OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-imgrea.adb] - Blame information for rev 427

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                        GNAT RUN-TIME COMPONENTS                          --
4
--                                                                          --
5
--                      S Y S T E M . I M G _ R E A L                       --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
with System.Img_LLU;        use System.Img_LLU;
33
with System.Img_Uns;        use System.Img_Uns;
34
with System.Powten_Table;   use System.Powten_Table;
35
with System.Unsigned_Types; use System.Unsigned_Types;
36
 
37
package body System.Img_Real is
38
 
39
   --  The following defines the maximum number of digits that we can convert
40
   --  accurately. This is limited by the precision of Long_Long_Float, and
41
   --  also by the number of digits we can hold in Long_Long_Unsigned, which
42
   --  is the integer type we use as an intermediate for the result.
43
 
44
   --  We assume that in practice, the limitation will come from the digits
45
   --  value, rather than the integer value. This is true for typical IEEE
46
   --  implementations, and at worst, the only loss is for some precision
47
   --  in very high precision floating-point output.
48
 
49
   --  Note that in the following, the "-2" accounts for the sign and one
50
   --  extra digits, since we need the maximum number of 9's that can be
51
   --  supported, e.g. for the normal 64 bit case, Long_Long_Integer'Width
52
   --  is 21, since the maximum value (approx 1.6 * 10**19) has 20 digits,
53
   --  but the maximum number of 9's that can be supported is 19.
54
 
55
   Maxdigs : constant :=
56
               Natural'Min
57
                 (Long_Long_Unsigned'Width - 2, Long_Long_Float'Digits);
58
 
59
   Unsdigs : constant := Unsigned'Width - 2;
60
   --  Number of digits that can be converted using type Unsigned
61
   --  See above for the explanation of the -2.
62
 
63
   Maxscaling : constant := 5000;
64
   --  Max decimal scaling required during conversion of floating-point
65
   --  numbers to decimal. This is used to defend against infinite
66
   --  looping in the conversion, as can be caused by erroneous executions.
67
   --  The largest exponent used on any current system is 2**16383, which
68
   --  is approximately 10**4932, and the highest number of decimal digits
69
   --  is about 35 for 128-bit floating-point formats, so 5000 leaves
70
   --  enough room for scaling such values
71
 
72
   function Is_Negative (V : Long_Long_Float) return Boolean;
73
   pragma Import (Intrinsic, Is_Negative);
74
 
75
   --------------------------
76
   -- Image_Floating_Point --
77
   --------------------------
78
 
79
   procedure Image_Floating_Point
80
     (V    : Long_Long_Float;
81
      S    : in out String;
82
      P    : out Natural;
83
      Digs : Natural)
84
   is
85
      pragma Assert (S'First = 1);
86
 
87
   begin
88
      --  Decide whether a blank should be prepended before the call to
89
      --  Set_Image_Real. We generate a blank for positive values, and
90
      --  also for positive zeroes. For negative zeroes, we generate a
91
      --  space only if Signed_Zeroes is True (the RM only permits the
92
      --  output of -0.0 on targets where this is the case). We can of
93
      --  course still see a -0.0 on a target where Signed_Zeroes is
94
      --  False (since this attribute refers to the proper handling of
95
      --  negative zeroes, not to their existence).
96
 
97
      if not Is_Negative (V)
98
        or else (not Long_Long_Float'Signed_Zeros and then V = -0.0)
99
      then
100
         S (1) := ' ';
101
         P := 1;
102
      else
103
         P := 0;
104
      end if;
105
 
106
      Set_Image_Real (V, S, P, 1, Digs - 1, 3);
107
   end Image_Floating_Point;
108
 
109
   --------------------------------
110
   -- Image_Ordinary_Fixed_Point --
111
   --------------------------------
112
 
113
   procedure Image_Ordinary_Fixed_Point
114
     (V   : Long_Long_Float;
115
      S   : in out String;
116
      P   : out Natural;
117
      Aft : Natural)
118
   is
119
      pragma Assert (S'First = 1);
120
 
121
   begin
122
      --  Output space at start if non-negative
123
 
124
      if V >= 0.0 then
125
         S (1) := ' ';
126
         P := 1;
127
      else
128
         P := 0;
129
      end if;
130
 
131
      Set_Image_Real (V, S, P, 1, Aft, 0);
132
   end Image_Ordinary_Fixed_Point;
133
 
134
   --------------------
135
   -- Set_Image_Real --
136
   --------------------
137
 
