1 |
281 |
jeremybenn |
/****************************************************************************
|
2 |
|
|
* *
|
3 |
|
|
* GNAT COMPILER COMPONENTS *
|
4 |
|
|
* *
|
5 |
|
|
* U T I L S 2 *
|
6 |
|
|
* *
|
7 |
|
|
* C Implementation File *
|
8 |
|
|
* *
|
9 |
|
|
* Copyright (C) 1992-2009, Free Software Foundation, Inc. *
|
10 |
|
|
* *
|
11 |
|
|
* GNAT is free software; you can redistribute it and/or modify it under *
|
12 |
|
|
* terms of the GNU General Public License as published by the Free Soft- *
|
13 |
|
|
* ware Foundation; either version 3, or (at your option) any later ver- *
|
14 |
|
|
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
|
15 |
|
|
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
|
16 |
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
|
17 |
|
|
* for more details. You should have received a copy of the GNU General *
|
18 |
|
|
* Public License along with GCC; see the file COPYING3. If not see *
|
19 |
|
|
* <http://www.gnu.org/licenses/>. *
|
20 |
|
|
* *
|
21 |
|
|
* GNAT was originally developed by the GNAT team at New York University. *
|
22 |
|
|
* Extensive contributions were provided by Ada Core Technologies Inc. *
|
23 |
|
|
* *
|
24 |
|
|
****************************************************************************/
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "ggc.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "tree-inline.h"
|
35 |
|
|
|
36 |
|
|
#include "ada.h"
|
37 |
|
|
#include "types.h"
|
38 |
|
|
#include "atree.h"
|
39 |
|
|
#include "elists.h"
|
40 |
|
|
#include "namet.h"
|
41 |
|
|
#include "nlists.h"
|
42 |
|
|
#include "snames.h"
|
43 |
|
|
#include "stringt.h"
|
44 |
|
|
#include "uintp.h"
|
45 |
|
|
#include "fe.h"
|
46 |
|
|
#include "sinfo.h"
|
47 |
|
|
#include "einfo.h"
|
48 |
|
|
#include "ada-tree.h"
|
49 |
|
|
#include "gigi.h"
|
50 |
|
|
|
51 |
|
|
static tree find_common_type (tree, tree);
|
52 |
|
|
static bool contains_save_expr_p (tree);
|
53 |
|
|
static tree contains_null_expr (tree);
|
54 |
|
|
static tree compare_arrays (tree, tree, tree);
|
55 |
|
|
static tree nonbinary_modular_operation (enum tree_code, tree, tree, tree);
|
56 |
|
|
static tree build_simple_component_ref (tree, tree, tree, bool);
|
57 |
|
|
|
58 |
|
|
/* Return the base type of TYPE. */
|
59 |
|
|
|
60 |
|
|
tree
|
61 |
|
|
get_base_type (tree type)
|
62 |
|
|
{
|
63 |
|
|
if (TREE_CODE (type) == RECORD_TYPE
|
64 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (type))
|
65 |
|
|
type = TREE_TYPE (TYPE_FIELDS (type));
|
66 |
|
|
|
67 |
|
|
while (TREE_TYPE (type)
|
68 |
|
|
&& (TREE_CODE (type) == INTEGER_TYPE
|
69 |
|
|
|| TREE_CODE (type) == REAL_TYPE))
|
70 |
|
|
type = TREE_TYPE (type);
|
71 |
|
|
|
72 |
|
|
return type;
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
/* EXP is a GCC tree representing an address. See if we can find how
|
76 |
|
|
strictly the object at that address is aligned. Return that alignment
|
77 |
|
|
in bits. If we don't know anything about the alignment, return 0. */
|
78 |
|
|
|
79 |
|
|
unsigned int
|
80 |
|
|
known_alignment (tree exp)
|
81 |
|
|
{
|
82 |
|
|
unsigned int this_alignment;
|
83 |
|
|
unsigned int lhs, rhs;
|
84 |
|
|
|
85 |
|
|
switch (TREE_CODE (exp))
|
86 |
|
|
{
|
87 |
|
|
CASE_CONVERT:
|
88 |
|
|
case VIEW_CONVERT_EXPR:
|
89 |
|
|
case NON_LVALUE_EXPR:
|
90 |
|
|
/* Conversions between pointers and integers don't change the alignment
|
91 |
|
|
of the underlying object. */
|
92 |
|
|
this_alignment = known_alignment (TREE_OPERAND (exp, 0));
|
93 |
|
|
break;
|
94 |
|
|
|
95 |
|
|
case COMPOUND_EXPR:
|
96 |
|
|
/* The value of a COMPOUND_EXPR is that of it's second operand. */
|
97 |
|
|
this_alignment = known_alignment (TREE_OPERAND (exp, 1));
|
98 |
|
|
break;
|
99 |
|
|
|
100 |
|
|
case PLUS_EXPR:
|
101 |
|
|
case MINUS_EXPR:
|
102 |
|
|
/* If two address are added, the alignment of the result is the
|
103 |
|
|
minimum of the two alignments. */
|
104 |
|
|
lhs = known_alignment (TREE_OPERAND (exp, 0));
|
105 |
|
|
rhs = known_alignment (TREE_OPERAND (exp, 1));
|
106 |
|
|
this_alignment = MIN (lhs, rhs);
|
107 |
|
|
break;
|
108 |
|
|
|
109 |
|
|
case POINTER_PLUS_EXPR:
|
110 |
|
|
lhs = known_alignment (TREE_OPERAND (exp, 0));
|
111 |
|
|
rhs = known_alignment (TREE_OPERAND (exp, 1));
|
112 |
|
|
/* If we don't know the alignment of the offset, we assume that
|
113 |
|
|
of the base. */
|
114 |
|
|
if (rhs == 0)
|
115 |
|
|
this_alignment = lhs;
|
116 |
|
|
else
|
117 |
|
|
this_alignment = MIN (lhs, rhs);
|
118 |
|
|
break;
|
119 |
|
|
|
120 |
|
|
case COND_EXPR:
|
121 |
|
|
/* If there is a choice between two values, use the smallest one. */
|
122 |
|
|
lhs = known_alignment (TREE_OPERAND (exp, 1));
|
123 |
|
|
rhs = known_alignment (TREE_OPERAND (exp, 2));
|
124 |
|
|
this_alignment = MIN (lhs, rhs);
|
125 |
|
|
break;
|
126 |
|
|
|
127 |
|
|
case INTEGER_CST:
|
128 |
|
|
{
|
129 |
|
|
unsigned HOST_WIDE_INT c = TREE_INT_CST_LOW (exp);
|
130 |
|
|
/* The first part of this represents the lowest bit in the constant,
|
131 |
|
|
but it is originally in bytes, not bits. */
|
132 |
|
|
this_alignment = MIN (BITS_PER_UNIT * (c & -c), BIGGEST_ALIGNMENT);
|
133 |
|
|
}
|
134 |
|
|
break;
|
135 |
|
|
|
136 |
|
|
case MULT_EXPR:
|
137 |
|
|
/* If we know the alignment of just one side, use it. Otherwise,
|
138 |
|
|
use the product of the alignments. */
|
139 |
|
|
lhs = known_alignment (TREE_OPERAND (exp, 0));
|
140 |
|
|
rhs = known_alignment (TREE_OPERAND (exp, 1));
|
141 |
|
|
|
142 |
|
|
if (lhs == 0)
|
143 |
|
|
this_alignment = rhs;
|
144 |
|
|
else if (rhs == 0)
|
145 |
|
|
this_alignment = lhs;
|
146 |
|
|
else
|
147 |
|
|
this_alignment = MIN (lhs * rhs, BIGGEST_ALIGNMENT);
|
148 |
|
|
break;
|
149 |
|
|
|
150 |
|
|
case BIT_AND_EXPR:
|
151 |
|
|
/* A bit-and expression is as aligned as the maximum alignment of the
|
152 |
|
|
operands. We typically get here for a complex lhs and a constant
|
153 |
|
|
negative power of two on the rhs to force an explicit alignment, so
|
154 |
|
|
don't bother looking at the lhs. */
|
155 |
|
|
this_alignment = known_alignment (TREE_OPERAND (exp, 1));
|
156 |
|
|
break;
|
157 |
|
|
|
158 |
|
|
case ADDR_EXPR:
|
159 |
|
|
this_alignment = expr_align (TREE_OPERAND (exp, 0));
|
160 |
|
|
break;
|
161 |
|
|
|
162 |
|
|
case CALL_EXPR:
|
163 |
|
|
{
|
164 |
|
|
tree t = maybe_inline_call_in_expr (exp);
|
165 |
|
|
if (t)
|
166 |
|
|
return known_alignment (t);
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
/* Fall through... */
|
170 |
|
|
|
171 |
|
|
default:
|
172 |
|
|
/* For other pointer expressions, we assume that the pointed-to object
|
173 |
|
|
is at least as aligned as the pointed-to type. Beware that we can
|
174 |
|
|
have a dummy type here (e.g. a Taft Amendment type), for which the
|
175 |
|
|
alignment is meaningless and should be ignored. */
|
176 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (exp))
|
177 |
|
|
&& !TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (exp))))
|
178 |
|
|
this_alignment = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
|
179 |
|
|
else
|
180 |
|
|
this_alignment = 0;
|
181 |
|
|
break;
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
return this_alignment;
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* We have a comparison or assignment operation on two types, T1 and T2, which
|
188 |
|
|
are either both array types or both record types. T1 is assumed to be for
|
189 |
|
|
the left hand side operand, and T2 for the right hand side. Return the
|
190 |
|
|
type that both operands should be converted to for the operation, if any.
|
191 |
|
|
Otherwise return zero. */
|
192 |
|
|
|
193 |
|
|
static tree
|
194 |
|
|
find_common_type (tree t1, tree t2)
|
195 |
|
|
{
|
196 |
|
|
/* ??? As of today, various constructs lead here with types of different
|
197 |
|
|
sizes even when both constants (e.g. tagged types, packable vs regular
|
198 |
|
|
component types, padded vs unpadded types, ...). While some of these
|
199 |
|
|
would better be handled upstream (types should be made consistent before
|
200 |
|
|
calling into build_binary_op), some others are really expected and we
|
201 |
|
|
have to be careful. */
|
202 |
|
|
|
203 |
|
|
/* We must prevent writing more than what the target may hold if this is for
|
204 |
|
|
an assignment and the case of tagged types is handled in build_binary_op
|
205 |
|
|
so use the lhs type if it is known to be smaller, or of constant size and
|
206 |
|
|
the rhs type is not, whatever the modes. We also force t1 in case of
|
207 |
|
|
constant size equality to minimize occurrences of view conversions on the
|
208 |
|
|
lhs of assignments. */
|
209 |
|
|
if (TREE_CONSTANT (TYPE_SIZE (t1))
|
210 |
|
|
&& (!TREE_CONSTANT (TYPE_SIZE (t2))
|
211 |
|
|
|| !tree_int_cst_lt (TYPE_SIZE (t2), TYPE_SIZE (t1))))
|
212 |
|
|
return t1;
|
213 |
|
|
|
214 |
|
|
/* Otherwise, if the lhs type is non-BLKmode, use it. Note that we know
|
215 |
|
|
that we will not have any alignment problems since, if we did, the
|
216 |
|
|
non-BLKmode type could not have been used. */
|
217 |
|
|
if (TYPE_MODE (t1) != BLKmode)
|
218 |
|
|
return t1;
|
219 |
|
|
|
220 |
|
|
/* If the rhs type is of constant size, use it whatever the modes. At
|
221 |
|
|
this point it is known to be smaller, or of constant size and the
|
222 |
|
|
lhs type is not. */
|
223 |
|
|
if (TREE_CONSTANT (TYPE_SIZE (t2)))
|
224 |
|
|
return t2;
|
225 |
|
|
|
226 |
|
|
/* Otherwise, if the rhs type is non-BLKmode, use it. */
|
227 |
|
|
if (TYPE_MODE (t2) != BLKmode)
|
228 |
|
|
return t2;
|
229 |
|
|
|
230 |
|
|
/* In this case, both types have variable size and BLKmode. It's
|
231 |
|
|
probably best to leave the "type mismatch" because changing it
|
232 |
|
|
could cause a bad self-referential reference. */
|
233 |
|
|
return NULL_TREE;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* See if EXP contains a SAVE_EXPR in a position where we would
|
237 |
|
|
normally put it.
|
238 |
|
|
|
239 |
|
|
??? This is a real kludge, but is probably the best approach short
|
240 |
|
|
of some very general solution. */
|
241 |
|
|
|
242 |
|
|
static bool
|
243 |
|
|
contains_save_expr_p (tree exp)
|
244 |
|
|
{
|
245 |
|
|
switch (TREE_CODE (exp))
|
246 |
|
|
{
|
247 |
|
|
case SAVE_EXPR:
|
248 |
|
|
return true;
|
249 |
|
|
|
250 |
|
|
case ADDR_EXPR: case INDIRECT_REF:
|
251 |
|
|
case COMPONENT_REF:
|
252 |
|
|
CASE_CONVERT: case VIEW_CONVERT_EXPR:
|
253 |
|
|
return contains_save_expr_p (TREE_OPERAND (exp, 0));
|
254 |
|
|
|
255 |
|
|
case CONSTRUCTOR:
|
256 |
|
|
{
|
257 |
|
|
tree value;
|
258 |
|
|
unsigned HOST_WIDE_INT ix;
|
259 |
|
|
|
260 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
|
261 |
|
|
if (contains_save_expr_p (value))
|
262 |
|
|
return true;
|
263 |
|
|
return false;
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
default:
|
267 |
|
|
return false;
|
268 |
|
|
}
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* See if EXP contains a NULL_EXPR in an expression we use for sizes. Return
|
272 |
|
|
it if so. This is used to detect types whose sizes involve computations
|
273 |
|
|
that are known to raise Constraint_Error. */
|
274 |
|
|
|
275 |
|
|
static tree
|
276 |
|
|
contains_null_expr (tree exp)
|
277 |
|
|
{
|
278 |
|
|
tree tem;
|
279 |
|
|
|
280 |
|
|
if (TREE_CODE (exp) == NULL_EXPR)
|
281 |
|
|
return exp;
|
282 |
|
|
|
283 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
284 |
|
|
{
|
285 |
|
|
case tcc_unary:
|
286 |
|
|
return contains_null_expr (TREE_OPERAND (exp, 0));
|
287 |
|
|
|
288 |
|
|
case tcc_comparison:
|
289 |
|
|
case tcc_binary:
|
290 |
|
|
tem = contains_null_expr (TREE_OPERAND (exp, 0));
|
291 |
|
|
if (tem)
|
292 |
|
|
return tem;
|
293 |
|
|
|
294 |
|
|
return contains_null_expr (TREE_OPERAND (exp, 1));
|
295 |
|
|
|
296 |
|
|
case tcc_expression:
|
297 |
|
|
switch (TREE_CODE (exp))
|
298 |
|
|
{
|
299 |
|
|
case SAVE_EXPR:
|
300 |
|
|
return contains_null_expr (TREE_OPERAND (exp, 0));
|
301 |
|
|
|
302 |
|
|
case COND_EXPR:
|
303 |
|
|
tem = contains_null_expr (TREE_OPERAND (exp, 0));
|
304 |
|
|
if (tem)
|
305 |
|
|
return tem;
|
306 |
|
|
|
307 |
|
|
tem = contains_null_expr (TREE_OPERAND (exp, 1));
|
308 |
|
|
if (tem)
|
309 |
|
|
return tem;
|
310 |
|
|
|
311 |
|
|
return contains_null_expr (TREE_OPERAND (exp, 2));
|
312 |
|
|
|
313 |
|
|
default:
|
314 |
|
|
return 0;
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
default:
|
318 |
|
|
return 0;
|
319 |
|
|
}
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
/* Return an expression tree representing an equality comparison of
|
323 |
|
|
A1 and A2, two objects of ARRAY_TYPE. The returned expression should
|
324 |
|
|
be of type RESULT_TYPE
|
325 |
|
|
|
326 |
|
|
Two arrays are equal in one of two ways: (1) if both have zero length
|
327 |
|
|
in some dimension (not necessarily the same dimension) or (2) if the
|
328 |
|
|
lengths in each dimension are equal and the data is equal. We perform the
|
329 |
|
|
length tests in as efficient a manner as possible. */
|
330 |
|
|
|
331 |
|
|
static tree
|
332 |
|
|
compare_arrays (tree result_type, tree a1, tree a2)
|
333 |
|
|
{
|
334 |
|
|
tree t1 = TREE_TYPE (a1);
|
335 |
|
|
tree t2 = TREE_TYPE (a2);
|
336 |
|
|
tree result = convert (result_type, integer_one_node);
|
337 |
|
|
tree a1_is_null = convert (result_type, integer_zero_node);
|
338 |
|
|
tree a2_is_null = convert (result_type, integer_zero_node);
|
339 |
|
|
bool length_zero_p = false;
|
340 |
|
|
|
341 |
|
|
/* Process each dimension separately and compare the lengths. If any
|
342 |
|
|
dimension has a size known to be zero, set SIZE_ZERO_P to 1 to
|
343 |
|
|
suppress the comparison of the data. */
|
344 |
|
|
while (TREE_CODE (t1) == ARRAY_TYPE && TREE_CODE (t2) == ARRAY_TYPE)
|
345 |
|
|
{
|
346 |
|
|
tree lb1 = TYPE_MIN_VALUE (TYPE_DOMAIN (t1));
|
347 |
|
|
tree ub1 = TYPE_MAX_VALUE (TYPE_DOMAIN (t1));
|
348 |
|
|
tree lb2 = TYPE_MIN_VALUE (TYPE_DOMAIN (t2));
|
349 |
|
|
tree ub2 = TYPE_MAX_VALUE (TYPE_DOMAIN (t2));
|
350 |
|
|
tree bt = get_base_type (TREE_TYPE (lb1));
|
351 |
|
|
tree length1 = fold_build2 (MINUS_EXPR, bt, ub1, lb1);
|
352 |
|
|
tree length2 = fold_build2 (MINUS_EXPR, bt, ub2, lb2);
|
353 |
|
|
tree nbt;
|
354 |
|
|
tree tem;
|
355 |
|
|
tree comparison, this_a1_is_null, this_a2_is_null;
|
356 |
|
|
|
357 |
|
|
/* If the length of the first array is a constant, swap our operands
|
358 |
|
|
unless the length of the second array is the constant zero.
