1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ C H 1 3 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Einfo; use Einfo;
|
29 |
|
|
with Errout; use Errout;
|
30 |
|
|
with Exp_Tss; use Exp_Tss;
|
31 |
|
|
with Exp_Util; use Exp_Util;
|
32 |
|
|
with Lib; use Lib;
|
33 |
|
|
with Lib.Xref; use Lib.Xref;
|
34 |
|
|
with Namet; use Namet;
|
35 |
|
|
with Nlists; use Nlists;
|
36 |
|
|
with Nmake; use Nmake;
|
37 |
|
|
with Opt; use Opt;
|
38 |
|
|
with Restrict; use Restrict;
|
39 |
|
|
with Rident; use Rident;
|
40 |
|
|
with Rtsfind; use Rtsfind;
|
41 |
|
|
with Sem; use Sem;
|
42 |
|
|
with Sem_Aux; use Sem_Aux;
|
43 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
44 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
45 |
|
|
with Sem_Eval; use Sem_Eval;
|
46 |
|
|
with Sem_Res; use Sem_Res;
|
47 |
|
|
with Sem_Type; use Sem_Type;
|
48 |
|
|
with Sem_Util; use Sem_Util;
|
49 |
|
|
with Sem_Warn; use Sem_Warn;
|
50 |
|
|
with Snames; use Snames;
|
51 |
|
|
with Stand; use Stand;
|
52 |
|
|
with Sinfo; use Sinfo;
|
53 |
|
|
with Table;
|
54 |
|
|
with Targparm; use Targparm;
|
55 |
|
|
with Ttypes; use Ttypes;
|
56 |
|
|
with Tbuild; use Tbuild;
|
57 |
|
|
with Urealp; use Urealp;
|
58 |
|
|
|
59 |
|
|
with GNAT.Heap_Sort_G;
|
60 |
|
|
|
61 |
|
|
package body Sem_Ch13 is
|
62 |
|
|
|
63 |
|
|
SSU : constant Pos := System_Storage_Unit;
|
64 |
|
|
-- Convenient short hand for commonly used constant
|
65 |
|
|
|
66 |
|
|
-----------------------
|
67 |
|
|
-- Local Subprograms --
|
68 |
|
|
-----------------------
|
69 |
|
|
|
70 |
|
|
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
|
71 |
|
|
-- This routine is called after setting the Esize of type entity Typ.
|
72 |
|
|
-- The purpose is to deal with the situation where an alignment has been
|
73 |
|
|
-- inherited from a derived type that is no longer appropriate for the
|
74 |
|
|
-- new Esize value. In this case, we reset the Alignment to unknown.
|
75 |
|
|
|
76 |
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
|
77 |
|
|
-- Given two entities for record components or discriminants, checks
|
78 |
|
|
-- if they have overlapping component clauses and issues errors if so.
|
79 |
|
|
|
80 |
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint;
|
81 |
|
|
-- Given the expression for an alignment value, returns the corresponding
|
82 |
|
|
-- Uint value. If the value is inappropriate, then error messages are
|
83 |
|
|
-- posted as required, and a value of No_Uint is returned.
|
84 |
|
|
|
85 |
|
|
function Is_Operational_Item (N : Node_Id) return Boolean;
|
86 |
|
|
-- A specification for a stream attribute is allowed before the full
|
87 |
|
|
-- type is declared, as explained in AI-00137 and the corrigendum.
|
88 |
|
|
-- Attributes that do not specify a representation characteristic are
|
89 |
|
|
-- operational attributes.
|
90 |
|
|
|
91 |
|
|
procedure New_Stream_Subprogram
|
92 |
|
|
(N : Node_Id;
|
93 |
|
|
Ent : Entity_Id;
|
94 |
|
|
Subp : Entity_Id;
|
95 |
|
|
Nam : TSS_Name_Type);
|
96 |
|
|
-- Create a subprogram renaming of a given stream attribute to the
|
97 |
|
|
-- designated subprogram and then in the tagged case, provide this as a
|
98 |
|
|
-- primitive operation, or in the non-tagged case make an appropriate TSS
|
99 |
|
|
-- entry. This is more properly an expansion activity than just semantics,
|
100 |
|
|
-- but the presence of user-defined stream functions for limited types is a
|
101 |
|
|
-- legality check, which is why this takes place here rather than in
|
102 |
|
|
-- exp_ch13, where it was previously. Nam indicates the name of the TSS
|
103 |
|
|
-- function to be generated.
|
104 |
|
|
--
|
105 |
|
|
-- To avoid elaboration anomalies with freeze nodes, for untagged types
|
106 |
|
|
-- we generate both a subprogram declaration and a subprogram renaming
|
107 |
|
|
-- declaration, so that the attribute specification is handled as a
|
108 |
|
|
-- renaming_as_body. For tagged types, the specification is one of the
|
109 |
|
|
-- primitive specs.
|
110 |
|
|
|
111 |
|
|
----------------------------------------------
|
112 |
|
|
-- Table for Validate_Unchecked_Conversions --
|
113 |
|
|
----------------------------------------------
|
114 |
|
|
|
115 |
|
|
-- The following table collects unchecked conversions for validation.
|
116 |
|
|
-- Entries are made by Validate_Unchecked_Conversion and then the
|
117 |
|
|
-- call to Validate_Unchecked_Conversions does the actual error
|
118 |
|
|
-- checking and posting of warnings. The reason for this delayed
|
119 |
|
|
-- processing is to take advantage of back-annotations of size and
|
120 |
|
|
-- alignment values performed by the back end.
|
121 |
|
|
|
122 |
|
|
-- Note: the reason we store a Source_Ptr value instead of a Node_Id
|
123 |
|
|
-- is that by the time Validate_Unchecked_Conversions is called, Sprint
|
124 |
|
|
-- will already have modified all Sloc values if the -gnatD option is set.
|
125 |
|
|
|
126 |
|
|
type UC_Entry is record
|
127 |
|
|
Eloc : Source_Ptr; -- node used for posting warnings
|
128 |
|
|
Source : Entity_Id; -- source type for unchecked conversion
|
129 |
|
|
Target : Entity_Id; -- target type for unchecked conversion
|
130 |
|
|
end record;
|
131 |
|
|
|
132 |
|
|
package Unchecked_Conversions is new Table.Table (
|
133 |
|
|
Table_Component_Type => UC_Entry,
|
134 |
|
|
Table_Index_Type => Int,
|
135 |
|
|
Table_Low_Bound => 1,
|
136 |
|
|
Table_Initial => 50,
|
137 |
|
|
Table_Increment => 200,
|
138 |
|
|
Table_Name => "Unchecked_Conversions");
|
139 |
|
|
|
140 |
|
|
----------------------------------------
|
141 |
|
|
-- Table for Validate_Address_Clauses --
|
142 |
|
|
----------------------------------------
|
143 |
|
|
|
144 |
|
|
-- If an address clause has the form
|
145 |
|
|
|
146 |
|
|
-- for X'Address use Expr
|
147 |
|
|
|
148 |
|
|
-- where Expr is of the form Y'Address or recursively is a reference
|
149 |
|
|
-- to a constant of either of these forms, and X and Y are entities of
|
150 |
|
|
-- objects, then if Y has a smaller alignment than X, that merits a
|
151 |
|
|
-- warning about possible bad alignment. The following table collects
|
152 |
|
|
-- address clauses of this kind. We put these in a table so that they
|
153 |
|
|
-- can be checked after the back end has completed annotation of the
|
154 |
|
|
-- alignments of objects, since we can catch more cases that way.
|
155 |
|
|
|
156 |
|
|
type Address_Clause_Check_Record is record
|
157 |
|
|
N : Node_Id;
|
158 |
|
|
-- The address clause
|
159 |
|
|
|
160 |
|
|
X : Entity_Id;
|
161 |
|
|
-- The entity of the object overlaying Y
|
162 |
|
|
|
163 |
|
|
Y : Entity_Id;
|
164 |
|
|
-- The entity of the object being overlaid
|
165 |
|
|
|
166 |
|
|
Off : Boolean;
|
167 |
|
|
-- Whether the address is offseted within Y
|
168 |
|
|
end record;
|
169 |
|
|
|
170 |
|
|
package Address_Clause_Checks is new Table.Table (
|
171 |
|
|
Table_Component_Type => Address_Clause_Check_Record,
|
172 |
|
|
Table_Index_Type => Int,
|
173 |
|
|
Table_Low_Bound => 1,
|
174 |
|
|
Table_Initial => 20,
|
175 |
|
|
Table_Increment => 200,
|
176 |
|
|
Table_Name => "Address_Clause_Checks");
|
177 |
|
|
|
178 |
|
|
-----------------------------------------
|
179 |
|
|
-- Adjust_Record_For_Reverse_Bit_Order --
|
180 |
|
|
-----------------------------------------
|
181 |
|
|
|
182 |
|
|
procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
|
183 |
|
|
Max_Machine_Scalar_Size : constant Uint :=
|
184 |
|
|
UI_From_Int
|
185 |
|
|
(Standard_Long_Long_Integer_Size);
|
186 |
|
|
-- We use this as the maximum machine scalar size in the sense of AI-133
|
187 |
|
|
|
188 |
|
|
Num_CC : Natural;
|
189 |
|
|
Comp : Entity_Id;
|
190 |
|
|
SSU : constant Uint := UI_From_Int (System_Storage_Unit);
|
191 |
|
|
|
192 |
|
|
begin
|
193 |
|
|
-- This first loop through components does two things. First it deals
|
194 |
|
|
-- with the case of components with component clauses whose length is
|
195 |
|
|
-- greater than the maximum machine scalar size (either accepting them
|
196 |
|
|
-- or rejecting as needed). Second, it counts the number of components
|
197 |
|
|
-- with component clauses whose length does not exceed this maximum for
|
198 |
|
|
-- later processing.
|
199 |
|
|
|
200 |
|
|
Num_CC := 0;
|
201 |
|
|
Comp := First_Component_Or_Discriminant (R);
|
202 |
|
|
while Present (Comp) loop
|
203 |
|
|
declare
|
204 |
|
|
CC : constant Node_Id := Component_Clause (Comp);
|
205 |
|
|
|
206 |
|
|
begin
|
207 |
|
|
if Present (CC) then
|
208 |
|
|
declare
|
209 |
|
|
Fbit : constant Uint := Static_Integer (First_Bit (CC));
|
210 |
|
|
|
211 |
|
|
begin
|
212 |
|
|
-- Case of component with size > max machine scalar
|
213 |
|
|
|
214 |
|
|
if Esize (Comp) > Max_Machine_Scalar_Size then
|
215 |
|
|
|
216 |
|
|
-- Must begin on byte boundary
|
217 |
|
|
|
218 |
|
|
if Fbit mod SSU /= 0 then
|
219 |
|
|
Error_Msg_N
|
220 |
|
|
("illegal first bit value for reverse bit order",
|
221 |
|
|
First_Bit (CC));
|
222 |
|
|
Error_Msg_Uint_1 := SSU;
|
223 |
|
|
Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
|
224 |
|
|
|
225 |
|
|
Error_Msg_N
|
226 |
|
|
("\must be a multiple of ^ if size greater than ^",
|
227 |
|
|
First_Bit (CC));
|
228 |
|
|
|
229 |
|
|
-- Must end on byte boundary
|
230 |
|
|
|
231 |
|
|
elsif Esize (Comp) mod SSU /= 0 then
|
232 |
|
|
Error_Msg_N
|
233 |
|
|
("illegal last bit value for reverse bit order",
|
234 |
|
|
Last_Bit (CC));
|
235 |
|
|
Error_Msg_Uint_1 := SSU;
|
236 |
|
|
Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
|
237 |
|
|
|
238 |
|
|
Error_Msg_N
|
239 |
|
|
("\must be a multiple of ^ if size greater than ^",
|
240 |
|
|
Last_Bit (CC));
|
241 |
|
|
|
242 |
|
|
-- OK, give warning if enabled
|
243 |
|
|
|
244 |
|
|
elsif Warn_On_Reverse_Bit_Order then
|
245 |
|
|
Error_Msg_N
|
246 |
|
|
("multi-byte field specified with non-standard"
|
247 |
|
|
& " Bit_Order?", CC);
|
248 |
|
|
|
249 |
|
|
if Bytes_Big_Endian then
|
250 |
|
|
Error_Msg_N
|
251 |
|
|
("\bytes are not reversed "
|
252 |
|
|
& "(component is big-endian)?", CC);
|
253 |
|
|
else
|
254 |
|
|
Error_Msg_N
|
255 |
|
|
("\bytes are not reversed "
|
256 |
|
|
& "(component is little-endian)?", CC);
|
257 |
|
|
end if;
|
258 |
|
|
end if;
|
259 |
|
|
|
260 |
|
|
-- Case where size is not greater than max machine
|
261 |
|
|
-- scalar. For now, we just count these.
|
262 |
|
|
|
263 |
|
|
else
|
264 |
|
|
Num_CC := Num_CC + 1;
|
265 |
|
|
end if;
|
266 |
|
|
end;
|
267 |
|
|
end if;
|
268 |
|
|
end;
|
269 |
|
|
|
270 |
|
|
Next_Component_Or_Discriminant (Comp);
|
271 |
|
|
end loop;
|
272 |
|
|
|
273 |
|
|
-- We need to sort the component clauses on the basis of the Position
|
274 |
|
|
-- values in the clause, so we can group clauses with the same Position.
|
275 |
|
|
-- together to determine the relevant machine scalar size.
|
276 |
|
|
|
277 |
|
|
declare
|
278 |
|
|
Comps : array (0 .. Num_CC) of Entity_Id;
|
279 |
|
|
-- Array to collect component and discriminant entities. The data
|
280 |
|
|
-- starts at index 1, the 0'th entry is for the sort routine.
|
281 |
|
|
|
282 |
|
|
function CP_Lt (Op1, Op2 : Natural) return Boolean;
|
283 |
|
|
-- Compare routine for Sort
|
284 |
|
|
|
285 |
|
|
procedure CP_Move (From : Natural; To : Natural);
|
286 |
|
|
-- Move routine for Sort
|
287 |
|
|
|
288 |
|
|
package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
|
289 |
|
|
|
290 |
|
|
Start : Natural;
|
291 |
|
|
Stop : Natural;
|
292 |
|
|
-- Start and stop positions in component list of set of components
|
293 |
|
|
-- with the same starting position (that constitute components in
|
294 |
|
|
-- a single machine scalar).
|
295 |
|
|
|
296 |
|
|
MaxL : Uint;
|
297 |
|
|
-- Maximum last bit value of any component in this set
|
298 |
|
|
|
299 |
|
|
MSS : Uint;
|
300 |
|
|
-- Corresponding machine scalar size
|
301 |
|
|
|
302 |
|
|
-----------
|
303 |
|
|
-- CP_Lt --
|
304 |
|
|
-----------
|
305 |
|
|
|
306 |
|
|
function CP_Lt (Op1, Op2 : Natural) return Boolean is
|
307 |
|
|
begin
|
308 |
|
|
return Position (Component_Clause (Comps (Op1))) <
|
309 |
|
|
Position (Component_Clause (Comps (Op2)));
|
310 |
|
|
end CP_Lt;
|
311 |
|
|
|
312 |
|
|
-------------
|
313 |
|
|
-- CP_Move --
|
314 |
|
|
-------------
|
315 |
|
|
|
316 |
|
|
procedure CP_Move (From : Natural; To : Natural) is
|
317 |
|
|
begin
|
318 |
|
|
Comps (To) := Comps (From);
|
319 |
|
|
end CP_Move;
|
320 |
|
|
|
321 |
|
|
begin
|
322 |
|
|
-- Collect the component clauses
|
323 |
|
|
|
324 |
|
|
Num_CC := 0;
|
325 |
|
|
Comp := First_Component_Or_Discriminant (R);
|
326 |
|
|
while Present (Comp) loop
|
327 |
|
|
if Present (Component_Clause (Comp))
|
328 |
|
|
and then Esize (Comp) <= Max_Machine_Scalar_Size
|
329 |
|
|
then
|
330 |
|
|
Num_CC := Num_CC + 1;
|
331 |
|
|
Comps (Num_CC) := Comp;
|
332 |
|
|
end if;
|
333 |
|
|
|
334 |
|
|
Next_Component_Or_Discriminant (Comp);
|
335 |
|
|
end loop;
|
336 |
|
|
|
337 |
|
|
-- Sort by ascending position number
|
338 |
|
|
|
339 |
|
|
Sorting.Sort (Num_CC);
|
340 |
|
|
|
341 |
|
|
-- We now have all the components whose size does not exceed the max
|
342 |
|
|
-- machine scalar value, sorted by starting position. In this loop
|
343 |
|
|
-- we gather groups of clauses starting at the same position, to
|
344 |
|
|
-- process them in accordance with Ada 2005 AI-133.
|
345 |
|
|
|
346 |
|
|
Stop := 0;
|
347 |
|
|
while Stop < Num_CC loop
|
348 |
|
|
Start := Stop + 1;
|
349 |
|
|
Stop := Start;
|
350 |
|
|
MaxL :=
|
351 |
|
|
Static_Integer (Last_Bit (Component_Clause (Comps (Start))));
|
352 |
|
|
while Stop < Num_CC loop
|
353 |
|
|
if Static_Integer
|
354 |
|
|
(Position (Component_Clause (Comps (Stop + 1)))) =
|
355 |
|
|
Static_Integer
|
356 |
|
|
(Position (Component_Clause (Comps (Stop))))
|
357 |
|
|
then
|
358 |
|
|
Stop := Stop + 1;
|
359 |
|
|
MaxL :=
|
360 |
|
|
UI_Max
|
361 |
|
|
(MaxL,
|
362 |
|
|
Static_Integer
|
363 |
|
|
(Last_Bit (Component_Clause (Comps (Stop)))));
|
364 |
|
|
else
|
365 |
|
|
exit;
|
366 |
|
|
end if;
|
367 |
|
|
end loop;
|
368 |
|
|
|
369 |
|
|
-- Now we have a group of component clauses from Start to Stop
|
370 |
|
|
-- whose positions are identical, and MaxL is the maximum last bit
|
371 |
|
|
-- value of any of these components.
|
372 |
|
|
|
373 |
|
|
-- We need to determine the corresponding machine scalar size.
|
374 |
|
|
-- This loop assumes that machine scalar sizes are even, and that
|
375 |
|
|
-- each possible machine scalar has twice as many bits as the
|
376 |
|
|
-- next smaller one.
|
377 |
|
|
|
378 |
|
|
MSS := Max_Machine_Scalar_Size;
|
379 |
|
|
while MSS mod 2 = 0
|
380 |
|
|
and then (MSS / 2) >= SSU
|
381 |
|
|
and then (MSS / 2) > MaxL
|
382 |
|
|
loop
|
383 |
|
|
MSS := MSS / 2;
|
384 |
|
|
end loop;
|
385 |
|
|
|
386 |
|
|
-- Here is where we fix up the Component_Bit_Offset value to
|
387 |
|
|
-- account for the reverse bit order. Some examples of what needs
|
388 |
|
|
-- to be done for the case of a machine scalar size of 8 are:
|
389 |
|
|
|
390 |
|
|
-- First_Bit .. Last_Bit Component_Bit_Offset
|
391 |
|
|
-- old new old new
|
392 |
|
|
|
393 |
|
|
-- 0 .. 0 7 .. 7 0 7
|
394 |
|
|
-- 0 .. 1 6 .. 7 0 6
|
395 |
|
|
-- 0 .. 2 5 .. 7 0 5
|
396 |
|
|
-- 0 .. 7 0 .. 7 0 4
|
397 |
|
|
|
398 |
|
|
-- 1 .. 1 6 .. 6 1 6
|
399 |
|
|
-- 1 .. 4 3 .. 6 1 3
|
400 |
|
|
-- 4 .. 7 0 .. 3 4 0
|
401 |
|
|
|
402 |
|
|
-- The general rule is that the first bit is obtained by
|
403 |
|
|
-- subtracting the old ending bit from machine scalar size - 1.
|
404 |
|
|
|
405 |
|
|
for C in Start .. Stop loop
|
406 |
|
|
declare
|
407 |
|
|
Comp : constant Entity_Id := Comps (C);
|
408 |
|
|
CC : constant Node_Id := Component_Clause (Comp);
|
409 |
|
|
LB : constant Uint := Static_Integer (Last_Bit (CC));
|
410 |
|
|
NFB : constant Uint := MSS - Uint_1 - LB;
|
411 |
|
|
NLB : constant Uint := NFB + Esize (Comp) - 1;
|
412 |
|
|
Pos : constant Uint := Static_Integer (Position (CC));
|
413 |
|
|
|
414 |
|
|
begin
|
415 |
|
|
if Warn_On_Reverse_Bit_Order then
|
416 |
|
|
Error_Msg_Uint_1 := MSS;
|
417 |
|
|
Error_Msg_N
|
418 |
|
|
("info: reverse bit order in machine " &
|
419 |
|
|
"scalar of length^?", First_Bit (CC));
|
420 |
|
|
Error_Msg_Uint_1 := NFB;
|
421 |
|
|
Error_Msg_Uint_2 := NLB;
|
422 |
|
|
|
423 |
|
|
if Bytes_Big_Endian then
|
424 |
|
|
Error_Msg_NE
|
425 |
|
|
("?\info: big-endian range for "
|
426 |
|
|
& "component & is ^ .. ^",
|
427 |
|
|
First_Bit (CC), Comp);
|
428 |
|
|
else
|
429 |
|
|
Error_Msg_NE
|
430 |
|
|
("?\info: little-endian range "
|
431 |
|
|
& "for component & is ^ .. ^",
|
432 |
|
|
First_Bit (CC), Comp);
|
433 |
|
|
end if;
|
434 |
|
|
end if;
|
435 |
|
|
|
436 |
|
|
Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
|
437 |
|
|
Set_Normalized_First_Bit (Comp, NFB mod SSU);
|
438 |
|
|
end;
|
439 |
|
|
end loop;
|
440 |
|
|
end loop;
|
441 |
|
|
end;
|
442 |
|
|
end Adjust_Record_For_Reverse_Bit_Order;
|
443 |
|
|
|
444 |
|
|
--------------------------------------
|
445 |
|
|
-- Alignment_Check_For_Esize_Change --
|
446 |
|
|
--------------------------------------
|
447 |
|
|
|
448 |
|
|
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
|
449 |
|
|
begin
|
450 |
|
|
-- If the alignment is known, and not set by a rep clause, and is
|
451 |
|
|
-- inconsistent with the size being set, then reset it to unknown,
|
452 |
|
|
-- we assume in this case that the size overrides the inherited
|
453 |
|
|
-- alignment, and that the alignment must be recomputed.
|
454 |
|
|
|
455 |
|
|
if Known_Alignment (Typ)
|
456 |
|
|
and then not Has_Alignment_Clause (Typ)
|
457 |
|
|
and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
|
458 |
|
|
then
|
459 |
|
|
Init_Alignment (Typ);
|
460 |
|
|
end if;
|
461 |
|
|
end Alignment_Check_For_Esize_Change;
|
462 |
|
|
|
463 |
|
|
-----------------------
|
464 |
|
|
-- Analyze_At_Clause --
|
465 |
|
|
-----------------------
|
466 |
|
|
|
467 |
|
|
-- An at clause is replaced by the corresponding Address attribute
|
468 |
|
|
-- definition clause that is the preferred approach in Ada 95.
|
469 |
|
|
|
470 |
|
|
procedure Analyze_At_Clause (N : Node_Id) is
|
471 |
|
|
CS : constant Boolean := Comes_From_Source (N);
|
472 |
|
|
|
473 |
|
|
begin
|
474 |
|
|
-- This is an obsolescent feature
|
475 |
|
|
|
476 |
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
477 |
|
|
|
478 |
|
|
if Warn_On_Obsolescent_Feature then
|
479 |
|
|
Error_Msg_N
|
480 |
|
|
("at clause is an obsolescent feature (RM J.7(2))?", N);
|
481 |
|
|
Error_Msg_N
|
482 |
|
|
("\use address attribute definition clause instead?", N);
|
483 |
|
|
end if;
|
484 |
|
|
|
485 |
|
|
-- Rewrite as address clause
|
486 |
|
|
|
487 |
|
|
Rewrite (N,
|
488 |
|
|
Make_Attribute_Definition_Clause (Sloc (N),
|
489 |
|
|
Name => Identifier (N),
|
490 |
|
|
Chars => Name_Address,
|
491 |
|
|
Expression => Expression (N)));
|
492 |
|
|
|
493 |
|
|
-- We preserve Comes_From_Source, since logically the clause still
|
494 |
|
|
-- comes from the source program even though it is changed in form.
|
495 |
|
|
|
496 |
|
|
Set_Comes_From_Source (N, CS);
|
497 |
|
|
|
498 |
|
|
-- Analyze rewritten clause
|
499 |
|
|
|
500 |
|
|
Analyze_Attribute_Definition_Clause (N);
|
501 |
|
|
end Analyze_At_Clause;
|
502 |
|
|
|
503 |
|
|
-----------------------------------------
|
504 |
|
|
-- Analyze_Attribute_Definition_Clause --
|
505 |
|
|
-----------------------------------------
|
506 |
|
|
|
507 |
|
|
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
|
508 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
509 |
|
|
Nam : constant Node_Id := Name (N);
|
510 |
|
|
Attr : constant Name_Id := Chars (N);
|
511 |
|
|
Expr : constant Node_Id := Expression (N);
|
512 |
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
|
513 |
|
|
Ent : Entity_Id;
|
514 |
|
|
U_Ent : Entity_Id;
|
515 |
|
|
|
516 |
|
|
FOnly : Boolean := False;
|
517 |
|
|
-- Reset to True for subtype specific attribute (Alignment, Size)
|
518 |
|
|
-- and for stream attributes, i.e. those cases where in the call
|
519 |
|
|
-- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
|
520 |
|
|
-- rules are checked. Note that the case of stream attributes is not
|
521 |
|
|
-- clear from the RM, but see AI95-00137. Also, the RM seems to
|
522 |
|
|
-- disallow Storage_Size for derived task types, but that is also
|
523 |
|
|
-- clearly unintentional.
|
524 |
|
|
|
525 |
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
|
526 |
|
|
-- Common processing for 'Read, 'Write, 'Input and 'Output attribute
|
527 |
|
|
-- definition clauses.
|
528 |
|
|
|
529 |
|
|
-----------------------------------
|
530 |
|
|
-- Analyze_Stream_TSS_Definition --
|
531 |
|
|
-----------------------------------
|
532 |
|
|
|
533 |
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
|
534 |
|
|
Subp : Entity_Id := Empty;
|
535 |
|
|
I : Interp_Index;
|
536 |
|
|
It : Interp;
|
537 |
|
|
Pnam : Entity_Id;
|
538 |
|
|
|
539 |
|
|
Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
|
540 |
|
|
|
541 |
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
|
542 |
|
|
-- Return true if the entity is a subprogram with an appropriate
|
543 |
|
|
-- profile for the attribute being defined.
|
544 |
|
|
|
545 |
|
|
----------------------
|
546 |
|
|
-- Has_Good_Profile --
|
547 |
|
|
----------------------
|
548 |
|
|
|
549 |
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
|
550 |
|
|
F : Entity_Id;
|
551 |
|
|
Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
|
552 |
|
|
Expected_Ekind : constant array (Boolean) of Entity_Kind :=
|
553 |
|
|
(False => E_Procedure, True => E_Function);
|
554 |
|
|
Typ : Entity_Id;
|
555 |
|
|
|
556 |
|
|
begin
|
557 |
|
|
if Ekind (Subp) /= Expected_Ekind (Is_Function) then
|
558 |
|
|
return False;
|
559 |
|
|
end if;
|
560 |
|
|
|
561 |
|
|
F := First_Formal (Subp);
|
562 |
|
|
|
563 |
|
|
if No (F)
|
564 |
|
|
or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
|
565 |
|
|
or else Designated_Type (Etype (F)) /=
|
566 |
|
|
Class_Wide_Type (RTE (RE_Root_Stream_Type))
|
567 |
|
|
then
|
568 |
|
|
return False;
|
569 |
|
|
end if;
|
570 |
|
|
|
571 |
|
|
if not Is_Function then
|
572 |
|
|
Next_Formal (F);
|
573 |
|
|
|
574 |
|
|
declare
|
575 |
|
|
Expected_Mode : constant array (Boolean) of Entity_Kind :=
|
576 |
|
|
(False => E_In_Parameter,
|
577 |
|
|
True => E_Out_Parameter);
|
578 |
|
|
begin
|
579 |
|
|
if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
|
580 |
|
|
return False;
|
581 |
|
|
end if;
|
582 |
|
|
end;
|
583 |
|
|
|
584 |
|
|
Typ := Etype (F);
|
585 |
|
|
|
586 |
|
|
else
|
587 |
|
|
Typ := Etype (Subp);
|
588 |
|
|
end if;
|
589 |
|
|
|
590 |
|
|
return Base_Type (Typ) = Base_Type (Ent)
|
591 |
|
|
and then No (Next_Formal (F));
|
592 |
|
|
end Has_Good_Profile;
|
593 |
|
|
|
594 |
|
|
-- Start of processing for Analyze_Stream_TSS_Definition
|
595 |
|
|
|
596 |
|
|
begin
|
597 |
|
|
FOnly := True;
|
598 |
|
|
|
599 |
|
|
if not Is_Type (U_Ent) then
|
600 |
|
|
Error_Msg_N ("local name must be a subtype", Nam);
|
601 |
|
|
return;
|
602 |
|
|
end if;
|
603 |
|
|
|
604 |
|
|
Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
|
605 |
|
|
|
606 |
|
|
-- If Pnam is present, it can be either inherited from an ancestor
|
607 |
|
|
-- type (in which case it is legal to redefine it for this type), or
|
608 |
|
|
-- be a previous definition of the attribute for the same type (in
|
609 |
|
|
-- which case it is illegal).
