_To_Int (Esize (gnat_type)) < 64)
|
4775 |
|
|
return false;
|
4776 |
|
|
|
4777 |
|
|
return true;
|
4778 |
|
|
}
|
4779 |
|
|
|
4780 |
|
|
/* Return true if GNU_TYPE is suitable as the type of a non-aliased
|
4781 |
|
|
component of an aggregate type. */
|
4782 |
|
|
|
4783 |
|
|
bool
|
4784 |
|
|
type_for_nonaliased_component_p (tree gnu_type)
|
4785 |
|
|
{
|
4786 |
|
|
/* If the type is passed by reference, we may have pointers to the
|
4787 |
|
|
component so it cannot be made non-aliased. */
|
4788 |
|
|
if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
|
4789 |
|
|
return false;
|
4790 |
|
|
|
4791 |
|
|
/* We used to say that any component of aggregate type is aliased
|
4792 |
|
|
because the front-end may take 'Reference of it. The front-end
|
4793 |
|
|
has been enhanced in the meantime so as to use a renaming instead
|
4794 |
|
|
in most cases, but the back-end can probably take the address of
|
4795 |
|
|
such a component too so we go for the conservative stance.
|
4796 |
|
|
|
4797 |
|
|
For instance, we might need the address of any array type, even
|
4798 |
|
|
if normally passed by copy, to construct a fat pointer if the
|
4799 |
|
|
component is used as an actual for an unconstrained formal.
|
4800 |
|
|
|
4801 |
|
|
Likewise for record types: even if a specific record subtype is
|
4802 |
|
|
passed by copy, the parent type might be passed by ref (e.g. if
|
4803 |
|
|
it's of variable size) and we might take the address of a child
|
4804 |
|
|
component to pass to a parent formal. We have no way to check
|
4805 |
|
|
for such conditions here. */
|
4806 |
|
|
if (AGGREGATE_TYPE_P (gnu_type))
|
4807 |
|
|
return false;
|
4808 |
|
|
|
4809 |
|
|
return true;
|
4810 |
|
|
}
|
4811 |
|
|
|
4812 |
|
|
/* Perform final processing on global variables. */
|
4813 |
|
|
|
4814 |
|
|
void
|
4815 |
|
|
gnat_write_global_declarations (void)
|
4816 |
|
|
{
|
4817 |
|
|
/* Proceed to optimize and emit assembly.
|
4818 |
|
|
FIXME: shouldn't be the front end's responsibility to call this. */
|
4819 |
|
|
cgraph_finalize_compilation_unit ();
|
4820 |
|
|
|
4821 |
|
|
/* Emit debug info for all global declarations. */
|
4822 |
|
|
emit_debug_global_declarations (VEC_address (tree, global_decls),
|
4823 |
|
|
VEC_length (tree, global_decls));
|
4824 |
|
|
}
|
4825 |
|
|
|
4826 |
|
|
/* ************************************************************************
|
4827 |
|
|
* * GCC builtins support *
|
4828 |
|
|
* ************************************************************************ */
|
4829 |
|
|
|
4830 |
|
|
/* The general scheme is fairly simple:
|
4831 |
|
|
|
4832 |
|
|
For each builtin function/type to be declared, gnat_install_builtins calls
|
4833 |
|
|
internal facilities which eventually get to gnat_push_decl, which in turn
|
4834 |
|
|
tracks the so declared builtin function decls in the 'builtin_decls' global
|
4835 |
|
|
datastructure. When an Intrinsic subprogram declaration is processed, we
|
4836 |
|
|
search this global datastructure to retrieve the associated BUILT_IN DECL
|
4837 |
|
|
node. */
|
4838 |
|
|
|
4839 |
|
|
/* Search the chain of currently available builtin declarations for a node
|
4840 |
|
|
corresponding to function NAME (an IDENTIFIER_NODE). Return the first node
|
4841 |
|
|
found, if any, or NULL_TREE otherwise. */
|
4842 |
|
|
tree
|
4843 |
|
|
builtin_decl_for (tree name)
|
4844 |
|
|
{
|
4845 |
|
|
unsigned i;
|
4846 |
|
|
tree decl;
|
4847 |
|
|
|
4848 |
|
|
for (i = 0; VEC_iterate(tree, builtin_decls, i, decl); i++)
|
4849 |
|
|
if (DECL_NAME (decl) == name)
|
4850 |
|
|
return decl;
|
4851 |
|
|
|
4852 |
|
|
return NULL_TREE;
|
4853 |
|
|
}
|
4854 |
|
|
|
4855 |
|
|
/* The code below eventually exposes gnat_install_builtins, which declares
|
4856 |
|
|
the builtin types and functions we might need, either internally or as
|
4857 |
|
|
user accessible facilities.
|
4858 |
|
|
|
4859 |
|
|
??? This is a first implementation shot, still in rough shape. It is
|
4860 |
|
|
heavily inspired from the "C" family implementation, with chunks copied
|
4861 |
|
|
verbatim from there.
