1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ C H 4 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Debug; use Debug;
|
28 |
|
|
with Einfo; use Einfo;
|
29 |
|
|
with Elists; use Elists;
|
30 |
|
|
with Errout; use Errout;
|
31 |
|
|
with Exp_Util; use Exp_Util;
|
32 |
|
|
with Fname; use Fname;
|
33 |
|
|
with Itypes; use Itypes;
|
34 |
|
|
with Lib; use Lib;
|
35 |
|
|
with Lib.Xref; use Lib.Xref;
|
36 |
|
|
with Namet; use Namet;
|
37 |
|
|
with Namet.Sp; use Namet.Sp;
|
38 |
|
|
with Nlists; use Nlists;
|
39 |
|
|
with Nmake; use Nmake;
|
40 |
|
|
with Opt; use Opt;
|
41 |
|
|
with Output; use Output;
|
42 |
|
|
with Restrict; use Restrict;
|
43 |
|
|
with Rident; use Rident;
|
44 |
|
|
with Sem; use Sem;
|
45 |
|
|
with Sem_Aux; use Sem_Aux;
|
46 |
|
|
with Sem_Cat; use Sem_Cat;
|
47 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
48 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
49 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
50 |
|
|
with Sem_SCIL; use Sem_SCIL;
|
51 |
|
|
with Sem_Disp; use Sem_Disp;
|
52 |
|
|
with Sem_Dist; use Sem_Dist;
|
53 |
|
|
with Sem_Eval; use Sem_Eval;
|
54 |
|
|
with Sem_Res; use Sem_Res;
|
55 |
|
|
with Sem_Util; use Sem_Util;
|
56 |
|
|
with Sem_Type; use Sem_Type;
|
57 |
|
|
with Stand; use Stand;
|
58 |
|
|
with Sinfo; use Sinfo;
|
59 |
|
|
with Snames; use Snames;
|
60 |
|
|
with Tbuild; use Tbuild;
|
61 |
|
|
|
62 |
|
|
package body Sem_Ch4 is
|
63 |
|
|
|
64 |
|
|
-----------------------
|
65 |
|
|
-- Local Subprograms --
|
66 |
|
|
-----------------------
|
67 |
|
|
|
68 |
|
|
procedure Analyze_Concatenation_Rest (N : Node_Id);
|
69 |
|
|
-- Does the "rest" of the work of Analyze_Concatenation, after the left
|
70 |
|
|
-- operand has been analyzed. See Analyze_Concatenation for details.
|
71 |
|
|
|
72 |
|
|
procedure Analyze_Expression (N : Node_Id);
|
73 |
|
|
-- For expressions that are not names, this is just a call to analyze.
|
74 |
|
|
-- If the expression is a name, it may be a call to a parameterless
|
75 |
|
|
-- function, and if so must be converted into an explicit call node
|
76 |
|
|
-- and analyzed as such. This deproceduring must be done during the first
|
77 |
|
|
-- pass of overload resolution, because otherwise a procedure call with
|
78 |
|
|
-- overloaded actuals may fail to resolve.
|
79 |
|
|
|
80 |
|
|
procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
|
81 |
|
|
-- Analyze a call of the form "+"(x, y), etc. The prefix of the call
|
82 |
|
|
-- is an operator name or an expanded name whose selector is an operator
|
83 |
|
|
-- name, and one possible interpretation is as a predefined operator.
|
84 |
|
|
|
85 |
|
|
procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
|
86 |
|
|
-- If the prefix of a selected_component is overloaded, the proper
|
87 |
|
|
-- interpretation that yields a record type with the proper selector
|
88 |
|
|
-- name must be selected.
|
89 |
|
|
|
90 |
|
|
procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
|
91 |
|
|
-- Procedure to analyze a user defined binary operator, which is resolved
|
92 |
|
|
-- like a function, but instead of a list of actuals it is presented
|
93 |
|
|
-- with the left and right operands of an operator node.
|
94 |
|
|
|
95 |
|
|
procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
|
96 |
|
|
-- Procedure to analyze a user defined unary operator, which is resolved
|
97 |
|
|
-- like a function, but instead of a list of actuals, it is presented with
|
98 |
|
|
-- the operand of the operator node.
|
99 |
|
|
|
100 |
|
|
procedure Ambiguous_Operands (N : Node_Id);
|
101 |
|
|
-- for equality, membership, and comparison operators with overloaded
|
102 |
|
|
-- arguments, list possible interpretations.
|
103 |
|
|
|
104 |
|
|
procedure Analyze_One_Call
|
105 |
|
|
(N : Node_Id;
|
106 |
|
|
Nam : Entity_Id;
|
107 |
|
|
Report : Boolean;
|
108 |
|
|
Success : out Boolean;
|
109 |
|
|
Skip_First : Boolean := False);
|
110 |
|
|
-- Check one interpretation of an overloaded subprogram name for
|
111 |
|
|
-- compatibility with the types of the actuals in a call. If there is a
|
112 |
|
|
-- single interpretation which does not match, post error if Report is
|
113 |
|
|
-- set to True.
|
114 |
|
|
--
|
115 |
|
|
-- Nam is the entity that provides the formals against which the actuals
|
116 |
|
|
-- are checked. Nam is either the name of a subprogram, or the internal
|
117 |
|
|
-- subprogram type constructed for an access_to_subprogram. If the actuals
|
118 |
|
|
-- are compatible with Nam, then Nam is added to the list of candidate
|
119 |
|
|
-- interpretations for N, and Success is set to True.
|
120 |
|
|
--
|
121 |
|
|
-- The flag Skip_First is used when analyzing a call that was rewritten
|
122 |
|
|
-- from object notation. In this case the first actual may have to receive
|
123 |
|
|
-- an explicit dereference, depending on the first formal of the operation
|
124 |
|
|
-- being called. The caller will have verified that the object is legal
|
125 |
|
|
-- for the call. If the remaining parameters match, the first parameter
|
126 |
|
|
-- will rewritten as a dereference if needed, prior to completing analysis.
|
127 |
|
|
|
128 |
|
|
procedure Check_Misspelled_Selector
|
129 |
|
|
(Prefix : Entity_Id;
|
130 |
|
|
Sel : Node_Id);
|
131 |
|
|
-- Give possible misspelling diagnostic if Sel is likely to be a mis-
|
132 |
|
|
-- spelling of one of the selectors of the Prefix. This is called by
|
133 |
|
|
-- Analyze_Selected_Component after producing an invalid selector error
|
134 |
|
|
-- message.
|
135 |
|
|
|
136 |
|
|
function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
|
137 |
|
|
-- Verify that type T is declared in scope S. Used to find interpretations
|
138 |
|
|
-- for operators given by expanded names. This is abstracted as a separate
|
139 |
|
|
-- function to handle extensions to System, where S is System, but T is
|
140 |
|
|
-- declared in the extension.
|
141 |
|
|
|
142 |
|
|
procedure Find_Arithmetic_Types
|
143 |
|
|
(L, R : Node_Id;
|
144 |
|
|
Op_Id : Entity_Id;
|
145 |
|
|
N : Node_Id);
|
146 |
|
|
-- L and R are the operands of an arithmetic operator. Find
|
147 |
|
|
-- consistent pairs of interpretations for L and R that have a
|
148 |
|
|
-- numeric type consistent with the semantics of the operator.
|
149 |
|
|
|
150 |
|
|
procedure Find_Comparison_Types
|
151 |
|
|
(L, R : Node_Id;
|
152 |
|
|
Op_Id : Entity_Id;
|
153 |
|
|
N : Node_Id);
|
154 |
|
|
-- L and R are operands of a comparison operator. Find consistent
|
155 |
|
|
-- pairs of interpretations for L and R.
|
156 |
|
|
|
157 |
|
|
procedure Find_Concatenation_Types
|
158 |
|
|
(L, R : Node_Id;
|
159 |
|
|
Op_Id : Entity_Id;
|
160 |
|
|
N : Node_Id);
|
161 |
|
|
-- For the four varieties of concatenation
|
162 |
|
|
|
163 |
|
|
procedure Find_Equality_Types
|
164 |
|
|
(L, R : Node_Id;
|
165 |
|
|
Op_Id : Entity_Id;
|
166 |
|
|
N : Node_Id);
|
167 |
|
|
-- Ditto for equality operators
|
168 |
|
|
|
169 |
|
|
procedure Find_Boolean_Types
|
170 |
|
|
(L, R : Node_Id;
|
171 |
|
|
Op_Id : Entity_Id;
|
172 |
|
|
N : Node_Id);
|
173 |
|
|
-- Ditto for binary logical operations
|
174 |
|
|
|
175 |
|
|
procedure Find_Negation_Types
|
176 |
|
|
(R : Node_Id;
|
177 |
|
|
Op_Id : Entity_Id;
|
178 |
|
|
N : Node_Id);
|
179 |
|
|
-- Find consistent interpretation for operand of negation operator
|
180 |
|
|
|
181 |
|
|
procedure Find_Non_Universal_Interpretations
|
182 |
|
|
(N : Node_Id;
|
183 |
|
|
R : Node_Id;
|
184 |
|
|
Op_Id : Entity_Id;
|
185 |
|
|
T1 : Entity_Id);
|
186 |
|
|
-- For equality and comparison operators, the result is always boolean,
|
187 |
|
|
-- and the legality of the operation is determined from the visibility
|
188 |
|
|
-- of the operand types. If one of the operands has a universal interpre-
|
189 |
|
|
-- tation, the legality check uses some compatible non-universal
|
190 |
|
|
-- interpretation of the other operand. N can be an operator node, or
|
191 |
|
|
-- a function call whose name is an operator designator.
|
192 |
|
|
|
193 |
|
|
function Find_Primitive_Operation (N : Node_Id) return Boolean;
|
194 |
|
|
-- Find candidate interpretations for the name Obj.Proc when it appears
|
195 |
|
|
-- in a subprogram renaming declaration.
|
196 |
|
|
|
197 |
|
|
procedure Find_Unary_Types
|
198 |
|
|
(R : Node_Id;
|
199 |
|
|
Op_Id : Entity_Id;
|
200 |
|
|
N : Node_Id);
|
201 |
|
|
-- Unary arithmetic types: plus, minus, abs
|
202 |
|
|
|
203 |
|
|
procedure Check_Arithmetic_Pair
|
204 |
|
|
(T1, T2 : Entity_Id;
|
205 |
|
|
Op_Id : Entity_Id;
|
206 |
|
|
N : Node_Id);
|
207 |
|
|
-- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
|
208 |
|
|
-- types for left and right operand. Determine whether they constitute
|
209 |
|
|
-- a valid pair for the given operator, and record the corresponding
|
210 |
|
|
-- interpretation of the operator node. The node N may be an operator
|
211 |
|
|
-- node (the usual case) or a function call whose prefix is an operator
|
212 |
|
|
-- designator. In both cases Op_Id is the operator name itself.
|
213 |
|
|
|
214 |
|
|
procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
|
215 |
|
|
-- Give detailed information on overloaded call where none of the
|
216 |
|
|
-- interpretations match. N is the call node, Nam the designator for
|
217 |
|
|
-- the overloaded entity being called.
|
218 |
|
|
|
219 |
|
|
function Junk_Operand (N : Node_Id) return Boolean;
|
220 |
|
|
-- Test for an operand that is an inappropriate entity (e.g. a package
|
221 |
|
|
-- name or a label). If so, issue an error message and return True. If
|
222 |
|
|
-- the operand is not an inappropriate entity kind, return False.
|
223 |
|
|
|
224 |
|
|
procedure Operator_Check (N : Node_Id);
|
225 |
|
|
-- Verify that an operator has received some valid interpretation. If none
|
226 |
|
|
-- was found, determine whether a use clause would make the operation
|
227 |
|
|
-- legal. The variable Candidate_Type (defined in Sem_Type) is set for
|
228 |
|
|
-- every type compatible with the operator, even if the operator for the
|
229 |
|
|
-- type is not directly visible. The routine uses this type to emit a more
|
230 |
|
|
-- informative message.
|
231 |
|
|
|
232 |
|
|
function Process_Implicit_Dereference_Prefix
|
233 |
|
|
(E : Entity_Id;
|
234 |
|
|
P : Node_Id) return Entity_Id;
|
235 |
|
|
-- Called when P is the prefix of an implicit dereference, denoting an
|
236 |
|
|
-- object E. The function returns the designated type of the prefix, taking
|
237 |
|
|
-- into account that the designated type of an anonymous access type may be
|
238 |
|
|
-- a limited view, when the non-limited view is visible.
|
239 |
|
|
-- If in semantics only mode (-gnatc or generic), the function also records
|
240 |
|
|
-- that the prefix is a reference to E, if any. Normally, such a reference
|
241 |
|
|
-- is generated only when the implicit dereference is expanded into an
|
242 |
|
|
-- explicit one, but for consistency we must generate the reference when
|
243 |
|
|
-- expansion is disabled as well.
|
244 |
|
|
|
245 |
|
|
procedure Remove_Abstract_Operations (N : Node_Id);
|
246 |
|
|
-- Ada 2005: implementation of AI-310. An abstract non-dispatching
|
247 |
|
|
-- operation is not a candidate interpretation.
|
248 |
|
|
|
249 |
|
|
function Try_Indexed_Call
|
250 |
|
|
(N : Node_Id;
|
251 |
|
|
Nam : Entity_Id;
|
252 |
|
|
Typ : Entity_Id;
|
253 |
|
|
Skip_First : Boolean) return Boolean;
|
254 |
|
|
-- If a function has defaults for all its actuals, a call to it may in fact
|
255 |
|
|
-- be an indexing on the result of the call. Try_Indexed_Call attempts the
|
256 |
|
|
-- interpretation as an indexing, prior to analysis as a call. If both are
|
257 |
|
|
-- possible, the node is overloaded with both interpretations (same symbol
|
258 |
|
|
-- but two different types). If the call is written in prefix form, the
|
259 |
|
|
-- prefix becomes the first parameter in the call, and only the remaining
|
260 |
|
|
-- actuals must be checked for the presence of defaults.
|
261 |
|
|
|
262 |
|
|
function Try_Indirect_Call
|
263 |
|
|
(N : Node_Id;
|
264 |
|
|
Nam : Entity_Id;
|
265 |
|
|
Typ : Entity_Id) return Boolean;
|
266 |
|
|
-- Similarly, a function F that needs no actuals can return an access to a
|
267 |
|
|
-- subprogram, and the call F (X) interpreted as F.all (X). In this case
|
268 |
|
|
-- the call may be overloaded with both interpretations.
|
269 |
|
|
|
270 |
|
|
function Try_Object_Operation (N : Node_Id) return Boolean;
|
271 |
|
|
-- Ada 2005 (AI-252): Support the object.operation notation
|
272 |
|
|
|
273 |
|
|
procedure wpo (T : Entity_Id);
|
274 |
|
|
pragma Warnings (Off, wpo);
|
275 |
|
|
-- Used for debugging: obtain list of primitive operations even if
|
276 |
|
|
-- type is not frozen and dispatch table is not built yet.
|
277 |
|
|
|
278 |
|
|
------------------------
|
279 |
|
|
-- Ambiguous_Operands --
|
280 |
|
|
------------------------
|
281 |
|
|
|
282 |
|
|
procedure Ambiguous_Operands (N : Node_Id) is
|
283 |
|
|
procedure List_Operand_Interps (Opnd : Node_Id);
|
284 |
|
|
|
285 |
|
|
--------------------------
|
286 |
|
|
-- List_Operand_Interps --
|
287 |
|
|
--------------------------
|
288 |
|
|
|
289 |
|
|
procedure List_Operand_Interps (Opnd : Node_Id) is
|
290 |
|
|
Nam : Node_Id;
|
291 |
|
|
Err : Node_Id := N;
|
292 |
|
|
|
293 |
|
|
begin
|
294 |
|
|
if Is_Overloaded (Opnd) then
|
295 |
|
|
if Nkind (Opnd) in N_Op then
|
296 |
|
|
Nam := Opnd;
|
297 |
|
|
elsif Nkind (Opnd) = N_Function_Call then
|
298 |
|
|
Nam := Name (Opnd);
|
299 |
|
|
else
|
300 |
|
|
return;
|
301 |
|
|
end if;
|
302 |
|
|
|
303 |
|
|
else
|
304 |
|
|
return;
|
305 |
|
|
end if;
|
306 |
|
|
|
307 |
|
|
if Opnd = Left_Opnd (N) then
|
308 |
|
|
Error_Msg_N
|
309 |
|
|
("\left operand has the following interpretations", N);
|
310 |
|
|
else
|
311 |
|
|
Error_Msg_N
|
312 |
|
|
("\right operand has the following interpretations", N);
|
313 |
|
|
Err := Opnd;
|
314 |
|
|
end if;
|
315 |
|
|
|
316 |
|
|
List_Interps (Nam, Err);
|
317 |
|
|
end List_Operand_Interps;
|
318 |
|
|
|
319 |
|
|
-- Start of processing for Ambiguous_Operands
|
320 |
|
|
|
321 |
|
|
begin
|
322 |
|
|
if Nkind (N) in N_Membership_Test then
|
323 |
|
|
Error_Msg_N ("ambiguous operands for membership", N);
|
324 |
|
|
|
325 |
|
|
elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
|
326 |
|
|
Error_Msg_N ("ambiguous operands for equality", N);
|
327 |
|
|
|
328 |
|
|
else
|
329 |
|
|
Error_Msg_N ("ambiguous operands for comparison", N);
|
330 |
|
|
end if;
|
331 |
|
|
|
332 |
|
|
if All_Errors_Mode then
|
333 |
|
|
List_Operand_Interps (Left_Opnd (N));
|
334 |
|
|
List_Operand_Interps (Right_Opnd (N));
|
335 |
|
|
else
|
336 |
|
|
Error_Msg_N ("\use -gnatf switch for details", N);
|
337 |
|
|
end if;
|
338 |
|
|
end Ambiguous_Operands;
|
339 |
|
|
|
340 |
|
|
-----------------------
|
341 |
|
|
-- Analyze_Aggregate --
|
342 |
|
|
-----------------------
|
343 |
|
|
|
344 |
|
|
-- Most of the analysis of Aggregates requires that the type be known,
|
345 |
|
|
-- and is therefore put off until resolution.
