OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-osprim-mingw.adb] - Blame information for rev 307

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--                  S Y S T E M . O S _ P R I M I T I V E S                 --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1998-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is the NT version of this package
33
 
34
with System.Win32.Ext;
35
 
36
package body System.OS_Primitives is
37
 
38
   use System.Win32;
39
   use System.Win32.Ext;
40
 
41
   ----------------------------------------
42
   -- Data for the high resolution clock --
43
   ----------------------------------------
44
 
45
   --  Declare some pointers to access multi-word data above. This is needed
46
   --  to workaround a limitation in the GNU/Linker auto-import feature used
47
   --  to build the GNAT runtime DLLs. In fact the Clock and Monotonic_Clock
48
   --  routines are inlined and they are using some multi-word variables.
49
   --  GNU/Linker will fail to auto-import those variables when building
50
   --  libgnarl.dll. The indirection level introduced here has no measurable
51
   --  penalties.
52
 
53
   --  Note that access variables below must not be declared as constant
54
   --  otherwise the compiler optimization will remove this indirect access.
55
 
56
   type DA is access all Duration;
57
   --  Use to have indirect access to multi-word variables
58
 
59
   type LIA is access all LARGE_INTEGER;
60
   --  Use to have indirect access to multi-word variables
61
 
62
   type LLIA is access all Long_Long_Integer;
63
   --  Use to have indirect access to multi-word variables
64
 
65
   Tick_Frequency : aliased LARGE_INTEGER;
66
   TFA : constant LIA := Tick_Frequency'Access;
67
   --  Holds frequency of high-performance counter used by Clock
68
   --  Windows NT uses a 1_193_182 Hz counter on PCs.
69
 
70
   Base_Ticks : aliased LARGE_INTEGER;
71
   BTA : constant LIA := Base_Ticks'Access;
72
   --  Holds the Tick count for the base time
73
 
74
   Base_Monotonic_Ticks : aliased LARGE_INTEGER;
75
   BMTA : constant LIA := Base_Monotonic_Ticks'Access;
76
   --  Holds the Tick count for the base monotonic time
77
 
78
   Base_Clock : aliased Duration;
79
   BCA : constant DA := Base_Clock'Access;
80
   --  Holds the current clock for the standard clock's base time
81
 
82
   Base_Monotonic_Clock : aliased Duration;
83
   BMCA : constant DA := Base_Monotonic_Clock'Access;
84
   --  Holds the current clock for monotonic clock's base time
85
 
86
   Base_Time : aliased Long_Long_Integer;
87
   BTiA : constant LLIA := Base_Time'Access;
88
   --  Holds the base time used to check for system time change, used with
89
   --  the standard clock.
90
 
91
   procedure Get_Base_Time;
92
   --  Retrieve the base time and base ticks. These values will be used by
93
   --  clock to compute the current time by adding to it a fraction of the
94
   --  performance counter. This is for the implementation of a
95
   --  high-resolution clock. Note that this routine does not change the base
96
   --  monotonic values used by the monotonic clock.
97
 
98
   -----------
99
   -- Clock --
100
   -----------
101
 
102
   --  This implementation of clock provides high resolution timer values
103
   --  using QueryPerformanceCounter. This call return a 64 bits values (based
104
   --  on the 8253 16 bits counter). This counter is updated every 1/1_193_182
105
   --  times per seconds. The call to QueryPerformanceCounter takes 6
106
   --  microsecs to complete.
107
 
108
   function Clock return Duration is
109
      Max_Shift            : constant Duration        := 2.0;
110
      Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
111
      Current_Ticks        : aliased LARGE_INTEGER;
112
      Elap_Secs_Tick       : Duration;
113
      Elap_Secs_Sys        : Duration;
114
      Now                  : aliased Long_Long_Integer;
115
 
116
   begin
117
      if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
118
         return 0.0;
119
      end if;
120
 
