OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-asthan-vms-alpha.adb] - Blame information for rev 427

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                        GNAT RUN-TIME COMPONENTS                          --
4
--                                                                          --
5
--                  S Y S T E M . A S T _ H A N D L I N G                   --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1996-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is the OpenVMS/Alpha version
33
 
34
with System; use System;
35
 
36
with System.IO;
37
 
38
with System.Machine_Code;
39
with System.Parameters;
40
with System.Storage_Elements;
41
 
42
with System.Tasking;
43
with System.Tasking.Rendezvous;
44
with System.Tasking.Initialization;
45
with System.Tasking.Utilities;
46
 
47
with System.Task_Primitives;
48
with System.Task_Primitives.Operations;
49
with System.Task_Primitives.Operations.DEC;
50
 
51
--  with Ada.Finalization;
52
--  removed, because of problem with controlled attribute ???
53
 
54
with Ada.Task_Attributes;
55
 
56
with Ada.Exceptions; use Ada.Exceptions;
57
 
58
with Ada.Unchecked_Conversion;
59
 
60
package body System.AST_Handling is
61
 
62
   package ATID renames Ada.Task_Identification;
63
 
64
   package SP   renames System.Parameters;
65
   package ST   renames System.Tasking;
66
   package STR  renames System.Tasking.Rendezvous;
67
   package STI  renames System.Tasking.Initialization;
68
   package STU  renames System.Tasking.Utilities;
69
 
70
   package SSE  renames System.Storage_Elements;
71
   package STPO renames System.Task_Primitives.Operations;
72
   package STPOD renames System.Task_Primitives.Operations.DEC;
73
 
74
   AST_Lock : aliased System.Task_Primitives.RTS_Lock;
75
   --  This is a global lock; it is used to execute in mutual exclusion
76
   --  from all other AST tasks.  It is only used by Lock_AST and
77
   --  Unlock_AST.
78
 
79
   procedure Lock_AST (Self_ID : ST.Task_Id);
80
   --  Locks out other AST tasks. Preceding a section of code by Lock_AST and
81
   --  following it by Unlock_AST creates a critical region.
82
 
83
   procedure Unlock_AST (Self_ID : ST.Task_Id);
84
   --  Releases lock previously set by call to Lock_AST.
85
   --  All nested locks must be released before other tasks competing for the
86
   --  tasking lock are released.
87
 
88
   --------------
89
   -- Lock_AST --
90
   --------------
91
 
92
   procedure Lock_AST (Self_ID : ST.Task_Id) is
93
   begin
94
      STI.Defer_Abort_Nestable (Self_ID);
95
      STPO.Write_Lock (AST_Lock'Access, Global_Lock => True);
96
   end Lock_AST;
97
 
98
   ----------------
99
   -- Unlock_AST --
100
   ----------------
101
 
102
   procedure Unlock_AST (Self_ID : ST.Task_Id) is
103
   begin
104
      STPO.Unlock (AST_Lock'Access, Global_Lock => True);
105
      STI.Undefer_Abort_Nestable (Self_ID);
106
   end Unlock_AST;
107
 
108
   ---------------------------------
109
   -- AST_Handler Data Structures --
110
   ---------------------------------
111
 
112
   --  As noted in the private part of the spec of System.Aux_DEC, the
113
   --  AST_Handler type is simply a pointer to a procedure that takes
114
   --  a single 64bit parameter. The following is a local copy
115
   --  of that definition.
116
 
117
   --  We need our own copy because we need to get our hands on this
118
   --  and we cannot see the private part of System.Aux_DEC. We don't
119
   --  want to be a child of Aux_Dec because of complications resulting
120
   --  from the use of pragma Extend_System. We will use unchecked
121
   --  conversions between the two versions of the declarations.
122
 
123
   type AST_Handler is access procedure (Param : Long_Integer);
124
 
125
   --  However, this declaration is somewhat misleading, since the values
126
   --  referenced by AST_Handler values (all produced in this package by
127
   --  calls to Create_AST_Handler) are highly stylized.
128
 
