OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-taprop-hpux-dce.adb] - Blame information for rev 427

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--         Copyright (C) 1992-2009, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a HP-UX DCE threads (HPUX 10) version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
pragma Polling (Off);
38
--  Turn off polling, we do not want ATC polling to take place during tasking
39
--  operations. It causes infinite loops and other problems.
40
 
41
with Ada.Unchecked_Conversion;
42
with Ada.Unchecked_Deallocation;
43
 
44
with Interfaces.C;
45
 
46
with System.Tasking.Debug;
47
with System.Interrupt_Management;
48
with System.OS_Primitives;
49
with System.Task_Primitives.Interrupt_Operations;
50
 
51
pragma Warnings (Off);
52
with System.Interrupt_Management.Operations;
53
pragma Elaborate_All (System.Interrupt_Management.Operations);
54
pragma Warnings (On);
55
 
56
with System.Soft_Links;
57
--  We use System.Soft_Links instead of System.Tasking.Initialization
58
--  because the later is a higher level package that we shouldn't depend on.
59
--  For example when using the restricted run time, it is replaced by
60
--  System.Tasking.Restricted.Stages.
61
 
62
package body System.Task_Primitives.Operations is
63
 
64
   package SSL renames System.Soft_Links;
65
 
66
   use System.Tasking.Debug;
67
   use System.Tasking;
68
   use Interfaces.C;
69
   use System.OS_Interface;
70
   use System.Parameters;
71
   use System.OS_Primitives;
72
 
73
   package PIO renames System.Task_Primitives.Interrupt_Operations;
74
 
75
   ----------------
76
   -- Local Data --
77
   ----------------
78
 
79
   --  The followings are logically constants, but need to be initialized
80
   --  at run time.
81
 
82
   Single_RTS_Lock : aliased RTS_Lock;
83
   --  This is a lock to allow only one thread of control in the RTS at
84
   --  a time; it is used to execute in mutual exclusion from all other tasks.
85
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
86
 
87
   ATCB_Key : aliased pthread_key_t;
88
   --  Key used to find the Ada Task_Id associated with a thread
89
 
90
   Environment_Task_Id : Task_Id;
91
   --  A variable to hold Task_Id for the environment task
92
 
93
   Unblocked_Signal_Mask : aliased sigset_t;
94
   --  The set of signals that should unblocked in all tasks
95
 
96
   Time_Slice_Val : Integer;
97
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
98
 
99
   Dispatching_Policy : Character;
100
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
101
 
102
   --  Note: the reason that Locking_Policy is not needed is that this
103
   --  is not implemented for DCE threads. The HPUX 10 port is at this
104
   --  stage considered dead, and no further work is planned on it.
105
 
106
   Foreign_Task_Elaborated : aliased Boolean := True;
107
   --  Used to identified fake tasks (i.e., non-Ada Threads)
108
 
109
   --------------------
110
   -- Local Packages --
111
   --------------------
112
 
113
   package Specific is
114
 
115
      procedure Initialize (Environment_Task : Task_Id);
116
      pragma Inline (Initialize);
117
      --  Initialize various data needed by this package
118
 
119
      function Is_Valid_Task return Boolean;
120
      pragma Inline (Is_Valid_Task);
121
      --  Does the executing thread have a TCB?
122
 
123
      procedure Set (Self_Id : Task_Id);
124
      pragma Inline (Set);
125
      --  Set the self id for the current task
126
 
127
      function Self return Task_Id;
128
      pragma Inline (Self);
129
      --  Return a pointer to the Ada Task Control Block of the calling task
130
 
131
   end Specific;
132
 
133
   package body Specific is separate;
134
   --  The body of this package is target specific
135
 
136
   ---------------------------------
137
   -- Support for foreign threads --
138
   ---------------------------------
139
 
140
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
141
   --  Allocate and Initialize a new ATCB for the current Thread
142
 
143
   function Register_Foreign_Thread
144
     (Thread : Thread_Id) return Task_Id is separate;
145
 
146
   -----------------------
147
   -- Local Subprograms --
148
   -----------------------
149
 
150
   procedure Abort_Handler (Sig : Signal);
151
 
152
   function To_Address is
153
     new Ada.Unchecked_Conversion (Task_Id, System.Address);
154
 
155
   -------------------
156
   -- Abort_Handler --
157
   -------------------
158
 
159
   procedure Abort_Handler (Sig : Signal) is
160
      pragma Unreferenced (Sig);
161
 
162
      Self_Id : constant Task_Id := Self;
163
      Result  : Interfaces.C.int;
164
      Old_Set : aliased sigset_t;
165
 
166
   begin
167
      if Self_Id.Deferral_Level = 0
168
        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
169
        and then not Self_Id.Aborting
170
      then
171
         Self_Id.Aborting := True;
172
 