138
   procedure Set_Image_Real
139
     (V    : Long_Long_Float;
140
      S    : out String;
141
      P    : in out Natural;
142
      Fore : Natural;
143
      Aft  : Natural;
144
      Exp  : Natural)
145
   is
146
      procedure Reset;
147
      pragma Import (C, Reset, "__gnat_init_float");
148
      --  We import the floating-point processor reset routine so that we can
149
      --  be sure the floating-point processor is properly set for conversion
150
      --  calls (see description of Reset in GNAT.Float_Control (g-flocon.ads).
151
      --  This is notably need on Windows, where calls to the operating system
152
      --  randomly reset the processor into 64-bit mode.
153
 
154
      NFrac : constant Natural := Natural'Max (Aft, 1);
155
      Sign  : Character;
156
      X     : aliased Long_Long_Float;
157
      --  This is declared aliased because the expansion of X'Valid passes
158
      --  X by access and JGNAT requires all access parameters to be aliased.
159
      --  The Valid attribute probably needs to be handled via a different
160
      --  expansion for JGNAT, and this use of aliased should be removed
161
      --  once Valid is handled properly. ???
162
      Scale : Integer;
163
      Expon : Integer;
164
 
165
      Field_Max : constant := 255;
166
      --  This should be the same value as Ada.[Wide_]Text_IO.Field'Last.
167
      --  It is not worth dragging in Ada.Text_IO to pick up this value,
168
      --  since it really should never be necessary to change it!
169
 
170
      Digs : String (1 .. 2 * Field_Max + 16);
171
      --  Array used to hold digits of converted integer value. This is a
172
      --  large enough buffer to accommodate ludicrous values of Fore and Aft.
173
 
174
      Ndigs : Natural;
175
      --  Number of digits stored in Digs (and also subscript of last digit)
176
 
177
      procedure Adjust_Scale (S : Natural);
178
      --  Adjusts the value in X by multiplying or dividing by a power of
179
      --  ten so that it is in the range 10**(S-1) <= X < 10**S. Includes
180
      --  adding 0.5 to round the result, readjusting if the rounding causes
181
      --  the result to wander out of the range. Scale is adjusted to reflect
182
      --  the power of ten used to divide the result (i.e. one is added to
183
      --  the scale value for each division by 10.0, or one is subtracted
184
      --  for each multiplication by 10.0).
185
 
186
      procedure Convert_Integer;
187
      --  Takes the value in X, outputs integer digits into Digs. On return,
188
      --  Ndigs is set to the number of digits stored. The digits are stored
189
      --  in Digs (1 .. Ndigs),
190
 
191
      procedure Set (C : Character);
192
      --  Sets character C in output buffer
193
 
194
      procedure Set_Blanks_And_Sign (N : Integer);
195
      --  Sets leading blanks and minus sign if needed. N is the number of
196
      --  positions to be filled (a minus sign is output even if N is zero
197
      --  or negative, but for a positive value, if N is non-positive, then
198
      --  the call has no effect).
199
 
200
      procedure Set_Digs (S, E : Natural);
201
      --  Set digits S through E from Digs buffer. No effect if S > E
202
 
203
      procedure Set_Special_Fill (N : Natural);
204
      --  After outputting +Inf, -Inf or NaN, this routine fills out the
205
      --  rest of the field with * characters. The argument is the number
206
      --  of characters output so far (either 3 or 4)
207
 
208
      procedure Set_Zeros (N : Integer);
209
      --  Set N zeros, no effect if N is negative
210
 
211
      pragma Inline (Set);
212
      pragma Inline (Set_Digs);
213
      pragma Inline (Set_Zeros);
214
 
215
      ------------------
216
      -- Adjust_Scale --
217
      ------------------
218
 
219
      procedure Adjust_Scale (S : Natural) is
220
         Lo  : Natural;
221
         Hi  : Natural;
222
         Mid : Natural;
223
         XP  : Long_Long_Float;
224
 
225
      begin
226
         --  Cases where scaling up is required
227
 
228
         if X < Powten (S - 1) then
229
 
230
            --  What we are looking for is a power of ten to multiply X by
231
            --  so that the result lies within the required range.
232
 
233
            loop
234
               XP := X * Powten (Maxpow);
235
               exit when XP >= Powten (S - 1) or else Scale < -Maxscaling;
236
               X := XP;
237
               Scale := Scale - Maxpow;
238
            end loop;
239
 
240
            --  The following exception is only raised in case of erroneous
241
            --  execution, where a number was considered valid but still
242
            --  fails to scale up. One situation where this can happen is
243
            --  when a system which is supposed to be IEEE-compliant, but
244
            --  has been reconfigured to flush denormals to zero.
245
 
246
            if Scale < -Maxscaling then
247
               raise Constraint_Error;
248
            end if;
249
 