129
   --  The first point is that in VMS/Alpha, procedure pointers do not in
130
   --  fact point to code, but rather to a 48-byte procedure descriptor.
131
   --  So a value of type AST_Handler is in fact a pointer to one of these
132
   --  48-byte descriptors.
133
 
134
   type Descriptor_Type is new SSE.Storage_Array (1 .. 48);
135
   for  Descriptor_Type'Alignment use Standard'Maximum_Alignment;
136
 
137
   type Descriptor_Ref is access all Descriptor_Type;
138
 
139
   --  Normally, there is only one such descriptor for a given procedure, but
140
   --  it works fine to make a copy of the single allocated descriptor, and
141
   --  use the copy itself, and we take advantage of this in the design here.
142
   --  The idea is that AST_Handler values will all point to a record with the
143
   --  following structure:
144
 
145
   --  Note: When we say it works fine, there is one delicate point, which
146
   --  is that the code for the AST procedure itself requires the original
147
   --  descriptor address.  We handle this by saving the original descriptor
148
   --  address in this structure and restoring in Process_AST.
149
 
150
   type AST_Handler_Data is record
151
      Descriptor              : Descriptor_Type;
152
      Original_Descriptor_Ref : Descriptor_Ref;
153
      Taskid                  : ATID.Task_Id;
154
      Entryno                 : Natural;
155
   end record;
156
 
157
   type AST_Handler_Data_Ref is access all AST_Handler_Data;
158
 
159
   function To_AST_Handler is new Ada.Unchecked_Conversion
160
     (AST_Handler_Data_Ref, System.Aux_DEC.AST_Handler);
161
 
162
   --  Each time Create_AST_Handler is called, a new value of this record
163
   --  type is created, containing a copy of the procedure descriptor for
164
   --  the routine used to handle all AST's (Process_AST), and the Task_Id
165
   --  and entry number parameters identifying the task entry involved.
166
 
167
   --  The AST_Handler value returned is a pointer to this record. Since
168
   --  the record starts with the procedure descriptor, it can be used
169
   --  by the system in the normal way to call the procedure. But now
170
   --  when the procedure gets control, it can determine the address of
171
   --  the procedure descriptor used to call it (since the ABI specifies
172
   --  that this is left sitting in register r27 on entry), and then use
173
   --  that address to retrieve the Task_Id and entry number so that it
174
   --  knows on which entry to queue the AST request.
175
 
176
   --  The next issue is where are these records placed. Since we intend
177
   --  to pass pointers to these records to asynchronous system service
178
   --  routines, they have to be on the heap, which means we have to worry
179
   --  about when to allocate them and deallocate them.
180
 
181
   --  We solve this problem by introducing a task attribute that points to
182
   --  a vector, indexed by the entry number, of AST_Handler_Data records
183
   --  for a given task. The pointer itself is a controlled object allowing
184
   --  us to write a finalization routine that frees the referenced vector.
185
 
186
   --  An entry in this vector is either initialized (Entryno non-zero) and
187
   --  can be used for any subsequent reference to the same entry, or it is
188
   --  unused, marked by the Entryno value being zero.
189
 
190
   type AST_Handler_Vector is array (Natural range <>) of AST_Handler_Data;
191
   type AST_Handler_Vector_Ref is access all AST_Handler_Vector;
192
 
193
--  type AST_Vector_Ptr is new Ada.Finalization.Controlled with record
194
--  removed due to problem with controlled attribute, consequence is that
195
--  we have a memory leak if a task that has AST attribute entries is
196
--  terminated. ???
197
 
198
   type AST_Vector_Ptr is record
199
      Vector : AST_Handler_Vector_Ref;
200
   end record;
201
 
202
   AST_Vector_Init : AST_Vector_Ptr;
203
   --  Initial value, treated as constant, Vector will be null
204
 
205
   package AST_Attribute is new Ada.Task_Attributes
206
     (Attribute     => AST_Vector_Ptr,
207
      Initial_Value => AST_Vector_Init);
208
 
209
   use AST_Attribute;
210
 
211
   -----------------------
212
   -- AST Service Queue --
213
   -----------------------
214
 
