OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-gecobl.adb] - Blame information for rev 404

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT RUN-TIME COMPONENTS                         --
4
--                                                                          --
5
--           S Y S T E M . G E N E R I C _ C O M P L E X _ B L A S          --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--         Copyright (C) 2006-2009, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
with Ada.Unchecked_Conversion;        use Ada;
33
with Interfaces;                      use Interfaces;
34
with Interfaces.Fortran;              use Interfaces.Fortran;
35
with Interfaces.Fortran.BLAS;         use Interfaces.Fortran.BLAS;
36
with System.Generic_Array_Operations; use System.Generic_Array_Operations;
37
 
38
package body System.Generic_Complex_BLAS is
39
 
40
   Is_Single : constant Boolean :=
41
                 Real'Machine_Mantissa = Fortran.Real'Machine_Mantissa
42
                  and then Fortran.Real (Real'First) = Fortran.Real'First
43
                  and then Fortran.Real (Real'Last) = Fortran.Real'Last;
44
 
45
   Is_Double : constant Boolean :=
46
                 Real'Machine_Mantissa = Double_Precision'Machine_Mantissa
47
                  and then
48
                    Double_Precision (Real'First) = Double_Precision'First
49
                  and then
50
                    Double_Precision (Real'Last) = Double_Precision'Last;
51
 
52
   subtype Complex is Complex_Types.Complex;
53
 
54
   --  Local subprograms
55
 
56
   function To_Double_Precision (X : Real) return Double_Precision;
57
   pragma Inline (To_Double_Precision);
58
 
59
   function To_Double_Complex (X : Complex) return Double_Complex;
60
   pragma Inline (To_Double_Complex);
61
 
62
   function To_Complex (X : Double_Complex) return Complex;
63
   function To_Complex (X : Fortran.Complex) return Complex;
64
   pragma Inline (To_Complex);
65
 
66
   function To_Fortran (X : Complex) return Fortran.Complex;
67
   pragma Inline (To_Fortran);
68
 
69
   --  Instantiations
70
 
71
   function To_Double_Complex is new
72
      Vector_Elementwise_Operation
73
       (X_Scalar      => Complex_Types.Complex,
74
        Result_Scalar => Fortran.Double_Complex,
75
        X_Vector      => Complex_Vector,
76
        Result_Vector => BLAS.Double_Complex_Vector,
77
        Operation     => To_Double_Complex);
78
 
79
   function To_Complex is new
80
      Vector_Elementwise_Operation
81
       (X_Scalar      => Fortran.Double_Complex,
82
        Result_Scalar => Complex,
83
        X_Vector      => BLAS.Double_Complex_Vector,
84
        Result_Vector => Complex_Vector,
85
        Operation     => To_Complex);
86
 
87
   function To_Double_Complex is new
88
      Matrix_Elementwise_Operation
89
       (X_Scalar      => Complex,
90
        Result_Scalar => Double_Complex,
91
        X_Matrix      => Complex_Matrix,
92
        Result_Matrix => BLAS.Double_Complex_Matrix,
93
        Operation     => To_Double_Complex);
94
 
95
   function To_Complex is new
96
     Matrix_Elementwise_Operation
97
       (X_Scalar      => Double_Complex,
98
        Result_Scalar => Complex,
99
        X_Matrix      => BLAS.Double_Complex_Matrix,
100
        Result_Matrix => Complex_Matrix,
101
        Operation     => To_Complex);
102
 
103
   function To_Double_Precision (X : Real) return Double_Precision is
104
   begin
105
      return Double_Precision (X);
106
   end To_Double_Precision;
107
 
108
   function To_Double_Complex (X : Complex) return Double_Complex is
109
   begin
110
      return (To_Double_Precision (X.Re), To_Double_Precision (X.Im));
111
   end To_Double_Complex;
112
 
113
   function To_Complex (X : Double_Complex) return Complex is
114
   begin
115
      return (Real (X.Re), Real (X.Im));
116
   end To_Complex;
117
 
118
   function To_Complex (X : Fortran.Complex) return Complex is
119
   begin
120
      return (Real (X.Re), Real (X.Im));
121
   end To_Complex;
122
 