173
         --  Make sure signals used for RTS internal purpose are unmasked
174
 
175
         Result :=
176
           pthread_sigmask
177
             (SIG_UNBLOCK,
178
              Unblocked_Signal_Mask'Access,
179
              Old_Set'Access);
180
         pragma Assert (Result = 0);
181
 
182
         raise Standard'Abort_Signal;
183
      end if;
184
   end Abort_Handler;
185
 
186
   -----------------
187
   -- Stack_Guard --
188
   -----------------
189
 
190
   --  The underlying thread system sets a guard page at the bottom of a thread
191
   --  stack, so nothing is needed.
192
   --  ??? Check the comment above
193
 
194
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
195
      pragma Unreferenced (T, On);
196
   begin
197
      null;
198
   end Stack_Guard;
199
 
200
   -------------------
201
   -- Get_Thread_Id --
202
   -------------------
203
 
204
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
205
   begin
206
      return T.Common.LL.Thread;
207
   end Get_Thread_Id;
208
 
209
   ----------
210
   -- Self --
211
   ----------
212
 
213
   function Self return Task_Id renames Specific.Self;
214
 
215
   ---------------------
216
   -- Initialize_Lock --
217
   ---------------------
218
 
219
   --  Note: mutexes and cond_variables needed per-task basis are initialized
220
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
221
   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
222
   --  status change of RTS. Therefore raising Storage_Error in the following
223
   --  routines should be able to be handled safely.
224
 
225
   procedure Initialize_Lock
226
     (Prio : System.Any_Priority;
227
      L    : not null access Lock)
228
   is
229
      Attributes : aliased pthread_mutexattr_t;
230
      Result     : Interfaces.C.int;
231
 
232
   begin
233
      Result := pthread_mutexattr_init (Attributes'Access);
234
      pragma Assert (Result = 0 or else Result = ENOMEM);
235
 
236
      if Result = ENOMEM then
237
         raise Storage_Error;
238
      end if;
239
 
240
      L.Priority := Prio;
241
 
242
      Result := pthread_mutex_init (L.L'Access, Attributes'Access);
243
      pragma Assert (Result = 0 or else Result = ENOMEM);
244
 
245
      if Result = ENOMEM then
246
         raise Storage_Error;
247
      end if;
248
 
249
      Result := pthread_mutexattr_destroy (Attributes'Access);
250
      pragma Assert (Result = 0);
251
   end Initialize_Lock;
252
 
253
   procedure Initialize_Lock
254
     (L     : not null access RTS_Lock;
255
      Level : Lock_Level)
256
   is
257
      pragma Unreferenced (Level);
258
 
259
      Attributes : aliased pthread_mutexattr_t;
260
      Result     : Interfaces.C.int;
261
 
262
   begin
263
      Result := pthread_mutexattr_init (Attributes'Access);
264
      pragma Assert (Result = 0 or else Result = ENOMEM);
265
 
266
      if Result = ENOMEM then
267
         raise Storage_Error;
268
      end if;
269
 
270
      Result := pthread_mutex_init (L, Attributes'Access);
271
 
272
      pragma Assert (Result = 0 or else Result = ENOMEM);
273
 
274
      if Result = ENOMEM then
275
         raise Storage_Error;
276
      end if;
277
 
278
      Result := pthread_mutexattr_destroy (Attributes'Access);
279
      pragma Assert (Result = 0);
280
   end Initialize_Lock;
281
 
282
   -------------------
283
   -- Finalize_Lock --
284
   -------------------
285
 
286
   procedure Finalize_Lock (L : not null access Lock) is
287
      Result : Interfaces.C.int;
288
   begin
289
      Result := pthread_mutex_destroy (L.L'Access);
290
      pragma Assert (Result = 0);
291
   end Finalize_Lock;
292
 
293
   procedure Finalize_Lock (L : not null access RTS_Lock) is
294
      Result : Interfaces.C.int;
295
   begin
296
      Result := pthread_mutex_destroy (L);
297
      pragma Assert (Result = 0);
298
   end Finalize_Lock;
299
 
300
   ----------------
301
   -- Write_Lock --
302
   ----------------
303
 
304
   procedure Write_Lock
305
     (L                 : not null access Lock;
306
      Ceiling_Violation : out Boolean)
307
   is
308
      Result : Interfaces.C.int;
309
 
310
   begin
311
      L.Owner_Priority := Get_Priority (Self);
312
 
313
      if L.Priority < L.Owner_Priority then
314
         Ceiling_Violation := True;
315
         return;
316
      end if;
317
 
318
      Result := pthread_mutex_lock (L.L'Access);
319
      pragma Assert (Result = 0);
320
      Ceiling_Violation := False;
321
   end Write_Lock;
322
 