|
359 |
|
|
Note that we have set the `length' values to the length - 1. */
|
360 |
|
|
if (TREE_CODE (length1) == INTEGER_CST
|
361 |
|
|
&& !integer_zerop (fold_build2 (PLUS_EXPR, bt, length2,
|
362 |
|
|
convert (bt, integer_one_node))))
|
363 |
|
|
{
|
364 |
|
|
tem = a1, a1 = a2, a2 = tem;
|
365 |
|
|
tem = t1, t1 = t2, t2 = tem;
|
366 |
|
|
tem = lb1, lb1 = lb2, lb2 = tem;
|
367 |
|
|
tem = ub1, ub1 = ub2, ub2 = tem;
|
368 |
|
|
tem = length1, length1 = length2, length2 = tem;
|
369 |
|
|
tem = a1_is_null, a1_is_null = a2_is_null, a2_is_null = tem;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* If the length of this dimension in the second array is the constant
|
373 |
|
|
zero, we can just go inside the original bounds for the first
|
374 |
|
|
array and see if last < first. */
|
375 |
|
|
if (integer_zerop (fold_build2 (PLUS_EXPR, bt, length2,
|
376 |
|
|
convert (bt, integer_one_node))))
|
377 |
|
|
{
|
378 |
|
|
tree ub = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
379 |
|
|
tree lb = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
380 |
|
|
|
381 |
|
|
comparison = build_binary_op (LT_EXPR, result_type, ub, lb);
|
382 |
|
|
comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
|
383 |
|
|
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
384 |
|
|
|
385 |
|
|
length_zero_p = true;
|
386 |
|
|
this_a1_is_null = comparison;
|
387 |
|
|
this_a2_is_null = convert (result_type, integer_one_node);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/* If the length is some other constant value, we know that the
|
391 |
|
|
this dimension in the first array cannot be superflat, so we
|
392 |
|
|
can just use its length from the actual stored bounds. */
|
393 |
|
|
else if (TREE_CODE (length2) == INTEGER_CST)
|
394 |
|
|
{
|
395 |
|
|
ub1 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
396 |
|
|
lb1 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
397 |
|
|
ub2 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
|
398 |
|
|
lb2 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
|
399 |
|
|
nbt = get_base_type (TREE_TYPE (ub1));
|
400 |
|
|
|
401 |
|
|
comparison
|
402 |
|
|
= build_binary_op (EQ_EXPR, result_type,
|
403 |
|
|
build_binary_op (MINUS_EXPR, nbt, ub1, lb1),
|
404 |
|
|
build_binary_op (MINUS_EXPR, nbt, ub2, lb2));
|
405 |
|
|
|
406 |
|
|
/* Note that we know that UB2 and LB2 are constant and hence
|
407 |
|
|
cannot contain a PLACEHOLDER_EXPR. */
|
408 |
|
|
|
409 |
|
|
comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
|
410 |
|
|
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
411 |
|
|
|
412 |
|
|
this_a1_is_null = build_binary_op (LT_EXPR, result_type, ub1, lb1);
|
413 |
|
|
this_a2_is_null = convert (result_type, integer_zero_node);
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
/* Otherwise compare the computed lengths. */
|
417 |
|
|
else
|
418 |
|
|
{
|
419 |
|
|
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
420 |
|
|
length2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length2, a2);
|
421 |
|
|
|
422 |
|
|
comparison
|
423 |
|
|
= build_binary_op (EQ_EXPR, result_type, length1, length2);
|
424 |
|
|
|
425 |
|
|
this_a1_is_null
|
426 |
|
|
= build_binary_op (LT_EXPR, result_type, length1,
|
427 |
|
|
convert (bt, integer_zero_node));
|
428 |
|
|
this_a2_is_null
|
429 |
|
|
= build_binary_op (LT_EXPR, result_type, length2,
|
430 |
|
|
convert (bt, integer_zero_node));
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
result = build_binary_op (TRUTH_ANDIF_EXPR, result_type,
|
434 |
|
|
result, comparison);
|
435 |
|
|
|
436 |
|
|
a1_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
437 |
|
|
this_a1_is_null, a1_is_null);
|
438 |
|
|
a2_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
439 |
|
|
this_a2_is_null, a2_is_null);
|
440 |
|
|
|
441 |
|
|
t1 = TREE_TYPE (t1);
|
442 |
|
|
t2 = TREE_TYPE (t2);
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Unless the size of some bound is known to be zero, compare the
|
446 |
|
|
data in the array. */
|
447 |
|
|
if (!length_zero_p)
|
448 |
|
|
{
|
449 |
|
|
tree type = find_common_type (TREE_TYPE (a1), TREE_TYPE (a2));
|
450 |
|
|
|
451 |
|
|
if (type)
|
452 |
|
|
a1 = convert (type, a1), a2 = convert (type, a2);
|
453 |
|
|
|
454 |
|
|
result = build_binary_op (TRUTH_ANDIF_EXPR, result_type, result,
|
455 |
|
|
fold_build2 (EQ_EXPR, result_type, a1, a2));
|
456 |
|
|
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
/* The result is also true if both sizes are zero. */
|
460 |
|
|
result = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
461 |
|
|
build_binary_op (TRUTH_ANDIF_EXPR, result_type,
|
462 |
|
|
a1_is_null, a2_is_null),
|
463 |
|
|
result);
|
464 |
|
|
|
465 |
|
|
/* If either operand contains SAVE_EXPRs, they have to be evaluated before
|
466 |
|
|
starting the comparison above since the place it would be otherwise
|
467 |
|
|
evaluated would be wrong. */
|
468 |
|
|
|
469 |
|
|
if (contains_save_expr_p (a1))
|
470 |
|
|
result = build2 (COMPOUND_EXPR, result_type, a1, result);
|
471 |
|
|
|
472 |
|
|
if (contains_save_expr_p (a2))
|
473 |
|
|
result = build2 (COMPOUND_EXPR, result_type, a2, result);
|
474 |
|
|
|
475 |
|
|
return result;
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
|
479 |
|
|
type TYPE. We know that TYPE is a modular type with a nonbinary
|
480 |
|
|
modulus. */
|
481 |
|
|
|
482 |
|
|
static tree
|
483 |
|
|
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
|
484 |
|
|
tree rhs)
|
485 |
|
|
{
|
486 |
|
|
tree modulus = TYPE_MODULUS (type);
|
487 |
|
|
unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
|
488 |
|
|
unsigned int precision;
|
489 |
|
|
bool unsignedp = true;
|
490 |
|
|
tree op_type = type;
|
491 |
|
|
tree result;
|
492 |
|
|
|
493 |
|
|
/* If this is an addition of a constant, convert it to a subtraction
|
494 |
|
|
of a constant since we can do that faster. */
|
495 |
|
|
if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
|
496 |
|
|
{
|
497 |
|
|
rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
|
498 |
|
|
op_code = MINUS_EXPR;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* For the logical operations, we only need PRECISION bits. For
|
502 |
|
|
addition and subtraction, we need one more and for multiplication we
|
503 |
|
|
need twice as many. But we never want to make a size smaller than
|
504 |
|
|
our size. */
|
505 |
|
|
if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
|
506 |
|
|
needed_precision += 1;
|
507 |
|
|
else if (op_code == MULT_EXPR)
|
508 |
|
|
needed_precision *= 2;
|
509 |
|
|
|
510 |
|
|
precision = MAX (needed_precision, TYPE_PRECISION (op_type));
|
511 |
|
|
|
512 |
|
|
/* Unsigned will do for everything but subtraction. */
|
513 |
|
|
if (op_code == MINUS_EXPR)
|
514 |
|
|
unsignedp = false;
|
515 |
|
|
|
516 |
|
|
/* If our type is the wrong signedness or isn't wide enough, make a new
|
517 |
|
|
type and convert both our operands to it. */
|
518 |
|
|
if (TYPE_PRECISION (op_type) < precision
|
519 |
|
|
|| TYPE_UNSIGNED (op_type) != unsignedp)
|
520 |
|
|
{
|
521 |
|
|
/* Copy the node so we ensure it can be modified to make it modular. */
|
522 |
|
|
op_type = copy_node (gnat_type_for_size (precision, unsignedp));
|
523 |
|
|
modulus = convert (op_type, modulus);
|
524 |
|
|
SET_TYPE_MODULUS (op_type, modulus);
|
525 |
|
|
TYPE_MODULAR_P (op_type) = 1;
|
526 |
|
|
lhs = convert (op_type, lhs);
|
527 |
|
|
rhs = convert (op_type, rhs);
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Do the operation, then we'll fix it up. */
|
531 |
|
|
result = fold_build2 (op_code, op_type, lhs, rhs);
|
532 |
|
|
|
533 |
|
|
/* For multiplication, we have no choice but to do a full modulus
|
534 |
|
|
operation. However, we want to do this in the narrowest
|
535 |
|
|
possible size. */
|
536 |
|
|
if (op_code == MULT_EXPR)
|
537 |
|
|
{
|
538 |
|
|
tree div_type = copy_node (gnat_type_for_size (needed_precision, 1));
|
539 |
|
|
modulus = convert (div_type, modulus);
|
540 |
|
|
SET_TYPE_MODULUS (div_type, modulus);
|
541 |
|
|
TYPE_MODULAR_P (div_type) = 1;
|
542 |
|
|
result = convert (op_type,
|
543 |
|
|
fold_build2 (TRUNC_MOD_EXPR, div_type,
|
544 |
|
|
convert (div_type, result), modulus));
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/* For subtraction, add the modulus back if we are negative. */
|
548 |
|
|
else if (op_code == MINUS_EXPR)
|
549 |
|
|
{
|
550 |
|
|
result = save_expr (result);
|
551 |
|
|
result = fold_build3 (COND_EXPR, op_type,
|
552 |
|
|
fold_build2 (LT_EXPR, integer_type_node, result,
|
553 |
|
|
convert (op_type, integer_zero_node)),
|
554 |
|
|
fold_build2 (PLUS_EXPR, op_type, result, modulus),
|
555 |
|
|
result);
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* For the other operations, subtract the modulus if we are >= it. */
|
559 |
|
|
else
|
560 |
|
|
{
|
561 |
|
|
result = save_expr (result);
|
562 |
|
|
result = fold_build3 (COND_EXPR, op_type,
|
563 |
|
|
fold_build2 (GE_EXPR, integer_type_node,
|
564 |
|
|
result, modulus),
|
565 |
|
|
fold_build2 (MINUS_EXPR, op_type,
|
566 |
|
|
result, modulus),
|
567 |
|
|
result);
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
return convert (type, result);
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Make a binary operation of kind OP_CODE. RESULT_TYPE is the type
|
574 |
|
|
desired for the result. Usually the operation is to be performed
|
575 |
|
|
in that type. For MODIFY_EXPR and ARRAY_REF, RESULT_TYPE may be 0
|
576 |
|
|
in which case the type to be used will be derived from the operands.