|
346 |
|
|
|
347 |
|
|
procedure Analyze_Aggregate (N : Node_Id) is
|
348 |
|
|
begin
|
349 |
|
|
if No (Etype (N)) then
|
350 |
|
|
Set_Etype (N, Any_Composite);
|
351 |
|
|
end if;
|
352 |
|
|
end Analyze_Aggregate;
|
353 |
|
|
|
354 |
|
|
-----------------------
|
355 |
|
|
-- Analyze_Allocator --
|
356 |
|
|
-----------------------
|
357 |
|
|
|
358 |
|
|
procedure Analyze_Allocator (N : Node_Id) is
|
359 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
360 |
|
|
Sav_Errs : constant Nat := Serious_Errors_Detected;
|
361 |
|
|
E : Node_Id := Expression (N);
|
362 |
|
|
Acc_Type : Entity_Id;
|
363 |
|
|
Type_Id : Entity_Id;
|
364 |
|
|
|
365 |
|
|
begin
|
366 |
|
|
-- In accordance with H.4(7), the No_Allocators restriction only applies
|
367 |
|
|
-- to user-written allocators.
|
368 |
|
|
|
369 |
|
|
if Comes_From_Source (N) then
|
370 |
|
|
Check_Restriction (No_Allocators, N);
|
371 |
|
|
end if;
|
372 |
|
|
|
373 |
|
|
if Nkind (E) = N_Qualified_Expression then
|
374 |
|
|
Acc_Type := Create_Itype (E_Allocator_Type, N);
|
375 |
|
|
Set_Etype (Acc_Type, Acc_Type);
|
376 |
|
|
Find_Type (Subtype_Mark (E));
|
377 |
|
|
|
378 |
|
|
-- Analyze the qualified expression, and apply the name resolution
|
379 |
|
|
-- rule given in 4.7 (3).
|
380 |
|
|
|
381 |
|
|
Analyze (E);
|
382 |
|
|
Type_Id := Etype (E);
|
383 |
|
|
Set_Directly_Designated_Type (Acc_Type, Type_Id);
|
384 |
|
|
|
385 |
|
|
Resolve (Expression (E), Type_Id);
|
386 |
|
|
|
387 |
|
|
if Is_Limited_Type (Type_Id)
|
388 |
|
|
and then Comes_From_Source (N)
|
389 |
|
|
and then not In_Instance_Body
|
390 |
|
|
then
|
391 |
|
|
if not OK_For_Limited_Init (Type_Id, Expression (E)) then
|
392 |
|
|
Error_Msg_N ("initialization not allowed for limited types", N);
|
393 |
|
|
Explain_Limited_Type (Type_Id, N);
|
394 |
|
|
end if;
|
395 |
|
|
end if;
|
396 |
|
|
|
397 |
|
|
-- A qualified expression requires an exact match of the type,
|
398 |
|
|
-- class-wide matching is not allowed.
|
399 |
|
|
|
400 |
|
|
-- if Is_Class_Wide_Type (Type_Id)
|
401 |
|
|
-- and then Base_Type
|
402 |
|
|
-- (Etype (Expression (E))) /= Base_Type (Type_Id)
|
403 |
|
|
-- then
|
404 |
|
|
-- Wrong_Type (Expression (E), Type_Id);
|
405 |
|
|
-- end if;
|
406 |
|
|
|
407 |
|
|
Check_Non_Static_Context (Expression (E));
|
408 |
|
|
|
409 |
|
|
-- We don't analyze the qualified expression itself because it's
|
410 |
|
|
-- part of the allocator
|
411 |
|
|
|
412 |
|
|
Set_Etype (E, Type_Id);
|
413 |
|
|
|
414 |
|
|
-- Case where allocator has a subtype indication
|
415 |
|
|
|
416 |
|
|
else
|
417 |
|
|
declare
|
418 |
|
|
Def_Id : Entity_Id;
|
419 |
|
|
Base_Typ : Entity_Id;
|
420 |
|
|
|
421 |
|
|
begin
|
422 |
|
|
-- If the allocator includes a N_Subtype_Indication then a
|
423 |
|
|
-- constraint is present, otherwise the node is a subtype mark.
|
424 |
|
|
-- Introduce an explicit subtype declaration into the tree
|
425 |
|
|
-- defining some anonymous subtype and rewrite the allocator to
|
426 |
|
|
-- use this subtype rather than the subtype indication.
|
427 |
|
|
|
428 |
|
|
-- It is important to introduce the explicit subtype declaration
|
429 |
|
|
-- so that the bounds of the subtype indication are attached to
|
430 |
|
|
-- the tree in case the allocator is inside a generic unit.
|
431 |
|
|
|
432 |
|
|
if Nkind (E) = N_Subtype_Indication then
|
433 |
|
|
|
434 |
|
|
-- A constraint is only allowed for a composite type in Ada
|
435 |
|
|
-- 95. In Ada 83, a constraint is also allowed for an
|
436 |
|
|
-- access-to-composite type, but the constraint is ignored.
|
437 |
|
|
|
438 |
|
|
Find_Type (Subtype_Mark (E));
|
439 |
|
|
Base_Typ := Entity (Subtype_Mark (E));
|
440 |
|
|
|
441 |
|
|
if Is_Elementary_Type (Base_Typ) then
|
442 |
|
|
if not (Ada_Version = Ada_83
|
443 |
|
|
and then Is_Access_Type (Base_Typ))
|
444 |
|
|
then
|
445 |
|
|
Error_Msg_N ("constraint not allowed here", E);
|
446 |
|
|
|
447 |
|
|
if Nkind (Constraint (E)) =
|
448 |
|
|
N_Index_Or_Discriminant_Constraint
|
449 |
|
|
then
|
450 |
|
|
Error_Msg_N -- CODEFIX
|
451 |
|
|
("\if qualified expression was meant, " &
|
452 |
|
|
"use apostrophe", Constraint (E));
|
453 |
|
|
end if;
|
454 |
|
|
end if;
|
455 |
|
|
|
456 |
|
|
-- Get rid of the bogus constraint:
|
457 |
|
|
|
458 |
|
|
Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
|
459 |
|
|
Analyze_Allocator (N);
|
460 |
|
|
return;
|
461 |
|
|
|
462 |
|
|
-- Ada 2005, AI-363: if the designated type has a constrained
|
463 |
|
|
-- partial view, it cannot receive a discriminant constraint,
|
464 |
|
|
-- and the allocated object is unconstrained.
|
465 |
|
|
|
466 |
|
|
elsif Ada_Version >= Ada_05
|
467 |
|
|
and then Has_Constrained_Partial_View (Base_Typ)
|
468 |
|
|
then
|
469 |
|
|
Error_Msg_N
|
470 |
|
|
("constraint no allowed when type " &
|
471 |
|
|
"has a constrained partial view", Constraint (E));
|
472 |
|
|
end if;
|
473 |
|
|
|
474 |
|
|
if Expander_Active then
|
475 |
|
|
Def_Id :=
|
476 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
477 |
|
|
|
478 |
|
|
Insert_Action (E,
|
479 |
|
|
Make_Subtype_Declaration (Loc,
|
480 |
|
|
Defining_Identifier => Def_Id,
|
481 |
|
|
Subtype_Indication => Relocate_Node (E)));
|
482 |
|
|
|
483 |
|
|
if Sav_Errs /= Serious_Errors_Detected
|
484 |
|
|
and then Nkind (Constraint (E)) =
|
485 |
|
|
N_Index_Or_Discriminant_Constraint
|
486 |
|
|
then
|
487 |
|
|
Error_Msg_N -- CODEFIX
|
488 |
|
|
("if qualified expression was meant, " &
|
489 |
|
|
"use apostrophe!", Constraint (E));
|
490 |
|
|
end if;
|
491 |
|
|
|
492 |
|
|
E := New_Occurrence_Of (Def_Id, Loc);
|
493 |
|
|
Rewrite (Expression (N), E);
|
494 |
|
|
end if;
|
495 |
|
|
end if;
|
496 |
|
|
|
497 |
|
|
Type_Id := Process_Subtype (E, N);
|
498 |
|
|
Acc_Type := Create_Itype (E_Allocator_Type, N);
|
499 |
|
|
Set_Etype (Acc_Type, Acc_Type);
|
500 |
|
|
Set_Directly_Designated_Type (Acc_Type, Type_Id);
|
501 |
|
|
Check_Fully_Declared (Type_Id, N);
|
502 |
|
|
|
503 |
|
|
-- Ada 2005 (AI-231): If the designated type is itself an access
|
504 |
|
|
-- type that excludes null, its default initialization will
|
505 |
|
|
-- be a null object, and we can insert an unconditional raise
|
506 |
|
|
-- before the allocator.
|
507 |
|
|
|
508 |
|
|
if Can_Never_Be_Null (Type_Id) then
|
509 |
|
|
declare
|
510 |
|
|
Not_Null_Check : constant Node_Id :=
|
511 |
|
|
Make_Raise_Constraint_Error (Sloc (E),
|
512 |
|
|
Reason => CE_Null_Not_Allowed);
|
513 |
|
|
begin
|
514 |
|
|
if Expander_Active then
|
515 |
|
|
Insert_Action (N, Not_Null_Check);
|
516 |
|
|
Analyze (Not_Null_Check);
|
517 |
|
|
else
|
518 |
|
|
Error_Msg_N ("null value not allowed here?", E);
|
519 |
|
|
end if;
|
520 |
|
|
end;
|
521 |
|
|
end if;
|
522 |
|
|
|
523 |
|
|
-- Check restriction against dynamically allocated protected
|
524 |
|
|
-- objects. Note that when limited aggregates are supported,
|
525 |
|
|
-- a similar test should be applied to an allocator with a
|
526 |
|
|
-- qualified expression ???
|
527 |
|
|
|
528 |
|
|
if Is_Protected_Type (Type_Id) then
|
529 |
|
|
Check_Restriction (No_Protected_Type_Allocators, N);
|
530 |
|
|
end if;
|
531 |
|
|
|
532 |
|
|
-- Check for missing initialization. Skip this check if we already
|
533 |
|
|
-- had errors on analyzing the allocator, since in that case these
|
534 |
|
|
-- are probably cascaded errors.
|
535 |
|
|
|
536 |
|
|
if Is_Indefinite_Subtype (Type_Id)
|
537 |
|
|
and then Serious_Errors_Detected = Sav_Errs
|
538 |
|
|
then
|
539 |
|
|
if Is_Class_Wide_Type (Type_Id) then
|
540 |
|
|
Error_Msg_N
|
541 |
|
|
("initialization required in class-wide allocation", N);
|
542 |
|
|
else
|
543 |
|
|
if Ada_Version < Ada_05
|
544 |
|
|
and then Is_Limited_Type (Type_Id)
|
545 |
|
|
then
|
546 |
|
|
Error_Msg_N ("unconstrained allocation not allowed", N);
|
547 |
|
|
|
548 |
|
|
if Is_Array_Type (Type_Id) then
|
549 |
|
|
Error_Msg_N
|
550 |
|
|
("\constraint with array bounds required", N);
|
551 |
|
|
|
552 |
|
|
elsif Has_Unknown_Discriminants (Type_Id) then
|
553 |
|
|
null;
|
554 |
|
|
|
555 |
|
|
else pragma Assert (Has_Discriminants (Type_Id));
|
556 |
|
|
Error_Msg_N
|
557 |
|
|
("\constraint with discriminant values required", N);
|
558 |
|
|
end if;
|
559 |
|
|
|
560 |
|
|
-- Limited Ada 2005 and general non-limited case
|
561 |
|
|
|
562 |
|
|
else
|
563 |
|
|
Error_Msg_N
|
564 |
|
|
("uninitialized unconstrained allocation not allowed",
|
565 |
|
|
N);
|
566 |
|
|
|
567 |
|
|
if Is_Array_Type (Type_Id) then
|
568 |
|
|
Error_Msg_N
|
569 |
|
|
("\qualified expression or constraint with " &
|
570 |
|
|
"array bounds required", N);
|
571 |
|
|
|
572 |
|
|
elsif Has_Unknown_Discriminants (Type_Id) then
|
573 |
|
|
Error_Msg_N ("\qualified expression required", N);
|
574 |
|
|
|
575 |
|
|
else pragma Assert (Has_Discriminants (Type_Id));
|
576 |
|
|
Error_Msg_N
|
577 |
|
|
("\qualified expression or constraint with " &
|
578 |
|
|
"discriminant values required", N);
|
579 |
|
|
end if;
|
580 |
|
|
end if;
|
581 |
|
|
end if;
|
582 |
|
|
end if;
|
583 |
|
|
end;
|
584 |
|
|
end if;
|
585 |
|
|
|
586 |
|
|
if Is_Abstract_Type (Type_Id) then
|
587 |
|
|
Error_Msg_N ("cannot allocate abstract object", E);
|
588 |
|
|
end if;
|
589 |
|
|
|
590 |
|
|
if Has_Task (Designated_Type (Acc_Type)) then
|
591 |
|
|
Check_Restriction (No_Tasking, N);
|
592 |
|
|
Check_Restriction (Max_Tasks, N);
|
593 |
|
|
Check_Restriction (No_Task_Allocators, N);
|
594 |
|
|
end if;
|
595 |
|
|
|
596 |
|
|
-- If the No_Streams restriction is set, check that the type of the
|
597 |
|
|
-- object is not, and does not contain, any subtype derived from
|
598 |
|
|
-- Ada.Streams.Root_Stream_Type. Note that we guard the call to
|
599 |
|
|
-- Has_Stream just for efficiency reasons. There is no point in
|
600 |
|
|
-- spending time on a Has_Stream check if the restriction is not set.
|
601 |
|
|
|
602 |
|
|
if Restrictions.Set (No_Streams) then
|
603 |
|
|
if Has_Stream (Designated_Type (Acc_Type)) then
|
604 |
|
|
Check_Restriction (No_Streams, N);
|
605 |
|
|
end if;
|
606 |
|
|
end if;
|
607 |
|
|
|
608 |
|
|
Set_Etype (N, Acc_Type);
|
609 |
|
|
|
610 |
|
|
if not Is_Library_Level_Entity (Acc_Type) then
|
611 |
|
|
Check_Restriction (No_Local_Allocators, N);
|
612 |
|
|
end if;
|
613 |
|
|
|
614 |
|
|
if Serious_Errors_Detected > Sav_Errs then
|
615 |
|
|
Set_Error_Posted (N);
|
616 |
|
|
Set_Etype (N, Any_Type);
|
617 |
|
|
end if;
|
618 |
|
|
end Analyze_Allocator;
|
619 |
|
|
|
620 |
|
|
---------------------------
|
621 |
|
|
-- Analyze_Arithmetic_Op --
|
622 |
|
|
---------------------------
|
623 |
|
|
|
624 |
|
|
procedure Analyze_Arithmetic_Op (N : Node_Id) is
|
625 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
626 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
627 |
|
|
Op_Id : Entity_Id;
|
628 |
|
|
|
629 |
|
|
begin
|
630 |
|
|
Candidate_Type := Empty;
|
631 |
|
|
Analyze_Expression (L);
|
632 |
|
|
Analyze_Expression (R);
|
633 |
|
|
|
634 |
|
|
-- If the entity is already set, the node is the instantiation of a
|
635 |
|
|
-- generic node with a non-local reference, or was manufactured by a
|
636 |
|
|
-- call to Make_Op_xxx. In either case the entity is known to be valid,
|
637 |
|
|
-- and we do not need to collect interpretations, instead we just get
|
638 |
|
|
-- the single possible interpretation.
|
639 |
|
|
|
640 |
|
|
Op_Id := Entity (N);
|
641 |
|
|
|
642 |
|
|
if Present (Op_Id) then
|
643 |
|
|
if Ekind (Op_Id) = E_Operator then
|
644 |
|
|
|
645 |
|
|
if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
|
646 |
|
|
and then Treat_Fixed_As_Integer (N)
|
647 |
|
|
then
|
648 |
|
|
null;
|
649 |
|
|
else
|
650 |
|
|
Set_Etype (N, Any_Type);
|
651 |
|
|
Find_Arithmetic_Types (L, R, Op_Id, N);
|
652 |
|
|
end if;
|
653 |
|
|
|
654 |
|
|
else
|
655 |
|
|
Set_Etype (N, Any_Type);
|
656 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
657 |
|
|
end if;
|
658 |
|
|
|
659 |
|
|
-- Entity is not already set, so we do need to collect interpretations
|
660 |
|
|
|
661 |
|
|
else
|
662 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
663 |
|
|
Set_Etype (N, Any_Type);
|
664 |
|
|
|
665 |
|
|
while Present (Op_Id) loop
|
666 |
|
|
if Ekind (Op_Id) = E_Operator
|
667 |
|
|
and then Present (Next_Entity (First_Entity (Op_Id)))
|
668 |
|
|
then
|
669 |
|
|
Find_Arithmetic_Types (L, R, Op_Id, N);
|
670 |
|
|
|
671 |
|
|
-- The following may seem superfluous, because an operator cannot
|
672 |
|
|
-- be generic, but this ignores the cleverness of the author of
|
673 |
|
|
-- ACVC bc1013a.
