| 1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- S Y S T E M . I M G _ R E A L --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- B o d y --
|
| 8 |
|
|
-- --
|
| 9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
| 10 |
|
|
-- --
|
| 11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
| 17 |
|
|
-- --
|
| 18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
| 19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
| 20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
| 21 |
|
|
-- --
|
| 22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
| 23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
| 24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
| 25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
| 26 |
|
|
-- --
|
| 27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 29 |
|
|
-- --
|
| 30 |
|
|
------------------------------------------------------------------------------
|
| 31 |
|
|
|
| 32 |
|
|
with System.Img_LLU; use System.Img_LLU;
|
| 33 |
|
|
with System.Img_Uns; use System.Img_Uns;
|
| 34 |
|
|
with System.Powten_Table; use System.Powten_Table;
|
| 35 |
|
|
with System.Unsigned_Types; use System.Unsigned_Types;
|
| 36 |
|
|
|
| 37 |
|
|
package body System.Img_Real is
|
| 38 |
|
|
|
| 39 |
|
|
-- The following defines the maximum number of digits that we can convert
|
| 40 |
|
|
-- accurately. This is limited by the precision of Long_Long_Float, and
|
| 41 |
|
|
-- also by the number of digits we can hold in Long_Long_Unsigned, which
|
| 42 |
|
|
-- is the integer type we use as an intermediate for the result.
|
| 43 |
|
|
|
| 44 |
|
|
-- We assume that in practice, the limitation will come from the digits
|
| 45 |
|
|
-- value, rather than the integer value. This is true for typical IEEE
|
| 46 |
|
|
-- implementations, and at worst, the only loss is for some precision
|
| 47 |
|
|
-- in very high precision floating-point output.
|
| 48 |
|
|
|
| 49 |
|
|
-- Note that in the following, the "-2" accounts for the sign and one
|
| 50 |
|
|
-- extra digits, since we need the maximum number of 9's that can be
|
| 51 |
|
|
-- supported, e.g. for the normal 64 bit case, Long_Long_Integer'Width
|
| 52 |
|
|
-- is 21, since the maximum value (approx 1.6 * 10**19) has 20 digits,
|
| 53 |
|
|
-- but the maximum number of 9's that can be supported is 19.
|
| 54 |
|
|
|
| 55 |
|
|
Maxdigs : constant :=
|
| 56 |
|
|
Natural'Min
|
| 57 |
|
|
(Long_Long_Unsigned'Width - 2, Long_Long_Float'Digits);
|
| 58 |
|
|
|
| 59 |
|
|
Unsdigs : constant := Unsigned'Width - 2;
|
| 60 |
|
|
-- Number of digits that can be converted using type Unsigned
|
| 61 |
|
|
-- See above for the explanation of the -2.
|
| 62 |
|
|
|
| 63 |
|
|
Maxscaling : constant := 5000;
|
| 64 |
|
|
-- Max decimal scaling required during conversion of floating-point
|
| 65 |
|
|
-- numbers to decimal. This is used to defend against infinite
|
| 66 |
|
|
-- looping in the conversion, as can be caused by erroneous executions.
|
| 67 |
|
|
-- The largest exponent used on any current system is 2**16383, which
|
| 68 |
|
|
-- is approximately 10**4932, and the highest number of decimal digits
|
| 69 |
|
|
-- is about 35 for 128-bit floating-point formats, so 5000 leaves
|
| 70 |
|
|
-- enough room for scaling such values
|
| 71 |
|
|
|
| 72 |
|
|
function Is_Negative (V : Long_Long_Float) return Boolean;
|
| 73 |
|
|
pragma Import (Intrinsic, Is_Negative);
|
| 74 |
|
|
|
| 75 |
|
|
--------------------------
|
| 76 |
|
|
-- Image_Floating_Point --
|
| 77 |
|
|
--------------------------
|
| 78 |
|
|
|
| 79 |
|
|
procedure Image_Floating_Point
|
| 80 |
|
|
(V : Long_Long_Float;
|
| 81 |
|
|
S : in out String;
|
| 82 |
|
|
P : out Natural;
|
| 83 |
|
|
Digs : Natural)
|
| 84 |
|
|
is
|
| 85 |
|
|
pragma Assert (S'First = 1);
|
| 86 |
|
|
|
| 87 |
|
|
begin
|
| 88 |
|
|
-- Decide whether a blank should be prepended before the call to
|
| 89 |
|
|
-- Set_Image_Real. We generate a blank for positive values, and
|
| 90 |
|
|
-- also for positive zeroes. For negative zeroes, we generate a
|
| 91 |
|
|
-- space only if Signed_Zeroes is True (the RM only permits the
|
| 92 |
|
|
-- output of -0.0 on targets where this is the case). We can of
|
| 93 |
|
|
-- course still see a -0.0 on a target where Signed_Zeroes is
|
| 94 |
|
|
-- False (since this attribute refers to the proper handling of
|
| 95 |
|
|
-- negative zeroes, not to their existence).