215
   --  The following global data structures are used to queue pending
216
   --  AST requests. When an AST is signalled, the AST service routine
217
   --  Process_AST is called, and it makes an entry in this structure.
218
 
219
   type AST_Instance is record
220
      Taskid  : ATID.Task_Id;
221
      Entryno : Natural;
222
      Param   : Long_Integer;
223
   end record;
224
   --  The Taskid and Entryno indicate the entry on which this AST is to
225
   --  be queued, and Param is the parameter provided from the AST itself.
226
 
227
   AST_Service_Queue_Size  : constant := 256;
228
   AST_Service_Queue_Limit : constant := 250;
229
   type AST_Service_Queue_Index is mod AST_Service_Queue_Size;
230
   --  Index used to refer to entries in the circular buffer which holds
231
   --  active AST_Instance values. The upper bound reflects the maximum
232
   --  number of AST instances that can be stored in the buffer. Since
233
   --  these entries are immediately serviced by the high priority server
234
   --  task that does the actual entry queuing, it is very unusual to have
235
   --  any significant number of entries simultaneously queued.
236
 
237
   AST_Service_Queue : array (AST_Service_Queue_Index) of AST_Instance;
238
   pragma Volatile_Components (AST_Service_Queue);
239
   --  The circular buffer used to store active AST requests
240
 
241
   AST_Service_Queue_Put : AST_Service_Queue_Index := 0;
242
   AST_Service_Queue_Get : AST_Service_Queue_Index := 0;
243
   pragma Atomic (AST_Service_Queue_Put);
244
   pragma Atomic (AST_Service_Queue_Get);
245
   --  These two variables point to the next slots in the AST_Service_Queue
246
   --  to be used for putting a new entry in and taking an entry out. This
247
   --  is a circular buffer, so these pointers wrap around. If the two values
248
   --  are equal the buffer is currently empty. The pointers are atomic to
249
   --  ensure proper synchronization between the single producer (namely the
250
   --  Process_AST procedure), and the single consumer (the AST_Service_Task).
251
 
252
   --------------------------------
253
   -- AST Server Task Structures --
254
   --------------------------------
255
 
256
   --  The basic approach is that when an AST comes in, a call is made to
257
   --  the Process_AST procedure. It queues the request in the service queue
258
   --  and then wakes up an AST server task to perform the actual call to the
259
   --  required entry. We use this intermediate server task, since the AST
260
   --  procedure itself cannot wait to return, and we need some caller for
261
   --  the rendezvous so that we can use the normal rendezvous mechanism.
262
 
263
   --  It would work to have only one AST server task, but then we would lose
264
   --  all overlap in AST processing, and furthermore, we could get priority
265
   --  inversion effects resulting in starvation of AST requests.
266
 
267
   --  We therefore maintain a small pool of AST server tasks. We adjust
268
   --  the size of the pool dynamically to reflect traffic, so that we have
269
   --  a sufficient number of server tasks to avoid starvation.
270
 
271
   Max_AST_Servers : constant Natural := 16;
272
   --  Maximum number of AST server tasks that can be allocated
273
 
274
   Num_AST_Servers : Natural := 0;
275
   --  Number of AST server tasks currently active
276
 
277
   Num_Waiting_AST_Servers : Natural := 0;
278
   --  This is the number of AST server tasks that are either waiting for
279
   --  work, or just about to go to sleep and wait for work.
280
 
281
   Is_Waiting : array (1 .. Max_AST_Servers) of Boolean := (others => False);
282
   --  An array of flags showing which AST server tasks are currently waiting
283
 
284
   AST_Task_Ids : array (1 .. Max_AST_Servers) of ST.Task_Id;
285
   --  Task Id's of allocated AST server tasks
286
 
287
   task type AST_Server_Task (Num : Natural) is
288
      pragma Priority (Priority'Last);
289
   end AST_Server_Task;
290
   --  Declaration for AST server task. This task has no entries, it is
291
   --  controlled by sleep and wakeup calls at the task primitives level.
292
 
