1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S Y S T E M . G E N E R I C _ C O M P L E X _ B L A S --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 2006-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
21 |
|
|
-- --
|
22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
26 |
|
|
-- --
|
27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
29 |
|
|
-- --
|
30 |
|
|
------------------------------------------------------------------------------
|
31 |
|
|
|
32 |
|
|
with Ada.Unchecked_Conversion; use Ada;
|
33 |
|
|
with Interfaces; use Interfaces;
|
34 |
|
|
with Interfaces.Fortran; use Interfaces.Fortran;
|
35 |
|
|
with Interfaces.Fortran.BLAS; use Interfaces.Fortran.BLAS;
|
36 |
|
|
with System.Generic_Array_Operations; use System.Generic_Array_Operations;
|
37 |
|
|
|
38 |
|
|
package body System.Generic_Complex_BLAS is
|
39 |
|
|
|
40 |
|
|
Is_Single : constant Boolean :=
|
41 |
|
|
Real'Machine_Mantissa = Fortran.Real'Machine_Mantissa
|
42 |
|
|
and then Fortran.Real (Real'First) = Fortran.Real'First
|
43 |
|
|
and then Fortran.Real (Real'Last) = Fortran.Real'Last;
|
44 |
|
|
|
45 |
|
|
Is_Double : constant Boolean :=
|
46 |
|
|
Real'Machine_Mantissa = Double_Precision'Machine_Mantissa
|
47 |
|
|
and then
|
48 |
|
|
Double_Precision (Real'First) = Double_Precision'First
|
49 |
|
|
and then
|
50 |
|
|
Double_Precision (Real'Last) = Double_Precision'Last;
|
51 |
|
|
|
52 |
|
|
subtype Complex is Complex_Types.Complex;
|
53 |
|
|
|
54 |
|
|
-- Local subprograms
|
55 |
|
|
|
56 |
|
|
function To_Double_Precision (X : Real) return Double_Precision;
|
57 |
|
|
pragma Inline (To_Double_Precision);
|
58 |
|
|
|
59 |
|
|
function To_Double_Complex (X : Complex) return Double_Complex;
|
60 |
|
|
pragma Inline (To_Double_Complex);
|
61 |
|
|
|
62 |
|
|
function To_Complex (X : Double_Complex) return Complex;
|
63 |
|
|
function To_Complex (X : Fortran.Complex) return Complex;
|
64 |
|
|
pragma Inline (To_Complex);
|
65 |
|
|
|
66 |
|
|
function To_Fortran (X : Complex) return Fortran.Complex;
|
67 |
|
|
pragma Inline (To_Fortran);
|
68 |
|
|
|
69 |
|
|
-- Instantiations
|
70 |
|
|
|
71 |
|
|
function To_Double_Complex is new
|
72 |
|
|
Vector_Elementwise_Operation
|
73 |
|
|
(X_Scalar => Complex_Types.Complex,
|
74 |
|
|
Result_Scalar => Fortran.Double_Complex,
|
75 |
|
|
X_Vector => Complex_Vector,
|
76 |
|
|
Result_Vector => BLAS.Double_Complex_Vector,
|
77 |
|
|
Operation => To_Double_Complex);
|
78 |
|
|
|
79 |
|
|
function To_Complex is new
|
80 |
|
|
Vector_Elementwise_Operation
|
81 |
|
|
(X_Scalar => Fortran.Double_Complex,
|
82 |
|
|
Result_Scalar => Complex,
|
83 |
|
|
X_Vector => BLAS.Double_Complex_Vector,
|
84 |
|
|
Result_Vector => Complex_Vector,
|
85 |
|
|
Operation => To_Complex);
|
86 |
|
|
|
87 |
|
|
function To_Double_Complex is new
|
88 |
|
|
Matrix_Elementwise_Operation
|
89 |
|
|
(X_Scalar => Complex,
|
90 |
|
|
Result_Scalar => Double_Complex,
|
91 |
|
|
X_Matrix => Complex_Matrix,
|
92 |
|
|
Result_Matrix => BLAS.Double_Complex_Matrix,
|
93 |
|
|
Operation => To_Double_Complex);
|
94 |
|
|
|
95 |
|
|