|
674 |
|
|
|
675 |
|
|
elsif Is_Overloadable (Op_Id) then
|
676 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
677 |
|
|
end if;
|
678 |
|
|
|
679 |
|
|
Op_Id := Homonym (Op_Id);
|
680 |
|
|
end loop;
|
681 |
|
|
end if;
|
682 |
|
|
|
683 |
|
|
Operator_Check (N);
|
684 |
|
|
end Analyze_Arithmetic_Op;
|
685 |
|
|
|
686 |
|
|
------------------
|
687 |
|
|
-- Analyze_Call --
|
688 |
|
|
------------------
|
689 |
|
|
|
690 |
|
|
-- Function, procedure, and entry calls are checked here. The Name in
|
691 |
|
|
-- the call may be overloaded. The actuals have been analyzed and may
|
692 |
|
|
-- themselves be overloaded. On exit from this procedure, the node N
|
693 |
|
|
-- may have zero, one or more interpretations. In the first case an
|
694 |
|
|
-- error message is produced. In the last case, the node is flagged
|
695 |
|
|
-- as overloaded and the interpretations are collected in All_Interp.
|
696 |
|
|
|
697 |
|
|
-- If the name is an Access_To_Subprogram, it cannot be overloaded, but
|
698 |
|
|
-- the type-checking is similar to that of other calls.
|
699 |
|
|
|
700 |
|
|
procedure Analyze_Call (N : Node_Id) is
|
701 |
|
|
Actuals : constant List_Id := Parameter_Associations (N);
|
702 |
|
|
Nam : Node_Id;
|
703 |
|
|
X : Interp_Index;
|
704 |
|
|
It : Interp;
|
705 |
|
|
Nam_Ent : Entity_Id;
|
706 |
|
|
Success : Boolean := False;
|
707 |
|
|
|
708 |
|
|
Deref : Boolean := False;
|
709 |
|
|
-- Flag indicates whether an interpretation of the prefix is a
|
710 |
|
|
-- parameterless call that returns an access_to_subprogram.
|
711 |
|
|
|
712 |
|
|
function Name_Denotes_Function return Boolean;
|
713 |
|
|
-- If the type of the name is an access to subprogram, this may be the
|
714 |
|
|
-- type of a name, or the return type of the function being called. If
|
715 |
|
|
-- the name is not an entity then it can denote a protected function.
|
716 |
|
|
-- Until we distinguish Etype from Return_Type, we must use this routine
|
717 |
|
|
-- to resolve the meaning of the name in the call.
|
718 |
|
|
|
719 |
|
|
procedure No_Interpretation;
|
720 |
|
|
-- Output error message when no valid interpretation exists
|
721 |
|
|
|
722 |
|
|
---------------------------
|
723 |
|
|
-- Name_Denotes_Function --
|
724 |
|
|
---------------------------
|
725 |
|
|
|
726 |
|
|
function Name_Denotes_Function return Boolean is
|
727 |
|
|
begin
|
728 |
|
|
if Is_Entity_Name (Nam) then
|
729 |
|
|
return Ekind (Entity (Nam)) = E_Function;
|
730 |
|
|
|
731 |
|
|
elsif Nkind (Nam) = N_Selected_Component then
|
732 |
|
|
return Ekind (Entity (Selector_Name (Nam))) = E_Function;
|
733 |
|
|
|
734 |
|
|
else
|
735 |
|
|
return False;
|
736 |
|
|
end if;
|
737 |
|
|
end Name_Denotes_Function;
|
738 |
|
|
|
739 |
|
|
-----------------------
|
740 |
|
|
-- No_Interpretation --
|
741 |
|
|
-----------------------
|
742 |
|
|
|
743 |
|
|
procedure No_Interpretation is
|
744 |
|
|
L : constant Boolean := Is_List_Member (N);
|
745 |
|
|
K : constant Node_Kind := Nkind (Parent (N));
|
746 |
|
|
|
747 |
|
|
begin
|
748 |
|
|
-- If the node is in a list whose parent is not an expression then it
|
749 |
|
|
-- must be an attempted procedure call.
|
750 |
|
|
|
751 |
|
|
if L and then K not in N_Subexpr then
|
752 |
|
|
if Ekind (Entity (Nam)) = E_Generic_Procedure then
|
753 |
|
|
Error_Msg_NE
|
754 |
|
|
("must instantiate generic procedure& before call",
|
755 |
|
|
Nam, Entity (Nam));
|
756 |
|
|
else
|
757 |
|
|
Error_Msg_N
|
758 |
|
|
("procedure or entry name expected", Nam);
|
759 |
|
|
end if;
|
760 |
|
|
|
761 |
|
|
-- Check for tasking cases where only an entry call will do
|
762 |
|
|
|
763 |
|
|
elsif not L
|
764 |
|
|
and then Nkind_In (K, N_Entry_Call_Alternative,
|
765 |
|
|
N_Triggering_Alternative)
|
766 |
|
|
then
|
767 |
|
|
Error_Msg_N ("entry name expected", Nam);
|
768 |
|
|
|
769 |
|
|
-- Otherwise give general error message
|
770 |
|
|
|
771 |
|
|
else
|
772 |
|
|
Error_Msg_N ("invalid prefix in call", Nam);
|
773 |
|
|
end if;
|
774 |
|
|
end No_Interpretation;
|
775 |
|
|
|
776 |
|
|
-- Start of processing for Analyze_Call
|
777 |
|
|
|
778 |
|
|
begin
|
779 |
|
|
-- Initialize the type of the result of the call to the error type,
|
780 |
|
|
-- which will be reset if the type is successfully resolved.
|
781 |
|
|
|
782 |
|
|
Set_Etype (N, Any_Type);
|
783 |
|
|
|
784 |
|
|
Nam := Name (N);
|
785 |
|
|
|
786 |
|
|
if not Is_Overloaded (Nam) then
|
787 |
|
|
|
788 |
|
|
-- Only one interpretation to check
|
789 |
|
|
|
790 |
|
|
if Ekind (Etype (Nam)) = E_Subprogram_Type then
|
791 |
|
|
Nam_Ent := Etype (Nam);
|
792 |
|
|
|
793 |
|
|
-- If the prefix is an access_to_subprogram, this may be an indirect
|
794 |
|
|
-- call. This is the case if the name in the call is not an entity
|
795 |
|
|
-- name, or if it is a function name in the context of a procedure
|
796 |
|
|
-- call. In this latter case, we have a call to a parameterless
|
797 |
|
|
-- function that returns a pointer_to_procedure which is the entity
|
798 |
|
|
-- being called. Finally, F (X) may be a call to a parameterless
|
799 |
|
|
-- function that returns a pointer to a function with parameters.
|
800 |
|
|
|
801 |
|
|
elsif Is_Access_Type (Etype (Nam))
|
802 |
|
|
and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
|
803 |
|
|
and then
|
804 |
|
|
(not Name_Denotes_Function
|
805 |
|
|
or else Nkind (N) = N_Procedure_Call_Statement
|
806 |
|
|
or else
|
807 |
|
|
(Nkind (Parent (N)) /= N_Explicit_Dereference
|
808 |
|
|
and then Is_Entity_Name (Nam)
|
809 |
|
|
and then No (First_Formal (Entity (Nam)))
|
810 |
|
|
and then Present (Actuals)))
|
811 |
|
|
then
|
812 |
|
|
Nam_Ent := Designated_Type (Etype (Nam));
|
813 |
|
|
Insert_Explicit_Dereference (Nam);
|
814 |
|
|
|
815 |
|
|
-- Selected component case. Simple entry or protected operation,
|
816 |
|
|
-- where the entry name is given by the selector name.
|
817 |
|
|
|
818 |
|
|
elsif Nkind (Nam) = N_Selected_Component then
|
819 |
|
|
Nam_Ent := Entity (Selector_Name (Nam));
|
820 |
|
|
|
821 |
|
|
if Ekind (Nam_Ent) /= E_Entry
|
822 |
|
|
and then Ekind (Nam_Ent) /= E_Entry_Family
|
823 |
|
|
and then Ekind (Nam_Ent) /= E_Function
|
824 |
|
|
and then Ekind (Nam_Ent) /= E_Procedure
|
825 |
|
|
then
|
826 |
|
|
Error_Msg_N ("name in call is not a callable entity", Nam);
|
827 |
|
|
Set_Etype (N, Any_Type);
|
828 |
|
|
return;
|
829 |
|
|
end if;
|
830 |
|
|
|
831 |
|
|
-- If the name is an Indexed component, it can be a call to a member
|
832 |
|
|
-- of an entry family. The prefix must be a selected component whose
|
833 |
|
|
-- selector is the entry. Analyze_Procedure_Call normalizes several
|
834 |
|
|
-- kinds of call into this form.
|
835 |
|
|
|
836 |
|
|
elsif Nkind (Nam) = N_Indexed_Component then
|
837 |
|
|
if Nkind (Prefix (Nam)) = N_Selected_Component then
|
838 |
|
|
Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
|
839 |
|
|
else
|
840 |
|
|
Error_Msg_N ("name in call is not a callable entity", Nam);
|
841 |
|
|
Set_Etype (N, Any_Type);
|
842 |
|
|
return;
|
843 |
|
|
end if;
|
844 |
|
|
|
845 |
|
|
elsif not Is_Entity_Name (Nam) then
|
846 |
|
|
Error_Msg_N ("name in call is not a callable entity", Nam);
|
847 |
|
|
Set_Etype (N, Any_Type);
|
848 |
|
|
return;
|
849 |
|
|
|
850 |
|
|
else
|
851 |
|
|
Nam_Ent := Entity (Nam);
|
852 |
|
|
|
853 |
|
|
-- If no interpretations, give error message
|
854 |
|
|
|
855 |
|
|
if not Is_Overloadable (Nam_Ent) then
|
856 |
|
|
No_Interpretation;
|
857 |
|
|
return;
|
858 |
|
|
end if;
|
859 |
|
|
end if;
|
860 |
|
|
|
861 |
|
|
-- Operations generated for RACW stub types are called only through
|
862 |
|
|
-- dispatching, and can never be the static interpretation of a call.
|
863 |
|
|
|
864 |
|
|
if Is_RACW_Stub_Type_Operation (Nam_Ent) then
|
865 |
|
|
No_Interpretation;
|
866 |
|
|
return;
|
867 |
|
|
end if;
|
868 |
|
|
|
869 |
|
|
Analyze_One_Call (N, Nam_Ent, True, Success);
|
870 |
|
|
|
871 |
|
|
-- If this is an indirect call, the return type of the access_to
|
872 |
|
|
-- subprogram may be an incomplete type. At the point of the call,
|
873 |
|
|
-- use the full type if available, and at the same time update
|
874 |
|
|
-- the return type of the access_to_subprogram.
|
875 |
|
|
|
876 |
|
|
if Success
|
877 |
|
|
and then Nkind (Nam) = N_Explicit_Dereference
|
878 |
|
|
and then Ekind (Etype (N)) = E_Incomplete_Type
|
879 |
|
|
and then Present (Full_View (Etype (N)))
|
880 |
|
|
then
|
881 |
|
|
Set_Etype (N, Full_View (Etype (N)));
|
882 |
|
|
Set_Etype (Nam_Ent, Etype (N));
|
883 |
|
|
end if;
|
884 |
|
|
|
885 |
|
|
else
|
886 |
|
|
-- An overloaded selected component must denote overloaded operations
|
887 |
|
|
-- of a concurrent type. The interpretations are attached to the
|
888 |
|
|
-- simple name of those operations.
|
889 |
|
|
|
890 |
|
|
if Nkind (Nam) = N_Selected_Component then
|
891 |
|
|
Nam := Selector_Name (Nam);
|
892 |
|
|
end if;
|
893 |
|
|
|
894 |
|
|
Get_First_Interp (Nam, X, It);
|
895 |
|
|
|
896 |
|
|
while Present (It.Nam) loop
|
897 |
|
|
Nam_Ent := It.Nam;
|
898 |
|
|
Deref := False;
|
899 |
|
|
|
900 |
|
|
-- Name may be call that returns an access to subprogram, or more
|
901 |
|
|
-- generally an overloaded expression one of whose interpretations
|
902 |
|
|
-- yields an access to subprogram. If the name is an entity, we
|
903 |
|
|
-- do not dereference, because the node is a call that returns
|
904 |
|
|
-- the access type: note difference between f(x), where the call
|
905 |
|
|
-- may return an access subprogram type, and f(x)(y), where the
|
906 |
|
|
-- type returned by the call to f is implicitly dereferenced to
|
907 |
|
|
-- analyze the outer call.
|
908 |
|
|
|
909 |
|
|
if Is_Access_Type (Nam_Ent) then
|
910 |
|
|
Nam_Ent := Designated_Type (Nam_Ent);
|
911 |
|
|
|
912 |
|
|
elsif Is_Access_Type (Etype (Nam_Ent))
|
913 |
|
|
and then
|
914 |
|
|
(not Is_Entity_Name (Nam)
|
915 |
|
|
or else Nkind (N) = N_Procedure_Call_Statement)
|
916 |
|
|
and then Ekind (Designated_Type (Etype (Nam_Ent)))
|
917 |
|
|
= E_Subprogram_Type
|
918 |
|
|
then
|
919 |
|
|
Nam_Ent := Designated_Type (Etype (Nam_Ent));
|
920 |
|
|
|
921 |
|
|
if Is_Entity_Name (Nam) then
|
922 |
|
|
Deref := True;
|
923 |
|
|
end if;
|
924 |
|
|
end if;
|
925 |
|
|
|
926 |
|
|
Analyze_One_Call (N, Nam_Ent, False, Success);
|
927 |
|
|
|
928 |
|
|
-- If the interpretation succeeds, mark the proper type of the
|
929 |
|
|
-- prefix (any valid candidate will do). If not, remove the
|
930 |
|
|
-- candidate interpretation. This only needs to be done for
|
931 |
|
|
-- overloaded protected operations, for other entities disambi-
|
932 |
|
|
-- guation is done directly in Resolve.
|
933 |
|
|
|
934 |
|
|
if Success then
|
935 |
|
|
if Deref
|
936 |
|
|
and then Nkind (Parent (N)) /= N_Explicit_Dereference
|
937 |
|
|
then
|
938 |
|
|
Set_Entity (Nam, It.Nam);
|
939 |
|
|
Insert_Explicit_Dereference (Nam);
|
940 |
|
|
Set_Etype (Nam, Nam_Ent);
|
941 |
|
|
|
942 |
|
|
else
|
943 |
|
|
Set_Etype (Nam, It.Typ);
|
944 |
|
|
end if;
|
945 |
|
|
|
946 |
|
|
elsif Nkind_In (Name (N), N_Selected_Component,
|
947 |
|
|
N_Function_Call)
|
948 |
|
|
then
|
949 |
|
|
Remove_Interp (X);
|
950 |
|
|
end if;
|
951 |
|
|
|
952 |
|
|
Get_Next_Interp (X, It);
|
953 |
|
|
end loop;
|
954 |
|
|
|
955 |
|
|
-- If the name is the result of a function call, it can only
|
956 |
|
|
-- be a call to a function returning an access to subprogram.
|
957 |
|
|
-- Insert explicit dereference.