|
| 96 |
|
|
|
| 97 |
|
|
if not Is_Negative (V)
|
| 98 |
|
|
or else (not Long_Long_Float'Signed_Zeros and then V = -0.0)
|
| 99 |
|
|
then
|
| 100 |
|
|
S (1) := ' ';
|
| 101 |
|
|
P := 1;
|
| 102 |
|
|
else
|
| 103 |
|
|
P := 0;
|
| 104 |
|
|
end if;
|
| 105 |
|
|
|
| 106 |
|
|
Set_Image_Real (V, S, P, 1, Digs - 1, 3);
|
| 107 |
|
|
end Image_Floating_Point;
|
| 108 |
|
|
|
| 109 |
|
|
--------------------------------
|
| 110 |
|
|
-- Image_Ordinary_Fixed_Point --
|
| 111 |
|
|
--------------------------------
|
| 112 |
|
|
|
| 113 |
|
|
procedure Image_Ordinary_Fixed_Point
|
| 114 |
|
|
(V : Long_Long_Float;
|
| 115 |
|
|
S : in out String;
|
| 116 |
|
|
P : out Natural;
|
| 117 |
|
|
Aft : Natural)
|
| 118 |
|
|
is
|
| 119 |
|
|
pragma Assert (S'First = 1);
|
| 120 |
|
|
|
| 121 |
|
|
begin
|
| 122 |
|
|
-- Output space at start if non-negative
|
| 123 |
|
|
|
| 124 |
|
|
if V >= 0.0 then
|
| 125 |
|
|
S (1) := ' ';
|
| 126 |
|
|
P := 1;
|
| 127 |
|
|
else
|
| 128 |
|
|
P := 0;
|
| 129 |
|
|
end if;
|
| 130 |
|
|
|
| 131 |
|
|
Set_Image_Real (V, S, P, 1, Aft, 0);
|
| 132 |
|
|
end Image_Ordinary_Fixed_Point;
|
| 133 |
|
|
|
| 134 |
|
|
--------------------
|
| 135 |
|
|
-- Set_Image_Real --
|
| 136 |
|
|
--------------------
|
| 137 |
|
|
|
| 138 |
|
|
procedure Set_Image_Real
|
| 139 |
|
|
(V : Long_Long_Float;
|
| 140 |
|
|
S : out String;
|
| 141 |
|
|
P : in out Natural;
|
| 142 |
|
|
Fore : Natural;
|
| 143 |
|
|
Aft : Natural;
|
| 144 |
|
|
Exp : Natural)
|
| 145 |
|
|
is
|
| 146 |
|
|
procedure Reset;
|
| 147 |
|
|
pragma Import (C, Reset, "__gnat_init_float");
|
| 148 |
|
|
-- We import the floating-point processor reset routine so that we can
|
| 149 |
|
|
-- be sure the floating-point processor is properly set for conversion
|
| 150 |
|
|
-- calls (see description of Reset in GNAT.Float_Control (g-flocon.ads).
|
| 151 |
|
|
-- This is notably need on Windows, where calls to the operating system
|
| 152 |
|
|
-- randomly reset the processor into 64-bit mode.
|
| 153 |
|
|
|
| 154 |
|
|
NFrac : constant Natural := Natural'Max (Aft, 1);
|
| 155 |
|
|
Sign : Character;
|
| 156 |
|
|
X : aliased Long_Long_Float;
|
| 157 |
|
|
-- This is declared aliased because the expansion of X'Valid passes
|
| 158 |
|
|
-- X by access and JGNAT requires all access parameters to be aliased.
|
| 159 |
|
|
-- The Valid attribute probably needs to be handled via a different
|
| 160 |
|
|
-- expansion for JGNAT, and this use of aliased should be removed
|
| 161 |
|
|
-- once Valid is handled properly. ???
|
| 162 |
|
|
Scale : Integer;
|
| 163 |
|
|
Expon : Integer;
|
| 164 |
|
|
|
| 165 |
|
|
Field_Max : constant := 255;
|
| 166 |
|
|
-- This should be the same value as Ada.[Wide_]Text_IO.Field'Last.
|
| 167 |
|
|
-- It is not worth dragging in Ada.Text_IO to pick up this value,
|
| 168 |
|
|
-- since it really should never be necessary to change it!
|
| 169 |
|
|
|
| 170 |
|
|
Digs : String (1 .. 2 * Field_Max + 16);
|
| 171 |
|
|
-- Array used to hold digits of converted integer value. This is a
|
| 172 |
|
|
-- large enough buffer to accommodate ludicrous values of Fore and Aft.