121
      GetSystemTimeAsFileTime (Now'Access);
122
 
123
      Elap_Secs_Sys :=
124
        Duration (Long_Long_Float (abs (Now - BTiA.all)) /
125
                    Hundreds_Nano_In_Sec);
126
 
127
      Elap_Secs_Tick :=
128
        Duration (Long_Long_Float (Current_Ticks - BTA.all) /
129
                  Long_Long_Float (TFA.all));
130
 
131
      --  If we have a shift of more than Max_Shift seconds we resynchronize
132
      --  the Clock. This is probably due to a manual Clock adjustment, an
133
      --  DST adjustment or an NTP synchronisation. And we want to adjust the
134
      --  time for this system (non-monotonic) clock.
135
 
136
      if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
137
         Get_Base_Time;
138
 
139
         Elap_Secs_Tick :=
140
           Duration (Long_Long_Float (Current_Ticks - BTA.all) /
141
                     Long_Long_Float (TFA.all));
142
      end if;
143
 
144
      return BCA.all + Elap_Secs_Tick;
145
   end Clock;
146
 
147
   -------------------
148
   -- Get_Base_Time --
149
   -------------------
150
 
151
   procedure Get_Base_Time is
152
 
153
      --  The resolution for GetSystemTime is 1 millisecond
154
 
155
      --  The time to get both base times should take less than 1 millisecond.
156
      --  Therefore, the elapsed time reported by GetSystemTime between both
157
      --  actions should be null.
158
 
159
      epoch_1970     : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
160
      system_time_ns : constant := 100;                    -- 100 ns per tick
161
      Sec_Unit       : constant := 10#1#E9;
162
      Max_Elapsed    : constant LARGE_INTEGER :=
163
                         LARGE_INTEGER (Tick_Frequency / 100_000);
164
      --  Look for a precision of 0.01 ms
165
 
166
      Loc_Ticks, Ctrl_Ticks : aliased LARGE_INTEGER;
167
      Loc_Time, Ctrl_Time   : aliased Long_Long_Integer;
168
      Elapsed               : LARGE_INTEGER;
169
      Current_Max           : LARGE_INTEGER := LARGE_INTEGER'Last;
170
 
171
   begin
172
      --  Here we must be sure that both of these calls are done in a short
173
      --  amount of time. Both are base time and should in theory be taken
174
      --  at the very same time.
175
 
176
      --  The goal of the following loop is to synchronize the system time
177
      --  with the Win32 performance counter by getting a base offset for both.
178
      --  Using these offsets it is then possible to compute actual time using
179
      --  a performance counter which has a better precision than the Win32
180
      --  time API.
181
 
182
      --  Try at most 10th times to reach the best synchronisation (below 1
183
      --  millisecond) otherwise the runtime will use the best value reached
184
      --  during the runs.
185
 
186
      for K in 1 .. 10 loop
187
         if QueryPerformanceCounter (Loc_Ticks'Access) = Win32.FALSE then
188
            pragma Assert
189
              (Standard.False,
190
               "Could not query high performance counter in Clock");
191
            null;
192
         end if;
193
 
194
         GetSystemTimeAsFileTime (Ctrl_Time'Access);
195
 
196
         --  Scan for clock tick, will take upto 16ms/1ms depending on PC.
197
         --  This cannot be an infinite loop or the system hardware is badly
198
         --  dammaged.
199
 
200
         loop
201
            GetSystemTimeAsFileTime (Loc_Time'Access);
202
 
203
            if QueryPerformanceCounter (Ctrl_Ticks'Access) = Win32.FALSE then
204
               pragma Assert
205
                 (Standard.False,
206
                  "Could not query high performance counter in Clock");
207
               null;
208
            end if;
209
 
210
            exit when Loc_Time /= Ctrl_Time;
211
            Loc_Ticks := Ctrl_Ticks;
212
         end loop;
213
 
214
         --  Check elapsed Performance Counter between samples
215
         --  to choose the best one.
216
 