|
958 |
|
|
|
959 |
|
|
if Nkind (Nam) = N_Function_Call then
|
960 |
|
|
Insert_Explicit_Dereference (Nam);
|
961 |
|
|
end if;
|
962 |
|
|
|
963 |
|
|
if Etype (N) = Any_Type then
|
964 |
|
|
|
965 |
|
|
-- None of the interpretations is compatible with the actuals
|
966 |
|
|
|
967 |
|
|
Diagnose_Call (N, Nam);
|
968 |
|
|
|
969 |
|
|
-- Special checks for uninstantiated put routines
|
970 |
|
|
|
971 |
|
|
if Nkind (N) = N_Procedure_Call_Statement
|
972 |
|
|
and then Is_Entity_Name (Nam)
|
973 |
|
|
and then Chars (Nam) = Name_Put
|
974 |
|
|
and then List_Length (Actuals) = 1
|
975 |
|
|
then
|
976 |
|
|
declare
|
977 |
|
|
Arg : constant Node_Id := First (Actuals);
|
978 |
|
|
Typ : Entity_Id;
|
979 |
|
|
|
980 |
|
|
begin
|
981 |
|
|
if Nkind (Arg) = N_Parameter_Association then
|
982 |
|
|
Typ := Etype (Explicit_Actual_Parameter (Arg));
|
983 |
|
|
else
|
984 |
|
|
Typ := Etype (Arg);
|
985 |
|
|
end if;
|
986 |
|
|
|
987 |
|
|
if Is_Signed_Integer_Type (Typ) then
|
988 |
|
|
Error_Msg_N
|
989 |
|
|
("possible missing instantiation of " &
|
990 |
|
|
"'Text_'I'O.'Integer_'I'O!", Nam);
|
991 |
|
|
|
992 |
|
|
elsif Is_Modular_Integer_Type (Typ) then
|
993 |
|
|
Error_Msg_N
|
994 |
|
|
("possible missing instantiation of " &
|
995 |
|
|
"'Text_'I'O.'Modular_'I'O!", Nam);
|
996 |
|
|
|
997 |
|
|
elsif Is_Floating_Point_Type (Typ) then
|
998 |
|
|
Error_Msg_N
|
999 |
|
|
("possible missing instantiation of " &
|
1000 |
|
|
"'Text_'I'O.'Float_'I'O!", Nam);
|
1001 |
|
|
|
1002 |
|
|
elsif Is_Ordinary_Fixed_Point_Type (Typ) then
|
1003 |
|
|
Error_Msg_N
|
1004 |
|
|
("possible missing instantiation of " &
|
1005 |
|
|
"'Text_'I'O.'Fixed_'I'O!", Nam);
|
1006 |
|
|
|
1007 |
|
|
elsif Is_Decimal_Fixed_Point_Type (Typ) then
|
1008 |
|
|
Error_Msg_N
|
1009 |
|
|
("possible missing instantiation of " &
|
1010 |
|
|
"'Text_'I'O.'Decimal_'I'O!", Nam);
|
1011 |
|
|
|
1012 |
|
|
elsif Is_Enumeration_Type (Typ) then
|
1013 |
|
|
Error_Msg_N
|
1014 |
|
|
("possible missing instantiation of " &
|
1015 |
|
|
"'Text_'I'O.'Enumeration_'I'O!", Nam);
|
1016 |
|
|
end if;
|
1017 |
|
|
end;
|
1018 |
|
|
end if;
|
1019 |
|
|
|
1020 |
|
|
elsif not Is_Overloaded (N)
|
1021 |
|
|
and then Is_Entity_Name (Nam)
|
1022 |
|
|
then
|
1023 |
|
|
-- Resolution yields a single interpretation. Verify that the
|
1024 |
|
|
-- reference has capitalization consistent with the declaration.
|
1025 |
|
|
|
1026 |
|
|
Set_Entity_With_Style_Check (Nam, Entity (Nam));
|
1027 |
|
|
Generate_Reference (Entity (Nam), Nam);
|
1028 |
|
|
|
1029 |
|
|
Set_Etype (Nam, Etype (Entity (Nam)));
|
1030 |
|
|
else
|
1031 |
|
|
Remove_Abstract_Operations (N);
|
1032 |
|
|
end if;
|
1033 |
|
|
|
1034 |
|
|
End_Interp_List;
|
1035 |
|
|
end if;
|
1036 |
|
|
end Analyze_Call;
|
1037 |
|
|
|
1038 |
|
|
---------------------------
|
1039 |
|
|
-- Analyze_Comparison_Op --
|
1040 |
|
|
---------------------------
|
1041 |
|
|
|
1042 |
|
|
procedure Analyze_Comparison_Op (N : Node_Id) is
|
1043 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
1044 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
1045 |
|
|
Op_Id : Entity_Id := Entity (N);
|
1046 |
|
|
|
1047 |
|
|
begin
|
1048 |
|
|
Set_Etype (N, Any_Type);
|
1049 |
|
|
Candidate_Type := Empty;
|
1050 |
|
|
|
1051 |
|
|
Analyze_Expression (L);
|
1052 |
|
|
Analyze_Expression (R);
|
1053 |
|
|
|
1054 |
|
|
if Present (Op_Id) then
|
1055 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1056 |
|
|
Find_Comparison_Types (L, R, Op_Id, N);
|
1057 |
|
|
else
|
1058 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
1059 |
|
|
end if;
|
1060 |
|
|
|
1061 |
|
|
if Is_Overloaded (L) then
|
1062 |
|
|
Set_Etype (L, Intersect_Types (L, R));
|
1063 |
|
|
end if;
|
1064 |
|
|
|
1065 |
|
|
else
|
1066 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
1067 |
|
|
while Present (Op_Id) loop
|
1068 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1069 |
|
|
Find_Comparison_Types (L, R, Op_Id, N);
|
1070 |
|
|
else
|
1071 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
1072 |
|
|
end if;
|
1073 |
|
|
|
1074 |
|
|
Op_Id := Homonym (Op_Id);
|
1075 |
|
|
end loop;
|
1076 |
|
|
end if;
|
1077 |
|
|
|
1078 |
|
|
Operator_Check (N);
|
1079 |
|
|
end Analyze_Comparison_Op;
|
1080 |
|
|
|
1081 |
|
|
---------------------------
|
1082 |
|
|
-- Analyze_Concatenation --
|
1083 |
|
|
---------------------------
|
1084 |
|
|
|
1085 |
|
|
procedure Analyze_Concatenation (N : Node_Id) is
|
1086 |
|
|
|
1087 |
|
|
-- We wish to avoid deep recursion, because concatenations are often
|
1088 |
|
|
-- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
|
1089 |
|
|
-- operands nonrecursively until we find something that is not a
|
1090 |
|
|
-- concatenation (A in this case), or has already been analyzed. We
|
1091 |
|
|
-- analyze that, and then walk back up the tree following Parent
|
1092 |
|
|
-- pointers, calling Analyze_Concatenation_Rest to do the rest of the
|
1093 |
|
|
-- work at each level. The Parent pointers allow us to avoid recursion,
|
1094 |
|
|
-- and thus avoid running out of memory.
|
1095 |
|
|
|
1096 |
|
|
NN : Node_Id := N;
|
1097 |
|
|
L : Node_Id;
|
1098 |
|
|
|
1099 |
|
|
begin
|
1100 |
|
|
Candidate_Type := Empty;
|
1101 |
|
|
|
1102 |
|
|
-- The following code is equivalent to:
|
1103 |
|
|
|
1104 |
|
|
-- Set_Etype (N, Any_Type);
|
1105 |
|
|
-- Analyze_Expression (Left_Opnd (N));
|
1106 |
|
|
-- Analyze_Concatenation_Rest (N);
|
1107 |
|
|
|
1108 |
|
|
-- where the Analyze_Expression call recurses back here if the left
|
1109 |
|
|
-- operand is a concatenation.
|
1110 |
|
|
|
1111 |
|
|
-- Walk down left operands
|
1112 |
|
|
|
1113 |
|
|
loop
|
1114 |
|
|
Set_Etype (NN, Any_Type);
|
1115 |
|
|
L := Left_Opnd (NN);
|
1116 |
|
|
exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
|
1117 |
|
|
NN := L;
|
1118 |
|
|
end loop;
|
1119 |
|
|
|
1120 |
|
|
-- Now (given the above example) NN is A&B and L is A
|
1121 |
|
|
|
1122 |
|
|
-- First analyze L ...
|
1123 |
|
|
|
1124 |
|
|
Analyze_Expression (L);
|
1125 |
|
|
|
1126 |
|
|
-- ... then walk NN back up until we reach N (where we started), calling
|
1127 |
|
|
-- Analyze_Concatenation_Rest along the way.
|
1128 |
|
|
|
1129 |
|
|
loop
|
1130 |
|
|
Analyze_Concatenation_Rest (NN);
|
1131 |
|
|
exit when NN = N;
|
1132 |
|
|
NN := Parent (NN);
|
1133 |
|
|
end loop;
|
1134 |
|
|
end Analyze_Concatenation;
|
1135 |
|
|
|
1136 |
|
|
--------------------------------
|
1137 |
|
|
-- Analyze_Concatenation_Rest --
|
1138 |
|
|
--------------------------------
|
1139 |
|
|
|
1140 |
|
|
-- If the only one-dimensional array type in scope is String,
|
1141 |
|
|
-- this is the resulting type of the operation. Otherwise there
|
1142 |
|
|
-- will be a concatenation operation defined for each user-defined
|
1143 |
|
|
-- one-dimensional array.
|
1144 |
|
|
|
1145 |
|
|
procedure Analyze_Concatenation_Rest (N : Node_Id) is
|
1146 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
1147 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
1148 |
|
|
Op_Id : Entity_Id := Entity (N);
|
1149 |
|
|
LT : Entity_Id;
|
1150 |
|
|
RT : Entity_Id;
|
1151 |
|
|
|
1152 |
|
|
begin
|
1153 |
|
|
Analyze_Expression (R);
|
1154 |
|
|
|
1155 |
|
|
-- If the entity is present, the node appears in an instance, and
|
1156 |
|
|
-- denotes a predefined concatenation operation. The resulting type is
|
1157 |
|
|
-- obtained from the arguments when possible. If the arguments are
|
1158 |
|
|
-- aggregates, the array type and the concatenation type must be
|
1159 |
|
|
-- visible.
|
1160 |
|
|
|
1161 |
|
|
if Present (Op_Id) then
|
1162 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1163 |
|
|
|
1164 |
|
|
LT := Base_Type (Etype (L));
|
1165 |
|
|
RT := Base_Type (Etype (R));
|
1166 |
|
|
|
1167 |
|
|
if Is_Array_Type (LT)
|
1168 |
|
|
and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
|
1169 |
|
|
then
|
1170 |
|
|
Add_One_Interp (N, Op_Id, LT);
|
1171 |
|
|
|
1172 |
|
|
elsif Is_Array_Type (RT)
|
1173 |
|
|
and then LT = Base_Type (Component_Type (RT))
|
1174 |
|
|
then
|
1175 |
|
|
Add_One_Interp (N, Op_Id, RT);
|
1176 |
|
|
|
1177 |
|
|
-- If one operand is a string type or a user-defined array type,
|
1178 |
|
|
-- and the other is a literal, result is of the specific type.
|
1179 |
|
|
|
1180 |
|
|
elsif
|
1181 |
|
|
(Root_Type (LT) = Standard_String
|
1182 |
|
|
or else Scope (LT) /= Standard_Standard)
|
1183 |
|
|
and then Etype (R) = Any_String
|
1184 |
|
|
then
|
1185 |
|
|
Add_One_Interp (N, Op_Id, LT);
|
1186 |
|
|
|
1187 |
|
|
elsif
|
1188 |
|
|
(Root_Type (RT) = Standard_String
|
1189 |
|
|
or else Scope (RT) /= Standard_Standard)
|
1190 |
|
|
and then Etype (L) = Any_String
|
1191 |
|
|
then
|
1192 |
|
|
Add_One_Interp (N, Op_Id, RT);
|
1193 |
|
|
|
1194 |
|
|
elsif not Is_Generic_Type (Etype (Op_Id)) then
|
1195 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
1196 |
|
|
|
1197 |
|
|
else
|
1198 |
|
|
-- Type and its operations must be visible
|
1199 |
|
|
|
1200 |
|
|
Set_Entity (N, Empty);
|
1201 |
|
|
Analyze_Concatenation (N);
|
1202 |
|
|
end if;
|
1203 |
|
|
|
1204 |
|
|
else
|
1205 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
1206 |
|
|
end if;
|
1207 |
|
|
|
1208 |
|
|
else
|
1209 |
|
|
Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
|
1210 |
|
|
while Present (Op_Id) loop
|
1211 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1212 |
|
|
|
1213 |
|
|
-- Do not consider operators declared in dead code, they can
|
1214 |
|
|
-- not be part of the resolution.
|
1215 |
|
|
|
1216 |
|
|
if Is_Eliminated (Op_Id) then
|
1217 |
|
|
null;
|
1218 |
|
|
else
|
1219 |
|
|
Find_Concatenation_Types (L, R, Op_Id, N);
|
1220 |
|
|
end if;
|
1221 |
|
|
|
1222 |
|
|
else
|
1223 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
1224 |
|
|
end if;
|
1225 |
|
|
|
1226 |
|
|
Op_Id := Homonym (Op_Id);
|
1227 |
|
|
end loop;
|
1228 |
|
|
end if;
|
1229 |
|
|
|
1230 |
|
|
Operator_Check (N);
|
1231 |
|
|
end Analyze_Concatenation_Rest;
|
1232 |
|
|
|
1233 |
|
|
------------------------------------
|
1234 |
|
|
-- Analyze_Conditional_Expression --
|
1235 |
|
|
------------------------------------
|
1236 |
|
|
|
1237 |
|
|
procedure Analyze_Conditional_Expression (N : Node_Id) is
|
1238 |
|
|
Condition : constant Node_Id := First (Expressions (N));
|
1239 |
|
|
Then_Expr : constant Node_Id := Next (Condition);
|
1240 |
|
|
Else_Expr : constant Node_Id := Next (Then_Expr);
|
1241 |
|
|
|
1242 |
|
|
begin
|
1243 |
|
|
if Comes_From_Source (N) then
|
1244 |
|
|
Check_Compiler_Unit (N);
|
1245 |
|
|
end if;
|
1246 |
|
|
|
1247 |
|
|
Analyze_Expression (Condition);
|
1248 |
|
|
Analyze_Expression (Then_Expr);
|
1249 |
|
|
|
1250 |
|
|
if Present (Else_Expr) then
|
1251 |
|
|
Analyze_Expression (Else_Expr);
|
1252 |
|
|
end if;
|
1253 |
|
|
|
1254 |
|
|
if not Is_Overloaded (Then_Expr) then
|
1255 |
|
|
Set_Etype (N, Etype (Then_Expr));
|
1256 |
|
|
else
|
1257 |
|
|
declare
|
1258 |
|
|
I : Interp_Index;
|
1259 |
|
|
It : Interp;
|
1260 |
|
|
|
1261 |
|
|
begin
|
1262 |
|
|
Set_Etype (N, Any_Type);
|
1263 |
|
|
Get_First_Interp (Then_Expr, I, It);
|
1264 |
|
|
while Present (It.Nam) loop
|
1265 |
|
|
if Has_Compatible_Type (Else_Expr, It.Typ) then
|
1266 |
|
|
Add_One_Interp (N, It.Typ, It.Typ);
|
1267 |
|
|
end if;
|
1268 |
|
|
|
1269 |
|
|
Get_Next_Interp (I, It);
|
1270 |
|
|
end loop;
|
1271 |
|
|
end;
|
1272 |
|
|
end if;
|
1273 |
|
|
end Analyze_Conditional_Expression;
|
1274 |
|
|
|
1275 |
|
|
-------------------------
|
1276 |
|
|
-- Analyze_Equality_Op --
|
1277 |
|
|
-------------------------
|
1278 |
|
|
|
1279 |
|
|
procedure Analyze_Equality_Op (N : Node_Id) is
|
1280 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1281 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
1282 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
1283 |
|
|
Op_Id : Entity_Id;
|
1284 |
|
|
|
1285 |
|
|
begin
|
1286 |
|
|
Set_Etype (N, Any_Type);
|
1287 |
|
|
Candidate_Type := Empty;
|
1288 |
|
|
|
1289 |
|
|
Analyze_Expression (L);
|
1290 |
|
|
Analyze_Expression (R);
|
1291 |
|
|
|
1292 |
|
|
-- If the entity is set, the node is a generic instance with a non-local
|
1293 |
|
|
-- reference to the predefined operator or to a user-defined function.
|
1294 |
|
|
-- It can also be an inequality that is expanded into the negation of a
|
1295 |
|
|
-- call to a user-defined equality operator.
|
1296 |
|
|
|
1297 |
|
|
-- For the predefined case, the result is Boolean, regardless of the
|
1298 |
|
|
-- type of the operands. The operands may even be limited, if they are
|
1299 |
|
|
-- generic actuals. If they are overloaded, label the left argument with
|
1300 |
|
|
-- the common type that must be present, or with the type of the formal
|
1301 |
|
|
-- of the user-defined function.
|
1302 |
|
|
|
1303 |
|
|
if Present (Entity (N)) then
|
1304 |
|
|
Op_Id := Entity (N);
|
1305 |
|
|
|
1306 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1307 |
|
|
Add_One_Interp (N, Op_Id, Standard_Boolean);
|
1308 |
|
|
else
|
1309 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
1310 |
|
|
end if;
|
1311 |
|
|
|
1312 |
|
|
if Is_Overloaded (L) then
|
1313 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1314 |
|
|
Set_Etype (L, Intersect_Types (L, R));
|
1315 |
|
|
else
|
1316 |
|
|
Set_Etype (L, Etype (First_Formal (Op_Id)));
|
1317 |
|
|
end if;
|
1318 |
|
|
end if;
|
1319 |
|
|
|
1320 |
|
|
else
|
1321 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
1322 |
|
|
while Present (Op_Id) loop
|
1323 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1324 |
|
|
Find_Equality_Types (L, R, Op_Id, N);
|
1325 |
|
|
else
|
1326 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
1327 |
|
|
end if;
|
1328 |
|
|
|
1329 |
|
|
Op_Id := Homonym (Op_Id);
|
1330 |
|
|
end loop;
|
1331 |
|
|
end if;
|
1332 |
|
|
|
1333 |
|
|
-- If there was no match, and the operator is inequality, this may
|
1334 |
|
|
-- be a case where inequality has not been made explicit, as for
|
1335 |
|
|
-- tagged types. Analyze the node as the negation of an equality
|
1336 |
|
|
-- operation. This cannot be done earlier, because before analysis
|
1337 |
|
|
-- we cannot rule out the presence of an explicit inequality.
