OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [sem_attr.ads] - Blame information for rev 300

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             S E M _ A T T R                              --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- You should have received a copy of the GNU General Public License along  --
19
-- with this program; see file COPYING3.  If not see                        --
20
-- <http://www.gnu.org/licenses/>.                                          --
21
--                                                                          --
22
-- GNAT was originally developed  by the GNAT team at  New York University. --
23
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24
--                                                                          --
25
------------------------------------------------------------------------------
26
 
27
--  Attribute handling is isolated in a separate package to ease the addition
28
--  of implementation defined attributes. Logically this processing belongs
29
--  in chapter 4. See Sem_Ch4 for a description of the relation of the
30
--  Analyze and Resolve routines for expression components.
31
 
32
--  This spec also documents all GNAT implementation defined pragmas
33
 
34
with Exp_Tss; use Exp_Tss;
35
with Namet;   use Namet;
36
with Snames;  use Snames;
37
with Types;   use Types;
38
 
39
package Sem_Attr is
40
 
41
   -----------------------------------------
42
   -- Implementation Dependent Attributes --
43
   -----------------------------------------
44
 
45
   --  This section describes the implementation dependent attributes
46
   --  provided in GNAT, as well as constructing an array of flags
47
   --  indicating which attributes these are.
48
 
49
   Attribute_Impl_Def : Attribute_Class_Array := Attribute_Class_Array'(
50
 
51
      ------------------
52
      -- Abort_Signal --
53
      ------------------
54
 
55
      Attribute_Abort_Signal => True,
56
      --  Standard'Abort_Signal (Standard is the only allowed prefix) provides
57
      --  the entity for the special exception used to signal task abort or
58
      --  asynchronous transfer of control. Normally this attribute should only
59
      --  be used in the tasking runtime (it is highly peculiar, and completely
60
      --  outside the normal semantics of Ada, for a user program to intercept
61
      --  the abort exception).
62
 
63
      ------------------
64
      -- Address_Size --
65
      ------------------
66
 
67
      Attribute_Address_Size => True,
68
      --  Standard'Address_Size (Standard is the only allowed prefix) is
69
      --  a static constant giving the number of bits in an Address. It
70
      --  is used primarily for constructing the definition of Memory_Size
71
      --  in package Standard, but may be freely used in user programs.
72
      --  This is a static attribute.
73
 
74
      ---------------
75
      -- Asm_Input --
76
      ---------------
77
 
78
      Attribute_Asm_Input => True,
79
      --  Used only in conjunction with the Asm subprograms in package
80
      --  Machine_Code to construct machine instructions. See documentation
81
      --  in package Machine_Code in file s-maccod.ads.
82
 
83
      ----------------
84
      -- Asm_Output --
85
      ----------------
86
 
87
      Attribute_Asm_Output => True,
88
      --  Used only in conjunction with the Asm subprograms in package
89
      --  Machine_Code to construct machine instructions. See documentation
90
      --  in package Machine_Code in file s-maccod.ads.
91
 
92
      ---------------
93
      -- AST_Entry --
94
      ---------------
95
 
96
      Attribute_AST_Entry => True,
97
      --  E'Ast_Entry, where E is a task entry, yields a value of the
98
      --  predefined type System.DEC.AST_Handler, that enables the given
99
      --  entry to be called when an AST occurs. If the name to which the
100
      --  attribute applies has not been specified with the pragma AST_Entry,
101
      --  the attribute returns the value No_Ast_Handler, and no AST occurs.
102
      --  If the entry is for a task that is not callable (T'Callable False),
103
      --  the exception program error is raised. If an AST occurs for an
104
      --  entry of a task that is terminated, the program is erroneous.
105
      --
106
      --  The attribute AST_Entry is supported only in OpenVMS versions
107
      --  of GNAT. It will be rejected as illegal in other GNAT versions.
108
 