|
610 |
|
|
|
611 |
|
|
-- In the first case, it will have been analyzed already, and we
|
612 |
|
|
-- can check that its profile does not match the expected profile
|
613 |
|
|
-- for a stream attribute of U_Ent. In the second case, either Pnam
|
614 |
|
|
-- has been analyzed (and has the expected profile), or it has not
|
615 |
|
|
-- been analyzed yet (case of a type that has not been frozen yet
|
616 |
|
|
-- and for which the stream attribute has been set using Set_TSS).
|
617 |
|
|
|
618 |
|
|
if Present (Pnam)
|
619 |
|
|
and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
|
620 |
|
|
then
|
621 |
|
|
Error_Msg_Sloc := Sloc (Pnam);
|
622 |
|
|
Error_Msg_Name_1 := Attr;
|
623 |
|
|
Error_Msg_N ("% attribute already defined #", Nam);
|
624 |
|
|
return;
|
625 |
|
|
end if;
|
626 |
|
|
|
627 |
|
|
Analyze (Expr);
|
628 |
|
|
|
629 |
|
|
if Is_Entity_Name (Expr) then
|
630 |
|
|
if not Is_Overloaded (Expr) then
|
631 |
|
|
if Has_Good_Profile (Entity (Expr)) then
|
632 |
|
|
Subp := Entity (Expr);
|
633 |
|
|
end if;
|
634 |
|
|
|
635 |
|
|
else
|
636 |
|
|
Get_First_Interp (Expr, I, It);
|
637 |
|
|
while Present (It.Nam) loop
|
638 |
|
|
if Has_Good_Profile (It.Nam) then
|
639 |
|
|
Subp := It.Nam;
|
640 |
|
|
exit;
|
641 |
|
|
end if;
|
642 |
|
|
|
643 |
|
|
Get_Next_Interp (I, It);
|
644 |
|
|
end loop;
|
645 |
|
|
end if;
|
646 |
|
|
end if;
|
647 |
|
|
|
648 |
|
|
if Present (Subp) then
|
649 |
|
|
if Is_Abstract_Subprogram (Subp) then
|
650 |
|
|
Error_Msg_N ("stream subprogram must not be abstract", Expr);
|
651 |
|
|
return;
|
652 |
|
|
end if;
|
653 |
|
|
|
654 |
|
|
Set_Entity (Expr, Subp);
|
655 |
|
|
Set_Etype (Expr, Etype (Subp));
|
656 |
|
|
|
657 |
|
|
New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
|
658 |
|
|
|
659 |
|
|
else
|
660 |
|
|
Error_Msg_Name_1 := Attr;
|
661 |
|
|
Error_Msg_N ("incorrect expression for% attribute", Expr);
|
662 |
|
|
end if;
|
663 |
|
|
end Analyze_Stream_TSS_Definition;
|
664 |
|
|
|
665 |
|
|
-- Start of processing for Analyze_Attribute_Definition_Clause
|
666 |
|
|
|
667 |
|
|
begin
|
668 |
|
|
-- Process Ignore_Rep_Clauses option
|
669 |
|
|
|
670 |
|
|
if Ignore_Rep_Clauses then
|
671 |
|
|
case Id is
|
672 |
|
|
|
673 |
|
|
-- The following should be ignored. They do not affect legality
|
674 |
|
|
-- and may be target dependent. The basic idea of -gnatI is to
|
675 |
|
|
-- ignore any rep clauses that may be target dependent but do not
|
676 |
|
|
-- affect legality (except possibly to be rejected because they
|
677 |
|
|
-- are incompatible with the compilation target).
|
678 |
|
|
|
679 |
|
|
when Attribute_Alignment |
|
680 |
|
|
Attribute_Bit_Order |
|
681 |
|
|
Attribute_Component_Size |
|
682 |
|
|
Attribute_Machine_Radix |
|
683 |
|
|
Attribute_Object_Size |
|
684 |
|
|
Attribute_Size |
|
685 |
|
|
Attribute_Small |
|
686 |
|
|
Attribute_Stream_Size |
|
687 |
|
|
Attribute_Value_Size =>
|
688 |
|
|
|
689 |
|
|
Rewrite (N, Make_Null_Statement (Sloc (N)));
|
690 |
|
|
return;
|
691 |
|
|
|
692 |
|
|
-- The following should not be ignored, because in the first place
|
693 |
|
|
-- they are reasonably portable, and should not cause problems in
|
694 |
|
|
-- compiling code from another target, and also they do affect
|
695 |
|
|
-- legality, e.g. failing to provide a stream attribute for a
|
696 |
|
|
-- type may make a program illegal.
|
697 |
|
|
|
698 |
|
|
when Attribute_External_Tag |
|
699 |
|
|
Attribute_Input |
|
700 |
|
|
Attribute_Output |
|
701 |
|
|
Attribute_Read |
|
702 |
|
|
Attribute_Storage_Pool |
|
703 |
|
|
Attribute_Storage_Size |
|
704 |
|
|
Attribute_Write =>
|
705 |
|
|
null;
|
706 |
|
|
|
707 |
|
|
-- Other cases are errors, which will be caught below
|
708 |
|
|
|
709 |
|
|
when others =>
|
710 |
|
|
null;
|
711 |
|
|
end case;
|
712 |
|
|
end if;
|
713 |
|
|
|
714 |
|
|
Analyze (Nam);
|
715 |
|
|
Ent := Entity (Nam);
|
716 |
|
|
|
717 |
|
|
if Rep_Item_Too_Early (Ent, N) then
|
718 |
|
|
return;
|
719 |
|
|
end if;
|
720 |
|
|
|
721 |
|
|
-- Rep clause applies to full view of incomplete type or private type if
|
722 |
|
|
-- we have one (if not, this is a premature use of the type). However,
|
723 |
|
|
-- certain semantic checks need to be done on the specified entity (i.e.
|
724 |
|
|
-- the private view), so we save it in Ent.
|
725 |
|
|
|
726 |
|
|
if Is_Private_Type (Ent)
|
727 |
|
|
and then Is_Derived_Type (Ent)
|
728 |
|
|
and then not Is_Tagged_Type (Ent)
|
729 |
|
|
and then No (Full_View (Ent))
|
730 |
|
|
then
|
731 |
|
|
-- If this is a private type whose completion is a derivation from
|
732 |
|
|
-- another private type, there is no full view, and the attribute
|
733 |
|
|
-- belongs to the type itself, not its underlying parent.
|
734 |
|
|
|
735 |
|
|
U_Ent := Ent;
|
736 |
|
|
|
737 |
|
|
elsif Ekind (Ent) = E_Incomplete_Type then
|
738 |
|
|
|
739 |
|
|
-- The attribute applies to the full view, set the entity of the
|
740 |
|
|
-- attribute definition accordingly.
|
741 |
|
|
|
742 |
|
|
Ent := Underlying_Type (Ent);
|
743 |
|
|
U_Ent := Ent;
|
744 |
|
|
Set_Entity (Nam, Ent);
|
745 |
|
|
|
746 |
|
|
else
|
747 |
|
|
U_Ent := Underlying_Type (Ent);
|
748 |
|
|
end if;
|
749 |
|
|
|
750 |
|
|
-- Complete other routine error checks
|
751 |
|
|
|
752 |
|
|
if Etype (Nam) = Any_Type then
|
753 |
|
|
return;
|
754 |
|
|
|
755 |
|
|
elsif Scope (Ent) /= Current_Scope then
|
756 |
|
|
Error_Msg_N ("entity must be declared in this scope", Nam);
|
757 |
|
|
return;
|
758 |
|
|
|
759 |
|
|
elsif No (U_Ent) then
|
760 |
|
|
U_Ent := Ent;
|
761 |
|
|
|
762 |
|
|
elsif Is_Type (U_Ent)
|
763 |
|
|
and then not Is_First_Subtype (U_Ent)
|
764 |
|
|
and then Id /= Attribute_Object_Size
|
765 |
|
|
and then Id /= Attribute_Value_Size
|
766 |
|
|
and then not From_At_Mod (N)
|
767 |
|
|
then
|
768 |
|
|
Error_Msg_N ("cannot specify attribute for subtype", Nam);
|
769 |
|
|
return;
|
770 |
|
|
end if;
|
771 |
|
|
|
772 |
|
|
-- Switch on particular attribute
|
773 |
|
|
|
774 |
|
|
case Id is
|
775 |
|
|
|
776 |
|
|
-------------
|
777 |
|
|
-- Address --
|
778 |
|
|
-------------
|
779 |
|
|
|
780 |
|
|
-- Address attribute definition clause
|
781 |
|
|
|
782 |
|
|
when Attribute_Address => Address : begin
|
783 |
|
|
|
784 |
|
|
-- A little error check, catch for X'Address use X'Address;
|
785 |
|
|
|
786 |
|
|
if Nkind (Nam) = N_Identifier
|
787 |
|
|
and then Nkind (Expr) = N_Attribute_Reference
|
788 |
|
|
and then Attribute_Name (Expr) = Name_Address
|
789 |
|
|
and then Nkind (Prefix (Expr)) = N_Identifier
|
790 |
|
|
and then Chars (Nam) = Chars (Prefix (Expr))
|
791 |
|
|
then
|
792 |
|
|
Error_Msg_NE
|
793 |
|
|
("address for & is self-referencing", Prefix (Expr), Ent);
|
794 |
|
|
return;
|
795 |
|
|
end if;
|
796 |
|
|
|
797 |
|
|
-- Not that special case, carry on with analysis of expression
|
798 |
|
|
|
799 |
|
|
Analyze_And_Resolve (Expr, RTE (RE_Address));
|
800 |
|
|
|
801 |
|
|
-- Even when ignoring rep clauses we need to indicate that the
|
802 |
|
|
-- entity has an address clause and thus it is legal to declare
|
803 |
|
|
-- it imported.
|
804 |
|
|
|
805 |
|
|
if Ignore_Rep_Clauses then
|
806 |
|
|
if Ekind (U_Ent) = E_Variable
|
807 |
|
|
or else Ekind (U_Ent) = E_Constant
|
808 |
|
|
then
|
809 |
|
|
Record_Rep_Item (U_Ent, N);
|
810 |
|
|
end if;
|
811 |
|
|
|
812 |
|
|
return;
|
813 |
|
|
end if;
|
814 |
|
|
|
815 |
|
|
if Present (Address_Clause (U_Ent)) then
|
816 |
|
|
Error_Msg_N ("address already given for &", Nam);
|
817 |
|
|
|
818 |
|
|
-- Case of address clause for subprogram
|
819 |
|
|
|
820 |
|
|
elsif Is_Subprogram (U_Ent) then
|
821 |
|
|
if Has_Homonym (U_Ent) then
|
822 |
|
|
Error_Msg_N
|
823 |
|
|
("address clause cannot be given " &
|
824 |
|
|
"for overloaded subprogram",
|
825 |
|
|
Nam);
|
826 |
|
|
return;
|
827 |
|
|
end if;
|
828 |
|
|
|
829 |
|
|
-- For subprograms, all address clauses are permitted, and we
|
830 |
|
|
-- mark the subprogram as having a deferred freeze so that Gigi
|
831 |
|
|
-- will not elaborate it too soon.
|
832 |
|
|
|
833 |
|
|
-- Above needs more comments, what is too soon about???
|
834 |
|
|
|
835 |
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
836 |
|
|
|
837 |
|
|
-- Case of address clause for entry
|
838 |
|
|
|
839 |
|
|
elsif Ekind (U_Ent) = E_Entry then
|
840 |
|
|
if Nkind (Parent (N)) = N_Task_Body then
|
841 |
|
|
Error_Msg_N
|
842 |
|
|
("entry address must be specified in task spec", Nam);
|
843 |
|
|
return;
|
844 |
|
|
end if;
|
845 |
|
|
|
846 |
|
|
-- For entries, we require a constant address
|
847 |
|
|
|
848 |
|
|
Check_Constant_Address_Clause (Expr, U_Ent);
|
849 |
|
|
|
850 |
|
|
-- Special checks for task types
|
851 |
|
|
|
852 |
|
|
if Is_Task_Type (Scope (U_Ent))
|
853 |
|
|
and then Comes_From_Source (Scope (U_Ent))
|
854 |
|
|
then
|
855 |
|
|
Error_Msg_N
|
856 |
|
|
("?entry address declared for entry in task type", N);
|
857 |
|
|
Error_Msg_N
|
858 |
|
|
("\?only one task can be declared of this type", N);
|
859 |
|
|
end if;
|
860 |
|
|
|
861 |
|
|
-- Entry address clauses are obsolescent
|
862 |
|
|
|
863 |
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
864 |
|
|
|
865 |
|
|
if Warn_On_Obsolescent_Feature then
|
866 |
|
|
Error_Msg_N
|
867 |
|
|
("attaching interrupt to task entry is an " &
|
868 |
|
|
"obsolescent feature (RM J.7.1)?", N);
|
869 |
|
|
Error_Msg_N
|
870 |
|
|
("\use interrupt procedure instead?", N);
|
871 |
|
|
end if;
|
872 |
|
|
|
873 |
|
|
-- Case of an address clause for a controlled object which we
|
874 |
|
|
-- consider to be erroneous.
|
875 |
|
|
|
876 |
|
|
elsif Is_Controlled (Etype (U_Ent))
|
877 |
|
|
or else Has_Controlled_Component (Etype (U_Ent))
|
878 |
|
|
then
|
879 |
|
|
Error_Msg_NE
|
880 |
|
|
("?controlled object& must not be overlaid", Nam, U_Ent);
|
881 |
|
|
Error_Msg_N
|
882 |
|
|
("\?Program_Error will be raised at run time", Nam);
|
883 |
|
|
Insert_Action (Declaration_Node (U_Ent),
|
884 |
|
|
Make_Raise_Program_Error (Loc,
|
885 |
|
|
Reason => PE_Overlaid_Controlled_Object));
|
886 |
|
|
return;
|
887 |
|
|
|
888 |
|
|
-- Case of address clause for a (non-controlled) object
|
889 |
|
|
|
890 |
|
|
elsif
|
891 |
|
|
Ekind (U_Ent) = E_Variable
|
892 |
|
|
or else
|
893 |
|
|
Ekind (U_Ent) = E_Constant
|
894 |
|
|
then
|
895 |
|
|
declare
|
896 |
|
|
Expr : constant Node_Id := Expression (N);
|
897 |
|
|
O_Ent : Entity_Id;
|
898 |
|
|
Off : Boolean;
|
899 |
|
|
|
900 |
|
|
begin
|
901 |
|
|
-- Exported variables cannot have an address clause, because
|
902 |
|
|
-- this cancels the effect of the pragma Export.
|
903 |
|
|
|
904 |
|
|
if Is_Exported (U_Ent) then
|
905 |
|
|
Error_Msg_N
|
906 |
|
|
("cannot export object with address clause", Nam);
|
907 |
|
|
return;
|
908 |
|
|
end if;
|
909 |
|
|
|
910 |
|
|
Find_Overlaid_Entity (N, O_Ent, Off);
|
911 |
|
|
|
912 |
|
|
-- Overlaying controlled objects is erroneous
|
913 |
|
|
|
914 |
|
|
if Present (O_Ent)
|
915 |
|
|
and then (Has_Controlled_Component (Etype (O_Ent))
|
916 |
|
|
or else Is_Controlled (Etype (O_Ent)))
|
917 |
|
|
then
|
918 |
|
|
Error_Msg_N
|
919 |
|
|
("?cannot overlay with controlled object", Expr);
|
920 |
|
|
Error_Msg_N
|
921 |
|
|
("\?Program_Error will be raised at run time", Expr);
|
922 |
|
|
Insert_Action (Declaration_Node (U_Ent),
|
923 |
|
|
Make_Raise_Program_Error (Loc,
|
924 |
|
|
Reason => PE_Overlaid_Controlled_Object));
|
925 |
|
|
return;
|
926 |
|
|
|
927 |
|
|
elsif Present (O_Ent)
|
928 |
|
|
and then Ekind (U_Ent) = E_Constant
|
929 |
|
|
and then not Is_Constant_Object (O_Ent)
|
930 |
|
|
then
|
931 |
|
|
Error_Msg_N ("constant overlays a variable?", Expr);
|
932 |
|
|
|
933 |
|
|
elsif Present (Renamed_Object (U_Ent)) then
|
934 |
|
|
Error_Msg_N
|
935 |
|
|
("address clause not allowed"
|
936 |
|
|
& " for a renaming declaration (RM 13.1(6))", Nam);
|
937 |
|
|
return;
|
938 |
|
|
|
939 |
|
|
-- Imported variables can have an address clause, but then
|
940 |
|
|
-- the import is pretty meaningless except to suppress
|
941 |
|
|
-- initializations, so we do not need such variables to
|
942 |
|
|
-- be statically allocated (and in fact it causes trouble
|
943 |
|
|
-- if the address clause is a local value).
|
944 |
|
|
|
945 |
|
|
elsif Is_Imported (U_Ent) then
|
946 |
|
|
Set_Is_Statically_Allocated (U_Ent, False);
|
947 |
|
|
end if;
|
948 |
|
|
|
949 |
|
|
-- We mark a possible modification of a variable with an
|
950 |
|
|
-- address clause, since it is likely aliasing is occurring.
|
951 |
|
|
|
952 |
|
|
Note_Possible_Modification (Nam, Sure => False);
|
953 |
|
|
|
954 |
|
|
-- Here we are checking for explicit overlap of one variable
|
955 |
|
|
-- by another, and if we find this then mark the overlapped
|
956 |
|
|
-- variable as also being volatile to prevent unwanted
|
957 |
|
|
-- optimizations. This is a significant pessimization so
|
958 |
|
|
-- avoid it when there is an offset, i.e. when the object
|
959 |
|
|
-- is composite; they cannot be optimized easily anyway.
|
960 |
|
|
|
961 |
|
|
if Present (O_Ent)
|
962 |
|
|
and then Is_Object (O_Ent)
|
963 |
|
|
and then not Off
|
964 |
|
|
then
|
965 |
|
|
Set_Treat_As_Volatile (O_Ent);
|
966 |
|
|
end if;
|
967 |
|
|
|
968 |
|
|
-- Legality checks on the address clause for initialized
|
969 |
|
|
-- objects is deferred until the freeze point, because
|
970 |
|
|
-- a subsequent pragma might indicate that the object is
|
971 |
|
|
-- imported and thus not initialized.
|
972 |
|
|
|
973 |
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
974 |
|
|
|
975 |
|
|
-- If an initialization call has been generated for this
|
976 |
|
|
-- object, it needs to be deferred to after the freeze node
|
977 |
|
|
-- we have just now added, otherwise GIGI will see a
|
978 |
|
|
-- reference to the variable (as actual to the IP call)
|
979 |
|
|
-- before its definition.
|
980 |
|
|
|
981 |
|
|
declare
|
982 |
|
|
Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
|
983 |
|
|
begin
|
984 |
|
|
if Present (Init_Call) then
|
985 |
|
|
Remove (Init_Call);
|
986 |
|
|
Append_Freeze_Action (U_Ent, Init_Call);
|
987 |
|
|
end if;
|
988 |
|
|
end;
|
989 |
|
|
|
990 |
|
|
if Is_Exported (U_Ent) then
|
991 |
|
|
Error_Msg_N
|
992 |
|
|
("& cannot be exported if an address clause is given",
|
993 |
|
|
Nam);
|
994 |
|
|
Error_Msg_N
|
995 |
|
|
("\define and export a variable " &
|
996 |
|
|
"that holds its address instead",
|
997 |
|
|
Nam);
|
998 |
|
|
end if;
|
999 |
|
|
|
1000 |
|
|
-- Entity has delayed freeze, so we will generate an
|
1001 |
|
|
-- alignment check at the freeze point unless suppressed.
|
1002 |
|
|
|
1003 |
|
|
if not Range_Checks_Suppressed (U_Ent)
|
1004 |
|
|
and then not Alignment_Checks_Suppressed (U_Ent)
|
1005 |
|
|
then
|
1006 |
|
|
Set_Check_Address_Alignment (N);
|
1007 |
|
|
end if;
|
1008 |
|
|
|
1009 |
|
|
-- Kill the size check code, since we are not allocating
|
1010 |
|
|
-- the variable, it is somewhere else.
|
1011 |
|
|
|
1012 |
|
|
Kill_Size_Check_Code (U_Ent);
|
1013 |
|
|
|
1014 |
|
|
-- If the address clause is of the form:
|
1015 |
|
|
|
1016 |
|
|
-- for Y'Address use X'Address
|
1017 |
|
|
|
1018 |
|
|
-- or
|
1019 |
|
|
|
1020 |
|
|
-- Const : constant Address := X'Address;
|
1021 |
|
|
-- ...
|
1022 |
|
|
-- for Y'Address use Const;
|
1023 |
|
|
|
1024 |
|
|
-- then we make an entry in the table for checking the size
|
1025 |
|
|
-- and alignment of the overlaying variable. We defer this
|
1026 |
|
|
-- check till after code generation to take full advantage
|
1027 |
|
|
-- of the annotation done by the back end. This entry is
|
1028 |
|
|
-- only made if the address clause comes from source.
|
1029 |
|
|
|
1030 |
|
|
if Address_Clause_Overlay_Warnings
|
1031 |
|
|
and then Comes_From_Source (N)
|
1032 |
|
|
and then Present (O_Ent)
|
1033 |
|
|
and then Is_Object (O_Ent)
|
1034 |
|
|
then
|
1035 |
|
|
Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
|
1036 |
|
|
|
1037 |
|
|
-- If variable overlays a constant view, and we are
|
1038 |
|
|
-- warning on overlays, then mark the variable as
|
1039 |
|
|
-- overlaying a constant (we will give warnings later
|
1040 |
|
|
-- if this variable is assigned).
|
1041 |
|
|
|
1042 |
|
|
if Is_Constant_Object (O_Ent)
|
1043 |
|
|
and then Ekind (U_Ent) = E_Variable
|
1044 |
|
|
then
|
1045 |
|
|
Set_Overlays_Constant (U_Ent);
|
1046 |
|
|
end if;
|
1047 |
|
|
end if;
|
1048 |
|
|
end;
|
1049 |
|
|
|
1050 |
|
|
-- Not a valid entity for an address clause
|
1051 |
|
|
|
1052 |
|
|
else
|
1053 |
|
|
Error_Msg_N ("address cannot be given for &", Nam);
|
1054 |
|
|
end if;
|
1055 |
|
|
end Address;
|
1056 |
|
|
|
1057 |
|
|
---------------
|
1058 |
|
|
-- Alignment --
|
1059 |
|
|
---------------
|
1060 |
|
|
|
1061 |
|
|
-- Alignment attribute definition clause
|
1062 |
|
|
|
1063 |
|
|
when Attribute_Alignment => Alignment : declare
|
1064 |
|
|
Align : constant Uint := Get_Alignment_Value (Expr);
|
1065 |
|
|
|
1066 |
|
|
begin
|
1067 |
|
|
FOnly := True;
|
1068 |
|
|
|
1069 |
|
|
if not Is_Type (U_Ent)
|
1070 |
|
|
and then Ekind (U_Ent) /= E_Variable
|
1071 |
|
|
and then Ekind (U_Ent) /= E_Constant
|
1072 |
|
|
then
|
1073 |
|
|
Error_Msg_N ("alignment cannot be given for &", Nam);
|
1074 |
|
|
|
1075 |
|
|
elsif Has_Alignment_Clause (U_Ent) then
|
1076 |
|
|
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
|
1077 |
|
|
Error_Msg_N ("alignment clause previously given#", N);
|
1078 |
|
|
|
1079 |
|
|
elsif Align /= No_Uint then
|
1080 |
|
|
Set_Has_Alignment_Clause (U_Ent);
|
1081 |
|
|
Set_Alignment (U_Ent, Align);
|
1082 |
|
|
|
1083 |
|
|
-- For an array type, U_Ent is the first subtype. In that case,
|
1084 |
|
|
-- also set the alignment of the anonymous base type so that
|
1085 |
|
|
-- other subtypes (such as the itypes for aggregates of the
|
1086 |
|
|
-- type) also receive the expected alignment.
|
1087 |
|
|
|
1088 |
|
|
if Is_Array_Type (U_Ent) then
|
1089 |
|
|
Set_Alignment (Base_Type (U_Ent), Align);
|
1090 |
|
|
end if;
|
1091 |
|
|
end if;
|
1092 |
|
|
end Alignment;
|
1093 |
|
|
|
1094 |
|
|
---------------
|
1095 |
|
|
-- Bit_Order --
|
1096 |
|
|
---------------
|
1097 |
|
|
|
1098 |
|
|
-- Bit_Order attribute definition clause
|
1099 |
|
|
|
1100 |
|
|
when Attribute_Bit_Order => Bit_Order : declare
|
1101 |
|
|
begin
|
1102 |
|
|
if not Is_Record_Type (U_Ent) then
|
1103 |
|
|
Error_Msg_N
|
1104 |
|
|
("Bit_Order can only be defined for record type", Nam);
|
1105 |
|
|
|
1106 |
|
|
else
|
1107 |
|
|
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
|
1108 |
|
|
|
1109 |
|
|
if Etype (Expr) = Any_Type then
|
1110 |
|
|
return;
|
1111 |
|
|
|
1112 |
|
|
elsif not Is_Static_Expression (Expr) then
|
1113 |
|
|
Flag_Non_Static_Expr
|
1114 |
|
|
("Bit_Order requires static expression!", Expr);
|
1115 |
|
|
|
1116 |
|
|
else
|
1117 |
|
|
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
|
1118 |
|
|
Set_Reverse_Bit_Order (U_Ent, True);
|
1119 |
|
|
end if;
|
1120 |
|
|
end if;
|
1121 |
|
|
end if;
|
1122 |
|
|
end Bit_Order;
|
1123 |
|
|
|
1124 |
|
|
--------------------
|
1125 |
|
|
-- Component_Size --
|
1126 |
|
|
--------------------
|
1127 |
|
|
|
1128 |
|
|
-- Component_Size attribute definition clause
|
1129 |
|
|
|
1130 |
|
|
when Attribute_Component_Size => Component_Size_Case : declare
|
1131 |
|
|
Csize : constant Uint := Static_Integer (Expr);
|
1132 |
|
|
Btype : Entity_Id;
|
1133 |
|
|
Biased : Boolean;
|
1134 |
|
|
New_Ctyp : Entity_Id;
|
1135 |
|
|
Decl : Node_Id;
|
1136 |
|
|
|
1137 |
|
|
begin
|
1138 |
|
|
if not Is_Array_Type (U_Ent) then
|
1139 |
|
|
Error_Msg_N ("component size requires array type", Nam);
|
1140 |
|
|
return;
|
1141 |
|
|
end if;
|
1142 |
|
|
|
1143 |
|
|
Btype := Base_Type (U_Ent);
|
1144 |
|
|
|
1145 |
|
|
if Has_Component_Size_Clause (Btype) then
|
1146 |
|
|
Error_Msg_N
|
1147 |
|
|
("component size clause for& previously given", Nam);
|
1148 |
|
|
|
1149 |
|
|
elsif Csize /= No_Uint then
|
1150 |
|
|
Check_Size (Expr, Component_Type (Btype), Csize, Biased);
|
1151 |
|
|
|
1152 |
|
|
if Has_Aliased_Components (Btype)
|
1153 |
|
|
and then Csize < 32
|
1154 |
|
|
and then Csize /= 8
|
1155 |
|
|
and then Csize /= 16
|
1156 |
|
|
then
|
1157 |
|
|
Error_Msg_N
|
1158 |
|
|
("component size incorrect for aliased components", N);
|
1159 |
|
|
return;
|
1160 |
|
|
end if;
|
1161 |
|
|
|
1162 |
|
|
-- For the biased case, build a declaration for a subtype
|
1163 |
|
|
-- that will be used to represent the biased subtype that
|
1164 |
|
|
-- reflects the biased representation of components. We need
|
1165 |
|
|
-- this subtype to get proper conversions on referencing
|
1166 |
|
|
-- elements of the array. Note that component size clauses
|
1167 |
|
|
-- are ignored in VM mode.
|
1168 |
|
|
|
1169 |
|
|
if VM_Target = No_VM then
|
1170 |
|
|
if Biased then
|
1171 |
|
|
New_Ctyp :=
|
1172 |
|
|
Make_Defining_Identifier (Loc,
|
1173 |
|
|
Chars =>
|
1174 |
|
|
New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
|
1175 |
|
|
|
1176 |
|
|
Decl :=
|
1177 |
|
|
Make_Subtype_Declaration (Loc,
|
1178 |
|
|
Defining_Identifier => New_Ctyp,
|
1179 |
|
|
Subtype_Indication =>
|
1180 |
|
|
New_Occurrence_Of (Component_Type (Btype), Loc));
|
1181 |
|
|
|
1182 |
|
|
Set_Parent (Decl, N);
|
1183 |
|
|
Analyze (Decl, Suppress => All_Checks);
|
1184 |
|
|
|
1185 |
|
|
Set_Has_Delayed_Freeze (New_Ctyp, False);
|
1186 |
|
|
Set_Esize (New_Ctyp, Csize);
|
1187 |
|
|
Set_RM_Size (New_Ctyp, Csize);
|
1188 |
|
|
Init_Alignment (New_Ctyp);
|
1189 |
|
|
Set_Has_Biased_Representation (New_Ctyp, True);
|
1190 |
|
|
Set_Is_Itype (New_Ctyp, True);
|
1191 |
|
|
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
|
1192 |
|
|
|
1193 |
|
|
Set_Component_Type (Btype, New_Ctyp);
|
1194 |
|
|
|
1195 |
|
|
if Warn_On_Biased_Representation then
|
1196 |
|
|
Error_Msg_N
|
1197 |
|
|
("?component size clause forces biased "
|
1198 |
|
|
& "representation", N);
|
1199 |
|
|
end if;
|
1200 |
|
|
end if;
|
1201 |
|
|
|
1202 |
|
|
Set_Component_Size (Btype, Csize);
|
1203 |
|
|
|
1204 |
|
|
-- For VM case, we ignore component size clauses
|
1205 |
|
|
|
1206 |
|
|
else
|
1207 |
|
|
-- Give a warning unless we are in GNAT mode, in which case
|
1208 |
|
|
-- the warning is suppressed since it is not useful.