123
   function To_Fortran (X : Complex) return Fortran.Complex is
124
   begin
125
      return (Fortran.Real (X.Re), Fortran.Real (X.Im));
126
   end To_Fortran;
127
 
128
   ---------
129
   -- dot --
130
   ---------
131
 
132
   function dot
133
     (N     : Positive;
134
      X     : Complex_Vector;
135
      Inc_X : Integer := 1;
136
      Y     : Complex_Vector;
137
      Inc_Y : Integer := 1) return Complex
138
   is
139
   begin
140
      if Is_Single then
141
         declare
142
            type X_Ptr is access all BLAS.Complex_Vector (X'Range);
143
            type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
144
            function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
145
            function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
146
         begin
147
            return To_Complex (BLAS.cdotu (N, Conv_X (X'Address).all, Inc_X,
148
                                  Conv_Y (Y'Address).all, Inc_Y));
149
         end;
150
 
151
      elsif Is_Double then
152
         declare
153
            type X_Ptr is access all BLAS.Double_Complex_Vector (X'Range);
154
            type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
155
            function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
156
            function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
157
         begin
158
            return To_Complex (BLAS.zdotu (N, Conv_X (X'Address).all, Inc_X,
159
                                     Conv_Y (Y'Address).all, Inc_Y));
160
         end;
161
 
162
      else
163
         return To_Complex (BLAS.zdotu (N, To_Double_Complex (X), Inc_X,
164
                                  To_Double_Complex (Y), Inc_Y));
165
      end if;
166
   end dot;
167
 
168
   ----------
169
   -- gemm --
170
   ----------
171
 
172
   procedure gemm
173
     (Trans_A : access constant Character;
174
      Trans_B : access constant Character;
175
      M       : Positive;
176
      N       : Positive;
177
      K       : Positive;
178
      Alpha   : Complex := (1.0, 0.0);
179
      A       : Complex_Matrix;
180
      Ld_A    : Integer;
181
      B       : Complex_Matrix;
182
      Ld_B    : Integer;
183
      Beta    : Complex := (0.0, 0.0);
184
      C       : in out Complex_Matrix;
185
      Ld_C    : Integer)
186
   is
187
   begin
188
      if Is_Single then
189
         declare
190
            subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
191
            subtype B_Type is BLAS.Complex_Matrix (B'Range (1), B'Range (2));
192
            type C_Ptr is
193
              access all BLAS.Complex_Matrix (C'Range (1), C'Range (2));
194
            function Conv_A is
195
               new Unchecked_Conversion (Complex_Matrix, A_Type);
196
            function Conv_B is
197
               new Unchecked_Conversion (Complex_Matrix, B_Type);
198
            function Conv_C is
199
               new Unchecked_Conversion (Address, C_Ptr);
200
         begin
201
            BLAS.cgemm (Trans_A, Trans_B, M, N, K, To_Fortran (Alpha),
202
                   Conv_A (A), Ld_A, Conv_B (B), Ld_B, To_Fortran (Beta),
203
                   Conv_C (C'Address).all, Ld_C);
204
         end;
205
 
206
      elsif Is_Double then
207
         declare
208
            subtype A_Type is
209
               BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
210
            subtype B_Type is
211
               BLAS.Double_Complex_Matrix (B'Range (1), B'Range (2));
212
            type C_Ptr is access all
213
               BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
214
            function Conv_A is
215
               new Unchecked_Conversion (Complex_Matrix, A_Type);
216
            function Conv_B is
217
               new Unchecked_Conversion (Complex_Matrix, B_Type);
218
            function Conv_C is new Unchecked_Conversion (Address, C_Ptr);
219
         begin
220
            BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
221
                   Conv_A (A), Ld_A, Conv_B (B), Ld_B,
222
                   To_Double_Complex (Beta),
223
                   Conv_C (C'Address).all, Ld_C);
224
         end;
225
 
226
      else
227
         declare
228
            DP_C : BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
229
         begin
230
            if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
231
               DP_C := To_Double_Complex (C);
232
            end if;
233
 