|
1338 |
|
|
|
1339 |
|
|
if Etype (N) = Any_Type
|
1340 |
|
|
and then Nkind (N) = N_Op_Ne
|
1341 |
|
|
then
|
1342 |
|
|
Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
|
1343 |
|
|
while Present (Op_Id) loop
|
1344 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1345 |
|
|
Find_Equality_Types (L, R, Op_Id, N);
|
1346 |
|
|
else
|
1347 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
1348 |
|
|
end if;
|
1349 |
|
|
|
1350 |
|
|
Op_Id := Homonym (Op_Id);
|
1351 |
|
|
end loop;
|
1352 |
|
|
|
1353 |
|
|
if Etype (N) /= Any_Type then
|
1354 |
|
|
Op_Id := Entity (N);
|
1355 |
|
|
|
1356 |
|
|
Rewrite (N,
|
1357 |
|
|
Make_Op_Not (Loc,
|
1358 |
|
|
Right_Opnd =>
|
1359 |
|
|
Make_Op_Eq (Loc,
|
1360 |
|
|
Left_Opnd => Left_Opnd (N),
|
1361 |
|
|
Right_Opnd => Right_Opnd (N))));
|
1362 |
|
|
|
1363 |
|
|
Set_Entity (Right_Opnd (N), Op_Id);
|
1364 |
|
|
Analyze (N);
|
1365 |
|
|
end if;
|
1366 |
|
|
end if;
|
1367 |
|
|
|
1368 |
|
|
Operator_Check (N);
|
1369 |
|
|
end Analyze_Equality_Op;
|
1370 |
|
|
|
1371 |
|
|
----------------------------------
|
1372 |
|
|
-- Analyze_Explicit_Dereference --
|
1373 |
|
|
----------------------------------
|
1374 |
|
|
|
1375 |
|
|
procedure Analyze_Explicit_Dereference (N : Node_Id) is
|
1376 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1377 |
|
|
P : constant Node_Id := Prefix (N);
|
1378 |
|
|
T : Entity_Id;
|
1379 |
|
|
I : Interp_Index;
|
1380 |
|
|
It : Interp;
|
1381 |
|
|
New_N : Node_Id;
|
1382 |
|
|
|
1383 |
|
|
function Is_Function_Type return Boolean;
|
1384 |
|
|
-- Check whether node may be interpreted as an implicit function call
|
1385 |
|
|
|
1386 |
|
|
----------------------
|
1387 |
|
|
-- Is_Function_Type --
|
1388 |
|
|
----------------------
|
1389 |
|
|
|
1390 |
|
|
function Is_Function_Type return Boolean is
|
1391 |
|
|
I : Interp_Index;
|
1392 |
|
|
It : Interp;
|
1393 |
|
|
|
1394 |
|
|
begin
|
1395 |
|
|
if not Is_Overloaded (N) then
|
1396 |
|
|
return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
|
1397 |
|
|
and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
|
1398 |
|
|
|
1399 |
|
|
else
|
1400 |
|
|
Get_First_Interp (N, I, It);
|
1401 |
|
|
while Present (It.Nam) loop
|
1402 |
|
|
if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
|
1403 |
|
|
or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
|
1404 |
|
|
then
|
1405 |
|
|
return False;
|
1406 |
|
|
end if;
|
1407 |
|
|
|
1408 |
|
|
Get_Next_Interp (I, It);
|
1409 |
|
|
end loop;
|
1410 |
|
|
|
1411 |
|
|
return True;
|
1412 |
|
|
end if;
|
1413 |
|
|
end Is_Function_Type;
|
1414 |
|
|
|
1415 |
|
|
-- Start of processing for Analyze_Explicit_Dereference
|
1416 |
|
|
|
1417 |
|
|
begin
|
1418 |
|
|
Analyze (P);
|
1419 |
|
|
Set_Etype (N, Any_Type);
|
1420 |
|
|
|
1421 |
|
|
-- Test for remote access to subprogram type, and if so return
|
1422 |
|
|
-- after rewriting the original tree.
|
1423 |
|
|
|
1424 |
|
|
if Remote_AST_E_Dereference (P) then
|
1425 |
|
|
return;
|
1426 |
|
|
end if;
|
1427 |
|
|
|
1428 |
|
|
-- Normal processing for other than remote access to subprogram type
|
1429 |
|
|
|
1430 |
|
|
if not Is_Overloaded (P) then
|
1431 |
|
|
if Is_Access_Type (Etype (P)) then
|
1432 |
|
|
|
1433 |
|
|
-- Set the Etype. We need to go through Is_For_Access_Subtypes to
|
1434 |
|
|
-- avoid other problems caused by the Private_Subtype and it is
|
1435 |
|
|
-- safe to go to the Base_Type because this is the same as
|
1436 |
|
|
-- converting the access value to its Base_Type.
|
1437 |
|
|
|
1438 |
|
|
declare
|
1439 |
|
|
DT : Entity_Id := Designated_Type (Etype (P));
|
1440 |
|
|
|
1441 |
|
|
begin
|
1442 |
|
|
if Ekind (DT) = E_Private_Subtype
|
1443 |
|
|
and then Is_For_Access_Subtype (DT)
|
1444 |
|
|
then
|
1445 |
|
|
DT := Base_Type (DT);
|
1446 |
|
|
end if;
|
1447 |
|
|
|
1448 |
|
|
-- An explicit dereference is a legal occurrence of an
|
1449 |
|
|
-- incomplete type imported through a limited_with clause,
|
1450 |
|
|
-- if the full view is visible.
|
1451 |
|
|
|
1452 |
|
|
if From_With_Type (DT)
|
1453 |
|
|
and then not From_With_Type (Scope (DT))
|
1454 |
|
|
and then
|
1455 |
|
|
(Is_Immediately_Visible (Scope (DT))
|
1456 |
|
|
or else
|
1457 |
|
|
(Is_Child_Unit (Scope (DT))
|
1458 |
|
|
and then Is_Visible_Child_Unit (Scope (DT))))
|
1459 |
|
|
then
|
1460 |
|
|
Set_Etype (N, Available_View (DT));
|
1461 |
|
|
|
1462 |
|
|
else
|
1463 |
|
|
Set_Etype (N, DT);
|
1464 |
|
|
end if;
|
1465 |
|
|
end;
|
1466 |
|
|
|
1467 |
|
|
elsif Etype (P) /= Any_Type then
|
1468 |
|
|
Error_Msg_N ("prefix of dereference must be an access type", N);
|
1469 |
|
|
return;
|
1470 |
|
|
end if;
|
1471 |
|
|
|
1472 |
|
|
else
|
1473 |
|
|
Get_First_Interp (P, I, It);
|
1474 |
|
|
while Present (It.Nam) loop
|
1475 |
|
|
T := It.Typ;
|
1476 |
|
|
|
1477 |
|
|
if Is_Access_Type (T) then
|
1478 |
|
|
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
|
1479 |
|
|
end if;
|
1480 |
|
|
|
1481 |
|
|
Get_Next_Interp (I, It);
|
1482 |
|
|
end loop;
|
1483 |
|
|
|
1484 |
|
|
-- Error if no interpretation of the prefix has an access type
|
1485 |
|
|
|
1486 |
|
|
if Etype (N) = Any_Type then
|
1487 |
|
|
Error_Msg_N
|
1488 |
|
|
("access type required in prefix of explicit dereference", P);
|
1489 |
|
|
Set_Etype (N, Any_Type);
|
1490 |
|
|
return;
|
1491 |
|
|
end if;
|
1492 |
|
|
end if;
|
1493 |
|
|
|
1494 |
|
|
if Is_Function_Type
|
1495 |
|
|
and then Nkind (Parent (N)) /= N_Indexed_Component
|
1496 |
|
|
|
1497 |
|
|
and then (Nkind (Parent (N)) /= N_Function_Call
|
1498 |
|
|
or else N /= Name (Parent (N)))
|
1499 |
|
|
|
1500 |
|
|
and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
|
1501 |
|
|
or else N /= Name (Parent (N)))
|
1502 |
|
|
|
1503 |
|
|
and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
|
1504 |
|
|
and then (Nkind (Parent (N)) /= N_Attribute_Reference
|
1505 |
|
|
or else
|
1506 |
|
|
(Attribute_Name (Parent (N)) /= Name_Address
|
1507 |
|
|
and then
|
1508 |
|
|
Attribute_Name (Parent (N)) /= Name_Access))
|
1509 |
|
|
then
|
1510 |
|
|
-- Name is a function call with no actuals, in a context that
|
1511 |
|
|
-- requires deproceduring (including as an actual in an enclosing
|
1512 |
|
|
-- function or procedure call). There are some pathological cases
|
1513 |
|
|
-- where the prefix might include functions that return access to
|
1514 |
|
|
-- subprograms and others that return a regular type. Disambiguation
|
1515 |
|
|
-- of those has to take place in Resolve.
|
1516 |
|
|
|
1517 |
|
|
New_N :=
|
1518 |
|
|
Make_Function_Call (Loc,
|
1519 |
|
|
Name => Make_Explicit_Dereference (Loc, P),
|
1520 |
|
|
Parameter_Associations => New_List);
|
1521 |
|
|
|
1522 |
|
|
-- If the prefix is overloaded, remove operations that have formals,
|
1523 |
|
|
-- we know that this is a parameterless call.
|
1524 |
|
|
|
1525 |
|
|
if Is_Overloaded (P) then
|
1526 |
|
|
Get_First_Interp (P, I, It);
|
1527 |
|
|
while Present (It.Nam) loop
|
1528 |
|
|
T := It.Typ;
|
1529 |
|
|
|
1530 |
|
|
if No (First_Formal (Base_Type (Designated_Type (T)))) then
|
1531 |
|
|
Set_Etype (P, T);
|
1532 |
|
|
else
|
1533 |
|
|
Remove_Interp (I);
|
1534 |
|
|
end if;
|
1535 |
|
|
|
1536 |
|
|
Get_Next_Interp (I, It);
|
1537 |
|
|
end loop;
|
1538 |
|
|
end if;
|
1539 |
|
|
|
1540 |
|
|
Rewrite (N, New_N);
|
1541 |
|
|
Analyze (N);
|
1542 |
|
|
|
1543 |
|
|
elsif not Is_Function_Type
|
1544 |
|
|
and then Is_Overloaded (N)
|
1545 |
|
|
then
|
1546 |
|
|
-- The prefix may include access to subprograms and other access
|
1547 |
|
|
-- types. If the context selects the interpretation that is a
|
1548 |
|
|
-- function call (not a procedure call) we cannot rewrite the node
|
1549 |
|
|
-- yet, but we include the result of the call interpretation.
|
1550 |
|
|
|
1551 |
|
|
Get_First_Interp (N, I, It);
|
1552 |
|
|
while Present (It.Nam) loop
|
1553 |
|
|
if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
|
1554 |
|
|
and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
|
1555 |
|
|
and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
|
1556 |
|
|
then
|
1557 |
|
|
Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
|
1558 |
|
|
end if;
|
1559 |
|
|
|
1560 |
|
|
Get_Next_Interp (I, It);
|
1561 |
|
|
end loop;
|
1562 |
|
|
end if;
|
1563 |
|
|
|
1564 |
|
|
-- A value of remote access-to-class-wide must not be dereferenced
|
1565 |
|
|
-- (RM E.2.2(16)).
|
1566 |
|
|
|
1567 |
|
|
Validate_Remote_Access_To_Class_Wide_Type (N);
|
1568 |
|
|
end Analyze_Explicit_Dereference;
|
1569 |
|
|
|
1570 |
|
|
------------------------
|
1571 |
|
|
-- Analyze_Expression --
|
1572 |
|
|
------------------------
|
1573 |
|
|
|
1574 |
|
|
procedure Analyze_Expression (N : Node_Id) is
|
1575 |
|
|
begin
|
1576 |
|
|
Analyze (N);
|
1577 |
|
|
Check_Parameterless_Call (N);
|
1578 |
|
|
end Analyze_Expression;
|
1579 |
|
|
|
1580 |
|
|
------------------------------------
|
1581 |
|
|
-- Analyze_Indexed_Component_Form --
|
1582 |
|
|
------------------------------------
|
1583 |
|
|
|
1584 |
|
|
procedure Analyze_Indexed_Component_Form (N : Node_Id) is
|
1585 |
|
|
P : constant Node_Id := Prefix (N);
|
1586 |
|
|
Exprs : constant List_Id := Expressions (N);
|
1587 |
|
|
Exp : Node_Id;
|
1588 |
|
|
P_T : Entity_Id;
|
1589 |
|
|
E : Node_Id;
|
1590 |
|
|
U_N : Entity_Id;
|
1591 |
|
|
|
1592 |
|
|
procedure Process_Function_Call;
|
1593 |
|
|
-- Prefix in indexed component form is an overloadable entity,
|
1594 |
|
|
-- so the node is a function call. Reformat it as such.
|
1595 |
|
|
|
1596 |
|
|
procedure Process_Indexed_Component;
|
1597 |
|
|
-- Prefix in indexed component form is actually an indexed component.
|
1598 |
|
|
-- This routine processes it, knowing that the prefix is already
|
1599 |
|
|
-- resolved.
|
1600 |
|
|
|
1601 |
|
|
procedure Process_Indexed_Component_Or_Slice;
|
1602 |
|
|
-- An indexed component with a single index may designate a slice if
|
1603 |
|
|
-- the index is a subtype mark. This routine disambiguates these two
|
1604 |
|
|
-- cases by resolving the prefix to see if it is a subtype mark.
|
1605 |
|
|
|
1606 |
|
|
procedure Process_Overloaded_Indexed_Component;
|
1607 |
|
|
-- If the prefix of an indexed component is overloaded, the proper
|
1608 |
|
|
-- interpretation is selected by the index types and the context.
|
1609 |
|
|
|
1610 |
|
|
---------------------------
|
1611 |
|
|
-- Process_Function_Call --
|
1612 |
|
|
---------------------------
|
1613 |
|
|
|
1614 |
|
|
procedure Process_Function_Call is
|
1615 |
|
|
Actual : Node_Id;
|
1616 |
|
|
|
1617 |
|
|
begin
|
1618 |
|
|
Change_Node (N, N_Function_Call);
|
1619 |
|
|
Set_Name (N, P);
|
1620 |
|
|
Set_Parameter_Associations (N, Exprs);
|
1621 |
|
|
|
1622 |
|
|
-- Analyze actuals prior to analyzing the call itself
|
1623 |
|
|
|
1624 |
|
|
Actual := First (Parameter_Associations (N));
|
1625 |
|
|
while Present (Actual) loop
|
1626 |
|
|
Analyze (Actual);
|
1627 |
|
|
Check_Parameterless_Call (Actual);
|
1628 |
|
|
|
1629 |
|
|
-- Move to next actual. Note that we use Next, not Next_Actual
|
1630 |
|
|
-- here. The reason for this is a bit subtle. If a function call
|
1631 |
|
|
-- includes named associations, the parser recognizes the node as
|
1632 |
|
|
-- a call, and it is analyzed as such. If all associations are
|
1633 |
|
|
-- positional, the parser builds an indexed_component node, and
|
1634 |
|
|
-- it is only after analysis of the prefix that the construct
|
1635 |
|
|
-- is recognized as a call, in which case Process_Function_Call
|
1636 |
|
|
-- rewrites the node and analyzes the actuals. If the list of
|
1637 |
|
|
-- actuals is malformed, the parser may leave the node as an
|
1638 |
|
|
-- indexed component (despite the presence of named associations).
|
1639 |
|
|
-- The iterator Next_Actual is equivalent to Next if the list is
|
1640 |
|
|
-- positional, but follows the normalized chain of actuals when
|
1641 |
|
|
-- named associations are present. In this case normalization has
|
1642 |
|
|
-- not taken place, and actuals remain unanalyzed, which leads to
|
1643 |
|
|
-- subsequent crashes or loops if there is an attempt to continue
|
1644 |
|
|
-- analysis of the program.
|
1645 |
|
|
|
1646 |
|
|
Next (Actual);
|
1647 |
|
|
end loop;
|
1648 |
|
|
|
1649 |
|
|
Analyze_Call (N);
|
1650 |
|
|
end Process_Function_Call;
|
1651 |
|
|
|
1652 |
|
|
-------------------------------
|
1653 |
|
|
-- Process_Indexed_Component --
|
1654 |
|
|
-------------------------------
|
1655 |
|
|
|
1656 |
|
|
procedure Process_Indexed_Component is
|
1657 |
|
|
Exp : Node_Id;
|
1658 |
|
|
Array_Type : Entity_Id;
|
1659 |
|
|
Index : Node_Id;
|
1660 |
|
|
Pent : Entity_Id := Empty;
|
1661 |
|
|
|
1662 |
|
|
begin
|
1663 |
|
|
Exp := First (Exprs);
|
1664 |
|
|
|
1665 |
|
|
if Is_Overloaded (P) then
|
1666 |
|
|
Process_Overloaded_Indexed_Component;
|
1667 |
|
|
|
1668 |
|
|
else
|
1669 |
|
|
Array_Type := Etype (P);
|
1670 |
|
|
|
1671 |
|
|
if Is_Entity_Name (P) then
|
1672 |
|
|
Pent := Entity (P);
|
1673 |
|
|
elsif Nkind (P) = N_Selected_Component
|
1674 |
|
|
and then Is_Entity_Name (Selector_Name (P))
|
1675 |
|
|
then
|
1676 |
|
|
Pent := Entity (Selector_Name (P));
|
1677 |
|
|
end if;
|
1678 |
|
|
|
1679 |
|
|
-- Prefix must be appropriate for an array type, taking into
|
1680 |
|
|
-- account a possible implicit dereference.