|
1209 |
|
|
|
1210 |
|
|
if not GNAT_Mode then
|
1211 |
|
|
Error_Msg_N
|
1212 |
|
|
("?component size ignored in this configuration", N);
|
1213 |
|
|
end if;
|
1214 |
|
|
end if;
|
1215 |
|
|
|
1216 |
|
|
Set_Has_Component_Size_Clause (Btype, True);
|
1217 |
|
|
Set_Has_Non_Standard_Rep (Btype, True);
|
1218 |
|
|
end if;
|
1219 |
|
|
end Component_Size_Case;
|
1220 |
|
|
|
1221 |
|
|
------------------
|
1222 |
|
|
-- External_Tag --
|
1223 |
|
|
------------------
|
1224 |
|
|
|
1225 |
|
|
when Attribute_External_Tag => External_Tag :
|
1226 |
|
|
begin
|
1227 |
|
|
if not Is_Tagged_Type (U_Ent) then
|
1228 |
|
|
Error_Msg_N ("should be a tagged type", Nam);
|
1229 |
|
|
end if;
|
1230 |
|
|
|
1231 |
|
|
Analyze_And_Resolve (Expr, Standard_String);
|
1232 |
|
|
|
1233 |
|
|
if not Is_Static_Expression (Expr) then
|
1234 |
|
|
Flag_Non_Static_Expr
|
1235 |
|
|
("static string required for tag name!", Nam);
|
1236 |
|
|
end if;
|
1237 |
|
|
|
1238 |
|
|
if VM_Target = No_VM then
|
1239 |
|
|
Set_Has_External_Tag_Rep_Clause (U_Ent);
|
1240 |
|
|
else
|
1241 |
|
|
Error_Msg_Name_1 := Attr;
|
1242 |
|
|
Error_Msg_N
|
1243 |
|
|
("% attribute unsupported in this configuration", Nam);
|
1244 |
|
|
end if;
|
1245 |
|
|
|
1246 |
|
|
if not Is_Library_Level_Entity (U_Ent) then
|
1247 |
|
|
Error_Msg_NE
|
1248 |
|
|
("?non-unique external tag supplied for &", N, U_Ent);
|
1249 |
|
|
Error_Msg_N
|
1250 |
|
|
("?\same external tag applies to all subprogram calls", N);
|
1251 |
|
|
Error_Msg_N
|
1252 |
|
|
("?\corresponding internal tag cannot be obtained", N);
|
1253 |
|
|
end if;
|
1254 |
|
|
end External_Tag;
|
1255 |
|
|
|
1256 |
|
|
-----------
|
1257 |
|
|
-- Input --
|
1258 |
|
|
-----------
|
1259 |
|
|
|
1260 |
|
|
when Attribute_Input =>
|
1261 |
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Input);
|
1262 |
|
|
Set_Has_Specified_Stream_Input (Ent);
|
1263 |
|
|
|
1264 |
|
|
-------------------
|
1265 |
|
|
-- Machine_Radix --
|
1266 |
|
|
-------------------
|
1267 |
|
|
|
1268 |
|
|
-- Machine radix attribute definition clause
|
1269 |
|
|
|
1270 |
|
|
when Attribute_Machine_Radix => Machine_Radix : declare
|
1271 |
|
|
Radix : constant Uint := Static_Integer (Expr);
|
1272 |
|
|
|
1273 |
|
|
begin
|
1274 |
|
|
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
|
1275 |
|
|
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
|
1276 |
|
|
|
1277 |
|
|
elsif Has_Machine_Radix_Clause (U_Ent) then
|
1278 |
|
|
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
|
1279 |
|
|
Error_Msg_N ("machine radix clause previously given#", N);
|
1280 |
|
|
|
1281 |
|
|
elsif Radix /= No_Uint then
|
1282 |
|
|
Set_Has_Machine_Radix_Clause (U_Ent);
|
1283 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
|
1284 |
|
|
|
1285 |
|
|
if Radix = 2 then
|
1286 |
|
|
null;
|
1287 |
|
|
elsif Radix = 10 then
|
1288 |
|
|
Set_Machine_Radix_10 (U_Ent);
|
1289 |
|
|
else
|
1290 |
|
|
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
|
1291 |
|
|
end if;
|
1292 |
|
|
end if;
|
1293 |
|
|
end Machine_Radix;
|
1294 |
|
|
|
1295 |
|
|
-----------------
|
1296 |
|
|
-- Object_Size --
|
1297 |
|
|
-----------------
|
1298 |
|
|
|
1299 |
|
|
-- Object_Size attribute definition clause
|
1300 |
|
|
|
1301 |
|
|
when Attribute_Object_Size => Object_Size : declare
|
1302 |
|
|
Size : constant Uint := Static_Integer (Expr);
|
1303 |
|
|
|
1304 |
|
|
Biased : Boolean;
|
1305 |
|
|
pragma Warnings (Off, Biased);
|
1306 |
|
|
|
1307 |
|
|
begin
|
1308 |
|
|
if not Is_Type (U_Ent) then
|
1309 |
|
|
Error_Msg_N ("Object_Size cannot be given for &", Nam);
|
1310 |
|
|
|
1311 |
|
|
elsif Has_Object_Size_Clause (U_Ent) then
|
1312 |
|
|
Error_Msg_N ("Object_Size already given for &", Nam);
|
1313 |
|
|
|
1314 |
|
|
else
|
1315 |
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
1316 |
|
|
|
1317 |
|
|
if Size /= 8
|
1318 |
|
|
and then
|
1319 |
|
|
Size /= 16
|
1320 |
|
|
and then
|
1321 |
|
|
Size /= 32
|
1322 |
|
|
and then
|
1323 |
|
|
UI_Mod (Size, 64) /= 0
|
1324 |
|
|
then
|
1325 |
|
|
Error_Msg_N
|
1326 |
|
|
("Object_Size must be 8, 16, 32, or multiple of 64",
|
1327 |
|
|
Expr);
|
1328 |
|
|
end if;
|
1329 |
|
|
|
1330 |
|
|
Set_Esize (U_Ent, Size);
|
1331 |
|
|
Set_Has_Object_Size_Clause (U_Ent);
|
1332 |
|
|
Alignment_Check_For_Esize_Change (U_Ent);
|
1333 |
|
|
end if;
|
1334 |
|
|
end Object_Size;
|
1335 |
|
|
|
1336 |
|
|
------------
|
1337 |
|
|
-- Output --
|
1338 |
|
|
------------
|
1339 |
|
|
|
1340 |
|
|
when Attribute_Output =>
|
1341 |
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Output);
|
1342 |
|
|
Set_Has_Specified_Stream_Output (Ent);
|
1343 |
|
|
|
1344 |
|
|
----------
|
1345 |
|
|
-- Read --
|
1346 |
|
|
----------
|
1347 |
|
|
|
1348 |
|
|
when Attribute_Read =>
|
1349 |
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Read);
|
1350 |
|
|
Set_Has_Specified_Stream_Read (Ent);
|
1351 |
|
|
|
1352 |
|
|
----------
|
1353 |
|
|
-- Size --
|
1354 |
|
|
----------
|
1355 |
|
|
|
1356 |
|
|
-- Size attribute definition clause
|
1357 |
|
|
|
1358 |
|
|
when Attribute_Size => Size : declare
|
1359 |
|
|
Size : constant Uint := Static_Integer (Expr);
|
1360 |
|
|
Etyp : Entity_Id;
|
1361 |
|
|
Biased : Boolean;
|
1362 |
|
|
|
1363 |
|
|
begin
|
1364 |
|
|
FOnly := True;
|
1365 |
|
|
|
1366 |
|
|
if Has_Size_Clause (U_Ent) then
|
1367 |
|
|
Error_Msg_N ("size already given for &", Nam);
|
1368 |
|
|
|
1369 |
|
|
elsif not Is_Type (U_Ent)
|
1370 |
|
|
and then Ekind (U_Ent) /= E_Variable
|
1371 |
|
|
and then Ekind (U_Ent) /= E_Constant
|
1372 |
|
|
then
|
1373 |
|
|
Error_Msg_N ("size cannot be given for &", Nam);
|
1374 |
|
|
|
1375 |
|
|
elsif Is_Array_Type (U_Ent)
|
1376 |
|
|
and then not Is_Constrained (U_Ent)
|
1377 |
|
|
then
|
1378 |
|
|
Error_Msg_N
|
1379 |
|
|
("size cannot be given for unconstrained array", Nam);
|
1380 |
|
|
|
1381 |
|
|
elsif Size /= No_Uint then
|
1382 |
|
|
if Is_Type (U_Ent) then
|
1383 |
|
|
Etyp := U_Ent;
|
1384 |
|
|
else
|
1385 |
|
|
Etyp := Etype (U_Ent);
|
1386 |
|
|
end if;
|
1387 |
|
|
|
1388 |
|
|
-- Check size, note that Gigi is in charge of checking that the
|
1389 |
|
|
-- size of an array or record type is OK. Also we do not check
|
1390 |
|
|
-- the size in the ordinary fixed-point case, since it is too
|
1391 |
|
|
-- early to do so (there may be subsequent small clause that
|
1392 |
|
|
-- affects the size). We can check the size if a small clause
|
1393 |
|
|
-- has already been given.
|
1394 |
|
|
|
1395 |
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
|
1396 |
|
|
or else Has_Small_Clause (U_Ent)
|
1397 |
|
|
then
|
1398 |
|
|
Check_Size (Expr, Etyp, Size, Biased);
|
1399 |
|
|
Set_Has_Biased_Representation (U_Ent, Biased);
|
1400 |
|
|
|
1401 |
|
|
if Biased and Warn_On_Biased_Representation then
|
1402 |
|
|
Error_Msg_N
|
1403 |
|
|
("?size clause forces biased representation", N);
|
1404 |
|
|
end if;
|
1405 |
|
|
end if;
|
1406 |
|
|
|
1407 |
|
|
-- For types set RM_Size and Esize if possible
|
1408 |
|
|
|
1409 |
|
|
if Is_Type (U_Ent) then
|
1410 |
|
|
Set_RM_Size (U_Ent, Size);
|
1411 |
|
|
|
1412 |
|
|
-- For scalar types, increase Object_Size to power of 2, but
|
1413 |
|
|
-- not less than a storage unit in any case (i.e., normally
|
1414 |
|
|
-- this means it will be byte addressable).
|
1415 |
|
|
|
1416 |
|
|
if Is_Scalar_Type (U_Ent) then
|
1417 |
|
|
if Size <= System_Storage_Unit then
|
1418 |
|
|
Init_Esize (U_Ent, System_Storage_Unit);
|
1419 |
|
|
elsif Size <= 16 then
|
1420 |
|
|
Init_Esize (U_Ent, 16);
|
1421 |
|
|
elsif Size <= 32 then
|
1422 |
|
|
Init_Esize (U_Ent, 32);
|
1423 |
|
|
else
|
1424 |
|
|
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
|
1425 |
|
|
end if;
|
1426 |
|
|
|
1427 |
|
|
-- For all other types, object size = value size. The
|
1428 |
|
|
-- backend will adjust as needed.
|
1429 |
|
|
|
1430 |
|
|
else
|
1431 |
|
|
Set_Esize (U_Ent, Size);
|
1432 |
|
|
end if;
|
1433 |
|
|
|
1434 |
|
|
Alignment_Check_For_Esize_Change (U_Ent);
|
1435 |
|
|
|
1436 |
|
|
-- For objects, set Esize only
|
1437 |
|
|
|
1438 |
|
|
else
|
1439 |
|
|
if Is_Elementary_Type (Etyp) then
|
1440 |
|
|
if Size /= System_Storage_Unit
|
1441 |
|
|
and then
|
1442 |
|
|
Size /= System_Storage_Unit * 2
|
1443 |
|
|
and then
|
1444 |
|
|
Size /= System_Storage_Unit * 4
|
1445 |
|
|
and then
|
1446 |
|
|
Size /= System_Storage_Unit * 8
|
1447 |
|
|
then
|
1448 |
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
1449 |
|
|
Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
|
1450 |
|
|
Error_Msg_N
|
1451 |
|
|
("size for primitive object must be a power of 2"
|
1452 |
|
|
& " in the range ^-^", N);
|
1453 |
|
|
end if;
|
1454 |
|
|
end if;
|
1455 |
|
|
|
1456 |
|
|
Set_Esize (U_Ent, Size);
|
1457 |
|
|
end if;
|
1458 |
|
|
|
1459 |
|
|
Set_Has_Size_Clause (U_Ent);
|
1460 |
|
|
end if;
|
1461 |
|
|
end Size;
|
1462 |
|
|
|
1463 |
|
|
-----------
|
1464 |
|
|
-- Small --
|
1465 |
|
|
-----------
|
1466 |
|
|
|
1467 |
|
|
-- Small attribute definition clause
|
1468 |
|
|
|
1469 |
|
|
when Attribute_Small => Small : declare
|
1470 |
|
|
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
|
1471 |
|
|
Small : Ureal;
|
1472 |
|
|
|
1473 |
|
|
begin
|
1474 |
|
|
Analyze_And_Resolve (Expr, Any_Real);
|
1475 |
|
|
|
1476 |
|
|
if Etype (Expr) = Any_Type then
|
1477 |
|
|
return;
|
1478 |
|
|
|
1479 |
|
|
elsif not Is_Static_Expression (Expr) then
|
1480 |
|
|
Flag_Non_Static_Expr
|
1481 |
|
|
("small requires static expression!", Expr);
|
1482 |
|
|
return;
|
1483 |
|
|
|
1484 |
|
|
else
|
1485 |
|
|
Small := Expr_Value_R (Expr);
|
1486 |
|
|
|
1487 |
|
|
if Small <= Ureal_0 then
|
1488 |
|
|
Error_Msg_N ("small value must be greater than zero", Expr);
|
1489 |
|
|
return;
|
1490 |
|
|
end if;
|
1491 |
|
|
|
1492 |
|
|
end if;
|
1493 |
|
|
|
1494 |
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
|
1495 |
|
|
Error_Msg_N
|
1496 |
|
|
("small requires an ordinary fixed point type", Nam);
|
1497 |
|
|
|
1498 |
|
|
elsif Has_Small_Clause (U_Ent) then
|
1499 |
|
|
Error_Msg_N ("small already given for &", Nam);
|
1500 |
|
|
|
1501 |
|
|
elsif Small > Delta_Value (U_Ent) then
|
1502 |
|
|
Error_Msg_N
|
1503 |
|
|
("small value must not be greater then delta value", Nam);
|
1504 |
|
|
|
1505 |
|
|
else
|
1506 |
|
|
Set_Small_Value (U_Ent, Small);
|
1507 |
|
|
Set_Small_Value (Implicit_Base, Small);
|
1508 |
|
|
Set_Has_Small_Clause (U_Ent);
|
1509 |
|
|
Set_Has_Small_Clause (Implicit_Base);
|
1510 |
|
|
Set_Has_Non_Standard_Rep (Implicit_Base);
|
1511 |
|
|
end if;
|
1512 |
|
|
end Small;
|
1513 |
|
|
|
1514 |
|
|
------------------
|
1515 |
|
|
-- Storage_Pool --
|
1516 |
|
|
------------------
|
1517 |
|
|
|
1518 |
|
|
-- Storage_Pool attribute definition clause
|
1519 |
|
|
|
1520 |
|
|
when Attribute_Storage_Pool => Storage_Pool : declare
|
1521 |
|
|
Pool : Entity_Id;
|
1522 |
|
|
T : Entity_Id;
|
1523 |
|
|
|
1524 |
|
|
begin
|
1525 |
|
|
if Ekind (U_Ent) = E_Access_Subprogram_Type then
|
1526 |
|
|
Error_Msg_N
|
1527 |
|
|
("storage pool cannot be given for access-to-subprogram type",
|
1528 |
|
|
Nam);
|
1529 |
|
|
return;
|
1530 |
|
|
|
1531 |
|
|
elsif Ekind (U_Ent) /= E_Access_Type
|
1532 |
|
|
and then Ekind (U_Ent) /= E_General_Access_Type
|
1533 |
|
|
then
|
1534 |
|
|
Error_Msg_N
|
1535 |
|
|
("storage pool can only be given for access types", Nam);
|
1536 |
|
|
return;
|
1537 |
|
|
|
1538 |
|
|
elsif Is_Derived_Type (U_Ent) then
|
1539 |
|
|
Error_Msg_N
|
1540 |
|
|
("storage pool cannot be given for a derived access type",
|
1541 |
|
|
Nam);
|
1542 |
|
|
|
1543 |
|
|
elsif Has_Storage_Size_Clause (U_Ent) then
|
1544 |
|
|
Error_Msg_N ("storage size already given for &", Nam);
|
1545 |
|
|
return;
|
1546 |
|
|
|
1547 |
|
|
elsif Present (Associated_Storage_Pool (U_Ent)) then
|
1548 |
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
1549 |
|
|
return;
|
1550 |
|
|
end if;
|
1551 |
|
|
|
1552 |
|
|
Analyze_And_Resolve
|
1553 |
|
|
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
|
1554 |
|
|
|
1555 |
|
|
if not Denotes_Variable (Expr) then
|
1556 |
|
|
Error_Msg_N ("storage pool must be a variable", Expr);
|
1557 |
|
|
return;
|
1558 |
|
|
end if;
|
1559 |
|
|
|
1560 |
|
|
if Nkind (Expr) = N_Type_Conversion then
|
1561 |
|
|
T := Etype (Expression (Expr));
|
1562 |
|
|
else
|
1563 |
|
|
T := Etype (Expr);
|
1564 |
|
|
end if;
|
1565 |
|
|
|
1566 |
|
|
-- The Stack_Bounded_Pool is used internally for implementing
|
1567 |
|
|
-- access types with a Storage_Size. Since it only work
|
1568 |
|
|
-- properly when used on one specific type, we need to check
|
1569 |
|
|
-- that it is not hijacked improperly:
|
1570 |
|
|
-- type T is access Integer;
|
1571 |
|
|
-- for T'Storage_Size use n;
|
1572 |
|
|
-- type Q is access Float;
|
1573 |
|
|
-- for Q'Storage_Size use T'Storage_Size; -- incorrect
|
1574 |
|
|
|
1575 |
|
|
if RTE_Available (RE_Stack_Bounded_Pool)
|
1576 |
|
|
and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
|
1577 |
|
|
then
|
1578 |
|
|
Error_Msg_N ("non-shareable internal Pool", Expr);
|
1579 |
|
|
return;
|
1580 |
|
|
end if;
|
1581 |
|
|
|
1582 |
|
|
-- If the argument is a name that is not an entity name, then
|
1583 |
|
|
-- we construct a renaming operation to define an entity of
|
1584 |
|
|
-- type storage pool.
|
1585 |
|
|
|
1586 |
|
|
if not Is_Entity_Name (Expr)
|
1587 |
|
|
and then Is_Object_Reference (Expr)
|
1588 |
|
|
then
|
1589 |
|
|
Pool :=
|
1590 |
|
|
Make_Defining_Identifier (Loc,
|
1591 |
|
|
Chars => New_Internal_Name ('P'));
|
1592 |
|
|
|
1593 |
|
|
declare
|
1594 |
|
|
Rnode : constant Node_Id :=
|
1595 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
1596 |
|
|
Defining_Identifier => Pool,
|
1597 |
|
|
Subtype_Mark =>
|
1598 |
|
|
New_Occurrence_Of (Etype (Expr), Loc),
|
1599 |
|
|
Name => Expr);
|
1600 |
|
|
|
1601 |
|
|
begin
|
1602 |
|
|
Insert_Before (N, Rnode);
|
1603 |
|
|
Analyze (Rnode);
|
1604 |
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
1605 |
|
|
end;
|
1606 |
|
|
|
1607 |
|
|
elsif Is_Entity_Name (Expr) then
|
1608 |
|
|
Pool := Entity (Expr);
|
1609 |
|
|
|
1610 |
|
|
-- If pool is a renamed object, get original one. This can
|
1611 |
|
|
-- happen with an explicit renaming, and within instances.
|
1612 |
|
|
|
1613 |
|
|
while Present (Renamed_Object (Pool))
|
1614 |
|
|
and then Is_Entity_Name (Renamed_Object (Pool))
|
1615 |
|
|
loop
|
1616 |
|
|
Pool := Entity (Renamed_Object (Pool));
|
1617 |
|
|
end loop;
|
1618 |
|
|
|
1619 |
|
|
if Present (Renamed_Object (Pool))
|
1620 |
|
|
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
|
1621 |
|
|
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
|
1622 |
|
|
then
|
1623 |
|
|
Pool := Entity (Expression (Renamed_Object (Pool)));
|
1624 |
|
|
end if;
|
1625 |
|
|
|
1626 |
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
1627 |
|
|
|
1628 |
|
|
elsif Nkind (Expr) = N_Type_Conversion
|
1629 |
|
|
and then Is_Entity_Name (Expression (Expr))
|
1630 |
|
|
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
|
1631 |
|
|
then
|
1632 |
|
|
Pool := Entity (Expression (Expr));
|
1633 |
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
1634 |
|
|
|
1635 |
|
|
else
|
1636 |
|
|
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
|
1637 |
|
|
return;
|
1638 |
|
|
end if;
|
1639 |
|
|
end Storage_Pool;
|
1640 |
|
|
|
1641 |
|
|
------------------
|
1642 |
|
|
-- Storage_Size --
|
1643 |
|
|
------------------
|
1644 |
|
|
|
1645 |
|
|
-- Storage_Size attribute definition clause
|
1646 |
|
|
|
1647 |
|
|
when Attribute_Storage_Size => Storage_Size : declare
|
1648 |
|
|
Btype : constant Entity_Id := Base_Type (U_Ent);
|
1649 |
|
|
Sprag : Node_Id;
|
1650 |
|
|
|
1651 |
|
|
begin
|
1652 |
|
|
if Is_Task_Type (U_Ent) then
|
1653 |
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
1654 |
|
|
|
1655 |
|
|
if Warn_On_Obsolescent_Feature then
|
1656 |
|
|
Error_Msg_N
|
1657 |
|
|
("storage size clause for task is an " &
|
1658 |
|
|
"obsolescent feature (RM J.9)?", N);
|
1659 |
|
|
Error_Msg_N
|
1660 |
|
|
("\use Storage_Size pragma instead?", N);
|
1661 |
|
|
end if;
|
1662 |
|
|
|
1663 |
|
|
FOnly := True;
|
1664 |
|
|
end if;
|
1665 |
|
|
|
1666 |
|
|
if not Is_Access_Type (U_Ent)
|
1667 |
|
|
and then Ekind (U_Ent) /= E_Task_Type
|
1668 |
|
|
then
|
1669 |
|
|
Error_Msg_N ("storage size cannot be given for &", Nam);
|
1670 |
|
|
|
1671 |
|
|
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
|
1672 |
|
|
Error_Msg_N
|
1673 |
|
|
("storage size cannot be given for a derived access type",
|
1674 |
|
|
Nam);
|
1675 |
|
|
|
1676 |
|
|
elsif Has_Storage_Size_Clause (Btype) then
|
1677 |
|
|
Error_Msg_N ("storage size already given for &", Nam);
|
1678 |
|
|
|
1679 |
|
|
else
|
1680 |
|
|
Analyze_And_Resolve (Expr, Any_Integer);
|
1681 |
|
|
|
1682 |
|
|
if Is_Access_Type (U_Ent) then
|
1683 |
|
|
if Present (Associated_Storage_Pool (U_Ent)) then
|
1684 |
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
1685 |
|
|
return;
|
1686 |
|
|
end if;
|
1687 |
|
|
|
1688 |
|
|
if Compile_Time_Known_Value (Expr)
|
1689 |
|
|
and then Expr_Value (Expr) = 0
|
1690 |
|
|
then
|
1691 |
|
|
Set_No_Pool_Assigned (Btype);
|
1692 |
|
|
end if;
|
1693 |
|
|
|
1694 |
|
|
else -- Is_Task_Type (U_Ent)
|
1695 |
|
|
Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
|
1696 |
|
|
|
1697 |
|
|
if Present (Sprag) then
|
1698 |
|
|
Error_Msg_Sloc := Sloc (Sprag);
|
1699 |
|
|
Error_Msg_N
|
1700 |
|
|
("Storage_Size already specified#", Nam);
|
1701 |
|
|
return;
|
1702 |
|
|
end if;
|
1703 |
|
|
end if;
|
1704 |
|
|
|
1705 |
|
|
Set_Has_Storage_Size_Clause (Btype);
|
1706 |
|
|
end if;
|
1707 |
|
|
end Storage_Size;
|
1708 |
|
|
|
1709 |
|
|
-----------------
|
1710 |
|
|
-- Stream_Size --
|
1711 |
|
|
-----------------
|
1712 |
|
|
|
1713 |
|
|
when Attribute_Stream_Size => Stream_Size : declare
|
1714 |
|
|
Size : constant Uint := Static_Integer (Expr);
|
1715 |
|
|
|
1716 |
|
|
begin
|
1717 |
|
|
if Ada_Version <= Ada_95 then
|
1718 |
|
|
Check_Restriction (No_Implementation_Attributes, N);
|
1719 |
|
|
end if;
|
1720 |
|
|
|
1721 |
|
|
if Has_Stream_Size_Clause (U_Ent) then
|
1722 |
|
|
Error_Msg_N ("Stream_Size already given for &", Nam);
|
1723 |
|
|
|
1724 |
|
|
elsif Is_Elementary_Type (U_Ent) then
|
1725 |
|
|
if Size /= System_Storage_Unit
|
1726 |
|
|
and then
|
1727 |
|
|
Size /= System_Storage_Unit * 2
|
1728 |
|
|
and then
|
1729 |
|
|
Size /= System_Storage_Unit * 4
|
1730 |
|
|
and then
|
1731 |
|
|
Size /= System_Storage_Unit * 8
|
1732 |
|
|
then
|
1733 |
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
1734 |
|
|
Error_Msg_N
|
1735 |
|
|
("stream size for elementary type must be a"
|
1736 |
|
|
& " power of 2 and at least ^", N);
|
1737 |
|
|
|
1738 |
|
|
elsif RM_Size (U_Ent) > Size then
|
1739 |
|
|
Error_Msg_Uint_1 := RM_Size (U_Ent);
|
1740 |
|
|
Error_Msg_N
|
1741 |
|
|
("stream size for elementary type must be a"
|
1742 |
|
|
& " power of 2 and at least ^", N);
|
1743 |
|
|
end if;
|
1744 |
|
|
|
1745 |
|
|
Set_Has_Stream_Size_Clause (U_Ent);
|
1746 |
|
|
|
1747 |
|
|
else
|
1748 |
|
|
Error_Msg_N ("Stream_Size cannot be given for &", Nam);
|
1749 |
|
|
end if;
|
1750 |
|
|
end Stream_Size;
|
1751 |
|
|
|
1752 |
|
|
----------------
|
1753 |
|
|
-- Value_Size --
|
1754 |
|
|
----------------
|
1755 |
|
|
|
1756 |
|
|
-- Value_Size attribute definition clause
|
1757 |
|
|
|
1758 |
|
|
when Attribute_Value_Size => Value_Size : declare
|
1759 |
|
|
Size : constant Uint := Static_Integer (Expr);
|
1760 |
|
|
Biased : Boolean;
|
1761 |
|
|
|
1762 |
|
|
begin
|
1763 |
|
|
if not Is_Type (U_Ent) then
|
1764 |
|
|
Error_Msg_N ("Value_Size cannot be given for &", Nam);
|
1765 |
|
|
|
1766 |
|
|
elsif Present
|
1767 |
|
|
(Get_Attribute_Definition_Clause
|
1768 |
|
|
(U_Ent, Attribute_Value_Size))
|
1769 |
|
|
then
|
1770 |
|
|
Error_Msg_N ("Value_Size already given for &", Nam);
|
1771 |
|
|
|
1772 |
|
|
elsif Is_Array_Type (U_Ent)
|
1773 |
|
|
and then not Is_Constrained (U_Ent)
|
1774 |
|
|
then
|
1775 |
|
|
Error_Msg_N
|
1776 |
|
|
("Value_Size cannot be given for unconstrained array", Nam);
|
1777 |
|
|
|
1778 |
|
|
else
|
1779 |
|
|
if Is_Elementary_Type (U_Ent) then
|
1780 |
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
1781 |
|
|
Set_Has_Biased_Representation (U_Ent, Biased);
|
1782 |
|
|
|
1783 |
|
|
if Biased and Warn_On_Biased_Representation then
|
1784 |
|
|
Error_Msg_N
|
1785 |
|
|
("?value size clause forces biased representation", N);
|
1786 |
|
|
end if;
|
1787 |
|
|
end if;
|
1788 |
|
|
|
1789 |
|
|
Set_RM_Size (U_Ent, Size);
|
1790 |
|
|
end if;
|
1791 |
|
|
end Value_Size;
|
1792 |
|
|
|
1793 |
|
|
-----------
|
1794 |
|
|
-- Write --
|
1795 |
|
|
-----------
|
1796 |
|
|
|
1797 |
|
|
when Attribute_Write =>
|
1798 |
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Write);
|
1799 |
|
|
Set_Has_Specified_Stream_Write (Ent);
|
1800 |
|
|
|
1801 |
|
|
-- All other attributes cannot be set
|
1802 |
|
|
|
1803 |
|
|
when others =>
|
1804 |
|
|
Error_Msg_N
|
1805 |
|
|
("attribute& cannot be set with definition clause", N);
|
1806 |
|
|
end case;
|
1807 |
|
|
|
1808 |
|
|
-- The test for the type being frozen must be performed after
|
1809 |
|
|
-- any expression the clause has been analyzed since the expression
|
1810 |
|
|
-- itself might cause freezing that makes the clause illegal.