323
   procedure Write_Lock
324
     (L           : not null access RTS_Lock;
325
      Global_Lock : Boolean := False)
326
   is
327
      Result : Interfaces.C.int;
328
   begin
329
      if not Single_Lock or else Global_Lock then
330
         Result := pthread_mutex_lock (L);
331
         pragma Assert (Result = 0);
332
      end if;
333
   end Write_Lock;
334
 
335
   procedure Write_Lock (T : Task_Id) is
336
      Result : Interfaces.C.int;
337
   begin
338
      if not Single_Lock then
339
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
340
         pragma Assert (Result = 0);
341
      end if;
342
   end Write_Lock;
343
 
344
   ---------------
345
   -- Read_Lock --
346
   ---------------
347
 
348
   procedure Read_Lock
349
     (L                 : not null access Lock;
350
      Ceiling_Violation : out Boolean)
351
   is
352
   begin
353
      Write_Lock (L, Ceiling_Violation);
354
   end Read_Lock;
355
 
356
   ------------
357
   -- Unlock --
358
   ------------
359
 
360
   procedure Unlock (L : not null access Lock) is
361
      Result : Interfaces.C.int;
362
   begin
363
      Result := pthread_mutex_unlock (L.L'Access);
364
      pragma Assert (Result = 0);
365
   end Unlock;
366
 
367
   procedure Unlock
368
     (L           : not null access RTS_Lock;
369
      Global_Lock : Boolean := False)
370
   is
371
      Result : Interfaces.C.int;
372
   begin
373
      if not Single_Lock or else Global_Lock then
374
         Result := pthread_mutex_unlock (L);
375
         pragma Assert (Result = 0);
376
      end if;
377
   end Unlock;
378
 
379
   procedure Unlock (T : Task_Id) is
380
      Result : Interfaces.C.int;
381
   begin
382
      if not Single_Lock then
383
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
384
         pragma Assert (Result = 0);
385
      end if;
386
   end Unlock;
387
 
388
   -----------------
389
   -- Set_Ceiling --
390
   -----------------
391
 
392
   --  Dynamic priority ceilings are not supported by the underlying system
393
 
394
   procedure Set_Ceiling
395
     (L    : not null access Lock;
396
      Prio : System.Any_Priority)
397
   is
398
      pragma Unreferenced (L, Prio);
399
   begin
400
      null;
401
   end Set_Ceiling;
402
 
403
   -----------
404
   -- Sleep --
405
   -----------
406
 
407
   procedure Sleep
408
     (Self_ID : Task_Id;
409
      Reason  : System.Tasking.Task_States)
410
   is
411
      pragma Unreferenced (Reason);
412
 
413
      Result : Interfaces.C.int;
414
 
415
   begin
416
      Result :=
417
        pthread_cond_wait
418
          (cond  => Self_ID.Common.LL.CV'Access,
419
           mutex => (if Single_Lock
420
                     then Single_RTS_Lock'Access
421
                     else Self_ID.Common.LL.L'Access));
422
 
423
      --  EINTR is not considered a failure
424
 
425
      pragma Assert (Result = 0 or else Result = EINTR);
426
   end Sleep;
427
 
428
   -----------------
429
   -- Timed_Sleep --
430
   -----------------
431
 
432
   procedure Timed_Sleep
433
     (Self_ID  : Task_Id;
434
      Time     : Duration;
435
      Mode     : ST.Delay_Modes;
436
      Reason   : System.Tasking.Task_States;
437
      Timedout : out Boolean;
438
      Yielded  : out Boolean)
439
   is
440
      pragma Unreferenced (Reason);
441
 
442
      Check_Time : constant Duration := Monotonic_Clock;
443
      Abs_Time   : Duration;
444
      Request    : aliased timespec;
445
      Result     : Interfaces.C.int;
446
 
447
   begin
448
      Timedout := True;
449
      Yielded := False;
450
 
451
      Abs_Time :=
452
        (if Mode = Relative
453
         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
454
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
455
 
456
      if Abs_Time > Check_Time then
457
         Request := To_Timespec (Abs_Time);
458
 
459
         loop
460
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
461
 
462
            Result :=
463
              pthread_cond_timedwait
464
                (cond    => Self_ID.Common.LL.CV'Access,
465
                 mutex   => (if Single_Lock
466
                             then Single_RTS_Lock'Access
467
                             else Self_ID.Common.LL.L'Access),
468
                 abstime => Request'Access);
469
 
470
            exit when Abs_Time <= Monotonic_Clock;
471
 
472
            if Result = 0 or Result = EINTR then
473
 
474
               --  Somebody may have called Wakeup for us
475
 
476
               Timedout := False;
477
               exit;
478
            end if;
479
 
480
            pragma Assert (Result = ETIMEDOUT);
481
         end loop;
482
      end if;
483
   end Timed_Sleep;
484
 