|
| 173 |
|
|
|
| 174 |
|
|
Ndigs : Natural;
|
| 175 |
|
|
-- Number of digits stored in Digs (and also subscript of last digit)
|
| 176 |
|
|
|
| 177 |
|
|
procedure Adjust_Scale (S : Natural);
|
| 178 |
|
|
-- Adjusts the value in X by multiplying or dividing by a power of
|
| 179 |
|
|
-- ten so that it is in the range 10**(S-1) <= X < 10**S. Includes
|
| 180 |
|
|
-- adding 0.5 to round the result, readjusting if the rounding causes
|
| 181 |
|
|
-- the result to wander out of the range. Scale is adjusted to reflect
|
| 182 |
|
|
-- the power of ten used to divide the result (i.e. one is added to
|
| 183 |
|
|
-- the scale value for each division by 10.0, or one is subtracted
|
| 184 |
|
|
-- for each multiplication by 10.0).
|
| 185 |
|
|
|
| 186 |
|
|
procedure Convert_Integer;
|
| 187 |
|
|
-- Takes the value in X, outputs integer digits into Digs. On return,
|
| 188 |
|
|
-- Ndigs is set to the number of digits stored. The digits are stored
|
| 189 |
|
|
-- in Digs (1 .. Ndigs),
|
| 190 |
|
|
|
| 191 |
|
|
procedure Set (C : Character);
|
| 192 |
|
|
-- Sets character C in output buffer
|
| 193 |
|
|
|
| 194 |
|
|
procedure Set_Blanks_And_Sign (N : Integer);
|
| 195 |
|
|
-- Sets leading blanks and minus sign if needed. N is the number of
|
| 196 |
|
|
-- positions to be filled (a minus sign is output even if N is zero
|
| 197 |
|
|
-- or negative, but for a positive value, if N is non-positive, then
|
| 198 |
|
|
-- the call has no effect).
|
| 199 |
|
|
|
| 200 |
|
|
procedure Set_Digs (S, E : Natural);
|
| 201 |
|
|
-- Set digits S through E from Digs buffer. No effect if S > E
|
| 202 |
|
|
|
| 203 |
|
|
procedure Set_Special_Fill (N : Natural);
|
| 204 |
|
|
-- After outputting +Inf, -Inf or NaN, this routine fills out the
|
| 205 |
|
|
-- rest of the field with * characters. The argument is the number
|
| 206 |
|
|
-- of characters output so far (either 3 or 4)
|
| 207 |
|
|
|
| 208 |
|
|
procedure Set_Zeros (N : Integer);
|
| 209 |
|
|
-- Set N zeros, no effect if N is negative
|
| 210 |
|
|
|
| 211 |
|
|
pragma Inline (Set);
|
| 212 |
|
|
pragma Inline (Set_Digs);
|
| 213 |
|
|
pragma Inline (Set_Zeros);
|
| 214 |
|
|
|
| 215 |
|
|
------------------
|
| 216 |
|
|
-- Adjust_Scale --
|
| 217 |
|
|
------------------
|
| 218 |
|
|
|
| 219 |
|
|
procedure Adjust_Scale (S : Natural) is
|
| 220 |
|
|
Lo : Natural;
|
| 221 |
|
|
Hi : Natural;
|
| 222 |
|
|
Mid : Natural;
|
| 223 |
|
|
XP : Long_Long_Float;
|
| 224 |
|
|
|
| 225 |
|
|
begin
|
| 226 |
|
|
-- Cases where scaling up is required
|
| 227 |
|
|
|
| 228 |
|
|
if X < Powten (S - 1) then
|
| 229 |
|
|
|
| 230 |
|
|
-- What we are looking for is a power of ten to multiply X by
|
| 231 |
|
|
-- so that the result lies within the required range.
|
| 232 |
|
|
|
| 233 |
|
|
loop
|
| 234 |
|
|
XP := X * Powten (Maxpow);
|
| 235 |
|
|
exit when XP >= Powten (S - 1) or else Scale < -Maxscaling;
|
| 236 |
|
|
X := XP;
|
| 237 |
|
|
Scale := Scale - Maxpow;
|
| 238 |
|
|
end loop;
|
| 239 |
|
|
|
| 240 |
|
|
-- The following exception is only raised in case of erroneous
|
| 241 |
|
|
-- execution, where a number was considered valid but still
|
| 242 |
|
|
-- fails to scale up. One situation where this can happen is
|
| 243 |
|
|
-- when a system which is supposed to be IEEE-compliant, but
|
| 244 |
|
|
-- has been reconfigured to flush denormals to zero.
