OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-strxdr.adb] - Blame information for rev 438

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT RUN-TIME COMPONENTS                         --
4
--                                                                          --
5
--             S Y S T E M . S T R E A M _ A T T R I B U T E S              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--         Copyright (C) 1996-2009, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GARLIC is free software;  you can redistribute it and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This file is an alternate version of s-stratt.adb based on the XDR
33
--  standard. It is especially useful for exchanging streams between two
34
--  different systems with different basic type representations and endianness.
35
 
36
with Ada.IO_Exceptions;
37
with Ada.Streams;              use Ada.Streams;
38
with Ada.Unchecked_Conversion;
39
 
40
package body System.Stream_Attributes is
41
 
42
   pragma Suppress (Range_Check);
43
   pragma Suppress (Overflow_Check);
44
 
45
   use UST;
46
 
47
   Data_Error : exception renames Ada.IO_Exceptions.End_Error;
48
   --  Exception raised if insufficient data read (End_Error is mandated by
49
   --  AI95-00132).
50
 
51
   SU : constant := System.Storage_Unit;
52
   --  The code in this body assumes that SU = 8
53
 
54
   BB : constant := 2 ** SU;           --  Byte base
55
   BL : constant := 2 ** SU - 1;       --  Byte last
56
   BS : constant := 2 ** (SU - 1);     --  Byte sign
57
 
58
   US : constant := Unsigned'Size;     --  Unsigned size
59
   UB : constant := (US - 1) / SU + 1; --  Unsigned byte
60
   UL : constant := 2 ** US - 1;       --  Unsigned last
61
 
62
   subtype SE  is Ada.Streams.Stream_Element;
63
   subtype SEA is Ada.Streams.Stream_Element_Array;
64
   subtype SEO is Ada.Streams.Stream_Element_Offset;
65
 
66
   generic function UC renames Ada.Unchecked_Conversion;
67
 
68
   type Field_Type is
69
      record
70
         E_Size       : Integer; --  Exponent bit size
71
         E_Bias       : Integer; --  Exponent bias
72
         F_Size       : Integer; --  Fraction bit size
73
         E_Last       : Integer; --  Max exponent value
74
         F_Mask       : SE;      --  Mask to apply on first fraction byte
75
         E_Bytes      : SEO;     --  N. of exponent bytes completely used
76
         F_Bytes      : SEO;     --  N. of fraction bytes completely used
77
         F_Bits       : Integer; --  N. of bits used on first fraction word
78
      end record;
79
 
80
   type Precision is (Single, Double, Quadruple);
81
 
82
   Fields : constant array (Precision) of Field_Type := (
83
 
84
               --  Single precision
85
 
86
              (E_Size  => 8,
87
               E_Bias  => 127,
88
               F_Size  => 23,
89
               E_Last  => 2 ** 8 - 1,
90
               F_Mask  => 16#7F#,                  --  2 ** 7 - 1,
91
               E_Bytes => 2,
92
               F_Bytes => 3,
93
               F_Bits  => 23 mod US),
94
 
95
               --  Double precision
96
 
97
              (E_Size  => 11,
98
               E_Bias  => 1023,
99
               F_Size  => 52,
100
               E_Last  => 2 ** 11 - 1,
101
               F_Mask  => 16#0F#,                  --  2 ** 4 - 1,
102
               E_Bytes => 2,
103
               F_Bytes => 7,
104
               F_Bits  => 52 mod US),
105
 
106
               --  Quadruple precision
107
 
108
              (E_Size  => 15,
109
               E_Bias  => 16383,
110
               F_Size  => 112,
111
               E_Last  => 2 ** 8 - 1,
112
               F_Mask  => 16#FF#,                  --  2 ** 8 - 1,
113
               E_Bytes => 2,
114
               F_Bytes => 14,
115
               F_Bits  => 112 mod US));
116
 
117
   --  The representation of all items requires a multiple of four bytes
118
   --  (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
119
   --  are read or written to some byte stream such that byte m always
120
   --  precedes byte m+1. If the n bytes needed to contain the data are not
121
   --  a multiple of four, then the n bytes are followed by enough (0 to 3)
122
   --  residual zero bytes, r, to make the total byte count a multiple of 4.
123
 
124
   --  An XDR signed integer is a 32-bit datum that encodes an integer
125
   --  in the range [-2147483648,2147483647]. The integer is represented
126
   --  in two's complement notation. The most and least significant bytes
127
   --  are 0 and 3, respectively. Integers are declared as follows:
128
 
129
   --        (MSB)                   (LSB)
130
   --      +-------+-------+-------+-------+
131
   --      |byte 0 |byte 1 |byte 2 |byte 3 |
132
   --      +-------+-------+-------+-------+
133
   --      <------------32 bits------------>
134
 
135
   SSI_L : constant := 1;
136
   SI_L  : constant := 2;
137
   I_L   : constant := 4;
138
   LI_L  : constant := 8;
139
   LLI_L : constant := 8;
140
 
141
   subtype XDR_S_SSI is SEA (1 .. SSI_L);
142
   subtype XDR_S_SI  is SEA (1 .. SI_L);
143
   subtype XDR_S_I   is SEA (1 .. I_L);
144
   subtype XDR_S_LI  is SEA (1 .. LI_L);
145
   subtype XDR_S_LLI is SEA (1 .. LLI_L);
146
 
147
   function Short_Short_Integer_To_XDR_S_SSI is
148
      new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI);
149
   function XDR_S_SSI_To_Short_Short_Integer is
150
      new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer);
151
 
152
   function Short_Integer_To_XDR_S_SI is
153
      new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI);
154
   function XDR_S_SI_To_Short_Integer is
155
      new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer);
156
 
157
   function Integer_To_XDR_S_I is
158
      new Ada.Unchecked_Conversion (Integer, XDR_S_I);
159
   function XDR_S_I_To_Integer is
160
     new Ada.Unchecked_Conversion (XDR_S_I, Integer);
161
 
162
   function Long_Long_Integer_To_XDR_S_LI is
163
      new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI);
164
   function XDR_S_LI_To_Long_Long_Integer is
165
      new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer);
166
 
167
   function Long_Long_Integer_To_XDR_S_LLI is
168
      new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI);
169
   function XDR_S_LLI_To_Long_Long_Integer is
170
      new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer);
171
 
172
   --  An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
173
   --  integer in the range [0,4294967295]. It is represented by an unsigned
174
   --  binary number whose most and least significant bytes are 0 and 3,
175
   --  respectively. An unsigned integer is declared as follows:
176
 
177
   --        (MSB)                   (LSB)
178
   --      +-------+-------+-------+-------+
179
   --      |byte 0 |byte 1 |byte 2 |byte 3 |
180
   --      +-------+-------+-------+-------+
181
   --      <------------32 bits------------>
182
 
183
   SSU_L : constant := 1;
184
   SU_L  : constant := 2;
185
   U_L   : constant := 4;
186
   LU_L  : constant := 8;
187
   LLU_L : constant := 8;
188
 
189
   subtype XDR_S_SSU is SEA (1 .. SSU_L);
190
   subtype XDR_S_SU  is SEA (1 .. SU_L);
191
   subtype XDR_S_U   is SEA (1 .. U_L);
192
   subtype XDR_S_LU  is SEA (1 .. LU_L);
193
   subtype XDR_S_LLU is SEA (1 .. LLU_L);
194
 
195
   type XDR_SSU is mod BB ** SSU_L;
196
   type XDR_SU  is mod BB ** SU_L;
197
   type XDR_U   is mod BB ** U_L;
198
 
199
   function Short_Unsigned_To_XDR_S_SU is
200
      new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU);
201
   function XDR_S_SU_To_Short_Unsigned is
202
      new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned);
203
 