293
   type AST_Server_Task_Ptr is access all AST_Server_Task;
294
   --  Type used to allocate server tasks
295
 
296
   -----------------------
297
   -- Local Subprograms --
298
   -----------------------
299
 
300
   procedure Allocate_New_AST_Server;
301
   --  Allocate an additional AST server task
302
 
303
   procedure Process_AST (Param : Long_Integer);
304
   --  This is the central routine for processing all AST's, it is referenced
305
   --  as the code address of all created AST_Handler values. See detailed
306
   --  description in body to understand how it works to have a single such
307
   --  procedure for all AST's even though it does not get any indication of
308
   --  the entry involved passed as an explicit parameter. The single explicit
309
   --  parameter Param is the parameter passed by the system with the AST.
310
 
311
   -----------------------------
312
   -- Allocate_New_AST_Server --
313
   -----------------------------
314
 
315
   procedure Allocate_New_AST_Server is
316
      Dummy : AST_Server_Task_Ptr;
317
      pragma Unreferenced (Dummy);
318
 
319
   begin
320
      if Num_AST_Servers = Max_AST_Servers then
321
         return;
322
 
323
      else
324
         --  Note: it is safe to increment Num_AST_Servers immediately, since
325
         --  no one will try to activate this task until it indicates that it
326
         --  is sleeping by setting its entry in Is_Waiting to True.
327
 
328
         Num_AST_Servers := Num_AST_Servers + 1;
329
         Dummy := new AST_Server_Task (Num_AST_Servers);
330
      end if;
331
   end Allocate_New_AST_Server;
332
 
333
   ---------------------
334
   -- AST_Server_Task --
335
   ---------------------
336
 
337
   task body AST_Server_Task is
338
      Taskid  : ATID.Task_Id;
339
      Entryno : Natural;
340
      Param   : aliased Long_Integer;
341
      Self_Id : constant ST.Task_Id := ST.Self;
342
 
343
      pragma Volatile (Param);
344
 
345
   begin
346
      --  By making this task independent of master, when the environment
347
      --  task is finalizing, the AST_Server_Task will be notified that it
348
      --  should terminate.
349
 
350
      STU.Make_Independent;
351
 
352
      --  Record our task Id for access by Process_AST
353
 
354
      AST_Task_Ids (Num) := Self_Id;
355
 
356
      --  Note: this entire task operates with the main task lock set, except
357
      --  when it is sleeping waiting for work, or busy doing a rendezvous
358
      --  with an AST server. This lock protects the data structures that
359
      --  are shared by multiple instances of the server task.
360
 
361
      Lock_AST (Self_Id);
362
 
363
      --  This is the main infinite loop of the task. We go to sleep and
364
      --  wait to be woken up by Process_AST when there is some work to do.
365
 
366
      loop
367
         Num_Waiting_AST_Servers := Num_Waiting_AST_Servers + 1;
368
 
369
         Unlock_AST (Self_Id);
370
 
371
         STI.Defer_Abort (Self_Id);
372
 
373
         if SP.Single_Lock then
374
            STPO.Lock_RTS;
375
         end if;
376
 
377
         STPO.Write_Lock (Self_Id);
378
 
379
         Is_Waiting (Num) := True;
380
 
381
         Self_Id.Common.State := ST.AST_Server_Sleep;
382
         STPO.Sleep (Self_Id, ST.AST_Server_Sleep);
383
         Self_Id.Common.State := ST.Runnable;
384
 
385
         STPO.Unlock (Self_Id);
386
 
387
         if SP.Single_Lock then
388
            STPO.Unlock_RTS;
389
         end if;
390
 
391
         --  If the process is finalizing, Undefer_Abort will simply end
392
         --  this task.
393
 
394
         STI.Undefer_Abort (Self_Id);
395
 
396
         --  We are awake, there is something to do!
397
 
398
         Lock_AST (Self_Id);
399
         Num_Waiting_AST_Servers := Num_Waiting_AST_Servers - 1;
400
 
401
         --  Loop here to service outstanding requests. We are always
402
         --  locked on entry to this loop.
403
 