|
577 |
|
|
|
578 |
|
|
This function is very much unlike the ones for C and C++ since we
|
579 |
|
|
have already done any type conversion and matching required. All we
|
580 |
|
|
have to do here is validate the work done by SEM and handle subtypes. */
|
581 |
|
|
|
582 |
|
|
tree
|
583 |
|
|
build_binary_op (enum tree_code op_code, tree result_type,
|
584 |
|
|
tree left_operand, tree right_operand)
|
585 |
|
|
{
|
586 |
|
|
tree left_type = TREE_TYPE (left_operand);
|
587 |
|
|
tree right_type = TREE_TYPE (right_operand);
|
588 |
|
|
tree left_base_type = get_base_type (left_type);
|
589 |
|
|
tree right_base_type = get_base_type (right_type);
|
590 |
|
|
tree operation_type = result_type;
|
591 |
|
|
tree best_type = NULL_TREE;
|
592 |
|
|
tree modulus, result;
|
593 |
|
|
bool has_side_effects = false;
|
594 |
|
|
|
595 |
|
|
if (operation_type
|
596 |
|
|
&& TREE_CODE (operation_type) == RECORD_TYPE
|
597 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (operation_type))
|
598 |
|
|
operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));
|
599 |
|
|
|
600 |
|
|
if (operation_type
|
601 |
|
|
&& !AGGREGATE_TYPE_P (operation_type)
|
602 |
|
|
&& TYPE_EXTRA_SUBTYPE_P (operation_type))
|
603 |
|
|
operation_type = get_base_type (operation_type);
|
604 |
|
|
|
605 |
|
|
modulus = (operation_type
|
606 |
|
|
&& TREE_CODE (operation_type) == INTEGER_TYPE
|
607 |
|
|
&& TYPE_MODULAR_P (operation_type)
|
608 |
|
|
? TYPE_MODULUS (operation_type) : NULL_TREE);
|
609 |
|
|
|
610 |
|
|
switch (op_code)
|
611 |
|
|
{
|
612 |
|
|
case MODIFY_EXPR:
|
613 |
|
|
/* If there were integral or pointer conversions on the LHS, remove
|
614 |
|
|
them; we'll be putting them back below if needed. Likewise for
|
615 |
|
|
conversions between array and record types, except for justified
|
616 |
|
|
modular types. But don't do this if the right operand is not
|
617 |
|
|
BLKmode (for packed arrays) unless we are not changing the mode. */
|
618 |
|
|
while ((CONVERT_EXPR_P (left_operand)
|
619 |
|
|
|| TREE_CODE (left_operand) == VIEW_CONVERT_EXPR)
|
620 |
|
|
&& (((INTEGRAL_TYPE_P (left_type)
|
621 |
|
|
|| POINTER_TYPE_P (left_type))
|
622 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE
|
623 |
|
|
(TREE_OPERAND (left_operand, 0)))
|
624 |
|
|
|| POINTER_TYPE_P (TREE_TYPE
|
625 |
|
|
(TREE_OPERAND (left_operand, 0)))))
|
626 |
|
|
|| (((TREE_CODE (left_type) == RECORD_TYPE
|
627 |
|
|
&& !TYPE_JUSTIFIED_MODULAR_P (left_type))
|
628 |
|
|
|| TREE_CODE (left_type) == ARRAY_TYPE)
|
629 |
|
|
&& ((TREE_CODE (TREE_TYPE
|
630 |
|
|
(TREE_OPERAND (left_operand, 0)))
|
631 |
|
|
== RECORD_TYPE)
|
632 |
|
|
|| (TREE_CODE (TREE_TYPE
|
633 |
|
|
(TREE_OPERAND (left_operand, 0)))
|
634 |
|
|
== ARRAY_TYPE))
|
635 |
|
|
&& (TYPE_MODE (right_type) == BLKmode
|
636 |
|
|
|| (TYPE_MODE (left_type)
|
637 |
|
|
== TYPE_MODE (TREE_TYPE
|
638 |
|
|
(TREE_OPERAND
|
639 |
|
|
(left_operand, 0))))))))
|
640 |
|
|
{
|
641 |
|
|
left_operand = TREE_OPERAND (left_operand, 0);
|
642 |
|
|
left_type = TREE_TYPE (left_operand);
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
/* If a class-wide type may be involved, force use of the RHS type. */
|
646 |
|
|
if ((TREE_CODE (right_type) == RECORD_TYPE
|
647 |
|
|
|| TREE_CODE (right_type) == UNION_TYPE)
|
648 |
|
|
&& TYPE_ALIGN_OK (right_type))
|
649 |
|
|
operation_type = right_type;
|
650 |
|
|
|
651 |
|
|
/* If we are copying between padded objects with compatible types, use
|
652 |
|
|
the padded view of the objects, this is very likely more efficient.
|
653 |
|
|
Likewise for a padded object that is assigned a constructor, if we
|
654 |
|
|
can convert the constructor to the inner type, to avoid putting a
|
655 |
|
|
VIEW_CONVERT_EXPR on the LHS. But don't do so if we wouldn't have
|
656 |
|
|
actually copied anything. */
|
657 |
|
|
else if (TYPE_IS_PADDING_P (left_type)
|
658 |
|
|
&& TREE_CONSTANT (TYPE_SIZE (left_type))
|
659 |
|
|
&& ((TREE_CODE (right_operand) == COMPONENT_REF
|
660 |
|
|
&& TYPE_IS_PADDING_P
|
661 |
|
|
(TREE_TYPE (TREE_OPERAND (right_operand, 0)))
|
662 |
|
|
&& gnat_types_compatible_p
|
663 |
|
|
(left_type,
|
664 |
|
|
TREE_TYPE (TREE_OPERAND (right_operand, 0))))
|
665 |
|
|
|| (TREE_CODE (right_operand) == CONSTRUCTOR
|
666 |
|
|
&& !CONTAINS_PLACEHOLDER_P
|
667 |
|
|
(DECL_SIZE (TYPE_FIELDS (left_type)))))
|
668 |
|
|
&& !integer_zerop (TYPE_SIZE (right_type)))
|
669 |
|
|
operation_type = left_type;
|
670 |
|
|
|
671 |
|
|
/* Find the best type to use for copying between aggregate types. */
|
672 |
|
|
else if (((TREE_CODE (left_type) == ARRAY_TYPE
|
673 |
|
|
&& TREE_CODE (right_type) == ARRAY_TYPE)
|
674 |
|
|
|| (TREE_CODE (left_type) == RECORD_TYPE
|
675 |
|
|
&& TREE_CODE (right_type) == RECORD_TYPE))
|
676 |
|
|
&& (best_type = find_common_type (left_type, right_type)))
|
677 |
|
|
operation_type = best_type;
|
678 |
|
|
|
679 |
|
|
/* Otherwise use the LHS type. */
|
680 |
|
|
else if (!operation_type)
|
681 |
|
|
operation_type = left_type;
|
682 |
|
|
|
683 |
|
|
/* Ensure everything on the LHS is valid. If we have a field reference,
|
684 |
|
|
strip anything that get_inner_reference can handle. Then remove any
|
685 |
|
|
conversions between types having the same code and mode. And mark
|
686 |
|
|
VIEW_CONVERT_EXPRs with TREE_ADDRESSABLE. When done, we must have
|
687 |
|
|
either an INDIRECT_REF, a NULL_EXPR or a DECL node. */
|
688 |
|
|
result = left_operand;
|
689 |
|
|
while (true)
|
690 |
|
|
{
|
691 |
|
|
tree restype = TREE_TYPE (result);
|
692 |
|
|
|
693 |
|
|
if (TREE_CODE (result) == COMPONENT_REF
|
694 |
|
|
|| TREE_CODE (result) == ARRAY_REF
|
695 |
|
|
|| TREE_CODE (result) == ARRAY_RANGE_REF)
|
696 |
|
|
while (handled_component_p (result))
|
697 |
|
|
result = TREE_OPERAND (result, 0);
|
698 |
|
|
else if (TREE_CODE (result) == REALPART_EXPR
|
699 |
|
|
|| TREE_CODE (result) == IMAGPART_EXPR
|
700 |
|
|
|| (CONVERT_EXPR_P (result)
|
701 |
|
|
&& (((TREE_CODE (restype)
|
702 |
|
|
== TREE_CODE (TREE_TYPE
|
703 |
|
|
(TREE_OPERAND (result, 0))))
|
704 |
|
|
&& (TYPE_MODE (TREE_TYPE
|
705 |
|
|
(TREE_OPERAND (result, 0)))
|
706 |
|
|
== TYPE_MODE (restype)))
|
707 |
|
|
|| TYPE_ALIGN_OK (restype))))
|
708 |
|
|
result = TREE_OPERAND (result, 0);
|
709 |
|
|
else if (TREE_CODE (result) == VIEW_CONVERT_EXPR)
|
710 |
|
|
{
|
711 |
|
|
TREE_ADDRESSABLE (result) = 1;
|
712 |
|
|
result = TREE_OPERAND (result, 0);
|
713 |
|
|
}
|
714 |
|
|
else
|
715 |
|
|
break;
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
gcc_assert (TREE_CODE (result) == INDIRECT_REF
|
719 |
|
|
|| TREE_CODE (result) == NULL_EXPR
|
720 |
|
|
|| DECL_P (result));
|
721 |
|
|
|
722 |
|
|
/* Convert the right operand to the operation type unless it is
|
723 |
|
|
either already of the correct type or if the type involves a
|
724 |
|
|
placeholder, since the RHS may not have the same record type. */
|
725 |
|
|
if (operation_type != right_type
|
726 |
|
|
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (operation_type)))
|
727 |
|
|
{
|
728 |
|
|
right_operand = convert (operation_type, right_operand);
|
729 |
|
|
right_type = operation_type;
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
/* If the left operand is not of the same type as the operation
|
733 |
|
|
type, wrap it up in a VIEW_CONVERT_EXPR. */
|
734 |
|
|
if (left_type != operation_type)
|
735 |
|
|
left_operand = unchecked_convert (operation_type, left_operand, false);
|
736 |
|
|
|
737 |
|
|
has_side_effects = true;
|
738 |
|
|
modulus = NULL_TREE;
|
739 |
|
|
break;
|
740 |
|
|
|
741 |
|
|
case ARRAY_REF:
|
742 |
|
|
if (!operation_type)
|
743 |
|
|
operation_type = TREE_TYPE (left_type);
|
744 |
|
|
|
745 |
|
|
/* ... fall through ... */
|
746 |
|
|
|
747 |
|
|
case ARRAY_RANGE_REF:
|
748 |
|
|
/* First look through conversion between type variants. Note that
|
749 |
|
|
this changes neither the operation type nor the type domain. */
|
750 |
|
|
if (TREE_CODE (left_operand) == VIEW_CONVERT_EXPR
|
751 |
|
|
&& TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (left_operand, 0)))
|
752 |
|
|
== TYPE_MAIN_VARIANT (left_type))
|
753 |
|
|
{
|
754 |
|
|
left_operand = TREE_OPERAND (left_operand, 0);
|
755 |
|
|
left_type = TREE_TYPE (left_operand);
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* For a range, make sure the element type is consistent. */
|
759 |
|
|
if (op_code == ARRAY_RANGE_REF
|
760 |
|
|
&& TREE_TYPE (operation_type) != TREE_TYPE (left_type))
|
761 |
|
|
operation_type = build_array_type (TREE_TYPE (left_type),
|
762 |
|
|
TYPE_DOMAIN (operation_type));
|
763 |
|
|
|
764 |
|
|
/* Then convert the right operand to its base type. This will prevent
|
765 |
|
|
unneeded sign conversions when sizetype is wider than integer. */
|
766 |
|
|
right_operand = convert (right_base_type, right_operand);
|
767 |
|
|
right_operand = convert (sizetype, right_operand);
|
768 |
|
|
|
769 |
|
|
if (!TREE_CONSTANT (right_operand)
|
770 |
|
|
|| !TREE_CONSTANT (TYPE_MIN_VALUE (right_type)))
|
771 |
|
|
gnat_mark_addressable (left_operand);
|
772 |
|
|
|
773 |
|
|
modulus = NULL_TREE;
|
774 |
|
|
break;
|
775 |
|
|
|
776 |
|
|
case GE_EXPR:
|
777 |
|
|
case LE_EXPR:
|
778 |
|
|
case GT_EXPR:
|
779 |
|
|
case LT_EXPR:
|
780 |
|
|
gcc_assert (!POINTER_TYPE_P (left_type));
|
781 |
|
|
|
782 |
|
|
/* ... fall through ... */
|
783 |
|
|
|
784 |
|
|
case EQ_EXPR:
|
785 |
|
|
case NE_EXPR:
|
786 |
|
|
/* If either operand is a NULL_EXPR, just return a new one. */
|
787 |
|
|
if (TREE_CODE (left_operand) == NULL_EXPR)
|
788 |
|
|
return build2 (op_code, result_type,
|
789 |
|
|
build1 (NULL_EXPR, integer_type_node,
|
790 |
|
|
TREE_OPERAND (left_operand, 0)),
|
791 |
|
|
integer_zero_node);
|
792 |
|
|
|
793 |
|
|
else if (TREE_CODE (right_operand) == NULL_EXPR)
|
794 |
|
|
return build2 (op_code, result_type,
|
795 |
|
|
build1 (NULL_EXPR, integer_type_node,
|
796 |
|
|
TREE_OPERAND (right_operand, 0)),
|
797 |
|
|
integer_zero_node);
|
798 |
|
|
|
799 |
|
|
/* If either object is a justified modular types, get the
|
800 |
|
|
fields from within. */
|
801 |
|
|
if (TREE_CODE (left_type) == RECORD_TYPE
|
802 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (left_type))
|
803 |
|
|
{
|
804 |
|
|
left_operand = convert (TREE_TYPE (TYPE_FIELDS (left_type)),
|
805 |
|
|
left_operand);
|
806 |
|
|
left_type = TREE_TYPE (left_operand);
|
807 |
|
|
left_base_type = get_base_type (left_type);
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
if (TREE_CODE (right_type) == RECORD_TYPE
|
811 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (right_type))
|
812 |
|
|
{
|
813 |
|
|
right_operand = convert (TREE_TYPE (TYPE_FIELDS (right_type)),
|
814 |
|
|
right_operand);
|
815 |
|
|
right_type = TREE_TYPE (right_operand);
|
816 |
|
|
right_base_type = get_base_type (right_type);
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
/* If both objects are arrays, compare them specially. */
|
820 |
|
|
if ((TREE_CODE (left_type) == ARRAY_TYPE
|
821 |
|
|
|| (TREE_CODE (left_type) == INTEGER_TYPE
|
822 |
|
|
&& TYPE_HAS_ACTUAL_BOUNDS_P (left_type)))
|
823 |
|
|
&& (TREE_CODE (right_type) == ARRAY_TYPE
|
824 |
|
|
|| (TREE_CODE (right_type) == INTEGER_TYPE
|
825 |
|
|
&& TYPE_HAS_ACTUAL_BOUNDS_P (right_type))))
|
826 |
|
|
{
|
827 |
|
|
result = compare_arrays (result_type, left_operand, right_operand);
|
828 |
|
|
|
829 |
|
|
if (op_code == NE_EXPR)
|
830 |
|
|
result = invert_truthvalue (result);
|
831 |
|
|
else
|
832 |
|
|
gcc_assert (op_code == EQ_EXPR);
|
833 |
|
|
|
834 |
|
|
return result;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Otherwise, the base types must be the same, unless they are both fat
|
838 |
|
|
pointer types or record types. In the latter case, use the best type
|
839 |
|
|
and convert both operands to that type. */
|
840 |
|
|
if (left_base_type != right_base_type)
|
841 |
|
|
{
|
842 |
|
|
if (TYPE_IS_FAT_POINTER_P (left_base_type)
|
843 |
|
|
&& TYPE_IS_FAT_POINTER_P (right_base_type))
|
844 |
|
|
{
|
845 |
|
|
gcc_assert (TYPE_MAIN_VARIANT (left_base_type)
|
846 |
|
|
== TYPE_MAIN_VARIANT (right_base_type));
|
847 |
|
|
best_type = left_base_type;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
else if (TREE_CODE (left_base_type) == RECORD_TYPE
|
851 |
|
|
&& TREE_CODE (right_base_type) == RECORD_TYPE)
|
852 |
|
|
{
|
853 |
|
|
/* The only way this is permitted is if both types have the same
|
854 |
|
|
name. In that case, one of them must not be self-referential.