|
1811 |
|
|
|
1812 |
|
|
if Rep_Item_Too_Late (U_Ent, N, FOnly) then
|
1813 |
|
|
return;
|
1814 |
|
|
end if;
|
1815 |
|
|
end Analyze_Attribute_Definition_Clause;
|
1816 |
|
|
|
1817 |
|
|
----------------------------
|
1818 |
|
|
-- Analyze_Code_Statement --
|
1819 |
|
|
----------------------------
|
1820 |
|
|
|
1821 |
|
|
procedure Analyze_Code_Statement (N : Node_Id) is
|
1822 |
|
|
HSS : constant Node_Id := Parent (N);
|
1823 |
|
|
SBody : constant Node_Id := Parent (HSS);
|
1824 |
|
|
Subp : constant Entity_Id := Current_Scope;
|
1825 |
|
|
Stmt : Node_Id;
|
1826 |
|
|
Decl : Node_Id;
|
1827 |
|
|
StmtO : Node_Id;
|
1828 |
|
|
DeclO : Node_Id;
|
1829 |
|
|
|
1830 |
|
|
begin
|
1831 |
|
|
-- Analyze and check we get right type, note that this implements the
|
1832 |
|
|
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
|
1833 |
|
|
-- is the only way that Asm_Insn could possibly be visible.
|
1834 |
|
|
|
1835 |
|
|
Analyze_And_Resolve (Expression (N));
|
1836 |
|
|
|
1837 |
|
|
if Etype (Expression (N)) = Any_Type then
|
1838 |
|
|
return;
|
1839 |
|
|
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
|
1840 |
|
|
Error_Msg_N ("incorrect type for code statement", N);
|
1841 |
|
|
return;
|
1842 |
|
|
end if;
|
1843 |
|
|
|
1844 |
|
|
Check_Code_Statement (N);
|
1845 |
|
|
|
1846 |
|
|
-- Make sure we appear in the handled statement sequence of a
|
1847 |
|
|
-- subprogram (RM 13.8(3)).
|
1848 |
|
|
|
1849 |
|
|
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
|
1850 |
|
|
or else Nkind (SBody) /= N_Subprogram_Body
|
1851 |
|
|
then
|
1852 |
|
|
Error_Msg_N
|
1853 |
|
|
("code statement can only appear in body of subprogram", N);
|
1854 |
|
|
return;
|
1855 |
|
|
end if;
|
1856 |
|
|
|
1857 |
|
|
-- Do remaining checks (RM 13.8(3)) if not already done
|
1858 |
|
|
|
1859 |
|
|
if not Is_Machine_Code_Subprogram (Subp) then
|
1860 |
|
|
Set_Is_Machine_Code_Subprogram (Subp);
|
1861 |
|
|
|
1862 |
|
|
-- No exception handlers allowed
|
1863 |
|
|
|
1864 |
|
|
if Present (Exception_Handlers (HSS)) then
|
1865 |
|
|
Error_Msg_N
|
1866 |
|
|
("exception handlers not permitted in machine code subprogram",
|
1867 |
|
|
First (Exception_Handlers (HSS)));
|
1868 |
|
|
end if;
|
1869 |
|
|
|
1870 |
|
|
-- No declarations other than use clauses and pragmas (we allow
|
1871 |
|
|
-- certain internally generated declarations as well).
|
1872 |
|
|
|
1873 |
|
|
Decl := First (Declarations (SBody));
|
1874 |
|
|
while Present (Decl) loop
|
1875 |
|
|
DeclO := Original_Node (Decl);
|
1876 |
|
|
if Comes_From_Source (DeclO)
|
1877 |
|
|
and not Nkind_In (DeclO, N_Pragma,
|
1878 |
|
|
N_Use_Package_Clause,
|
1879 |
|
|
N_Use_Type_Clause,
|
1880 |
|
|
N_Implicit_Label_Declaration)
|
1881 |
|
|
then
|
1882 |
|
|
Error_Msg_N
|
1883 |
|
|
("this declaration not allowed in machine code subprogram",
|
1884 |
|
|
DeclO);
|
1885 |
|
|
end if;
|
1886 |
|
|
|
1887 |
|
|
Next (Decl);
|
1888 |
|
|
end loop;
|
1889 |
|
|
|
1890 |
|
|
-- No statements other than code statements, pragmas, and labels.
|
1891 |
|
|
-- Again we allow certain internally generated statements.
|
1892 |
|
|
|
1893 |
|
|
Stmt := First (Statements (HSS));
|
1894 |
|
|
while Present (Stmt) loop
|
1895 |
|
|
StmtO := Original_Node (Stmt);
|
1896 |
|
|
if Comes_From_Source (StmtO)
|
1897 |
|
|
and then not Nkind_In (StmtO, N_Pragma,
|
1898 |
|
|
N_Label,
|
1899 |
|
|
N_Code_Statement)
|
1900 |
|
|
then
|
1901 |
|
|
Error_Msg_N
|
1902 |
|
|
("this statement is not allowed in machine code subprogram",
|
1903 |
|
|
StmtO);
|
1904 |
|
|
end if;
|
1905 |
|
|
|
1906 |
|
|
Next (Stmt);
|
1907 |
|
|
end loop;
|
1908 |
|
|
end if;
|
1909 |
|
|
end Analyze_Code_Statement;
|
1910 |
|
|
|
1911 |
|
|
-----------------------------------------------
|
1912 |
|
|
-- Analyze_Enumeration_Representation_Clause --
|
1913 |
|
|
-----------------------------------------------
|
1914 |
|
|
|
1915 |
|
|
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
|
1916 |
|
|
Ident : constant Node_Id := Identifier (N);
|
1917 |
|
|
Aggr : constant Node_Id := Array_Aggregate (N);
|
1918 |
|
|
Enumtype : Entity_Id;
|
1919 |
|
|
Elit : Entity_Id;
|
1920 |
|
|
Expr : Node_Id;
|
1921 |
|
|
Assoc : Node_Id;
|
1922 |
|
|
Choice : Node_Id;
|
1923 |
|
|
Val : Uint;
|
1924 |
|
|
Err : Boolean := False;
|
1925 |
|
|
|
1926 |
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
|
1927 |
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
|
1928 |
|
|
Min : Uint;
|
1929 |
|
|
Max : Uint;
|
1930 |
|
|
|
1931 |
|
|
begin
|
1932 |
|
|
if Ignore_Rep_Clauses then
|
1933 |
|
|
return;
|
1934 |
|
|
end if;
|
1935 |
|
|
|
1936 |
|
|
-- First some basic error checks
|
1937 |
|
|
|
1938 |
|
|
Find_Type (Ident);
|
1939 |
|
|
Enumtype := Entity (Ident);
|
1940 |
|
|
|
1941 |
|
|
if Enumtype = Any_Type
|
1942 |
|
|
or else Rep_Item_Too_Early (Enumtype, N)
|
1943 |
|
|
then
|
1944 |
|
|
return;
|
1945 |
|
|
else
|
1946 |
|
|
Enumtype := Underlying_Type (Enumtype);
|
1947 |
|
|
end if;
|
1948 |
|
|
|
1949 |
|
|
if not Is_Enumeration_Type (Enumtype) then
|
1950 |
|
|
Error_Msg_NE
|
1951 |
|
|
("enumeration type required, found}",
|
1952 |
|
|
Ident, First_Subtype (Enumtype));
|
1953 |
|
|
return;
|
1954 |
|
|
end if;
|
1955 |
|
|
|
1956 |
|
|
-- Ignore rep clause on generic actual type. This will already have
|
1957 |
|
|
-- been flagged on the template as an error, and this is the safest
|
1958 |
|
|
-- way to ensure we don't get a junk cascaded message in the instance.
|
1959 |
|
|
|
1960 |
|
|
if Is_Generic_Actual_Type (Enumtype) then
|
1961 |
|
|
return;
|
1962 |
|
|
|
1963 |
|
|
-- Type must be in current scope
|
1964 |
|
|
|
1965 |
|
|
elsif Scope (Enumtype) /= Current_Scope then
|
1966 |
|
|
Error_Msg_N ("type must be declared in this scope", Ident);
|
1967 |
|
|
return;
|
1968 |
|
|
|
1969 |
|
|
-- Type must be a first subtype
|
1970 |
|
|
|
1971 |
|
|
elsif not Is_First_Subtype (Enumtype) then
|
1972 |
|
|
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
|
1973 |
|
|
return;
|
1974 |
|
|
|
1975 |
|
|
-- Ignore duplicate rep clause
|
1976 |
|
|
|
1977 |
|
|
elsif Has_Enumeration_Rep_Clause (Enumtype) then
|
1978 |
|
|
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
|
1979 |
|
|
return;
|
1980 |
|
|
|
1981 |
|
|
-- Don't allow rep clause for standard [wide_[wide_]]character
|
1982 |
|
|
|
1983 |
|
|
elsif Is_Standard_Character_Type (Enumtype) then
|
1984 |
|
|
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
|
1985 |
|
|
return;
|
1986 |
|
|
|
1987 |
|
|
-- Check that the expression is a proper aggregate (no parentheses)
|
1988 |
|
|
|
1989 |
|
|
elsif Paren_Count (Aggr) /= 0 then
|
1990 |
|
|
Error_Msg
|
1991 |
|
|
("extra parentheses surrounding aggregate not allowed",
|
1992 |
|
|
First_Sloc (Aggr));
|
1993 |
|
|
return;
|
1994 |
|
|
|
1995 |
|
|
-- All tests passed, so set rep clause in place
|
1996 |
|
|
|
1997 |
|
|
else
|
1998 |
|
|
Set_Has_Enumeration_Rep_Clause (Enumtype);
|
1999 |
|
|
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
|
2000 |
|
|
end if;
|
2001 |
|
|
|
2002 |
|
|
-- Now we process the aggregate. Note that we don't use the normal
|
2003 |
|
|
-- aggregate code for this purpose, because we don't want any of the
|
2004 |
|
|
-- normal expansion activities, and a number of special semantic
|
2005 |
|
|
-- rules apply (including the component type being any integer type)
|
2006 |
|
|
|
2007 |
|
|
Elit := First_Literal (Enumtype);
|
2008 |
|
|
|
2009 |
|
|
-- First the positional entries if any
|
2010 |
|
|
|
2011 |
|
|
if Present (Expressions (Aggr)) then
|
2012 |
|
|
Expr := First (Expressions (Aggr));
|
2013 |
|
|
while Present (Expr) loop
|
2014 |
|
|
if No (Elit) then
|
2015 |
|
|
Error_Msg_N ("too many entries in aggregate", Expr);
|
2016 |
|
|
return;
|
2017 |
|
|
end if;
|
2018 |
|
|
|
2019 |
|
|
Val := Static_Integer (Expr);
|
2020 |
|
|
|
2021 |
|
|
-- Err signals that we found some incorrect entries processing
|
2022 |
|
|
-- the list. The final checks for completeness and ordering are
|
2023 |
|
|
-- skipped in this case.
|
2024 |
|
|
|
2025 |
|
|
if Val = No_Uint then
|
2026 |
|
|
Err := True;
|
2027 |
|
|
elsif Val < Lo or else Hi < Val then
|
2028 |
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
2029 |
|
|
Err := True;
|
2030 |
|
|
end if;
|
2031 |
|
|
|
2032 |
|
|
Set_Enumeration_Rep (Elit, Val);
|
2033 |
|
|
Set_Enumeration_Rep_Expr (Elit, Expr);
|
2034 |
|
|
Next (Expr);
|
2035 |
|
|
Next (Elit);
|
2036 |
|
|
end loop;
|
2037 |
|
|
end if;
|
2038 |
|
|
|
2039 |
|
|
-- Now process the named entries if present
|
2040 |
|
|
|
2041 |
|
|
if Present (Component_Associations (Aggr)) then
|
2042 |
|
|
Assoc := First (Component_Associations (Aggr));
|
2043 |
|
|
while Present (Assoc) loop
|
2044 |
|
|
Choice := First (Choices (Assoc));
|
2045 |
|
|
|
2046 |
|
|
if Present (Next (Choice)) then
|
2047 |
|
|
Error_Msg_N
|
2048 |
|
|
("multiple choice not allowed here", Next (Choice));
|
2049 |
|
|
Err := True;
|
2050 |
|
|
end if;
|
2051 |
|
|
|
2052 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
2053 |
|
|
Error_Msg_N ("others choice not allowed here", Choice);
|
2054 |
|
|
Err := True;
|
2055 |
|
|
|
2056 |
|
|
elsif Nkind (Choice) = N_Range then
|
2057 |
|
|
-- ??? should allow zero/one element range here
|
2058 |
|
|
Error_Msg_N ("range not allowed here", Choice);
|
2059 |
|
|
Err := True;
|
2060 |
|
|
|
2061 |
|
|
else
|
2062 |
|
|
Analyze_And_Resolve (Choice, Enumtype);
|
2063 |
|
|
|
2064 |
|
|
if Is_Entity_Name (Choice)
|
2065 |
|
|
and then Is_Type (Entity (Choice))
|
2066 |
|
|
then
|
2067 |
|
|
Error_Msg_N ("subtype name not allowed here", Choice);
|
2068 |
|
|
Err := True;
|
2069 |
|
|
-- ??? should allow static subtype with zero/one entry
|
2070 |
|
|
|
2071 |
|
|
elsif Etype (Choice) = Base_Type (Enumtype) then
|
2072 |
|
|
if not Is_Static_Expression (Choice) then
|
2073 |
|
|
Flag_Non_Static_Expr
|
2074 |
|
|
("non-static expression used for choice!", Choice);
|
2075 |
|
|
Err := True;
|
2076 |
|
|
|
2077 |
|
|
else
|
2078 |
|
|
Elit := Expr_Value_E (Choice);
|
2079 |
|
|
|
2080 |
|
|
if Present (Enumeration_Rep_Expr (Elit)) then
|
2081 |
|
|
Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
|
2082 |
|
|
Error_Msg_NE
|
2083 |
|
|
("representation for& previously given#",
|
2084 |
|
|
Choice, Elit);
|
2085 |
|
|
Err := True;
|
2086 |
|
|
end if;
|
2087 |
|
|
|
2088 |
|
|
Set_Enumeration_Rep_Expr (Elit, Choice);
|
2089 |
|
|
|
2090 |
|
|
Expr := Expression (Assoc);
|
2091 |
|
|
Val := Static_Integer (Expr);
|
2092 |
|
|
|
2093 |
|
|
if Val = No_Uint then
|
2094 |
|
|
Err := True;
|
2095 |
|
|
|
2096 |
|
|
elsif Val < Lo or else Hi < Val then
|
2097 |
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
2098 |
|
|
Err := True;
|
2099 |
|
|
end if;
|
2100 |
|
|
|
2101 |
|
|
Set_Enumeration_Rep (Elit, Val);
|
2102 |
|
|
end if;
|
2103 |
|
|
end if;
|
2104 |
|
|
end if;
|
2105 |
|
|
|
2106 |
|
|
Next (Assoc);
|
2107 |
|
|
end loop;
|
2108 |
|
|
end if;
|
2109 |
|
|
|
2110 |
|
|
-- Aggregate is fully processed. Now we check that a full set of
|
2111 |
|
|
-- representations was given, and that they are in range and in order.
|
2112 |
|
|
-- These checks are only done if no other errors occurred.
|
2113 |
|
|
|
2114 |
|
|
if not Err then
|
2115 |
|
|
Min := No_Uint;
|
2116 |
|
|
Max := No_Uint;
|
2117 |
|
|
|
2118 |
|
|
Elit := First_Literal (Enumtype);
|
2119 |
|
|
while Present (Elit) loop
|
2120 |
|
|
if No (Enumeration_Rep_Expr (Elit)) then
|
2121 |
|
|
Error_Msg_NE ("missing representation for&!", N, Elit);
|
2122 |
|
|
|
2123 |
|
|
else
|
2124 |
|
|
Val := Enumeration_Rep (Elit);
|
2125 |
|
|
|
2126 |
|
|
if Min = No_Uint then
|
2127 |
|
|
Min := Val;
|
2128 |
|
|
end if;
|
2129 |
|
|
|
2130 |
|
|
if Val /= No_Uint then
|
2131 |
|
|
if Max /= No_Uint and then Val <= Max then
|
2132 |
|
|
Error_Msg_NE
|
2133 |
|
|
("enumeration value for& not ordered!",
|
2134 |
|
|
Enumeration_Rep_Expr (Elit), Elit);
|
2135 |
|
|
end if;
|
2136 |
|
|
|
2137 |
|
|
Max := Val;
|
2138 |
|
|
end if;
|
2139 |
|
|
|
2140 |
|
|
-- If there is at least one literal whose representation
|
2141 |
|
|
-- is not equal to the Pos value, then note that this
|
2142 |
|
|
-- enumeration type has a non-standard representation.
|
2143 |
|
|
|
2144 |
|
|
if Val /= Enumeration_Pos (Elit) then
|
2145 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
|
2146 |
|
|
end if;
|
2147 |
|
|
end if;
|
2148 |
|
|
|
2149 |
|
|
Next (Elit);
|
2150 |
|
|
end loop;
|
2151 |
|
|
|
2152 |
|
|
-- Now set proper size information
|
2153 |
|
|
|
2154 |
|
|
declare
|
2155 |
|
|
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
|
2156 |
|
|
|
2157 |
|
|
begin
|
2158 |
|
|
if Has_Size_Clause (Enumtype) then
|
2159 |
|
|
if Esize (Enumtype) >= Minsize then
|
2160 |
|
|
null;
|
2161 |
|
|
|
2162 |
|
|
else
|
2163 |
|
|
Minsize :=
|
2164 |
|
|
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
|
2165 |
|
|
|
2166 |
|
|
if Esize (Enumtype) < Minsize then
|
2167 |
|
|
Error_Msg_N ("previously given size is too small", N);
|
2168 |
|
|
|
2169 |
|
|
else
|
2170 |
|
|
Set_Has_Biased_Representation (Enumtype);
|
2171 |
|
|
end if;
|
2172 |
|
|
end if;
|
2173 |
|
|
|
2174 |
|
|
else
|
2175 |
|
|
Set_RM_Size (Enumtype, Minsize);
|
2176 |
|
|
Set_Enum_Esize (Enumtype);
|
2177 |
|
|
end if;
|
2178 |
|
|
|
2179 |
|
|
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
|
2180 |
|
|
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
|
2181 |
|
|
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
|
2182 |
|
|
end;
|
2183 |
|
|
end if;
|
2184 |
|
|
|
2185 |
|
|
-- We repeat the too late test in case it froze itself!
|
2186 |
|
|
|
2187 |
|
|
if Rep_Item_Too_Late (Enumtype, N) then
|
2188 |
|
|
null;
|
2189 |
|
|
end if;
|
2190 |
|
|
end Analyze_Enumeration_Representation_Clause;
|
2191 |
|
|
|
2192 |
|
|
----------------------------
|
2193 |
|
|
-- Analyze_Free_Statement --
|
2194 |
|
|
----------------------------
|
2195 |
|
|
|
2196 |
|
|
procedure Analyze_Free_Statement (N : Node_Id) is
|
2197 |
|
|
begin
|
2198 |
|
|
Analyze (Expression (N));
|
2199 |
|
|
end Analyze_Free_Statement;
|
2200 |
|
|
|
2201 |
|
|
---------------------------
|
2202 |
|
|
-- Analyze_Freeze_Entity --
|
2203 |
|
|
---------------------------
|
2204 |
|
|
|
2205 |
|
|
procedure Analyze_Freeze_Entity (N : Node_Id) is
|
2206 |
|
|
E : constant Entity_Id := Entity (N);
|
2207 |
|
|
|
2208 |
|
|
begin
|
2209 |
|
|
-- For tagged types covering interfaces add internal entities that link
|
2210 |
|
|
-- the primitives of the interfaces with the primitives that cover them.
|
2211 |
|
|
|
2212 |
|
|
-- Note: These entities were originally generated only when generating
|
2213 |
|
|
-- code because their main purpose was to provide support to initialize
|
2214 |
|
|
-- the secondary dispatch tables. They are now generated also when
|
2215 |
|
|
-- compiling with no code generation to provide ASIS the relationship
|
2216 |
|
|
-- between interface primitives and tagged type primitives.
|
2217 |
|
|
|
2218 |
|
|
if Ada_Version >= Ada_05
|
2219 |
|
|
and then Ekind (E) = E_Record_Type
|
2220 |
|
|
and then Is_Tagged_Type (E)
|
2221 |
|
|
and then not Is_Interface (E)
|
2222 |
|
|
and then Has_Interfaces (E)
|
2223 |
|
|
then
|
2224 |
|
|
Add_Internal_Interface_Entities (E);
|
2225 |
|
|
end if;
|
2226 |
|
|
end Analyze_Freeze_Entity;
|
2227 |
|
|
|
2228 |
|
|
------------------------------------------
|
2229 |
|
|
-- Analyze_Record_Representation_Clause --
|
2230 |
|
|
------------------------------------------
|
2231 |
|
|
|
2232 |
|
|
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
|
2233 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2234 |
|
|
Ident : constant Node_Id := Identifier (N);
|
2235 |
|
|
Rectype : Entity_Id;
|
2236 |
|
|
Fent : Entity_Id;
|
2237 |
|
|
CC : Node_Id;
|
2238 |
|
|
Posit : Uint;
|
2239 |
|
|
Fbit : Uint;
|
2240 |
|
|
Lbit : Uint;
|
2241 |
|
|
Hbit : Uint := Uint_0;
|
2242 |
|
|
Comp : Entity_Id;
|
2243 |
|
|
Ocomp : Entity_Id;
|
2244 |
|
|
Pcomp : Entity_Id;
|
2245 |
|
|
Biased : Boolean;
|
2246 |
|
|
|
2247 |
|
|
Max_Bit_So_Far : Uint;
|
2248 |
|
|
-- Records the maximum bit position so far. If all field positions
|
2249 |
|
|
-- are monotonically increasing, then we can skip the circuit for
|
2250 |
|
|
-- checking for overlap, since no overlap is possible.
|
2251 |
|
|
|
2252 |
|
|
Tagged_Parent : Entity_Id := Empty;
|
2253 |
|
|
-- This is set in the case of a derived tagged type for which we have
|
2254 |
|
|
-- Is_Fully_Repped_Tagged_Type True (indicating that all components are
|
2255 |
|
|
-- positioned by record representation clauses). In this case we must
|
2256 |
|
|
-- check for overlap between components of this tagged type, and the
|
2257 |
|
|
-- components of its parent. Tagged_Parent will point to this parent
|
2258 |
|
|
-- type. For all other cases Tagged_Parent is left set to Empty.
|
2259 |
|
|
|
2260 |
|
|
Parent_Last_Bit : Uint;
|
2261 |
|
|
-- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
|
2262 |
|
|
-- last bit position for any field in the parent type. We only need to
|
2263 |
|
|
-- check overlap for fields starting below this point.
|
2264 |
|
|
|
2265 |
|
|
Overlap_Check_Required : Boolean;
|
2266 |
|
|
-- Used to keep track of whether or not an overlap check is required
|
2267 |
|
|
|
2268 |
|
|
Ccount : Natural := 0;
|
2269 |
|
|
-- Number of component clauses in record rep clause
|
2270 |
|
|
|
2271 |
|
|
CR_Pragma : Node_Id := Empty;
|
2272 |
|
|
-- Points to N_Pragma node if Complete_Representation pragma present
|
2273 |
|
|
|
2274 |
|
|
begin
|
2275 |
|
|
if Ignore_Rep_Clauses then
|
2276 |
|
|
return;
|
2277 |
|
|
end if;
|
2278 |
|
|
|
2279 |
|
|
Find_Type (Ident);
|
2280 |
|
|
Rectype := Entity (Ident);
|
2281 |
|
|
|
2282 |
|
|
if Rectype = Any_Type
|
2283 |
|
|
or else Rep_Item_Too_Early (Rectype, N)
|
2284 |
|
|
then
|
2285 |
|
|
return;
|
2286 |
|
|
else
|
2287 |
|
|
Rectype := Underlying_Type (Rectype);
|
2288 |
|
|
end if;
|
2289 |
|
|
|
2290 |
|
|
-- First some basic error checks
|
2291 |
|
|
|
2292 |
|
|
if not Is_Record_Type (Rectype) then
|
2293 |
|
|
Error_Msg_NE
|
2294 |
|
|
("record type required, found}", Ident, First_Subtype (Rectype));
|
2295 |
|
|
return;
|
2296 |
|
|
|
2297 |
|
|
elsif Is_Unchecked_Union (Rectype) then
|
2298 |
|
|
Error_Msg_N
|
2299 |
|
|
("record rep clause not allowed for Unchecked_Union", N);
|
2300 |
|
|
|
2301 |
|
|
elsif Scope (Rectype) /= Current_Scope then
|
2302 |
|
|
Error_Msg_N ("type must be declared in this scope", N);
|
2303 |
|
|
return;
|
2304 |
|
|
|
2305 |
|
|
elsif not Is_First_Subtype (Rectype) then
|
2306 |
|
|
Error_Msg_N ("cannot give record rep clause for subtype", N);
|
2307 |
|
|
return;
|
2308 |
|
|
|
2309 |
|
|
elsif Has_Record_Rep_Clause (Rectype) then
|
2310 |
|
|
Error_Msg_N ("duplicate record rep clause ignored", N);
|
2311 |
|
|
return;
|
2312 |
|
|
|
2313 |
|
|
elsif Rep_Item_Too_Late (Rectype, N) then
|
2314 |
|
|
return;
|
2315 |
|
|
end if;
|
2316 |
|
|
|
2317 |
|
|
if Present (Mod_Clause (N)) then
|
2318 |
|
|
declare
|
2319 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2320 |
|
|
M : constant Node_Id := Mod_Clause (N);
|
2321 |
|
|
P : constant List_Id := Pragmas_Before (M);
|
2322 |
|
|
AtM_Nod : Node_Id;
|
2323 |
|
|
|
2324 |
|
|
Mod_Val : Uint;
|
2325 |
|
|
pragma Warnings (Off, Mod_Val);
|
2326 |
|
|
|
2327 |
|
|
begin
|
2328 |
|
|
Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
|
2329 |
|
|
|
2330 |
|
|
if Warn_On_Obsolescent_Feature then
|
2331 |
|
|
Error_Msg_N
|
2332 |
|
|
("mod clause is an obsolescent feature (RM J.8)?", N);
|
2333 |
|
|
Error_Msg_N
|
2334 |
|
|
("\use alignment attribute definition clause instead?", N);
|
2335 |
|
|
end if;
|
2336 |
|
|
|
2337 |
|
|
if Present (P) then
|
2338 |
|
|
Analyze_List (P);
|
2339 |
|
|
end if;
|
2340 |
|
|
|
2341 |
|
|
-- In ASIS_Mode mode, expansion is disabled, but we must convert
|
2342 |
|
|
-- the Mod clause into an alignment clause anyway, so that the
|
2343 |
|
|
-- back-end can compute and back-annotate properly the size and
|
2344 |
|
|
-- alignment of types that may include this record.
|
2345 |
|
|
|
2346 |
|
|
-- This seems dubious, this destroys the source tree in a manner
|
2347 |
|
|
-- not detectable by ASIS ???
|
2348 |
|
|
|
2349 |
|
|
if Operating_Mode = Check_Semantics
|
2350 |
|
|
and then ASIS_Mode
|
2351 |
|
|
then
|
2352 |
|
|
AtM_Nod :=
|
2353 |
|
|
Make_Attribute_Definition_Clause (Loc,
|
2354 |
|
|
Name => New_Reference_To (Base_Type (Rectype), Loc),
|
2355 |
|
|
Chars => Name_Alignment,
|
2356 |
|
|
Expression => Relocate_Node (Expression (M)));
|
2357 |
|
|
|
2358 |
|
|
Set_From_At_Mod (AtM_Nod);
|
2359 |
|
|
Insert_After (N, AtM_Nod);
|
2360 |
|
|
Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
|
2361 |
|
|
Set_Mod_Clause (N, Empty);
|
2362 |
|
|
|
2363 |
|
|
else
|
2364 |
|
|
-- Get the alignment value to perform error checking
|
2365 |
|
|
|
2366 |
|
|
Mod_Val := Get_Alignment_Value (Expression (M));
|
2367 |
|
|
|
2368 |
|
|
end if;
|
2369 |
|
|
end;
|
2370 |
|
|
end if;
|
2371 |
|
|
|
2372 |
|
|
-- For untagged types, clear any existing component clauses for the
|
2373 |
|
|
-- type. If the type is derived, this is what allows us to override
|
2374 |
|
|
-- a rep clause for the parent. For type extensions, the representation
|
2375 |
|
|
-- of the inherited components is inherited, so we want to keep previous
|
2376 |
|
|
-- component clauses for completeness.
|
2377 |
|
|
|
2378 |
|
|
if not Is_Tagged_Type (Rectype) then
|
2379 |
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
2380 |
|
|
while Present (Comp) loop
|
2381 |
|
|
Set_Component_Clause (Comp, Empty);
|
2382 |
|
|
Next_Component_Or_Discriminant (Comp);
|
2383 |
|
|
end loop;
|
2384 |
|
|
end if;
|
2385 |
|
|
|
2386 |
|
|
-- See if we have a fully repped derived tagged type
|
2387 |
|
|
|
2388 |
|
|
declare
|
2389 |
|
|
PS : constant Entity_Id := Parent_Subtype (Rectype);
|
2390 |
|
|
|
2391 |
|
|
begin
|
2392 |
|
|
if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
|
2393 |
|
|
Tagged_Parent := PS;
|
2394 |
|
|
|
2395 |
|
|
-- Find maximum bit of any component of the parent type
|
2396 |
|
|
|
2397 |
|
|
Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
|
2398 |
|
|
Pcomp := First_Entity (Tagged_Parent);
|
2399 |
|
|
while Present (Pcomp) loop
|
2400 |
|
|
if Ekind (Pcomp) = E_Discriminant
|
2401 |
|
|
or else
|
2402 |
|
|
Ekind (Pcomp) = E_Component
|
2403 |
|
|
then
|
2404 |
|
|
if Component_Bit_Offset (Pcomp) /= No_Uint
|
2405 |
|
|
and then Known_Static_Esize (Pcomp)
|
2406 |
|
|
then
|
2407 |
|
|
Parent_Last_Bit :=
|
2408 |
|
|
UI_Max
|
2409 |
|
|
(Parent_Last_Bit,
|
2410 |
|
|
Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
|
2411 |
|
|
end if;
|
2412 |
|
|
|
2413 |
|
|
Next_Entity (Pcomp);
|
2414 |
|
|
end if;
|
2415 |
|
|
end loop;
|
2416 |
|
|
end if;
|
2417 |
|
|
end;
|
2418 |
|
|
|
2419 |
|
|
-- All done if no component clauses
|
2420 |
|
|
|
2421 |
|
|
CC := First (Component_Clauses (N));
|
2422 |
|
|
|
2423 |
|
|
if No (CC) then
|
2424 |
|
|
return;
|
2425 |
|
|
end if;
|
2426 |
|
|
|
2427 |
|
|
-- If a tag is present, then create a component clause that places it
|
2428 |
|
|
-- at the start of the record (otherwise gigi may place it after other
|
2429 |
|
|
-- fields that have rep clauses).