109
      ---------
110
      -- Bit --
111
      ---------
112
 
113
      Attribute_Bit => True,
114
      --  Obj'Bit, where Obj is any object, yields the bit offset within the
115
      --  storage unit (byte) that contains the first bit of storage allocated
116
      --  for the object. The attribute value is of type Universal_Integer,
117
      --  and is always a non-negative number not exceeding the value of
118
      --  System.Storage_Unit.
119
      --
120
      --  For an object that is a variable or a constant allocated in a
121
      --  register, the value is zero. (The use of this attribute does not
122
      --  force the allocation of a variable to memory).
123
      --
124
      --  For an object that is a formal parameter, this attribute applies to
125
      --  either the matching actual parameter or to a copy of the matching
126
      --  actual parameter.
127
      --
128
      --  For an access object the value is zero. Note that Obj.all'Bit is
129
      --  subject to an Access_Check for the designated object. Similarly
130
      --  for a record component X.C'Bit is subject to a discriminant check
131
      --  and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
132
      --
133
      --  This attribute is designed to be compatible with the DEC Ada
134
      --  definition and implementation of the Bit attribute.
135
 
136
      ------------------
137
      -- Code_Address --
138
      ------------------
139
 
140
      Attribute_Code_Address => True,
141
      --  The reference subp'Code_Address, where subp is a subprogram entity,
142
      --  gives the address of the first generated instruction for the sub-
143
      --  program. This is often, but not always the same as the 'Address
144
      --  value, which is the address to be used in a call. The differences
145
      --  occur in the case of a nested procedure (where Address yields the
146
      --  address of the trampoline code used to load the static link), and on
147
      --  some systems which use procedure descriptors (in which case Address
148
      --  yields the address of the descriptor).
149
 
150
      -----------------------
151
      -- Default_Bit_Order --
152
      -----------------------
153
 
154
      Attribute_Default_Bit_Order => True,
155
      --  Standard'Default_Bit_Order (Standard is the only permissible prefix),
156
      --  provides the value System.Default_Bit_Order as a Pos value (0 for
157
      --  High_Order_First, 1 for Low_Order_First). This is used to construct
158
      --  the definition of Default_Bit_Order in package System. This is a
159
      --  static attribute.
160
 
161
      ---------------
162
      -- Elab_Body --
163
      ---------------
164
 
165
      Attribute_Elab_Body => True,
166
      --  This attribute can only be applied to a program unit name. It returns
167
      --  the entity for the corresponding elaboration procedure for elabor-
168
      --  ating the body of the referenced unit. This is used in the main
169
      --  generated elaboration procedure by the binder, and is not normally
170
      --  used in any other context, but there may be specialized situations in
171
      --  which it is useful to be able to call this elaboration procedure from
172
      --  Ada code, e.g. if it is necessary to do selective reelaboration to
173
      --  fix some error.
174
 
175
      ---------------
176
      -- Elab_Spec --
177
      ---------------
178
 
179
      Attribute_Elab_Spec => True,
180
      --  This attribute can only be applied to a program unit name. It
181
      --  returns the entity for the corresponding elaboration procedure
182
      --  for elaborating the spec of the referenced unit. This is used
183
      --  in the main generated elaboration procedure by the binder, and
184
      --  is not normally used in any other context, but there may be
185
      --  specialized situations in which it is useful to be able to
186
      --  call this elaboration procedure from Ada code, e.g. if it
187
      --  is necessary to do selective reelaboration to fix some error.
188
 
189
      ----------------
190
      -- Elaborated --
191
      ----------------
192
 
193
      Attribute_Elaborated => True,
194
      --  Lunit'Elaborated, where Lunit is a library unit, yields a boolean
195
      --  value indicating whether or not the body of the designated library
196
      --  unit has been elaborated yet.
197
 
198
      --------------
199
      -- Enum_Rep --
200
      --------------
201
 
202
      Attribute_Enum_Rep => True,
203
      --  For every enumeration subtype S, S'Enum_Rep denotes a function
204
      --  with the following specification:
205
      --
206
      --    function S'Enum_Rep (Arg : S'Base) return universal_integer;
207
      --
208
      --  The function returns the representation value for the given
209
      --  enumeration value. This will be equal to the 'Pos value in the
210
      --  absence of an enumeration representation clause. This is a static
211
      --  attribute (i.e. the result is static if the argument is static).
212
 