|
855 |
|
|
Use it as the best type. Even better with a fixed size. */
|
856 |
|
|
gcc_assert (TYPE_NAME (left_base_type)
|
857 |
|
|
&& TYPE_NAME (left_base_type)
|
858 |
|
|
== TYPE_NAME (right_base_type));
|
859 |
|
|
|
860 |
|
|
if (TREE_CONSTANT (TYPE_SIZE (left_base_type)))
|
861 |
|
|
best_type = left_base_type;
|
862 |
|
|
else if (TREE_CONSTANT (TYPE_SIZE (right_base_type)))
|
863 |
|
|
best_type = right_base_type;
|
864 |
|
|
else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (left_base_type)))
|
865 |
|
|
best_type = left_base_type;
|
866 |
|
|
else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (right_base_type)))
|
867 |
|
|
best_type = right_base_type;
|
868 |
|
|
else
|
869 |
|
|
gcc_unreachable ();
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
else
|
873 |
|
|
gcc_unreachable ();
|
874 |
|
|
|
875 |
|
|
left_operand = convert (best_type, left_operand);
|
876 |
|
|
right_operand = convert (best_type, right_operand);
|
877 |
|
|
}
|
878 |
|
|
else
|
879 |
|
|
{
|
880 |
|
|
left_operand = convert (left_base_type, left_operand);
|
881 |
|
|
right_operand = convert (right_base_type, right_operand);
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
/* If we are comparing a fat pointer against zero, we just need to
|
885 |
|
|
compare the data pointer. */
|
886 |
|
|
if (TYPE_IS_FAT_POINTER_P (left_base_type)
|
887 |
|
|
&& TREE_CODE (right_operand) == CONSTRUCTOR
|
888 |
|
|
&& integer_zerop (VEC_index (constructor_elt,
|
889 |
|
|
CONSTRUCTOR_ELTS (right_operand),
|
890 |
|
|
0)->value))
|
891 |
|
|
{
|
892 |
|
|
left_operand
|
893 |
|
|
= build_component_ref (left_operand, NULL_TREE,
|
894 |
|
|
TYPE_FIELDS (left_base_type), false);
|
895 |
|
|
right_operand
|
896 |
|
|
= convert (TREE_TYPE (left_operand), integer_zero_node);
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
modulus = NULL_TREE;
|
900 |
|
|
break;
|
901 |
|
|
|
902 |
|
|
case PREINCREMENT_EXPR:
|
903 |
|
|
case PREDECREMENT_EXPR:
|
904 |
|
|
case POSTINCREMENT_EXPR:
|
905 |
|
|
case POSTDECREMENT_EXPR:
|
906 |
|
|
/* These operations are not used anymore. */
|
907 |
|
|
gcc_unreachable ();
|
908 |
|
|
|
909 |
|
|
case LSHIFT_EXPR:
|
910 |
|
|
case RSHIFT_EXPR:
|
911 |
|
|
case LROTATE_EXPR:
|
912 |
|
|
case RROTATE_EXPR:
|
913 |
|
|
/* The RHS of a shift can be any type. Also, ignore any modulus
|
914 |
|
|
(we used to abort, but this is needed for unchecked conversion
|
915 |
|
|
to modular types). Otherwise, processing is the same as normal. */
|
916 |
|
|
gcc_assert (operation_type == left_base_type);
|
917 |
|
|
modulus = NULL_TREE;
|
918 |
|
|
left_operand = convert (operation_type, left_operand);
|
919 |
|
|
break;
|
920 |
|
|
|
921 |
|
|
case BIT_AND_EXPR:
|
922 |
|
|
case BIT_IOR_EXPR:
|
923 |
|
|
case BIT_XOR_EXPR:
|
924 |
|
|
/* For binary modulus, if the inputs are in range, so are the
|
925 |
|
|
outputs. */
|
926 |
|
|
if (modulus && integer_pow2p (modulus))
|
927 |
|
|
modulus = NULL_TREE;
|
928 |
|
|
goto common;
|
929 |
|
|
|
930 |
|
|
case COMPLEX_EXPR:
|
931 |
|
|
gcc_assert (TREE_TYPE (result_type) == left_base_type
|
932 |
|
|
&& TREE_TYPE (result_type) == right_base_type);
|
933 |
|
|
left_operand = convert (left_base_type, left_operand);
|
934 |
|
|
right_operand = convert (right_base_type, right_operand);
|
935 |
|
|
break;
|
936 |
|
|
|
937 |
|
|
case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR:
|
938 |
|
|
case CEIL_DIV_EXPR: case CEIL_MOD_EXPR:
|
939 |
|
|
case FLOOR_DIV_EXPR: case FLOOR_MOD_EXPR:
|
940 |
|
|
case ROUND_DIV_EXPR: case ROUND_MOD_EXPR:
|
941 |
|
|
/* These always produce results lower than either operand. */
|
942 |
|
|
modulus = NULL_TREE;
|
943 |
|
|
goto common;
|
944 |
|
|
|
945 |
|
|
case POINTER_PLUS_EXPR:
|
946 |
|
|
gcc_assert (operation_type == left_base_type
|
947 |
|
|
&& sizetype == right_base_type);
|
948 |
|
|
left_operand = convert (operation_type, left_operand);
|
949 |
|
|
right_operand = convert (sizetype, right_operand);
|
950 |
|
|
break;
|
951 |
|
|
|
952 |
|
|
case PLUS_NOMOD_EXPR:
|
953 |
|
|
case MINUS_NOMOD_EXPR:
|
954 |
|
|
if (op_code == PLUS_NOMOD_EXPR)
|
955 |
|
|
op_code = PLUS_EXPR;
|
956 |
|
|
else
|
957 |
|
|
op_code = MINUS_EXPR;
|
958 |
|
|
modulus = NULL_TREE;
|
959 |
|
|
|
960 |
|
|
/* ... fall through ... */
|
961 |
|
|
|
962 |
|
|
case PLUS_EXPR:
|
963 |
|
|
case MINUS_EXPR:
|
964 |
|
|
/* Avoid doing arithmetics in ENUMERAL_TYPE or BOOLEAN_TYPE like the
|
965 |
|
|
other compilers. Contrary to C, Ada doesn't allow arithmetics in
|
966 |
|
|
these types but can generate addition/subtraction for Succ/Pred. */
|
967 |
|
|
if (operation_type
|
968 |
|
|
&& (TREE_CODE (operation_type) == ENUMERAL_TYPE
|
969 |
|
|
|| TREE_CODE (operation_type) == BOOLEAN_TYPE))
|
970 |
|
|
operation_type = left_base_type = right_base_type
|
971 |
|
|
= gnat_type_for_mode (TYPE_MODE (operation_type),
|
972 |
|
|
TYPE_UNSIGNED (operation_type));
|
973 |
|
|
|
974 |
|
|
/* ... fall through ... */
|
975 |
|
|
|
976 |
|
|
default:
|
977 |
|
|
common:
|
978 |
|
|
/* The result type should be the same as the base types of the
|
979 |
|
|
both operands (and they should be the same). Convert
|
980 |
|
|
everything to the result type. */
|
981 |
|
|
|
982 |
|
|
gcc_assert (operation_type == left_base_type
|
983 |
|
|
&& left_base_type == right_base_type);
|
984 |
|
|
left_operand = convert (operation_type, left_operand);
|
985 |
|
|
right_operand = convert (operation_type, right_operand);
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
if (modulus && !integer_pow2p (modulus))
|
989 |
|
|
{
|
990 |
|
|
result = nonbinary_modular_operation (op_code, operation_type,
|
991 |
|
|
left_operand, right_operand);
|
992 |
|
|
modulus = NULL_TREE;
|
993 |
|
|
}
|
994 |
|
|
/* If either operand is a NULL_EXPR, just return a new one. */
|
995 |
|
|
else if (TREE_CODE (left_operand) == NULL_EXPR)
|
996 |
|
|
return build1 (NULL_EXPR, operation_type, TREE_OPERAND (left_operand, 0));
|
997 |
|
|
else if (TREE_CODE (right_operand) == NULL_EXPR)
|
998 |
|
|
return build1 (NULL_EXPR, operation_type, TREE_OPERAND (right_operand, 0));
|
999 |
|
|
else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
|
1000 |
|
|
result = fold (build4 (op_code, operation_type, left_operand,
|
1001 |
|
|
right_operand, NULL_TREE, NULL_TREE));
|
1002 |
|
|
else
|
1003 |
|
|
result
|
1004 |
|
|
= fold_build2 (op_code, operation_type, left_operand, right_operand);
|
1005 |
|
|
|
1006 |
|
|
TREE_SIDE_EFFECTS (result) |= has_side_effects;
|
1007 |
|
|
TREE_CONSTANT (result)
|
1008 |
|
|
|= (TREE_CONSTANT (left_operand) & TREE_CONSTANT (right_operand)
|
1009 |
|
|
&& op_code != ARRAY_REF && op_code != ARRAY_RANGE_REF);
|
1010 |
|
|
|
1011 |
|
|
if ((op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
|
1012 |
|
|
&& TYPE_VOLATILE (operation_type))
|
1013 |
|
|
TREE_THIS_VOLATILE (result) = 1;
|
1014 |
|
|
|
1015 |
|
|
/* If we are working with modular types, perform the MOD operation
|
1016 |
|
|
if something above hasn't eliminated the need for it. */
|
1017 |
|
|
if (modulus)
|
1018 |
|
|
result = fold_build2 (FLOOR_MOD_EXPR, operation_type, result,
|
1019 |
|
|
convert (operation_type, modulus));
|
1020 |
|
|
|
1021 |
|
|
if (result_type && result_type != operation_type)
|
1022 |
|
|
result = convert (result_type, result);
|
1023 |
|
|
|
1024 |
|
|
return result;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* Similar, but for unary operations. */
|
1028 |
|
|
|
1029 |
|
|
tree
|
1030 |
|
|
build_unary_op (enum tree_code op_code, tree result_type, tree operand)
|
1031 |
|
|
{
|
1032 |
|
|
tree type = TREE_TYPE (operand);
|
1033 |
|
|
tree base_type = get_base_type (type);
|
1034 |
|
|
tree operation_type = result_type;
|
1035 |
|
|
tree result;
|
1036 |
|
|
bool side_effects = false;
|
1037 |
|
|
|
1038 |
|
|
if (operation_type
|
1039 |
|
|
&& TREE_CODE (operation_type) == RECORD_TYPE
|
1040 |
|
|
&& TYPE_JUSTIFIED_MODULAR_P (operation_type))
|
1041 |
|
|
operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));
|
1042 |
|
|
|
1043 |
|
|
if (operation_type
|
1044 |
|
|
&& !AGGREGATE_TYPE_P (operation_type)
|
1045 |
|
|
&& TYPE_EXTRA_SUBTYPE_P (operation_type))
|
1046 |
|
|
operation_type = get_base_type (operation_type);
|
1047 |
|
|
|
1048 |
|
|
switch (op_code)
|
1049 |
|
|
{
|
1050 |
|
|
case REALPART_EXPR:
|
1051 |
|
|
case IMAGPART_EXPR:
|
1052 |
|
|
if (!operation_type)
|
1053 |
|
|
result_type = operation_type = TREE_TYPE (type);
|
1054 |
|
|
else
|
1055 |
|
|
gcc_assert (result_type == TREE_TYPE (type));
|
1056 |
|
|
|
1057 |
|
|
result = fold_build1 (op_code, operation_type, operand);
|
1058 |
|
|
break;
|
1059 |
|
|
|
1060 |
|
|
case TRUTH_NOT_EXPR:
|
1061 |
|
|
gcc_assert (result_type == base_type);
|
1062 |
|
|
result = invert_truthvalue (operand);
|
1063 |
|
|
break;
|
1064 |
|
|
|
1065 |
|
|
case ATTR_ADDR_EXPR:
|
1066 |
|
|
case ADDR_EXPR:
|
1067 |
|
|
switch (TREE_CODE (operand))
|
1068 |
|
|
{
|
1069 |
|
|
case INDIRECT_REF:
|
1070 |
|
|
case UNCONSTRAINED_ARRAY_REF:
|
1071 |
|
|
result = TREE_OPERAND (operand, 0);
|
1072 |
|
|
|
1073 |
|
|
/* Make sure the type here is a pointer, not a reference.
|
1074 |
|
|
GCC wants pointer types for function addresses. */
|
1075 |
|
|
if (!result_type)
|
1076 |
|
|
result_type = build_pointer_type (type);
|
1077 |
|
|
|
1078 |
|
|
/* If the underlying object can alias everything, propagate the
|
1079 |
|
|
property since we are effectively retrieving the object. */
|
1080 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (result))
|
1081 |
|
|
&& TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (result)))
|
1082 |
|
|
{
|
1083 |
|
|
if (TREE_CODE (result_type) == POINTER_TYPE
|
1084 |
|
|
&& !TYPE_REF_CAN_ALIAS_ALL (result_type))
|
1085 |
|
|
result_type
|
1086 |
|
|
= build_pointer_type_for_mode (TREE_TYPE (result_type),
|
1087 |
|
|
TYPE_MODE (result_type),
|
1088 |
|
|
true);
|
1089 |
|
|
else if (TREE_CODE (result_type) == REFERENCE_TYPE
|
1090 |
|
|
&& !TYPE_REF_CAN_ALIAS_ALL (result_type))
|
1091 |
|
|
result_type
|
1092 |
|
|
= build_reference_type_for_mode (TREE_TYPE (result_type),
|
1093 |
|
|
TYPE_MODE (result_type),
|
1094 |
|
|
true);
|
1095 |
|
|
}
|
1096 |
|
|
break;
|
1097 |
|
|
|
1098 |
|
|
case NULL_EXPR:
|
1099 |
|
|
result = operand;
|
1100 |
|
|
TREE_TYPE (result) = type = build_pointer_type (type);
|
1101 |
|
|
break;
|
1102 |
|
|
|
1103 |
|
|
case ARRAY_REF:
|
1104 |
|
|
case ARRAY_RANGE_REF:
|
1105 |
|
|
case COMPONENT_REF:
|
1106 |
|
|
case BIT_FIELD_REF:
|
1107 |
|
|
/* If this is for 'Address, find the address of the prefix and
|
1108 |
|
|
add the offset to the field. Otherwise, do this the normal
|
1109 |
|
|
way. */
|
1110 |
|
|
if (op_code == ATTR_ADDR_EXPR)
|
1111 |
|
|
{
|
1112 |
|
|
HOST_WIDE_INT bitsize;
|
1113 |
|
|
HOST_WIDE_INT bitpos;
|
1114 |
|
|
tree offset, inner;
|
1115 |
|
|
enum machine_mode mode;
|
1116 |
|
|
int unsignedp, volatilep;
|
1117 |
|
|
|
1118 |
|
|
inner = get_inner_reference (operand, &bitsize, &bitpos, &offset,
|
1119 |
|
|
&mode, &unsignedp, &volatilep,
|
1120 |
|
|
false);
|
1121 |
|
|
|
1122 |
|
|
/* If INNER is a padding type whose field has a self-referential
|
1123 |
|
|
size, convert to that inner type. We know the offset is zero
|
1124 |
|
|
and we need to have that type visible. */
|
1125 |
|
|
if (TYPE_IS_PADDING_P (TREE_TYPE (inner))
|
1126 |
|
|
&& CONTAINS_PLACEHOLDER_P
|
1127 |
|
|
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS
|
1128 |
|
|
(TREE_TYPE (inner))))))
|
1129 |
|
|
inner = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (inner))),
|
1130 |
|
|
inner);
|
1131 |
|
|
|
1132 |
|
|
/* Compute the offset as a byte offset from INNER. */
|
1133 |
|
|
if (!offset)
|
1134 |
|
|
offset = size_zero_node;
|
1135 |
|
|
|
1136 |
|
|
if (bitpos % BITS_PER_UNIT != 0)
|
1137 |
|
|
post_error
|
1138 |
|
|
("taking address of object not aligned on storage unit?",
|
1139 |
|
|
error_gnat_node);
|
1140 |
|
|
|
1141 |
|
|
offset = size_binop (PLUS_EXPR, offset,
|
1142 |
|
|
size_int (bitpos / BITS_PER_UNIT));
|
1143 |
|
|
|
1144 |
|
|
/* Take the address of INNER, convert the offset to void *, and
|
1145 |
|
|
add then. It will later be converted to the desired result
|
1146 |
|
|
type, if any. */
|
1147 |
|
|
inner = build_unary_op (ADDR_EXPR, NULL_TREE, inner);
|
1148 |
|
|
inner = convert (ptr_void_type_node, inner);
|
1149 |
|
|
result = build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
|
1150 |
|
|
inner, offset);
|
1151 |
|
|
result = convert (build_pointer_type (TREE_TYPE (operand)),
|
1152 |
|
|
result);
|
1153 |
|
|
break;
|
1154 |
|
|
}
|
1155 |
|
|
goto common;
|
1156 |
|
|
|
1157 |
|
|
case CONSTRUCTOR:
|
1158 |
|
|
/* If this is just a constructor for a padded record, we can
|
1159 |
|
|
just take the address of the single field and convert it to
|
1160 |
|
|
a pointer to our type. */
|
1161 |
|
|
if (TYPE_IS_PADDING_P (type))
|
1162 |
|
|
{
|
1163 |
|
|
result = VEC_index (constructor_elt,
|
1164 |
|
|
CONSTRUCTOR_ELTS (operand),
|
1165 |
|
|
0)->value;
|
1166 |
|
|
result = convert (build_pointer_type (TREE_TYPE (operand)),
|
1167 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE, result));
|
1168 |
|
|
break;
|
1169 |
|
|
}
|
1170 |
|
|
|
1171 |
|
|
goto common;
|
1172 |
|
|
|
1173 |
|
|
case NOP_EXPR:
|
1174 |
|
|
if (AGGREGATE_TYPE_P (type)
|
1175 |
|
|
&& AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (operand, 0))))
|
1176 |
|
|
return build_unary_op (ADDR_EXPR, result_type,
|
1177 |
|
|
TREE_OPERAND (operand, 0));
|
1178 |
|
|
|
1179 |
|
|
/* ... fallthru ... */
|
1180 |
|
|
|
1181 |
|
|
case VIEW_CONVERT_EXPR:
|
1182 |
|
|
/* If this just a variant conversion or if the conversion doesn't
|
1183 |
|
|
change the mode, get the result type from this type and go down.