|
2430 |
|
|
|
2431 |
|
|
Fent := First_Entity (Rectype);
|
2432 |
|
|
|
2433 |
|
|
if Nkind (Fent) = N_Defining_Identifier
|
2434 |
|
|
and then Chars (Fent) = Name_uTag
|
2435 |
|
|
then
|
2436 |
|
|
Set_Component_Bit_Offset (Fent, Uint_0);
|
2437 |
|
|
Set_Normalized_Position (Fent, Uint_0);
|
2438 |
|
|
Set_Normalized_First_Bit (Fent, Uint_0);
|
2439 |
|
|
Set_Normalized_Position_Max (Fent, Uint_0);
|
2440 |
|
|
Init_Esize (Fent, System_Address_Size);
|
2441 |
|
|
|
2442 |
|
|
Set_Component_Clause (Fent,
|
2443 |
|
|
Make_Component_Clause (Loc,
|
2444 |
|
|
Component_Name =>
|
2445 |
|
|
Make_Identifier (Loc,
|
2446 |
|
|
Chars => Name_uTag),
|
2447 |
|
|
|
2448 |
|
|
Position =>
|
2449 |
|
|
Make_Integer_Literal (Loc,
|
2450 |
|
|
Intval => Uint_0),
|
2451 |
|
|
|
2452 |
|
|
First_Bit =>
|
2453 |
|
|
Make_Integer_Literal (Loc,
|
2454 |
|
|
Intval => Uint_0),
|
2455 |
|
|
|
2456 |
|
|
Last_Bit =>
|
2457 |
|
|
Make_Integer_Literal (Loc,
|
2458 |
|
|
UI_From_Int (System_Address_Size))));
|
2459 |
|
|
|
2460 |
|
|
Ccount := Ccount + 1;
|
2461 |
|
|
end if;
|
2462 |
|
|
|
2463 |
|
|
-- A representation like this applies to the base type
|
2464 |
|
|
|
2465 |
|
|
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
|
2466 |
|
|
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
|
2467 |
|
|
Set_Has_Specified_Layout (Base_Type (Rectype));
|
2468 |
|
|
|
2469 |
|
|
Max_Bit_So_Far := Uint_Minus_1;
|
2470 |
|
|
Overlap_Check_Required := False;
|
2471 |
|
|
|
2472 |
|
|
-- Process the component clauses
|
2473 |
|
|
|
2474 |
|
|
while Present (CC) loop
|
2475 |
|
|
|
2476 |
|
|
-- Pragma
|
2477 |
|
|
|
2478 |
|
|
if Nkind (CC) = N_Pragma then
|
2479 |
|
|
Analyze (CC);
|
2480 |
|
|
|
2481 |
|
|
-- The only pragma of interest is Complete_Representation
|
2482 |
|
|
|
2483 |
|
|
if Pragma_Name (CC) = Name_Complete_Representation then
|
2484 |
|
|
CR_Pragma := CC;
|
2485 |
|
|
end if;
|
2486 |
|
|
|
2487 |
|
|
-- Processing for real component clause
|
2488 |
|
|
|
2489 |
|
|
else
|
2490 |
|
|
Ccount := Ccount + 1;
|
2491 |
|
|
Posit := Static_Integer (Position (CC));
|
2492 |
|
|
Fbit := Static_Integer (First_Bit (CC));
|
2493 |
|
|
Lbit := Static_Integer (Last_Bit (CC));
|
2494 |
|
|
|
2495 |
|
|
if Posit /= No_Uint
|
2496 |
|
|
and then Fbit /= No_Uint
|
2497 |
|
|
and then Lbit /= No_Uint
|
2498 |
|
|
then
|
2499 |
|
|
if Posit < 0 then
|
2500 |
|
|
Error_Msg_N
|
2501 |
|
|
("position cannot be negative", Position (CC));
|
2502 |
|
|
|
2503 |
|
|
elsif Fbit < 0 then
|
2504 |
|
|
Error_Msg_N
|
2505 |
|
|
("first bit cannot be negative", First_Bit (CC));
|
2506 |
|
|
|
2507 |
|
|
-- The Last_Bit specified in a component clause must not be
|
2508 |
|
|
-- less than the First_Bit minus one (RM-13.5.1(10)).
|
2509 |
|
|
|
2510 |
|
|
elsif Lbit < Fbit - 1 then
|
2511 |
|
|
Error_Msg_N
|
2512 |
|
|
("last bit cannot be less than first bit minus one",
|
2513 |
|
|
Last_Bit (CC));
|
2514 |
|
|
|
2515 |
|
|
-- Values look OK, so find the corresponding record component
|
2516 |
|
|
-- Even though the syntax allows an attribute reference for
|
2517 |
|
|
-- implementation-defined components, GNAT does not allow the
|
2518 |
|
|
-- tag to get an explicit position.
|
2519 |
|
|
|
2520 |
|
|
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
|
2521 |
|
|
if Attribute_Name (Component_Name (CC)) = Name_Tag then
|
2522 |
|
|
Error_Msg_N ("position of tag cannot be specified", CC);
|
2523 |
|
|
else
|
2524 |
|
|
Error_Msg_N ("illegal component name", CC);
|
2525 |
|
|
end if;
|
2526 |
|
|
|
2527 |
|
|
else
|
2528 |
|
|
Comp := First_Entity (Rectype);
|
2529 |
|
|
while Present (Comp) loop
|
2530 |
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
2531 |
|
|
Next_Entity (Comp);
|
2532 |
|
|
end loop;
|
2533 |
|
|
|
2534 |
|
|
if No (Comp) then
|
2535 |
|
|
|
2536 |
|
|
-- Maybe component of base type that is absent from
|
2537 |
|
|
-- statically constrained first subtype.
|
2538 |
|
|
|
2539 |
|
|
Comp := First_Entity (Base_Type (Rectype));
|
2540 |
|
|
while Present (Comp) loop
|
2541 |
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
2542 |
|
|
Next_Entity (Comp);
|
2543 |
|
|
end loop;
|
2544 |
|
|
end if;
|
2545 |
|
|
|
2546 |
|
|
if No (Comp) then
|
2547 |
|
|
Error_Msg_N
|
2548 |
|
|
("component clause is for non-existent field", CC);
|
2549 |
|
|
|
2550 |
|
|
elsif Present (Component_Clause (Comp)) then
|
2551 |
|
|
|
2552 |
|
|
-- Diagnose duplicate rep clause, or check consistency
|
2553 |
|
|
-- if this is an inherited component. In a double fault,
|
2554 |
|
|
-- there may be a duplicate inconsistent clause for an
|
2555 |
|
|
-- inherited component.
|
2556 |
|
|
|
2557 |
|
|
if Scope (Original_Record_Component (Comp)) = Rectype
|
2558 |
|
|
or else Parent (Component_Clause (Comp)) = N
|
2559 |
|
|
then
|
2560 |
|
|
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
|
2561 |
|
|
Error_Msg_N ("component clause previously given#", CC);
|
2562 |
|
|
|
2563 |
|
|
else
|
2564 |
|
|
declare
|
2565 |
|
|
Rep1 : constant Node_Id := Component_Clause (Comp);
|
2566 |
|
|
begin
|
2567 |
|
|
if Intval (Position (Rep1)) /=
|
2568 |
|
|
Intval (Position (CC))
|
2569 |
|
|
or else Intval (First_Bit (Rep1)) /=
|
2570 |
|
|
Intval (First_Bit (CC))
|
2571 |
|
|
or else Intval (Last_Bit (Rep1)) /=
|
2572 |
|
|
Intval (Last_Bit (CC))
|
2573 |
|
|
then
|
2574 |
|
|
Error_Msg_N ("component clause inconsistent "
|
2575 |
|
|
& "with representation of ancestor", CC);
|
2576 |
|
|
elsif Warn_On_Redundant_Constructs then
|
2577 |
|
|
Error_Msg_N ("?redundant component clause "
|
2578 |
|
|
& "for inherited component!", CC);
|
2579 |
|
|
end if;
|
2580 |
|
|
end;
|
2581 |
|
|
end if;
|
2582 |
|
|
|
2583 |
|
|
-- Normal case where this is the first component clause we
|
2584 |
|
|
-- have seen for this entity, so set it up properly.
|
2585 |
|
|
|
2586 |
|
|
else
|
2587 |
|
|
-- Make reference for field in record rep clause and set
|
2588 |
|
|
-- appropriate entity field in the field identifier.
|
2589 |
|
|
|
2590 |
|
|
Generate_Reference
|
2591 |
|
|
(Comp, Component_Name (CC), Set_Ref => False);
|
2592 |
|
|
Set_Entity (Component_Name (CC), Comp);
|
2593 |
|
|
|
2594 |
|
|
-- Update Fbit and Lbit to the actual bit number
|
2595 |
|
|
|
2596 |
|
|
Fbit := Fbit + UI_From_Int (SSU) * Posit;
|
2597 |
|
|
Lbit := Lbit + UI_From_Int (SSU) * Posit;
|
2598 |
|
|
|
2599 |
|
|
if Fbit <= Max_Bit_So_Far then
|
2600 |
|
|
Overlap_Check_Required := True;
|
2601 |
|
|
else
|
2602 |
|
|
Max_Bit_So_Far := Lbit;
|
2603 |
|
|
end if;
|
2604 |
|
|
|
2605 |
|
|
if Has_Size_Clause (Rectype)
|
2606 |
|
|
and then Esize (Rectype) <= Lbit
|
2607 |
|
|
then
|
2608 |
|
|
Error_Msg_N
|
2609 |
|
|
("bit number out of range of specified size",
|
2610 |
|
|
Last_Bit (CC));
|
2611 |
|
|
else
|
2612 |
|
|
Set_Component_Clause (Comp, CC);
|
2613 |
|
|
Set_Component_Bit_Offset (Comp, Fbit);
|
2614 |
|
|
Set_Esize (Comp, 1 + (Lbit - Fbit));
|
2615 |
|
|
Set_Normalized_First_Bit (Comp, Fbit mod SSU);
|
2616 |
|
|
Set_Normalized_Position (Comp, Fbit / SSU);
|
2617 |
|
|
|
2618 |
|
|
Set_Normalized_Position_Max
|
2619 |
|
|
(Fent, Normalized_Position (Fent));
|
2620 |
|
|
|
2621 |
|
|
if Is_Tagged_Type (Rectype)
|
2622 |
|
|
and then Fbit < System_Address_Size
|
2623 |
|
|
then
|
2624 |
|
|
Error_Msg_NE
|
2625 |
|
|
("component overlaps tag field of&",
|
2626 |
|
|
Component_Name (CC), Rectype);
|
2627 |
|
|
end if;
|
2628 |
|
|
|
2629 |
|
|
-- This information is also set in the corresponding
|
2630 |
|
|
-- component of the base type, found by accessing the
|
2631 |
|
|
-- Original_Record_Component link if it is present.
|
2632 |
|
|
|
2633 |
|
|
Ocomp := Original_Record_Component (Comp);
|
2634 |
|
|
|
2635 |
|
|
if Hbit < Lbit then
|
2636 |
|
|
Hbit := Lbit;
|
2637 |
|
|
end if;
|
2638 |
|
|
|
2639 |
|
|
Check_Size
|
2640 |
|
|
(Component_Name (CC),
|
2641 |
|
|
Etype (Comp),
|
2642 |
|
|
Esize (Comp),
|
2643 |
|
|
Biased);
|
2644 |
|
|
|
2645 |
|
|
Set_Has_Biased_Representation (Comp, Biased);
|
2646 |
|
|
|
2647 |
|
|
if Biased and Warn_On_Biased_Representation then
|
2648 |
|
|
Error_Msg_F
|
2649 |
|
|
("?component clause forces biased "
|
2650 |
|
|
& "representation", CC);
|
2651 |
|
|
end if;
|
2652 |
|
|
|
2653 |
|
|
if Present (Ocomp) then
|
2654 |
|
|
Set_Component_Clause (Ocomp, CC);
|
2655 |
|
|
Set_Component_Bit_Offset (Ocomp, Fbit);
|
2656 |
|
|
Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
|
2657 |
|
|
Set_Normalized_Position (Ocomp, Fbit / SSU);
|
2658 |
|
|
Set_Esize (Ocomp, 1 + (Lbit - Fbit));
|
2659 |
|
|
|
2660 |
|
|
Set_Normalized_Position_Max
|
2661 |
|
|
(Ocomp, Normalized_Position (Ocomp));
|
2662 |
|
|
|
2663 |
|
|
Set_Has_Biased_Representation
|
2664 |
|
|
(Ocomp, Has_Biased_Representation (Comp));
|
2665 |
|
|
end if;
|
2666 |
|
|
|
2667 |
|
|
if Esize (Comp) < 0 then
|
2668 |
|
|
Error_Msg_N ("component size is negative", CC);
|
2669 |
|
|
end if;
|
2670 |
|
|
end if;
|
2671 |
|
|
|
2672 |
|
|
-- If OK component size, check parent type overlap if
|
2673 |
|
|
-- this component might overlap a parent field.
|
2674 |
|
|
|
2675 |
|
|
if Present (Tagged_Parent)
|
2676 |
|
|
and then Fbit <= Parent_Last_Bit
|
2677 |
|
|
then
|
2678 |
|
|
Pcomp := First_Entity (Tagged_Parent);
|
2679 |
|
|
while Present (Pcomp) loop
|
2680 |
|
|
if (Ekind (Pcomp) = E_Discriminant
|
2681 |
|
|
or else
|
2682 |
|
|
Ekind (Pcomp) = E_Component)
|
2683 |
|
|
and then not Is_Tag (Pcomp)
|
2684 |
|
|
and then Chars (Pcomp) /= Name_uParent
|
2685 |
|
|
then
|
2686 |
|
|
Check_Component_Overlap (Comp, Pcomp);
|
2687 |
|
|
end if;
|
2688 |
|
|
|
2689 |
|
|
Next_Entity (Pcomp);
|
2690 |
|
|
end loop;
|
2691 |
|
|
end if;
|
2692 |
|
|
end if;
|
2693 |
|
|
end if;
|
2694 |
|
|
end if;
|
2695 |
|
|
end if;
|
2696 |
|
|
|
2697 |
|
|
Next (CC);
|
2698 |
|
|
end loop;
|
2699 |
|
|
|
2700 |
|
|
-- Now that we have processed all the component clauses, check for
|
2701 |
|
|
-- overlap. We have to leave this till last, since the components can
|
2702 |
|
|
-- appear in any arbitrary order in the representation clause.
|
2703 |
|
|
|
2704 |
|
|
-- We do not need this check if all specified ranges were monotonic,
|
2705 |
|
|
-- as recorded by Overlap_Check_Required being False at this stage.
|
2706 |
|
|
|
2707 |
|
|
-- This first section checks if there are any overlapping entries at
|
2708 |
|
|
-- all. It does this by sorting all entries and then seeing if there are
|
2709 |
|
|
-- any overlaps. If there are none, then that is decisive, but if there
|
2710 |
|
|
-- are overlaps, they may still be OK (they may result from fields in
|
2711 |
|
|
-- different variants).
|
2712 |
|
|
|
2713 |
|
|
if Overlap_Check_Required then
|
2714 |
|
|
Overlap_Check1 : declare
|
2715 |
|
|
|
2716 |
|
|
OC_Fbit : array (0 .. Ccount) of Uint;
|
2717 |
|
|
-- First-bit values for component clauses, the value is the offset
|
2718 |
|
|
-- of the first bit of the field from start of record. The zero
|
2719 |
|
|
-- entry is for use in sorting.
|
2720 |
|
|
|
2721 |
|
|
OC_Lbit : array (0 .. Ccount) of Uint;
|
2722 |
|
|
-- Last-bit values for component clauses, the value is the offset
|
2723 |
|
|
-- of the last bit of the field from start of record. The zero
|
2724 |
|
|
-- entry is for use in sorting.
|
2725 |
|
|
|
2726 |
|
|
OC_Count : Natural := 0;
|
2727 |
|
|
-- Count of entries in OC_Fbit and OC_Lbit
|
2728 |
|
|
|
2729 |
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean;
|
2730 |
|
|
-- Compare routine for Sort
|
2731 |
|
|
|
2732 |
|
|
procedure OC_Move (From : Natural; To : Natural);
|
2733 |
|
|
-- Move routine for Sort
|
2734 |
|
|
|
2735 |
|
|
package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
|
2736 |
|
|
|
2737 |
|
|
-----------
|
2738 |
|
|
-- OC_Lt --
|
2739 |
|
|
-----------
|
2740 |
|
|
|
2741 |
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean is
|
2742 |
|
|
begin
|
2743 |
|
|
return OC_Fbit (Op1) < OC_Fbit (Op2);
|
2744 |
|
|
end OC_Lt;
|
2745 |
|
|
|
2746 |
|
|
-------------
|
2747 |
|
|
-- OC_Move --
|
2748 |
|
|
-------------
|
2749 |
|
|
|
2750 |
|
|
procedure OC_Move (From : Natural; To : Natural) is
|
2751 |
|
|
begin
|
2752 |
|
|
OC_Fbit (To) := OC_Fbit (From);
|
2753 |
|
|
OC_Lbit (To) := OC_Lbit (From);
|
2754 |
|
|
end OC_Move;
|
2755 |
|
|
|
2756 |
|
|
-- Start of processing for Overlap_Check
|
2757 |
|
|
|
2758 |
|
|
begin
|
2759 |
|
|
CC := First (Component_Clauses (N));
|
2760 |
|
|
while Present (CC) loop
|
2761 |
|
|
if Nkind (CC) /= N_Pragma then
|
2762 |
|
|
Posit := Static_Integer (Position (CC));
|
2763 |
|
|
Fbit := Static_Integer (First_Bit (CC));
|
2764 |
|
|
Lbit := Static_Integer (Last_Bit (CC));
|
2765 |
|
|
|
2766 |
|
|
if Posit /= No_Uint
|
2767 |
|
|
and then Fbit /= No_Uint
|
2768 |
|
|
and then Lbit /= No_Uint
|
2769 |
|
|
then
|
2770 |
|
|
OC_Count := OC_Count + 1;
|
2771 |
|
|
Posit := Posit * SSU;
|
2772 |
|
|
OC_Fbit (OC_Count) := Fbit + Posit;
|
2773 |
|
|
OC_Lbit (OC_Count) := Lbit + Posit;
|
2774 |
|
|
end if;
|
2775 |
|
|
end if;
|
2776 |
|
|
|
2777 |
|
|
Next (CC);
|
2778 |
|
|
end loop;
|
2779 |
|
|
|
2780 |
|
|
Sorting.Sort (OC_Count);
|
2781 |
|
|
|
2782 |
|
|
Overlap_Check_Required := False;
|
2783 |
|
|
for J in 1 .. OC_Count - 1 loop
|
2784 |
|
|
if OC_Lbit (J) >= OC_Fbit (J + 1) then
|
2785 |
|
|
Overlap_Check_Required := True;
|
2786 |
|
|
exit;
|
2787 |
|
|
end if;
|
2788 |
|
|
end loop;
|
2789 |
|
|
end Overlap_Check1;
|
2790 |
|
|
end if;
|
2791 |
|
|
|
2792 |
|
|
-- If Overlap_Check_Required is still True, then we have to do the full
|
2793 |
|
|
-- scale overlap check, since we have at least two fields that do
|
2794 |
|
|
-- overlap, and we need to know if that is OK since they are in
|
2795 |
|
|
-- different variant, or whether we have a definite problem.
|
2796 |
|
|
|
2797 |
|
|
if Overlap_Check_Required then
|
2798 |
|
|
Overlap_Check2 : declare
|
2799 |
|
|
C1_Ent, C2_Ent : Entity_Id;
|
2800 |
|
|
-- Entities of components being checked for overlap
|
2801 |
|
|
|
2802 |
|
|
Clist : Node_Id;
|
2803 |
|
|
-- Component_List node whose Component_Items are being checked
|
2804 |
|
|
|
2805 |
|
|
Citem : Node_Id;
|
2806 |
|
|
-- Component declaration for component being checked
|
2807 |
|
|
|
2808 |
|
|
begin
|
2809 |
|
|
C1_Ent := First_Entity (Base_Type (Rectype));
|
2810 |
|
|
|
2811 |
|
|
-- Loop through all components in record. For each component check
|
2812 |
|
|
-- for overlap with any of the preceding elements on the component
|
2813 |
|
|
-- list containing the component and also, if the component is in
|
2814 |
|
|
-- a variant, check against components outside the case structure.
|
2815 |
|
|
-- This latter test is repeated recursively up the variant tree.
|
2816 |
|
|
|
2817 |
|
|
Main_Component_Loop : while Present (C1_Ent) loop
|
2818 |
|
|
if Ekind (C1_Ent) /= E_Component
|
2819 |
|
|
and then Ekind (C1_Ent) /= E_Discriminant
|
2820 |
|
|
then
|
2821 |
|
|
goto Continue_Main_Component_Loop;
|
2822 |
|
|
end if;
|
2823 |
|
|
|
2824 |
|
|
-- Skip overlap check if entity has no declaration node. This
|
2825 |
|
|
-- happens with discriminants in constrained derived types.
|
2826 |
|
|
-- Probably we are missing some checks as a result, but that
|
2827 |
|
|
-- does not seem terribly serious ???
|
2828 |
|
|
|
2829 |
|
|
if No (Declaration_Node (C1_Ent)) then
|
2830 |
|
|
goto Continue_Main_Component_Loop;
|
2831 |
|
|
end if;
|
2832 |
|
|
|
2833 |
|
|
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
|
2834 |
|
|
|
2835 |
|
|
-- Loop through component lists that need checking. Check the
|
2836 |
|
|
-- current component list and all lists in variants above us.
|
2837 |
|
|
|
2838 |
|
|
Component_List_Loop : loop
|
2839 |
|
|
|
2840 |
|
|
-- If derived type definition, go to full declaration
|
2841 |
|
|
-- If at outer level, check discriminants if there are any.
|
2842 |
|
|
|
2843 |
|
|
if Nkind (Clist) = N_Derived_Type_Definition then
|
2844 |
|
|
Clist := Parent (Clist);
|
2845 |
|
|
end if;
|
2846 |
|
|
|
2847 |
|
|
-- Outer level of record definition, check discriminants
|
2848 |
|
|
|
2849 |
|
|
if Nkind_In (Clist, N_Full_Type_Declaration,
|
2850 |
|
|
N_Private_Type_Declaration)
|
2851 |
|
|
then
|
2852 |
|
|
if Has_Discriminants (Defining_Identifier (Clist)) then
|
2853 |
|
|
C2_Ent :=
|
2854 |
|
|
First_Discriminant (Defining_Identifier (Clist));
|
2855 |
|
|
while Present (C2_Ent) loop
|
2856 |
|
|
exit when C1_Ent = C2_Ent;
|
2857 |
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
2858 |
|
|
Next_Discriminant (C2_Ent);
|
2859 |
|
|
end loop;
|
2860 |
|
|
end if;
|
2861 |
|
|
|
2862 |
|
|
-- Record extension case
|
2863 |
|
|
|
2864 |
|
|
elsif Nkind (Clist) = N_Derived_Type_Definition then
|
2865 |
|
|
Clist := Empty;
|
2866 |
|
|
|
2867 |
|
|
-- Otherwise check one component list
|
2868 |
|
|
|
2869 |
|
|
else
|
2870 |
|
|
Citem := First (Component_Items (Clist));
|
2871 |
|
|
|
2872 |
|
|
while Present (Citem) loop
|
2873 |
|
|
if Nkind (Citem) = N_Component_Declaration then
|
2874 |
|
|
C2_Ent := Defining_Identifier (Citem);
|
2875 |
|
|
exit when C1_Ent = C2_Ent;
|
2876 |
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
2877 |
|
|
end if;
|
2878 |
|
|
|
2879 |
|
|
Next (Citem);
|
2880 |
|
|
end loop;
|
2881 |
|
|
end if;
|
2882 |
|
|
|
2883 |
|
|
-- Check for variants above us (the parent of the Clist can
|
2884 |
|
|
-- be a variant, in which case its parent is a variant part,
|
2885 |
|
|
-- and the parent of the variant part is a component list
|
2886 |
|
|
-- whose components must all be checked against the current
|
2887 |
|
|
-- component for overlap).
|
2888 |
|
|
|
2889 |
|
|
if Nkind (Parent (Clist)) = N_Variant then
|
2890 |
|
|
Clist := Parent (Parent (Parent (Clist)));
|
2891 |
|
|
|
2892 |
|
|
-- Check for possible discriminant part in record, this is
|
2893 |
|
|
-- treated essentially as another level in the recursion.
|
2894 |
|
|
-- For this case the parent of the component list is the
|
2895 |
|
|
-- record definition, and its parent is the full type
|
2896 |
|
|
-- declaration containing the discriminant specifications.
|
2897 |
|
|
|
2898 |
|
|
elsif Nkind (Parent (Clist)) = N_Record_Definition then
|
2899 |
|
|
Clist := Parent (Parent ((Clist)));
|
2900 |
|
|
|
2901 |
|
|
-- If neither of these two cases, we are at the top of
|
2902 |
|
|
-- the tree.
|
2903 |
|
|
|
2904 |
|
|
else
|
2905 |
|
|
exit Component_List_Loop;
|
2906 |
|
|
end if;
|
2907 |
|
|
end loop Component_List_Loop;
|
2908 |
|
|
|
2909 |
|
|
<<Continue_Main_Component_Loop>>
|
2910 |
|
|
Next_Entity (C1_Ent);
|
2911 |
|
|
|
2912 |
|
|
end loop Main_Component_Loop;
|
2913 |
|
|
end Overlap_Check2;
|
2914 |
|
|
end if;
|
2915 |
|
|
|
2916 |
|
|
-- For records that have component clauses for all components, and whose
|
2917 |
|
|
-- size is less than or equal to 32, we need to know the size in the
|
2918 |
|
|
-- front end to activate possible packed array processing where the
|
2919 |
|
|
-- component type is a record.
|
2920 |
|
|
|
2921 |
|
|
-- At this stage Hbit + 1 represents the first unused bit from all the
|
2922 |
|
|
-- component clauses processed, so if the component clauses are
|
2923 |
|
|
-- complete, then this is the length of the record.
|
2924 |
|
|
|
2925 |
|
|
-- For records longer than System.Storage_Unit, and for those where not
|
2926 |
|
|
-- all components have component clauses, the back end determines the
|
2927 |
|
|
-- length (it may for example be appropriate to round up the size
|
2928 |
|
|
-- to some convenient boundary, based on alignment considerations, etc).
|
2929 |
|
|
|
2930 |
|
|
if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
|
2931 |
|
|
|
2932 |
|
|
-- Nothing to do if at least one component has no component clause
|
2933 |
|
|
|
2934 |
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
2935 |
|
|
while Present (Comp) loop
|
2936 |
|
|
exit when No (Component_Clause (Comp));
|
2937 |
|
|
Next_Component_Or_Discriminant (Comp);
|
2938 |
|
|
end loop;
|
2939 |
|
|
|
2940 |
|
|
-- If we fall out of loop, all components have component clauses
|
2941 |
|
|
-- and so we can set the size to the maximum value.
|
2942 |
|
|
|
2943 |
|
|
if No (Comp) then
|
2944 |
|
|
Set_RM_Size (Rectype, Hbit + 1);
|
2945 |
|
|
end if;
|
2946 |
|
|
end if;
|
2947 |
|
|
|
2948 |
|
|
-- Check missing components if Complete_Representation pragma appeared
|
2949 |
|
|
|
2950 |
|
|
if Present (CR_Pragma) then
|
2951 |
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
2952 |
|
|
while Present (Comp) loop
|
2953 |
|
|
if No (Component_Clause (Comp)) then
|
2954 |
|
|
Error_Msg_NE
|
2955 |
|
|
("missing component clause for &", CR_Pragma, Comp);
|
2956 |
|
|
end if;
|
2957 |
|
|
|
2958 |
|
|
Next_Component_Or_Discriminant (Comp);
|
2959 |
|
|
end loop;
|
2960 |
|
|
|
2961 |
|
|
-- If no Complete_Representation pragma, warn if missing components
|
2962 |
|
|
|
2963 |
|
|
elsif Warn_On_Unrepped_Components then
|
2964 |
|
|
declare
|
2965 |
|
|
Num_Repped_Components : Nat := 0;
|
2966 |
|
|
Num_Unrepped_Components : Nat := 0;
|
2967 |
|
|
|
2968 |
|
|
begin
|
2969 |
|
|
-- First count number of repped and unrepped components
|
2970 |
|
|
|
2971 |
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
2972 |
|
|
while Present (Comp) loop
|
2973 |
|
|
if Present (Component_Clause (Comp)) then
|
2974 |
|
|
Num_Repped_Components := Num_Repped_Components + 1;
|
2975 |
|
|
else
|
2976 |
|
|
Num_Unrepped_Components := Num_Unrepped_Components + 1;
|
2977 |
|
|
end if;
|
2978 |
|
|
|
2979 |
|
|
Next_Component_Or_Discriminant (Comp);
|
2980 |
|
|
end loop;
|
2981 |
|
|
|
2982 |
|
|
-- We are only interested in the case where there is at least one
|
2983 |
|
|
-- unrepped component, and at least half the components have rep
|
2984 |
|
|
-- clauses. We figure that if less than half have them, then the
|
2985 |
|
|
-- partial rep clause is really intentional. If the component
|
2986 |
|
|
-- type has no underlying type set at this point (as for a generic
|
2987 |
|
|
-- formal type), we don't know enough to give a warning on the
|
2988 |
|
|
-- component.