213
      --------------
214
      -- Enum_Val --
215
      --------------
216
 
217
      Attribute_Enum_Val => True,
218
      --  For every enumeration subtype S, S'Enum_Val denotes a function
219
      --  with the following specification:
220
      --
221
      --    function S'Enum_Val (Arg : universal_integer) return S'Base;
222
      --
223
      --  This function performs the inverse transformation to Enum_Rep. Given
224
      --  a representation value for the type, it returns the corresponding
225
      --  enumeration value. Constraint_Error is raised if no value of the
226
      --  enumeration type corresponds to the given integer value.
227
 
228
      -----------------
229
      -- Fixed_Value --
230
      -----------------
231
 
232
      Attribute_Fixed_Value => True,
233
      --  For every fixed-point type S, S'Fixed_Value denotes a function
234
      --  with the following specification:
235
      --
236
      --    function S'Fixed_Value (Arg : universal_integer) return S;
237
      --
238
      --  The value returned is the fixed-point value V such that
239
      --
240
      --    V = Arg * S'Small
241
      --
242
      --  The effect is thus equivalent to first converting the argument to
243
      --  the integer type used to represent S, and then doing an unchecked
244
      --  conversion to the fixed-point type. This attribute is primarily
245
      --  intended for use in implementation of the input-output functions for
246
      --  fixed-point values.
247
 
248
      -----------------------
249
      -- Has_Discriminants --
250
      -----------------------
251
 
252
      Attribute_Has_Discriminants => True,
253
      --  Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
254
      --  a Boolean value indicating whether or not the actual instantiation
255
      --  type has discriminants.
256
 
257
      ---------
258
      -- Img --
259
      ---------
260
 
261
      Attribute_Img => True,
262
      --  The 'Img function is defined for any prefix, P, that denotes an
263
      --  object of scalar type T. P'Img is equivalent to T'Image (P). This
264
      --  is convenient for debugging. For example:
265
      --
266
      --     Put_Line ("X = " & X'Img);
267
      --
268
      --  has the same meaning as the more verbose:
269
      --
270
      --     Put_Line ("X = " & Temperature_Type'Image (X));
271
      --
272
      --  where Temperature_Type is the subtype of the object X.
273
 
274
      -------------------
275
      -- Integer_Value --
276
      -------------------
277
 
278
      Attribute_Integer_Value => True,
279
      --  For every integer type S, S'Integer_Value denotes a function
280
      --  with the following specification:
281
      --
282
      --    function S'Integer_Value (Arg : universal_fixed) return S;
283
      --
284
      --  The value returned is the integer value V, such that
285
      --
286
      --    Arg = V * fixed-type'Small
287
      --
288
      --  The effect is thus equivalent to first doing an unchecked convert
289
      --  from the fixed-point type to its corresponding implementation type,
290
      --  and then converting the result to the target integer type. This
291
      --  attribute is primarily intended for use in implementation of the
292
      --  standard input-output functions for fixed-point values.
293
 
294
      Attribute_Invalid_Value => True,
295
      --  For every scalar type, S'Invalid_Value designates an undefined value
296
      --  of the type. If possible this value is an invalid value, and in fact
297
      --  is identical to the value that would be set if Initialize_Scalars
298
      --  mode were in effect (including the behavior of its value on
299
      --  environment variables or binder switches). The intended use is
300
      --  to set a value where initialization is required (e.g. as a result of
301
      --  the coding standards in use), but logically no initialization is
302
      --  needed, and the value should never be accessed.
303
 
304
      ------------------
305
      -- Machine_Size --
306
      ------------------
307
 
308
      Attribute_Machine_Size => True,
309
      --  This attribute is identical to the Object_Size attribute. It is
310
      --  provided for compatibility with the DEC attribute of this name.
311
 
312
      -----------------------
313
      -- Maximum_Alignment --
314
      -----------------------
315
 