|
1184 |
|
|
This is needed for conversions of CONST_DECLs, to eventually get
|
1185 |
|
|
to the address of their CORRESPONDING_VARs. */
|
1186 |
|
|
if ((TYPE_MAIN_VARIANT (type)
|
1187 |
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (operand, 0))))
|
1188 |
|
|
|| (TYPE_MODE (type) != BLKmode
|
1189 |
|
|
&& (TYPE_MODE (type)
|
1190 |
|
|
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (operand, 0))))))
|
1191 |
|
|
return build_unary_op (ADDR_EXPR,
|
1192 |
|
|
(result_type ? result_type
|
1193 |
|
|
: build_pointer_type (type)),
|
1194 |
|
|
TREE_OPERAND (operand, 0));
|
1195 |
|
|
goto common;
|
1196 |
|
|
|
1197 |
|
|
case CONST_DECL:
|
1198 |
|
|
operand = DECL_CONST_CORRESPONDING_VAR (operand);
|
1199 |
|
|
|
1200 |
|
|
/* ... fall through ... */
|
1201 |
|
|
|
1202 |
|
|
default:
|
1203 |
|
|
common:
|
1204 |
|
|
|
1205 |
|
|
/* If we are taking the address of a padded record whose field is
|
1206 |
|
|
contains a template, take the address of the template. */
|
1207 |
|
|
if (TYPE_IS_PADDING_P (type)
|
1208 |
|
|
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
|
1209 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
|
1210 |
|
|
{
|
1211 |
|
|
type = TREE_TYPE (TYPE_FIELDS (type));
|
1212 |
|
|
operand = convert (type, operand);
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
if (type != error_mark_node)
|
1216 |
|
|
operation_type = build_pointer_type (type);
|
1217 |
|
|
|
1218 |
|
|
gnat_mark_addressable (operand);
|
1219 |
|
|
result = fold_build1 (ADDR_EXPR, operation_type, operand);
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
TREE_CONSTANT (result) = staticp (operand) || TREE_CONSTANT (operand);
|
1223 |
|
|
break;
|
1224 |
|
|
|
1225 |
|
|
case INDIRECT_REF:
|
1226 |
|
|
/* If we want to refer to an entire unconstrained array,
|
1227 |
|
|
make up an expression to do so. This will never survive to
|
1228 |
|
|
the backend. If TYPE is a thin pointer, first convert the
|
1229 |
|
|
operand to a fat pointer. */
|
1230 |
|
|
if (TYPE_IS_THIN_POINTER_P (type)
|
1231 |
|
|
&& TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
|
1232 |
|
|
{
|
1233 |
|
|
operand
|
1234 |
|
|
= convert (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))),
|
1235 |
|
|
operand);
|
1236 |
|
|
type = TREE_TYPE (operand);
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
if (TYPE_IS_FAT_POINTER_P (type))
|
1240 |
|
|
{
|
1241 |
|
|
result = build1 (UNCONSTRAINED_ARRAY_REF,
|
1242 |
|
|
TYPE_UNCONSTRAINED_ARRAY (type), operand);
|
1243 |
|
|
TREE_READONLY (result) = TREE_STATIC (result)
|
1244 |
|
|
= TYPE_READONLY (TYPE_UNCONSTRAINED_ARRAY (type));
|
1245 |
|
|
}
|
1246 |
|
|
else if (TREE_CODE (operand) == ADDR_EXPR)
|
1247 |
|
|
result = TREE_OPERAND (operand, 0);
|
1248 |
|
|
|
1249 |
|
|
else
|
1250 |
|
|
{
|
1251 |
|
|
result = fold_build1 (op_code, TREE_TYPE (type), operand);
|
1252 |
|
|
TREE_READONLY (result) = TYPE_READONLY (TREE_TYPE (type));
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
side_effects
|
1256 |
|
|
= (!TYPE_IS_FAT_POINTER_P (type) && TYPE_VOLATILE (TREE_TYPE (type)));
|
1257 |
|
|
break;
|
1258 |
|
|
|
1259 |
|
|
case NEGATE_EXPR:
|
1260 |
|
|
case BIT_NOT_EXPR:
|
1261 |
|
|
{
|
1262 |
|
|
tree modulus = ((operation_type
|
1263 |
|
|
&& TREE_CODE (operation_type) == INTEGER_TYPE
|
1264 |
|
|
&& TYPE_MODULAR_P (operation_type))
|
1265 |
|
|
? TYPE_MODULUS (operation_type) : NULL_TREE);
|
1266 |
|
|
int mod_pow2 = modulus && integer_pow2p (modulus);
|
1267 |
|
|
|
1268 |
|
|
/* If this is a modular type, there are various possibilities
|
1269 |
|
|
depending on the operation and whether the modulus is a
|
1270 |
|
|
power of two or not. */
|
1271 |
|
|
|
1272 |
|
|
if (modulus)
|
1273 |
|
|
{
|
1274 |
|
|
gcc_assert (operation_type == base_type);
|
1275 |
|
|
operand = convert (operation_type, operand);
|
1276 |
|
|
|
1277 |
|
|
/* The fastest in the negate case for binary modulus is
|
1278 |
|
|
the straightforward code; the TRUNC_MOD_EXPR below
|
1279 |
|
|
is an AND operation. */
|
1280 |
|
|
if (op_code == NEGATE_EXPR && mod_pow2)
|
1281 |
|
|
result = fold_build2 (TRUNC_MOD_EXPR, operation_type,
|
1282 |
|
|
fold_build1 (NEGATE_EXPR, operation_type,
|
1283 |
|
|
operand),
|
1284 |
|
|
modulus);
|
1285 |
|
|
|
1286 |
|
|
/* For nonbinary negate case, return zero for zero operand,
|
1287 |
|
|
else return the modulus minus the operand. If the modulus
|
1288 |
|
|
is a power of two minus one, we can do the subtraction
|
1289 |
|
|
as an XOR since it is equivalent and faster on most machines. */
|
1290 |
|
|
else if (op_code == NEGATE_EXPR && !mod_pow2)
|
1291 |
|
|
{
|
1292 |
|
|
if (integer_pow2p (fold_build2 (PLUS_EXPR, operation_type,
|
1293 |
|
|
modulus,
|
1294 |
|
|
convert (operation_type,
|
1295 |
|
|
integer_one_node))))
|
1296 |
|
|
result = fold_build2 (BIT_XOR_EXPR, operation_type,
|
1297 |
|
|
operand, modulus);
|
1298 |
|
|
else
|
1299 |
|
|
result = fold_build2 (MINUS_EXPR, operation_type,
|
1300 |
|
|
modulus, operand);
|
1301 |
|
|
|
1302 |
|
|
result = fold_build3 (COND_EXPR, operation_type,
|
1303 |
|
|
fold_build2 (NE_EXPR,
|
1304 |
|
|
integer_type_node,
|
1305 |
|
|
operand,
|
1306 |
|
|
convert
|
1307 |
|
|
(operation_type,
|
1308 |
|
|
integer_zero_node)),
|
1309 |
|
|
result, operand);
|
1310 |
|
|
}
|
1311 |
|
|
else
|
1312 |
|
|
{
|
1313 |
|
|
/* For the NOT cases, we need a constant equal to
|
1314 |
|
|
the modulus minus one. For a binary modulus, we
|
1315 |
|
|
XOR against the constant and subtract the operand from
|
1316 |
|
|
that constant for nonbinary modulus. */
|
1317 |
|
|
|
1318 |
|
|
tree cnst = fold_build2 (MINUS_EXPR, operation_type, modulus,
|
1319 |
|
|
convert (operation_type,
|
1320 |
|
|
integer_one_node));
|
1321 |
|
|
|
1322 |
|
|
if (mod_pow2)
|
1323 |
|
|
result = fold_build2 (BIT_XOR_EXPR, operation_type,
|
1324 |
|
|
operand, cnst);
|
1325 |
|
|
else
|
1326 |
|
|
result = fold_build2 (MINUS_EXPR, operation_type,
|
1327 |
|
|
cnst, operand);
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
break;
|
1331 |
|
|
}
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
/* ... fall through ... */
|
1335 |
|
|
|
1336 |
|
|
default:
|
1337 |
|
|
gcc_assert (operation_type == base_type);
|
1338 |
|
|
result = fold_build1 (op_code, operation_type,
|
1339 |
|
|
convert (operation_type, operand));
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
if (side_effects)
|
1343 |
|
|
{
|
1344 |
|
|
TREE_SIDE_EFFECTS (result) = 1;
|
1345 |
|
|
if (TREE_CODE (result) == INDIRECT_REF)
|
1346 |
|
|
TREE_THIS_VOLATILE (result) = TYPE_VOLATILE (TREE_TYPE (result));
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
if (result_type && TREE_TYPE (result) != result_type)
|
1350 |
|
|
result = convert (result_type, result);
|
1351 |
|
|
|
1352 |
|
|
return result;
|
1353 |
|
|
}
|
1354 |
|
|
|
1355 |
|
|
/* Similar, but for COND_EXPR. */
|
1356 |
|
|
|
1357 |
|
|
tree
|
1358 |
|
|
build_cond_expr (tree result_type, tree condition_operand,
|
1359 |
|
|
tree true_operand, tree false_operand)
|
1360 |
|
|
{
|
1361 |
|
|
bool addr_p = false;
|
1362 |
|
|
tree result;
|
1363 |
|
|
|
1364 |
|
|
/* The front-end verified that result, true and false operands have
|
1365 |
|
|
same base type. Convert everything to the result type. */
|
1366 |
|
|
true_operand = convert (result_type, true_operand);
|
1367 |
|
|
false_operand = convert (result_type, false_operand);
|
1368 |
|
|
|
1369 |
|
|
/* If the result type is unconstrained, take the address of the operands
|
1370 |
|
|
and then dereference our result. */
|
1371 |
|
|
if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
|
1372 |
|
|
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
|
1373 |
|
|
{
|
1374 |
|
|
result_type = build_pointer_type (result_type);
|
1375 |
|
|
true_operand = build_unary_op (ADDR_EXPR, result_type, true_operand);
|
1376 |
|
|
false_operand = build_unary_op (ADDR_EXPR, result_type, false_operand);
|
1377 |
|
|
addr_p = true;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
result = fold_build3 (COND_EXPR, result_type, condition_operand,
|
1381 |
|
|
true_operand, false_operand);
|
1382 |
|
|
|
1383 |
|
|
/* If we have a common SAVE_EXPR (possibly surrounded by arithmetics)
|
1384 |
|
|
in both arms, make sure it gets evaluated by moving it ahead of the
|
1385 |
|
|
conditional expression. This is necessary because it is evaluated
|
1386 |
|
|
in only one place at run time and would otherwise be uninitialized
|
1387 |
|
|
in one of the arms. */
|
1388 |
|
|
true_operand = skip_simple_arithmetic (true_operand);
|
1389 |
|
|
false_operand = skip_simple_arithmetic (false_operand);
|
1390 |
|
|
|
1391 |
|
|
if (true_operand == false_operand && TREE_CODE (true_operand) == SAVE_EXPR)
|
1392 |
|
|
result = build2 (COMPOUND_EXPR, result_type, true_operand, result);
|
1393 |
|
|
|
1394 |
|
|
if (addr_p)
|
1395 |
|
|
result = build_unary_op (INDIRECT_REF, NULL_TREE, result);
|
1396 |
|
|
|
1397 |
|
|
return result;
|
1398 |
|
|
}
|
1399 |
|
|
|
1400 |
|
|
/* Similar, but for RETURN_EXPR. If RESULT_DECL is non-zero, build
|
1401 |
|
|
a RETURN_EXPR around the assignment of RET_VAL to RESULT_DECL.
|
1402 |
|
|
If RESULT_DECL is zero, build a bare RETURN_EXPR. */
|
1403 |
|
|
|
1404 |
|
|
tree
|
1405 |
|
|
build_return_expr (tree result_decl, tree ret_val)
|
1406 |
|
|
{
|
1407 |
|
|
tree result_expr;
|
1408 |
|
|
|
1409 |
|
|
if (result_decl)
|
1410 |
|
|
{
|
1411 |
|
|
/* The gimplifier explicitly enforces the following invariant:
|
1412 |
|
|
|
1413 |
|
|
RETURN_EXPR
|
1414 |
|
|
|
|
1415 |
|
|
MODIFY_EXPR
|
1416 |
|
|
/ \
|
1417 |
|
|
/ \
|
1418 |
|
|
RESULT_DECL ...