|
| 245 |
|
|
|
| 246 |
|
|
if Scale < -Maxscaling then
|
| 247 |
|
|
raise Constraint_Error;
|
| 248 |
|
|
end if;
|
| 249 |
|
|
|
| 250 |
|
|
-- Here we know that we must multiply by at least 10**1 and that
|
| 251 |
|
|
-- 10**Maxpow takes us too far: binary search to find right one.
|
| 252 |
|
|
|
| 253 |
|
|
-- Because of roundoff errors, it is possible for the value
|
| 254 |
|
|
-- of XP to be just outside of the interval when Lo >= Hi. In
|
| 255 |
|
|
-- that case we adjust explicitly by a factor of 10. This
|
| 256 |
|
|
-- can only happen with a value that is very close to an
|
| 257 |
|
|
-- exact power of 10.
|
| 258 |
|
|
|
| 259 |
|
|
Lo := 1;
|
| 260 |
|
|
Hi := Maxpow;
|
| 261 |
|
|
|
| 262 |
|
|
loop
|
| 263 |
|
|
Mid := (Lo + Hi) / 2;
|
| 264 |
|
|
XP := X * Powten (Mid);
|
| 265 |
|
|
|
| 266 |
|
|
if XP < Powten (S - 1) then
|
| 267 |
|
|
|
| 268 |
|
|
if Lo >= Hi then
|
| 269 |
|
|
Mid := Mid + 1;
|
| 270 |
|
|
XP := XP * 10.0;
|
| 271 |
|
|
exit;
|
| 272 |
|
|
|
| 273 |
|
|
else
|
| 274 |
|
|
Lo := Mid + 1;
|
| 275 |
|
|
end if;
|
| 276 |
|
|
|
| 277 |
|
|
elsif XP >= Powten (S) then
|
| 278 |
|
|
|
| 279 |
|
|
if Lo >= Hi then
|
| 280 |
|
|
Mid := Mid - 1;
|
| 281 |
|
|
XP := XP / 10.0;
|
| 282 |
|
|
exit;
|
| 283 |
|
|
|
| 284 |
|
|
else
|
| 285 |
|
|
Hi := Mid - 1;
|
| 286 |
|
|
end if;
|
| 287 |
|
|
|
| 288 |
|
|
else
|
| 289 |
|
|
exit;
|
| 290 |
|
|
end if;
|
| 291 |
|
|
end loop;
|
| 292 |
|
|
|
| 293 |
|
|
X := XP;
|
| 294 |
|
|
Scale := Scale - Mid;
|
| 295 |
|
|
|
| 296 |
|
|
-- Cases where scaling down is required
|
| 297 |
|
|
|
| 298 |
|
|
elsif X >= Powten (S) then
|
| 299 |
|
|
|
| 300 |
|
|
-- What we are looking for is a power of ten to divide X by
|
| 301 |
|
|
-- so that the result lies within the required range.
|
| 302 |
|
|
|
| 303 |
|
|
loop
|
| 304 |
|
|
XP := X / Powten (Maxpow);
|
| 305 |
|
|
exit when XP < Powten (S) or else Scale > Maxscaling;
|
| 306 |
|
|
X := XP;
|
| 307 |
|
|
Scale := Scale + Maxpow;
|
| 308 |
|
|
end loop;
|
| 309 |
|
|
|
| 310 |
|
|
-- The following exception is only raised in case of erroneous
|
| 311 |
|
|
-- execution, where a number was considered valid but still
|
| 312 |
|
|
-- fails to scale up. One situation where this can happen is
|
| 313 |
|
|
-- when a system which is supposed to be IEEE-compliant, but
|
| 314 |
|
|
-- has been reconfigured to flush denormals to zero.
|
| 315 |
|
|
|
| 316 |
|
|
if Scale > Maxscaling then
|
| 317 |
|
|
raise Constraint_Error;
|
| 318 |
|
|
end if;
|
| 319 |
|
|
|
| 320 |
|
|
-- Here we know that we must divide by at least 10**1 and that
|
| 321 |
|
|
-- 10**Maxpow takes us too far, binary search to find right one.