|
1681 |
|
|
|
1682 |
|
|
if Is_Access_Type (Array_Type) then
|
1683 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
1684 |
|
|
Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
|
1685 |
|
|
end if;
|
1686 |
|
|
|
1687 |
|
|
if Is_Array_Type (Array_Type) then
|
1688 |
|
|
null;
|
1689 |
|
|
|
1690 |
|
|
elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
|
1691 |
|
|
Analyze (Exp);
|
1692 |
|
|
Set_Etype (N, Any_Type);
|
1693 |
|
|
|
1694 |
|
|
if not Has_Compatible_Type
|
1695 |
|
|
(Exp, Entry_Index_Type (Pent))
|
1696 |
|
|
then
|
1697 |
|
|
Error_Msg_N ("invalid index type in entry name", N);
|
1698 |
|
|
|
1699 |
|
|
elsif Present (Next (Exp)) then
|
1700 |
|
|
Error_Msg_N ("too many subscripts in entry reference", N);
|
1701 |
|
|
|
1702 |
|
|
else
|
1703 |
|
|
Set_Etype (N, Etype (P));
|
1704 |
|
|
end if;
|
1705 |
|
|
|
1706 |
|
|
return;
|
1707 |
|
|
|
1708 |
|
|
elsif Is_Record_Type (Array_Type)
|
1709 |
|
|
and then Remote_AST_I_Dereference (P)
|
1710 |
|
|
then
|
1711 |
|
|
return;
|
1712 |
|
|
|
1713 |
|
|
elsif Array_Type = Any_Type then
|
1714 |
|
|
Set_Etype (N, Any_Type);
|
1715 |
|
|
|
1716 |
|
|
-- In most cases the analysis of the prefix will have emitted
|
1717 |
|
|
-- an error already, but if the prefix may be interpreted as a
|
1718 |
|
|
-- call in prefixed notation, the report is left to the caller.
|
1719 |
|
|
-- To prevent cascaded errors, report only if no previous ones.
|
1720 |
|
|
|
1721 |
|
|
if Serious_Errors_Detected = 0 then
|
1722 |
|
|
Error_Msg_N ("invalid prefix in indexed component", P);
|
1723 |
|
|
|
1724 |
|
|
if Nkind (P) = N_Expanded_Name then
|
1725 |
|
|
Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
|
1726 |
|
|
end if;
|
1727 |
|
|
end if;
|
1728 |
|
|
|
1729 |
|
|
return;
|
1730 |
|
|
|
1731 |
|
|
-- Here we definitely have a bad indexing
|
1732 |
|
|
|
1733 |
|
|
else
|
1734 |
|
|
if Nkind (Parent (N)) = N_Requeue_Statement
|
1735 |
|
|
and then Present (Pent) and then Ekind (Pent) = E_Entry
|
1736 |
|
|
then
|
1737 |
|
|
Error_Msg_N
|
1738 |
|
|
("REQUEUE does not permit parameters", First (Exprs));
|
1739 |
|
|
|
1740 |
|
|
elsif Is_Entity_Name (P)
|
1741 |
|
|
and then Etype (P) = Standard_Void_Type
|
1742 |
|
|
then
|
1743 |
|
|
Error_Msg_NE ("incorrect use of&", P, Entity (P));
|
1744 |
|
|
|
1745 |
|
|
else
|
1746 |
|
|
Error_Msg_N ("array type required in indexed component", P);
|
1747 |
|
|
end if;
|
1748 |
|
|
|
1749 |
|
|
Set_Etype (N, Any_Type);
|
1750 |
|
|
return;
|
1751 |
|
|
end if;
|
1752 |
|
|
|
1753 |
|
|
Index := First_Index (Array_Type);
|
1754 |
|
|
while Present (Index) and then Present (Exp) loop
|
1755 |
|
|
if not Has_Compatible_Type (Exp, Etype (Index)) then
|
1756 |
|
|
Wrong_Type (Exp, Etype (Index));
|
1757 |
|
|
Set_Etype (N, Any_Type);
|
1758 |
|
|
return;
|
1759 |
|
|
end if;
|
1760 |
|
|
|
1761 |
|
|
Next_Index (Index);
|
1762 |
|
|
Next (Exp);
|
1763 |
|
|
end loop;
|
1764 |
|
|
|
1765 |
|
|
Set_Etype (N, Component_Type (Array_Type));
|
1766 |
|
|
|
1767 |
|
|
if Present (Index) then
|
1768 |
|
|
Error_Msg_N
|
1769 |
|
|
("too few subscripts in array reference", First (Exprs));
|
1770 |
|
|
|
1771 |
|
|
elsif Present (Exp) then
|
1772 |
|
|
Error_Msg_N ("too many subscripts in array reference", Exp);
|
1773 |
|
|
end if;
|
1774 |
|
|
end if;
|
1775 |
|
|
end Process_Indexed_Component;
|
1776 |
|
|
|
1777 |
|
|
----------------------------------------
|
1778 |
|
|
-- Process_Indexed_Component_Or_Slice --
|
1779 |
|
|
----------------------------------------
|
1780 |
|
|
|
1781 |
|
|
procedure Process_Indexed_Component_Or_Slice is
|
1782 |
|
|
begin
|
1783 |
|
|
Exp := First (Exprs);
|
1784 |
|
|
while Present (Exp) loop
|
1785 |
|
|
Analyze_Expression (Exp);
|
1786 |
|
|
Next (Exp);
|
1787 |
|
|
end loop;
|
1788 |
|
|
|
1789 |
|
|
Exp := First (Exprs);
|
1790 |
|
|
|
1791 |
|
|
-- If one index is present, and it is a subtype name, then the
|
1792 |
|
|
-- node denotes a slice (note that the case of an explicit range
|
1793 |
|
|
-- for a slice was already built as an N_Slice node in the first
|
1794 |
|
|
-- place, so that case is not handled here).
|
1795 |
|
|
|
1796 |
|
|
-- We use a replace rather than a rewrite here because this is one
|
1797 |
|
|
-- of the cases in which the tree built by the parser is plain wrong.
|
1798 |
|
|
|
1799 |
|
|
if No (Next (Exp))
|
1800 |
|
|
and then Is_Entity_Name (Exp)
|
1801 |
|
|
and then Is_Type (Entity (Exp))
|
1802 |
|
|
then
|
1803 |
|
|
Replace (N,
|
1804 |
|
|
Make_Slice (Sloc (N),
|
1805 |
|
|
Prefix => P,
|
1806 |
|
|
Discrete_Range => New_Copy (Exp)));
|
1807 |
|
|
Analyze (N);
|
1808 |
|
|
|
1809 |
|
|
-- Otherwise (more than one index present, or single index is not
|
1810 |
|
|
-- a subtype name), then we have the indexed component case.
|
1811 |
|
|
|
1812 |
|
|
else
|
1813 |
|
|
Process_Indexed_Component;
|
1814 |
|
|
end if;
|
1815 |
|
|
end Process_Indexed_Component_Or_Slice;
|
1816 |
|
|
|
1817 |
|
|
------------------------------------------
|
1818 |
|
|
-- Process_Overloaded_Indexed_Component --
|
1819 |
|
|
------------------------------------------
|
1820 |
|
|
|
1821 |
|
|
procedure Process_Overloaded_Indexed_Component is
|
1822 |
|
|
Exp : Node_Id;
|
1823 |
|
|
I : Interp_Index;
|
1824 |
|
|
It : Interp;
|
1825 |
|
|
Typ : Entity_Id;
|
1826 |
|
|
Index : Node_Id;
|
1827 |
|
|
Found : Boolean;
|
1828 |
|
|
|
1829 |
|
|
begin
|
1830 |
|
|
Set_Etype (N, Any_Type);
|
1831 |
|
|
|
1832 |
|
|
Get_First_Interp (P, I, It);
|
1833 |
|
|
while Present (It.Nam) loop
|
1834 |
|
|
Typ := It.Typ;
|
1835 |
|
|
|
1836 |
|
|
if Is_Access_Type (Typ) then
|
1837 |
|
|
Typ := Designated_Type (Typ);
|
1838 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
1839 |
|
|
end if;
|
1840 |
|
|
|
1841 |
|
|
if Is_Array_Type (Typ) then
|
1842 |
|
|
|
1843 |
|
|
-- Got a candidate: verify that index types are compatible
|
1844 |
|
|
|
1845 |
|
|
Index := First_Index (Typ);
|
1846 |
|
|
Found := True;
|
1847 |
|
|
Exp := First (Exprs);
|
1848 |
|
|
while Present (Index) and then Present (Exp) loop
|
1849 |
|
|
if Has_Compatible_Type (Exp, Etype (Index)) then
|
1850 |
|
|
null;
|
1851 |
|
|
else
|
1852 |
|
|
Found := False;
|
1853 |
|
|
Remove_Interp (I);
|
1854 |
|
|
exit;
|
1855 |
|
|
end if;
|
1856 |
|
|
|
1857 |
|
|
Next_Index (Index);
|
1858 |
|
|
Next (Exp);
|
1859 |
|
|
end loop;
|
1860 |
|
|
|
1861 |
|
|
if Found and then No (Index) and then No (Exp) then
|
1862 |
|
|
Add_One_Interp (N,
|
1863 |
|
|
Etype (Component_Type (Typ)),
|
1864 |
|
|
Etype (Component_Type (Typ)));
|
1865 |
|
|
end if;
|
1866 |
|
|
end if;
|
1867 |
|
|
|
1868 |
|
|
Get_Next_Interp (I, It);
|
1869 |
|
|
end loop;
|
1870 |
|
|
|
1871 |
|
|
if Etype (N) = Any_Type then
|
1872 |
|
|
Error_Msg_N ("no legal interpretation for indexed component", N);
|
1873 |
|
|
Set_Is_Overloaded (N, False);
|
1874 |
|
|
end if;
|
1875 |
|
|
|
1876 |
|
|
End_Interp_List;
|
1877 |
|
|
end Process_Overloaded_Indexed_Component;
|
1878 |
|
|
|
1879 |
|
|
-- Start of processing for Analyze_Indexed_Component_Form
|
1880 |
|
|
|
1881 |
|
|
begin
|
1882 |
|
|
-- Get name of array, function or type
|
1883 |
|
|
|
1884 |
|
|
Analyze (P);
|
1885 |
|
|
|
1886 |
|
|
if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
|
1887 |
|
|
|
1888 |
|
|
-- If P is an explicit dereference whose prefix is of a
|
1889 |
|
|
-- remote access-to-subprogram type, then N has already
|
1890 |
|
|
-- been rewritten as a subprogram call and analyzed.
|
1891 |
|
|
|
1892 |
|
|
return;
|
1893 |
|
|
end if;
|
1894 |
|
|
|
1895 |
|
|
pragma Assert (Nkind (N) = N_Indexed_Component);
|
1896 |
|
|
|
1897 |
|
|
P_T := Base_Type (Etype (P));
|
1898 |
|
|
|
1899 |
|
|
if Is_Entity_Name (P)
|
1900 |
|
|
or else Nkind (P) = N_Operator_Symbol
|
1901 |
|
|
then
|
1902 |
|
|
U_N := Entity (P);
|
1903 |
|
|
|
1904 |
|
|
if Is_Type (U_N) then
|
1905 |
|
|
|
1906 |
|
|
-- Reformat node as a type conversion
|
1907 |
|
|
|
1908 |
|
|
E := Remove_Head (Exprs);
|
1909 |
|
|
|
1910 |
|
|
if Present (First (Exprs)) then
|
1911 |
|
|
Error_Msg_N
|
1912 |
|
|
("argument of type conversion must be single expression", N);
|
1913 |
|
|
end if;
|
1914 |
|
|
|
1915 |
|
|
Change_Node (N, N_Type_Conversion);
|
1916 |
|
|
Set_Subtype_Mark (N, P);
|
1917 |
|
|
Set_Etype (N, U_N);
|
1918 |
|
|
Set_Expression (N, E);
|
1919 |
|
|
|
1920 |
|
|
-- After changing the node, call for the specific Analysis
|
1921 |
|
|
-- routine directly, to avoid a double call to the expander.
|
1922 |
|
|
|
1923 |
|
|
Analyze_Type_Conversion (N);
|
1924 |
|
|
return;
|
1925 |
|
|
end if;
|
1926 |
|
|
|
1927 |
|
|
if Is_Overloadable (U_N) then
|
1928 |
|
|
Process_Function_Call;
|
1929 |
|
|
|
1930 |
|
|
elsif Ekind (Etype (P)) = E_Subprogram_Type
|
1931 |
|
|
or else (Is_Access_Type (Etype (P))
|
1932 |
|
|
and then
|
1933 |
|
|
Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
|
1934 |
|
|
then
|
1935 |
|
|
-- Call to access_to-subprogram with possible implicit dereference
|
1936 |
|
|
|
1937 |
|
|
Process_Function_Call;
|
1938 |
|
|
|
1939 |
|
|
elsif Is_Generic_Subprogram (U_N) then
|
1940 |
|
|
|
1941 |
|
|
-- A common beginner's (or C++ templates fan) error
|
1942 |
|
|
|
1943 |
|
|
Error_Msg_N ("generic subprogram cannot be called", N);
|
1944 |
|
|
Set_Etype (N, Any_Type);
|
1945 |
|
|
return;
|
1946 |
|
|
|
1947 |
|
|
else
|
1948 |
|
|
Process_Indexed_Component_Or_Slice;
|
1949 |
|
|
end if;
|
1950 |
|
|
|
1951 |
|
|
-- If not an entity name, prefix is an expression that may denote
|
1952 |
|
|
-- an array or an access-to-subprogram.
|
1953 |
|
|
|
1954 |
|
|
else
|
1955 |
|
|
if Ekind (P_T) = E_Subprogram_Type
|
1956 |
|
|
or else (Is_Access_Type (P_T)
|
1957 |
|
|
and then
|
1958 |
|
|
Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
|
1959 |
|
|
then
|
1960 |
|
|
Process_Function_Call;
|
1961 |
|
|
|
1962 |
|
|
elsif Nkind (P) = N_Selected_Component
|
1963 |
|
|
and then Is_Overloadable (Entity (Selector_Name (P)))
|
1964 |
|
|
then
|
1965 |
|
|
Process_Function_Call;
|
1966 |
|
|
|
1967 |
|
|
else
|
1968 |
|
|
-- Indexed component, slice, or a call to a member of a family
|
1969 |
|
|
-- entry, which will be converted to an entry call later.
|
1970 |
|
|
|
1971 |
|
|
Process_Indexed_Component_Or_Slice;
|
1972 |
|
|
end if;
|
1973 |
|
|
end if;
|
1974 |
|
|
end Analyze_Indexed_Component_Form;
|
1975 |
|
|
|
1976 |
|
|
------------------------
|
1977 |
|
|
-- Analyze_Logical_Op --
|
1978 |
|
|
------------------------
|
1979 |
|
|
|
1980 |
|
|
procedure Analyze_Logical_Op (N : Node_Id) is
|
1981 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
1982 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
1983 |
|
|
Op_Id : Entity_Id := Entity (N);
|
1984 |
|
|
|
1985 |
|
|
begin
|
1986 |
|
|
Set_Etype (N, Any_Type);
|
1987 |
|
|
Candidate_Type := Empty;
|
1988 |
|
|
|
1989 |
|
|
Analyze_Expression (L);
|
1990 |
|
|
Analyze_Expression (R);
|
1991 |
|
|
|
1992 |
|
|
if Present (Op_Id) then
|
1993 |
|
|
|
1994 |
|
|
if Ekind (Op_Id) = E_Operator then
|
1995 |
|
|
Find_Boolean_Types (L, R, Op_Id, N);
|
1996 |
|
|
else
|
1997 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
1998 |
|
|
end if;
|
1999 |
|
|
|
2000 |
|
|
else
|
2001 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
2002 |
|
|
while Present (Op_Id) loop
|
2003 |
|
|
if Ekind (Op_Id) = E_Operator then
|
2004 |
|
|
Find_Boolean_Types (L, R, Op_Id, N);
|
2005 |
|
|
else
|
2006 |
|
|
Analyze_User_Defined_Binary_Op (N, Op_Id);
|
2007 |
|
|
end if;
|
2008 |
|
|
|
2009 |
|
|
Op_Id := Homonym (Op_Id);
|
2010 |
|
|
end loop;
|
2011 |
|
|
end if;
|
2012 |
|
|
|
2013 |
|
|
Operator_Check (N);
|
2014 |
|
|
end Analyze_Logical_Op;
|
2015 |
|
|
|
2016 |
|
|
---------------------------
|
2017 |
|
|
-- Analyze_Membership_Op --
|
2018 |
|
|
---------------------------
|
2019 |
|
|
|
2020 |
|
|
procedure Analyze_Membership_Op (N : Node_Id) is
|
2021 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
2022 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
2023 |
|
|
|
2024 |
|
|
Index : Interp_Index;
|
2025 |
|
|
It : Interp;
|
2026 |
|
|
Found : Boolean := False;
|
2027 |
|
|
I_F : Interp_Index;
|
2028 |
|
|
T_F : Entity_Id;
|
2029 |
|
|
|
2030 |
|
|
procedure Try_One_Interp (T1 : Entity_Id);
|
2031 |
|
|
-- Routine to try one proposed interpretation. Note that the context
|
2032 |
|
|
-- of the operation plays no role in resolving the arguments, so that
|
2033 |
|
|
-- if there is more than one interpretation of the operands that is
|
2034 |
|
|
-- compatible with a membership test, the operation is ambiguous.