|
4862 |
|
|
|
4863 |
|
|
Two obvious TODO candidates are
|
4864 |
|
|
o Use a more efficient name/decl mapping scheme
|
4865 |
|
|
o Devise a middle-end infrastructure to avoid having to copy
|
4866 |
|
|
pieces between front-ends. */
|
4867 |
|
|
|
4868 |
|
|
/* ----------------------------------------------------------------------- *
|
4869 |
|
|
* BUILTIN ELEMENTARY TYPES *
|
4870 |
|
|
* ----------------------------------------------------------------------- */
|
4871 |
|
|
|
4872 |
|
|
/* Standard data types to be used in builtin argument declarations. */
|
4873 |
|
|
|
4874 |
|
|
enum c_tree_index
|
4875 |
|
|
{
|
4876 |
|
|
CTI_SIGNED_SIZE_TYPE, /* For format checking only. */
|
4877 |
|
|
CTI_STRING_TYPE,
|
4878 |
|
|
CTI_CONST_STRING_TYPE,
|
4879 |
|
|
|
4880 |
|
|
CTI_MAX
|
4881 |
|
|
};
|
4882 |
|
|
|
4883 |
|
|
static tree c_global_trees[CTI_MAX];
|
4884 |
|
|
|
4885 |
|
|
#define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE]
|
4886 |
|
|
#define string_type_node c_global_trees[CTI_STRING_TYPE]
|
4887 |
|
|
#define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE]
|
4888 |
|
|
|
4889 |
|
|
/* ??? In addition some attribute handlers, we currently don't support a
|
4890 |
|
|
(small) number of builtin-types, which in turns inhibits support for a
|
4891 |
|
|
number of builtin functions. */
|
4892 |
|
|
#define wint_type_node void_type_node
|
4893 |
|
|
#define intmax_type_node void_type_node
|
4894 |
|
|
#define uintmax_type_node void_type_node
|
4895 |
|
|
|
4896 |
|
|
/* Build the void_list_node (void_type_node having been created). */
|
4897 |
|
|
|
4898 |
|
|
static tree
|
4899 |
|
|
build_void_list_node (void)
|
4900 |
|
|
{
|
4901 |
|
|
tree t = build_tree_list (NULL_TREE, void_type_node);
|
4902 |
|
|
return t;
|
4903 |
|
|
}
|
4904 |
|
|
|
4905 |
|
|
/* Used to help initialize the builtin-types.def table. When a type of
|
4906 |
|
|
the correct size doesn't exist, use error_mark_node instead of NULL.
|
4907 |
|
|
The later results in segfaults even when a decl using the type doesn't
|
4908 |
|
|
get invoked. */
|
4909 |
|
|
|
4910 |
|
|
static tree
|
4911 |
|
|
builtin_type_for_size (int size, bool unsignedp)
|
4912 |
|
|
{
|
4913 |
|
|
tree type = lang_hooks.types.type_for_size (size, unsignedp);
|
4914 |
|
|
return type ? type : error_mark_node;
|
4915 |
|
|
}
|
4916 |
|
|
|
4917 |
|
|
/* Build/push the elementary type decls that builtin functions/types
|
4918 |
|
|
will need. */
|
4919 |
|
|
|
4920 |
|
|
static void
|
4921 |
|
|
install_builtin_elementary_types (void)
|
4922 |
|
|
{
|
4923 |
|
|
signed_size_type_node = size_type_node;
|
4924 |
|
|
pid_type_node = integer_type_node;
|
4925 |
|
|
void_list_node = build_void_list_node ();
|
4926 |
|
|
|
4927 |
|
|
string_type_node = build_pointer_type (char_type_node);
|
4928 |
|
|
const_string_type_node
|
4929 |
|
|
= build_pointer_type (build_qualified_type
|
4930 |
|
|
(char_type_node, TYPE_QUAL_CONST));
|
4931 |
|
|
}
|
4932 |
|
|
|
4933 |
|
|
/* ----------------------------------------------------------------------- *
|
4934 |
|
|
* BUILTIN FUNCTION TYPES *
|
4935 |
|
|
* ----------------------------------------------------------------------- */
|
4936 |
|
|
|
4937 |
|
|
/* Now, builtin function types per se. */
|
4938 |
|
|
|
4939 |
|
|
enum c_builtin_type
|
4940 |
|
|
{
|
4941 |
|
|
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
|
4942 |
|
|
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
|
4943 |
|
|
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
|
4944 |
|
|
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
|
4945 |
|
|
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
4946 |
|
|
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
4947 |
|
|
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
|
4948 |
|
|
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
|
4949 |
|
|
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
|
4950 |
|
|
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
|
4951 |
|
|
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
|
4952 |
|
|
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
|
4953 |
|
|
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
4954 |
|
|
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
4955 |
|
|
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
|
4956 |
|
|
NAME,
|
4957 |
|
|
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
|
4958 |
|
|
#include "builtin-types.def"
|
4959 |
|
|
#undef DEF_PRIMITIVE_TYPE
|
4960 |
|
|
#undef DEF_FUNCTION_TYPE_0
|
4961 |
|
|
#undef DEF_FUNCTION_TYPE_1
|
4962 |
|
|
#undef DEF_FUNCTION_TYPE_2
|
4963 |
|
|
#undef DEF_FUNCTION_TYPE_3
|
4964 |
|
|
#undef DEF_FUNCTION_TYPE_4
|
4965 |
|
|
#undef DEF_FUNCTION_TYPE_5
|
4966 |
|
|
#undef DEF_FUNCTION_TYPE_6
|
4967 |
|
|
#undef DEF_FUNCTION_TYPE_7
|
4968 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_0
|
4969 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_1
|
4970 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_2
|
4971 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_3
|
4972 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_4
|
4973 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_5
|
4974 |
|
|
#undef DEF_POINTER_TYPE
|
4975 |
|
|
BT_LAST
|
4976 |
|
|
};
|
4977 |
|
|
|
4978 |
|
|
typedef enum c_builtin_type builtin_type;
|
4979 |
|
|
|
4980 |
|
|
/* A temporary array used in communication with def_fn_type. */
|
4981 |
|
|
static GTY(()) tree builtin_types[(int) BT_LAST + 1];
|
4982 |
|
|
|
4983 |
|
|
/* A helper function for install_builtin_types. Build function type
|
4984 |
|
|
for DEF with return type RET and N arguments. If VAR is true, then the
|
4985 |
|
|
function should be variadic after those N arguments.