204
   function Unsigned_To_XDR_S_U is
205
      new Ada.Unchecked_Conversion (Unsigned, XDR_S_U);
206
   function XDR_S_U_To_Unsigned is
207
      new Ada.Unchecked_Conversion (XDR_S_U, Unsigned);
208
 
209
   function Long_Long_Unsigned_To_XDR_S_LU is
210
      new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU);
211
   function XDR_S_LU_To_Long_Long_Unsigned is
212
      new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned);
213
 
214
   function Long_Long_Unsigned_To_XDR_S_LLU is
215
      new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU);
216
   function XDR_S_LLU_To_Long_Long_Unsigned is
217
      new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned);
218
 
219
   --  The standard defines the floating-point data type "float" (32 bits
220
   --  or 4 bytes). The encoding used is the IEEE standard for normalized
221
   --  single-precision floating-point numbers.
222
 
223
   --  The standard defines the encoding used for the double-precision
224
   --  floating-point data type "double" (64 bits or 8 bytes). The encoding
225
   --  used is the IEEE standard for normalized double-precision floating-point
226
   --  numbers.
227
 
228
   SF_L  : constant := 4;   --  Single precision
229
   F_L   : constant := 4;   --  Single precision
230
   LF_L  : constant := 8;   --  Double precision
231
   LLF_L : constant := 16;  --  Quadruple precision
232
 
233
   TM_L : constant := 8;
234
   subtype XDR_S_TM is SEA (1 .. TM_L);
235
   type XDR_TM is mod BB ** TM_L;
236
 
237
   type XDR_SA is mod 2 ** Standard'Address_Size;
238
   function To_XDR_SA is new UC (System.Address, XDR_SA);
239
   function To_XDR_SA is new UC (XDR_SA, System.Address);
240
 
241
   --  Enumerations have the same representation as signed integers.
242
   --  Enumerations are handy for describing subsets of the integers.
243
 
244
   --  Booleans are important enough and occur frequently enough to warrant
245
   --  their own explicit type in the standard. Booleans are declared as
246
   --  an enumeration, with FALSE = 0 and TRUE = 1.
247
 
248
   --  The standard defines a string of n (numbered 0 through n-1) ASCII
249
   --  bytes to be the number n encoded as an unsigned integer (as described
250
   --  above), and followed by the n bytes of the string. Byte m of the string
251
   --  always precedes byte m+1 of the string, and byte 0 of the string always
252
   --  follows the string's length. If n is not a multiple of four, then the
253
   --  n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
254
   --  the total byte count a multiple of four.
255
 
256
   --  To fit with XDR string, do not consider character as an enumeration
257
   --  type.
258
 
259
   C_L   : constant := 1;
260
   subtype XDR_S_C is SEA (1 .. C_L);
261
 
262
   --  Consider Wide_Character as an enumeration type
263
 
264
   WC_L  : constant := 4;
265
   subtype XDR_S_WC is SEA (1 .. WC_L);
266
   type XDR_WC is mod BB ** WC_L;
267
 
268
   --  Consider Wide_Wide_Character as an enumeration type
269
 
270
   WWC_L : constant := 8;
271
   subtype XDR_S_WWC is SEA (1 .. WWC_L);
272
   type XDR_WWC is mod BB ** WWC_L;
273
 
274
   --  Optimization: if we already have the correct Bit_Order, then some
275
   --  computations can be avoided since the source and the target will be
276
   --  identical anyway. They will be replaced by direct unchecked
277
   --  conversions.
278
 
279
   Optimize_Integers : constant Boolean :=
280
     Default_Bit_Order = High_Order_First;
281
 
282
   -----------------
283
   -- Block_IO_OK --
284
   -----------------
285
 
286
   function Block_IO_OK return Boolean is
287
   begin
288
      return False;
289
   end Block_IO_OK;
290
 
291
   ----------
292
   -- I_AD --
293
   ----------
294
 
295
   function I_AD (Stream : not null access RST) return Fat_Pointer is
296
      FP : Fat_Pointer;
297
 
298
   begin
299
      FP.P1 := I_AS (Stream).P1;
300
      FP.P2 := I_AS (Stream).P1;
301
 
302
      return FP;
303
   end I_AD;
304
 
305
   ----------
306
   -- I_AS --
307
   ----------
308
 
309
   function I_AS (Stream : not null access RST) return Thin_Pointer is
310
      S : XDR_S_TM;
311
      L : SEO;
312
      U : XDR_TM := 0;
313
 
314
   begin
315
      Ada.Streams.Read (Stream.all, S, L);
316
 
317
      if L /= S'Last then
318
         raise Data_Error;
319
 
320
      else
321
         for N in S'Range loop
322
            U := U * BB + XDR_TM (S (N));
323
         end loop;
324
 
325
         return (P1 => To_XDR_SA (XDR_SA (U)));
326
      end if;
327
   end I_AS;
328
 
329
   ---------
330
   -- I_B --
331
   ---------
332
 
333
   function I_B (Stream : not null access RST) return Boolean is
334
   begin
335
      case I_SSU (Stream) is
336
         when 0      => return False;
337
         when 1      => return True;
338
         when others => raise Data_Error;
339
      end case;
340
   end I_B;
341
 
342
   ---------
343
   -- I_C --
344
   ---------
345
 
346
   function I_C (Stream : not null access RST) return Character is
347
      S : XDR_S_C;
348
      L : SEO;
349
 
350
   begin
351
      Ada.Streams.Read (Stream.all, S, L);
352
 
353
      if L /= S'Last then
354
         raise Data_Error;
355
 
356
      else
357
         --  Use Ada requirements on Character representation clause
358
 
359
         return Character'Val (S (1));
360
      end if;
361
   end I_C;
362
 
363
   ---------
364
   -- I_F --
365
   ---------
366
 
367
   function I_F (Stream : not null access RST) return Float is
368
      I       : constant Precision := Single;
369
      E_Size  : Integer  renames Fields (I).E_Size;
370
      E_Bias  : Integer  renames Fields (I).E_Bias;
371
      E_Last  : Integer  renames Fields (I).E_Last;
372
      F_Mask  : SE       renames Fields (I).F_Mask;
373
      E_Bytes : SEO      renames Fields (I).E_Bytes;
374
      F_Bytes : SEO      renames Fields (I).F_Bytes;
375
      F_Size  : Integer  renames Fields (I).F_Size;
376
 
377
      Positive   : Boolean;
378
      Exponent   : Long_Unsigned;
379
      Fraction   : Long_Unsigned;
380
      Result     : Float;
381
      S          : SEA (1 .. F_L);
382
      L          : SEO;
383
 
384
   begin
385
      Ada.Streams.Read (Stream.all, S, L);
386
 
387
      if L /= S'Last then
388
         raise Data_Error;
389
      end if;
390
 
391
      --  Extract Fraction, Sign and Exponent
392
 
393
      Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask);
394
      for N in F_L + 2 - F_Bytes .. F_L loop
395
         Fraction := Fraction * BB + Long_Unsigned (S (N));
396
      end loop;
397
      Result := Float'Scaling (Float (Fraction), -F_Size);
398
 
399
      if BS <= S (1) then
400
         Positive := False;
401
         Exponent := Long_Unsigned (S (1) - BS);
402
      else
403
         Positive := True;
404
         Exponent := Long_Unsigned (S (1));
405
      end if;
406
 
407
      for N in 2 .. E_Bytes loop
408
         Exponent := Exponent * BB + Long_Unsigned (S (N));
409
      end loop;
410
      Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
411
 
412
      --  NaN or Infinities
413
 
414
      if Integer (Exponent) = E_Last then
415
         raise Constraint_Error;
416
 