|
1419 |
|
|
|
1420 |
|
|
As a consequence, type-homogeneity dictates that we use the type
|
1421 |
|
|
of the RESULT_DECL as the operation type. */
|
1422 |
|
|
|
1423 |
|
|
tree operation_type = TREE_TYPE (result_decl);
|
1424 |
|
|
|
1425 |
|
|
/* Convert the right operand to the operation type. Note that
|
1426 |
|
|
it's the same transformation as in the MODIFY_EXPR case of
|
1427 |
|
|
build_binary_op with the additional guarantee that the type
|
1428 |
|
|
cannot involve a placeholder, since otherwise the function
|
1429 |
|
|
would use the "target pointer" return mechanism. */
|
1430 |
|
|
|
1431 |
|
|
if (operation_type != TREE_TYPE (ret_val))
|
1432 |
|
|
ret_val = convert (operation_type, ret_val);
|
1433 |
|
|
|
1434 |
|
|
result_expr
|
1435 |
|
|
= build2 (MODIFY_EXPR, operation_type, result_decl, ret_val);
|
1436 |
|
|
}
|
1437 |
|
|
else
|
1438 |
|
|
result_expr = NULL_TREE;
|
1439 |
|
|
|
1440 |
|
|
return build1 (RETURN_EXPR, void_type_node, result_expr);
|
1441 |
|
|
}
|
1442 |
|
|
|
1443 |
|
|
/* Build a CALL_EXPR to call FUNDECL with one argument, ARG. Return
|
1444 |
|
|
the CALL_EXPR. */
|
1445 |
|
|
|
1446 |
|
|
tree
|
1447 |
|
|
build_call_1_expr (tree fundecl, tree arg)
|
1448 |
|
|
{
|
1449 |
|
|
tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
|
1450 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
1451 |
|
|
1, arg);
|
1452 |
|
|
TREE_SIDE_EFFECTS (call) = 1;
|
1453 |
|
|
return call;
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
/* Build a CALL_EXPR to call FUNDECL with two arguments, ARG1 & ARG2. Return
|
1457 |
|
|
the CALL_EXPR. */
|
1458 |
|
|
|
1459 |
|
|
tree
|
1460 |
|
|
build_call_2_expr (tree fundecl, tree arg1, tree arg2)
|
1461 |
|
|
{
|
1462 |
|
|
tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
|
1463 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
1464 |
|
|
2, arg1, arg2);
|
1465 |
|
|
TREE_SIDE_EFFECTS (call) = 1;
|
1466 |
|
|
return call;
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
/* Likewise to call FUNDECL with no arguments. */
|
1470 |
|
|
|
1471 |
|
|
tree
|
1472 |
|
|
build_call_0_expr (tree fundecl)
|
1473 |
|
|
{
|
1474 |
|
|
/* We rely on build_call_nary to compute TREE_SIDE_EFFECTS. This makes
|
1475 |
|
|
it possible to propagate DECL_IS_PURE on parameterless functions. */
|
1476 |
|
|
tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
|
1477 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
1478 |
|
|
0);
|
1479 |
|
|
return call;
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
/* Call a function that raises an exception and pass the line number and file
|
1483 |
|
|
name, if requested. MSG says which exception function to call.
|
1484 |
|
|
|
1485 |
|
|
GNAT_NODE is the gnat node conveying the source location for which the
|
1486 |
|
|
error should be signaled, or Empty in which case the error is signaled on
|
1487 |
|
|
the current ref_file_name/input_line.
|
1488 |
|
|
|
1489 |
|
|
KIND says which kind of exception this is for
|
1490 |
|
|
(N_Raise_{Constraint,Storage,Program}_Error). */
|
1491 |
|
|
|
1492 |
|
|
tree
|
1493 |
|
|
build_call_raise (int msg, Node_Id gnat_node, char kind)
|
1494 |
|
|
{
|
1495 |
|
|
tree fndecl = gnat_raise_decls[msg];
|
1496 |
|
|
tree label = get_exception_label (kind);
|
1497 |
|
|
tree filename;
|
1498 |
|
|
int line_number;
|
1499 |
|
|
const char *str;
|
1500 |
|
|
int len;
|
1501 |
|
|
|
1502 |
|
|
/* If this is to be done as a goto, handle that case. */
|
1503 |
|
|
if (label)
|
1504 |
|
|
{
|
1505 |
|
|
Entity_Id local_raise = Get_Local_Raise_Call_Entity ();
|
1506 |
|
|
tree gnu_result = build1 (GOTO_EXPR, void_type_node, label);
|
1507 |
|
|
|
1508 |
|
|
/* If Local_Raise is present, generate
|
1509 |
|
|
Local_Raise (exception'Identity); */
|
1510 |
|
|
if (Present (local_raise))
|
1511 |
|
|
{
|
1512 |
|
|
tree gnu_local_raise
|
1513 |
|
|
= gnat_to_gnu_entity (local_raise, NULL_TREE, 0);
|
1514 |
|
|
tree gnu_exception_entity
|
1515 |
|
|
= gnat_to_gnu_entity (Get_RT_Exception_Entity (msg), NULL_TREE, 0);
|
1516 |
|
|
tree gnu_call
|
1517 |
|
|
= build_call_1_expr (gnu_local_raise,
|
1518 |
|
|
build_unary_op (ADDR_EXPR, NULL_TREE,
|
1519 |
|
|
gnu_exception_entity));
|
1520 |
|
|
|
1521 |
|
|
gnu_result = build2 (COMPOUND_EXPR, void_type_node,
|
1522 |
|
|
gnu_call, gnu_result);}
|
1523 |
|
|
|
1524 |
|
|
return gnu_result;
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
str
|
1528 |
|
|
= (Debug_Flag_NN || Exception_Locations_Suppressed)
|
1529 |
|
|
? ""
|
1530 |
|
|
: (gnat_node != Empty && Sloc (gnat_node) != No_Location)
|
1531 |
|
|
? IDENTIFIER_POINTER
|
1532 |
|
|
(get_identifier (Get_Name_String
|
1533 |
|
|
(Debug_Source_Name
|
1534 |
|
|
(Get_Source_File_Index (Sloc (gnat_node))))))
|
1535 |
|
|
: ref_filename;
|
1536 |
|
|
|
1537 |
|
|
len = strlen (str);
|
1538 |
|
|
filename = build_string (len, str);
|
1539 |
|
|
line_number
|
1540 |
|
|
= (gnat_node != Empty && Sloc (gnat_node) != No_Location)
|
1541 |
|
|
? Get_Logical_Line_Number (Sloc(gnat_node)) : input_line;
|
1542 |
|
|
|
1543 |
|
|
TREE_TYPE (filename)
|
1544 |
|
|
= build_array_type (char_type_node, build_index_type (size_int (len)));
|
1545 |
|
|
|
1546 |
|
|
return
|
1547 |
|
|
build_call_2_expr (fndecl,
|
1548 |
|
|
build1 (ADDR_EXPR, build_pointer_type (char_type_node),
|
1549 |
|
|
filename),
|
1550 |
|
|
build_int_cst (NULL_TREE, line_number));
|
1551 |
|
|
}
|
1552 |
|
|
|
1553 |
|
|
/* qsort comparer for the bit positions of two constructor elements
|
1554 |
|
|
for record components. */
|
1555 |
|
|
|
1556 |
|
|
static int
|
1557 |
|
|
compare_elmt_bitpos (const PTR rt1, const PTR rt2)
|
1558 |
|
|
{
|
1559 |
|
|
const_tree const elmt1 = * (const_tree const *) rt1;
|
1560 |
|
|
const_tree const elmt2 = * (const_tree const *) rt2;
|
1561 |
|
|
const_tree const field1 = TREE_PURPOSE (elmt1);
|
1562 |
|
|
const_tree const field2 = TREE_PURPOSE (elmt2);
|
1563 |
|
|
const int ret
|
1564 |
|
|
= tree_int_cst_compare (bit_position (field1), bit_position (field2));
|
1565 |
|
|
|
1566 |
|
|
return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
/* Return a CONSTRUCTOR of TYPE whose list is LIST. */
|
1570 |
|
|
|
1571 |
|
|
tree
|
1572 |
|
|
gnat_build_constructor (tree type, tree list)
|
1573 |
|
|
{
|
1574 |
|
|
bool allconstant = (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST);
|
1575 |
|
|
bool side_effects = false;
|
1576 |
|
|
tree elmt, result;
|
1577 |
|
|
int n_elmts;
|
1578 |
|
|
|
1579 |
|
|
/* Scan the elements to see if they are all constant or if any has side
|
1580 |
|
|
effects, to let us set global flags on the resulting constructor. Count
|
1581 |
|
|
the elements along the way for possible sorting purposes below. */
|
1582 |
|
|
for (n_elmts = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), n_elmts ++)
|
1583 |
|
|
{
|
1584 |
|
|
tree obj = TREE_PURPOSE (elmt);
|
1585 |
|
|
tree val = TREE_VALUE (elmt);
|
1586 |
|
|
|
1587 |
|
|
/* The predicate must be in keeping with output_constructor. */
|
1588 |
|
|
if (!TREE_CONSTANT (val)
|
1589 |
|
|
|| (TREE_CODE (type) == RECORD_TYPE
|
1590 |
|
|
&& CONSTRUCTOR_BITFIELD_P (obj)
|
1591 |
|
|
&& !initializer_constant_valid_for_bitfield_p (val))
|
1592 |
|
|
|| !initializer_constant_valid_p (val, TREE_TYPE (val)))
|
1593 |
|
|
allconstant = false;
|
1594 |
|
|
|
1595 |
|
|
if (TREE_SIDE_EFFECTS (val))
|
1596 |
|
|
side_effects = true;
|
1597 |
|
|
|
1598 |
|
|
/* Propagate an NULL_EXPR from the size of the type. We won't ever
|
1599 |
|
|
be executing the code we generate here in that case, but handle it
|
1600 |
|
|
specially to avoid the compiler blowing up. */
|
1601 |
|
|
if (TREE_CODE (type) == RECORD_TYPE
|
1602 |
|
|
&& (result = contains_null_expr (DECL_SIZE (obj))) != NULL_TREE)
|
1603 |
|
|
return build1 (NULL_EXPR, type, TREE_OPERAND (result, 0));
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
/* For record types with constant components only, sort field list
|
1607 |
|
|
by increasing bit position. This is necessary to ensure the
|
1608 |
|
|
constructor can be output as static data. */
|
1609 |
|
|
if (allconstant && TREE_CODE (type) == RECORD_TYPE && n_elmts > 1)
|
1610 |
|
|
{
|
1611 |
|
|
/* Fill an array with an element tree per index, and ask qsort to order
|
1612 |
|
|
them according to what a bitpos comparison function says. */
|
1613 |
|
|
tree *gnu_arr = (tree *) alloca (sizeof (tree) * n_elmts);
|
1614 |
|
|
int i;
|
1615 |
|
|
|
1616 |
|
|
for (i = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), i++)
|
1617 |
|
|
gnu_arr[i] = elmt;
|
1618 |
|
|
|
1619 |
|
|
qsort (gnu_arr, n_elmts, sizeof (tree), compare_elmt_bitpos);
|
1620 |
|
|
|
1621 |
|
|
/* Then reconstruct the list from the sorted array contents. */
|
1622 |
|
|
list = NULL_TREE;
|
1623 |
|
|
for (i = n_elmts - 1; i >= 0; i--)
|
1624 |
|
|
{
|
1625 |
|
|
TREE_CHAIN (gnu_arr[i]) = list;
|
1626 |
|
|
list = gnu_arr[i];
|
1627 |
|
|
}
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
result = build_constructor_from_list (type, list);
|
1631 |
|
|
TREE_CONSTANT (result) = TREE_STATIC (result) = allconstant;
|
1632 |
|
|
TREE_SIDE_EFFECTS (result) = side_effects;
|
1633 |
|
|
TREE_READONLY (result) = TYPE_READONLY (type) || allconstant;
|
1634 |
|
|
return result;
|
1635 |
|
|
}
|
1636 |
|
|
|
1637 |
|
|
/* Return a COMPONENT_REF to access a field that is given by COMPONENT,
|
1638 |
|
|
an IDENTIFIER_NODE giving the name of the field, or FIELD, a FIELD_DECL,
|
1639 |
|
|
for the field. Don't fold the result if NO_FOLD_P is true.
|
1640 |
|
|
|
1641 |
|
|
We also handle the fact that we might have been passed a pointer to the
|
1642 |
|
|
actual record and know how to look for fields in variant parts. */
|
1643 |
|
|
|
1644 |
|
|
static tree
|
1645 |
|
|
build_simple_component_ref (tree record_variable, tree component,
|
1646 |
|
|
tree field, bool no_fold_p)
|
1647 |
|
|
{
|
1648 |
|
|
tree record_type = TYPE_MAIN_VARIANT (TREE_TYPE (record_variable));
|
1649 |
|
|
tree ref, inner_variable;
|
1650 |
|
|
|
1651 |
|
|
gcc_assert ((TREE_CODE (record_type) == RECORD_TYPE
|
1652 |
|
|
|| TREE_CODE (record_type) == UNION_TYPE
|
1653 |
|
|
|| TREE_CODE (record_type) == QUAL_UNION_TYPE)
|
1654 |
|
|
&& TYPE_SIZE (record_type)
|
1655 |
|
|
&& (component != 0) != (field != 0));
|
1656 |
|
|
|
1657 |
|
|
/* If no field was specified, look for a field with the specified name
|
1658 |
|
|
in the current record only. */
|
1659 |
|
|
if (!field)
|
1660 |
|
|
for (field = TYPE_FIELDS (record_type); field;
|
1661 |
|
|
field = TREE_CHAIN (field))
|
1662 |
|
|
if (DECL_NAME (field) == component)
|
1663 |
|
|
break;
|
1664 |
|
|
|
1665 |
|
|
if (!field)
|
1666 |
|
|
return NULL_TREE;
|
1667 |
|
|
|
1668 |
|
|
/* If this field is not in the specified record, see if we can find
|
1669 |
|
|
something in the record whose original field is the same as this one. */
|
1670 |
|
|
if (DECL_CONTEXT (field) != record_type)
|
1671 |
|
|
/* Check if there is a field with name COMPONENT in the record. */
|
1672 |
|
|
{
|
1673 |
|
|
tree new_field;
|
1674 |
|
|
|
1675 |
|
|
/* First loop thru normal components. */
|
1676 |
|
|
|
1677 |
|
|
for (new_field = TYPE_FIELDS (record_type); new_field;
|
1678 |
|
|
new_field = TREE_CHAIN (new_field))
|
1679 |
|
|
if (field == new_field
|
1680 |
|
|
|| DECL_ORIGINAL_FIELD (new_field) == field
|
1681 |
|
|
|| new_field == DECL_ORIGINAL_FIELD (field)
|
1682 |
|
|
|| (DECL_ORIGINAL_FIELD (field)
|
1683 |
|
|
&& (DECL_ORIGINAL_FIELD (field)
|
1684 |
|
|
== DECL_ORIGINAL_FIELD (new_field))))
|
1685 |
|
|
break;
|
1686 |
|
|
|
1687 |
|
|
/* Next, loop thru DECL_INTERNAL_P components if we haven't found
|
1688 |
|
|
the component in the first search. Doing this search in 2 steps
|
1689 |
|
|
is required to avoiding hidden homonymous fields in the
|
1690 |
|
|
_Parent field. */
|
1691 |
|
|
|
1692 |
|
|
if (!new_field)
|
1693 |
|
|
for (new_field = TYPE_FIELDS (record_type); new_field;
|
1694 |
|
|
new_field = TREE_CHAIN (new_field))
|
1695 |
|
|
if (DECL_INTERNAL_P (new_field))
|
1696 |
|
|
{
|
1697 |
|
|
tree field_ref
|
1698 |
|
|
= build_simple_component_ref (record_variable,
|
1699 |
|
|
NULL_TREE, new_field, no_fold_p);
|
1700 |
|
|
ref = build_simple_component_ref (field_ref, NULL_TREE, field,
|
1701 |
|
|
no_fold_p);
|
1702 |
|
|
|
1703 |
|
|
if (ref)
|
1704 |
|
|
return ref;
|
1705 |
|
|
}
|
1706 |
|
|
|
1707 |
|
|
field = new_field;
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
if (!field)
|
1711 |
|
|
return NULL_TREE;
|
1712 |
|
|
|
1713 |
|
|
/* If the field's offset has overflowed, do not attempt to access it
|
1714 |
|
|
as doing so may trigger sanity checks deeper in the back-end.