function To_Complex is new
|
96 |
|
|
Matrix_Elementwise_Operation
|
97 |
|
|
(X_Scalar => Double_Complex,
|
98 |
|
|
Result_Scalar => Complex,
|
99 |
|
|
X_Matrix => BLAS.Double_Complex_Matrix,
|
100 |
|
|
Result_Matrix => Complex_Matrix,
|
101 |
|
|
Operation => To_Complex);
|
102 |
|
|
|
103 |
|
|
function To_Double_Precision (X : Real) return Double_Precision is
|
104 |
|
|
begin
|
105 |
|
|
return Double_Precision (X);
|
106 |
|
|
end To_Double_Precision;
|
107 |
|
|
|
108 |
|
|
function To_Double_Complex (X : Complex) return Double_Complex is
|
109 |
|
|
begin
|
110 |
|
|
return (To_Double_Precision (X.Re), To_Double_Precision (X.Im));
|
111 |
|
|
end To_Double_Complex;
|
112 |
|
|
|
113 |
|
|
function To_Complex (X : Double_Complex) return Complex is
|
114 |
|
|
begin
|
115 |
|
|
return (Real (X.Re), Real (X.Im));
|
116 |
|
|
end To_Complex;
|
117 |
|
|
|
118 |
|
|
function To_Complex (X : Fortran.Complex) return Complex is
|
119 |
|
|
begin
|
120 |
|
|
return (Real (X.Re), Real (X.Im));
|
121 |
|
|
end To_Complex;
|
122 |
|
|
|
123 |
|
|
function To_Fortran (X : Complex) return Fortran.Complex is
|
124 |
|
|
begin
|
125 |
|
|
return (Fortran.Real (X.Re), Fortran.Real (X.Im));
|
126 |
|
|
end To_Fortran;
|
127 |
|
|
|
128 |
|
|
---------
|
129 |
|
|
-- dot --
|
130 |
|
|
---------
|
131 |
|
|
|
132 |
|
|
function dot
|
133 |
|
|
(N : Positive;
|
134 |
|
|
X : Complex_Vector;
|
135 |
|
|
Inc_X : Integer := 1;
|
136 |
|
|
Y : Complex_Vector;
|
137 |
|
|
Inc_Y : Integer := 1) return Complex
|
138 |
|
|
is
|
139 |
|
|
begin
|
140 |
|
|
if Is_Single then
|
141 |
|
|
declare
|
142 |
|
|
type X_Ptr is access all BLAS.Complex_Vector (X'Range);
|
143 |
|
|
type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
|
144 |
|
|
function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
|
145 |
|
|
function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
|
146 |
|
|
begin
|
147 |
|
|
return To_Complex (BLAS.cdotu (N, Conv_X (X'Address).all, Inc_X,
|
148 |
|
|
Conv_Y (Y'Address).all, Inc_Y));
|
149 |
|
|
end;
|
150 |
|
|
|
151 |
|
|
elsif Is_Double then
|
152 |
|
|
declare
|
153 |
|
|
type X_Ptr is access all BLAS.Double_Complex_Vector (X'Range);
|
154 |
|
|
type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
|
155 |
|
|
function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
|
156 |
|
|
function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
|
157 |
|
|
begin
|
158 |
|
|
return To_Complex (BLAS.zdotu (N, Conv_X (X'Address).all, Inc_X,
|
159 |
|
|
Conv_Y (Y'Address).all, Inc_Y));
|
160 |
|
|
end;
|
161 |
|
|
|
162 |
|
|
else
|
163 |
|
|
return To_Complex (BLAS.zdotu (N, To_Double_Complex (X), Inc_X,
|
164 |
|
|
To_Double_Complex (Y), Inc_Y));
|
165 |
|
|
end if;
|
166 |
|
|
end dot;
|
167 |
|
|
|
168 |
|
|
----------
|
169 |
|
|
-- gemm --
|
170 |
|
|
----------
|
171 |
|
|
|
172 |
|
|
procedure gemm
|
173 |
|
|
(Trans_A : access constant Character;
|
174 |
|
|
Trans_B : access constant Character;
|
175 |
|
|
M : Positive;
|
176 |
|
|
N : Positive;
|
177 |
|
|
K : Positive;
|
178 |
|
|
Alpha : Complex := (1.0, 0.0);
|
179 |
|
|
A : Complex_Matrix;