417
      elsif Exponent = 0 then
418
 
419
         --  Signed zeros
420
 
421
         if Fraction = 0 then
422
            null;
423
 
424
         --  Denormalized float
425
 
426
         else
427
            Result := Float'Scaling (Result, 1 - E_Bias);
428
         end if;
429
 
430
      --  Normalized float
431
 
432
      else
433
         Result := Float'Scaling
434
           (1.0 + Result, Integer (Exponent) - E_Bias);
435
      end if;
436
 
437
      if not Positive then
438
         Result := -Result;
439
      end if;
440
 
441
      return Result;
442
   end I_F;
443
 
444
   ---------
445
   -- I_I --
446
   ---------
447
 
448
   function I_I (Stream : not null access RST) return Integer is
449
      S : XDR_S_I;
450
      L : SEO;
451
      U : XDR_U := 0;
452
 
453
   begin
454
      Ada.Streams.Read (Stream.all, S, L);
455
 
456
      if L /= S'Last then
457
         raise Data_Error;
458
 
459
      elsif Optimize_Integers then
460
         return XDR_S_I_To_Integer (S);
461
 
462
      else
463
         for N in S'Range loop
464
            U := U * BB + XDR_U (S (N));
465
         end loop;
466
 
467
         --  Test sign and apply two complement notation
468
 
469
         if S (1) < BL then
470
            return Integer (U);
471
 
472
         else
473
            return Integer (-((XDR_U'Last xor U) + 1));
474
         end if;
475
      end if;
476
   end I_I;
477
 
478
   ----------
479
   -- I_LF --
480
   ----------
481
 
482
   function I_LF (Stream : not null access RST) return Long_Float is
483
      I       : constant Precision := Double;
484
      E_Size  : Integer  renames Fields (I).E_Size;
485
      E_Bias  : Integer  renames Fields (I).E_Bias;
486
      E_Last  : Integer  renames Fields (I).E_Last;
487
      F_Mask  : SE       renames Fields (I).F_Mask;
488
      E_Bytes : SEO      renames Fields (I).E_Bytes;
489
      F_Bytes : SEO      renames Fields (I).F_Bytes;
490
      F_Size  : Integer  renames Fields (I).F_Size;
491
 
492
      Positive   : Boolean;
493
      Exponent   : Long_Unsigned;
494
      Fraction   : Long_Long_Unsigned;
495
      Result     : Long_Float;
496
      S          : SEA (1 .. LF_L);
497
      L          : SEO;
498
 
499
   begin
500
      Ada.Streams.Read (Stream.all, S, L);
501
 
502
      if L /= S'Last then
503
         raise Data_Error;
504
      end if;
505
 
506
      --  Extract Fraction, Sign and Exponent
507
 
508
      Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask);
509
      for N in LF_L + 2 - F_Bytes .. LF_L loop
510
         Fraction := Fraction * BB + Long_Long_Unsigned (S (N));
511
      end loop;
512
 
513
      Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size);
514
 
515
      if BS <= S (1) then
516
         Positive := False;
517
         Exponent := Long_Unsigned (S (1) - BS);
518
      else
519
         Positive := True;
520
         Exponent := Long_Unsigned (S (1));
521
      end if;
522
 
523
      for N in 2 .. E_Bytes loop
524
         Exponent := Exponent * BB + Long_Unsigned (S (N));
525
      end loop;
526
 
527
      Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
528
 
529
      --  NaN or Infinities
530
 
531
      if Integer (Exponent) = E_Last then
532
         raise Constraint_Error;
533
 
534
      elsif Exponent = 0 then
535
 
536
         --  Signed zeros
537
 
538
         if Fraction = 0 then
539
            null;
540
 
541
         --  Denormalized float
542
 
543
         else
544
            Result := Long_Float'Scaling (Result, 1 - E_Bias);
545
         end if;
546
 
547
      --  Normalized float
548
 
549
      else
550
         Result := Long_Float'Scaling
551
           (1.0 + Result, Integer (Exponent) - E_Bias);
552
      end if;
553
 
554
      if not Positive then
555
         Result := -Result;
556
      end if;
557
 
558
      return Result;
559
   end I_LF;
560
 
561
   ----------
562
   -- I_LI --
563
   ----------
564
 
565
   function I_LI (Stream : not null access RST) return Long_Integer is
566
      S : XDR_S_LI;
567
      L : SEO;
568
      U : Unsigned := 0;
569
      X : Long_Unsigned := 0;
570
 
571
   begin
572
      Ada.Streams.Read (Stream.all, S, L);
573
 
574
      if L /= S'Last then
575
         raise Data_Error;
576
 
577
      elsif Optimize_Integers then
578
         return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S));
579
 
580
      else
581
 
582
         --  Compute using machine unsigned
583
         --  rather than long_long_unsigned
584
 
585
         for N in S'Range loop
586
            U := U * BB + Unsigned (S (N));
587
 
588
            --  We have filled an unsigned
589
 
590
            if N mod UB = 0 then
591
               X := Shift_Left (X, US) + Long_Unsigned (U);
592
               U := 0;
593
            end if;
594
         end loop;
595
 
596
         --  Test sign and apply two complement notation
597
 
598
         if S (1) < BL then
599
            return Long_Integer (X);
600
         else
601
            return Long_Integer (-((Long_Unsigned'Last xor X) + 1));
602
         end if;
603
 
604
      end if;
605
   end I_LI;
606
 
607
   -----------
608
   -- I_LLF --
609
   -----------
610
 
611
   function I_LLF (Stream : not null access RST) return Long_Long_Float is
612
      I       : constant Precision := Quadruple;
613
      E_Size  : Integer  renames Fields (I).E_Size;
614
      E_Bias  : Integer  renames Fields (I).E_Bias;
615
      E_Last  : Integer  renames Fields (I).E_Last;
616
      E_Bytes : SEO      renames Fields (I).E_Bytes;
617
      F_Bytes : SEO      renames Fields (I).F_Bytes;
618
      F_Size  : Integer  renames Fields (I).F_Size;
619
 
620
      Positive   : Boolean;
621
      Exponent   : Long_Unsigned;
622
      Fraction_1 : Long_Long_Unsigned := 0;
623
      Fraction_2 : Long_Long_Unsigned := 0;
624
      Result     : Long_Long_Float;
625
      HF         : constant Natural := F_Size / 2;
626
      S          : SEA (1 .. LLF_L);
627
      L          : SEO;
628
 
629
   begin
630
      Ada.Streams.Read (Stream.all, S, L);
631
 
632
      if L /= S'Last then
633
         raise Data_Error;
634
      end if;
635
 
636
      --  Extract Fraction, Sign and Exponent
637
 
638
      for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
639
         Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I));
640
      end loop;
641
 
642
      for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop
643
         Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I));
644
      end loop;
645
 
646
      Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF);
647
      Result := Long_Long_Float (Fraction_1) + Result;
648
      Result := Long_Long_Float'Scaling (Result, HF - F_Size);
649
 
650
      if BS <= S (1) then
651
         Positive := False;
652
         Exponent := Long_Unsigned (S (1) - BS);
653
      else
654
         Positive := True;
655
         Exponent := Long_Unsigned (S (1));
656
      end if;
657
 
658
      for N in 2 .. E_Bytes loop
659
         Exponent := Exponent * BB + Long_Unsigned (S (N));
660
      end loop;
661
 
662
      Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
663
 
664
      --  NaN or Infinities
665
 
666
      if Integer (Exponent) = E_Last then
667
         raise Constraint_Error;
668
 
669
      elsif Exponent = 0 then
670
 
671
         --  Signed zeros
672
 
673
         if Fraction_1 = 0 and then Fraction_2 = 0 then
674
            null;
675
 