234
            BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
235
                   To_Double_Complex (A), Ld_A,
236
                   To_Double_Complex (B), Ld_B, To_Double_Complex (Beta),
237
                   DP_C, Ld_C);
238
 
239
            C := To_Complex (DP_C);
240
         end;
241
      end if;
242
   end gemm;
243
 
244
   ----------
245
   -- gemv --
246
   ----------
247
 
248
   procedure gemv
249
     (Trans : access constant Character;
250
      M     : Natural := 0;
251
      N     : Natural := 0;
252
      Alpha : Complex := (1.0, 0.0);
253
      A     : Complex_Matrix;
254
      Ld_A  : Positive;
255
      X     : Complex_Vector;
256
      Inc_X : Integer := 1;
257
      Beta  : Complex := (0.0, 0.0);
258
      Y     : in out Complex_Vector;
259
      Inc_Y : Integer := 1)
260
   is
261
   begin
262
      if Is_Single then
263
         declare
264
            subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
265
            subtype X_Type is BLAS.Complex_Vector (X'Range);
266
            type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
267
            function Conv_A is
268
               new Unchecked_Conversion (Complex_Matrix, A_Type);
269
            function Conv_X is
270
               new Unchecked_Conversion (Complex_Vector, X_Type);
271
            function Conv_Y is
272
               new Unchecked_Conversion (Address, Y_Ptr);
273
         begin
274
            BLAS.cgemv (Trans, M, N, To_Fortran (Alpha),
275
                   Conv_A (A), Ld_A, Conv_X (X), Inc_X, To_Fortran (Beta),
276
                   Conv_Y (Y'Address).all, Inc_Y);
277
         end;
278
 
279
      elsif Is_Double then
280
         declare
281
            subtype A_Type is
282
               BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
283
            subtype X_Type is
284
               BLAS.Double_Complex_Vector (X'Range);
285
            type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
286
            function Conv_A is
287
               new Unchecked_Conversion (Complex_Matrix, A_Type);
288
            function Conv_X is
289
               new Unchecked_Conversion (Complex_Vector, X_Type);
290
            function Conv_Y is
291
               new Unchecked_Conversion (Address, Y_Ptr);
292
         begin
293
            BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
294
                   Conv_A (A), Ld_A, Conv_X (X), Inc_X,
295
                   To_Double_Complex (Beta),
296
                   Conv_Y (Y'Address).all, Inc_Y);
297
         end;
298
 
299
      else
300
         declare
301
            DP_Y : BLAS.Double_Complex_Vector (Y'Range);
302
         begin
303
            if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
304
               DP_Y := To_Double_Complex (Y);
305
            end if;
306
 
307
            BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
308
                   To_Double_Complex (A), Ld_A,
309
                   To_Double_Complex (X), Inc_X, To_Double_Complex (Beta),
310
                   DP_Y, Inc_Y);
311
 
312
            Y := To_Complex (DP_Y);
313
         end;
314
      end if;
315
   end gemv;
316
 
317
   ----------
318
   -- nrm2 --
319
   ----------
320
 
321
   function nrm2
322
     (N     : Natural;
323
      X     : Complex_Vector;
324
      Inc_X : Integer := 1) return Real
325
   is
326
   begin
327
      if Is_Single then
328
         declare
329
            subtype X_Type is BLAS.Complex_Vector (X'Range);
330
            function Conv_X is
331
               new Unchecked_Conversion (Complex_Vector, X_Type);
332
         begin
333
            return Real (BLAS.scnrm2 (N, Conv_X (X), Inc_X));
334
         end;
335
 
336
      elsif Is_Double then
337
         declare
338
            subtype X_Type is BLAS.Double_Complex_Vector (X'Range);
339
            function Conv_X is
340
               new Unchecked_Conversion (Complex_Vector, X_Type);
341
         begin
342
            return Real (BLAS.dznrm2 (N, Conv_X (X), Inc_X));
343
         end;
344
 
345
      else
346
         return Real (BLAS.dznrm2 (N, To_Double_Complex (X), Inc_X));
347
      end if;
348
   end nrm2;
349
 
350
end System.Generic_Complex_BLAS;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.