|
4986 |
|
|
|
4987 |
|
|
Takes special care not to ICE if any of the types involved are
|
4988 |
|
|
error_mark_node, which indicates that said type is not in fact available
|
4989 |
|
|
(see builtin_type_for_size). In which case the function type as a whole
|
4990 |
|
|
should be error_mark_node. */
|
4991 |
|
|
|
4992 |
|
|
static void
|
4993 |
|
|
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
|
4994 |
|
|
{
|
4995 |
|
|
tree args = NULL, t;
|
4996 |
|
|
va_list list;
|
4997 |
|
|
int i;
|
4998 |
|
|
|
4999 |
|
|
va_start (list, n);
|
5000 |
|
|
for (i = 0; i < n; ++i)
|
5001 |
|
|
{
|
5002 |
|
|
builtin_type a = (builtin_type) va_arg (list, int);
|
5003 |
|
|
t = builtin_types[a];
|
5004 |
|
|
if (t == error_mark_node)
|
5005 |
|
|
goto egress;
|
5006 |
|
|
args = tree_cons (NULL_TREE, t, args);
|
5007 |
|
|
}
|
5008 |
|
|
va_end (list);
|
5009 |
|
|
|
5010 |
|
|
args = nreverse (args);
|
5011 |
|
|
if (!var)
|
5012 |
|
|
args = chainon (args, void_list_node);
|
5013 |
|
|
|
5014 |
|
|
t = builtin_types[ret];
|
5015 |
|
|
if (t == error_mark_node)
|
5016 |
|
|
goto egress;
|
5017 |
|
|
t = build_function_type (t, args);
|
5018 |
|
|
|
5019 |
|
|
egress:
|
5020 |
|
|
builtin_types[def] = t;
|
5021 |
|
|
}
|
5022 |
|
|
|
5023 |
|
|
/* Build the builtin function types and install them in the builtin_types
|
5024 |
|
|
array for later use in builtin function decls. */
|
5025 |
|
|
|
5026 |
|
|
static void
|
5027 |
|
|
install_builtin_function_types (void)
|
5028 |
|
|
{
|
5029 |
|
|
tree va_list_ref_type_node;
|
5030 |
|
|
tree va_list_arg_type_node;
|
5031 |
|
|
|
5032 |
|
|
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
|
5033 |
|
|
{
|
5034 |
|
|
va_list_arg_type_node = va_list_ref_type_node =
|
5035 |
|
|
build_pointer_type (TREE_TYPE (va_list_type_node));
|
5036 |
|
|
}
|
5037 |
|
|
else
|
5038 |
|
|
{
|
5039 |
|
|
va_list_arg_type_node = va_list_type_node;
|
5040 |
|
|
va_list_ref_type_node = build_reference_type (va_list_type_node);
|
5041 |
|
|
}
|
5042 |
|
|
|
5043 |
|
|
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
|
5044 |
|
|
builtin_types[ENUM] = VALUE;
|
5045 |
|
|
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
|
5046 |
|
|
def_fn_type (ENUM, RETURN, 0, 0);
|
5047 |
|
|
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
|
5048 |
|
|
def_fn_type (ENUM, RETURN, 0, 1, ARG1);
|
5049 |
|
|
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
|
5050 |
|
|
def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
|
5051 |
|
|
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
5052 |
|
|
def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
|
5053 |
|
|
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
5054 |
|
|
def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
|
5055 |
|
|
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
|
5056 |
|
|
def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
|
5057 |
|
|
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
|
5058 |
|
|
ARG6) \
|
5059 |
|
|
def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
|
5060 |
|
|
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
|
5061 |
|
|
ARG6, ARG7) \
|
5062 |
|
|
def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
|
5063 |
|
|
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
|
5064 |
|
|
def_fn_type (ENUM, RETURN, 1, 0);
|
5065 |
|
|
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
|
5066 |
|
|
def_fn_type (ENUM, RETURN, 1, 1, ARG1);
|
5067 |
|
|
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
|
5068 |
|
|
def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
|
5069 |
|
|
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
5070 |
|
|
def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
|
5071 |
|
|
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
5072 |
|
|
def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
|
5073 |
|
|
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
|
5074 |
|
|
def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
|
5075 |
|
|
#define DEF_POINTER_TYPE(ENUM, TYPE) \
|
5076 |
|
|
builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
|
5077 |
|
|
|
5078 |
|
|
#include "builtin-types.def"
|
5079 |
|
|
|
5080 |
|
|
#undef DEF_PRIMITIVE_TYPE
|
5081 |
|
|
#undef DEF_FUNCTION_TYPE_1
|
5082 |
|
|
#undef DEF_FUNCTION_TYPE_2
|
5083 |
|
|
#undef DEF_FUNCTION_TYPE_3
|
5084 |
|
|
#undef DEF_FUNCTION_TYPE_4
|
5085 |
|
|
#undef DEF_FUNCTION_TYPE_5
|
5086 |
|
|
#undef DEF_FUNCTION_TYPE_6
|
5087 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_0
|
5088 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_1