676
         --  Denormalized float
677
 
678
         else
679
            Result := Long_Long_Float'Scaling (Result, 1 - E_Bias);
680
         end if;
681
 
682
      --  Normalized float
683
 
684
      else
685
         Result := Long_Long_Float'Scaling
686
           (1.0 + Result, Integer (Exponent) - E_Bias);
687
      end if;
688
 
689
      if not Positive then
690
         Result := -Result;
691
      end if;
692
 
693
      return Result;
694
   end I_LLF;
695
 
696
   -----------
697
   -- I_LLI --
698
   -----------
699
 
700
   function I_LLI (Stream : not null access RST) return Long_Long_Integer is
701
      S : XDR_S_LLI;
702
      L : SEO;
703
      U : Unsigned := 0;
704
      X : Long_Long_Unsigned := 0;
705
 
706
   begin
707
      Ada.Streams.Read (Stream.all, S, L);
708
 
709
      if L /= S'Last then
710
         raise Data_Error;
711
 
712
      elsif Optimize_Integers then
713
         return XDR_S_LLI_To_Long_Long_Integer (S);
714
 
715
      else
716
         --  Compute using machine unsigned for computing
717
         --  rather than long_long_unsigned.
718
 
719
         for N in S'Range loop
720
            U := U * BB + Unsigned (S (N));
721
 
722
            --  We have filled an unsigned
723
 
724
            if N mod UB = 0 then
725
               X := Shift_Left (X, US) + Long_Long_Unsigned (U);
726
               U := 0;
727
            end if;
728
         end loop;
729
 
730
         --  Test sign and apply two complement notation
731
 
732
         if S (1) < BL then
733
            return Long_Long_Integer (X);
734
         else
735
            return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1));
736
         end if;
737
      end if;
738
   end I_LLI;
739
 
740
   -----------
741
   -- I_LLU --
742
   -----------
743
 
744
   function I_LLU (Stream : not null access RST) return Long_Long_Unsigned is
745
      S : XDR_S_LLU;
746
      L : SEO;
747
      U : Unsigned := 0;
748
      X : Long_Long_Unsigned := 0;
749
 
750
   begin
751
      Ada.Streams.Read (Stream.all, S, L);
752
 
753
      if L /= S'Last then
754
         raise Data_Error;
755
 
756
      elsif Optimize_Integers then
757
         return XDR_S_LLU_To_Long_Long_Unsigned (S);
758
 
759
      else
760
         --  Compute using machine unsigned
761
         --  rather than long_long_unsigned.
762
 
763
         for N in S'Range loop
764
            U := U * BB + Unsigned (S (N));
765
 
766
            --  We have filled an unsigned
767
 
768
            if N mod UB = 0 then
769
               X := Shift_Left (X, US) + Long_Long_Unsigned (U);
770
               U := 0;
771
            end if;
772
         end loop;
773
 
774
         return X;
775
      end if;
776
   end I_LLU;
777
 
778
   ----------
779
   -- I_LU --
780
   ----------
781
 
782
   function I_LU (Stream : not null access RST) return Long_Unsigned is
783
      S : XDR_S_LU;
784
      L : SEO;
785
      U : Unsigned := 0;
786
      X : Long_Unsigned := 0;
787
 
788
   begin
789
      Ada.Streams.Read (Stream.all, S, L);
790
 
791
      if L /= S'Last then
792
         raise Data_Error;
793
 
794
      elsif Optimize_Integers then
795
         return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S));
796
 
797
      else
798
         --  Compute using machine unsigned
799
         --  rather than long_unsigned.
800
 
801
         for N in S'Range loop
802
            U := U * BB + Unsigned (S (N));
803
 
804
            --  We have filled an unsigned
805
 
806
            if N mod UB = 0 then
807
               X := Shift_Left (X, US) + Long_Unsigned (U);
808
               U := 0;
809
            end if;
810
         end loop;
811
 
812
         return X;
813
      end if;
814
   end I_LU;
815
 
816
   ----------
817
   -- I_SF --
818
   ----------
819
 
820
   function I_SF (Stream : not null access RST) return Short_Float is
821
      I       : constant Precision := Single;
822
      E_Size  : Integer  renames Fields (I).E_Size;
823
      E_Bias  : Integer  renames Fields (I).E_Bias;
824
      E_Last  : Integer  renames Fields (I).E_Last;
825
      F_Mask  : SE       renames Fields (I).F_Mask;
826
      E_Bytes : SEO      renames Fields (I).E_Bytes;
827
      F_Bytes : SEO      renames Fields (I).F_Bytes;
828
      F_Size  : Integer  renames Fields (I).F_Size;
829
 
830
      Exponent   : Long_Unsigned;
831
      Fraction   : Long_Unsigned;
832
      Positive   : Boolean;
833
      Result     : Short_Float;
834
      S          : SEA (1 .. SF_L);
835
      L          : SEO;
836
 
837
   begin
838
      Ada.Streams.Read (Stream.all, S, L);
839
 
840
      if L /= S'Last then
841
         raise Data_Error;
842
      end if;
843
 
844
      --  Extract Fraction, Sign and Exponent
845
 
846
      Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask);
847
      for N in SF_L + 2 - F_Bytes .. SF_L loop
848
         Fraction := Fraction * BB + Long_Unsigned (S (N));
849
      end loop;
850
      Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size);
851
 
852
      if BS <= S (1) then
853
         Positive := False;
854
         Exponent := Long_Unsigned (S (1) - BS);
855
      else
856
         Positive := True;
857
         Exponent := Long_Unsigned (S (1));
858
      end if;
859
 
860
      for N in 2 .. E_Bytes loop
861
         Exponent := Exponent * BB + Long_Unsigned (S (N));
862
      end loop;
863
      Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
864
 
865
      --  NaN or Infinities
866
 
867
      if Integer (Exponent) = E_Last then
868
         raise Constraint_Error;
869
 
870
      elsif Exponent = 0 then
871
 
872
         --  Signed zeros
873
 
874
         if Fraction = 0 then
875
            null;
876
 
877
         --  Denormalized float
878
 
879
         else
880
            Result := Short_Float'Scaling (Result, 1 - E_Bias);
881
         end if;
882
 
883
      --  Normalized float
884
 
885
      else
886
         Result := Short_Float'Scaling
887
           (1.0 + Result, Integer (Exponent) - E_Bias);
888
      end if;
889
 
890
      if not Positive then
891
         Result := -Result;
892
      end if;
893
 
894
      return Result;
895
   end I_SF;
896
 
897
   ----------
898
   -- I_SI --
899
   ----------
900
 
901
   function I_SI (Stream : not null access RST) return Short_Integer is
902
      S : XDR_S_SI;
903
      L : SEO;
904
      U : XDR_SU := 0;
905
 
906
   begin
907
      Ada.Streams.Read (Stream.all, S, L);
908
 
909
      if L /= S'Last then
910
         raise Data_Error;
911
 
912
      elsif Optimize_Integers then
913
         return XDR_S_SI_To_Short_Integer (S);
914
 
915
      else
916
         for N in S'Range loop
917
            U := U * BB + XDR_SU (S (N));
918
         end loop;
919
 
920
         --  Test sign and apply two complement notation
921
 
922
         if S (1) < BL then
923
            return Short_Integer (U);
924
         else
925
            return Short_Integer (-((XDR_SU'Last xor U) + 1));
926
         end if;
927
      end if;
928
   end I_SI;
929
 
930
   -----------
931
   -- I_SSI --
932
   -----------
933
 
934
   function I_SSI (Stream : not null access RST) return Short_Short_Integer is
935
      S : XDR_S_SSI;
936
      L : SEO;
937
      U : XDR_SSU;
938
 