|
1715 |
|
|
Note that we don't need to warn since this will be done on trying
|
1716 |
|
|
to declare the object. */
|
1717 |
|
|
if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST
|
1718 |
|
|
&& TREE_OVERFLOW (DECL_FIELD_OFFSET (field)))
|
1719 |
|
|
return NULL_TREE;
|
1720 |
|
|
|
1721 |
|
|
/* Look through conversion between type variants. Note that this
|
1722 |
|
|
is transparent as far as the field is concerned. */
|
1723 |
|
|
if (TREE_CODE (record_variable) == VIEW_CONVERT_EXPR
|
1724 |
|
|
&& TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (record_variable, 0)))
|
1725 |
|
|
== record_type)
|
1726 |
|
|
inner_variable = TREE_OPERAND (record_variable, 0);
|
1727 |
|
|
else
|
1728 |
|
|
inner_variable = record_variable;
|
1729 |
|
|
|
1730 |
|
|
ref = build3 (COMPONENT_REF, TREE_TYPE (field), inner_variable, field,
|
1731 |
|
|
NULL_TREE);
|
1732 |
|
|
|
1733 |
|
|
if (TREE_READONLY (record_variable) || TREE_READONLY (field))
|
1734 |
|
|
TREE_READONLY (ref) = 1;
|
1735 |
|
|
if (TREE_THIS_VOLATILE (record_variable) || TREE_THIS_VOLATILE (field)
|
1736 |
|
|
|| TYPE_VOLATILE (record_type))
|
1737 |
|
|
TREE_THIS_VOLATILE (ref) = 1;
|
1738 |
|
|
|
1739 |
|
|
if (no_fold_p)
|
1740 |
|
|
return ref;
|
1741 |
|
|
|
1742 |
|
|
/* The generic folder may punt in this case because the inner array type
|
1743 |
|
|
can be self-referential, but folding is in fact not problematic. */
|
1744 |
|
|
else if (TREE_CODE (record_variable) == CONSTRUCTOR
|
1745 |
|
|
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (record_variable)))
|
1746 |
|
|
{
|
1747 |
|
|
VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (record_variable);
|
1748 |
|
|
unsigned HOST_WIDE_INT idx;
|
1749 |
|
|
tree index, value;
|
1750 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (elts, idx, index, value)
|
1751 |
|
|
if (index == field)
|
1752 |
|
|
return value;
|
1753 |
|
|
return ref;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
else
|
1757 |
|
|
return fold (ref);
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
/* Like build_simple_component_ref, except that we give an error if the
|
1761 |
|
|
reference could not be found. */
|
1762 |
|
|
|
1763 |
|
|
tree
|
1764 |
|
|
build_component_ref (tree record_variable, tree component,
|
1765 |
|
|
tree field, bool no_fold_p)
|
1766 |
|
|
{
|
1767 |
|
|
tree ref = build_simple_component_ref (record_variable, component, field,
|
1768 |
|
|
no_fold_p);
|
1769 |
|
|
|
1770 |
|
|
if (ref)
|
1771 |
|
|
return ref;
|
1772 |
|
|
|
1773 |
|
|
/* If FIELD was specified, assume this is an invalid user field so raise
|
1774 |
|
|
Constraint_Error. Otherwise, we have no type to return so abort. */
|
1775 |
|
|
gcc_assert (field);
|
1776 |
|
|
return build1 (NULL_EXPR, TREE_TYPE (field),
|
1777 |
|
|
build_call_raise (CE_Discriminant_Check_Failed, Empty,
|
1778 |
|
|
N_Raise_Constraint_Error));
|
1779 |
|
|
}
|
1780 |
|
|
|
1781 |
|
|
/* Helper for build_call_alloc_dealloc, with arguments to be interpreted
|
1782 |
|
|
identically. Process the case where a GNAT_PROC to call is provided. */
|
1783 |
|
|
|
1784 |
|
|
static inline tree
|
1785 |
|
|
build_call_alloc_dealloc_proc (tree gnu_obj, tree gnu_size, tree gnu_type,
|
1786 |
|
|
Entity_Id gnat_proc, Entity_Id gnat_pool)
|
1787 |
|
|
{
|
1788 |
|
|
tree gnu_proc = gnat_to_gnu (gnat_proc);
|
1789 |
|
|
tree gnu_proc_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_proc);
|
1790 |
|
|
tree gnu_call;
|
1791 |
|
|
|
1792 |
|
|
/* The storage pools are obviously always tagged types, but the
|
1793 |
|
|
secondary stack uses the same mechanism and is not tagged. */
|
1794 |
|
|
if (Is_Tagged_Type (Etype (gnat_pool)))
|
1795 |
|
|
{
|
1796 |
|
|
/* The size is the third parameter; the alignment is the
|
1797 |
|
|
same type. */
|
1798 |
|
|
Entity_Id gnat_size_type
|
1799 |
|
|
= Etype (Next_Formal (Next_Formal (First_Formal (gnat_proc))));
|
1800 |
|
|
tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
|
1801 |
|
|
|
1802 |
|
|
tree gnu_pool = gnat_to_gnu (gnat_pool);
|
1803 |
|
|
tree gnu_pool_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_pool);
|
1804 |
|
|
tree gnu_align = size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT);
|
1805 |
|
|
|
1806 |
|
|
gnu_size = convert (gnu_size_type, gnu_size);
|
1807 |
|
|
gnu_align = convert (gnu_size_type, gnu_align);
|
1808 |
|
|
|
1809 |
|
|
/* The first arg is always the address of the storage pool; next
|
1810 |
|
|
comes the address of the object, for a deallocator, then the
|
1811 |
|
|
size and alignment. */
|
1812 |
|
|
if (gnu_obj)
|
1813 |
|
|
gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
|
1814 |
|
|
gnu_proc_addr, 4, gnu_pool_addr,
|
1815 |
|
|
gnu_obj, gnu_size, gnu_align);
|
1816 |
|
|
else
|
1817 |
|
|
gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
|
1818 |
|
|
gnu_proc_addr, 3, gnu_pool_addr,
|
1819 |
|
|
gnu_size, gnu_align);
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
/* Secondary stack case. */
|
1823 |
|
|
else
|
1824 |
|
|
{
|
1825 |
|
|
/* The size is the second parameter. */
|
1826 |
|
|
Entity_Id gnat_size_type
|
1827 |
|
|
= Etype (Next_Formal (First_Formal (gnat_proc)));
|
1828 |
|
|
tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
|
1829 |
|
|
|
1830 |
|
|
gnu_size = convert (gnu_size_type, gnu_size);
|
1831 |
|
|
|
1832 |
|
|
/* The first arg is the address of the object, for a deallocator,
|
1833 |
|
|
then the size. */
|
1834 |
|
|
if (gnu_obj)
|
1835 |
|
|
gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
|
1836 |
|
|
gnu_proc_addr, 2, gnu_obj, gnu_size);
|
1837 |
|
|
else
|
1838 |
|
|
gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
|
1839 |
|
|
gnu_proc_addr, 1, gnu_size);
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
TREE_SIDE_EFFECTS (gnu_call) = 1;
|
1843 |
|
|
return gnu_call;
|
1844 |
|
|
}
|
1845 |
|
|
|
1846 |
|
|
/* Helper for build_call_alloc_dealloc, to build and return an allocator for
|
1847 |
|
|
DATA_SIZE bytes aimed at containing a DATA_TYPE object, using the default
|
1848 |
|
|
__gnat_malloc allocator. Honor DATA_TYPE alignments greater than what the
|
1849 |
|
|
latter offers. */
|
1850 |
|
|
|
1851 |
|
|
static inline tree
|
1852 |
|
|
maybe_wrap_malloc (tree data_size, tree data_type, Node_Id gnat_node)
|
1853 |
|
|
{
|
1854 |
|
|
/* When the DATA_TYPE alignment is stricter than what malloc offers
|
1855 |
|
|
(super-aligned case), we allocate an "aligning" wrapper type and return
|
1856 |
|
|
the address of its single data field with the malloc's return value
|
1857 |
|
|
stored just in front. */
|
1858 |
|
|
|
1859 |
|
|
unsigned int data_align = TYPE_ALIGN (data_type);
|
1860 |
|
|
unsigned int default_allocator_alignment
|
1861 |
|
|
= get_target_default_allocator_alignment () * BITS_PER_UNIT;
|
1862 |
|
|
|
1863 |
|
|
tree aligning_type
|
1864 |
|
|
= ((data_align > default_allocator_alignment)
|
1865 |
|
|
? make_aligning_type (data_type, data_align, data_size,
|
1866 |
|
|
default_allocator_alignment,
|
1867 |
|
|
POINTER_SIZE / BITS_PER_UNIT)
|
1868 |
|
|
: NULL_TREE);
|
1869 |
|
|
|
1870 |
|
|
tree size_to_malloc
|
1871 |
|
|
= aligning_type ? TYPE_SIZE_UNIT (aligning_type) : data_size;
|
1872 |
|
|
|
1873 |
|
|
tree malloc_ptr;
|
1874 |
|
|
|
1875 |
|
|
/* On VMS, if 64-bit memory is disabled or pointers are 64-bit and the
|
1876 |
|
|
allocator size is 32-bit or Convention C, allocate 32-bit memory. */
|
1877 |
|
|
if (TARGET_ABI_OPEN_VMS
|
1878 |
|
|
&& (!TARGET_MALLOC64
|
1879 |
|
|
|| (POINTER_SIZE == 64
|
1880 |
|
|
&& (UI_To_Int (Esize (Etype (gnat_node))) == 32
|
1881 |
|
|
|| Convention (Etype (gnat_node)) == Convention_C))))
|
1882 |
|
|
malloc_ptr = build_call_1_expr (malloc32_decl, size_to_malloc);
|
1883 |
|
|
else
|
1884 |
|
|
malloc_ptr = build_call_1_expr (malloc_decl, size_to_malloc);
|
1885 |
|
|
|
1886 |
|
|
if (aligning_type)
|
1887 |
|
|
{
|
1888 |
|
|
/* Latch malloc's return value and get a pointer to the aligning field
|
1889 |
|
|
first. */
|
1890 |
|
|
tree storage_ptr = save_expr (malloc_ptr);
|
1891 |
|
|
|
1892 |
|
|
tree aligning_record_addr
|
1893 |
|
|
= convert (build_pointer_type (aligning_type), storage_ptr);
|
1894 |
|
|
|
1895 |
|
|
tree aligning_record
|
1896 |
|
|
= build_unary_op (INDIRECT_REF, NULL_TREE, aligning_record_addr);
|
1897 |
|
|
|
1898 |
|
|
tree aligning_field
|
1899 |
|
|
= build_component_ref (aligning_record, NULL_TREE,
|
1900 |
|
|
TYPE_FIELDS (aligning_type), 0);
|
1901 |
|
|
|
1902 |
|
|
tree aligning_field_addr
|
1903 |
|
|
= build_unary_op (ADDR_EXPR, NULL_TREE, aligning_field);
|
1904 |
|
|
|
1905 |
|
|
/* Then arrange to store the allocator's return value ahead
|
1906 |
|
|
and return. */
|
1907 |
|
|
tree storage_ptr_slot_addr
|
1908 |
|
|
= build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
|
1909 |
|
|
convert (ptr_void_type_node, aligning_field_addr),
|
1910 |
|
|
size_int (-(HOST_WIDE_INT) POINTER_SIZE
|
1911 |
|
|
/ BITS_PER_UNIT));
|
1912 |
|
|
|
1913 |
|
|
tree storage_ptr_slot
|
1914 |
|
|
= build_unary_op (INDIRECT_REF, NULL_TREE,
|
1915 |
|
|
convert (build_pointer_type (ptr_void_type_node),
|
1916 |
|
|
storage_ptr_slot_addr));
|
1917 |
|
|
|
1918 |
|
|
return
|
1919 |
|
|
build2 (COMPOUND_EXPR, TREE_TYPE (aligning_field_addr),
|
1920 |
|
|
build_binary_op (MODIFY_EXPR, NULL_TREE,
|
1921 |
|
|
storage_ptr_slot, storage_ptr),
|
1922 |
|
|
aligning_field_addr);
|
1923 |
|
|
}
|
1924 |
|
|
else
|
1925 |
|
|
return malloc_ptr;
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
/* Helper for build_call_alloc_dealloc, to release a DATA_TYPE object
|
1929 |
|
|
designated by DATA_PTR using the __gnat_free entry point. */
|
1930 |
|
|
|
1931 |
|
|
static inline tree
|
1932 |
|
|
maybe_wrap_free (tree data_ptr, tree data_type)
|
1933 |
|
|
{
|
1934 |
|
|
/* In the regular alignment case, we pass the data pointer straight to free.
|
1935 |
|
|
In the superaligned case, we need to retrieve the initial allocator
|
1936 |
|
|
return value, stored in front of the data block at allocation time. */
|
1937 |
|
|
|
1938 |
|
|
unsigned int data_align = TYPE_ALIGN (data_type);
|
1939 |
|
|
unsigned int default_allocator_alignment
|
1940 |
|
|
= get_target_default_allocator_alignment () * BITS_PER_UNIT;
|
1941 |
|
|
|
1942 |
|
|
tree free_ptr;
|
1943 |
|
|
|
1944 |
|
|
if (data_align > default_allocator_alignment)
|
1945 |
|
|
{
|
1946 |
|
|
/* DATA_FRONT_PTR (void *)
|
1947 |
|
|
= (void *)DATA_PTR - (void *)sizeof (void *)) */
|
1948 |
|
|
tree data_front_ptr
|
1949 |
|
|
= build_binary_op
|
1950 |
|
|
(POINTER_PLUS_EXPR, ptr_void_type_node,
|
1951 |
|
|
convert (ptr_void_type_node, data_ptr),
|
1952 |
|
|
size_int (-(HOST_WIDE_INT) POINTER_SIZE / BITS_PER_UNIT));
|
1953 |
|
|
|
1954 |
|
|
/* FREE_PTR (void *) = *(void **)DATA_FRONT_PTR */
|
1955 |
|
|
free_ptr
|
1956 |
|
|
= build_unary_op
|
1957 |
|
|
(INDIRECT_REF, NULL_TREE,
|
1958 |
|
|
convert (build_pointer_type (ptr_void_type_node), data_front_ptr));
|
1959 |
|
|
}
|
1960 |
|
|
else
|
1961 |
|
|
free_ptr = data_ptr;
|
1962 |
|
|
|
1963 |
|
|
return build_call_1_expr (free_decl, free_ptr);
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
/* Build a GCC tree to call an allocation or deallocation function.
|
1967 |
|
|
If GNU_OBJ is nonzero, it is an object to deallocate. Otherwise,
|
1968 |
|
|
generate an allocator.
|
1969 |
|
|
|
1970 |
|
|
GNU_SIZE is the number of bytes to allocate and GNU_TYPE is the contained
|
1971 |
|
|
object type, used to determine the to-be-honored address alignment.