|
5089 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_2
|
5090 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_3
|
5091 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_4
|
5092 |
|
|
#undef DEF_FUNCTION_TYPE_VAR_5
|
5093 |
|
|
#undef DEF_POINTER_TYPE
|
5094 |
|
|
builtin_types[(int) BT_LAST] = NULL_TREE;
|
5095 |
|
|
}
|
5096 |
|
|
|
5097 |
|
|
/* ----------------------------------------------------------------------- *
|
5098 |
|
|
* BUILTIN ATTRIBUTES *
|
5099 |
|
|
* ----------------------------------------------------------------------- */
|
5100 |
|
|
|
5101 |
|
|
enum built_in_attribute
|
5102 |
|
|
{
|
5103 |
|
|
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
|
5104 |
|
|
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
|
5105 |
|
|
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
|
5106 |
|
|
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
|
5107 |
|
|
#include "builtin-attrs.def"
|
5108 |
|
|
#undef DEF_ATTR_NULL_TREE
|
5109 |
|
|
#undef DEF_ATTR_INT
|
5110 |
|
|
#undef DEF_ATTR_IDENT
|
5111 |
|
|
#undef DEF_ATTR_TREE_LIST
|
5112 |
|
|
ATTR_LAST
|
5113 |
|
|
};
|
5114 |
|
|
|
5115 |
|
|
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
|
5116 |
|
|
|
5117 |
|
|
static void
|
5118 |
|
|
install_builtin_attributes (void)
|
5119 |
|
|
{
|
5120 |
|
|
/* Fill in the built_in_attributes array. */
|
5121 |
|
|
#define DEF_ATTR_NULL_TREE(ENUM) \
|
5122 |
|
|
built_in_attributes[(int) ENUM] = NULL_TREE;
|
5123 |
|
|
#define DEF_ATTR_INT(ENUM, VALUE) \
|
5124 |
|
|
built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
|
5125 |
|
|
#define DEF_ATTR_IDENT(ENUM, STRING) \
|
5126 |
|
|
built_in_attributes[(int) ENUM] = get_identifier (STRING);
|
5127 |
|
|
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
|
5128 |
|
|
built_in_attributes[(int) ENUM] \
|
5129 |
|
|
= tree_cons (built_in_attributes[(int) PURPOSE], \
|
5130 |
|
|
built_in_attributes[(int) VALUE], \
|
5131 |
|
|
built_in_attributes[(int) CHAIN]);
|
5132 |
|
|
#include "builtin-attrs.def"
|
5133 |
|
|
#undef DEF_ATTR_NULL_TREE
|
5134 |
|
|
#undef DEF_ATTR_INT
|
5135 |
|
|
#undef DEF_ATTR_IDENT
|
5136 |
|
|
#undef DEF_ATTR_TREE_LIST
|
5137 |
|
|
}
|
5138 |
|
|
|
5139 |
|
|
/* Handle a "const" attribute; arguments as in
|
5140 |
|
|
struct attribute_spec.handler. */
|
5141 |
|
|
|
5142 |
|
|
static tree
|
5143 |
|
|
handle_const_attribute (tree *node, tree ARG_UNUSED (name),
|
5144 |
|
|
tree ARG_UNUSED (args), int ARG_UNUSED (flags),
|
5145 |
|
|
bool *no_add_attrs)
|
5146 |
|
|
{
|
5147 |
|
|
if (TREE_CODE (*node) == FUNCTION_DECL)
|
5148 |
|
|
TREE_READONLY (*node) = 1;
|
5149 |
|
|
else
|
5150 |
|
|
*no_add_attrs = true;
|
5151 |
|
|
|
5152 |
|
|
return NULL_TREE;
|
5153 |
|
|
}
|
5154 |
|
|
|
5155 |
|
|
/* Handle a "nothrow" attribute; arguments as in
|
5156 |
|
|
struct attribute_spec.handler. */
|
5157 |
|
|
|
5158 |
|
|
static tree
|
5159 |
|
|
handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
|
5160 |
|
|
tree ARG_UNUSED (args), int ARG_UNUSED (flags),
|
5161 |
|
|
bool *no_add_attrs)
|
5162 |
|
|
{
|
5163 |
|
|
if (TREE_CODE (*node) == FUNCTION_DECL)
|
5164 |
|
|
TREE_NOTHROW (*node) = 1;
|
5165 |
|
|
else
|
5166 |
|
|
*no_add_attrs = true;
|
5167 |
|
|
|
5168 |
|
|
return NULL_TREE;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
/* Handle a "pure" attribute; arguments as in
|
5172 |
|
|
struct attribute_spec.handler. */
|
5173 |
|
|
|
5174 |
|
|
static tree
|
5175 |
|
|
handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
5176 |
|
|
int ARG_UNUSED (flags), bool *no_add_attrs)
|
5177 |
|
|
{
|
5178 |
|
|
if (TREE_CODE (*node) == FUNCTION_DECL)
|
5179 |
|
|
DECL_PURE_P (*node) = 1;
|
5180 |
|
|
/* ??? TODO: Support types. */
|
5181 |
|
|
else
|
5182 |
|
|
{
|
5183 |
|
|
warning (OPT_Wattributes, "%qs attribute ignored",
|
5184 |
|
|
IDENTIFIER_POINTER (name));
|
5185 |
|
|
*no_add_attrs = true;
|
5186 |
|
|
}
|
5187 |
|
|
|
5188 |
|
|
return NULL_TREE;
|
5189 |
|
|
}
|
5190 |
|
|
|
5191 |
|
|
/* Handle a "no vops" attribute; arguments as in
|
5192 |
|
|
struct attribute_spec.handler. */
|
5193 |
|
|
|
5194 |
|
|
static tree
|
5195 |
|
|
handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
|
5196 |
|
|
tree ARG_UNUSED (args), int ARG_UNUSED (flags),
|
5197 |
|
|
bool *ARG_UNUSED (no_add_attrs))
|
5198 |
|
|
{
|
5199 |
|
|
gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
|
5200 |
|
|
DECL_IS_NOVOPS (*node) = 1;
|
5201 |
|
|
return NULL_TREE;
|
5202 |
|
|
}
|
5203 |
|
|
|
5204 |
|
|
/* Helper for nonnull attribute handling; fetch the operand number
|
5205 |
|
|