939
   begin
940
      Ada.Streams.Read (Stream.all, S, L);
941
 
942
      if L /= S'Last then
943
         raise Data_Error;
944
 
945
      elsif Optimize_Integers then
946
         return XDR_S_SSI_To_Short_Short_Integer (S);
947
 
948
      else
949
         U := XDR_SSU (S (1));
950
 
951
         --  Test sign and apply two complement notation
952
 
953
         if S (1) < BL then
954
            return Short_Short_Integer (U);
955
         else
956
            return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1));
957
         end if;
958
      end if;
959
   end I_SSI;
960
 
961
   -----------
962
   -- I_SSU --
963
   -----------
964
 
965
   function I_SSU (Stream : not null access RST) return Short_Short_Unsigned is
966
      S : XDR_S_SSU;
967
      L : SEO;
968
      U : XDR_SSU := 0;
969
 
970
   begin
971
      Ada.Streams.Read (Stream.all, S, L);
972
 
973
      if L /= S'Last then
974
         raise Data_Error;
975
 
976
      else
977
         U := XDR_SSU (S (1));
978
         return Short_Short_Unsigned (U);
979
      end if;
980
   end I_SSU;
981
 
982
   ----------
983
   -- I_SU --
984
   ----------
985
 
986
   function I_SU (Stream : not null access RST) return Short_Unsigned is
987
      S : XDR_S_SU;
988
      L : SEO;
989
      U : XDR_SU := 0;
990
 
991
   begin
992
      Ada.Streams.Read (Stream.all, S, L);
993
 
994
      if L /= S'Last then
995
         raise Data_Error;
996
 
997
      elsif Optimize_Integers then
998
         return XDR_S_SU_To_Short_Unsigned (S);
999
 
1000
      else
1001
         for N in S'Range loop
1002
            U := U * BB + XDR_SU (S (N));
1003
         end loop;
1004
 
1005
         return Short_Unsigned (U);
1006
      end if;
1007
   end I_SU;
1008
 
1009
   ---------
1010
   -- I_U --
1011
   ---------
1012
 
1013
   function I_U (Stream : not null access RST) return Unsigned is
1014
      S : XDR_S_U;
1015
      L : SEO;
1016
      U : XDR_U := 0;
1017
 
1018
   begin
1019
      Ada.Streams.Read (Stream.all, S, L);
1020
 
1021
      if L /= S'Last then
1022
         raise Data_Error;
1023
 
1024
      elsif Optimize_Integers then
1025
         return XDR_S_U_To_Unsigned (S);
1026
 
1027
      else
1028
         for N in S'Range loop
1029
            U := U * BB + XDR_U (S (N));
1030
         end loop;
1031
 
1032
         return Unsigned (U);
1033
      end if;
1034
   end I_U;
1035
 
1036
   ----------
1037
   -- I_WC --
1038
   ----------
1039
 
1040
   function I_WC (Stream : not null access RST) return Wide_Character is
1041
      S : XDR_S_WC;
1042
      L : SEO;
1043
      U : XDR_WC := 0;
1044
 
1045
   begin
1046
      Ada.Streams.Read (Stream.all, S, L);
1047
 
1048
      if L /= S'Last then
1049
         raise Data_Error;
1050
 
1051
      else
1052
         for N in S'Range loop
1053
            U := U * BB + XDR_WC (S (N));
1054
         end loop;
1055
 
1056
         --  Use Ada requirements on Wide_Character representation clause
1057
 
1058
         return Wide_Character'Val (U);
1059
      end if;
1060
   end I_WC;
1061
 
1062
   -----------
1063
   -- I_WWC --
1064
   -----------
1065
 
1066
   function I_WWC (Stream : not null access RST) return Wide_Wide_Character is
1067
      S : XDR_S_WWC;
1068
      L : SEO;
1069
      U : XDR_WWC := 0;
1070
 
1071
   begin
1072
      Ada.Streams.Read (Stream.all, S, L);
1073
 
1074
      if L /= S'Last then
1075
         raise Data_Error;
1076
 
1077
      else
1078
         for N in S'Range loop
1079
            U := U * BB + XDR_WWC (S (N));
1080
         end loop;
1081
 
1082
         --  Use Ada requirements on Wide_Wide_Character representation clause
1083
 
1084
         return Wide_Wide_Character'Val (U);
1085
      end if;
1086
   end I_WWC;
1087
 
1088
   ----------
1089
   -- W_AD --
1090
   ----------
1091
 
1092
   procedure W_AD (Stream : not null access RST; Item : Fat_Pointer) is
1093
      S : XDR_S_TM;
1094
      U : XDR_TM;
1095
 
1096
   begin
1097
      U := XDR_TM (To_XDR_SA (Item.P1));
1098
      for N in reverse S'Range loop
1099
         S (N) := SE (U mod BB);
1100
         U := U / BB;
1101
      end loop;
1102
 
1103
      Ada.Streams.Write (Stream.all, S);
1104
 
1105
      U := XDR_TM (To_XDR_SA (Item.P2));
1106
      for N in reverse S'Range loop
1107
         S (N) := SE (U mod BB);
1108
         U := U / BB;
1109
      end loop;
1110
 
1111
      Ada.Streams.Write (Stream.all, S);
1112
 
1113
      if U /= 0 then
1114
         raise Data_Error;
1115
      end if;
1116
   end W_AD;
1117
 
1118
   ----------
1119
   -- W_AS --
1120
   ----------
1121
 
1122
   procedure W_AS (Stream : not null access RST; Item : Thin_Pointer) is
1123
      S : XDR_S_TM;
1124
      U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1));
1125
 
1126
   begin
1127
      for N in reverse S'Range loop
1128
         S (N) := SE (U mod BB);
1129
         U := U / BB;
1130
      end loop;
1131
 
1132
      Ada.Streams.Write (Stream.all, S);
1133
 
1134
      if U /= 0 then
1135
         raise Data_Error;
1136
      end if;
1137
   end W_AS;
1138
 
1139
   ---------
1140
   -- W_B --
1141
   ---------
1142
 
1143
   procedure W_B (Stream : not null access RST; Item : Boolean) is
1144
   begin
1145
      if Item then
1146
         W_SSU (Stream, 1);
1147
      else
1148
         W_SSU (Stream, 0);
1149
      end if;
1150
   end W_B;
1151
 
1152
   ---------
1153
   -- W_C --
1154
   ---------
1155
 
1156
   procedure W_C (Stream : not null access RST; Item : Character) is
1157
      S : XDR_S_C;
1158
 
1159
      pragma Assert (C_L = 1);
1160
 
1161
   begin
1162
      --  Use Ada requirements on Character representation clause
1163
 
1164
      S (1) := SE (Character'Pos (Item));
1165
 
1166
      Ada.Streams.Write (Stream.all, S);
1167
   end W_C;
1168
 
1169
   ---------
1170
   -- W_F --
1171
   ---------
1172
 
1173
   procedure W_F (Stream : not null access RST; Item : Float) is
1174
      I       : constant Precision := Single;
1175
      E_Size  : Integer  renames Fields (I).E_Size;
1176
      E_Bias  : Integer  renames Fields (I).E_Bias;
1177
      E_Bytes : SEO      renames Fields (I).E_Bytes;
1178
      F_Bytes : SEO      renames Fields (I).F_Bytes;
1179
      F_Size  : Integer  renames Fields (I).F_Size;
1180
      F_Mask  : SE       renames Fields (I).F_Mask;
1181
 
1182
      Exponent : Long_Unsigned;
1183
      Fraction : Long_Unsigned;
1184
      Positive : Boolean;
1185
      E        : Integer;
1186
      F        : Float;
1187
      S        : SEA (1 .. F_L) := (others => 0);
1188
 