404
         while AST_Service_Queue_Get /= AST_Service_Queue_Put loop
405
            Taskid  := AST_Service_Queue (AST_Service_Queue_Get).Taskid;
406
            Entryno := AST_Service_Queue (AST_Service_Queue_Get).Entryno;
407
            Param   := AST_Service_Queue (AST_Service_Queue_Get).Param;
408
 
409
            AST_Service_Queue_Get := AST_Service_Queue_Get + 1;
410
 
411
            --  This is a manual expansion of the normal call simple code
412
 
413
            declare
414
               type AA is access all Long_Integer;
415
               P : AA := Param'Unrestricted_Access;
416
 
417
               function To_ST_Task_Id is new Ada.Unchecked_Conversion
418
                 (ATID.Task_Id, ST.Task_Id);
419
 
420
            begin
421
               Unlock_AST (Self_Id);
422
               STR.Call_Simple
423
                 (Acceptor           => To_ST_Task_Id (Taskid),
424
                  E                  => ST.Task_Entry_Index (Entryno),
425
                  Uninterpreted_Data => P'Address);
426
 
427
            exception
428
               when E : others =>
429
                  System.IO.Put_Line ("%Debugging event");
430
                  System.IO.Put_Line (Exception_Name (E) &
431
                    " raised when trying to deliver an AST.");
432
 
433
                  if Exception_Message (E)'Length /= 0 then
434
                     System.IO.Put_Line (Exception_Message (E));
435
                  end if;
436
 
437
                  System.IO.Put_Line ("Task type is " & "Receiver_Type");
438
                  System.IO.Put_Line ("Task id is " & ATID.Image (Taskid));
439
            end;
440
 
441
            Lock_AST (Self_Id);
442
         end loop;
443
      end loop;
444
   end AST_Server_Task;
445
 
446
   ------------------------
447
   -- Create_AST_Handler --
448
   ------------------------
449
 
450
   function Create_AST_Handler
451
     (Taskid  : ATID.Task_Id;
452
      Entryno : Natural) return System.Aux_DEC.AST_Handler
453
   is
454
      Attr_Ref : Attribute_Handle;
455
 
456
      Process_AST_Ptr : constant AST_Handler := Process_AST'Access;
457
      --  Reference to standard procedure descriptor for Process_AST
458
 
459
      pragma Warnings (Off, "*alignment*");
460
      --  Suppress harmless warnings about alignment.
461
      --  Should explain why this warning is harmless ???
462
 
463
      function To_Descriptor_Ref is new Ada.Unchecked_Conversion
464
        (AST_Handler, Descriptor_Ref);
465
 
466
      Original_Descriptor_Ref : constant Descriptor_Ref :=
467
                                  To_Descriptor_Ref (Process_AST_Ptr);
468
 
469
      pragma Warnings (On, "*alignment*");
470
 
471
   begin
472
      if ATID.Is_Terminated (Taskid) then
473
         raise Program_Error;
474
      end if;
475
 
476
      Attr_Ref := Reference (Taskid);
477
 
478
      --  Allocate another server if supply is getting low
479
 
480
      if Num_Waiting_AST_Servers < 2 then
481
         Allocate_New_AST_Server;
482
      end if;
483
 
484
      --  No point in creating more if we have zillions waiting to
485
      --  be serviced.
486
 
487
      while AST_Service_Queue_Put - AST_Service_Queue_Get
488
         > AST_Service_Queue_Limit
489
      loop
490
         delay 0.01;
491
      end loop;
492
 
493
      --  If no AST vector allocated, or the one we have is too short, then
494
      --  allocate one of right size and initialize all entries except the
495
      --  one we will use to unused. Note that the assignment automatically
496
      --  frees the old allocated table if there is one.
497
 
498
      if Attr_Ref.Vector = null
499
        or else Attr_Ref.Vector'Length < Entryno
500
      then
501
         Attr_Ref.Vector := new AST_Handler_Vector (1 .. Entryno);
502
 