|
180 |
|
|
Ld_A : Integer;
|
181 |
|
|
B : Complex_Matrix;
|
182 |
|
|
Ld_B : Integer;
|
183 |
|
|
Beta : Complex := (0.0, 0.0);
|
184 |
|
|
C : in out Complex_Matrix;
|
185 |
|
|
Ld_C : Integer)
|
186 |
|
|
is
|
187 |
|
|
begin
|
188 |
|
|
if Is_Single then
|
189 |
|
|
declare
|
190 |
|
|
subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
|
191 |
|
|
subtype B_Type is BLAS.Complex_Matrix (B'Range (1), B'Range (2));
|
192 |
|
|
type C_Ptr is
|
193 |
|
|
access all BLAS.Complex_Matrix (C'Range (1), C'Range (2));
|
194 |
|
|
function Conv_A is
|
195 |
|
|
new Unchecked_Conversion (Complex_Matrix, A_Type);
|
196 |
|
|
function Conv_B is
|
197 |
|
|
new Unchecked_Conversion (Complex_Matrix, B_Type);
|
198 |
|
|
function Conv_C is
|
199 |
|
|
new Unchecked_Conversion (Address, C_Ptr);
|
200 |
|
|
begin
|
201 |
|
|
BLAS.cgemm (Trans_A, Trans_B, M, N, K, To_Fortran (Alpha),
|
202 |
|
|
Conv_A (A), Ld_A, Conv_B (B), Ld_B, To_Fortran (Beta),
|
203 |
|
|
Conv_C (C'Address).all, Ld_C);
|
204 |
|
|
end;
|
205 |
|
|
|
206 |
|
|
elsif Is_Double then
|
207 |
|
|
declare
|
208 |
|
|
subtype A_Type is
|
209 |
|
|
BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
|
210 |
|
|
subtype B_Type is
|
211 |
|
|
BLAS.Double_Complex_Matrix (B'Range (1), B'Range (2));
|
212 |
|
|
type C_Ptr is access all
|
213 |
|
|
BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
|
214 |
|
|
function Conv_A is
|
215 |
|
|
new Unchecked_Conversion (Complex_Matrix, A_Type);
|
216 |
|
|
function Conv_B is
|
217 |
|
|
new Unchecked_Conversion (Complex_Matrix, B_Type);
|
218 |
|
|
function Conv_C is new Unchecked_Conversion (Address, C_Ptr);
|
219 |
|
|
begin
|
220 |
|
|
BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
|
221 |
|
|
Conv_A (A), Ld_A, Conv_B (B), Ld_B,
|
222 |
|
|
To_Double_Complex (Beta),
|
223 |
|
|
Conv_C (C'Address).all, Ld_C);
|
224 |
|
|
end;
|
225 |
|
|
|
226 |
|
|
else
|
227 |
|
|
declare
|
228 |
|
|
DP_C : BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
|
229 |
|
|
begin
|
230 |
|
|
if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
|
231 |
|
|
DP_C := To_Double_Complex (C);
|
232 |
|
|
end if;
|
233 |
|
|
|
234 |
|
|
BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
|
235 |
|
|
To_Double_Complex (A), Ld_A,
|
236 |
|
|
To_Double_Complex (B), Ld_B, To_Double_Complex (Beta),
|
237 |
|
|
DP_C, Ld_C);
|
238 |
|
|
|
239 |
|
|
C := To_Complex (DP_C);
|
240 |
|
|
end;
|
241 |
|
|
end if;
|
242 |
|
|
end gemm;
|
243 |
|
|
|
244 |
|
|
----------
|
245 |
|
|
-- gemv --
|
246 |
|
|
----------
|
247 |
|
|
|
248 |
|
|
procedure gemv
|
249 |
|
|
(Trans : access constant Character;
|
250 |
|
|
M : Natural := 0;
|
251 |
|
|
N : Natural := 0;
|
252 |
|
|
Alpha : Complex := (1.0, 0.0);
|
253 |
|
|
A : Complex_Matrix;
|
254 |
|
|
Ld_A : Positive;
|
255 |
|
|
X : Complex_Vector;
|
256 |
|
|
Inc_X : Integer := 1;
|
257 |
|
|
Beta : Complex := (0.0, 0.0);
|
258 |
|
|
Y : in out Complex_Vector;
|
259 |
|
|
Inc_Y : Integer := 1)
|
260 |
|
|
is
|
261 |
|
|
begin
|
262 |
|
|
if Is_Single then
|
263 |
|
|
declare
|
264 |
|
|
subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