|
2989 |
|
|
|
2990 |
|
|
if Num_Unrepped_Components > 0
|
2991 |
|
|
and then Num_Unrepped_Components < Num_Repped_Components
|
2992 |
|
|
then
|
2993 |
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
2994 |
|
|
while Present (Comp) loop
|
2995 |
|
|
if No (Component_Clause (Comp))
|
2996 |
|
|
and then Comes_From_Source (Comp)
|
2997 |
|
|
and then Present (Underlying_Type (Etype (Comp)))
|
2998 |
|
|
and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
|
2999 |
|
|
or else Size_Known_At_Compile_Time
|
3000 |
|
|
(Underlying_Type (Etype (Comp))))
|
3001 |
|
|
and then not Has_Warnings_Off (Rectype)
|
3002 |
|
|
then
|
3003 |
|
|
Error_Msg_Sloc := Sloc (Comp);
|
3004 |
|
|
Error_Msg_NE
|
3005 |
|
|
("?no component clause given for & declared #",
|
3006 |
|
|
N, Comp);
|
3007 |
|
|
end if;
|
3008 |
|
|
|
3009 |
|
|
Next_Component_Or_Discriminant (Comp);
|
3010 |
|
|
end loop;
|
3011 |
|
|
end if;
|
3012 |
|
|
end;
|
3013 |
|
|
end if;
|
3014 |
|
|
end Analyze_Record_Representation_Clause;
|
3015 |
|
|
|
3016 |
|
|
-----------------------------
|
3017 |
|
|
-- Check_Component_Overlap --
|
3018 |
|
|
-----------------------------
|
3019 |
|
|
|
3020 |
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
|
3021 |
|
|
begin
|
3022 |
|
|
if Present (Component_Clause (C1_Ent))
|
3023 |
|
|
and then Present (Component_Clause (C2_Ent))
|
3024 |
|
|
then
|
3025 |
|
|
-- Exclude odd case where we have two tag fields in the same record,
|
3026 |
|
|
-- both at location zero. This seems a bit strange, but it seems to
|
3027 |
|
|
-- happen in some circumstances ???
|
3028 |
|
|
|
3029 |
|
|
if Chars (C1_Ent) = Name_uTag
|
3030 |
|
|
and then Chars (C2_Ent) = Name_uTag
|
3031 |
|
|
then
|
3032 |
|
|
return;
|
3033 |
|
|
end if;
|
3034 |
|
|
|
3035 |
|
|
-- Here we check if the two fields overlap
|
3036 |
|
|
|
3037 |
|
|
declare
|
3038 |
|
|
S1 : constant Uint := Component_Bit_Offset (C1_Ent);
|
3039 |
|
|
S2 : constant Uint := Component_Bit_Offset (C2_Ent);
|
3040 |
|
|
E1 : constant Uint := S1 + Esize (C1_Ent);
|
3041 |
|
|
E2 : constant Uint := S2 + Esize (C2_Ent);
|
3042 |
|
|
|
3043 |
|
|
begin
|
3044 |
|
|
if E2 <= S1 or else E1 <= S2 then
|
3045 |
|
|
null;
|
3046 |
|
|
else
|
3047 |
|
|
Error_Msg_Node_2 :=
|
3048 |
|
|
Component_Name (Component_Clause (C2_Ent));
|
3049 |
|
|
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
|
3050 |
|
|
Error_Msg_Node_1 :=
|
3051 |
|
|
Component_Name (Component_Clause (C1_Ent));
|
3052 |
|
|
Error_Msg_N
|
3053 |
|
|
("component& overlaps & #",
|
3054 |
|
|
Component_Name (Component_Clause (C1_Ent)));
|
3055 |
|
|
end if;
|
3056 |
|
|
end;
|
3057 |
|
|
end if;
|
3058 |
|
|
end Check_Component_Overlap;
|
3059 |
|
|
|
3060 |
|
|
-----------------------------------
|
3061 |
|
|
-- Check_Constant_Address_Clause --
|
3062 |
|
|
-----------------------------------
|
3063 |
|
|
|
3064 |
|
|
procedure Check_Constant_Address_Clause
|
3065 |
|
|
(Expr : Node_Id;
|
3066 |
|
|
U_Ent : Entity_Id)
|
3067 |
|
|
is
|
3068 |
|
|
procedure Check_At_Constant_Address (Nod : Node_Id);
|
3069 |
|
|
-- Checks that the given node N represents a name whose 'Address is
|
3070 |
|
|
-- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
|
3071 |
|
|
-- address value is the same at the point of declaration of U_Ent and at
|
3072 |
|
|
-- the time of elaboration of the address clause.
|
3073 |
|
|
|
3074 |
|
|
procedure Check_Expr_Constants (Nod : Node_Id);
|
3075 |
|
|
-- Checks that Nod meets the requirements for a constant address clause
|
3076 |
|
|
-- in the sense of the enclosing procedure.
|
3077 |
|
|
|
3078 |
|
|
procedure Check_List_Constants (Lst : List_Id);
|
3079 |
|
|
-- Check that all elements of list Lst meet the requirements for a
|
3080 |
|
|
-- constant address clause in the sense of the enclosing procedure.
|
3081 |
|
|
|
3082 |
|
|
-------------------------------
|
3083 |
|
|
-- Check_At_Constant_Address --
|
3084 |
|
|
-------------------------------
|
3085 |
|
|
|
3086 |
|
|
procedure Check_At_Constant_Address (Nod : Node_Id) is
|
3087 |
|
|
begin
|
3088 |
|
|
if Is_Entity_Name (Nod) then
|
3089 |
|
|
if Present (Address_Clause (Entity ((Nod)))) then
|
3090 |
|
|
Error_Msg_NE
|
3091 |
|
|
("invalid address clause for initialized object &!",
|
3092 |
|
|
Nod, U_Ent);
|
3093 |
|
|
Error_Msg_NE
|
3094 |
|
|
("address for& cannot" &
|
3095 |
|
|
" depend on another address clause! (RM 13.1(22))!",
|
3096 |
|
|
Nod, U_Ent);
|
3097 |
|
|
|
3098 |
|
|
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
|
3099 |
|
|
and then Sloc (U_Ent) < Sloc (Entity (Nod))
|
3100 |
|
|
then
|
3101 |
|
|
Error_Msg_NE
|
3102 |
|
|
("invalid address clause for initialized object &!",
|
3103 |
|
|
Nod, U_Ent);
|
3104 |
|
|
Error_Msg_Node_2 := U_Ent;
|
3105 |
|
|
Error_Msg_NE
|
3106 |
|
|
("\& must be defined before & (RM 13.1(22))!",
|
3107 |
|
|
Nod, Entity (Nod));
|
3108 |
|
|
end if;
|
3109 |
|
|
|
3110 |
|
|
elsif Nkind (Nod) = N_Selected_Component then
|
3111 |
|
|
declare
|
3112 |
|
|
T : constant Entity_Id := Etype (Prefix (Nod));
|
3113 |
|
|
|
3114 |
|
|
begin
|
3115 |
|
|
if (Is_Record_Type (T)
|
3116 |
|
|
and then Has_Discriminants (T))
|
3117 |
|
|
or else
|
3118 |
|
|
(Is_Access_Type (T)
|
3119 |
|
|
and then Is_Record_Type (Designated_Type (T))
|
3120 |
|
|
and then Has_Discriminants (Designated_Type (T)))
|
3121 |
|
|
then
|
3122 |
|
|
Error_Msg_NE
|
3123 |
|
|
("invalid address clause for initialized object &!",
|
3124 |
|
|
Nod, U_Ent);
|
3125 |
|
|
Error_Msg_N
|
3126 |
|
|
("\address cannot depend on component" &
|
3127 |
|
|
" of discriminated record (RM 13.1(22))!",
|
3128 |
|
|
Nod);
|
3129 |
|
|
else
|
3130 |
|
|
Check_At_Constant_Address (Prefix (Nod));
|
3131 |
|
|
end if;
|
3132 |
|
|
end;
|
3133 |
|
|
|
3134 |
|
|
elsif Nkind (Nod) = N_Indexed_Component then
|
3135 |
|
|
Check_At_Constant_Address (Prefix (Nod));
|
3136 |
|
|
Check_List_Constants (Expressions (Nod));
|
3137 |
|
|
|
3138 |
|
|
else
|
3139 |
|
|
Check_Expr_Constants (Nod);
|
3140 |
|
|
end if;
|
3141 |
|
|
end Check_At_Constant_Address;
|
3142 |
|
|
|
3143 |
|
|
--------------------------
|
3144 |
|
|
-- Check_Expr_Constants --
|
3145 |
|
|
--------------------------
|
3146 |
|
|
|
3147 |
|
|
procedure Check_Expr_Constants (Nod : Node_Id) is
|
3148 |
|
|
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
|
3149 |
|
|
Ent : Entity_Id := Empty;
|
3150 |
|
|
|
3151 |
|
|
begin
|
3152 |
|
|
if Nkind (Nod) in N_Has_Etype
|
3153 |
|
|
and then Etype (Nod) = Any_Type
|
3154 |
|
|
then
|
3155 |
|
|
return;
|
3156 |
|
|
end if;
|
3157 |
|
|
|
3158 |
|
|
case Nkind (Nod) is
|
3159 |
|
|
when N_Empty | N_Error =>
|
3160 |
|
|
return;
|
3161 |
|
|
|
3162 |
|
|
when N_Identifier | N_Expanded_Name =>
|
3163 |
|
|
Ent := Entity (Nod);
|
3164 |
|
|
|
3165 |
|
|
-- We need to look at the original node if it is different
|
3166 |
|
|
-- from the node, since we may have rewritten things and
|
3167 |
|
|
-- substituted an identifier representing the rewrite.
|
3168 |
|
|
|
3169 |
|
|
if Original_Node (Nod) /= Nod then
|
3170 |
|
|
Check_Expr_Constants (Original_Node (Nod));
|
3171 |
|
|
|
3172 |
|
|
-- If the node is an object declaration without initial
|
3173 |
|
|
-- value, some code has been expanded, and the expression
|
3174 |
|
|
-- is not constant, even if the constituents might be
|
3175 |
|
|
-- acceptable, as in A'Address + offset.
|
3176 |
|
|
|
3177 |
|
|
if Ekind (Ent) = E_Variable
|
3178 |
|
|
and then
|
3179 |
|
|
Nkind (Declaration_Node (Ent)) = N_Object_Declaration
|
3180 |
|
|
and then
|
3181 |
|
|
No (Expression (Declaration_Node (Ent)))
|
3182 |
|
|
then
|
3183 |
|
|
Error_Msg_NE
|
3184 |
|
|
("invalid address clause for initialized object &!",
|
3185 |
|
|
Nod, U_Ent);
|
3186 |
|
|
|
3187 |
|
|
-- If entity is constant, it may be the result of expanding
|
3188 |
|
|
-- a check. We must verify that its declaration appears
|
3189 |
|
|
-- before the object in question, else we also reject the
|
3190 |
|
|
-- address clause.
|
3191 |
|
|
|
3192 |
|
|
elsif Ekind (Ent) = E_Constant
|
3193 |
|
|
and then In_Same_Source_Unit (Ent, U_Ent)
|
3194 |
|
|
and then Sloc (Ent) > Loc_U_Ent
|
3195 |
|
|
then
|
3196 |
|
|
Error_Msg_NE
|
3197 |
|
|
("invalid address clause for initialized object &!",
|
3198 |
|
|
Nod, U_Ent);
|
3199 |
|
|
end if;
|
3200 |
|
|
|
3201 |
|
|
return;
|
3202 |
|
|
end if;
|
3203 |
|
|
|
3204 |
|
|
-- Otherwise look at the identifier and see if it is OK
|
3205 |
|
|
|
3206 |
|
|
if Ekind (Ent) = E_Named_Integer
|
3207 |
|
|
or else
|
3208 |
|
|
Ekind (Ent) = E_Named_Real
|
3209 |
|
|
or else
|
3210 |
|
|
Is_Type (Ent)
|
3211 |
|
|
then
|
3212 |
|
|
return;
|
3213 |
|
|
|
3214 |
|
|
elsif
|
3215 |
|
|
Ekind (Ent) = E_Constant
|
3216 |
|
|
or else
|
3217 |
|
|
Ekind (Ent) = E_In_Parameter
|
3218 |
|
|
then
|
3219 |
|
|
-- This is the case where we must have Ent defined before
|
3220 |
|
|
-- U_Ent. Clearly if they are in different units this
|
3221 |
|
|
-- requirement is met since the unit containing Ent is
|
3222 |
|
|
-- already processed.
|
3223 |
|
|
|
3224 |
|
|
if not In_Same_Source_Unit (Ent, U_Ent) then
|
3225 |
|
|
return;
|
3226 |
|
|
|
3227 |
|
|
-- Otherwise location of Ent must be before the location
|
3228 |
|
|
-- of U_Ent, that's what prior defined means.
|
3229 |
|
|
|
3230 |
|
|
elsif Sloc (Ent) < Loc_U_Ent then
|
3231 |
|
|
return;
|
3232 |
|
|
|
3233 |
|
|
else
|
3234 |
|
|
Error_Msg_NE
|
3235 |
|
|
("invalid address clause for initialized object &!",
|
3236 |
|
|
Nod, U_Ent);
|
3237 |
|
|
Error_Msg_Node_2 := U_Ent;
|
3238 |
|
|
Error_Msg_NE
|
3239 |
|
|
("\& must be defined before & (RM 13.1(22))!",
|
3240 |
|
|
Nod, Ent);
|
3241 |
|
|
end if;
|
3242 |
|
|
|
3243 |
|
|
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
|
3244 |
|
|
Check_Expr_Constants (Original_Node (Nod));
|
3245 |
|
|
|
3246 |
|
|
else
|
3247 |
|
|
Error_Msg_NE
|
3248 |
|
|
("invalid address clause for initialized object &!",
|
3249 |
|
|
Nod, U_Ent);
|
3250 |
|
|
|
3251 |
|
|
if Comes_From_Source (Ent) then
|
3252 |
|
|
Error_Msg_NE
|
3253 |
|
|
("\reference to variable& not allowed"
|
3254 |
|
|
& " (RM 13.1(22))!", Nod, Ent);
|
3255 |
|
|
else
|
3256 |
|
|
Error_Msg_N
|
3257 |
|
|
("non-static expression not allowed"
|
3258 |
|
|
& " (RM 13.1(22))!", Nod);
|
3259 |
|
|
end if;
|
3260 |
|
|
end if;
|
3261 |
|
|
|
3262 |
|
|
when N_Integer_Literal =>
|
3263 |
|
|
|
3264 |
|
|
-- If this is a rewritten unchecked conversion, in a system
|
3265 |
|
|
-- where Address is an integer type, always use the base type
|
3266 |
|
|
-- for a literal value. This is user-friendly and prevents
|
3267 |
|
|
-- order-of-elaboration issues with instances of unchecked
|
3268 |
|
|
-- conversion.
|
3269 |
|
|
|
3270 |
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
3271 |
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
3272 |
|
|
end if;
|
3273 |
|
|
|
3274 |
|
|
when N_Real_Literal |
|
3275 |
|
|
N_String_Literal |
|
3276 |
|
|
N_Character_Literal =>
|
3277 |
|
|
return;
|
3278 |
|
|
|
3279 |
|
|
when N_Range =>
|
3280 |
|
|
Check_Expr_Constants (Low_Bound (Nod));
|
3281 |
|
|
Check_Expr_Constants (High_Bound (Nod));
|
3282 |
|
|
|
3283 |
|
|
when N_Explicit_Dereference =>
|
3284 |
|
|
Check_Expr_Constants (Prefix (Nod));
|
3285 |
|
|
|
3286 |
|
|
when N_Indexed_Component =>
|
3287 |
|
|
Check_Expr_Constants (Prefix (Nod));
|
3288 |
|
|
Check_List_Constants (Expressions (Nod));
|
3289 |
|
|
|
3290 |
|
|
when N_Slice =>
|
3291 |
|
|
Check_Expr_Constants (Prefix (Nod));
|
3292 |
|
|
Check_Expr_Constants (Discrete_Range (Nod));
|
3293 |
|
|
|
3294 |
|
|
when N_Selected_Component =>
|
3295 |
|
|
Check_Expr_Constants (Prefix (Nod));
|
3296 |
|
|
|
3297 |
|
|
when N_Attribute_Reference =>
|
3298 |
|
|
if Attribute_Name (Nod) = Name_Address
|
3299 |
|
|
or else
|
3300 |
|
|
Attribute_Name (Nod) = Name_Access
|
3301 |
|
|
or else
|
3302 |
|
|
Attribute_Name (Nod) = Name_Unchecked_Access
|
3303 |
|
|
or else
|
3304 |
|
|
Attribute_Name (Nod) = Name_Unrestricted_Access
|
3305 |
|
|
then
|
3306 |
|
|
Check_At_Constant_Address (Prefix (Nod));
|
3307 |
|
|
|
3308 |
|
|
else
|
3309 |
|
|
Check_Expr_Constants (Prefix (Nod));
|
3310 |
|
|
Check_List_Constants (Expressions (Nod));
|
3311 |
|
|
end if;
|
3312 |
|
|
|
3313 |
|
|
when N_Aggregate =>
|
3314 |
|
|
Check_List_Constants (Component_Associations (Nod));
|
3315 |
|
|
Check_List_Constants (Expressions (Nod));
|
3316 |
|
|
|
3317 |
|
|
when N_Component_Association =>
|
3318 |
|
|
Check_Expr_Constants (Expression (Nod));
|
3319 |
|
|
|
3320 |
|
|
when N_Extension_Aggregate =>
|
3321 |
|
|
Check_Expr_Constants (Ancestor_Part (Nod));
|
3322 |
|
|
Check_List_Constants (Component_Associations (Nod));
|
3323 |
|
|
Check_List_Constants (Expressions (Nod));
|
3324 |
|
|
|
3325 |
|
|
when N_Null =>
|
3326 |
|
|
return;
|
3327 |
|
|
|
3328 |
|
|
when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
|
3329 |
|
|
Check_Expr_Constants (Left_Opnd (Nod));
|
3330 |
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
3331 |
|
|
|
3332 |
|
|
when N_Unary_Op =>
|
3333 |
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
3334 |
|
|
|
3335 |
|
|
when N_Type_Conversion |
|
3336 |
|
|
N_Qualified_Expression |
|
3337 |
|
|
N_Allocator =>
|
3338 |
|
|
Check_Expr_Constants (Expression (Nod));
|
3339 |
|
|
|
3340 |
|
|
when N_Unchecked_Type_Conversion =>
|
3341 |
|
|
Check_Expr_Constants (Expression (Nod));
|
3342 |
|
|
|
3343 |
|
|
-- If this is a rewritten unchecked conversion, subtypes in
|
3344 |
|
|
-- this node are those created within the instance. To avoid
|
3345 |
|
|
-- order of elaboration issues, replace them with their base
|
3346 |
|
|
-- types. Note that address clauses can cause order of
|
3347 |
|
|
-- elaboration problems because they are elaborated by the
|
3348 |
|
|
-- back-end at the point of definition, and may mention
|
3349 |
|
|
-- entities declared in between (as long as everything is
|
3350 |
|
|
-- static). It is user-friendly to allow unchecked conversions
|
3351 |
|
|
-- in this context.
|
3352 |
|
|
|
3353 |
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
3354 |
|
|
Set_Etype (Expression (Nod),
|
3355 |
|
|
Base_Type (Etype (Expression (Nod))));
|
3356 |
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
3357 |
|
|
end if;
|
3358 |
|
|
|
3359 |
|
|
when N_Function_Call =>
|
3360 |
|
|
if not Is_Pure (Entity (Name (Nod))) then
|
3361 |
|
|
Error_Msg_NE
|
3362 |
|
|
("invalid address clause for initialized object &!",
|
3363 |
|
|
Nod, U_Ent);
|
3364 |
|
|
|
3365 |
|
|
Error_Msg_NE
|
3366 |
|
|
("\function & is not pure (RM 13.1(22))!",
|
3367 |
|
|
Nod, Entity (Name (Nod)));
|
3368 |
|
|
|
3369 |
|
|
else
|
3370 |
|
|
Check_List_Constants (Parameter_Associations (Nod));
|
3371 |
|
|
end if;
|
3372 |
|
|
|
3373 |
|
|
when N_Parameter_Association =>
|
3374 |
|
|
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
|
3375 |
|
|
|
3376 |
|
|
when others =>
|
3377 |
|
|
Error_Msg_NE
|
3378 |
|
|
("invalid address clause for initialized object &!",
|
3379 |
|
|
Nod, U_Ent);
|
3380 |
|
|
Error_Msg_NE
|
3381 |
|
|
("\must be constant defined before& (RM 13.1(22))!",
|
3382 |
|
|
Nod, U_Ent);
|
3383 |
|
|
end case;
|
3384 |
|
|
end Check_Expr_Constants;
|
3385 |
|
|
|
3386 |
|
|
--------------------------
|
3387 |
|
|
-- Check_List_Constants --
|
3388 |
|
|
--------------------------
|
3389 |
|
|
|
3390 |
|
|
procedure Check_List_Constants (Lst : List_Id) is
|
3391 |
|
|
Nod1 : Node_Id;
|
3392 |
|
|
|
3393 |
|
|
begin
|
3394 |
|
|
if Present (Lst) then
|
3395 |
|
|
Nod1 := First (Lst);
|
3396 |
|
|
while Present (Nod1) loop
|
3397 |
|
|
Check_Expr_Constants (Nod1);
|
3398 |
|
|
Next (Nod1);
|
3399 |
|
|
end loop;
|
3400 |
|
|
end if;
|
3401 |
|
|
end Check_List_Constants;
|
3402 |
|
|
|
3403 |
|
|
-- Start of processing for Check_Constant_Address_Clause
|
3404 |
|
|
|
3405 |
|
|
begin
|
3406 |
|
|
Check_Expr_Constants (Expr);
|
3407 |
|
|
end Check_Constant_Address_Clause;
|
3408 |
|
|
|
3409 |
|
|
----------------
|
3410 |
|
|
-- Check_Size --
|
3411 |
|
|
----------------
|
3412 |
|
|
|
3413 |
|
|
procedure Check_Size
|
3414 |
|
|
(N : Node_Id;
|
3415 |
|
|
T : Entity_Id;
|
3416 |
|
|
Siz : Uint;
|
3417 |
|
|
Biased : out Boolean)
|
3418 |
|
|
is
|
3419 |
|
|
UT : constant Entity_Id := Underlying_Type (T);
|
3420 |
|
|
M : Uint;
|
3421 |
|
|
|
3422 |
|
|
begin
|
3423 |
|
|
Biased := False;
|
3424 |
|
|
|
3425 |
|
|
-- Dismiss cases for generic types or types with previous errors
|
3426 |
|
|
|
3427 |
|
|
if No (UT)
|
3428 |
|
|
or else UT = Any_Type
|
3429 |
|
|
or else Is_Generic_Type (UT)
|
3430 |
|
|
or else Is_Generic_Type (Root_Type (UT))
|
3431 |
|
|
then
|
3432 |
|
|
return;
|
3433 |
|
|
|
3434 |
|
|
-- Check case of bit packed array
|
3435 |
|
|
|
3436 |
|
|
elsif Is_Array_Type (UT)
|
3437 |
|
|
and then Known_Static_Component_Size (UT)
|
3438 |
|
|
and then Is_Bit_Packed_Array (UT)
|
3439 |
|
|
then
|
3440 |
|
|
declare
|
3441 |
|
|
Asiz : Uint;
|
3442 |
|
|
Indx : Node_Id;
|
3443 |
|
|
Ityp : Entity_Id;
|
3444 |
|
|
|
3445 |
|
|
begin
|
3446 |
|
|
Asiz := Component_Size (UT);
|
3447 |
|
|
Indx := First_Index (UT);
|
3448 |
|
|
loop
|
3449 |
|
|
Ityp := Etype (Indx);
|
3450 |
|
|
|
3451 |
|
|
-- If non-static bound, then we are not in the business of
|
3452 |
|
|
-- trying to check the length, and indeed an error will be
|
3453 |
|
|
-- issued elsewhere, since sizes of non-static array types
|
3454 |
|
|
-- cannot be set implicitly or explicitly.
|
3455 |
|
|
|
3456 |
|
|
if not Is_Static_Subtype (Ityp) then
|
3457 |
|
|
return;
|
3458 |
|
|
end if;
|
3459 |
|
|
|
3460 |
|
|
-- Otherwise accumulate next dimension
|
3461 |
|
|
|
3462 |
|
|
Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
|
3463 |
|
|
Expr_Value (Type_Low_Bound (Ityp)) +
|
3464 |
|
|
Uint_1);
|
3465 |
|
|
|
3466 |
|
|
Next_Index (Indx);
|
3467 |
|
|
exit when No (Indx);
|
3468 |
|
|
end loop;
|
3469 |
|
|
|
3470 |
|
|
if Asiz <= Siz then
|
3471 |
|
|
return;
|
3472 |
|
|
else
|
3473 |
|
|
Error_Msg_Uint_1 := Asiz;
|
3474 |
|
|
Error_Msg_NE
|
3475 |
|
|
("size for& too small, minimum allowed is ^", N, T);
|
3476 |
|
|
Set_Esize (T, Asiz);
|
3477 |
|
|
Set_RM_Size (T, Asiz);
|
3478 |
|
|
end if;
|
3479 |
|
|
end;
|
3480 |
|
|
|
3481 |
|
|
-- All other composite types are ignored
|
3482 |
|
|
|
3483 |
|
|
elsif Is_Composite_Type (UT) then
|
3484 |
|
|
return;
|
3485 |
|
|
|
3486 |
|
|
-- For fixed-point types, don't check minimum if type is not frozen,
|
3487 |
|
|
-- since we don't know all the characteristics of the type that can
|
3488 |
|
|
-- affect the size (e.g. a specified small) till freeze time.
|
3489 |
|
|
|
3490 |
|
|
elsif Is_Fixed_Point_Type (UT)
|
3491 |
|
|
and then not Is_Frozen (UT)
|
3492 |
|
|
then
|
3493 |
|
|
null;
|
3494 |
|
|
|
3495 |
|
|
-- Cases for which a minimum check is required
|
3496 |
|
|
|
3497 |
|
|
else
|
3498 |
|
|
-- Ignore if specified size is correct for the type
|
3499 |
|
|
|
3500 |
|
|
if Known_Esize (UT) and then Siz = Esize (UT) then
|
3501 |
|
|
return;
|
3502 |
|
|
end if;
|
3503 |
|
|
|
3504 |
|
|
-- Otherwise get minimum size
|
3505 |
|
|
|
3506 |
|
|
M := UI_From_Int (Minimum_Size (UT));
|
3507 |
|
|
|
3508 |
|
|
if Siz < M then
|
3509 |
|
|
|
3510 |
|
|
-- Size is less than minimum size, but one possibility remains
|
3511 |
|
|
-- that we can manage with the new size if we bias the type.
|
3512 |
|
|
|
3513 |
|
|
M := UI_From_Int (Minimum_Size (UT, Biased => True));
|
3514 |
|
|
|
3515 |
|
|
if Siz < M then
|
3516 |
|
|
Error_Msg_Uint_1 := M;
|
3517 |
|
|
Error_Msg_NE
|
3518 |
|
|
("size for& too small, minimum allowed is ^", N, T);
|
3519 |
|
|
Set_Esize (T, M);
|
3520 |
|
|
Set_RM_Size (T, M);
|
3521 |
|
|
else
|
3522 |
|
|
Biased := True;
|
3523 |
|
|
end if;
|
3524 |
|
|
end if;
|
3525 |
|
|
end if;
|
3526 |
|
|
end Check_Size;
|
3527 |
|
|
|
3528 |
|
|
-------------------------
|
3529 |
|
|
-- Get_Alignment_Value --
|
3530 |
|
|
-------------------------
|
3531 |
|
|
|
3532 |
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint is
|
3533 |
|
|
Align : constant Uint := Static_Integer (Expr);
|
3534 |
|
|
|
3535 |
|
|
begin
|
3536 |
|
|
if Align = No_Uint then
|
3537 |
|
|
return No_Uint;
|
3538 |
|
|
|
3539 |
|
|
elsif Align <= 0 then
|
3540 |
|
|
Error_Msg_N ("alignment value must be positive", Expr);
|
3541 |
|
|
return No_Uint;
|
3542 |
|
|
|
3543 |
|
|
else
|
3544 |
|
|
for J in Int range 0 .. 64 loop
|
3545 |
|
|
declare
|
3546 |
|
|
M : constant Uint := Uint_2 ** J;
|
3547 |
|
|
|
3548 |
|
|
begin
|
3549 |
|
|
exit when M = Align;
|
3550 |
|
|
|
3551 |
|
|
if M > Align then
|
3552 |
|
|
Error_Msg_N
|
3553 |
|
|
("alignment value must be power of 2", Expr);
|
3554 |
|
|
return No_Uint;
|
3555 |
|
|
end if;
|
3556 |
|
|
end;
|
3557 |
|
|
end loop;
|
3558 |
|
|
|
3559 |
|
|
return Align;
|
3560 |
|
|
end if;
|
3561 |
|
|
end Get_Alignment_Value;
|
3562 |
|
|
|
3563 |
|
|
----------------
|
3564 |
|
|
-- Initialize --
|
3565 |
|
|
----------------
|
3566 |
|
|
|
3567 |
|
|
procedure Initialize is
|
3568 |
|
|
begin
|
3569 |
|
|
Unchecked_Conversions.Init;
|
3570 |
|
|
end Initialize;
|
3571 |
|
|
|
3572 |
|
|
-------------------------
|
3573 |
|
|
-- Is_Operational_Item --
|
3574 |
|
|
-------------------------
|
3575 |
|
|
|
3576 |
|
|
function Is_Operational_Item (N : Node_Id) return Boolean is
|
3577 |
|
|
begin
|
3578 |
|
|
if Nkind (N) /= N_Attribute_Definition_Clause then
|
3579 |
|
|
return False;
|
3580 |
|
|
else
|
3581 |
|
|
declare
|
3582 |
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
|
3583 |
|
|
begin
|
3584 |
|
|
return Id = Attribute_Input
|
3585 |
|
|
or else Id = Attribute_Output
|
3586 |
|
|
or else Id = Attribute_Read
|
3587 |
|
|
or else Id = Attribute_Write
|
3588 |
|
|
or else Id = Attribute_External_Tag;
|
3589 |
|
|
end;
|
3590 |
|
|
end if;
|
3591 |
|
|
end Is_Operational_Item;
|
3592 |
|
|
|
3593 |
|
|
------------------
|
3594 |
|
|
-- Minimum_Size --
|
3595 |
|
|
------------------
|
3596 |
|
|
|
3597 |
|
|
function Minimum_Size
|
3598 |
|
|
(T : Entity_Id;
|
3599 |
|
|
Biased : Boolean := False) return Nat
|
3600 |
|
|
is
|
3601 |
|
|
Lo : Uint := No_Uint;
|
3602 |
|
|
Hi : Uint := No_Uint;
|
3603 |
|
|
LoR : Ureal := No_Ureal;
|
3604 |
|
|
HiR : Ureal := No_Ureal;
|
3605 |
|
|
LoSet : Boolean := False;
|
3606 |
|
|
HiSet : Boolean := False;
|
3607 |
|
|
B : Uint;
|
3608 |
|
|
S : Nat;
|
3609 |
|
|
Ancest : Entity_Id;
|
3610 |
|
|
R_Typ : constant Entity_Id := Root_Type (T);
|
3611 |
|
|
|
3612 |
|
|
begin
|
3613 |
|
|
-- If bad type, return 0
|
3614 |
|
|
|
3615 |
|
|
if T = Any_Type then
|
3616 |
|
|
return 0;
|
3617 |
|
|
|
3618 |
|
|
-- For generic types, just return zero. There cannot be any legitimate
|
3619 |
|
|
-- need to know such a size, but this routine may be called with a
|
3620 |
|
|
-- generic type as part of normal processing.