from the attribute argument list. */
|
5206 |
|
|
|
5207 |
|
|
static bool
|
5208 |
|
|
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
|
5209 |
|
|
{
|
5210 |
|
|
/* Verify the arg number is a constant. */
|
5211 |
|
|
if (TREE_CODE (arg_num_expr) != INTEGER_CST
|
5212 |
|
|
|| TREE_INT_CST_HIGH (arg_num_expr) != 0)
|
5213 |
|
|
return false;
|
5214 |
|
|
|
5215 |
|
|
*valp = TREE_INT_CST_LOW (arg_num_expr);
|
5216 |
|
|
return true;
|
5217 |
|
|
}
|
5218 |
|
|
|
5219 |
|
|
/* Handle the "nonnull" attribute. */
|
5220 |
|
|
static tree
|
5221 |
|
|
handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
|
5222 |
|
|
tree args, int ARG_UNUSED (flags),
|
5223 |
|
|
bool *no_add_attrs)
|
5224 |
|
|
{
|
5225 |
|
|
tree type = *node;
|
5226 |
|
|
unsigned HOST_WIDE_INT attr_arg_num;
|
5227 |
|
|
|
5228 |
|
|
/* If no arguments are specified, all pointer arguments should be
|
5229 |
|
|
non-null. Verify a full prototype is given so that the arguments
|
5230 |
|
|
will have the correct types when we actually check them later. */
|
5231 |
|
|
if (!args)
|
5232 |
|
|
{
|
5233 |
|
|
if (!TYPE_ARG_TYPES (type))
|
5234 |
|
|
{
|
5235 |
|
|
error ("nonnull attribute without arguments on a non-prototype");
|
5236 |
|
|
*no_add_attrs = true;
|
5237 |
|
|
}
|
5238 |
|
|
return NULL_TREE;
|
5239 |
|
|
}
|
5240 |
|
|
|
5241 |
|
|
/* Argument list specified. Verify that each argument number references
|
5242 |
|
|
a pointer argument. */
|
5243 |
|
|
for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
|
5244 |
|
|
{
|
5245 |
|
|
tree argument;
|
5246 |
|
|
unsigned HOST_WIDE_INT arg_num = 0, ck_num;
|
5247 |
|
|
|
5248 |
|
|
if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
|
5249 |
|
|
{
|
5250 |
|
|
error ("nonnull argument has invalid operand number (argument %lu)",
|
5251 |
|
|
(unsigned long) attr_arg_num);
|
5252 |
|
|
*no_add_attrs = true;
|
5253 |
|
|
return NULL_TREE;
|
5254 |
|
|
}
|
5255 |
|
|
|
5256 |
|
|
argument = TYPE_ARG_TYPES (type);
|
5257 |
|
|
if (argument)
|
5258 |
|
|
{
|
5259 |
|
|
for (ck_num = 1; ; ck_num++)
|
5260 |
|
|
{
|
5261 |
|
|
if (!argument || ck_num == arg_num)
|
5262 |
|
|
break;
|
5263 |
|
|
argument = TREE_CHAIN (argument);
|
5264 |
|
|
}
|
5265 |
|
|
|
5266 |
|
|
if (!argument
|
5267 |
|
|
|| TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
|
5268 |
|
|
{
|
5269 |
|
|
error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
|
5270 |
|
|
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
5271 |
|
|
*no_add_attrs = true;
|
5272 |
|
|
return NULL_TREE;
|
5273 |
|
|
}
|
5274 |
|
|
|
5275 |
|
|
if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
|
5276 |
|
|
{
|
5277 |
|
|
error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
|
5278 |
|
|
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
5279 |
|
|
*no_add_attrs = true;
|
5280 |
|
|
return NULL_TREE;
|
5281 |
|
|
}
|
5282 |
|
|
}
|
5283 |
|
|
}
|
5284 |
|
|
|
5285 |
|
|
return NULL_TREE;
|
5286 |
|
|
}
|
5287 |
|
|
|
5288 |
|
|
/* Handle a "sentinel" attribute. */
|
5289 |
|
|
|
5290 |
|
|
static tree
|
5291 |
|
|
handle_sentinel_attribute (tree *node, tree name, tree args,
|
5292 |
|
|
int ARG_UNUSED (flags), bool *no_add_attrs)
|
5293 |
|
|
{
|
5294 |
|
|
tree params = TYPE_ARG_TYPES (*node);
|
5295 |
|
|
|
5296 |
|
|
if (!params)
|
5297 |
|
|
{
|
5298 |
|
|
warning (OPT_Wattributes,
|
5299 |
|
|
"%qs attribute requires prototypes with named arguments",
|
5300 |
|
|
IDENTIFIER_POINTER (name));
|
5301 |
|
|
*no_add_attrs = true;
|
5302 |
|
|
}
|
5303 |
|
|
else
|
5304 |
|
|
{
|
5305 |
|
|
while (TREE_CHAIN (params))
|
5306 |
|
|
params = TREE_CHAIN (params);
|
5307 |
|
|
|
5308 |
|
|
if (VOID_TYPE_P (TREE_VALUE (params)))
|
5309 |
|
|
{
|
5310 |
|
|
warning (OPT_Wattributes,
|
5311 |
|
|
"%qs attribute only applies to variadic functions",
|
5312 |
|
|
IDENTIFIER_POINTER (name));
|
5313 |
|
|
*no_add_attrs = true;
|
5314 |
|
|
}
|
5315 |
|
|
}
|
5316 |
|
|
|
5317 |
|
|
if (args)
|
5318 |
|
|
{
|
5319 |
|
|
tree position = TREE_VALUE (args);
|
5320 |
|
|
|
5321 |
|
|
if (TREE_CODE (position) != INTEGER_CST)
|
5322 |
|
|
{
|
5323 |
|
|
warning (0, "requested position is not an integer constant");
|
5324 |
|
|
*no_add_attrs = true;
|
5325 |
|
|
}
|
5326 |
|
|
else
|
5327 |
|
|
{
|
5328 |
|
|
if (tree_int_cst_lt (position, integer_zero_node))
|
5329 |
|
|
{
|
5330 |
|
|
warning (0, "requested position is less than zero");
|
5331 |
|
|
*no_add_attrs = true;
|
5332 |
|
|
}
|
5333 |
|
|
}
|
5334 |
|
|
}
|
5335 |
|
|
|
5336 |
|
|
return NULL_TREE;
|
5337 |
|
|
}
|
5338 |
|
|
|
5339 |
|
|
/* Handle a "noreturn" attribute; arguments as in