485
   -----------------
486
   -- Timed_Delay --
487
   -----------------
488
 
489
   procedure Timed_Delay
490
     (Self_ID : Task_Id;
491
      Time    : Duration;
492
      Mode    : ST.Delay_Modes)
493
   is
494
      Check_Time : constant Duration := Monotonic_Clock;
495
      Abs_Time   : Duration;
496
      Request    : aliased timespec;
497
 
498
      Result : Interfaces.C.int;
499
      pragma Warnings (Off, Result);
500
 
501
   begin
502
      if Single_Lock then
503
         Lock_RTS;
504
      end if;
505
 
506
      Write_Lock (Self_ID);
507
 
508
      Abs_Time :=
509
        (if Mode = Relative
510
         then Time + Check_Time
511
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
512
 
513
      if Abs_Time > Check_Time then
514
         Request := To_Timespec (Abs_Time);
515
         Self_ID.Common.State := Delay_Sleep;
516
 
517
         loop
518
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
519
 
520
            Result :=
521
              pthread_cond_timedwait
522
                (cond    => Self_ID.Common.LL.CV'Access,
523
                 mutex   => (if Single_Lock
524
                             then Single_RTS_Lock'Access
525
                             else Self_ID.Common.LL.L'Access),
526
                 abstime => Request'Access);
527
 
528
            exit when Abs_Time <= Monotonic_Clock;
529
 
530
            pragma Assert (Result = 0 or else
531
              Result = ETIMEDOUT or else
532
              Result = EINTR);
533
         end loop;
534
 
535
         Self_ID.Common.State := Runnable;
536
      end if;
537
 
538
      Unlock (Self_ID);
539
 
540
      if Single_Lock then
541
         Unlock_RTS;
542
      end if;
543
 
544
      Result := sched_yield;
545
   end Timed_Delay;
546
 
547
   ---------------------
548
   -- Monotonic_Clock --
549
   ---------------------
550
 
551
   function Monotonic_Clock return Duration is
552
      TS     : aliased timespec;
553
      Result : Interfaces.C.int;
554
   begin
555
      Result := Clock_Gettime (CLOCK_REALTIME, TS'Unchecked_Access);
556
      pragma Assert (Result = 0);
557
      return To_Duration (TS);
558
   end Monotonic_Clock;
559
 
560
   -------------------
561
   -- RT_Resolution --
562
   -------------------
563
 
564
   function RT_Resolution return Duration is
565
   begin
566
      return 10#1.0#E-6;
567
   end RT_Resolution;
568
 
569
   ------------
570
   -- Wakeup --
571
   ------------
572
 
573
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
574
      pragma Unreferenced (Reason);
575
      Result : Interfaces.C.int;
576
   begin
577
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
578
      pragma Assert (Result = 0);
579
   end Wakeup;
580
 
581
   -----------
582
   -- Yield --
583
   -----------
584
 
585
   procedure Yield (Do_Yield : Boolean := True) is
586
      Result : Interfaces.C.int;
587
      pragma Unreferenced (Result);
588
   begin
589
      if Do_Yield then
590
         Result := sched_yield;
591
      end if;
592
   end Yield;
593
 
594
   ------------------
595
   -- Set_Priority --
596
   ------------------
597
 
598
   type Prio_Array_Type is array (System.Any_Priority) of Integer;
599
   pragma Atomic_Components (Prio_Array_Type);
600
 
601
   Prio_Array : Prio_Array_Type;
602
   --  Global array containing the id of the currently running task for
603
   --  each priority.
604
   --
605
   --  Note: assume we are on single processor with run-til-blocked scheduling
606
 
607
   procedure Set_Priority
608
     (T                   : Task_Id;
609
      Prio                : System.Any_Priority;
610
      Loss_Of_Inheritance : Boolean := False)
611
   is
612
      Result     : Interfaces.C.int;
613
      Array_Item : Integer;
614
      Param      : aliased struct_sched_param;
615
 
616
      function Get_Policy (Prio : System.Any_Priority) return Character;
617
      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
618
      --  Get priority specific dispatching policy
619
 
620
      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
621
      --  Upper case first character of the policy name corresponding to the
622
      --  task as set by a Priority_Specific_Dispatching pragma.
623
 
624
   begin
625
      Param.sched_priority  := Interfaces.C.int (Underlying_Priorities (Prio));
626
 
627
      if Dispatching_Policy = 'R'
628
        or else Priority_Specific_Policy = 'R'
629
        or else Time_Slice_Val > 0
630
      then
631
         Result :=
632
           pthread_setschedparam
633
             (T.Common.LL.Thread, SCHED_RR, Param'Access);
634
 