250
            --  Here we know that we must multiply by at least 10**1 and that
251
            --  10**Maxpow takes us too far: binary search to find right one.
252
 
253
            --  Because of roundoff errors, it is possible for the value
254
            --  of XP to be just outside of the interval when Lo >= Hi. In
255
            --  that case we adjust explicitly by a factor of 10. This
256
            --  can only happen with a value that is very close to an
257
            --  exact power of 10.
258
 
259
            Lo := 1;
260
            Hi := Maxpow;
261
 
262
            loop
263
               Mid := (Lo + Hi) / 2;
264
               XP := X * Powten (Mid);
265
 
266
               if XP < Powten (S - 1) then
267
 
268
                  if Lo >= Hi then
269
                     Mid := Mid + 1;
270
                     XP := XP * 10.0;
271
                     exit;
272
 
273
                  else
274
                     Lo := Mid + 1;
275
                  end if;
276
 
277
               elsif XP >= Powten (S) then
278
 
279
                  if Lo >= Hi then
280
                     Mid := Mid - 1;
281
                     XP := XP / 10.0;
282
                     exit;
283
 
284
                  else
285
                     Hi := Mid - 1;
286
                  end if;
287
 
288
               else
289
                  exit;
290
               end if;
291
            end loop;
292
 
293
            X := XP;
294
            Scale := Scale - Mid;
295
 
296
         --  Cases where scaling down is required
297
 
298
         elsif X >= Powten (S) then
299
 
300
            --  What we are looking for is a power of ten to divide X by
301
            --  so that the result lies within the required range.
302
 
303
            loop
304
               XP := X / Powten (Maxpow);
305
               exit when XP < Powten (S) or else Scale > Maxscaling;
306
               X := XP;
307
               Scale := Scale + Maxpow;
308
            end loop;
309
 
310
            --  The following exception is only raised in case of erroneous
311
            --  execution, where a number was considered valid but still
312
            --  fails to scale up. One situation where this can happen is
313
            --  when a system which is supposed to be IEEE-compliant, but
314
            --  has been reconfigured to flush denormals to zero.
315
 
316
            if Scale > Maxscaling then
317
               raise Constraint_Error;
318
            end if;
319
 
320
            --  Here we know that we must divide by at least 10**1 and that
321
            --  10**Maxpow takes us too far, binary search to find right one.
322
 
323
            Lo := 1;
324
            Hi := Maxpow;
325
 
326
            loop
327
               Mid := (Lo + Hi) / 2;
328
               XP := X / Powten (Mid);
329
 
330
               if XP < Powten (S - 1) then
331
 
332
                  if Lo >= Hi then
333
                     XP := XP * 10.0;
334
                     Mid := Mid - 1;
335
                     exit;
336
 
337
                  else
338
                     Hi := Mid - 1;
339
                  end if;
340
 
341
               elsif XP >= Powten (S) then
342
 
343
                  if Lo >= Hi then
344
                     XP := XP / 10.0;
345
                     Mid := Mid + 1;
346
                     exit;
347
 
348
                  else
349
                     Lo := Mid + 1;
350
                  end if;
351
 
352
               else
353
                  exit;
354
               end if;
355
            end loop;
356
 
357
            X := XP;
358
            Scale := Scale + Mid;
359
 
360
         --  Here we are already scaled right
361
 
362
         else
363
            null;
364
         end if;
365
 
366
         --  Round, readjusting scale if needed. Note that if a readjustment
367
         --  occurs, then it is never necessary to round again, because there
368
         --  is no possibility of such a second rounding causing a change.
369
 
370
         X := X + 0.5;
371
 
372
         if X >= Powten (S) then
373
            X := X / 10.0;
374
            Scale := Scale + 1;
375
         end if;
376
 
377
      end Adjust_Scale;
378
 
379
      ---------------------
380
      -- Convert_Integer --
381
      ---------------------
382
 
383
      procedure Convert_Integer is
384
      begin
385
         --  Use Unsigned routine if possible, since on many machines it will
386
         --  be significantly more efficient than the Long_Long_Unsigned one.
387
 
388
         if X < Powten (Unsdigs) then
389
            Ndigs := 0;
390
            Set_Image_Unsigned
391
              (Unsigned (Long_Long_Float'Truncation (X)),
392
               Digs, Ndigs);
393
 
394
         --  But if we want more digits than fit in Unsigned, we have to use
395
         --  the Long_Long_Unsigned routine after all.
396
 
397
         else
398
            Ndigs := 0;
399
            Set_Image_Long_Long_Unsigned
400
              (Long_Long_Unsigned (Long_Long_Float'Truncation (X)),
401
               Digs, Ndigs);
402
         end if;
403
      end Convert_Integer;
404
 