503
         for E in 1 .. Entryno loop
504
            Attr_Ref.Vector (E).Descriptor :=
505
              Original_Descriptor_Ref.all;
506
            Attr_Ref.Vector (E).Original_Descriptor_Ref :=
507
              Original_Descriptor_Ref;
508
            Attr_Ref.Vector (E).Taskid  := Taskid;
509
            Attr_Ref.Vector (E).Entryno := E;
510
         end loop;
511
      end if;
512
 
513
      return To_AST_Handler (Attr_Ref.Vector (Entryno)'Unrestricted_Access);
514
   end Create_AST_Handler;
515
 
516
   ----------------------------
517
   -- Expand_AST_Packet_Pool --
518
   ----------------------------
519
 
520
   procedure Expand_AST_Packet_Pool
521
     (Requested_Packets : Natural;
522
      Actual_Number     : out Natural;
523
      Total_Number      : out Natural)
524
   is
525
      pragma Unreferenced (Requested_Packets);
526
   begin
527
      --  The AST implementation of GNAT does not permit dynamic expansion
528
      --  of the pool, so we simply add no entries and return the total. If
529
      --  it is necessary to expand the allocation, then this package body
530
      --  must be recompiled with a larger value for AST_Service_Queue_Size.
531
 
532
      Actual_Number := 0;
533
      Total_Number := AST_Service_Queue_Size;
534
   end Expand_AST_Packet_Pool;
535
 
536
   -----------------
537
   -- Process_AST --
538
   -----------------
539
 
540
   procedure Process_AST (Param : Long_Integer) is
541
 
542
      Handler_Data_Ptr : AST_Handler_Data_Ref;
543
      --  This variable is set to the address of the descriptor through
544
      --  which Process_AST is called. Since the descriptor is part of
545
      --  an AST_Handler value, this is also the address of this value,
546
      --  from which we can obtain the task and entry number information.
547
 
548
      function To_Address is new Ada.Unchecked_Conversion
549
        (ST.Task_Id, System.Task_Primitives.Task_Address);
550
 
551
   begin
552
      System.Machine_Code.Asm
553
        (Template => "addq $27,0,%0",
554
         Outputs  => AST_Handler_Data_Ref'Asm_Output ("=r", Handler_Data_Ptr),
555
         Volatile => True);
556
 
557
      System.Machine_Code.Asm
558
        (Template => "ldq $27,%0",
559
         Inputs  => Descriptor_Ref'Asm_Input
560
           ("m", Handler_Data_Ptr.Original_Descriptor_Ref),
561
         Volatile => True);
562
 
563
      AST_Service_Queue (AST_Service_Queue_Put) := AST_Instance'
564
        (Taskid  => Handler_Data_Ptr.Taskid,
565
         Entryno => Handler_Data_Ptr.Entryno,
566
         Param   => Param);
567
 
568
      --  OpenVMS Programming Concepts manual, chapter 8.2.3:
569
      --  "Implicit synchronization can be achieved for data that is shared
570
      --   for write by using only AST routines to write the data, since only
571
      --   one AST can be running at any one time."
572
 
573
      --  This subprogram runs at AST level so is guaranteed to be
574
      --  called sequentially at a given access level.
575
 
576
      AST_Service_Queue_Put := AST_Service_Queue_Put + 1;
577
 
578
      --  Need to wake up processing task. If there is no waiting server
579
      --  then we have temporarily run out, but things should still be
580
      --  OK, since one of the active ones will eventually pick up the
581
      --  service request queued in the AST_Service_Queue.
582
 
583
      for J in 1 .. Num_AST_Servers loop
584
         if Is_Waiting (J) then
585
            Is_Waiting (J) := False;
586
 
587
            --  Sleeps are handled by ASTs on VMS, so don't call Wakeup
588
 
589
            STPOD.Interrupt_AST_Handler (To_Address (AST_Task_Ids (J)));
590
            exit;
591
         end if;
592
      end loop;
593
   end Process_AST;
594
 
595
begin
596
   STPO.Initialize_Lock (AST_Lock'Access, STPO.Global_Task_Level);
597
end System.AST_Handling;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.