635
      elsif Dispatching_Policy = 'F'
636
        or else Priority_Specific_Policy = 'F'
637
        or else Time_Slice_Val = 0
638
      then
639
         Result :=
640
           pthread_setschedparam
641
             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
642
 
643
      else
644
         Result :=
645
           pthread_setschedparam
646
             (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
647
      end if;
648
 
649
      pragma Assert (Result = 0);
650
 
651
      if Dispatching_Policy = 'F' or else Priority_Specific_Policy = 'F' then
652
 
653
         --  Annex D requirement [RM D.2.2 par. 9]:
654
         --    If the task drops its priority due to the loss of inherited
655
         --    priority, it is added at the head of the ready queue for its
656
         --    new active priority.
657
 
658
         if Loss_Of_Inheritance
659
           and then Prio < T.Common.Current_Priority
660
         then
661
            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
662
            Prio_Array (T.Common.Base_Priority) := Array_Item;
663
 
664
            loop
665
               --  Let some processes a chance to arrive
666
 
667
               Yield;
668
 
669
               --  Then wait for our turn to proceed
670
 
671
               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
672
                 or else Prio_Array (T.Common.Base_Priority) = 1;
673
            end loop;
674
 
675
            Prio_Array (T.Common.Base_Priority) :=
676
              Prio_Array (T.Common.Base_Priority) - 1;
677
         end if;
678
      end if;
679
 
680
      T.Common.Current_Priority := Prio;
681
   end Set_Priority;
682
 
683
   ------------------
684
   -- Get_Priority --
685
   ------------------
686
 
687
   function Get_Priority (T : Task_Id) return System.Any_Priority is
688
   begin
689
      return T.Common.Current_Priority;
690
   end Get_Priority;
691
 
692
   ----------------
693
   -- Enter_Task --
694
   ----------------
695
 
696
   procedure Enter_Task (Self_ID : Task_Id) is
697
   begin
698
      Self_ID.Common.LL.Thread := pthread_self;
699
      Specific.Set (Self_ID);
700
   end Enter_Task;
701
 
702
   --------------
703
   -- New_ATCB --
704
   --------------
705
 
706
   function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
707
   begin
708
      return new Ada_Task_Control_Block (Entry_Num);
709
   end New_ATCB;
710
 
711
   -------------------
712
   -- Is_Valid_Task --
713
   -------------------
714
 
715
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
716
 
717
   -----------------------------
718
   -- Register_Foreign_Thread --
719
   -----------------------------
720
 
721
   function Register_Foreign_Thread return Task_Id is
722
   begin
723
      if Is_Valid_Task then
724
         return Self;
725
      else
726
         return Register_Foreign_Thread (pthread_self);
727
      end if;
728
   end Register_Foreign_Thread;
729
 
730
   --------------------
731
   -- Initialize_TCB --
732
   --------------------
733
 
734
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
735
      Mutex_Attr : aliased pthread_mutexattr_t;
736
      Result     : Interfaces.C.int;
737
      Cond_Attr  : aliased pthread_condattr_t;
738
 
739
   begin
740
      if not Single_Lock then
741
         Result := pthread_mutexattr_init (Mutex_Attr'Access);
742
         pragma Assert (Result = 0 or else Result = ENOMEM);
743
 
744
         if Result = 0 then
745
            Result :=
746
              pthread_mutex_init
747
                (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
748
            pragma Assert (Result = 0 or else Result = ENOMEM);
749
         end if;
750
 
751
         if Result /= 0 then
752
            Succeeded := False;
753
            return;
754
         end if;
755
 
756
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
757
         pragma Assert (Result = 0);
758
      end if;
759
 
760
      Result := pthread_condattr_init (Cond_Attr'Access);
761
      pragma Assert (Result = 0 or else Result = ENOMEM);
762
 
763
      if Result = 0 then
764
         Result :=
765
           pthread_cond_init
766
             (Self_ID.Common.LL.CV'Access,
767
              Cond_Attr'Access);
768
         pragma Assert (Result = 0 or else Result = ENOMEM);
769
      end if;
770
 
771
      if Result = 0 then
772
         Succeeded := True;
773
      else
774
         if not Single_Lock then
775
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
776
            pragma Assert (Result = 0);
777
         end if;
778
 
779
         Succeeded := False;
780
      end if;
781
 
782
      Result := pthread_condattr_destroy (Cond_Attr'Access);
783
      pragma Assert (Result = 0);
784
   end Initialize_TCB;
785
 
786
   -----------------
787
   -- Create_Task --
788
   -----------------
789
 
790
   procedure Create_Task
791
     (T          : Task_Id;
792
      Wrapper    : System.Address;
793
      Stack_Size : System.Parameters.Size_Type;
794
      Priority   : System.Any_Priority;
795
      Succeeded  : out Boolean)
796
   is
797
      Attributes : aliased pthread_attr_t;
798
      Result     : Interfaces.C.int;
799
 