405
      ---------
406
      -- Set --
407
      ---------
408
 
409
      procedure Set (C : Character) is
410
      begin
411
         P := P + 1;
412
         S (P) := C;
413
      end Set;
414
 
415
      -------------------------
416
      -- Set_Blanks_And_Sign --
417
      -------------------------
418
 
419
      procedure Set_Blanks_And_Sign (N : Integer) is
420
      begin
421
         if Sign = '-' then
422
            for J in 1 .. N - 1 loop
423
               Set (' ');
424
            end loop;
425
 
426
            Set ('-');
427
 
428
         else
429
            for J in 1 .. N loop
430
               Set (' ');
431
            end loop;
432
         end if;
433
      end Set_Blanks_And_Sign;
434
 
435
      --------------
436
      -- Set_Digs --
437
      --------------
438
 
439
      procedure Set_Digs (S, E : Natural) is
440
      begin
441
         for J in S .. E loop
442
            Set (Digs (J));
443
         end loop;
444
      end Set_Digs;
445
 
446
      ----------------------
447
      -- Set_Special_Fill --
448
      ----------------------
449
 
450
      procedure Set_Special_Fill (N : Natural) is
451
         F : Natural;
452
 
453
      begin
454
         F := Fore + 1 + Aft - N;
455
 
456
         if Exp /= 0 then
457
            F := F + Exp + 1;
458
         end if;
459
 
460
         for J in 1 .. F loop
461
            Set ('*');
462
         end loop;
463
      end Set_Special_Fill;
464
 
465
      ---------------
466
      -- Set_Zeros --
467
      ---------------
468
 
469
      procedure Set_Zeros (N : Integer) is
470
      begin
471
         for J in 1 .. N loop
472
            Set ('0');
473
         end loop;
474
      end Set_Zeros;
475
 
476
   --  Start of processing for Set_Image_Real
477
 
478
   begin
479
      Reset;
480
      Scale := 0;
481
 
482
      --  Deal with invalid values first,
483
 
484
      if not V'Valid then
485
 
486
         --  Note that we're taking our chances here, as V might be
487
         --  an invalid bit pattern resulting from erroneous execution
488
         --  (caused by using uninitialized variables for example).
489
 
490
         --  No matter what, we'll at least get reasonable behaviour,
491
         --  converting to infinity or some other value, or causing an
492
         --  exception to be raised is fine.
493
 
494
         --  If the following test succeeds, then we definitely have
495
         --  an infinite value, so we print Inf.
496
 
497
         if V > Long_Long_Float'Last then
498
            Set ('+');
499
            Set ('I');
500
            Set ('n');
501
            Set ('f');
502
            Set_Special_Fill (4);
503
 
504
         --  In all other cases we print NaN
505
 
506
         elsif V < Long_Long_Float'First then
507
            Set ('-');
508
            Set ('I');
509
            Set ('n');
510
            Set ('f');
511
            Set_Special_Fill (4);
512
 
513
         else
514
            Set ('N');
515
            Set ('a');
516
            Set ('N');
517
            Set_Special_Fill (3);
518
         end if;
519
 
520
         return;
521
      end if;
522
 
523
      --  Positive values
524
 
525
      if V > 0.0 then
526
         X := V;
527
         Sign := '+';
528
 
529
      --  Negative values
530
 
531
      elsif V < 0.0 then
532
         X := -V;
533
         Sign := '-';
534
 
535
      --  Zero values
536
 
537
      elsif V = 0.0 then
538
         if Long_Long_Float'Signed_Zeros and then Is_Negative (V) then
539
            Sign := '-';
540
         else
541
            Sign := '+';
542
         end if;
543
 
544
         Set_Blanks_And_Sign (Fore - 1);
545
         Set ('0');
546
         Set ('.');
547
         Set_Zeros (NFrac);
548
 
549
         if Exp /= 0 then
550
            Set ('E');
551
            Set ('+');
552
            Set_Zeros (Natural'Max (1, Exp - 1));
553
         end if;
554
 
555
         return;
556
 
557
      else
558
         --  It should not be possible for a NaN to end up here.
559
         --  Either the 'Valid test has failed, or we have some form
560
         --  of erroneous execution. Raise Constraint_Error instead of
561
         --  attempting to go ahead printing the value.
562
 
563
         raise Constraint_Error;
564
      end if;
565
 
566
      --  X and Sign are set here, and X is known to be a valid,
567
      --  non-zero floating-point number.
568
 