|
2035 |
|
|
|
2036 |
|
|
--------------------
|
2037 |
|
|
-- Try_One_Interp --
|
2038 |
|
|
--------------------
|
2039 |
|
|
|
2040 |
|
|
procedure Try_One_Interp (T1 : Entity_Id) is
|
2041 |
|
|
begin
|
2042 |
|
|
if Has_Compatible_Type (R, T1) then
|
2043 |
|
|
if Found
|
2044 |
|
|
and then Base_Type (T1) /= Base_Type (T_F)
|
2045 |
|
|
then
|
2046 |
|
|
It := Disambiguate (L, I_F, Index, Any_Type);
|
2047 |
|
|
|
2048 |
|
|
if It = No_Interp then
|
2049 |
|
|
Ambiguous_Operands (N);
|
2050 |
|
|
Set_Etype (L, Any_Type);
|
2051 |
|
|
return;
|
2052 |
|
|
|
2053 |
|
|
else
|
2054 |
|
|
T_F := It.Typ;
|
2055 |
|
|
end if;
|
2056 |
|
|
|
2057 |
|
|
else
|
2058 |
|
|
Found := True;
|
2059 |
|
|
T_F := T1;
|
2060 |
|
|
I_F := Index;
|
2061 |
|
|
end if;
|
2062 |
|
|
|
2063 |
|
|
Set_Etype (L, T_F);
|
2064 |
|
|
end if;
|
2065 |
|
|
end Try_One_Interp;
|
2066 |
|
|
|
2067 |
|
|
procedure Analyze_Set_Membership;
|
2068 |
|
|
-- If a set of alternatives is present, analyze each and find the
|
2069 |
|
|
-- common type to which they must all resolve.
|
2070 |
|
|
|
2071 |
|
|
----------------------------
|
2072 |
|
|
-- Analyze_Set_Membership --
|
2073 |
|
|
----------------------------
|
2074 |
|
|
|
2075 |
|
|
procedure Analyze_Set_Membership is
|
2076 |
|
|
Alt : Node_Id;
|
2077 |
|
|
Index : Interp_Index;
|
2078 |
|
|
It : Interp;
|
2079 |
|
|
Candidate_Interps : Node_Id;
|
2080 |
|
|
Common_Type : Entity_Id := Empty;
|
2081 |
|
|
|
2082 |
|
|
begin
|
2083 |
|
|
Analyze (L);
|
2084 |
|
|
Candidate_Interps := L;
|
2085 |
|
|
|
2086 |
|
|
if not Is_Overloaded (L) then
|
2087 |
|
|
Common_Type := Etype (L);
|
2088 |
|
|
|
2089 |
|
|
Alt := First (Alternatives (N));
|
2090 |
|
|
while Present (Alt) loop
|
2091 |
|
|
Analyze (Alt);
|
2092 |
|
|
|
2093 |
|
|
if not Has_Compatible_Type (Alt, Common_Type) then
|
2094 |
|
|
Wrong_Type (Alt, Common_Type);
|
2095 |
|
|
end if;
|
2096 |
|
|
|
2097 |
|
|
Next (Alt);
|
2098 |
|
|
end loop;
|
2099 |
|
|
|
2100 |
|
|
else
|
2101 |
|
|
Alt := First (Alternatives (N));
|
2102 |
|
|
while Present (Alt) loop
|
2103 |
|
|
Analyze (Alt);
|
2104 |
|
|
if not Is_Overloaded (Alt) then
|
2105 |
|
|
Common_Type := Etype (Alt);
|
2106 |
|
|
|
2107 |
|
|
else
|
2108 |
|
|
Get_First_Interp (Alt, Index, It);
|
2109 |
|
|
while Present (It.Typ) loop
|
2110 |
|
|
if not
|
2111 |
|
|
Has_Compatible_Type (Candidate_Interps, It.Typ)
|
2112 |
|
|
then
|
2113 |
|
|
Remove_Interp (Index);
|
2114 |
|
|
end if;
|
2115 |
|
|
|
2116 |
|
|
Get_Next_Interp (Index, It);
|
2117 |
|
|
end loop;
|
2118 |
|
|
|
2119 |
|
|
Get_First_Interp (Alt, Index, It);
|
2120 |
|
|
|
2121 |
|
|
if No (It.Typ) then
|
2122 |
|
|
Error_Msg_N ("alternative has no legal type", Alt);
|
2123 |
|
|
return;
|
2124 |
|
|
end if;
|
2125 |
|
|
|
2126 |
|
|
-- If alternative is not overloaded, we have a unique type
|
2127 |
|
|
-- for all of them.
|
2128 |
|
|
|
2129 |
|
|
Set_Etype (Alt, It.Typ);
|
2130 |
|
|
Get_Next_Interp (Index, It);
|
2131 |
|
|
|
2132 |
|
|
if No (It.Typ) then
|
2133 |
|
|
Set_Is_Overloaded (Alt, False);
|
2134 |
|
|
Common_Type := Etype (Alt);
|
2135 |
|
|
end if;
|
2136 |
|
|
|
2137 |
|
|
Candidate_Interps := Alt;
|
2138 |
|
|
end if;
|
2139 |
|
|
|
2140 |
|
|
Next (Alt);
|
2141 |
|
|
end loop;
|
2142 |
|
|
end if;
|
2143 |
|
|
|
2144 |
|
|
Set_Etype (N, Standard_Boolean);
|
2145 |
|
|
|
2146 |
|
|
if Present (Common_Type) then
|
2147 |
|
|
Set_Etype (L, Common_Type);
|
2148 |
|
|
Set_Is_Overloaded (L, False);
|
2149 |
|
|
|
2150 |
|
|
else
|
2151 |
|
|
Error_Msg_N ("cannot resolve membership operation", N);
|
2152 |
|
|
end if;
|
2153 |
|
|
end Analyze_Set_Membership;
|
2154 |
|
|
|
2155 |
|
|
-- Start of processing for Analyze_Membership_Op
|
2156 |
|
|
|
2157 |
|
|
begin
|
2158 |
|
|
Analyze_Expression (L);
|
2159 |
|
|
|
2160 |
|
|
if No (R)
|
2161 |
|
|
and then Extensions_Allowed
|
2162 |
|
|
then
|
2163 |
|
|
Analyze_Set_Membership;
|
2164 |
|
|
return;
|
2165 |
|
|
end if;
|
2166 |
|
|
|
2167 |
|
|
if Nkind (R) = N_Range
|
2168 |
|
|
or else (Nkind (R) = N_Attribute_Reference
|
2169 |
|
|
and then Attribute_Name (R) = Name_Range)
|
2170 |
|
|
then
|
2171 |
|
|
Analyze (R);
|
2172 |
|
|
|
2173 |
|
|
if not Is_Overloaded (L) then
|
2174 |
|
|
Try_One_Interp (Etype (L));
|
2175 |
|
|
|
2176 |
|
|
else
|
2177 |
|
|
Get_First_Interp (L, Index, It);
|
2178 |
|
|
while Present (It.Typ) loop
|
2179 |
|
|
Try_One_Interp (It.Typ);
|
2180 |
|
|
Get_Next_Interp (Index, It);
|
2181 |
|
|
end loop;
|
2182 |
|
|
end if;
|
2183 |
|
|
|
2184 |
|
|
-- If not a range, it can only be a subtype mark, or else there
|
2185 |
|
|
-- is a more basic error, to be diagnosed in Find_Type.
|
2186 |
|
|
|
2187 |
|
|
else
|
2188 |
|
|
Find_Type (R);
|
2189 |
|
|
|
2190 |
|
|
if Is_Entity_Name (R) then
|
2191 |
|
|
Check_Fully_Declared (Entity (R), R);
|
2192 |
|
|
end if;
|
2193 |
|
|
end if;
|
2194 |
|
|
|
2195 |
|
|
-- Compatibility between expression and subtype mark or range is
|
2196 |
|
|
-- checked during resolution. The result of the operation is Boolean
|
2197 |
|
|
-- in any case.
|
2198 |
|
|
|
2199 |
|
|
Set_Etype (N, Standard_Boolean);
|
2200 |
|
|
|
2201 |
|
|
if Comes_From_Source (N)
|
2202 |
|
|
and then Present (Right_Opnd (N))
|
2203 |
|
|
and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
|
2204 |
|
|
then
|
2205 |
|
|
Error_Msg_N ("membership test not applicable to cpp-class types", N);
|
2206 |
|
|
end if;
|
2207 |
|
|
end Analyze_Membership_Op;
|
2208 |
|
|
|
2209 |
|
|
----------------------
|
2210 |
|
|
-- Analyze_Negation --
|
2211 |
|
|
----------------------
|
2212 |
|
|
|
2213 |
|
|
procedure Analyze_Negation (N : Node_Id) is
|
2214 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
2215 |
|
|
Op_Id : Entity_Id := Entity (N);
|
2216 |
|
|
|
2217 |
|
|
begin
|
2218 |
|
|
Set_Etype (N, Any_Type);
|
2219 |
|
|
Candidate_Type := Empty;
|
2220 |
|
|
|
2221 |
|
|
Analyze_Expression (R);
|
2222 |
|
|
|
2223 |
|
|
if Present (Op_Id) then
|
2224 |
|
|
if Ekind (Op_Id) = E_Operator then
|
2225 |
|
|
Find_Negation_Types (R, Op_Id, N);
|
2226 |
|
|
else
|
2227 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
2228 |
|
|
end if;
|
2229 |
|
|
|
2230 |
|
|
else
|
2231 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
2232 |
|
|
while Present (Op_Id) loop
|
2233 |
|
|
if Ekind (Op_Id) = E_Operator then
|
2234 |
|
|
Find_Negation_Types (R, Op_Id, N);
|
2235 |
|
|
else
|
2236 |
|
|
Analyze_User_Defined_Unary_Op (N, Op_Id);
|
2237 |
|
|
end if;
|
2238 |
|
|
|
2239 |
|
|
Op_Id := Homonym (Op_Id);
|
2240 |
|
|
end loop;
|
2241 |
|
|
end if;
|
2242 |
|
|
|
2243 |
|
|
Operator_Check (N);
|
2244 |
|
|
end Analyze_Negation;
|
2245 |
|
|
|
2246 |
|
|
------------------
|
2247 |
|
|
-- Analyze_Null --
|
2248 |
|
|
------------------
|
2249 |
|
|
|
2250 |
|
|
procedure Analyze_Null (N : Node_Id) is
|
2251 |
|
|
begin
|
2252 |
|
|
Set_Etype (N, Any_Access);
|
2253 |
|
|
end Analyze_Null;
|
2254 |
|
|
|
2255 |
|
|
----------------------
|
2256 |
|
|
-- Analyze_One_Call --
|
2257 |
|
|
----------------------
|
2258 |
|
|
|
2259 |
|
|
procedure Analyze_One_Call
|
2260 |
|
|
(N : Node_Id;
|
2261 |
|
|
Nam : Entity_Id;
|
2262 |
|
|
Report : Boolean;
|
2263 |
|
|
Success : out Boolean;
|
2264 |
|
|
Skip_First : Boolean := False)
|
2265 |
|
|
is
|
2266 |
|
|
Actuals : constant List_Id := Parameter_Associations (N);
|
2267 |
|
|
Prev_T : constant Entity_Id := Etype (N);
|
2268 |
|
|
|
2269 |
|
|
Must_Skip : constant Boolean := Skip_First
|
2270 |
|
|
or else Nkind (Original_Node (N)) = N_Selected_Component
|
2271 |
|
|
or else
|
2272 |
|
|
(Nkind (Original_Node (N)) = N_Indexed_Component
|
2273 |
|
|
and then Nkind (Prefix (Original_Node (N)))
|
2274 |
|
|
= N_Selected_Component);
|
2275 |
|
|
-- The first formal must be omitted from the match when trying to find
|
2276 |
|
|
-- a primitive operation that is a possible interpretation, and also
|
2277 |
|
|
-- after the call has been rewritten, because the corresponding actual
|
2278 |
|
|
-- is already known to be compatible, and because this may be an
|
2279 |
|
|
-- indexing of a call with default parameters.
|
2280 |
|
|
|
2281 |
|
|
Formal : Entity_Id;
|
2282 |
|
|
Actual : Node_Id;
|
2283 |
|
|
Is_Indexed : Boolean := False;
|
2284 |
|
|
Is_Indirect : Boolean := False;
|
2285 |
|
|
Subp_Type : constant Entity_Id := Etype (Nam);
|
2286 |
|
|
Norm_OK : Boolean;
|
2287 |
|
|
|
2288 |
|
|
function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
|
2289 |
|
|
-- There may be a user-defined operator that hides the current
|
2290 |
|
|
-- interpretation. We must check for this independently of the
|
2291 |
|
|
-- analysis of the call with the user-defined operation, because
|
2292 |
|
|
-- the parameter names may be wrong and yet the hiding takes place.
|
2293 |
|
|
-- This fixes a problem with ACATS test B34014O.
|
2294 |
|
|
--
|
2295 |
|
|
-- When the type Address is a visible integer type, and the DEC
|
2296 |
|
|
-- system extension is visible, the predefined operator may be
|
2297 |
|
|
-- hidden as well, by one of the address operations in auxdec.
|
2298 |
|
|
-- Finally, The abstract operations on address do not hide the
|
2299 |
|
|
-- predefined operator (this is the purpose of making them abstract).
|
2300 |
|
|
|
2301 |
|
|
procedure Indicate_Name_And_Type;
|
2302 |
|
|
-- If candidate interpretation matches, indicate name and type of
|
2303 |
|
|
-- result on call node.
|
2304 |
|
|
|
2305 |
|
|
----------------------------
|
2306 |
|
|
-- Indicate_Name_And_Type --
|
2307 |
|
|
----------------------------
|
2308 |
|
|
|
2309 |
|
|
procedure Indicate_Name_And_Type is
|
2310 |
|
|
begin
|
2311 |
|
|
Add_One_Interp (N, Nam, Etype (Nam));
|
2312 |
|
|
Success := True;
|
2313 |
|
|
|
2314 |
|
|
-- If the prefix of the call is a name, indicate the entity
|
2315 |
|
|
-- being called. If it is not a name, it is an expression that
|
2316 |
|
|
-- denotes an access to subprogram or else an entry or family. In
|
2317 |
|
|
-- the latter case, the name is a selected component, and the entity
|
2318 |
|
|
-- being called is noted on the selector.
|
2319 |
|
|
|
2320 |
|
|
if not Is_Type (Nam) then
|
2321 |
|
|
if Is_Entity_Name (Name (N))
|
2322 |
|
|
or else Nkind (Name (N)) = N_Operator_Symbol
|
2323 |
|
|
then
|
2324 |
|
|
Set_Entity (Name (N), Nam);
|
2325 |
|
|
|
2326 |
|
|
elsif Nkind (Name (N)) = N_Selected_Component then
|
2327 |
|
|
Set_Entity (Selector_Name (Name (N)), Nam);
|
2328 |
|
|
end if;
|
2329 |
|
|
end if;
|
2330 |
|
|
|
2331 |
|
|
if Debug_Flag_E and not Report then
|
2332 |
|
|
Write_Str (" Overloaded call ");
|
2333 |
|
|
Write_Int (Int (N));
|
2334 |
|
|
Write_Str (" compatible with ");
|
2335 |
|
|
Write_Int (Int (Nam));
|
2336 |
|
|
Write_Eol;
|
2337 |
|
|
end if;
|
2338 |
|
|
end Indicate_Name_And_Type;
|
2339 |
|
|
|
2340 |
|
|
------------------------
|
2341 |
|
|
-- Operator_Hidden_By --
|
2342 |
|
|
------------------------
|
2343 |
|
|
|
2344 |
|
|
function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
|
2345 |
|
|
Act1 : constant Node_Id := First_Actual (N);
|
2346 |
|
|
Act2 : constant Node_Id := Next_Actual (Act1);
|
2347 |
|
|
Form1 : constant Entity_Id := First_Formal (Fun);
|
2348 |
|
|
Form2 : constant Entity_Id := Next_Formal (Form1);
|
2349 |
|
|
|
2350 |
|
|
begin
|
2351 |
|
|
if Ekind (Fun) /= E_Function
|
2352 |
|
|
or else Is_Abstract_Subprogram (Fun)
|
2353 |
|
|
then
|
2354 |
|
|
return False;
|
2355 |
|
|
|
2356 |
|
|
elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
|
2357 |
|
|
return False;
|
2358 |
|
|
|
2359 |
|
|
elsif Present (Form2) then
|
2360 |
|
|
if
|
2361 |
|
|
No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
|
2362 |
|
|
then
|
2363 |
|
|
return False;
|
2364 |
|
|
end if;
|
2365 |
|
|
|
2366 |
|
|
elsif Present (Act2) then
|
2367 |
|
|
return False;
|
2368 |
|
|
end if;
|
2369 |
|
|
|
2370 |
|
|
-- Now we know that the arity of the operator matches the function,
|
2371 |
|
|
-- and the function call is a valid interpretation. The function
|
2372 |
|
|
-- hides the operator if it has the right signature, or if one of
|
2373 |
|
|
-- its operands is a non-abstract operation on Address when this is
|
2374 |
|
|
-- a visible integer type.