217
         Elapsed := Ctrl_Ticks - Loc_Ticks;
218
 
219
         if Elapsed < Current_Max then
220
            Base_Time   := Loc_Time;
221
            Base_Ticks  := Loc_Ticks;
222
            Current_Max := Elapsed;
223
 
224
            --  Exit the loop when we have reached the expected precision
225
 
226
            exit when Elapsed <= Max_Elapsed;
227
         end if;
228
      end loop;
229
 
230
      Base_Clock := Duration
231
        (Long_Long_Float ((Base_Time - epoch_1970) * system_time_ns) /
232
         Long_Long_Float (Sec_Unit));
233
   end Get_Base_Time;
234
 
235
   ---------------------
236
   -- Monotonic_Clock --
237
   ---------------------
238
 
239
   function Monotonic_Clock return Duration is
240
      Current_Ticks  : aliased LARGE_INTEGER;
241
      Elap_Secs_Tick : Duration;
242
   begin
243
      if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
244
         return 0.0;
245
      else
246
         Elap_Secs_Tick :=
247
           Duration (Long_Long_Float (Current_Ticks - BMTA.all) /
248
                       Long_Long_Float (TFA.all));
249
         return BMCA.all + Elap_Secs_Tick;
250
      end if;
251
   end Monotonic_Clock;
252
 
253
   -----------------
254
   -- Timed_Delay --
255
   -----------------
256
 
257
   procedure Timed_Delay (Time : Duration; Mode : Integer) is
258
 
259
      function Mode_Clock return Duration;
260
      pragma Inline (Mode_Clock);
261
      --  Return the current clock value using either the monotonic clock or
262
      --  standard clock depending on the Mode value.
263
 
264
      ----------------
265
      -- Mode_Clock --
266
      ----------------
267
 
268
      function Mode_Clock return Duration is
269
      begin
270
         case Mode is
271
            when Absolute_RT =>
272
               return Monotonic_Clock;
273
            when others =>
274
               return Clock;
275
         end case;
276
      end Mode_Clock;
277
 
278
      --  Local Variables
279
 
280
      Base_Time : constant Duration := Mode_Clock;
281
      --  Base_Time is used to detect clock set backward, in this case we
282
      --  cannot ensure the delay accuracy.
283
 
284
      Rel_Time   : Duration;
285
      Abs_Time   : Duration;
286
      Check_Time : Duration := Base_Time;
287
 
288
   --  Start of processing for Timed Delay
289
 
290
   begin
291
      if Mode = Relative then
292
         Rel_Time := Time;
293
         Abs_Time := Time + Check_Time;
294
      else
295
         Rel_Time := Time - Check_Time;
296
         Abs_Time := Time;
297
      end if;
298
 
299
      if Rel_Time > 0.0 then
300
         loop
301
            Sleep (DWORD (Rel_Time * 1000.0));
302
            Check_Time := Mode_Clock;
303
 
304
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
305
 
306
            Rel_Time := Abs_Time - Check_Time;
307
         end loop;
308
      end if;
309
   end Timed_Delay;
310
 
311
   ----------------
312
   -- Initialize --
313
   ----------------
314
 
315
   Initialized : Boolean := False;
316
 
317
   procedure Initialize is
318
   begin
319
      if Initialized then
320
         return;
321
      end if;
322
 
323
      Initialized := True;
324
 
325
      --  Get starting time as base
326
 
327
      if QueryPerformanceFrequency (Tick_Frequency'Access) = Win32.FALSE then
328
         raise Program_Error with
329
           "cannot get high performance counter frequency";
330
      end if;
331
 
332
      Get_Base_Time;
333
 
334
      --  Keep base clock and ticks for the monotonic clock. These values
335
      --  should never be changed to ensure proper behavior of the monotonic
336
      --  clock.
337
 
338
      Base_Monotonic_Clock := Base_Clock;
339
      Base_Monotonic_Ticks := Base_Ticks;
340
   end Initialize;
341
 
342
end System.OS_Primitives;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.