569
      --  Case of non-zero value with Exp = 0
570
 
571
      if Exp = 0 then
572
 
573
         --  First step is to multiply by 10 ** Nfrac to get an integer
574
         --  value to be output, an then add 0.5 to round the result.
575
 
576
         declare
577
            NF : Natural := NFrac;
578
 
579
         begin
580
            loop
581
               --  If we are larger than Powten (Maxdigs) now, then
582
               --  we have too many significant digits, and we have
583
               --  not even finished multiplying by NFrac (NF shows
584
               --  the number of unaccounted-for digits).
585
 
586
               if X >= Powten (Maxdigs) then
587
 
588
                  --  In this situation, we only to generate a reasonable
589
                  --  number of significant digits, and then zeroes after.
590
                  --  So first we rescale to get:
591
 
592
                  --    10 ** (Maxdigs - 1) <= X < 10 ** Maxdigs
593
 
594
                  --  and then convert the resulting integer
595
 
596
                  Adjust_Scale (Maxdigs);
597
                  Convert_Integer;
598
 
599
                  --  If that caused rescaling, then add zeros to the end
600
                  --  of the number to account for this scaling. Also add
601
                  --  zeroes to account for the undone multiplications
602
 
603
                  for J in 1 .. Scale + NF loop
604
                     Ndigs := Ndigs + 1;
605
                     Digs (Ndigs) := '0';
606
                  end loop;
607
 
608
                  exit;
609
 
610
               --  If multiplication is complete, then convert the resulting
611
               --  integer after rounding (note that X is non-negative)
612
 
613
               elsif NF = 0 then
614
                  X := X + 0.5;
615
                  Convert_Integer;
616
                  exit;
617
 
618
               --  Otherwise we can go ahead with the multiplication. If it
619
               --  can be done in one step, then do it in one step.
620
 
621
               elsif NF < Maxpow then
622
                  X := X * Powten (NF);
623
                  NF := 0;
624
 
625
               --  If it cannot be done in one step, then do partial scaling
626
 
627
               else
628
                  X := X * Powten (Maxpow);
629
                  NF := NF - Maxpow;
630
               end if;
631
            end loop;
632
         end;
633
 
634
         --  If number of available digits is less or equal to NFrac,
635
         --  then we need an extra zero before the decimal point.
636
 
637
         if Ndigs <= NFrac then
638
            Set_Blanks_And_Sign (Fore - 1);
639
            Set ('0');
640
            Set ('.');
641
            Set_Zeros (NFrac - Ndigs);
642
            Set_Digs (1, Ndigs);
643
 
644
         --  Normal case with some digits before the decimal point
645
 
646
         else
647
            Set_Blanks_And_Sign (Fore - (Ndigs - NFrac));
648
            Set_Digs (1, Ndigs - NFrac);
649
            Set ('.');
650
            Set_Digs (Ndigs - NFrac + 1, Ndigs);
651
         end if;
652
 
653
      --  Case of non-zero value with non-zero Exp value
654
 
655
      else
656
         --  If NFrac is less than Maxdigs, then all the fraction digits are
657
         --  significant, so we can scale the resulting integer accordingly.
658
 
659
         if NFrac < Maxdigs then
660
            Adjust_Scale (NFrac + 1);
661
            Convert_Integer;
662
 
663
         --  Otherwise, we get the maximum number of digits available
664
 
665
         else
666
            Adjust_Scale (Maxdigs);
667
            Convert_Integer;
668
 
669
            for J in 1 .. NFrac - Maxdigs + 1 loop
670
               Ndigs := Ndigs + 1;
671
               Digs (Ndigs) := '0';
672
               Scale := Scale - 1;
673
            end loop;
674
         end if;
675
 
676
         Set_Blanks_And_Sign (Fore - 1);
677
         Set (Digs (1));
678
         Set ('.');
679
         Set_Digs (2, Ndigs);
680
 
681
         --  The exponent is the scaling factor adjusted for the digits
682
         --  that we output after the decimal point, since these were
683
         --  included in the scaled digits that we output.
684
 
685
         Expon := Scale + NFrac;
686
 
687
         Set ('E');
688
         Ndigs := 0;
689
 
690
         if Expon >= 0 then
691
            Set ('+');
692
            Set_Image_Unsigned (Unsigned (Expon), Digs, Ndigs);
693
         else
694
            Set ('-');
695
            Set_Image_Unsigned (Unsigned (-Expon), Digs, Ndigs);
696
         end if;
697
 
698
         Set_Zeros (Exp - Ndigs - 1);
699
         Set_Digs (1, Ndigs);
700
      end if;
701
 
702
   end Set_Image_Real;
703
 
704
end System.Img_Real;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.