|
5340 |
|
|
struct attribute_spec.handler. */
|
5341 |
|
|
|
5342 |
|
|
static tree
|
5343 |
|
|
handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
5344 |
|
|
int ARG_UNUSED (flags), bool *no_add_attrs)
|
5345 |
|
|
{
|
5346 |
|
|
tree type = TREE_TYPE (*node);
|
5347 |
|
|
|
5348 |
|
|
/* See FIXME comment in c_common_attribute_table. */
|
5349 |
|
|
if (TREE_CODE (*node) == FUNCTION_DECL)
|
5350 |
|
|
TREE_THIS_VOLATILE (*node) = 1;
|
5351 |
|
|
else if (TREE_CODE (type) == POINTER_TYPE
|
5352 |
|
|
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
5353 |
|
|
TREE_TYPE (*node)
|
5354 |
|
|
= build_pointer_type
|
5355 |
|
|
(build_type_variant (TREE_TYPE (type),
|
5356 |
|
|
TYPE_READONLY (TREE_TYPE (type)), 1));
|
5357 |
|
|
else
|
5358 |
|
|
{
|
5359 |
|
|
warning (OPT_Wattributes, "%qs attribute ignored",
|
5360 |
|
|
IDENTIFIER_POINTER (name));
|
5361 |
|
|
*no_add_attrs = true;
|
5362 |
|
|
}
|
5363 |
|
|
|
5364 |
|
|
return NULL_TREE;
|
5365 |
|
|
}
|
5366 |
|
|
|
5367 |
|
|
/* Handle a "malloc" attribute; arguments as in
|
5368 |
|
|
struct attribute_spec.handler. */
|
5369 |
|
|
|
5370 |
|
|
static tree
|
5371 |
|
|
handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
5372 |
|
|
int ARG_UNUSED (flags), bool *no_add_attrs)
|
5373 |
|
|
{
|
5374 |
|
|
if (TREE_CODE (*node) == FUNCTION_DECL
|
5375 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
|
5376 |
|
|
DECL_IS_MALLOC (*node) = 1;
|
5377 |
|
|
else
|
5378 |
|
|
{
|
5379 |
|
|
warning (OPT_Wattributes, "%qs attribute ignored",
|
5380 |
|
|
IDENTIFIER_POINTER (name));
|
5381 |
|
|
*no_add_attrs = true;
|
5382 |
|
|
}
|
5383 |
|
|
|
5384 |
|
|
return NULL_TREE;
|
5385 |
|
|
}
|
5386 |
|
|
|
5387 |
|
|
/* Fake handler for attributes we don't properly support. */
|
5388 |
|
|
|
5389 |
|
|
tree
|
5390 |
|
|
fake_attribute_handler (tree * ARG_UNUSED (node),
|
5391 |
|
|
tree ARG_UNUSED (name),
|
5392 |
|
|
tree ARG_UNUSED (args),
|
5393 |
|
|
int ARG_UNUSED (flags),
|
5394 |
|
|
bool * ARG_UNUSED (no_add_attrs))
|
5395 |
|
|
{
|
5396 |
|
|
return NULL_TREE;
|
5397 |
|
|
}
|
5398 |
|
|
|
5399 |
|
|
/* Handle a "type_generic" attribute. */
|
5400 |
|
|
|
5401 |
|
|
static tree
|
5402 |
|
|
handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
|
5403 |
|
|
tree ARG_UNUSED (args), int ARG_UNUSED (flags),
|
5404 |
|
|
bool * ARG_UNUSED (no_add_attrs))
|
5405 |
|
|
{
|
5406 |
|
|
tree params;
|
5407 |
|
|
|
5408 |
|
|
/* Ensure we have a function type. */
|
5409 |
|
|
gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);
|
5410 |
|
|
|
5411 |
|
|
params = TYPE_ARG_TYPES (*node);
|
5412 |
|
|
while (params && ! VOID_TYPE_P (TREE_VALUE (params)))
|
5413 |
|
|
params = TREE_CHAIN (params);
|
5414 |
|
|
|
5415 |
|
|
/* Ensure we have a variadic function. */
|
5416 |
|
|
gcc_assert (!params);
|
5417 |
|
|
|
5418 |
|
|
return NULL_TREE;
|
5419 |
|
|
}
|
5420 |
|
|
|
5421 |
|
|
/* Handle a "vector_size" attribute; arguments as in
|
5422 |
|
|
struct attribute_spec.handler. */
|
5423 |
|
|
|
5424 |
|
|
static tree
|
5425 |
|
|
handle_vector_size_attribute (tree *node, tree name, tree args,
|
5426 |
|
|
int ARG_UNUSED (flags),
|
5427 |
|
|
bool *no_add_attrs)
|
5428 |
|
|
{
|
5429 |
|
|
unsigned HOST_WIDE_INT vecsize, nunits;
|
5430 |
|
|
enum machine_mode orig_mode;
|
5431 |
|
|
tree type = *node, new_type, size;
|
5432 |
|
|
|
5433 |
|
|
*no_add_attrs = true;
|
5434 |
|
|
|
5435 |
|
|
size = TREE_VALUE (args);
|
5436 |
|
|
|
5437 |
|
|
if (!host_integerp (size, 1))
|
5438 |
|
|
{
|
5439 |
|
|
warning (OPT_Wattributes, "%qs attribute ignored",
|
5440 |
|
|
IDENTIFIER_POINTER (name));
|
5441 |
|
|
return NULL_TREE;
|
5442 |
|
|
}
|
5443 |
|
|
|
5444 |
|
|
/* Get the vector size (in bytes). */
|
5445 |
|
|
vecsize = tree_low_cst (size, 1);
|
5446 |
|
|
|
5447 |
|
|
/* We need to provide for vector pointers, vector arrays, and
|
5448 |
|
|
functions returning vectors. For example:
|
5449 |
|
|
|
5450 |
|
|
__attribute__((vector_size(16))) short *foo;
|
5451 |
|
|
|
5452 |
|
|
In this case, the mode is SI, but the type being modified is
|
5453 |
|
|
HI, so we need to look further. */
|
5454 |
|
|
|
5455 |
|
|
while (POINTER_TYPE_P (type)
|
5456 |
|
|
|| TREE_CODE (type) == FUNCTION_TYPE
|
5457 |
|
|
|| TREE_CODE (type) == METHOD_TYPE
|
5458 |
|
|
|| TREE_CODE (type) == ARRAY_TYPE
|
5459 |
|
|
|| TREE_CODE (type) == OFFSET_TYPE)
|
5460 |
|
|
type = TREE_TYPE (type);
|
5461 |
|
|
|
5462 |
|
|
/* Get the mode of the type being modified. */
|
5463 |
|
|
orig_mode = TYPE_MODE (type);
|
5464 |
|
|
|
5465 |
|
|
if ((!INTEGRAL_TYPE_P (type)
|
5466 |