1189
   begin
1190
      if not Item'Valid then
1191
         raise Constraint_Error;
1192
      end if;
1193
 
1194
      --  Compute Sign
1195
 
1196
      Positive := (0.0 <= Item);
1197
      F := abs (Item);
1198
 
1199
      --  Signed zero
1200
 
1201
      if F = 0.0 then
1202
         Exponent := 0;
1203
         Fraction := 0;
1204
 
1205
      else
1206
         E := Float'Exponent (F) - 1;
1207
 
1208
         --  Denormalized float
1209
 
1210
         if E <= -E_Bias then
1211
            F := Float'Scaling (F, F_Size + E_Bias - 1);
1212
            E := -E_Bias;
1213
         else
1214
            F := Float'Scaling (Float'Fraction (F), F_Size + 1);
1215
         end if;
1216
 
1217
         --  Compute Exponent and Fraction
1218
 
1219
         Exponent := Long_Unsigned (E + E_Bias);
1220
         Fraction := Long_Unsigned (F * 2.0) / 2;
1221
      end if;
1222
 
1223
      --  Store Fraction
1224
 
1225
      for I in reverse F_L - F_Bytes + 1 .. F_L loop
1226
         S (I) := SE (Fraction mod BB);
1227
         Fraction := Fraction / BB;
1228
      end loop;
1229
 
1230
      --  Remove implicit bit
1231
 
1232
      S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask;
1233
 
1234
      --  Store Exponent (not always at the beginning of a byte)
1235
 
1236
      Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1237
      for N in reverse 1 .. E_Bytes loop
1238
         S (N) := SE (Exponent mod BB) + S (N);
1239
         Exponent := Exponent / BB;
1240
      end loop;
1241
 
1242
      --  Store Sign
1243
 
1244
      if not Positive then
1245
         S (1) := S (1) + BS;
1246
      end if;
1247
 
1248
      Ada.Streams.Write (Stream.all, S);
1249
   end W_F;
1250
 
1251
   ---------
1252
   -- W_I --
1253
   ---------
1254
 
1255
   procedure W_I (Stream : not null access RST; Item : Integer) is
1256
      S : XDR_S_I;
1257
      U : XDR_U;
1258
 
1259
   begin
1260
      if Optimize_Integers then
1261
         S := Integer_To_XDR_S_I (Item);
1262
 
1263
      else
1264
         --  Test sign and apply two complement notation
1265
 
1266
         U := (if Item < 0
1267
               then XDR_U'Last xor XDR_U (-(Item + 1))
1268
               else XDR_U (Item));
1269
 
1270
         for N in reverse S'Range loop
1271
            S (N) := SE (U mod BB);
1272
            U := U / BB;
1273
         end loop;
1274
 
1275
         if U /= 0 then
1276
            raise Data_Error;
1277
         end if;
1278
      end if;
1279
 
1280
      Ada.Streams.Write (Stream.all, S);
1281
   end W_I;
1282
 
1283
   ----------
1284
   -- W_LF --
1285
   ----------
1286
 
1287
   procedure W_LF (Stream : not null access RST; Item : Long_Float) is
1288
      I       : constant Precision := Double;
1289
      E_Size  : Integer  renames Fields (I).E_Size;
1290
      E_Bias  : Integer  renames Fields (I).E_Bias;
1291
      E_Bytes : SEO      renames Fields (I).E_Bytes;
1292
      F_Bytes : SEO      renames Fields (I).F_Bytes;
1293
      F_Size  : Integer  renames Fields (I).F_Size;
1294
      F_Mask  : SE       renames Fields (I).F_Mask;
1295
 
1296
      Exponent : Long_Unsigned;
1297
      Fraction : Long_Long_Unsigned;
1298
      Positive : Boolean;
1299
      E        : Integer;
1300
      F        : Long_Float;
1301
      S        : SEA (1 .. LF_L) := (others => 0);
1302
 
1303
   begin
1304
      if not Item'Valid then
1305
         raise Constraint_Error;
1306
      end if;
1307
 
1308
      --  Compute Sign
1309
 
1310
      Positive := (0.0 <= Item);
1311
      F := abs (Item);
1312
 
1313
      --  Signed zero
1314
 
1315
      if F = 0.0 then
1316
         Exponent := 0;
1317
         Fraction := 0;
1318
 
1319
      else
1320
         E := Long_Float'Exponent (F) - 1;
1321
 
1322
         --  Denormalized float
1323
 
1324
         if E <= -E_Bias then
1325
            E := -E_Bias;
1326
            F := Long_Float'Scaling (F, F_Size + E_Bias - 1);
1327
         else
1328
            F := Long_Float'Scaling (F, F_Size - E);
1329
         end if;
1330
 
1331
         --  Compute Exponent and Fraction
1332
 
1333
         Exponent := Long_Unsigned (E + E_Bias);
1334
         Fraction := Long_Long_Unsigned (F * 2.0) / 2;
1335
      end if;
1336
 
1337
      --  Store Fraction
1338
 
1339
      for I in reverse LF_L - F_Bytes + 1 .. LF_L loop
1340
         S (I) := SE (Fraction mod BB);
1341
         Fraction := Fraction / BB;
1342
      end loop;
1343
 
1344
      --  Remove implicit bit
1345
 
1346
      S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask;
1347
 
1348
      --  Store Exponent (not always at the beginning of a byte)
1349
 
1350
      Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1351
      for N in reverse 1 .. E_Bytes loop
1352
         S (N) := SE (Exponent mod BB) + S (N);
1353
         Exponent := Exponent / BB;
1354
      end loop;
1355
 
1356
      --  Store Sign
1357
 
1358
      if not Positive then
1359
         S (1) := S (1) + BS;
1360
      end if;
1361
 
1362
      Ada.Streams.Write (Stream.all, S);
1363
   end W_LF;
1364
 
1365
   ----------
1366
   -- W_LI --
1367
   ----------
1368
 
1369
   procedure W_LI (Stream : not null access RST; Item : Long_Integer) is
1370
      S : XDR_S_LI;
1371
      U : Unsigned;
1372
      X : Long_Unsigned;
1373
 
1374
   begin
1375
      if Optimize_Integers then
1376
         S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item));
1377
 
1378
      else
1379
         --  Test sign and apply two complement notation
1380
 
1381
         if Item < 0 then
1382
            X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1));
1383
         else
1384
            X := Long_Unsigned (Item);
1385
         end if;
1386
 
1387
         --  Compute using machine unsigned rather than long_unsigned
1388
 
1389
         for N in reverse S'Range loop
1390
 
1391
            --  We have filled an unsigned
1392
 
1393
            if (LU_L - N) mod UB = 0 then
1394
               U := Unsigned (X and UL);
1395
               X := Shift_Right (X, US);
1396
            end if;
1397
 
1398
            S (N) := SE (U mod BB);
1399
            U := U / BB;
1400
         end loop;
1401
 
1402
         if U /= 0 then
1403
            raise Data_Error;
1404
         end if;
1405
      end if;
1406
 
1407
      Ada.Streams.Write (Stream.all, S);
1408
   end W_LI;
1409
 
1410
   -----------
1411
   -- W_LLF --
1412
   -----------
1413
 
1414
   procedure W_LLF (Stream : not null access RST; Item : Long_Long_Float) is
1415
      I       : constant Precision := Quadruple;
1416
      E_Size  : Integer  renames Fields (I).E_Size;
1417
      E_Bias  : Integer  renames Fields (I).E_Bias;
1418
      E_Bytes : SEO      renames Fields (I).E_Bytes;
1419
      F_Bytes : SEO      renames Fields (I).F_Bytes;
1420
      F_Size  : Integer  renames Fields (I).F_Size;
1421
 