316
      Attribute_Maximum_Alignment => True,
317
      --  Standard'Maximum_Alignment (Standard is the only permissible prefix)
318
      --  provides the maximum useful alignment value for the target. This
319
      --  is a static value that can be used to specify the alignment for an
320
      --  object, guaranteeing that it is properly aligned in all cases. The
321
      --  time this is useful is when an external object is imported and its
322
      --  alignment requirements are unknown. This is a static attribute.
323
 
324
      --------------------
325
      -- Mechanism_Code --
326
      --------------------
327
 
328
      Attribute_Mechanism_Code => True,
329
      --  function'Mechanism_Code yields an integer code for the mechanism
330
      --  used for the result of function, and subprogram'Mechanism_Code (n)
331
      --  yields the mechanism used for formal parameter number n (a static
332
      --  integer value, 1 = first parameter). The code returned is:
333
      --
334
      --     1 = by copy (value)
335
      --     2 = by reference
336
      --     3 = by descriptor (default descriptor type)
337
      --     4 = by descriptor (UBS  unaligned bit string)
338
      --     5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
339
      --     6 = by descriptor (UBA  unaligned bit array)
340
      --     7 = by descriptor (S    string, also scalar access type parameter)
341
      --     8 = by descriptor (SB   string with arbitrary bounds)
342
      --     9 = by descriptor (A    contiguous array)
343
      --    10 = by descriptor (NCA  non-contiguous array)
344
 
345
      --------------------
346
      -- Null_Parameter --
347
      --------------------
348
 
349
      Attribute_Null_Parameter => True,
350
      --  A reference T'Null_Parameter denotes an (imaginary) object of type or
351
      --  subtype T allocated at (machine) address zero. The attribute is
352
      --  allowed only as the default expression of a formal parameter, or as
353
      --  an actual expression of a subprogram call. In either case, the
354
      --  subprogram must be imported.
355
      --
356
      --  The identity of the object is represented by the address zero in the
357
      --  argument list, independent of the passing mechanism (explicit or
358
      --  default).
359
      --
360
      --  The reason that this capability is needed is that for a record or
361
      --  other composite object passed by reference, there is no other way of
362
      --  specifying that a zero address should be passed.
363
 
364
      -----------------
365
      -- Object_Size --
366
      -----------------
367
 
368
      Attribute_Object_Size => True,
369
      --  Type'Object_Size is the same as Type'Size for all types except
370
      --  fixed-point types and discrete types. For fixed-point types and
371
      --  discrete types, this attribute gives the size used for default
372
      --  allocation of objects and components of the size. See section in
373
      --  Einfo ("Handling of type'Size values") for further details.
374
 
375
      -------------------------
376
      -- Passed_By_Reference --
377
      -------------------------
378
 
379
      Attribute_Passed_By_Reference => True,
380
      --  T'Passed_By_Reference for any subtype T returns a boolean value that
381
      --  is true if the type is normally passed by reference and false if the
382
      --  type is normally passed by copy in calls. For scalar types, the
383
      --  result is always False and is static. For non-scalar types, the
384
      --  result is non-static (since it is computed by Gigi).
385
 
386
      ------------------
387
      -- Range_Length --
388
      ------------------
389
 
390
      Attribute_Range_Length => True,
391
      --  T'Range_Length for any discrete type T yields the number of values
392
      --  represented by the subtype (zero for a null range). The result is
393
      --  static for static subtypes. Note that Range_Length applied to the
394
      --  index subtype of a one dimensional array always gives the same result
395
      --  as Range applied to the array itself. The result is of type universal
396
      --  integer.
397
 
398
      ------------------
399
      -- Storage_Unit --
400
      ------------------
401
 
402
      Attribute_Storage_Unit => True,
403
      --  Standard'Storage_Unit (Standard is the only permissible prefix)
404
      --  provides the value System.Storage_Unit, and is intended primarily
405
      --  for constructing this definition in package System (see note above
406
      --  in Default_Bit_Order description). The is a static attribute.
407
 
408
      ---------------
409
      -- Stub_Type --
410
      ---------------
411
 