800
      function Thread_Body_Access is new
801
        Ada.Unchecked_Conversion (System.Address, Thread_Body);
802
 
803
   begin
804
      Result := pthread_attr_init (Attributes'Access);
805
      pragma Assert (Result = 0 or else Result = ENOMEM);
806
 
807
      if Result /= 0 then
808
         Succeeded := False;
809
         return;
810
      end if;
811
 
812
      Result := pthread_attr_setstacksize
813
        (Attributes'Access, Interfaces.C.size_t (Stack_Size));
814
      pragma Assert (Result = 0);
815
 
816
      --  Since the initial signal mask of a thread is inherited from the
817
      --  creator, and the Environment task has all its signals masked, we
818
      --  do not need to manipulate caller's signal mask at this point.
819
      --  All tasks in RTS will have All_Tasks_Mask initially.
820
 
821
      Result := pthread_create
822
        (T.Common.LL.Thread'Access,
823
         Attributes'Access,
824
         Thread_Body_Access (Wrapper),
825
         To_Address (T));
826
      pragma Assert (Result = 0 or else Result = EAGAIN);
827
 
828
      Succeeded := Result = 0;
829
 
830
      pthread_detach (T.Common.LL.Thread'Access);
831
      --  Detach the thread using pthread_detach, since DCE threads do not have
832
      --  pthread_attr_set_detachstate.
833
 
834
      Result := pthread_attr_destroy (Attributes'Access);
835
      pragma Assert (Result = 0);
836
 
837
      Set_Priority (T, Priority);
838
   end Create_Task;
839
 
840
   ------------------
841
   -- Finalize_TCB --
842
   ------------------
843
 
844
   procedure Finalize_TCB (T : Task_Id) is
845
      Result  : Interfaces.C.int;
846
      Tmp     : Task_Id := T;
847
      Is_Self : constant Boolean := T = Self;
848
 
849
      procedure Free is new
850
        Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
851
 
852
   begin
853
      if not Single_Lock then
854
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
855
         pragma Assert (Result = 0);
856
      end if;
857
 
858
      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
859
      pragma Assert (Result = 0);
860
 
861
      if T.Known_Tasks_Index /= -1 then
862
         Known_Tasks (T.Known_Tasks_Index) := null;
863
      end if;
864
 
865
      Free (Tmp);
866
 
867
      if Is_Self then
868
         Specific.Set (null);
869
      end if;
870
   end Finalize_TCB;
871
 
872
   ---------------
873
   -- Exit_Task --
874
   ---------------
875
 
876
   procedure Exit_Task is
877
   begin
878
      Specific.Set (null);
879
   end Exit_Task;
880
 
881
   ----------------
882
   -- Abort_Task --
883
   ----------------
884
 
885
   procedure Abort_Task (T : Task_Id) is
886
   begin
887
      --  Interrupt Server_Tasks may be waiting on an "event" flag (signal)
888
 
889
      if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
890
         System.Interrupt_Management.Operations.Interrupt_Self_Process
891
           (System.Interrupt_Management.Interrupt_ID
892
             (PIO.Get_Interrupt_ID (T)));
893
      end if;
894
   end Abort_Task;
895
 
896
   ----------------
897
   -- Initialize --
898
   ----------------
899
 
900
   procedure Initialize (S : in out Suspension_Object) is
901
      Mutex_Attr : aliased pthread_mutexattr_t;
902
      Cond_Attr  : aliased pthread_condattr_t;
903
      Result     : Interfaces.C.int;
904
   begin
905
      --  Initialize internal state (always to False (ARM D.10(6)))
906
 
907
      S.State := False;
908
      S.Waiting := False;
909
 
910
      --  Initialize internal mutex
911
 
912
      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
913
      pragma Assert (Result = 0 or else Result = ENOMEM);
914
 
915
      if Result = ENOMEM then
916
         raise Storage_Error;
917
      end if;
918
 
919
      --  Initialize internal condition variable
920
 
921
      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
922
      pragma Assert (Result = 0 or else Result = ENOMEM);
923
 
924
      if Result /= 0 then
925
         Result := pthread_mutex_destroy (S.L'Access);
926
         pragma Assert (Result = 0);
927
 
928
         if Result = ENOMEM then
929
            raise Storage_Error;
930
         end if;
931
      end if;
932
   end Initialize;
933
 
934
   --------------
935
   -- Finalize --
936
   --------------
937
 
938
   procedure Finalize (S : in out Suspension_Object) is
939
      Result  : Interfaces.C.int;
940
 