1422
      HFS : constant Integer := F_Size / 2;
1423
 
1424
      Exponent   : Long_Unsigned;
1425
      Fraction_1 : Long_Long_Unsigned;
1426
      Fraction_2 : Long_Long_Unsigned;
1427
      Positive   : Boolean;
1428
      E          : Integer;
1429
      F          : Long_Long_Float := Item;
1430
      S          : SEA (1 .. LLF_L) := (others => 0);
1431
 
1432
   begin
1433
      if not Item'Valid then
1434
         raise Constraint_Error;
1435
      end if;
1436
 
1437
      --  Compute Sign
1438
 
1439
      Positive := (0.0 <= Item);
1440
      if F < 0.0 then
1441
         F := -Item;
1442
      end if;
1443
 
1444
      --  Signed zero
1445
 
1446
      if F = 0.0 then
1447
         Exponent   := 0;
1448
         Fraction_1 := 0;
1449
         Fraction_2 := 0;
1450
 
1451
      else
1452
         E := Long_Long_Float'Exponent (F) - 1;
1453
 
1454
         --  Denormalized float
1455
 
1456
         if E <= -E_Bias then
1457
            F := Long_Long_Float'Scaling (F, E_Bias - 1);
1458
            E := -E_Bias;
1459
         else
1460
            F := Long_Long_Float'Scaling
1461
              (Long_Long_Float'Fraction (F), 1);
1462
         end if;
1463
 
1464
         --  Compute Exponent and Fraction
1465
 
1466
         Exponent   := Long_Unsigned (E + E_Bias);
1467
         F          := Long_Long_Float'Scaling (F, F_Size - HFS);
1468
         Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
1469
         F          := Long_Long_Float (F - Long_Long_Float (Fraction_1));
1470
         F          := Long_Long_Float'Scaling (F, HFS);
1471
         Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
1472
      end if;
1473
 
1474
      --  Store Fraction_1
1475
 
1476
      for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
1477
         S (I) := SE (Fraction_1 mod BB);
1478
         Fraction_1 := Fraction_1 / BB;
1479
      end loop;
1480
 
1481
      --  Store Fraction_2
1482
 
1483
      for I in reverse LLF_L - 6 .. LLF_L loop
1484
         S (SEO (I)) := SE (Fraction_2 mod BB);
1485
         Fraction_2 := Fraction_2 / BB;
1486
      end loop;
1487
 
1488
      --  Store Exponent (not always at the beginning of a byte)
1489
 
1490
      Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1491
      for N in reverse 1 .. E_Bytes loop
1492
         S (N) := SE (Exponent mod BB) + S (N);
1493
         Exponent := Exponent / BB;
1494
      end loop;
1495
 
1496
      --  Store Sign
1497
 
1498
      if not Positive then
1499
         S (1) := S (1) + BS;
1500
      end if;
1501
 
1502
      Ada.Streams.Write (Stream.all, S);
1503
   end W_LLF;
1504
 
1505
   -----------
1506
   -- W_LLI --
1507
   -----------
1508
 
1509
   procedure W_LLI
1510
     (Stream : not null access RST;
1511
      Item   : Long_Long_Integer)
1512
   is
1513
      S : XDR_S_LLI;
1514
      U : Unsigned;
1515
      X : Long_Long_Unsigned;
1516
 
1517
   begin
1518
      if Optimize_Integers then
1519
         S := Long_Long_Integer_To_XDR_S_LLI (Item);
1520
 
1521
      else
1522
         --  Test sign and apply two complement notation
1523
 
1524
         if Item < 0 then
1525
            X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1));
1526
         else
1527
            X := Long_Long_Unsigned (Item);
1528
         end if;
1529
 
1530
         --  Compute using machine unsigned rather than long_long_unsigned
1531
 
1532
         for N in reverse S'Range loop
1533
 
1534
            --  We have filled an unsigned
1535
 
1536
            if (LLU_L - N) mod UB = 0 then
1537
               U := Unsigned (X and UL);
1538
               X := Shift_Right (X, US);
1539
            end if;
1540
 
1541
            S (N) := SE (U mod BB);
1542
            U := U / BB;
1543
         end loop;
1544
 
1545
         if U /= 0 then
1546
            raise Data_Error;
1547
         end if;
1548
      end if;
1549
 
1550
      Ada.Streams.Write (Stream.all, S);
1551
   end W_LLI;
1552
 
1553
   -----------
1554
   -- W_LLU --
1555
   -----------
1556
 
1557
   procedure W_LLU
1558
     (Stream : not null access RST;
1559
      Item   : Long_Long_Unsigned)
1560
   is
1561
      S : XDR_S_LLU;
1562
      U : Unsigned;
1563
      X : Long_Long_Unsigned := Item;
1564
 
1565
   begin
1566
      if Optimize_Integers then
1567
         S := Long_Long_Unsigned_To_XDR_S_LLU (Item);
1568
 
1569
      else
1570
         --  Compute using machine unsigned rather than long_long_unsigned
1571
 
1572
         for N in reverse S'Range loop
1573
 
1574
            --  We have filled an unsigned
1575
 
1576
            if (LLU_L - N) mod UB = 0 then
1577
               U := Unsigned (X and UL);
1578
               X := Shift_Right (X, US);
1579
            end if;
1580
 
1581
            S (N) := SE (U mod BB);
1582
            U := U / BB;
1583
         end loop;
1584
 
1585
         if U /= 0 then
1586
            raise Data_Error;
1587
         end if;
1588
      end if;
1589
 
1590
      Ada.Streams.Write (Stream.all, S);
1591
   end W_LLU;
1592
 
1593
   ----------
1594
   -- W_LU --
1595
   ----------
1596
 
1597
   procedure W_LU (Stream : not null access RST; Item : Long_Unsigned) is
1598
      S : XDR_S_LU;
1599
      U : Unsigned;
1600
      X : Long_Unsigned := Item;
1601
 
1602
   begin
1603
      if Optimize_Integers then
1604
         S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item));
1605
 
1606
      else
1607
         --  Compute using machine unsigned rather than long_unsigned
1608
 
1609
         for N in reverse S'Range loop
1610
 
1611
            --  We have filled an unsigned
1612
 
1613
            if (LU_L - N) mod UB = 0 then
1614
               U := Unsigned (X and UL);
1615
               X := Shift_Right (X, US);
1616
            end if;
1617
            S (N) := SE (U mod BB);
1618
            U := U / BB;
1619
         end loop;
1620
 
1621
         if U /= 0 then
1622
            raise Data_Error;
1623
         end if;
1624
      end if;
1625
 
1626
      Ada.Streams.Write (Stream.all, S);
1627
   end W_LU;
1628
 
1629
   ----------
1630
   -- W_SF --
1631
   ----------
1632
 
1633
   procedure W_SF (Stream : not null access RST; Item : Short_Float) is
1634
      I       : constant Precision := Single;
1635
      E_Size  : Integer  renames Fields (I).E_Size;
1636
      E_Bias  : Integer  renames Fields (I).E_Bias;
1637
      E_Bytes : SEO      renames Fields (I).E_Bytes;
1638
      F_Bytes : SEO      renames Fields (I).F_Bytes;
1639
      F_Size  : Integer  renames Fields (I).F_Size;
1640
      F_Mask  : SE       renames Fields (I).F_Mask;
1641
 
1642
      Exponent : Long_Unsigned;
1643
      Fraction : Long_Unsigned;
1644
      Positive : Boolean;
1645
      E        : Integer;
1646
      F        : Short_Float;
1647
      S        : SEA (1 .. SF_L) := (others => 0);
1648
 