|
|
&& !SCALAR_FLOAT_TYPE_P (type)
|
5467 |
|
|
&& !FIXED_POINT_TYPE_P (type))
|
5468 |
|
|
|| (!SCALAR_FLOAT_MODE_P (orig_mode)
|
5469 |
|
|
&& GET_MODE_CLASS (orig_mode) != MODE_INT
|
5470 |
|
|
&& !ALL_SCALAR_FIXED_POINT_MODE_P (orig_mode))
|
5471 |
|
|
|| !host_integerp (TYPE_SIZE_UNIT (type), 1)
|
5472 |
|
|
|| TREE_CODE (type) == BOOLEAN_TYPE)
|
5473 |
|
|
{
|
5474 |
|
|
error ("invalid vector type for attribute %qs",
|
5475 |
|
|
IDENTIFIER_POINTER (name));
|
5476 |
|
|
return NULL_TREE;
|
5477 |
|
|
}
|
5478 |
|
|
|
5479 |
|
|
if (vecsize % tree_low_cst (TYPE_SIZE_UNIT (type), 1))
|
5480 |
|
|
{
|
5481 |
|
|
error ("vector size not an integral multiple of component size");
|
5482 |
|
|
return NULL;
|
5483 |
|
|
}
|
5484 |
|
|
|
5485 |
|
|
if (vecsize == 0)
|
5486 |
|
|
{
|
5487 |
|
|
error ("zero vector size");
|
5488 |
|
|
return NULL;
|
5489 |
|
|
}
|
5490 |
|
|
|
5491 |
|
|
/* Calculate how many units fit in the vector. */
|
5492 |
|
|
nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
5493 |
|
|
if (nunits & (nunits - 1))
|
5494 |
|
|
{
|
5495 |
|
|
error ("number of components of the vector not a power of two");
|
5496 |
|
|
return NULL_TREE;
|
5497 |
|
|
}
|
5498 |
|
|
|
5499 |
|
|
new_type = build_vector_type (type, nunits);
|
5500 |
|
|
|
5501 |
|
|
/* Build back pointers if needed. */
|
5502 |
|
|
*node = lang_hooks.types.reconstruct_complex_type (*node, new_type);
|
5503 |
|
|
|
5504 |
|
|
return NULL_TREE;
|
5505 |
|
|
}
|
5506 |
|
|
|
5507 |
|
|
/* Handle a "vector_type" attribute; arguments as in
|
5508 |
|
|
struct attribute_spec.handler. */
|
5509 |
|
|
|
5510 |
|
|
static tree
|
5511 |
|
|
handle_vector_type_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
5512 |
|
|
int ARG_UNUSED (flags),
|
5513 |
|
|
bool *no_add_attrs)
|
5514 |
|
|
{
|
5515 |
|
|
/* Vector representative type and size. */
|
5516 |
|
|
tree rep_type = *node;
|
5517 |
|
|
tree rep_size = TYPE_SIZE_UNIT (rep_type);
|
5518 |
|
|
tree rep_name;
|
5519 |
|
|
|
5520 |
|
|
/* Vector size in bytes and number of units. */
|
5521 |
|
|
unsigned HOST_WIDE_INT vec_bytes, vec_units;
|
5522 |
|
|
|
5523 |
|
|
/* Vector element type and mode. */
|
5524 |
|
|
tree elem_type;
|
5525 |
|
|
enum machine_mode elem_mode;
|
5526 |
|
|
|
5527 |
|
|
*no_add_attrs = true;
|
5528 |
|
|
|
5529 |
|
|
/* Get the representative array type, possibly nested within a
|
5530 |
|
|
padding record e.g. for alignment purposes. */
|
5531 |
|
|
|
5532 |
|
|
if (TYPE_IS_PADDING_P (rep_type))
|
5533 |
|
|
rep_type = TREE_TYPE (TYPE_FIELDS (rep_type));
|
5534 |
|
|
|
5535 |
|
|
if (TREE_CODE (rep_type) != ARRAY_TYPE)
|
5536 |
|
|
{
|
5537 |
|
|
error ("attribute %qs applies to array types only",
|
5538 |
|
|
IDENTIFIER_POINTER (name));
|
5539 |
|
|
return NULL_TREE;
|
5540 |
|
|
}
|
5541 |
|
|
|
5542 |
|
|
/* Silently punt on variable sizes. We can't make vector types for them,
|
5543 |
|
|
need to ignore them on front-end generated subtypes of unconstrained
|
5544 |
|
|
bases, and this attribute is for binding implementors, not end-users, so
|
5545 |
|
|
we should never get there from legitimate explicit uses. */
|
5546 |
|
|
|
5547 |
|
|
if (!host_integerp (rep_size, 1))
|
5548 |
|
|
return NULL_TREE;
|
5549 |
|
|
|
5550 |
|
|
/* Get the element type/mode and check this is something we know
|
5551 |
|
|
how to make vectors of. */
|
5552 |
|
|
|
5553 |
|
|
elem_type = TREE_TYPE (rep_type);
|
5554 |
|
|
elem_mode = TYPE_MODE (elem_type);
|
5555 |
|
|
|
5556 |
|
|
if ((!INTEGRAL_TYPE_P (elem_type)
|
5557 |
|
|
&& !SCALAR_FLOAT_TYPE_P (elem_type)
|
5558 |
|
|
&& !FIXED_POINT_TYPE_P (elem_type))
|
5559 |
|
|
|| (!SCALAR_FLOAT_MODE_P (elem_mode)
|
5560 |
|
|
&& GET_MODE_CLASS (elem_mode) != MODE_INT
|
5561 |
|
|
&& !ALL_SCALAR_FIXED_POINT_MODE_P (elem_mode))
|
5562 |
|
|
|| !host_integerp (TYPE_SIZE_UNIT (elem_type), 1))
|
5563 |
|
|
{
|
5564 |
|
|
error ("invalid element type for attribute %qs",
|
5565 |
|
|
IDENTIFIER_POINTER (name));
|
5566 |
|
|
return NULL_TREE;
|
5567 |
|
|
}
|
5568 |
|
|
|
5569 |
|
|
/* Sanity check the vector size and element type consistency. */
|
5570 |
|
|
|
5571 |
|
|
vec_bytes = tree_low_cst (rep_size, 1);
|
5572 |
|
|
|
5573 |
|
|
if (vec_bytes % tree_low_cst (TYPE_SIZE_UNIT (elem_type), 1))
|
5574 |
|
|
{
|
5575 |
|
|
error ("vector size not an integral multiple of component size");
|
5576 |
|
|
return NULL;
|
5577 |
|
|
}
|
5578 |
|
|
|
5579 |
|
|
if (vec_bytes == 0)
|
5580 |
|
|
{
|
5581 |
|
|
error ("zero vector size");
|
5582 |
|
|
return NULL;
|
5583 |
|
|
}
|
5584 |
|
|
|
5585 |
|
|
vec_units = vec_bytes / tree_low_cst (TYPE_SIZE_UNIT (elem_type), 1);