|
| 322 |
|
|
|
| 323 |
|
|
Lo := 1;
|
| 324 |
|
|
Hi := Maxpow;
|
| 325 |
|
|
|
| 326 |
|
|
loop
|
| 327 |
|
|
Mid := (Lo + Hi) / 2;
|
| 328 |
|
|
XP := X / Powten (Mid);
|
| 329 |
|
|
|
| 330 |
|
|
if XP < Powten (S - 1) then
|
| 331 |
|
|
|
| 332 |
|
|
if Lo >= Hi then
|
| 333 |
|
|
XP := XP * 10.0;
|
| 334 |
|
|
Mid := Mid - 1;
|
| 335 |
|
|
exit;
|
| 336 |
|
|
|
| 337 |
|
|
else
|
| 338 |
|
|
Hi := Mid - 1;
|
| 339 |
|
|
end if;
|
| 340 |
|
|
|
| 341 |
|
|
elsif XP >= Powten (S) then
|
| 342 |
|
|
|
| 343 |
|
|
if Lo >= Hi then
|
| 344 |
|
|
XP := XP / 10.0;
|
| 345 |
|
|
Mid := Mid + 1;
|
| 346 |
|
|
exit;
|
| 347 |
|
|
|
| 348 |
|
|
else
|
| 349 |
|
|
Lo := Mid + 1;
|
| 350 |
|
|
end if;
|
| 351 |
|
|
|
| 352 |
|
|
else
|
| 353 |
|
|
exit;
|
| 354 |
|
|
end if;
|
| 355 |
|
|
end loop;
|
| 356 |
|
|
|
| 357 |
|
|
X := XP;
|
| 358 |
|
|
Scale := Scale + Mid;
|
| 359 |
|
|
|
| 360 |
|
|
-- Here we are already scaled right
|
| 361 |
|
|
|
| 362 |
|
|
else
|
| 363 |
|
|
null;
|
| 364 |
|
|
end if;
|
| 365 |
|
|
|
| 366 |
|
|
-- Round, readjusting scale if needed. Note that if a readjustment
|
| 367 |
|
|
-- occurs, then it is never necessary to round again, because there
|
| 368 |
|
|
-- is no possibility of such a second rounding causing a change.
|
| 369 |
|
|
|
| 370 |
|
|
X := X + 0.5;
|
| 371 |
|
|
|
| 372 |
|
|
if X >= Powten (S) then
|
| 373 |
|
|
X := X / 10.0;
|
| 374 |
|
|
Scale := Scale + 1;
|
| 375 |
|
|
end if;
|
| 376 |
|
|
|
| 377 |
|
|
end Adjust_Scale;
|
| 378 |
|
|
|
| 379 |
|
|
---------------------
|
| 380 |
|
|
-- Convert_Integer --
|
| 381 |
|
|
---------------------
|
| 382 |
|
|
|
| 383 |
|
|
procedure Convert_Integer is
|
| 384 |
|
|
begin
|
| 385 |
|
|
-- Use Unsigned routine if possible, since on many machines it will
|
| 386 |
|
|
-- be significantly more efficient than the Long_Long_Unsigned one.
|
| 387 |
|
|
|
| 388 |
|
|
if X < Powten (Unsdigs) then
|
| 389 |
|
|
Ndigs := 0;
|
| 390 |
|
|
Set_Image_Unsigned
|
| 391 |
|
|
(Unsigned (Long_Long_Float'Truncation (X)),
|
| 392 |
|
|
Digs, Ndigs);
|
| 393 |
|
|
|
| 394 |
|
|
-- But if we want more digits than fit in Unsigned, we have to use
|
| 395 |
|
|
-- the Long_Long_Unsigned routine after all.
|
| 396 |
|
|
|
| 397 |
|
|
else
|
| 398 |
|
|
Ndigs := 0;
|
| 399 |
|
|
Set_Image_Long_Long_Unsigned
|
| 400 |
|
|
(Long_Long_Unsigned (Long_Long_Float'Truncation (X)),
|
| 401 |
|
|
Digs, Ndigs);
|
| 402 |
|
|
end if;
|
| 403 |
|
|
end Convert_Integer;
|
| 404 |
|
|
|
| 405 |
|
|
---------
|
| 406 |
|
|
-- Set --
|
| 407 |
|
|
---------
|
| 408 |
|
|
|
| 409 |
|
|
procedure Set (C : Character) is
|
| 410 |
|
|
begin
|
| 411 |
|
|
P := P + 1;
|
| 412 |
|
|
S (P) := C;
|
| 413 |
|
|
end Set;
|
| 414 |
|
|
|
| 415 |
|
|
-------------------------
|
| 416 |
|
|
-- Set_Blanks_And_Sign --
|
| 417 |
|
|
-------------------------
|
| 418 |
|
|
|
| 419 |
|
|
procedure Set_Blanks_And_Sign (N : Integer) is
|
| 420 |
|
|
begin
|
| 421 |
|
|
if Sign = '-' then
|
| 422 |
|
|
for J in 1 .. N - 1 loop
|
| 423 |
|
|
Set (' ');
|
| 424 |
|
|
end loop;
|
| 425 |
|
|
|
| 426 |
|
|
Set ('-');
|
| 427 |
|
|
|
| 428 |
|
|
else
|
| 429 |
|
|
for J in 1 .. N loop
|
| 430 |
|
|
Set (' ');
|
| 431 |
|
|
end loop;
|
| 432 |
|
|
end if;
|
| 433 |
|
|
end Set_Blanks_And_Sign;
|
| 434 |
|
|
|
| 435 |
|
|
--------------
|
| 436 |
|
|
-- Set_Digs --
|
| 437 |
|
|
--------------
|
| 438 |
|
|
|
| 439 |
|
|
procedure Set_Digs (S, E : Natural) is
|
| 440 |
|
|
begin
|