1649
   begin
1650
      if not Item'Valid then
1651
         raise Constraint_Error;
1652
      end if;
1653
 
1654
      --  Compute Sign
1655
 
1656
      Positive := (0.0 <= Item);
1657
      F := abs (Item);
1658
 
1659
      --  Signed zero
1660
 
1661
      if F = 0.0 then
1662
         Exponent := 0;
1663
         Fraction := 0;
1664
 
1665
      else
1666
         E := Short_Float'Exponent (F) - 1;
1667
 
1668
         --  Denormalized float
1669
 
1670
         if E <= -E_Bias then
1671
            E := -E_Bias;
1672
            F := Short_Float'Scaling (F, F_Size + E_Bias - 1);
1673
         else
1674
            F := Short_Float'Scaling (F, F_Size - E);
1675
         end if;
1676
 
1677
         --  Compute Exponent and Fraction
1678
 
1679
         Exponent := Long_Unsigned (E + E_Bias);
1680
         Fraction := Long_Unsigned (F * 2.0) / 2;
1681
      end if;
1682
 
1683
      --  Store Fraction
1684
 
1685
      for I in reverse SF_L - F_Bytes + 1 .. SF_L loop
1686
         S (I) := SE (Fraction mod BB);
1687
         Fraction := Fraction / BB;
1688
      end loop;
1689
 
1690
      --  Remove implicit bit
1691
 
1692
      S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask;
1693
 
1694
      --  Store Exponent (not always at the beginning of a byte)
1695
 
1696
      Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
1697
      for N in reverse 1 .. E_Bytes loop
1698
         S (N) := SE (Exponent mod BB) + S (N);
1699
         Exponent := Exponent / BB;
1700
      end loop;
1701
 
1702
      --  Store Sign
1703
 
1704
      if not Positive then
1705
         S (1) := S (1) + BS;
1706
      end if;
1707
 
1708
      Ada.Streams.Write (Stream.all, S);
1709
   end W_SF;
1710
 
1711
   ----------
1712
   -- W_SI --
1713
   ----------
1714
 
1715
   procedure W_SI (Stream : not null access RST; Item : Short_Integer) is
1716
      S : XDR_S_SI;
1717
      U : XDR_SU;
1718
 
1719
   begin
1720
      if Optimize_Integers then
1721
         S := Short_Integer_To_XDR_S_SI (Item);
1722
 
1723
      else
1724
         --  Test sign and apply two complement's notation
1725
 
1726
         U := (if Item < 0
1727
               then XDR_SU'Last xor XDR_SU (-(Item + 1))
1728
               else XDR_SU (Item));
1729
 
1730
         for N in reverse S'Range loop
1731
            S (N) := SE (U mod BB);
1732
            U := U / BB;
1733
         end loop;
1734
 
1735
         if U /= 0 then
1736
            raise Data_Error;
1737
         end if;
1738
      end if;
1739
 
1740
      Ada.Streams.Write (Stream.all, S);
1741
   end W_SI;
1742
 
1743
   -----------
1744
   -- W_SSI --
1745
   -----------
1746
 
1747
   procedure W_SSI
1748
     (Stream : not null access RST;
1749
      Item   : Short_Short_Integer)
1750
   is
1751
      S : XDR_S_SSI;
1752
      U : XDR_SSU;
1753
 
1754
   begin
1755
      if Optimize_Integers then
1756
         S := Short_Short_Integer_To_XDR_S_SSI (Item);
1757
 
1758
      else
1759
         --  Test sign and apply two complement's notation
1760
 
1761
         U := (if Item < 0
1762
               then XDR_SSU'Last xor XDR_SSU (-(Item + 1))
1763
               else XDR_SSU (Item));
1764
 
1765
         S (1) := SE (U);
1766
      end if;
1767
 
1768
      Ada.Streams.Write (Stream.all, S);
1769
   end W_SSI;
1770
 
1771
   -----------
1772
   -- W_SSU --
1773
   -----------
1774
 
1775
   procedure W_SSU
1776
     (Stream : not null access RST;
1777
      Item   : Short_Short_Unsigned)
1778
   is
1779
      U : constant XDR_SSU := XDR_SSU (Item);
1780
      S : XDR_S_SSU;
1781
 
1782
   begin
1783
      S (1) := SE (U);
1784
      Ada.Streams.Write (Stream.all, S);
1785
   end W_SSU;
1786
 
1787
   ----------
1788
   -- W_SU --
1789
   ----------
1790
 
1791
   procedure W_SU (Stream : not null access RST; Item : Short_Unsigned) is
1792
      S : XDR_S_SU;
1793
      U : XDR_SU := XDR_SU (Item);
1794
 
1795
   begin
1796
      if Optimize_Integers then
1797
         S := Short_Unsigned_To_XDR_S_SU (Item);
1798
 
1799
      else
1800
         for N in reverse S'Range loop
1801
            S (N) := SE (U mod BB);
1802
            U := U / BB;
1803
         end loop;
1804
 
1805
         if U /= 0 then
1806
            raise Data_Error;
1807
         end if;
1808
      end if;
1809
 
1810
      Ada.Streams.Write (Stream.all, S);
1811
   end W_SU;
1812
 
1813
   ---------
1814
   -- W_U --
1815
   ---------
1816
 
1817
   procedure W_U (Stream : not null access RST; Item : Unsigned) is
1818
      S : XDR_S_U;
1819
      U : XDR_U := XDR_U (Item);
1820
 
1821
   begin
1822
      if Optimize_Integers then
1823
         S := Unsigned_To_XDR_S_U (Item);
1824
 
1825
      else
1826
         for N in reverse S'Range loop
1827
            S (N) := SE (U mod BB);
1828
            U := U / BB;
1829
         end loop;
1830
 
1831
         if U /= 0 then
1832
            raise Data_Error;
1833
         end if;
1834
      end if;
1835
 
1836
      Ada.Streams.Write (Stream.all, S);
1837
   end W_U;
1838
 
1839
   ----------
1840
   -- W_WC --
1841
   ----------
1842
 
1843
   procedure W_WC (Stream : not null access RST; Item : Wide_Character) is
1844
      S : XDR_S_WC;
1845
      U : XDR_WC;
1846
 
1847
   begin
1848
      --  Use Ada requirements on Wide_Character representation clause
1849
 
1850
      U := XDR_WC (Wide_Character'Pos (Item));
1851
 
1852
      for N in reverse S'Range loop
1853
         S (N) := SE (U mod BB);
1854
         U := U / BB;
1855
      end loop;
1856
 
1857
      Ada.Streams.Write (Stream.all, S);
1858
 
1859
      if U /= 0 then
1860
         raise Data_Error;
1861
      end if;
1862
   end W_WC;
1863
 
1864
   -----------
1865
   -- W_WWC --
1866
   -----------
1867
 
1868
   procedure W_WWC
1869
     (Stream : not null access RST; Item : Wide_Wide_Character)
1870
   is
1871
      S : XDR_S_WWC;
1872
      U : XDR_WWC;
1873
 
1874
   begin
1875
      --  Use Ada requirements on Wide_Wide_Character representation clause
1876
 
1877
      U := XDR_WWC (Wide_Wide_Character'Pos (Item));
1878
 
1879
      for N in reverse S'Range loop
1880
         S (N) := SE (U mod BB);
1881
         U := U / BB;
1882
      end loop;
1883
 
1884
      Ada.Streams.Write (Stream.all, S);
1885
 
1886
      if U /= 0 then
1887
         raise Data_Error;
1888
      end if;
1889
   end W_WWC;
1890
 
1891
end System.Stream_Attributes;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.