941
   begin
942
      --  Destroy internal mutex
943
 
944
      Result := pthread_mutex_destroy (S.L'Access);
945
      pragma Assert (Result = 0);
946
 
947
      --  Destroy internal condition variable
948
 
949
      Result := pthread_cond_destroy (S.CV'Access);
950
      pragma Assert (Result = 0);
951
   end Finalize;
952
 
953
   -------------------
954
   -- Current_State --
955
   -------------------
956
 
957
   function Current_State (S : Suspension_Object) return Boolean is
958
   begin
959
      --  We do not want to use lock on this read operation. State is marked
960
      --  as Atomic so that we ensure that the value retrieved is correct.
961
 
962
      return S.State;
963
   end Current_State;
964
 
965
   ---------------
966
   -- Set_False --
967
   ---------------
968
 
969
   procedure Set_False (S : in out Suspension_Object) is
970
      Result  : Interfaces.C.int;
971
 
972
   begin
973
      SSL.Abort_Defer.all;
974
 
975
      Result := pthread_mutex_lock (S.L'Access);
976
      pragma Assert (Result = 0);
977
 
978
      S.State := False;
979
 
980
      Result := pthread_mutex_unlock (S.L'Access);
981
      pragma Assert (Result = 0);
982
 
983
      SSL.Abort_Undefer.all;
984
   end Set_False;
985
 
986
   --------------
987
   -- Set_True --
988
   --------------
989
 
990
   procedure Set_True (S : in out Suspension_Object) is
991
      Result : Interfaces.C.int;
992
 
993
   begin
994
      SSL.Abort_Defer.all;
995
 
996
      Result := pthread_mutex_lock (S.L'Access);
997
      pragma Assert (Result = 0);
998
 
999
      --  If there is already a task waiting on this suspension object then
1000
      --  we resume it, leaving the state of the suspension object to False,
1001
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1002
      --  the state to True.
1003
 
1004
      if S.Waiting then
1005
         S.Waiting := False;
1006
         S.State := False;
1007
 
1008
         Result := pthread_cond_signal (S.CV'Access);
1009
         pragma Assert (Result = 0);
1010
 
1011
      else
1012
         S.State := True;
1013
      end if;
1014
 
1015
      Result := pthread_mutex_unlock (S.L'Access);
1016
      pragma Assert (Result = 0);
1017
 
1018
      SSL.Abort_Undefer.all;
1019
   end Set_True;
1020
 
1021
   ------------------------
1022
   -- Suspend_Until_True --
1023
   ------------------------
1024
 
1025
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1026
      Result : Interfaces.C.int;
1027
 
1028
   begin
1029
      SSL.Abort_Defer.all;
1030
 
1031
      Result := pthread_mutex_lock (S.L'Access);
1032
      pragma Assert (Result = 0);
1033
 
1034
      if S.Waiting then
1035
         --  Program_Error must be raised upon calling Suspend_Until_True
1036
         --  if another task is already waiting on that suspension object
1037
         --  (ARM D.10 par. 10).
1038
 
1039
         Result := pthread_mutex_unlock (S.L'Access);
1040
         pragma Assert (Result = 0);
1041
 
1042
         SSL.Abort_Undefer.all;
1043
 
1044
         raise Program_Error;
1045
      else
1046
         --  Suspend the task if the state is False. Otherwise, the task
1047
         --  continues its execution, and the state of the suspension object
1048
         --  is set to False (ARM D.10 par. 9).
1049
 
1050
         if S.State then
1051
            S.State := False;
1052
         else
1053
            S.Waiting := True;
1054
 
1055
            loop
1056
               --  Loop in case pthread_cond_wait returns earlier than expected
1057
               --  (e.g. in case of EINTR caused by a signal).
1058
 
1059
               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1060
               pragma Assert (Result = 0 or else Result = EINTR);
1061
 
1062
               exit when not S.Waiting;
1063
            end loop;
1064
         end if;
1065
 
1066
         Result := pthread_mutex_unlock (S.L'Access);
1067
         pragma Assert (Result = 0);
1068
 
1069
         SSL.Abort_Undefer.all;
1070
      end if;
1071
   end Suspend_Until_True;
1072
 
1073
   ----------------
1074
   -- Check_Exit --
1075
   ----------------
1076
 
1077
   --  Dummy version
1078
 
1079
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1080
      pragma Unreferenced (Self_ID);
1081
   begin
1082
      return True;
1083
   end Check_Exit;
1084
 
1085
   --------------------
1086
   -- Check_No_Locks --
1087
   --------------------
1088
 
1089
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1090
      pragma Unreferenced (Self_ID);
1091
   begin
1092
      return True;
1093
   end Check_No_Locks;
1094
 
1095
   ----------------------
1096
   -- Environment_Task --
1097
   ----------------------
1098
 
1099
   function Environment_Task return Task_Id is
1100
   begin
1101
      return Environment_Task_Id;
1102
   end Environment_Task;
1103
 