| 441 |
|
|
for J in S .. E loop
|
| 442 |
|
|
Set (Digs (J));
|
| 443 |
|
|
end loop;
|
| 444 |
|
|
end Set_Digs;
|
| 445 |
|
|
|
| 446 |
|
|
----------------------
|
| 447 |
|
|
-- Set_Special_Fill --
|
| 448 |
|
|
----------------------
|
| 449 |
|
|
|
| 450 |
|
|
procedure Set_Special_Fill (N : Natural) is
|
| 451 |
|
|
F : Natural;
|
| 452 |
|
|
|
| 453 |
|
|
begin
|
| 454 |
|
|
F := Fore + 1 + Aft - N;
|
| 455 |
|
|
|
| 456 |
|
|
if Exp /= 0 then
|
| 457 |
|
|
F := F + Exp + 1;
|
| 458 |
|
|
end if;
|
| 459 |
|
|
|
| 460 |
|
|
for J in 1 .. F loop
|
| 461 |
|
|
Set ('*');
|
| 462 |
|
|
end loop;
|
| 463 |
|
|
end Set_Special_Fill;
|
| 464 |
|
|
|
| 465 |
|
|
---------------
|
| 466 |
|
|
-- Set_Zeros --
|
| 467 |
|
|
---------------
|
| 468 |
|
|
|
| 469 |
|
|
procedure Set_Zeros (N : Integer) is
|
| 470 |
|
|
begin
|
| 471 |
|
|
for J in 1 .. N loop
|
| 472 |
|
|
Set ('0');
|
| 473 |
|
|
end loop;
|
| 474 |
|
|
end Set_Zeros;
|
| 475 |
|
|
|
| 476 |
|
|
-- Start of processing for Set_Image_Real
|
| 477 |
|
|
|
| 478 |
|
|
begin
|
| 479 |
|
|
Reset;
|
| 480 |
|
|
Scale := 0;
|
| 481 |
|
|
|
| 482 |
|
|
-- Deal with invalid values first,
|
| 483 |
|
|
|
| 484 |
|
|
if not V'Valid then
|
| 485 |
|
|
|
| 486 |
|
|
-- Note that we're taking our chances here, as V might be
|
| 487 |
|
|
-- an invalid bit pattern resulting from erroneous execution
|
| 488 |
|
|
-- (caused by using uninitialized variables for example).
|
| 489 |
|
|
|
| 490 |
|
|
-- No matter what, we'll at least get reasonable behaviour,
|
| 491 |
|
|
-- converting to infinity or some other value, or causing an
|
| 492 |
|
|
-- exception to be raised is fine.
|
| 493 |
|
|
|
| 494 |
|
|
-- If the following test succeeds, then we definitely have
|
| 495 |
|
|
-- an infinite value, so we print Inf.
|
| 496 |
|
|
|
| 497 |
|
|
if V > Long_Long_Float'Last then
|
| 498 |
|
|
Set ('+');
|
| 499 |
|
|
Set ('I');
|
| 500 |
|
|
Set ('n');
|
| 501 |
|
|
Set ('f');
|
| 502 |
|
|
Set_Special_Fill (4);
|
| 503 |
|
|
|
| 504 |
|
|
-- In all other cases we print NaN
|
| 505 |
|
|
|
| 506 |
|
|
elsif V < Long_Long_Float'First then
|
| 507 |
|
|
Set ('-');
|
| 508 |
|
|
Set ('I');
|
| 509 |
|
|
Set ('n');
|
| 510 |
|
|
Set ('f');
|
| 511 |
|
|
Set_Special_Fill (4);
|
| 512 |
|
|
|
| 513 |
|
|
else
|
| 514 |
|
|
Set ('N');
|
| 515 |
|
|
Set ('a');
|
| 516 |
|
|
Set ('N');
|
| 517 |
|
|
Set_Special_Fill (3);
|
| 518 |
|
|
end if;
|
| 519 |
|
|
|
| 520 |
|
|
return;
|
| 521 |
|
|
end if;
|
| 522 |
|
|
|
| 523 |
|
|
-- Positive values
|
| 524 |
|
|
|
| 525 |
|
|
if V > 0.0 then
|
| 526 |
|
|
X := V;
|
| 527 |
|
|
Sign := '+';
|
| 528 |
|
|
|
| 529 |
|
|
-- Negative values
|
| 530 |
|
|
|
| 531 |
|
|
elsif V < 0.0 then
|
| 532 |
|
|
X := -V;
|
| 533 |
|
|
Sign := '-';
|
| 534 |
|
|
|
| 535 |
|
|
-- Zero values
|
| 536 |
|
|
|
| 537 |
|
|
elsif V = 0.0 then
|
| 538 |
|
|
if Long_Long_Float'Signed_Zeros and then Is_Negative (V) then
|
| 539 |
|
|
Sign := '-';
|
| 540 |
|
|
else
|
| 541 |
|
|
Sign := '+';
|
| 542 |
|
|
end if;
|
| 543 |
|
|
|
| 544 |
|
|
Set_Blanks_And_Sign (Fore - 1);
|
| 545 |
|
|
Set ('0');
|
| 546 |
|
|
Set ('.');
|
| 547 |
|
|
Set_Zeros (NFrac);
|
| 548 |
|
|
|
| 549 |
|
|
if Exp /= 0 then
|
| 550 |
|
|
Set ('E');
|
| 551 |
|
|
Set ('+');
|
| 552 |
|
|
Set_Zeros (Natural'Max (1, Exp - 1));
|
| 553 |
|
|
end if;
|
| 554 |
|
|
|
| 555 |
|
|
return;
|
| 556 |
|
|
|
| 557 |
|
|
else
|
| 558 |
|
|
-- It should not be possible for a NaN to end up here.