|
265 |
|
|
subtype X_Type is BLAS.Complex_Vector (X'Range);
|
266 |
|
|
type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
|
267 |
|
|
function Conv_A is
|
268 |
|
|
new Unchecked_Conversion (Complex_Matrix, A_Type);
|
269 |
|
|
function Conv_X is
|
270 |
|
|
new Unchecked_Conversion (Complex_Vector, X_Type);
|
271 |
|
|
function Conv_Y is
|
272 |
|
|
new Unchecked_Conversion (Address, Y_Ptr);
|
273 |
|
|
begin
|
274 |
|
|
BLAS.cgemv (Trans, M, N, To_Fortran (Alpha),
|
275 |
|
|
Conv_A (A), Ld_A, Conv_X (X), Inc_X, To_Fortran (Beta),
|
276 |
|
|
Conv_Y (Y'Address).all, Inc_Y);
|
277 |
|
|
end;
|
278 |
|
|
|
279 |
|
|
elsif Is_Double then
|
280 |
|
|
declare
|
281 |
|
|
subtype A_Type is
|
282 |
|
|
BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
|
283 |
|
|
subtype X_Type is
|
284 |
|
|
BLAS.Double_Complex_Vector (X'Range);
|
285 |
|
|
type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
|
286 |
|
|
function Conv_A is
|
287 |
|
|
new Unchecked_Conversion (Complex_Matrix, A_Type);
|
288 |
|
|
function Conv_X is
|
289 |
|
|
new Unchecked_Conversion (Complex_Vector, X_Type);
|
290 |
|
|
function Conv_Y is
|
291 |
|
|
new Unchecked_Conversion (Address, Y_Ptr);
|
292 |
|
|
begin
|
293 |
|
|
BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
|
294 |
|
|
Conv_A (A), Ld_A, Conv_X (X), Inc_X,
|
295 |
|
|
To_Double_Complex (Beta),
|
296 |
|
|
Conv_Y (Y'Address).all, Inc_Y);
|
297 |
|
|
end;
|
298 |
|
|
|
299 |
|
|
else
|
300 |
|
|
declare
|
301 |
|
|
DP_Y : BLAS.Double_Complex_Vector (Y'Range);
|
302 |
|
|
begin
|
303 |
|
|
if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
|
304 |
|
|
DP_Y := To_Double_Complex (Y);
|
305 |
|
|
end if;
|
306 |
|
|
|
307 |
|
|
BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
|
308 |
|
|
To_Double_Complex (A), Ld_A,
|
309 |
|
|
To_Double_Complex (X), Inc_X, To_Double_Complex (Beta),
|
310 |
|
|
DP_Y, Inc_Y);
|
311 |
|
|
|
312 |
|
|
Y := To_Complex (DP_Y);
|
313 |
|
|
end;
|
314 |
|
|
end if;
|
315 |
|
|
end gemv;
|
316 |
|
|
|
317 |
|
|
----------
|
318 |
|
|
-- nrm2 --
|
319 |
|
|
----------
|
320 |
|
|
|
321 |
|
|
function nrm2
|
322 |
|
|
(N : Natural;
|
323 |
|
|
X : Complex_Vector;
|
324 |
|
|
Inc_X : Integer := 1) return Real
|
325 |
|
|
is
|
326 |
|
|
begin
|
327 |
|
|
if Is_Single then
|
328 |
|
|
declare
|
329 |
|
|
subtype X_Type is BLAS.Complex_Vector (X'Range);
|
330 |
|
|
function Conv_X is
|
331 |
|
|
new Unchecked_Conversion (Complex_Vector, X_Type);
|
332 |
|
|
begin
|
333 |
|
|
return Real (BLAS.scnrm2 (N, Conv_X (X), Inc_X));
|
334 |
|
|
end;
|
335 |
|
|
|
336 |
|
|
elsif Is_Double then
|
337 |
|
|
declare
|
338 |
|
|
subtype X_Type is BLAS.Double_Complex_Vector (X'Range);
|
339 |
|
|
function Conv_X is
|
340 |
|
|
new Unchecked_Conversion (Complex_Vector, X_Type);
|
341 |
|
|
begin
|
342 |
|
|
return Real (BLAS.dznrm2 (N, Conv_X (X), Inc_X));
|
343 |
|
|
end;
|
344 |
|
|
|
345 |
|
|
else
|
346 |
|
|
return Real (BLAS.dznrm2 (N, To_Double_Complex (X), Inc_X));
|
347 |
|
|
end if;
|
348 |
|
|
end nrm2;
|
349 |
|
|
|
350 |
|
|
end System.Generic_Complex_BLAS;
|