1104
   --------------
1105
   -- Lock_RTS --
1106
   --------------
1107
 
1108
   procedure Lock_RTS is
1109
   begin
1110
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1111
   end Lock_RTS;
1112
 
1113
   ----------------
1114
   -- Unlock_RTS --
1115
   ----------------
1116
 
1117
   procedure Unlock_RTS is
1118
   begin
1119
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1120
   end Unlock_RTS;
1121
 
1122
   ------------------
1123
   -- Suspend_Task --
1124
   ------------------
1125
 
1126
   function Suspend_Task
1127
     (T           : ST.Task_Id;
1128
      Thread_Self : Thread_Id) return Boolean
1129
   is
1130
      pragma Unreferenced (T);
1131
      pragma Unreferenced (Thread_Self);
1132
   begin
1133
      return False;
1134
   end Suspend_Task;
1135
 
1136
   -----------------
1137
   -- Resume_Task --
1138
   -----------------
1139
 
1140
   function Resume_Task
1141
     (T           : ST.Task_Id;
1142
      Thread_Self : Thread_Id) return Boolean
1143
   is
1144
      pragma Unreferenced (T);
1145
      pragma Unreferenced (Thread_Self);
1146
   begin
1147
      return False;
1148
   end Resume_Task;
1149
 
1150
   --------------------
1151
   -- Stop_All_Tasks --
1152
   --------------------
1153
 
1154
   procedure Stop_All_Tasks is
1155
   begin
1156
      null;
1157
   end Stop_All_Tasks;
1158
 
1159
   ---------------
1160
   -- Stop_Task --
1161
   ---------------
1162
 
1163
   function Stop_Task (T : ST.Task_Id) return Boolean is
1164
      pragma Unreferenced (T);
1165
   begin
1166
      return False;
1167
   end Stop_Task;
1168
 
1169
   -------------------
1170
   -- Continue_Task --
1171
   -------------------
1172
 
1173
   function Continue_Task (T : ST.Task_Id) return Boolean is
1174
      pragma Unreferenced (T);
1175
   begin
1176
      return False;
1177
   end Continue_Task;
1178
 
1179
   ----------------
1180
   -- Initialize --
1181
   ----------------
1182
 
1183
   procedure Initialize (Environment_Task : Task_Id) is
1184
      act     : aliased struct_sigaction;
1185
      old_act : aliased struct_sigaction;
1186
      Tmp_Set : aliased sigset_t;
1187
      Result  : Interfaces.C.int;
1188
 
1189
      function State
1190
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1191
      pragma Import (C, State, "__gnat_get_interrupt_state");
1192
      --  Get interrupt state. Defined in a-init.c. The input argument is
1193
      --  the interrupt number, and the result is one of the following:
1194
 
1195
      Default : constant Character := 's';
1196
      --    'n'   this interrupt not set by any Interrupt_State pragma
1197
      --    'u'   Interrupt_State pragma set state to User
1198
      --    'r'   Interrupt_State pragma set state to Runtime
1199
      --    's'   Interrupt_State pragma set state to System (use "default"
1200
      --           system handler)
1201
 
1202
   begin
1203
      Environment_Task_Id := Environment_Task;
1204
 
1205
      Interrupt_Management.Initialize;
1206
 
1207
      --  Initialize the lock used to synchronize chain of all ATCBs
1208
 
1209
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1210
 
1211
      Specific.Initialize (Environment_Task);
1212
 
1213
      --  Make environment task known here because it doesn't go through
1214
      --  Activate_Tasks, which does it for all other tasks.
1215
 
1216
      Known_Tasks (Known_Tasks'First) := Environment_Task;
1217
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1218
 
1219
      Enter_Task (Environment_Task);
1220
 
1221
      --  Install the abort-signal handler
1222
 
1223
      if State (System.Interrupt_Management.Abort_Task_Interrupt)
1224
                                                     /= Default
1225
      then
1226
         act.sa_flags := 0;
1227
         act.sa_handler := Abort_Handler'Address;
1228
 
1229
         Result := sigemptyset (Tmp_Set'Access);
1230
         pragma Assert (Result = 0);
1231
         act.sa_mask := Tmp_Set;
1232
 
1233
         Result :=
1234
           sigaction (
1235
             Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1236
             act'Unchecked_Access,
1237
             old_act'Unchecked_Access);
1238
         pragma Assert (Result = 0);
1239
      end if;
1240
   end Initialize;
1241
 
1242
   --  NOTE: Unlike other pthread implementations, we do *not* mask all
1243
   --  signals here since we handle signals using the process-wide primitive
1244
   --  signal, rather than using sigthreadmask and sigwait. The reason of
1245
   --  this difference is that sigwait doesn't work when some critical
1246
   --  signals (SIGABRT, SIGPIPE) are masked.
1247
 
1248
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.