|
5586 |
|
|
if (vec_units & (vec_units - 1))
|
5587 |
|
|
{
|
5588 |
|
|
error ("number of components of the vector not a power of two");
|
5589 |
|
|
return NULL_TREE;
|
5590 |
|
|
}
|
5591 |
|
|
|
5592 |
|
|
/* Build the vector type and replace. */
|
5593 |
|
|
|
5594 |
|
|
*node = build_vector_type (elem_type, vec_units);
|
5595 |
|
|
rep_name = TYPE_NAME (rep_type);
|
5596 |
|
|
if (TREE_CODE (rep_name) == TYPE_DECL)
|
5597 |
|
|
rep_name = DECL_NAME (rep_name);
|
5598 |
|
|
TYPE_NAME (*node) = rep_name;
|
5599 |
|
|
TYPE_REPRESENTATIVE_ARRAY (*node) = rep_type;
|
5600 |
|
|
|
5601 |
|
|
return NULL_TREE;
|
5602 |
|
|
}
|
5603 |
|
|
|
5604 |
|
|
/* ----------------------------------------------------------------------- *
|
5605 |
|
|
* BUILTIN FUNCTIONS *
|
5606 |
|
|
* ----------------------------------------------------------------------- */
|
5607 |
|
|
|
5608 |
|
|
/* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two
|
5609 |
|
|
names. Does not declare a non-__builtin_ function if flag_no_builtin, or
|
5610 |
|
|
if nonansi_p and flag_no_nonansi_builtin. */
|
5611 |
|
|
|
5612 |
|
|
static void
|
5613 |
|
|
def_builtin_1 (enum built_in_function fncode,
|
5614 |
|
|
const char *name,
|
5615 |
|
|
enum built_in_class fnclass,
|
5616 |
|
|
tree fntype, tree libtype,
|
5617 |
|
|
bool both_p, bool fallback_p,
|
5618 |
|
|
bool nonansi_p ATTRIBUTE_UNUSED,
|
5619 |
|
|
tree fnattrs, bool implicit_p)
|
5620 |
|
|
{
|
5621 |
|
|
tree decl;
|
5622 |
|
|
const char *libname;
|
5623 |
|
|
|
5624 |
|
|
/* Preserve an already installed decl. It most likely was setup in advance
|
5625 |
|
|
(e.g. as part of the internal builtins) for specific reasons. */
|
5626 |
|
|
if (built_in_decls[(int) fncode] != NULL_TREE)
|
5627 |
|
|
return;
|
5628 |
|
|
|
5629 |
|
|
gcc_assert ((!both_p && !fallback_p)
|
5630 |
|
|
|| !strncmp (name, "__builtin_",
|
5631 |
|
|
strlen ("__builtin_")));
|
5632 |
|
|
|
5633 |
|
|
libname = name + strlen ("__builtin_");
|
5634 |
|
|
decl = add_builtin_function (name, fntype, fncode, fnclass,
|
5635 |
|
|
(fallback_p ? libname : NULL),
|
5636 |
|
|
fnattrs);
|
5637 |
|
|
if (both_p)
|
5638 |
|
|
/* ??? This is normally further controlled by command-line options
|
5639 |
|
|
like -fno-builtin, but we don't have them for Ada. */
|
5640 |
|
|
add_builtin_function (libname, libtype, fncode, fnclass,
|
5641 |
|
|
NULL, fnattrs);
|
5642 |
|
|
|
5643 |
|
|
built_in_decls[(int) fncode] = decl;
|
5644 |
|
|
if (implicit_p)
|
5645 |
|
|
implicit_built_in_decls[(int) fncode] = decl;
|
5646 |
|
|
}
|
5647 |
|
|
|
5648 |
|
|
static int flag_isoc94 = 0;
|
5649 |
|
|
static int flag_isoc99 = 0;
|
5650 |
|
|
|
5651 |
|
|
/* Install what the common builtins.def offers. */
|
5652 |
|
|
|
5653 |
|
|
static void
|
5654 |
|
|
install_builtin_functions (void)
|
5655 |
|
|
{
|
5656 |
|
|
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
|
5657 |
|
|
NONANSI_P, ATTRS, IMPLICIT, COND) \
|
5658 |
|
|
if (NAME && COND) \
|
5659 |
|
|
def_builtin_1 (ENUM, NAME, CLASS, \
|
5660 |
|
|
builtin_types[(int) TYPE], \
|
5661 |
|
|
builtin_types[(int) LIBTYPE], \
|
5662 |
|
|
BOTH_P, FALLBACK_P, NONANSI_P, \
|
5663 |
|
|
built_in_attributes[(int) ATTRS], IMPLICIT);
|
5664 |
|
|
#include "builtins.def"
|
5665 |
|
|
#undef DEF_BUILTIN
|
5666 |
|
|
}
|
5667 |
|
|
|
5668 |
|
|
/* ----------------------------------------------------------------------- *
|
5669 |
|
|
* BUILTIN FUNCTIONS *
|
5670 |
|
|
* ----------------------------------------------------------------------- */
|
5671 |
|
|
|
5672 |
|
|
/* Install the builtin functions we might need. */
|
5673 |
|
|
|
5674 |
|
|
void
|
5675 |
|
|
gnat_install_builtins (void)
|
5676 |
|
|
{
|
5677 |
|
|
install_builtin_elementary_types ();
|
5678 |
|
|
install_builtin_function_types ();
|
5679 |
|
|
install_builtin_attributes ();
|
5680 |
|
|
|
5681 |
|
|
/* Install builtins used by generic middle-end pieces first. Some of these
|
5682 |
|
|
know about internal specificities and control attributes accordingly, for
|
5683 |
|
|
instance __builtin_alloca vs no-throw and -fstack-check. We will ignore
|
5684 |
|
|
the generic definition from builtins.def. */
|
5685 |
|
|
build_common_builtin_nodes ();
|
5686 |
|
|
|
5687 |
|
|
/* Now, install the target specific builtins, such as the AltiVec family on
|
5688 |
|
|
ppc, and the common set as exposed by builtins.def. */
|
5689 |
|
|
targetm.init_builtins ();
|
5690 |
|
|
install_builtin_functions ();
|
5691 |
|
|
}
|
5692 |
|
|
|
5693 |
|
|
#include "gt-ada-utils.h"
|
5694 |
|
|
#include "gtype-ada.h"
|