|
3621 |
|
|
|
3622 |
|
|
elsif Is_Generic_Type (R_Typ)
|
3623 |
|
|
or else R_Typ = Any_Type
|
3624 |
|
|
then
|
3625 |
|
|
return 0;
|
3626 |
|
|
|
3627 |
|
|
-- Access types. Normally an access type cannot have a size smaller
|
3628 |
|
|
-- than the size of System.Address. The exception is on VMS, where
|
3629 |
|
|
-- we have short and long addresses, and it is possible for an access
|
3630 |
|
|
-- type to have a short address size (and thus be less than the size
|
3631 |
|
|
-- of System.Address itself). We simply skip the check for VMS, and
|
3632 |
|
|
-- leave it to the back end to do the check.
|
3633 |
|
|
|
3634 |
|
|
elsif Is_Access_Type (T) then
|
3635 |
|
|
if OpenVMS_On_Target then
|
3636 |
|
|
return 0;
|
3637 |
|
|
else
|
3638 |
|
|
return System_Address_Size;
|
3639 |
|
|
end if;
|
3640 |
|
|
|
3641 |
|
|
-- Floating-point types
|
3642 |
|
|
|
3643 |
|
|
elsif Is_Floating_Point_Type (T) then
|
3644 |
|
|
return UI_To_Int (Esize (R_Typ));
|
3645 |
|
|
|
3646 |
|
|
-- Discrete types
|
3647 |
|
|
|
3648 |
|
|
elsif Is_Discrete_Type (T) then
|
3649 |
|
|
|
3650 |
|
|
-- The following loop is looking for the nearest compile time known
|
3651 |
|
|
-- bounds following the ancestor subtype chain. The idea is to find
|
3652 |
|
|
-- the most restrictive known bounds information.
|
3653 |
|
|
|
3654 |
|
|
Ancest := T;
|
3655 |
|
|
loop
|
3656 |
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
3657 |
|
|
return 0;
|
3658 |
|
|
end if;
|
3659 |
|
|
|
3660 |
|
|
if not LoSet then
|
3661 |
|
|
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
|
3662 |
|
|
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
|
3663 |
|
|
LoSet := True;
|
3664 |
|
|
exit when HiSet;
|
3665 |
|
|
end if;
|
3666 |
|
|
end if;
|
3667 |
|
|
|
3668 |
|
|
if not HiSet then
|
3669 |
|
|
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
|
3670 |
|
|
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
|
3671 |
|
|
HiSet := True;
|
3672 |
|
|
exit when LoSet;
|
3673 |
|
|
end if;
|
3674 |
|
|
end if;
|
3675 |
|
|
|
3676 |
|
|
Ancest := Ancestor_Subtype (Ancest);
|
3677 |
|
|
|
3678 |
|
|
if No (Ancest) then
|
3679 |
|
|
Ancest := Base_Type (T);
|
3680 |
|
|
|
3681 |
|
|
if Is_Generic_Type (Ancest) then
|
3682 |
|
|
return 0;
|
3683 |
|
|
end if;
|
3684 |
|
|
end if;
|
3685 |
|
|
end loop;
|
3686 |
|
|
|
3687 |
|
|
-- Fixed-point types. We can't simply use Expr_Value to get the
|
3688 |
|
|
-- Corresponding_Integer_Value values of the bounds, since these do not
|
3689 |
|
|
-- get set till the type is frozen, and this routine can be called
|
3690 |
|
|
-- before the type is frozen. Similarly the test for bounds being static
|
3691 |
|
|
-- needs to include the case where we have unanalyzed real literals for
|
3692 |
|
|
-- the same reason.
|
3693 |
|
|
|
3694 |
|
|
elsif Is_Fixed_Point_Type (T) then
|
3695 |
|
|
|
3696 |
|
|
-- The following loop is looking for the nearest compile time known
|
3697 |
|
|
-- bounds following the ancestor subtype chain. The idea is to find
|
3698 |
|
|
-- the most restrictive known bounds information.
|
3699 |
|
|
|
3700 |
|
|
Ancest := T;
|
3701 |
|
|
loop
|
3702 |
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
3703 |
|
|
return 0;
|
3704 |
|
|
end if;
|
3705 |
|
|
|
3706 |
|
|
-- Note: In the following two tests for LoSet and HiSet, it may
|
3707 |
|
|
-- seem redundant to test for N_Real_Literal here since normally
|
3708 |
|
|
-- one would assume that the test for the value being known at
|
3709 |
|
|
-- compile time includes this case. However, there is a glitch.
|
3710 |
|
|
-- If the real literal comes from folding a non-static expression,
|
3711 |
|
|
-- then we don't consider any non- static expression to be known
|
3712 |
|
|
-- at compile time if we are in configurable run time mode (needed
|
3713 |
|
|
-- in some cases to give a clearer definition of what is and what
|
3714 |
|
|
-- is not accepted). So the test is indeed needed. Without it, we
|
3715 |
|
|
-- would set neither Lo_Set nor Hi_Set and get an infinite loop.
|
3716 |
|
|
|
3717 |
|
|
if not LoSet then
|
3718 |
|
|
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
|
3719 |
|
|
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
|
3720 |
|
|
then
|
3721 |
|
|
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
|
3722 |
|
|
LoSet := True;
|
3723 |
|
|
exit when HiSet;
|
3724 |
|
|
end if;
|
3725 |
|
|
end if;
|
3726 |
|
|
|
3727 |
|
|
if not HiSet then
|
3728 |
|
|
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
|
3729 |
|
|
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
|
3730 |
|
|
then
|
3731 |
|
|
HiR := Expr_Value_R (Type_High_Bound (Ancest));
|
3732 |
|
|
HiSet := True;
|
3733 |
|
|
exit when LoSet;
|
3734 |
|
|
end if;
|
3735 |
|
|
end if;
|
3736 |
|
|
|
3737 |
|
|
Ancest := Ancestor_Subtype (Ancest);
|
3738 |
|
|
|
3739 |
|
|
if No (Ancest) then
|
3740 |
|
|
Ancest := Base_Type (T);
|
3741 |
|
|
|
3742 |
|
|
if Is_Generic_Type (Ancest) then
|
3743 |
|
|
return 0;
|
3744 |
|
|
end if;
|
3745 |
|
|
end if;
|
3746 |
|
|
end loop;
|
3747 |
|
|
|
3748 |
|
|
Lo := UR_To_Uint (LoR / Small_Value (T));
|
3749 |
|
|
Hi := UR_To_Uint (HiR / Small_Value (T));
|
3750 |
|
|
|
3751 |
|
|
-- No other types allowed
|
3752 |
|
|
|
3753 |
|
|
else
|
3754 |
|
|
raise Program_Error;
|
3755 |
|
|
end if;
|
3756 |
|
|
|
3757 |
|
|
-- Fall through with Hi and Lo set. Deal with biased case
|
3758 |
|
|
|
3759 |
|
|
if (Biased
|
3760 |
|
|
and then not Is_Fixed_Point_Type (T)
|
3761 |
|
|
and then not (Is_Enumeration_Type (T)
|
3762 |
|
|
and then Has_Non_Standard_Rep (T)))
|
3763 |
|
|
or else Has_Biased_Representation (T)
|
3764 |
|
|
then
|
3765 |
|
|
Hi := Hi - Lo;
|
3766 |
|
|
Lo := Uint_0;
|
3767 |
|
|
end if;
|
3768 |
|
|
|
3769 |
|
|
-- Signed case. Note that we consider types like range 1 .. -1 to be
|
3770 |
|
|
-- signed for the purpose of computing the size, since the bounds have
|
3771 |
|
|
-- to be accommodated in the base type.
|
3772 |
|
|
|
3773 |
|
|
if Lo < 0 or else Hi < 0 then
|
3774 |
|
|
S := 1;
|
3775 |
|
|
B := Uint_1;
|
3776 |
|
|
|
3777 |
|
|
-- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
|
3778 |
|
|
-- Note that we accommodate the case where the bounds cross. This
|
3779 |
|
|
-- can happen either because of the way the bounds are declared
|
3780 |
|
|
-- or because of the algorithm in Freeze_Fixed_Point_Type.
|
3781 |
|
|
|
3782 |
|
|
while Lo < -B
|
3783 |
|
|
or else Hi < -B
|
3784 |
|
|
or else Lo >= B
|
3785 |
|
|
or else Hi >= B
|
3786 |
|
|
loop
|
3787 |
|
|
B := Uint_2 ** S;
|
3788 |
|
|
S := S + 1;
|
3789 |
|
|
end loop;
|
3790 |
|
|
|
3791 |
|
|
-- Unsigned case
|
3792 |
|
|
|
3793 |
|
|
else
|
3794 |
|
|
-- If both bounds are positive, make sure that both are represen-
|
3795 |
|
|
-- table in the case where the bounds are crossed. This can happen
|
3796 |
|
|
-- either because of the way the bounds are declared, or because of
|
3797 |
|
|
-- the algorithm in Freeze_Fixed_Point_Type.
|
3798 |
|
|
|
3799 |
|
|
if Lo > Hi then
|
3800 |
|
|
Hi := Lo;
|
3801 |
|
|
end if;
|
3802 |
|
|
|
3803 |
|
|
-- S = size, (can accommodate 0 .. (2**size - 1))
|
3804 |
|
|
|
3805 |
|
|
S := 0;
|
3806 |
|
|
while Hi >= Uint_2 ** S loop
|
3807 |
|
|
S := S + 1;
|
3808 |
|
|
end loop;
|
3809 |
|
|
end if;
|
3810 |
|
|
|
3811 |
|
|
return S;
|
3812 |
|
|
end Minimum_Size;
|
3813 |
|
|
|
3814 |
|
|
---------------------------
|
3815 |
|
|
-- New_Stream_Subprogram --
|
3816 |
|
|
---------------------------
|
3817 |
|
|
|
3818 |
|
|
procedure New_Stream_Subprogram
|
3819 |
|
|
(N : Node_Id;
|
3820 |
|
|
Ent : Entity_Id;
|
3821 |
|
|
Subp : Entity_Id;
|
3822 |
|
|
Nam : TSS_Name_Type)
|
3823 |
|
|
is
|
3824 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3825 |
|
|
Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
|
3826 |
|
|
Subp_Id : Entity_Id;
|
3827 |
|
|
Subp_Decl : Node_Id;
|
3828 |
|
|
F : Entity_Id;
|
3829 |
|
|
Etyp : Entity_Id;
|
3830 |
|
|
|
3831 |
|
|
Defer_Declaration : constant Boolean :=
|
3832 |
|
|
Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
|
3833 |
|
|
-- For a tagged type, there is a declaration for each stream attribute
|
3834 |
|
|
-- at the freeze point, and we must generate only a completion of this
|
3835 |
|
|
-- declaration. We do the same for private types, because the full view
|
3836 |
|
|
-- might be tagged. Otherwise we generate a declaration at the point of
|
3837 |
|
|
-- the attribute definition clause.
|
3838 |
|
|
|
3839 |
|
|
function Build_Spec return Node_Id;
|
3840 |
|
|
-- Used for declaration and renaming declaration, so that this is
|
3841 |
|
|
-- treated as a renaming_as_body.
|
3842 |
|
|
|
3843 |
|
|
----------------
|
3844 |
|
|
-- Build_Spec --
|
3845 |
|
|
----------------
|
3846 |
|
|
|
3847 |
|
|
function Build_Spec return Node_Id is
|
3848 |
|
|
Out_P : constant Boolean := (Nam = TSS_Stream_Read);
|
3849 |
|
|
Formals : List_Id;
|
3850 |
|
|
Spec : Node_Id;
|
3851 |
|
|
T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
|
3852 |
|
|
|
3853 |
|
|
begin
|
3854 |
|
|
Subp_Id := Make_Defining_Identifier (Loc, Sname);
|
3855 |
|
|
|
3856 |
|
|
-- S : access Root_Stream_Type'Class
|
3857 |
|
|
|
3858 |
|
|
Formals := New_List (
|
3859 |
|
|
Make_Parameter_Specification (Loc,
|
3860 |
|
|
Defining_Identifier =>
|
3861 |
|
|
Make_Defining_Identifier (Loc, Name_S),
|
3862 |
|
|
Parameter_Type =>
|
3863 |
|
|
Make_Access_Definition (Loc,
|
3864 |
|
|
Subtype_Mark =>
|
3865 |
|
|
New_Reference_To (
|
3866 |
|
|
Designated_Type (Etype (F)), Loc))));
|
3867 |
|
|
|
3868 |
|
|
if Nam = TSS_Stream_Input then
|
3869 |
|
|
Spec := Make_Function_Specification (Loc,
|
3870 |
|
|
Defining_Unit_Name => Subp_Id,
|
3871 |
|
|
Parameter_Specifications => Formals,
|
3872 |
|
|
Result_Definition => T_Ref);
|
3873 |
|
|
else
|
3874 |
|
|
-- V : [out] T
|
3875 |
|
|
|
3876 |
|
|
Append_To (Formals,
|
3877 |
|
|
Make_Parameter_Specification (Loc,
|
3878 |
|
|
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
|
3879 |
|
|
Out_Present => Out_P,
|
3880 |
|
|
Parameter_Type => T_Ref));
|
3881 |
|
|
|
3882 |
|
|
Spec := Make_Procedure_Specification (Loc,
|
3883 |
|
|
Defining_Unit_Name => Subp_Id,
|
3884 |
|
|
Parameter_Specifications => Formals);
|
3885 |
|
|
end if;
|
3886 |
|
|
|
3887 |
|
|
return Spec;
|
3888 |
|
|
end Build_Spec;
|
3889 |
|
|
|
3890 |
|
|
-- Start of processing for New_Stream_Subprogram
|
3891 |
|
|
|
3892 |
|
|
begin
|
3893 |
|
|
F := First_Formal (Subp);
|
3894 |
|
|
|
3895 |
|
|
if Ekind (Subp) = E_Procedure then
|
3896 |
|
|
Etyp := Etype (Next_Formal (F));
|
3897 |
|
|
else
|
3898 |
|
|
Etyp := Etype (Subp);
|
3899 |
|
|
end if;
|
3900 |
|
|
|
3901 |
|
|
-- Prepare subprogram declaration and insert it as an action on the
|
3902 |
|
|
-- clause node. The visibility for this entity is used to test for
|
3903 |
|
|
-- visibility of the attribute definition clause (in the sense of
|
3904 |
|
|
-- 8.3(23) as amended by AI-195).
|
3905 |
|
|
|
3906 |
|
|
if not Defer_Declaration then
|
3907 |
|
|
Subp_Decl :=
|
3908 |
|
|
Make_Subprogram_Declaration (Loc,
|
3909 |
|
|
Specification => Build_Spec);
|
3910 |
|
|
|
3911 |
|
|
-- For a tagged type, there is always a visible declaration for each
|
3912 |
|
|
-- stream TSS (it is a predefined primitive operation), and the
|
3913 |
|
|
-- completion of this declaration occurs at the freeze point, which is
|
3914 |
|
|
-- not always visible at places where the attribute definition clause is
|
3915 |
|
|
-- visible. So, we create a dummy entity here for the purpose of
|
3916 |
|
|
-- tracking the visibility of the attribute definition clause itself.
|
3917 |
|
|
|
3918 |
|
|
else
|
3919 |
|
|
Subp_Id :=
|
3920 |
|
|
Make_Defining_Identifier (Loc,
|
3921 |
|
|
Chars => New_External_Name (Sname, 'V'));
|
3922 |
|
|
Subp_Decl :=
|
3923 |
|
|
Make_Object_Declaration (Loc,
|
3924 |
|
|
Defining_Identifier => Subp_Id,
|
3925 |
|
|
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
|
3926 |
|
|
end if;
|
3927 |
|
|
|
3928 |
|
|
Insert_Action (N, Subp_Decl);
|
3929 |
|
|
Set_Entity (N, Subp_Id);
|
3930 |
|
|
|
3931 |
|
|
Subp_Decl :=
|
3932 |
|
|
Make_Subprogram_Renaming_Declaration (Loc,
|
3933 |
|
|
Specification => Build_Spec,
|
3934 |
|
|
Name => New_Reference_To (Subp, Loc));
|
3935 |
|
|
|
3936 |
|
|
if Defer_Declaration then
|
3937 |
|
|
Set_TSS (Base_Type (Ent), Subp_Id);
|
3938 |
|
|
else
|
3939 |
|
|
Insert_Action (N, Subp_Decl);
|
3940 |
|
|
Copy_TSS (Subp_Id, Base_Type (Ent));
|
3941 |
|
|
end if;
|
3942 |
|
|
end New_Stream_Subprogram;
|
3943 |
|
|
|
3944 |
|
|
------------------------
|
3945 |
|
|
-- Rep_Item_Too_Early --
|
3946 |
|
|
------------------------
|
3947 |
|
|
|
3948 |
|
|
function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
|
3949 |
|
|
begin
|
3950 |
|
|
-- Cannot apply non-operational rep items to generic types
|
3951 |
|
|
|
3952 |
|
|
if Is_Operational_Item (N) then
|
3953 |
|
|
return False;
|
3954 |
|
|
|
3955 |
|
|
elsif Is_Type (T)
|
3956 |
|
|
and then Is_Generic_Type (Root_Type (T))
|
3957 |
|
|
then
|
3958 |
|
|
Error_Msg_N
|
3959 |
|
|
("representation item not allowed for generic type", N);
|
3960 |
|
|
return True;
|
3961 |
|
|
end if;
|
3962 |
|
|
|
3963 |
|
|
-- Otherwise check for incomplete type
|
3964 |
|
|
|
3965 |
|
|
if Is_Incomplete_Or_Private_Type (T)
|
3966 |
|
|
and then No (Underlying_Type (T))
|
3967 |
|
|
then
|
3968 |
|
|
Error_Msg_N
|
3969 |
|
|
("representation item must be after full type declaration", N);
|
3970 |
|
|
return True;
|
3971 |
|
|
|
3972 |
|
|
-- If the type has incomplete components, a representation clause is
|
3973 |
|
|
-- illegal but stream attributes and Convention pragmas are correct.
|
3974 |
|
|
|
3975 |
|
|
elsif Has_Private_Component (T) then
|
3976 |
|
|
if Nkind (N) = N_Pragma then
|
3977 |
|
|
return False;
|
3978 |
|
|
else
|
3979 |
|
|
Error_Msg_N
|
3980 |
|
|
("representation item must appear after type is fully defined",
|
3981 |
|
|
N);
|
3982 |
|
|
return True;
|
3983 |
|
|
end if;
|
3984 |
|
|
else
|
3985 |
|
|
return False;
|
3986 |
|
|
end if;
|
3987 |
|
|
end Rep_Item_Too_Early;
|
3988 |
|
|
|
3989 |
|
|
-----------------------
|
3990 |
|
|
-- Rep_Item_Too_Late --
|
3991 |
|
|
-----------------------
|
3992 |
|
|
|
3993 |
|
|
function Rep_Item_Too_Late
|
3994 |
|
|
(T : Entity_Id;
|
3995 |
|
|
N : Node_Id;
|
3996 |
|
|
FOnly : Boolean := False) return Boolean
|
3997 |
|
|
is
|
3998 |
|
|
S : Entity_Id;
|
3999 |
|
|
Parent_Type : Entity_Id;
|
4000 |
|
|
|
4001 |
|
|
procedure Too_Late;
|
4002 |
|
|
-- Output the too late message. Note that this is not considered a
|
4003 |
|
|
-- serious error, since the effect is simply that we ignore the
|
4004 |
|
|
-- representation clause in this case.
|
4005 |
|
|
|
4006 |
|
|
--------------
|
4007 |
|
|
-- Too_Late --
|
4008 |
|
|
--------------
|
4009 |
|
|
|
4010 |
|
|
procedure Too_Late is
|
4011 |
|
|
begin
|
4012 |
|
|
Error_Msg_N ("|representation item appears too late!", N);
|
4013 |
|
|
end Too_Late;
|
4014 |
|
|
|
4015 |
|
|
-- Start of processing for Rep_Item_Too_Late
|
4016 |
|
|
|
4017 |
|
|
begin
|
4018 |
|
|
-- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
|
4019 |
|
|
-- types, which may be frozen if they appear in a representation clause
|
4020 |
|
|
-- for a local type.
|
4021 |
|
|
|
4022 |
|
|
if Is_Frozen (T)
|
4023 |
|
|
and then not From_With_Type (T)
|
4024 |
|
|
then
|
4025 |
|
|
Too_Late;
|
4026 |
|
|
S := First_Subtype (T);
|
4027 |
|
|
|
4028 |
|
|
if Present (Freeze_Node (S)) then
|
4029 |
|
|
Error_Msg_NE
|
4030 |
|
|
("?no more representation items for }", Freeze_Node (S), S);
|
4031 |
|
|
end if;
|
4032 |
|
|
|
4033 |
|
|
return True;
|
4034 |
|
|
|
4035 |
|
|
-- Check for case of non-tagged derived type whose parent either has
|
4036 |
|
|
-- primitive operations, or is a by reference type (RM 13.1(10)).
|
4037 |
|
|
|
4038 |
|
|
elsif Is_Type (T)
|
4039 |
|
|
and then not FOnly
|
4040 |
|
|
and then Is_Derived_Type (T)
|
4041 |
|
|
and then not Is_Tagged_Type (T)
|
4042 |
|
|
then
|
4043 |
|
|
Parent_Type := Etype (Base_Type (T));
|
4044 |
|
|
|
4045 |
|
|
if Has_Primitive_Operations (Parent_Type) then
|
4046 |
|
|
Too_Late;
|
4047 |
|
|
Error_Msg_NE
|
4048 |
|
|
("primitive operations already defined for&!", N, Parent_Type);
|
4049 |
|
|
return True;
|
4050 |
|
|
|
4051 |
|
|
elsif Is_By_Reference_Type (Parent_Type) then
|
4052 |
|
|
Too_Late;
|
4053 |
|
|
Error_Msg_NE
|
4054 |
|
|
("parent type & is a by reference type!", N, Parent_Type);
|
4055 |
|
|
return True;
|
4056 |
|
|
end if;
|
4057 |
|
|
end if;
|
4058 |
|
|
|
4059 |
|
|
-- No error, link item into head of chain of rep items for the entity,
|
4060 |
|
|
-- but avoid chaining if we have an overloadable entity, and the pragma
|
4061 |
|
|
-- is one that can apply to multiple overloaded entities.
|
4062 |
|
|
|
4063 |
|
|
if Is_Overloadable (T)
|
4064 |
|
|
and then Nkind (N) = N_Pragma
|
4065 |
|
|
then
|
4066 |
|
|
declare
|
4067 |
|
|
Pname : constant Name_Id := Pragma_Name (N);
|
4068 |
|
|
begin
|
4069 |
|
|
if Pname = Name_Convention or else
|
4070 |
|
|
Pname = Name_Import or else
|
4071 |
|
|
Pname = Name_Export or else
|
4072 |
|
|
Pname = Name_External or else
|
4073 |
|
|
Pname = Name_Interface
|
4074 |
|
|
then
|
4075 |
|
|
return False;
|
4076 |
|
|
end if;
|
4077 |
|
|
end;
|
4078 |
|
|
end if;
|
4079 |
|
|
|
4080 |
|
|
Record_Rep_Item (T, N);
|
4081 |
|
|
return False;
|
4082 |
|
|
end Rep_Item_Too_Late;
|
4083 |
|
|
|
4084 |
|
|
-------------------------
|
4085 |
|
|
-- Same_Representation --
|
4086 |
|
|
-------------------------
|
4087 |
|
|
|
4088 |
|
|
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
|
4089 |
|
|
T1 : constant Entity_Id := Underlying_Type (Typ1);
|
4090 |
|
|
T2 : constant Entity_Id := Underlying_Type (Typ2);
|
4091 |
|
|
|
4092 |
|
|
begin
|
4093 |
|
|
-- A quick check, if base types are the same, then we definitely have
|
4094 |
|
|
-- the same representation, because the subtype specific representation
|
4095 |
|
|
-- attributes (Size and Alignment) do not affect representation from
|
4096 |
|
|
-- the point of view of this test.
|
4097 |
|
|
|
4098 |
|
|
if Base_Type (T1) = Base_Type (T2) then
|
4099 |
|
|
return True;
|
4100 |
|
|
|
4101 |
|
|
elsif Is_Private_Type (Base_Type (T2))
|
4102 |
|
|
and then Base_Type (T1) = Full_View (Base_Type (T2))
|
4103 |
|
|
then
|
4104 |
|
|
return True;
|
4105 |
|
|
end if;
|
4106 |
|
|
|
4107 |
|
|
-- Tagged types never have differing representations
|
4108 |
|
|
|
4109 |
|
|
if Is_Tagged_Type (T1) then
|
4110 |
|
|
return True;
|
4111 |
|
|
end if;
|
4112 |
|
|
|
4113 |
|
|
-- Representations are definitely different if conventions differ
|
4114 |
|
|
|
4115 |
|
|
if Convention (T1) /= Convention (T2) then
|
4116 |
|
|
return False;
|
4117 |
|
|
end if;
|
4118 |
|
|
|
4119 |
|
|
-- Representations are different if component alignments differ
|
4120 |
|
|
|
4121 |
|
|
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
|
4122 |
|
|
and then
|
4123 |
|
|
(Is_Record_Type (T2) or else Is_Array_Type (T2))
|
4124 |
|
|
and then Component_Alignment (T1) /= Component_Alignment (T2)
|
4125 |
|
|
then
|
4126 |
|
|
return False;
|
4127 |
|
|
end if;
|
4128 |
|
|
|
4129 |
|
|
-- For arrays, the only real issue is component size. If we know the
|
4130 |
|
|
-- component size for both arrays, and it is the same, then that's
|
4131 |
|
|
-- good enough to know we don't have a change of representation.
|
4132 |
|
|
|
4133 |
|
|
if Is_Array_Type (T1) then
|
4134 |
|
|
if Known_Component_Size (T1)
|
4135 |
|
|
and then Known_Component_Size (T2)
|
4136 |
|
|
and then Component_Size (T1) = Component_Size (T2)
|
4137 |
|
|
then
|
4138 |
|
|
return True;
|
4139 |
|
|
end if;
|
4140 |
|
|
end if;
|
4141 |
|
|
|
4142 |
|
|
-- Types definitely have same representation if neither has non-standard
|
4143 |
|
|
-- representation since default representations are always consistent.
|
4144 |
|
|
-- If only one has non-standard representation, and the other does not,
|
4145 |
|
|
-- then we consider that they do not have the same representation. They
|
4146 |
|
|
-- might, but there is no way of telling early enough.
|
4147 |
|
|
|
4148 |
|
|
if Has_Non_Standard_Rep (T1) then
|
4149 |
|
|
if not Has_Non_Standard_Rep (T2) then
|
4150 |
|
|
return False;
|
4151 |
|
|
end if;
|
4152 |
|
|
else
|
4153 |
|
|
return not Has_Non_Standard_Rep (T2);
|
4154 |
|
|
end if;
|
4155 |
|
|
|
4156 |
|
|
-- Here the two types both have non-standard representation, and we need
|
4157 |
|
|
-- to determine if they have the same non-standard representation.
|
4158 |
|
|
|
4159 |
|
|
-- For arrays, we simply need to test if the component sizes are the
|
4160 |
|
|
-- same. Pragma Pack is reflected in modified component sizes, so this
|
4161 |
|
|
-- check also deals with pragma Pack.
|
4162 |
|
|
|
4163 |
|
|
if Is_Array_Type (T1) then
|
4164 |
|
|
return Component_Size (T1) = Component_Size (T2);
|
4165 |
|
|
|
4166 |
|
|
-- Tagged types always have the same representation, because it is not
|
4167 |
|
|
-- possible to specify different representations for common fields.