|
| 559 |
|
|
-- Either the 'Valid test has failed, or we have some form
|
| 560 |
|
|
-- of erroneous execution. Raise Constraint_Error instead of
|
| 561 |
|
|
-- attempting to go ahead printing the value.
|
| 562 |
|
|
|
| 563 |
|
|
raise Constraint_Error;
|
| 564 |
|
|
end if;
|
| 565 |
|
|
|
| 566 |
|
|
-- X and Sign are set here, and X is known to be a valid,
|
| 567 |
|
|
-- non-zero floating-point number.
|
| 568 |
|
|
|
| 569 |
|
|
-- Case of non-zero value with Exp = 0
|
| 570 |
|
|
|
| 571 |
|
|
if Exp = 0 then
|
| 572 |
|
|
|
| 573 |
|
|
-- First step is to multiply by 10 ** Nfrac to get an integer
|
| 574 |
|
|
-- value to be output, an then add 0.5 to round the result.
|
| 575 |
|
|
|
| 576 |
|
|
declare
|
| 577 |
|
|
NF : Natural := NFrac;
|
| 578 |
|
|
|
| 579 |
|
|
begin
|
| 580 |
|
|
loop
|
| 581 |
|
|
-- If we are larger than Powten (Maxdigs) now, then
|
| 582 |
|
|
-- we have too many significant digits, and we have
|
| 583 |
|
|
-- not even finished multiplying by NFrac (NF shows
|
| 584 |
|
|
-- the number of unaccounted-for digits).
|
| 585 |
|
|
|
| 586 |
|
|
if X >= Powten (Maxdigs) then
|
| 587 |
|
|
|
| 588 |
|
|
-- In this situation, we only to generate a reasonable
|
| 589 |
|
|
-- number of significant digits, and then zeroes after.
|
| 590 |
|
|
-- So first we rescale to get:
|
| 591 |
|
|
|
| 592 |
|
|
-- 10 ** (Maxdigs - 1) <= X < 10 ** Maxdigs
|
| 593 |
|
|
|
| 594 |
|
|
-- and then convert the resulting integer
|
| 595 |
|
|
|
| 596 |
|
|
Adjust_Scale (Maxdigs);
|
| 597 |
|
|
Convert_Integer;
|
| 598 |
|
|
|
| 599 |
|
|
-- If that caused rescaling, then add zeros to the end
|
| 600 |
|
|
-- of the number to account for this scaling. Also add
|
| 601 |
|
|
-- zeroes to account for the undone multiplications
|
| 602 |
|
|
|
| 603 |
|
|
for J in 1 .. Scale + NF loop
|
| 604 |
|
|
Ndigs := Ndigs + 1;
|
| 605 |
|
|
Digs (Ndigs) := '0';
|
| 606 |
|
|
end loop;
|
| 607 |
|
|
|
| 608 |
|
|
exit;
|
| 609 |
|
|
|
| 610 |
|
|
-- If multiplication is complete, then convert the resulting
|
| 611 |
|
|
-- integer after rounding (note that X is non-negative)
|
| 612 |
|
|
|
| 613 |
|
|
elsif NF = 0 then
|
| 614 |
|
|
X := X + 0.5;
|
| 615 |
|
|
Convert_Integer;
|
| 616 |
|
|
exit;
|
| 617 |
|
|
|
| 618 |
|
|
-- Otherwise we can go ahead with the multiplication. If it
|
| 619 |
|
|
-- can be done in one step, then do it in one step.