|
1972 |
|
|
GNAT_PROC, if present, is a procedure to call and GNAT_POOL is the storage
|
1973 |
|
|
pool to use. If not present, malloc and free are used. GNAT_NODE is used
|
1974 |
|
|
to provide an error location for restriction violation messages. */
|
1975 |
|
|
|
1976 |
|
|
tree
|
1977 |
|
|
build_call_alloc_dealloc (tree gnu_obj, tree gnu_size, tree gnu_type,
|
1978 |
|
|
Entity_Id gnat_proc, Entity_Id gnat_pool,
|
1979 |
|
|
Node_Id gnat_node)
|
1980 |
|
|
{
|
1981 |
|
|
gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size, gnu_obj);
|
1982 |
|
|
|
1983 |
|
|
/* Explicit proc to call ? This one is assumed to deal with the type
|
1984 |
|
|
alignment constraints. */
|
1985 |
|
|
if (Present (gnat_proc))
|
1986 |
|
|
return build_call_alloc_dealloc_proc (gnu_obj, gnu_size, gnu_type,
|
1987 |
|
|
gnat_proc, gnat_pool);
|
1988 |
|
|
|
1989 |
|
|
/* Otherwise, object to "free" or "malloc" with possible special processing
|
1990 |
|
|
for alignments stricter than what the default allocator honors. */
|
1991 |
|
|
else if (gnu_obj)
|
1992 |
|
|
return maybe_wrap_free (gnu_obj, gnu_type);
|
1993 |
|
|
else
|
1994 |
|
|
{
|
1995 |
|
|
/* Assert that we no longer can be called with this special pool. */
|
1996 |
|
|
gcc_assert (gnat_pool != -1);
|
1997 |
|
|
|
1998 |
|
|
/* Check that we aren't violating the associated restriction. */
|
1999 |
|
|
if (!(Nkind (gnat_node) == N_Allocator && Comes_From_Source (gnat_node)))
|
2000 |
|
|
Check_No_Implicit_Heap_Alloc (gnat_node);
|
2001 |
|
|
|
2002 |
|
|
return maybe_wrap_malloc (gnu_size, gnu_type, gnat_node);
|
2003 |
|
|
}
|
2004 |
|
|
}
|
2005 |
|
|
|
2006 |
|
|
/* Build a GCC tree to correspond to allocating an object of TYPE whose
|
2007 |
|
|
initial value is INIT, if INIT is nonzero. Convert the expression to
|
2008 |
|
|
RESULT_TYPE, which must be some type of pointer. Return the tree.
|
2009 |
|
|
|
2010 |
|
|
GNAT_PROC and GNAT_POOL optionally give the procedure to call and
|
2011 |
|
|
the storage pool to use. GNAT_NODE is used to provide an error
|
2012 |
|
|
location for restriction violation messages. If IGNORE_INIT_TYPE is
|
2013 |
|
|
true, ignore the type of INIT for the purpose of determining the size;
|
2014 |
|
|
this will cause the maximum size to be allocated if TYPE is of
|
2015 |
|
|
self-referential size. */
|
2016 |
|
|
|
2017 |
|
|
tree
|
2018 |
|
|
build_allocator (tree type, tree init, tree result_type, Entity_Id gnat_proc,
|
2019 |
|
|
Entity_Id gnat_pool, Node_Id gnat_node, bool ignore_init_type)
|
2020 |
|
|
{
|
2021 |
|
|
tree size = TYPE_SIZE_UNIT (type);
|
2022 |
|
|
tree result;
|
2023 |
|
|
|
2024 |
|
|
/* If the initializer, if present, is a NULL_EXPR, just return a new one. */
|
2025 |
|
|
if (init && TREE_CODE (init) == NULL_EXPR)
|
2026 |
|
|
return build1 (NULL_EXPR, result_type, TREE_OPERAND (init, 0));
|
2027 |
|
|
|
2028 |
|
|
/* If RESULT_TYPE is a fat or thin pointer, set SIZE to be the sum of the
|
2029 |
|
|
sizes of the object and its template. Allocate the whole thing and
|
2030 |
|
|
fill in the parts that are known. */
|
2031 |
|
|
else if (TYPE_IS_FAT_OR_THIN_POINTER_P (result_type))
|
2032 |
|
|
{
|
2033 |
|
|
tree storage_type
|
2034 |
|
|
= build_unc_object_type_from_ptr (result_type, type,
|
2035 |
|
|
get_identifier ("ALLOC"));
|
2036 |
|
|
tree template_type = TREE_TYPE (TYPE_FIELDS (storage_type));
|
2037 |
|
|
tree storage_ptr_type = build_pointer_type (storage_type);
|
2038 |
|
|
tree storage;
|
2039 |
|
|
tree template_cons = NULL_TREE;
|
2040 |
|
|
|
2041 |
|
|
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (storage_type),
|
2042 |
|
|
init);
|
2043 |
|
|
|
2044 |
|
|
/* If the size overflows, pass -1 so the allocator will raise
|
2045 |
|
|
storage error. */
|
2046 |
|
|
if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
|
2047 |
|
|
size = ssize_int (-1);
|
2048 |
|
|
|
2049 |
|
|
storage = build_call_alloc_dealloc (NULL_TREE, size, storage_type,
|
2050 |
|
|
gnat_proc, gnat_pool, gnat_node);
|
2051 |
|
|
storage = convert (storage_ptr_type, protect_multiple_eval (storage));
|
2052 |
|
|
|
2053 |
|
|
if (TYPE_IS_PADDING_P (type))
|
2054 |
|
|
{
|
2055 |
|
|
type = TREE_TYPE (TYPE_FIELDS (type));
|
2056 |
|
|
if (init)
|
2057 |
|
|
init = convert (type, init);
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
/* If there is an initializing expression, make a constructor for
|
2061 |
|
|
the entire object including the bounds and copy it into the
|
2062 |
|
|
object. If there is no initializing expression, just set the
|
2063 |
|
|
bounds. */
|
2064 |
|
|
if (init)
|
2065 |
|
|
{
|
2066 |
|
|
template_cons = tree_cons (TREE_CHAIN (TYPE_FIELDS (storage_type)),
|
2067 |
|
|
init, NULL_TREE);
|
2068 |
|
|
template_cons = tree_cons (TYPE_FIELDS (storage_type),
|
2069 |
|
|
build_template (template_type, type,
|
2070 |
|
|
init),
|
2071 |
|
|
template_cons);
|
2072 |
|
|
|
2073 |
|
|
return convert
|
2074 |
|
|
(result_type,
|
2075 |
|
|
build2 (COMPOUND_EXPR, storage_ptr_type,
|
2076 |
|
|
build_binary_op
|
2077 |
|
|
(MODIFY_EXPR, storage_type,
|
2078 |
|
|
build_unary_op (INDIRECT_REF, NULL_TREE,
|
2079 |
|
|
convert (storage_ptr_type, storage)),
|
2080 |
|
|
gnat_build_constructor (storage_type, template_cons)),
|
2081 |
|
|
convert (storage_ptr_type, storage)));
|
2082 |
|
|
}
|
2083 |
|
|
else
|
2084 |
|
|
return build2
|
2085 |
|
|
(COMPOUND_EXPR, result_type,
|
2086 |
|
|
build_binary_op
|
2087 |
|
|
(MODIFY_EXPR, template_type,
|
2088 |
|
|
build_component_ref
|
2089 |
|
|
(build_unary_op (INDIRECT_REF, NULL_TREE,
|
2090 |
|
|
convert (storage_ptr_type, storage)),
|
2091 |
|
|
NULL_TREE, TYPE_FIELDS (storage_type), 0),
|
2092 |
|
|
build_template (template_type, type, NULL_TREE)),
|
2093 |
|
|
convert (result_type, convert (storage_ptr_type, storage)));
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
/* If we have an initializing expression, see if its size is simpler
|
2097 |
|
|
than the size from the type. */
|
2098 |
|
|
if (!ignore_init_type && init && TYPE_SIZE_UNIT (TREE_TYPE (init))
|
2099 |
|
|
&& (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (init))) == INTEGER_CST
|
2100 |
|
|
|| CONTAINS_PLACEHOLDER_P (size)))
|
2101 |
|
|
size = TYPE_SIZE_UNIT (TREE_TYPE (init));
|
2102 |
|
|
|
2103 |
|
|
/* If the size is still self-referential, reference the initializing
|
2104 |
|
|
expression, if it is present. If not, this must have been a
|
2105 |
|
|
call to allocate a library-level object, in which case we use
|
2106 |
|
|
the maximum size. */
|
2107 |
|
|
if (CONTAINS_PLACEHOLDER_P (size))
|
2108 |
|
|
{
|
2109 |
|
|
if (!ignore_init_type && init)
|
2110 |
|
|
size = substitute_placeholder_in_expr (size, init);
|
2111 |
|
|
else
|
2112 |
|
|
size = max_size (size, true);
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
/* If the size overflows, pass -1 so the allocator will raise
|
2116 |
|
|
storage error. */
|
2117 |
|
|
if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
|
2118 |
|
|
size = ssize_int (-1);
|
2119 |
|
|
|
2120 |
|
|
result = convert (result_type,
|
2121 |
|
|
build_call_alloc_dealloc (NULL_TREE, size, type,
|
2122 |
|
|
gnat_proc, gnat_pool,
|
2123 |
|
|
gnat_node));
|
2124 |
|
|
|
2125 |
|
|
/* If we have an initial value, put the new address into a SAVE_EXPR, assign
|
2126 |
|
|
the value, and return the address. Do this with a COMPOUND_EXPR. */
|
2127 |
|
|
|
2128 |
|
|
if (init)
|
2129 |
|
|
{
|
2130 |
|
|
result = save_expr (result);
|
2131 |
|
|
result
|
2132 |
|
|
= build2 (COMPOUND_EXPR, TREE_TYPE (result),
|
2133 |
|
|
build_binary_op
|
2134 |
|
|
(MODIFY_EXPR, NULL_TREE,
|
2135 |
|
|
build_unary_op (INDIRECT_REF,
|
2136 |
|
|
TREE_TYPE (TREE_TYPE (result)), result),
|
2137 |
|
|
init),
|
2138 |
|
|
result);
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
return convert (result_type, result);
|
2142 |
|
|
}
|
2143 |
|
|
|
2144 |
|
|
/* Fill in a VMS descriptor for EXPR and return a constructor for it.
|
2145 |
|
|
GNAT_FORMAL is how we find the descriptor record. GNAT_ACTUAL is
|
2146 |
|
|
how we derive the source location to raise C_E on an out of range
|
2147 |
|
|
pointer. */
|
2148 |
|
|
|
2149 |
|
|
tree
|
2150 |
|
|
fill_vms_descriptor (tree expr, Entity_Id gnat_formal, Node_Id gnat_actual)
|
2151 |
|
|
{
|
2152 |
|
|
tree field;
|
2153 |
|
|
tree parm_decl = get_gnu_tree (gnat_formal);
|
2154 |
|
|
tree const_list = NULL_TREE;
|
2155 |
|
|
tree record_type = TREE_TYPE (TREE_TYPE (parm_decl));
|
2156 |
|
|
int do_range_check =
|
2157 |
|
|
strcmp ("MBO",
|
2158 |
|
|
IDENTIFIER_POINTER (DECL_NAME (TYPE_FIELDS (record_type))));
|
2159 |
|
|
|
2160 |
|
|
expr = maybe_unconstrained_array (expr);
|
2161 |
|
|
gnat_mark_addressable (expr);
|
2162 |
|
|
|
2163 |
|
|
for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field))
|
2164 |
|
|
{
|
2165 |
|
|
tree conexpr = convert (TREE_TYPE (field),
|
2166 |
|
|
SUBSTITUTE_PLACEHOLDER_IN_EXPR
|
2167 |
|
|
(DECL_INITIAL (field), expr));
|
2168 |
|
|
|
2169 |
|
|
/* Check to ensure that only 32bit pointers are passed in
|
2170 |
|
|
32bit descriptors */
|
2171 |
|
|
if (do_range_check &&
|
2172 |
|
|
strcmp (IDENTIFIER_POINTER (DECL_NAME (field)), "POINTER") == 0)
|
2173 |
|
|
{
|
2174 |
|
|
tree pointer64type =
|
2175 |
|
|
build_pointer_type_for_mode (void_type_node, DImode, false);
|
2176 |
|
|
tree addr64expr = build_unary_op (ADDR_EXPR, pointer64type, expr);
|
2177 |
|
|
tree malloc64low =
|
2178 |
|
|
build_int_cstu (long_integer_type_node, 0x80000000);
|
2179 |
|
|
|
2180 |
|
|
add_stmt (build3 (COND_EXPR, void_type_node,
|
2181 |
|
|
build_binary_op (GE_EXPR, long_integer_type_node,
|
2182 |
|
|
convert (long_integer_type_node,
|
2183 |
|
|
addr64expr),
|
2184 |
|
|
malloc64low),
|
2185 |
|
|
build_call_raise (CE_Range_Check_Failed, gnat_actual,
|
2186 |
|
|
N_Raise_Constraint_Error),
|
2187 |
|
|
NULL_TREE));
|
2188 |
|
|
}
|
2189 |
|
|
const_list = tree_cons (field, conexpr, const_list);
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
return gnat_build_constructor (record_type, nreverse (const_list));
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
/* Indicate that we need to make the address of EXPR_NODE and it therefore
|
2196 |
|
|
should not be allocated in a register. Returns true if successful. */
|
2197 |
|
|
|
2198 |
|
|
bool
|
2199 |
|
|
gnat_mark_addressable (tree expr_node)
|
2200 |
|
|
{
|
2201 |
|
|
while (1)
|
2202 |
|
|
switch (TREE_CODE (expr_node))
|
2203 |
|
|
{
|
2204 |
|
|
case ADDR_EXPR:
|
2205 |
|
|
case COMPONENT_REF:
|
2206 |
|
|
case ARRAY_REF:
|
2207 |
|
|
case ARRAY_RANGE_REF:
|
2208 |
|
|
case REALPART_EXPR:
|
2209 |
|
|
case IMAGPART_EXPR:
|
2210 |
|
|
case VIEW_CONVERT_EXPR:
|
2211 |
|
|
case NON_LVALUE_EXPR:
|
2212 |
|
|
CASE_CONVERT:
|
2213 |
|
|
expr_node = TREE_OPERAND (expr_node, 0);
|
2214 |
|
|
break;
|
2215 |
|
|
|
2216 |
|
|
case CONSTRUCTOR:
|
2217 |
|
|
TREE_ADDRESSABLE (expr_node) = 1;
|
2218 |
|
|
return true;
|
2219 |
|
|
|
2220 |
|
|
case VAR_DECL:
|
2221 |
|
|
case PARM_DECL:
|
2222 |
|
|
case RESULT_DECL:
|
2223 |
|
|
TREE_ADDRESSABLE (expr_node) = 1;
|
2224 |
|
|
return true;
|
2225 |
|
|
|
2226 |
|
|
case FUNCTION_DECL:
|
2227 |
|
|
TREE_ADDRESSABLE (expr_node) = 1;
|
2228 |
|
|
return true;
|
2229 |
|
|
|
2230 |
|
|
case CONST_DECL:
|
2231 |
|
|
return (DECL_CONST_CORRESPONDING_VAR (expr_node)
|
2232 |
|
|
&& (gnat_mark_addressable
|
2233 |
|
|
(DECL_CONST_CORRESPONDING_VAR (expr_node))));
|
2234 |
|
|
default:
|
2235 |
|
|
return true;
|
2236 |
|
|
}
|
2237 |
|
|
}
|