|
4168 |
|
|
|
4169 |
|
|
elsif Is_Tagged_Type (T1) then
|
4170 |
|
|
return True;
|
4171 |
|
|
|
4172 |
|
|
-- Case of record types
|
4173 |
|
|
|
4174 |
|
|
elsif Is_Record_Type (T1) then
|
4175 |
|
|
|
4176 |
|
|
-- Packed status must conform
|
4177 |
|
|
|
4178 |
|
|
if Is_Packed (T1) /= Is_Packed (T2) then
|
4179 |
|
|
return False;
|
4180 |
|
|
|
4181 |
|
|
-- Otherwise we must check components. Typ2 maybe a constrained
|
4182 |
|
|
-- subtype with fewer components, so we compare the components
|
4183 |
|
|
-- of the base types.
|
4184 |
|
|
|
4185 |
|
|
else
|
4186 |
|
|
Record_Case : declare
|
4187 |
|
|
CD1, CD2 : Entity_Id;
|
4188 |
|
|
|
4189 |
|
|
function Same_Rep return Boolean;
|
4190 |
|
|
-- CD1 and CD2 are either components or discriminants. This
|
4191 |
|
|
-- function tests whether the two have the same representation
|
4192 |
|
|
|
4193 |
|
|
--------------
|
4194 |
|
|
-- Same_Rep --
|
4195 |
|
|
--------------
|
4196 |
|
|
|
4197 |
|
|
function Same_Rep return Boolean is
|
4198 |
|
|
begin
|
4199 |
|
|
if No (Component_Clause (CD1)) then
|
4200 |
|
|
return No (Component_Clause (CD2));
|
4201 |
|
|
|
4202 |
|
|
else
|
4203 |
|
|
return
|
4204 |
|
|
Present (Component_Clause (CD2))
|
4205 |
|
|
and then
|
4206 |
|
|
Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
|
4207 |
|
|
and then
|
4208 |
|
|
Esize (CD1) = Esize (CD2);
|
4209 |
|
|
end if;
|
4210 |
|
|
end Same_Rep;
|
4211 |
|
|
|
4212 |
|
|
-- Start of processing for Record_Case
|
4213 |
|
|
|
4214 |
|
|
begin
|
4215 |
|
|
if Has_Discriminants (T1) then
|
4216 |
|
|
CD1 := First_Discriminant (T1);
|
4217 |
|
|
CD2 := First_Discriminant (T2);
|
4218 |
|
|
|
4219 |
|
|
-- The number of discriminants may be different if the
|
4220 |
|
|
-- derived type has fewer (constrained by values). The
|
4221 |
|
|
-- invisible discriminants retain the representation of
|
4222 |
|
|
-- the original, so the discrepancy does not per se
|
4223 |
|
|
-- indicate a different representation.
|
4224 |
|
|
|
4225 |
|
|
while Present (CD1)
|
4226 |
|
|
and then Present (CD2)
|
4227 |
|
|
loop
|
4228 |
|
|
if not Same_Rep then
|
4229 |
|
|
return False;
|
4230 |
|
|
else
|
4231 |
|
|
Next_Discriminant (CD1);
|
4232 |
|
|
Next_Discriminant (CD2);
|
4233 |
|
|
end if;
|
4234 |
|
|
end loop;
|
4235 |
|
|
end if;
|
4236 |
|
|
|
4237 |
|
|
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
|
4238 |
|
|
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
|
4239 |
|
|
|
4240 |
|
|
while Present (CD1) loop
|
4241 |
|
|
if not Same_Rep then
|
4242 |
|
|
return False;
|
4243 |
|
|
else
|
4244 |
|
|
Next_Component (CD1);
|
4245 |
|
|
Next_Component (CD2);
|
4246 |
|
|
end if;
|
4247 |
|
|
end loop;
|
4248 |
|
|
|
4249 |
|
|
return True;
|
4250 |
|
|
end Record_Case;
|
4251 |
|
|
end if;
|
4252 |
|
|
|
4253 |
|
|
-- For enumeration types, we must check each literal to see if the
|
4254 |
|
|
-- representation is the same. Note that we do not permit enumeration
|
4255 |
|
|
-- representation clauses for Character and Wide_Character, so these
|
4256 |
|
|
-- cases were already dealt with.
|
4257 |
|
|
|
4258 |
|
|
elsif Is_Enumeration_Type (T1) then
|
4259 |
|
|
|
4260 |
|
|
Enumeration_Case : declare
|
4261 |
|
|
L1, L2 : Entity_Id;
|
4262 |
|
|
|
4263 |
|
|
begin
|
4264 |
|
|
L1 := First_Literal (T1);
|
4265 |
|
|
L2 := First_Literal (T2);
|
4266 |
|
|
|
4267 |
|
|
while Present (L1) loop
|
4268 |
|
|
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
|
4269 |
|
|
return False;
|
4270 |
|
|
else
|
4271 |
|
|
Next_Literal (L1);
|
4272 |
|
|
Next_Literal (L2);
|
4273 |
|
|
end if;
|
4274 |
|
|
end loop;
|
4275 |
|
|
|
4276 |
|
|
return True;
|
4277 |
|
|
|
4278 |
|
|
end Enumeration_Case;
|
4279 |
|
|
|
4280 |
|
|
-- Any other types have the same representation for these purposes
|
4281 |
|
|
|
4282 |
|
|
else
|
4283 |
|
|
return True;
|
4284 |
|
|
end if;
|
4285 |
|
|
end Same_Representation;
|
4286 |
|
|
|
4287 |
|
|
--------------------
|
4288 |
|
|
-- Set_Enum_Esize --
|
4289 |
|
|
--------------------
|
4290 |
|
|
|
4291 |
|
|
procedure Set_Enum_Esize (T : Entity_Id) is
|
4292 |
|
|
Lo : Uint;
|
4293 |
|
|
Hi : Uint;
|
4294 |
|
|
Sz : Nat;
|
4295 |
|
|
|
4296 |
|
|
begin
|
4297 |
|
|
Init_Alignment (T);
|
4298 |
|
|
|
4299 |
|
|
-- Find the minimum standard size (8,16,32,64) that fits
|
4300 |
|
|
|
4301 |
|
|
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
|
4302 |
|
|
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
|
4303 |
|
|
|
4304 |
|
|
if Lo < 0 then
|
4305 |
|
|
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
|
4306 |
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
4307 |
|
|
|
4308 |
|
|
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
|
4309 |
|
|
Sz := 16;
|
4310 |
|
|
|
4311 |
|
|
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
|
4312 |
|
|
Sz := 32;
|
4313 |
|
|
|
4314 |
|
|
else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
|
4315 |
|
|
Sz := 64;
|
4316 |
|
|
end if;
|
4317 |
|
|
|
4318 |
|
|
else
|
4319 |
|
|
if Hi < Uint_2**08 then
|
4320 |
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
4321 |
|
|
|
4322 |
|
|
elsif Hi < Uint_2**16 then
|
4323 |
|
|
Sz := 16;
|
4324 |
|
|
|
4325 |
|
|
elsif Hi < Uint_2**32 then
|
4326 |
|
|
Sz := 32;
|
4327 |
|
|
|
4328 |
|
|
else pragma Assert (Hi < Uint_2**63);
|
4329 |
|
|
Sz := 64;
|
4330 |
|
|
end if;
|
4331 |
|
|
end if;
|
4332 |
|
|
|
4333 |
|
|
-- That minimum is the proper size unless we have a foreign convention
|
4334 |
|
|
-- and the size required is 32 or less, in which case we bump the size
|
4335 |
|
|
-- up to 32. This is required for C and C++ and seems reasonable for
|
4336 |
|
|
-- all other foreign conventions.
|
4337 |
|
|
|
4338 |
|
|
if Has_Foreign_Convention (T)
|
4339 |
|
|
and then Esize (T) < Standard_Integer_Size
|
4340 |
|
|
then
|
4341 |
|
|
Init_Esize (T, Standard_Integer_Size);
|
4342 |
|
|
else
|
4343 |
|
|
Init_Esize (T, Sz);
|
4344 |
|
|
end if;
|
4345 |
|
|
end Set_Enum_Esize;
|
4346 |
|
|
|
4347 |
|
|
------------------------------
|
4348 |
|
|
-- Validate_Address_Clauses --
|
4349 |
|
|
------------------------------
|
4350 |
|
|
|
4351 |
|
|
procedure Validate_Address_Clauses is
|
4352 |
|
|
begin
|
4353 |
|
|
for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
|
4354 |
|
|
declare
|
4355 |
|
|
ACCR : Address_Clause_Check_Record
|
4356 |
|
|
renames Address_Clause_Checks.Table (J);
|
4357 |
|
|
|
4358 |
|
|
Expr : Node_Id;
|
4359 |
|
|
|
4360 |
|
|
X_Alignment : Uint;
|
4361 |
|
|
Y_Alignment : Uint;
|
4362 |
|
|
|
4363 |
|
|
X_Size : Uint;
|
4364 |
|
|
Y_Size : Uint;
|
4365 |
|
|
|
4366 |
|
|
begin
|
4367 |
|
|
-- Skip processing of this entry if warning already posted
|
4368 |
|
|
|
4369 |
|
|
if not Address_Warning_Posted (ACCR.N) then
|
4370 |
|
|
|
4371 |
|
|
Expr := Original_Node (Expression (ACCR.N));
|
4372 |
|
|
|
4373 |
|
|
-- Get alignments
|
4374 |
|
|
|
4375 |
|
|
X_Alignment := Alignment (ACCR.X);
|
4376 |
|
|
Y_Alignment := Alignment (ACCR.Y);
|
4377 |
|
|
|
4378 |
|
|
-- Similarly obtain sizes
|
4379 |
|
|
|
4380 |
|
|
X_Size := Esize (ACCR.X);
|
4381 |
|
|
Y_Size := Esize (ACCR.Y);
|
4382 |
|
|
|
4383 |
|
|
-- Check for large object overlaying smaller one
|
4384 |
|
|
|
4385 |
|
|
if Y_Size > Uint_0
|
4386 |
|
|
and then X_Size > Uint_0
|
4387 |
|
|
and then X_Size > Y_Size
|
4388 |
|
|
then
|
4389 |
|
|
Error_Msg_NE
|
4390 |
|
|
("?& overlays smaller object", ACCR.N, ACCR.X);
|
4391 |
|
|
Error_Msg_N
|
4392 |
|
|
("\?program execution may be erroneous", ACCR.N);
|
4393 |
|
|
Error_Msg_Uint_1 := X_Size;
|
4394 |
|
|
Error_Msg_NE
|
4395 |
|
|
("\?size of & is ^", ACCR.N, ACCR.X);
|
4396 |
|
|
Error_Msg_Uint_1 := Y_Size;
|
4397 |
|
|
Error_Msg_NE
|
4398 |
|
|
("\?size of & is ^", ACCR.N, ACCR.Y);
|
4399 |
|
|
|
4400 |
|
|
-- Check for inadequate alignment, both of the base object
|
4401 |
|
|
-- and of the offset, if any.
|
4402 |
|
|
|
4403 |
|
|
-- Note: we do not check the alignment if we gave a size
|
4404 |
|
|
-- warning, since it would likely be redundant.
|
4405 |
|
|
|
4406 |
|
|
elsif Y_Alignment /= Uint_0
|
4407 |
|
|
and then (Y_Alignment < X_Alignment
|
4408 |
|
|
or else (ACCR.Off
|
4409 |
|
|
and then
|
4410 |
|
|
Nkind (Expr) = N_Attribute_Reference
|
4411 |
|
|
and then
|
4412 |
|
|
Attribute_Name (Expr) = Name_Address
|
4413 |
|
|
and then
|
4414 |
|
|
Has_Compatible_Alignment
|
4415 |
|
|
(ACCR.X, Prefix (Expr))
|
4416 |
|
|
/= Known_Compatible))
|
4417 |
|
|
then
|
4418 |
|
|
Error_Msg_NE
|
4419 |
|
|
("?specified address for& may be inconsistent "
|
4420 |
|
|
& "with alignment",
|
4421 |
|
|
ACCR.N, ACCR.X);
|
4422 |
|
|
Error_Msg_N
|
4423 |
|
|
("\?program execution may be erroneous (RM 13.3(27))",
|
4424 |
|
|
ACCR.N);
|
4425 |
|
|
Error_Msg_Uint_1 := X_Alignment;
|
4426 |
|
|
Error_Msg_NE
|
4427 |
|
|
("\?alignment of & is ^",
|
4428 |
|
|
ACCR.N, ACCR.X);
|
4429 |
|
|
Error_Msg_Uint_1 := Y_Alignment;
|
4430 |
|
|
Error_Msg_NE
|
4431 |
|
|
("\?alignment of & is ^",
|
4432 |
|
|
ACCR.N, ACCR.Y);
|
4433 |
|
|
if Y_Alignment >= X_Alignment then
|
4434 |
|
|
Error_Msg_N
|
4435 |
|
|
("\?but offset is not multiple of alignment",
|
4436 |
|
|
ACCR.N);
|
4437 |
|
|
end if;
|
4438 |
|
|
end if;
|
4439 |
|
|
end if;
|
4440 |
|
|
end;
|
4441 |
|
|
end loop;
|
4442 |
|
|
end Validate_Address_Clauses;
|
4443 |
|
|
|
4444 |
|
|
-----------------------------------
|
4445 |
|
|
-- Validate_Unchecked_Conversion --
|
4446 |
|
|
-----------------------------------
|
4447 |
|
|
|
4448 |
|
|
procedure Validate_Unchecked_Conversion
|
4449 |
|
|
(N : Node_Id;
|
4450 |
|
|
Act_Unit : Entity_Id)
|
4451 |
|
|
is
|
4452 |
|
|
Source : Entity_Id;
|
4453 |
|
|
Target : Entity_Id;
|
4454 |
|
|
Vnode : Node_Id;
|
4455 |
|
|
|
4456 |
|
|
begin
|
4457 |
|
|
-- Obtain source and target types. Note that we call Ancestor_Subtype
|
4458 |
|
|
-- here because the processing for generic instantiation always makes
|
4459 |
|
|
-- subtypes, and we want the original frozen actual types.
|
4460 |
|
|
|
4461 |
|
|
-- If we are dealing with private types, then do the check on their
|
4462 |
|
|
-- fully declared counterparts if the full declarations have been
|
4463 |
|
|
-- encountered (they don't have to be visible, but they must exist!)
|
4464 |
|
|
|
4465 |
|
|
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
|
4466 |
|
|
|
4467 |
|
|
if Is_Private_Type (Source)
|
4468 |
|
|
and then Present (Underlying_Type (Source))
|
4469 |
|
|
then
|
4470 |
|
|
Source := Underlying_Type (Source);
|
4471 |
|
|
end if;
|
4472 |
|
|
|
4473 |
|
|
Target := Ancestor_Subtype (Etype (Act_Unit));
|
4474 |
|
|
|
4475 |
|
|
-- If either type is generic, the instantiation happens within a generic
|
4476 |
|
|
-- unit, and there is nothing to check. The proper check
|
4477 |
|
|
-- will happen when the enclosing generic is instantiated.
|
4478 |
|
|
|
4479 |
|
|
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
|
4480 |
|
|
return;
|
4481 |
|
|
end if;
|
4482 |
|
|
|
4483 |
|
|
if Is_Private_Type (Target)
|
4484 |
|
|
and then Present (Underlying_Type (Target))
|
4485 |
|
|
then
|
4486 |
|
|
Target := Underlying_Type (Target);
|
4487 |
|
|
end if;
|
4488 |
|
|
|
4489 |
|
|
-- Source may be unconstrained array, but not target
|
4490 |
|
|
|
4491 |
|
|
if Is_Array_Type (Target)
|
4492 |
|
|
and then not Is_Constrained (Target)
|
4493 |
|
|
then
|
4494 |
|
|
Error_Msg_N
|
4495 |
|
|
("unchecked conversion to unconstrained array not allowed", N);
|
4496 |
|
|
return;
|
4497 |
|
|
end if;
|
4498 |
|
|
|
4499 |
|
|
-- Warn if conversion between two different convention pointers
|
4500 |
|
|
|
4501 |
|
|
if Is_Access_Type (Target)
|
4502 |
|
|
and then Is_Access_Type (Source)
|
4503 |
|
|
and then Convention (Target) /= Convention (Source)
|
4504 |
|
|
and then Warn_On_Unchecked_Conversion
|
4505 |
|
|
then
|
4506 |
|
|
-- Give warnings for subprogram pointers only on most targets. The
|
4507 |
|
|
-- exception is VMS, where data pointers can have different lengths
|
4508 |
|
|
-- depending on the pointer convention.
|
4509 |
|
|
|
4510 |
|
|
if Is_Access_Subprogram_Type (Target)
|
4511 |
|
|
or else Is_Access_Subprogram_Type (Source)
|
4512 |
|
|
or else OpenVMS_On_Target
|
4513 |
|
|
then
|
4514 |
|
|
Error_Msg_N
|
4515 |
|
|
("?conversion between pointers with different conventions!", N);
|
4516 |
|
|
end if;
|
4517 |
|
|
end if;
|
4518 |
|
|
|
4519 |
|
|
-- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
|
4520 |
|
|
-- warning when compiling GNAT-related sources.
|
4521 |
|
|
|
4522 |
|
|
if Warn_On_Unchecked_Conversion
|
4523 |
|
|
and then not In_Predefined_Unit (N)
|
4524 |
|
|
and then RTU_Loaded (Ada_Calendar)
|
4525 |
|
|
and then
|
4526 |
|
|
(Chars (Source) = Name_Time
|
4527 |
|
|
or else
|
4528 |
|
|
Chars (Target) = Name_Time)
|
4529 |
|
|
then
|
4530 |
|
|
-- If Ada.Calendar is loaded and the name of one of the operands is
|
4531 |
|
|
-- Time, there is a good chance that this is Ada.Calendar.Time.
|
4532 |
|
|
|
4533 |
|
|
declare
|
4534 |
|
|
Calendar_Time : constant Entity_Id :=
|
4535 |
|
|
Full_View (RTE (RO_CA_Time));
|
4536 |
|
|
begin
|
4537 |
|
|
pragma Assert (Present (Calendar_Time));
|
4538 |
|
|
|
4539 |
|
|
if Source = Calendar_Time
|
4540 |
|
|
or else Target = Calendar_Time
|
4541 |
|
|
then
|
4542 |
|
|
Error_Msg_N
|
4543 |
|
|
("?representation of 'Time values may change between " &
|
4544 |
|
|
"'G'N'A'T versions", N);
|
4545 |
|
|
end if;
|
4546 |
|
|
end;
|
4547 |
|
|
end if;
|
4548 |
|
|
|
4549 |
|
|
-- Make entry in unchecked conversion table for later processing by
|
4550 |
|
|
-- Validate_Unchecked_Conversions, which will check sizes and alignments
|
4551 |
|
|
-- (using values set by the back-end where possible). This is only done
|
4552 |
|
|
-- if the appropriate warning is active.
|
4553 |
|
|
|
4554 |
|
|
if Warn_On_Unchecked_Conversion then
|
4555 |
|
|
Unchecked_Conversions.Append
|
4556 |
|
|
(New_Val => UC_Entry'
|
4557 |
|
|
(Eloc => Sloc (N),
|
4558 |
|
|
Source => Source,
|
4559 |
|
|
Target => Target));
|
4560 |
|
|
|
4561 |
|
|
-- If both sizes are known statically now, then back end annotation
|
4562 |
|
|
-- is not required to do a proper check but if either size is not
|
4563 |
|
|
-- known statically, then we need the annotation.
|
4564 |
|
|
|
4565 |
|
|
if Known_Static_RM_Size (Source)
|
4566 |
|
|
and then Known_Static_RM_Size (Target)
|
4567 |
|
|
then
|
4568 |
|
|
null;
|
4569 |
|
|
else
|
4570 |
|
|
Back_Annotate_Rep_Info := True;
|
4571 |
|
|
end if;
|
4572 |
|
|
end if;
|
4573 |
|
|
|
4574 |
|
|
-- If unchecked conversion to access type, and access type is declared
|
4575 |
|
|
-- in the same unit as the unchecked conversion, then set the
|
4576 |
|
|
-- No_Strict_Aliasing flag (no strict aliasing is implicit in this
|
4577 |
|
|
-- situation).
|
4578 |
|
|
|
4579 |
|
|
if Is_Access_Type (Target) and then
|
4580 |
|
|
In_Same_Source_Unit (Target, N)
|
4581 |
|
|
then
|
4582 |
|
|
Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
|
4583 |
|
|
end if;
|
4584 |
|
|
|
4585 |
|
|
-- Generate N_Validate_Unchecked_Conversion node for back end in
|
4586 |
|
|
-- case the back end needs to perform special validation checks.
|
4587 |
|
|
|
4588 |
|
|
-- Shouldn't this be in Exp_Ch13, since the check only gets done
|
4589 |
|
|
-- if we have full expansion and the back end is called ???
|
4590 |
|
|
|
4591 |
|
|
Vnode :=
|
4592 |
|
|
Make_Validate_Unchecked_Conversion (Sloc (N));
|
4593 |
|
|
Set_Source_Type (Vnode, Source);
|
4594 |
|
|
Set_Target_Type (Vnode, Target);
|
4595 |
|
|
|
4596 |
|
|
-- If the unchecked conversion node is in a list, just insert before it.
|
4597 |
|
|
-- If not we have some strange case, not worth bothering about.
|
4598 |
|
|
|
4599 |
|
|
if Is_List_Member (N) then
|
4600 |
|
|
Insert_After (N, Vnode);
|
4601 |
|
|
end if;
|
4602 |
|
|
end Validate_Unchecked_Conversion;
|
4603 |
|
|
|
4604 |
|
|
------------------------------------
|
4605 |
|
|
-- Validate_Unchecked_Conversions --
|
4606 |
|
|
------------------------------------
|
4607 |
|
|
|
4608 |
|
|
procedure Validate_Unchecked_Conversions is
|
4609 |
|
|
begin
|
4610 |
|
|
for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
|
4611 |
|
|
declare
|
4612 |
|
|
T : UC_Entry renames Unchecked_Conversions.Table (N);
|
4613 |
|
|
|
4614 |
|
|
Eloc : constant Source_Ptr := T.Eloc;
|
4615 |
|
|
Source : constant Entity_Id := T.Source;
|
4616 |
|
|
Target : constant Entity_Id := T.Target;
|
4617 |
|
|
|
4618 |
|
|
Source_Siz : Uint;
|
4619 |
|
|
Target_Siz : Uint;
|
4620 |
|
|
|
4621 |
|
|
begin
|
4622 |
|
|
-- This validation check, which warns if we have unequal sizes for
|
4623 |
|
|
-- unchecked conversion, and thus potentially implementation
|
4624 |
|
|
-- dependent semantics, is one of the few occasions on which we
|
4625 |
|
|
-- use the official RM size instead of Esize. See description in
|
4626 |
|
|
-- Einfo "Handling of Type'Size Values" for details.
|
4627 |
|
|
|
4628 |
|
|
if Serious_Errors_Detected = 0
|
4629 |
|
|
and then Known_Static_RM_Size (Source)
|
4630 |
|
|
and then Known_Static_RM_Size (Target)
|
4631 |
|
|
|
4632 |
|
|
-- Don't do the check if warnings off for either type, note the
|
4633 |
|
|
-- deliberate use of OR here instead of OR ELSE to get the flag
|
4634 |
|
|
-- Warnings_Off_Used set for both types if appropriate.
|
4635 |
|
|
|
4636 |
|
|
and then not (Has_Warnings_Off (Source)
|
4637 |
|
|
or
|
4638 |
|
|
Has_Warnings_Off (Target))
|
4639 |
|
|
then
|
4640 |
|
|
Source_Siz := RM_Size (Source);
|
4641 |
|
|
Target_Siz := RM_Size (Target);
|
4642 |
|
|
|
4643 |
|
|
if Source_Siz /= Target_Siz then
|
4644 |
|
|
Error_Msg
|
4645 |
|
|
("?types for unchecked conversion have different sizes!",
|
4646 |
|
|
Eloc);
|
4647 |
|
|
|
4648 |
|
|
if All_Errors_Mode then
|
4649 |
|
|
Error_Msg_Name_1 := Chars (Source);
|
4650 |
|
|
Error_Msg_Uint_1 := Source_Siz;
|
4651 |
|
|
Error_Msg_Name_2 := Chars (Target);
|
4652 |
|
|
Error_Msg_Uint_2 := Target_Siz;
|
4653 |
|
|
Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
|
4654 |
|
|
|
4655 |
|
|
Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
|
4656 |
|
|
|
4657 |
|
|
if Is_Discrete_Type (Source)
|
4658 |
|
|
and then Is_Discrete_Type (Target)
|
4659 |
|
|
then
|
4660 |
|
|
if Source_Siz > Target_Siz then
|
4661 |
|
|
Error_Msg
|
4662 |
|
|
("\?^ high order bits of source will be ignored!",
|
4663 |
|
|
Eloc);
|
4664 |
|
|
|
4665 |
|
|
elsif Is_Unsigned_Type (Source) then
|
4666 |
|
|
Error_Msg
|
4667 |
|
|
("\?source will be extended with ^ high order " &
|
4668 |
|
|
"zero bits?!", Eloc);
|
4669 |
|
|
|
4670 |
|
|
else
|
4671 |
|
|
Error_Msg
|
4672 |
|
|
("\?source will be extended with ^ high order " &
|
4673 |
|
|
"sign bits!",
|
4674 |
|
|
Eloc);
|
4675 |
|
|
end if;
|
4676 |
|
|
|
4677 |
|
|
elsif Source_Siz < Target_Siz then
|
4678 |
|
|
if Is_Discrete_Type (Target) then
|
4679 |
|
|
if Bytes_Big_Endian then
|
4680 |
|
|
Error_Msg
|
4681 |
|
|
("\?target value will include ^ undefined " &
|
4682 |
|
|
"low order bits!",
|
4683 |
|
|
Eloc);
|
4684 |
|
|
else
|
4685 |
|
|
Error_Msg
|
4686 |
|
|
("\?target value will include ^ undefined " &
|
4687 |
|
|
"high order bits!",
|
4688 |
|
|
Eloc);
|
4689 |
|
|
end if;
|
4690 |
|
|
|
4691 |
|
|
else
|
4692 |
|
|
Error_Msg
|
4693 |
|
|
("\?^ trailing bits of target value will be " &
|
4694 |
|
|
"undefined!", Eloc);
|
4695 |
|
|
end if;
|
4696 |
|
|
|
4697 |
|
|
else pragma Assert (Source_Siz > Target_Siz);
|
4698 |
|
|
Error_Msg
|
4699 |
|
|
("\?^ trailing bits of source will be ignored!",
|
4700 |
|
|
Eloc);
|
4701 |
|
|
end if;
|
4702 |
|
|
end if;
|
4703 |
|
|
end if;
|
4704 |
|
|
end if;
|
4705 |
|
|
|
4706 |
|
|
-- If both types are access types, we need to check the alignment.
|
4707 |
|
|
-- If the alignment of both is specified, we can do it here.
|
4708 |
|
|
|
4709 |
|
|
if Serious_Errors_Detected = 0
|
4710 |
|
|
and then Ekind (Source) in Access_Kind
|
4711 |
|
|
and then Ekind (Target) in Access_Kind
|
4712 |
|
|
and then Target_Strict_Alignment
|
4713 |
|
|
and then Present (Designated_Type (Source))
|
4714 |
|
|
and then Present (Designated_Type (Target))
|
4715 |
|
|
then
|
4716 |
|
|
declare
|
4717 |
|
|
D_Source : constant Entity_Id := Designated_Type (Source);
|
4718 |
|
|
D_Target : constant Entity_Id := Designated_Type (Target);
|
4719 |
|
|
|
4720 |
|
|
begin
|
4721 |
|
|
if Known_Alignment (D_Source)
|
4722 |
|
|
and then Known_Alignment (D_Target)
|
4723 |
|
|
then
|
4724 |
|
|
declare
|
4725 |
|
|
Source_Align : constant Uint := Alignment (D_Source);
|
4726 |
|
|
Target_Align : constant Uint := Alignment (D_Target);
|
4727 |
|
|
|
4728 |
|
|
begin
|
4729 |
|
|
if Source_Align < Target_Align
|
4730 |
|
|
and then not Is_Tagged_Type (D_Source)
|
4731 |
|
|
|
4732 |
|
|
-- Suppress warning if warnings suppressed on either
|
4733 |
|
|
-- type or either designated type. Note the use of
|
4734 |
|
|
-- OR here instead of OR ELSE. That is intentional,
|
4735 |
|
|
-- we would like to set flag Warnings_Off_Used in
|
4736 |
|
|
-- all types for which warnings are suppressed.
|
4737 |
|
|
|
4738 |
|
|
and then not (Has_Warnings_Off (D_Source)
|
4739 |
|
|
or
|
4740 |
|
|
Has_Warnings_Off (D_Target)
|
4741 |
|
|
or
|
4742 |
|
|
Has_Warnings_Off (Source)
|
4743 |
|
|
or
|
4744 |
|
|
Has_Warnings_Off (Target))
|
4745 |
|
|
then
|
4746 |
|
|
Error_Msg_Uint_1 := Target_Align;
|
4747 |
|
|
Error_Msg_Uint_2 := Source_Align;
|
4748 |
|
|
Error_Msg_Node_1 := D_Target;
|
4749 |
|
|
Error_Msg_Node_2 := D_Source;
|
4750 |
|
|
Error_Msg
|
4751 |
|
|
("?alignment of & (^) is stricter than " &
|
4752 |
|
|
"alignment of & (^)!", Eloc);
|
4753 |
|
|
Error_Msg
|
4754 |
|
|
("\?resulting access value may have invalid " &
|
4755 |
|
|
"alignment!", Eloc);
|
4756 |
|
|
end if;
|
4757 |
|
|
end;
|
4758 |
|
|
end if;
|
4759 |
|
|
end;
|
4760 |
|
|
end if;
|
4761 |
|
|
end;
|
4762 |
|
|
end loop;
|
4763 |
|
|
end Validate_Unchecked_Conversions;
|
4764 |
|
|
|
4765 |
|
|
end Sem_Ch13;
|