|
| 620 |
|
|
|
| 621 |
|
|
elsif NF < Maxpow then
|
| 622 |
|
|
X := X * Powten (NF);
|
| 623 |
|
|
NF := 0;
|
| 624 |
|
|
|
| 625 |
|
|
-- If it cannot be done in one step, then do partial scaling
|
| 626 |
|
|
|
| 627 |
|
|
else
|
| 628 |
|
|
X := X * Powten (Maxpow);
|
| 629 |
|
|
NF := NF - Maxpow;
|
| 630 |
|
|
end if;
|
| 631 |
|
|
end loop;
|
| 632 |
|
|
end;
|
| 633 |
|
|
|
| 634 |
|
|
-- If number of available digits is less or equal to NFrac,
|
| 635 |
|
|
-- then we need an extra zero before the decimal point.
|
| 636 |
|
|
|
| 637 |
|
|
if Ndigs <= NFrac then
|
| 638 |
|
|
Set_Blanks_And_Sign (Fore - 1);
|
| 639 |
|
|
Set ('0');
|
| 640 |
|
|
Set ('.');
|
| 641 |
|
|
Set_Zeros (NFrac - Ndigs);
|
| 642 |
|
|
Set_Digs (1, Ndigs);
|
| 643 |
|
|
|
| 644 |
|
|
-- Normal case with some digits before the decimal point
|
| 645 |
|
|
|
| 646 |
|
|
else
|
| 647 |
|
|
Set_Blanks_And_Sign (Fore - (Ndigs - NFrac));
|
| 648 |
|
|
Set_Digs (1, Ndigs - NFrac);
|
| 649 |
|
|
Set ('.');
|
| 650 |
|
|
Set_Digs (Ndigs - NFrac + 1, Ndigs);
|
| 651 |
|
|
end if;
|
| 652 |
|
|
|
| 653 |
|
|
-- Case of non-zero value with non-zero Exp value
|
| 654 |
|
|
|
| 655 |
|
|
else
|
| 656 |
|
|
-- If NFrac is less than Maxdigs, then all the fraction digits are
|
| 657 |
|
|
-- significant, so we can scale the resulting integer accordingly.
|
| 658 |
|
|
|
| 659 |
|
|
if NFrac < Maxdigs then
|
| 660 |
|
|
Adjust_Scale (NFrac + 1);
|
| 661 |
|
|
Convert_Integer;
|
| 662 |
|
|
|
| 663 |
|
|
-- Otherwise, we get the maximum number of digits available
|
| 664 |
|
|
|
| 665 |
|
|
else
|
| 666 |
|
|
Adjust_Scale (Maxdigs);
|
| 667 |
|
|
Convert_Integer;
|
| 668 |
|
|
|
| 669 |
|
|
for J in 1 .. NFrac - Maxdigs + 1 loop
|
| 670 |
|
|
Ndigs := Ndigs + 1;
|
| 671 |
|
|
Digs (Ndigs) := '0';
|
| 672 |
|
|
Scale := Scale - 1;
|
| 673 |
|
|
end loop;
|
| 674 |
|
|
end if;
|
| 675 |
|
|
|
| 676 |
|
|
Set_Blanks_And_Sign (Fore - 1);
|
| 677 |
|
|
Set (Digs (1));
|
| 678 |
|
|
Set ('.');
|
| 679 |
|
|
Set_Digs (2, Ndigs);
|
| 680 |
|
|
|
| 681 |
|
|
-- The exponent is the scaling factor adjusted for the digits
|
| 682 |
|
|
-- that we output after the decimal point, since these were
|
| 683 |
|
|
-- included in the scaled digits that we output.
|
| 684 |
|
|
|
| 685 |
|
|
Expon := Scale + NFrac;
|
| 686 |
|
|
|
| 687 |
|
|
Set ('E');
|
| 688 |
|
|
Ndigs := 0;
|
| 689 |
|
|
|
| 690 |
|
|
if Expon >= 0 then
|
| 691 |
|
|
Set ('+');
|
| 692 |
|
|
Set_Image_Unsigned (Unsigned (Expon), Digs, Ndigs);
|
| 693 |
|
|
else
|
| 694 |
|
|
Set ('-');
|
| 695 |
|
|
Set_Image_Unsigned (Unsigned (-Expon), Digs, Ndigs);
|
| 696 |
|
|
end if;
|
| 697 |
|
|
|
| 698 |
|
|
Set_Zeros (Exp - Ndigs - 1);
|
| 699 |
|
|
Set_Digs (1, Ndigs);
|
| 700 |
|
|
end if;
|
| 701 |
|
|
|
| 702 |
|
|
end Set_Image_Real;
|
| 703 |
|
|
|
| 704 |
|
|
end System.Img_Real;
|