412
      Attribute_Stub_Type => True,
413
      --  The GNAT implementation of remote access-to-classwide types is
414
      --  organised as described in AARM E.4(20.t): a value of an RACW type
415
      --  (designating a remote object) is represented as a normal access
416
      --  value, pointing to a "stub" object which in turn contains the
417
      --  necessary information to contact the designated remote object. A
418
      --  call on any dispatching operation of such a stub object does the
419
      --  remote call, if necessary, using the information in the stub object
420
      --  to locate the target partition, etc.
421
      --
422
      --  For a prefix T that denotes a remote access-to-classwide type,
423
      --  T'Stub_Type denotes the type of the corresponding stub objects.
424
      --
425
      --  By construction, the layout of T'Stub_Type is identical to that of
426
      --  System.Partition_Interface.RACW_Stub_Type (see implementation notes
427
      --  in body of Exp_Dist).
428
 
429
      -----------------
430
      -- Target_Name --
431
      -----------------
432
 
433
      Attribute_Target_Name => True,
434
      --  Standard'Target_Name yields the string identifying the target for the
435
      --  compilation, taken from Sdefault.Target_Name.
436
 
437
      ----------------
438
      -- To_Address --
439
      ----------------
440
 
441
      Attribute_To_Address => True,
442
      --  System'To_Address (Address is the only permissible prefix) is a
443
      --  function that takes any integer value, and converts it into an
444
      --  address value. The semantics is to first convert the integer value to
445
      --  type Integer_Address according to normal conversion rules, and then
446
      --  to convert this to an address using the same semantics as the
447
      --  System.Storage_Elements.To_Address function. The important difference
448
      --  is that this is a static attribute so it can be used in
449
      --  initializations in preelaborate packages.
450
 
451
      ----------------
452
      -- Type_Class --
453
      ----------------
454
 
455
      Attribute_Type_Class => True,
456
      --  T'Type_Class for any type or subtype T yields the value of the type
457
      --  class for the full type of T. If T is a generic formal type, then the
458
      --  value is the value for the corresponding actual subtype. The value of
459
      --  this attribute is of type System.Aux_DEC.Type_Class, which has the
460
      --  following definition:
461
      --
462
      --    type Type_Class is
463
      --      (Type_Class_Enumeration,
464
      --       Type_Class_Integer,
465
      --       Type_Class_Fixed_Point,
466
      --       Type_Class_Floating_Point,
467
      --       Type_Class_Array,
468
      --       Type_Class_Record,
469
      --       Type_Class_Access,
470
      --       Type_Class_Task,
471
      --       Type_Class_Address);
472
      --
473
      --  Protected types yield the value Type_Class_Task, which thus applies
474
      --  to all concurrent types. This attribute is designed to be compatible
475
      --  with the DEC Ada attribute of the same name.
476
      --
477
      --  Note: if pragma Extend_System is used to merge the definitions of
478
      --  Aux_DEC into System, then the type Type_Class can be referenced
479
      --  as an entity within System, as can its enumeration literals.
480
 
481
      -----------------
482
      -- UET_Address --
483
      -----------------
484
 
485
      Attribute_UET_Address => True,
486
      --  Unit'UET_Address, where Unit is a program unit, yields the address
487
      --  of the unit exception table for the specified unit. This is only
488
      --  used in the internal implementation of exception handling. See the
489
      --  implementation of unit Ada.Exceptions for details on its use.
490
 
491
      ------------------------------
492
      -- Universal_Literal_String --
493
      ------------------------------
494
 
495
      Attribute_Universal_Literal_String => True,
496
      --  The prefix of 'Universal_Literal_String must be a named number. The
497
      --  static result is the string consisting of the characters of the
498
      --  number as defined in the original source. This allows the user
499
      --  program to access the actual text of named numbers without
500
      --  intermediate conversions and without the need to enclose the strings
501
      --  in quotes (which would preclude their use as numbers). This is used
502
      --  internally for the construction of values of the floating-point
503
      --  attributes from the file ttypef.ads, but may also be used by user
504
      --  programs.
505
 
506
      -------------------------
507
      -- Unrestricted_Access --
508
      -------------------------
509
 
510
      Attribute_Unrestricted_Access => True,
511
      --  The Unrestricted_Access attribute is similar to Access except that
512
      --  all accessibility and aliased view checks are omitted. This is very
513
      --  much a user-beware attribute. Basically its status is very similar
514
      --  to Address, for which it is a desirable replacement where the value
515
      --  desired is an access type. In other words, its effect is identical
516
      --  to first taking 'Address and then doing an unchecked conversion to
517
      --  a desired access type. Note that in GNAT, but not necessarily in
518
      --  other implementations, the use of static chains for inner level
519
      --  subprograms means that Unrestricted_Access applied to a subprogram
520
      --  yields a value that can be called as long as the subprogram is in
521
      --  scope (normal Ada 95 accessibility rules restrict this usage).
522
 
523
      ---------------
524
      -- VADS_Size --
525
      ---------------
526
 
527
      Attribute_VADS_Size => True,
528
      --  Typ'VADS_Size yields the Size value typically yielded by some Ada 83
529
      --  compilers. The differences between VADS_Size and Size is that for
530
      --  scalar types for which no Size has been specified, VADS_Size yields
531
      --  the Object_Size rather than the Value_Size. For example, while
532
      --  Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
533
      --  For all other types, Size and VADS_Size yield the same value.
534
 
535
      ----------------
536
      -- Value_Size --
537
      ----------------
538
 
539
      Attribute_Value_Size => True,
540
      --  Type'Value_Size is the number of bits required to represent value of
541
      --  the given subtype. It is the same as Type'Size, but, unlike Size, may
542
      --  be set for non-first subtypes. See section in Einfo ("Handling of
543
      --  type'Size values") for further details.
544
 
545
      ---------------
546
      -- Word_Size --
547
      ---------------
548
 
549
      Attribute_Word_Size => True,
550
      --  Standard'Word_Size (Standard is the only permissible prefix)
551
      --  provides the value System.Word_Size, and is intended primarily
552
      --  for constructing this definition in package System (see note above
553
      --  in Default_Bit_Order description). This is a static attribute.
554
 
555
      others => False);
556
 
557
   -----------------
558
   -- Subprograms --
559
   -----------------
560
 
561
   procedure Analyze_Attribute (N : Node_Id);
562
   --  Performs bottom up semantic analysis of an attribute. Note that the
563
   --  parser has already checked that type returning attributes appear only
564
   --  in appropriate contexts (i.e. in subtype marks, or as prefixes for
565
   --  other attributes).
566
 
567
   function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
568
   --  Determine whether the name of an attribute reference categorizes its
569
   --  prefix as an lvalue. The following attributes fall under this bracket
570
   --  by directly or indirectly modifying their prefixes.
571
   --     Access
572
   --     Address
573
   --     Input
574
   --     Read
575
   --     Unchecked_Access
576
   --     Unrestricted_Access
577
 
578
   procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
579
   --  Performs type resolution of attribute. If the attribute yields a
580
   --  universal value, mark its type as that of the context. On the other
581
   --  hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
582
   --  the type as being the largest type of that class that can be used at
583
   --  run-time. This is correct since either the value gets folded (in which
584
   --  case it doesn't matter what type of the class we give if, since the
585
   --  folding uses universal arithmetic anyway) or it doesn't get folded (in
586
   --  which case it is going to be dealt with at runtime, and the largest type
587
   --  is right).
588
 
589
   function Stream_Attribute_Available
590
     (Typ          : Entity_Id;
591
      Nam          : TSS_Name_Type;
592
      Partial_View : Entity_Id := Empty) return Boolean;
593
   --  For a limited type Typ, return True iff the given attribute is
594
   --  available. For Ada 05, availability is defined by 13.13.2(36/1). For Ada
595
   --  95, an attribute is considered to be available if it has been specified
596
   --  using an attribute definition clause for the type, or for its full view,
597
   --  or for an ancestor of either. Parameter Partial_View is used only
598
   --  internally, when checking for an attribute definition clause that is not
599
   --  visible (Ada 95 only).
600
 
601
end Sem_Attr;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.