|
2375 |
|
|
|
2376 |
|
|
return Hides_Op (Fun, Nam)
|
2377 |
|
|
or else Is_Descendent_Of_Address (Etype (Form1))
|
2378 |
|
|
or else
|
2379 |
|
|
(Present (Form2)
|
2380 |
|
|
and then Is_Descendent_Of_Address (Etype (Form2)));
|
2381 |
|
|
end Operator_Hidden_By;
|
2382 |
|
|
|
2383 |
|
|
-- Start of processing for Analyze_One_Call
|
2384 |
|
|
|
2385 |
|
|
begin
|
2386 |
|
|
Success := False;
|
2387 |
|
|
|
2388 |
|
|
-- If the subprogram has no formals or if all the formals have defaults,
|
2389 |
|
|
-- and the return type is an array type, the node may denote an indexing
|
2390 |
|
|
-- of the result of a parameterless call. In Ada 2005, the subprogram
|
2391 |
|
|
-- may have one non-defaulted formal, and the call may have been written
|
2392 |
|
|
-- in prefix notation, so that the rebuilt parameter list has more than
|
2393 |
|
|
-- one actual.
|
2394 |
|
|
|
2395 |
|
|
if not Is_Overloadable (Nam)
|
2396 |
|
|
and then Ekind (Nam) /= E_Subprogram_Type
|
2397 |
|
|
and then Ekind (Nam) /= E_Entry_Family
|
2398 |
|
|
then
|
2399 |
|
|
return;
|
2400 |
|
|
end if;
|
2401 |
|
|
|
2402 |
|
|
-- An indexing requires at least one actual
|
2403 |
|
|
|
2404 |
|
|
if not Is_Empty_List (Actuals)
|
2405 |
|
|
and then
|
2406 |
|
|
(Needs_No_Actuals (Nam)
|
2407 |
|
|
or else
|
2408 |
|
|
(Needs_One_Actual (Nam)
|
2409 |
|
|
and then Present (Next_Actual (First (Actuals)))))
|
2410 |
|
|
then
|
2411 |
|
|
if Is_Array_Type (Subp_Type) then
|
2412 |
|
|
Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
|
2413 |
|
|
|
2414 |
|
|
elsif Is_Access_Type (Subp_Type)
|
2415 |
|
|
and then Is_Array_Type (Designated_Type (Subp_Type))
|
2416 |
|
|
then
|
2417 |
|
|
Is_Indexed :=
|
2418 |
|
|
Try_Indexed_Call
|
2419 |
|
|
(N, Nam, Designated_Type (Subp_Type), Must_Skip);
|
2420 |
|
|
|
2421 |
|
|
-- The prefix can also be a parameterless function that returns an
|
2422 |
|
|
-- access to subprogram, in which case this is an indirect call.
|
2423 |
|
|
-- If this succeeds, an explicit dereference is added later on,
|
2424 |
|
|
-- in Analyze_Call or Resolve_Call.
|
2425 |
|
|
|
2426 |
|
|
elsif Is_Access_Type (Subp_Type)
|
2427 |
|
|
and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
|
2428 |
|
|
then
|
2429 |
|
|
Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
|
2430 |
|
|
end if;
|
2431 |
|
|
|
2432 |
|
|
end if;
|
2433 |
|
|
|
2434 |
|
|
-- If the call has been transformed into a slice, it is of the form
|
2435 |
|
|
-- F (Subtype) where F is parameterless. The node has been rewritten in
|
2436 |
|
|
-- Try_Indexed_Call and there is nothing else to do.
|
2437 |
|
|
|
2438 |
|
|
if Is_Indexed
|
2439 |
|
|
and then Nkind (N) = N_Slice
|
2440 |
|
|
then
|
2441 |
|
|
return;
|
2442 |
|
|
end if;
|
2443 |
|
|
|
2444 |
|
|
Normalize_Actuals
|
2445 |
|
|
(N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
|
2446 |
|
|
|
2447 |
|
|
if not Norm_OK then
|
2448 |
|
|
|
2449 |
|
|
-- If an indirect call is a possible interpretation, indicate
|
2450 |
|
|
-- success to the caller.
|
2451 |
|
|
|
2452 |
|
|
if Is_Indirect then
|
2453 |
|
|
Success := True;
|
2454 |
|
|
return;
|
2455 |
|
|
|
2456 |
|
|
-- Mismatch in number or names of parameters
|
2457 |
|
|
|
2458 |
|
|
elsif Debug_Flag_E then
|
2459 |
|
|
Write_Str (" normalization fails in call ");
|
2460 |
|
|
Write_Int (Int (N));
|
2461 |
|
|
Write_Str (" with subprogram ");
|
2462 |
|
|
Write_Int (Int (Nam));
|
2463 |
|
|
Write_Eol;
|
2464 |
|
|
end if;
|
2465 |
|
|
|
2466 |
|
|
-- If the context expects a function call, discard any interpretation
|
2467 |
|
|
-- that is a procedure. If the node is not overloaded, leave as is for
|
2468 |
|
|
-- better error reporting when type mismatch is found.
|
2469 |
|
|
|
2470 |
|
|
elsif Nkind (N) = N_Function_Call
|
2471 |
|
|
and then Is_Overloaded (Name (N))
|
2472 |
|
|
and then Ekind (Nam) = E_Procedure
|
2473 |
|
|
then
|
2474 |
|
|
return;
|
2475 |
|
|
|
2476 |
|
|
-- Ditto for function calls in a procedure context
|
2477 |
|
|
|
2478 |
|
|
elsif Nkind (N) = N_Procedure_Call_Statement
|
2479 |
|
|
and then Is_Overloaded (Name (N))
|
2480 |
|
|
and then Etype (Nam) /= Standard_Void_Type
|
2481 |
|
|
then
|
2482 |
|
|
return;
|
2483 |
|
|
|
2484 |
|
|
elsif No (Actuals) then
|
2485 |
|
|
|
2486 |
|
|
-- If Normalize succeeds, then there are default parameters for
|
2487 |
|
|
-- all formals.
|
2488 |
|
|
|
2489 |
|
|
Indicate_Name_And_Type;
|
2490 |
|
|
|
2491 |
|
|
elsif Ekind (Nam) = E_Operator then
|
2492 |
|
|
if Nkind (N) = N_Procedure_Call_Statement then
|
2493 |
|
|
return;
|
2494 |
|
|
end if;
|
2495 |
|
|
|
2496 |
|
|
-- This can occur when the prefix of the call is an operator
|
2497 |
|
|
-- name or an expanded name whose selector is an operator name.
|
2498 |
|
|
|
2499 |
|
|
Analyze_Operator_Call (N, Nam);
|
2500 |
|
|
|
2501 |
|
|
if Etype (N) /= Prev_T then
|
2502 |
|
|
|
2503 |
|
|
-- Check that operator is not hidden by a function interpretation
|
2504 |
|
|
|
2505 |
|
|
if Is_Overloaded (Name (N)) then
|
2506 |
|
|
declare
|
2507 |
|
|
I : Interp_Index;
|
2508 |
|
|
It : Interp;
|
2509 |
|
|
|
2510 |
|
|
begin
|
2511 |
|
|
Get_First_Interp (Name (N), I, It);
|
2512 |
|
|
while Present (It.Nam) loop
|
2513 |
|
|
if Operator_Hidden_By (It.Nam) then
|
2514 |
|
|
Set_Etype (N, Prev_T);
|
2515 |
|
|
return;
|
2516 |
|
|
end if;
|
2517 |
|
|
|
2518 |
|
|
Get_Next_Interp (I, It);
|
2519 |
|
|
end loop;
|
2520 |
|
|
end;
|
2521 |
|
|
end if;
|
2522 |
|
|
|
2523 |
|
|
-- If operator matches formals, record its name on the call.
|
2524 |
|
|
-- If the operator is overloaded, Resolve will select the
|
2525 |
|
|
-- correct one from the list of interpretations. The call
|
2526 |
|
|
-- node itself carries the first candidate.
|
2527 |
|
|
|
2528 |
|
|
Set_Entity (Name (N), Nam);
|
2529 |
|
|
Success := True;
|
2530 |
|
|
|
2531 |
|
|
elsif Report and then Etype (N) = Any_Type then
|
2532 |
|
|
Error_Msg_N ("incompatible arguments for operator", N);
|
2533 |
|
|
end if;
|
2534 |
|
|
|
2535 |
|
|
else
|
2536 |
|
|
-- Normalize_Actuals has chained the named associations in the
|
2537 |
|
|
-- correct order of the formals.
|
2538 |
|
|
|
2539 |
|
|
Actual := First_Actual (N);
|
2540 |
|
|
Formal := First_Formal (Nam);
|
2541 |
|
|
|
2542 |
|
|
-- If we are analyzing a call rewritten from object notation,
|
2543 |
|
|
-- skip first actual, which may be rewritten later as an
|
2544 |
|
|
-- explicit dereference.
|
2545 |
|
|
|
2546 |
|
|
if Must_Skip then
|
2547 |
|
|
Next_Actual (Actual);
|
2548 |
|
|
Next_Formal (Formal);
|
2549 |
|
|
end if;
|
2550 |
|
|
|
2551 |
|
|
while Present (Actual) and then Present (Formal) loop
|
2552 |
|
|
if Nkind (Parent (Actual)) /= N_Parameter_Association
|
2553 |
|
|
or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
|
2554 |
|
|
then
|
2555 |
|
|
-- The actual can be compatible with the formal, but we must
|
2556 |
|
|
-- also check that the context is not an address type that is
|
2557 |
|
|
-- visibly an integer type, as is the case in VMS_64. In this
|
2558 |
|
|
-- case the use of literals is illegal, except in the body of
|
2559 |
|
|
-- descendents of system, where arithmetic operations on
|
2560 |
|
|
-- address are of course used.
|
2561 |
|
|
|
2562 |
|
|
if Has_Compatible_Type (Actual, Etype (Formal))
|
2563 |
|
|
and then
|
2564 |
|
|
(Etype (Actual) /= Universal_Integer
|
2565 |
|
|
or else not Is_Descendent_Of_Address (Etype (Formal))
|
2566 |
|
|
or else
|
2567 |
|
|
Is_Predefined_File_Name
|
2568 |
|
|
(Unit_File_Name (Get_Source_Unit (N))))
|
2569 |
|
|
then
|
2570 |
|
|
Next_Actual (Actual);
|
2571 |
|
|
Next_Formal (Formal);
|
2572 |
|
|
|
2573 |
|
|
else
|
2574 |
|
|
if Debug_Flag_E then
|
2575 |
|
|
Write_Str (" type checking fails in call ");
|
2576 |
|
|
Write_Int (Int (N));
|
2577 |
|
|
Write_Str (" with formal ");
|
2578 |
|
|
Write_Int (Int (Formal));
|
2579 |
|
|
Write_Str (" in subprogram ");
|
2580 |
|
|
Write_Int (Int (Nam));
|
2581 |
|
|
Write_Eol;
|
2582 |
|
|
end if;
|
2583 |
|
|
|
2584 |
|
|
if Report and not Is_Indexed and not Is_Indirect then
|
2585 |
|
|
|
2586 |
|
|
-- Ada 2005 (AI-251): Complete the error notification
|
2587 |
|
|
-- to help new Ada 2005 users.
|
2588 |
|
|
|
2589 |
|
|
if Is_Class_Wide_Type (Etype (Formal))
|
2590 |
|
|
and then Is_Interface (Etype (Etype (Formal)))
|
2591 |
|
|
and then not Interface_Present_In_Ancestor
|
2592 |
|
|
(Typ => Etype (Actual),
|
2593 |
|
|
Iface => Etype (Etype (Formal)))
|
2594 |
|
|
then
|
2595 |
|
|
Error_Msg_NE
|
2596 |
|
|
("(Ada 2005) does not implement interface }",
|
2597 |
|
|
Actual, Etype (Etype (Formal)));
|
2598 |
|
|
end if;
|
2599 |
|
|
|
2600 |
|
|
Wrong_Type (Actual, Etype (Formal));
|
2601 |
|
|
|
2602 |
|
|
if Nkind (Actual) = N_Op_Eq
|
2603 |
|
|
and then Nkind (Left_Opnd (Actual)) = N_Identifier
|
2604 |
|
|
then
|
2605 |
|
|
Formal := First_Formal (Nam);
|
2606 |
|
|
while Present (Formal) loop
|
2607 |
|
|
if Chars (Left_Opnd (Actual)) = Chars (Formal) then
|
2608 |
|
|
Error_Msg_N -- CODEFIX
|
2609 |
|
|
("possible misspelling of `='>`!", Actual);
|
2610 |
|
|
exit;
|
2611 |
|
|
end if;
|
2612 |
|
|
|
2613 |
|
|
Next_Formal (Formal);
|
2614 |
|
|
end loop;
|
2615 |
|
|
end if;
|
2616 |
|
|
|
2617 |
|
|
if All_Errors_Mode then
|
2618 |
|
|
Error_Msg_Sloc := Sloc (Nam);
|
2619 |
|
|
|
2620 |
|
|
if Is_Overloadable (Nam)
|
2621 |
|
|
and then Present (Alias (Nam))
|
2622 |
|
|
and then not Comes_From_Source (Nam)
|
2623 |
|
|
then
|
2624 |
|
|
Error_Msg_NE
|
2625 |
|
|
("\\ =='> in call to inherited operation & #!",
|
2626 |
|
|
Actual, Nam);
|
2627 |
|
|
|
2628 |
|
|
elsif Ekind (Nam) = E_Subprogram_Type then
|
2629 |
|
|
declare
|
2630 |
|
|
Access_To_Subprogram_Typ :
|
2631 |
|
|
constant Entity_Id :=
|
2632 |
|
|
Defining_Identifier
|
2633 |
|
|
(Associated_Node_For_Itype (Nam));
|
2634 |
|
|
begin
|
2635 |
|
|
Error_Msg_NE (
|
2636 |
|
|
"\\ =='> in call to dereference of &#!",
|
2637 |
|
|
Actual, Access_To_Subprogram_Typ);
|
2638 |
|
|
end;
|
2639 |
|
|
|
2640 |
|
|
else
|
2641 |
|
|
Error_Msg_NE
|
2642 |
|
|
("\\ =='> in call to &#!", Actual, Nam);
|
2643 |
|
|
|
2644 |
|
|
end if;
|
2645 |
|
|
end if;
|
2646 |
|
|
end if;
|
2647 |
|
|
|
2648 |
|
|
return;
|
2649 |
|
|
end if;
|
2650 |
|
|
|
2651 |
|
|
else
|
2652 |
|
|
-- Normalize_Actuals has verified that a default value exists
|
2653 |
|
|
-- for this formal. Current actual names a subsequent formal.
|
2654 |
|
|
|
2655 |
|
|
Next_Formal (Formal);
|
2656 |
|
|
end if;
|
2657 |
|
|
end loop;
|
2658 |
|
|
|
2659 |
|
|
-- On exit, all actuals match
|
2660 |
|
|
|
2661 |
|
|
Indicate_Name_And_Type;
|
2662 |
|
|
end if;
|
2663 |
|
|
end Analyze_One_Call;
|
2664 |
|
|
|
2665 |
|
|
---------------------------
|
2666 |
|
|
-- Analyze_Operator_Call --
|
2667 |
|
|
---------------------------
|
2668 |
|
|
|
2669 |
|
|
procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
|
2670 |
|
|
Op_Name : constant Name_Id := Chars (Op_Id);
|
2671 |
|
|
Act1 : constant Node_Id := First_Actual (N);
|
2672 |
|
|
Act2 : constant Node_Id := Next_Actual (Act1);
|
2673 |
|
|
|
2674 |
|
|
begin
|
2675 |
|
|
-- Binary operator case
|
2676 |
|
|
|
2677 |
|
|
if Present (Act2) then
|
2678 |
|
|
|
2679 |
|
|
-- If more than two operands, then not binary operator after all
|
2680 |
|
|
|
2681 |
|
|
if Present (Next_Actual (Act2)) then
|
2682 |
|
|
return;
|
2683 |
|
|
|
2684 |
|
|
elsif Op_Name = Name_Op_Add
|
2685 |
|
|
or else Op_Name = Name_Op_Subtract
|
2686 |
|
|
or else Op_Name = Name_Op_Multiply
|
2687 |
|
|
or else Op_Name = Name_Op_Divide
|
2688 |
|
|
or else Op_Name = Name_Op_Mod
|
2689 |
|
|
or else Op_Name = Name_Op_Rem
|
2690 |
|
|
or else Op_Name = Name_Op_Expon
|
2691 |
|
|
then
|
2692 |
|
|
Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
|
2693 |
|
|
|
2694 |
|
|
elsif Op_Name = Name_Op_And
|
2695 |
|
|
or else Op_Name = Name_Op_Or
|
2696 |
|
|
or else Op_Name = Name_Op_Xor
|
2697 |
|
|
then
|
2698 |
|
|
Find_Boolean_Types (Act1, Act2, Op_Id, N);
|
2699 |
|
|
|
2700 |
|
|
elsif Op_Name = Name_Op_Lt
|
2701 |
|
|
or else Op_Name = Name_Op_Le
|
2702 |
|
|
or else Op_Name = Name_Op_Gt
|
2703 |
|
|
or else Op_Name = Name_Op_Ge
|
2704 |
|
|
then
|
2705 |
|
|
Find_Comparison_Types (Act1, Act2, Op_Id, N);
|
2706 |
|
|
|
2707 |
|
|
elsif Op_Name = Name_Op_Eq
|
2708 |
|
|
or else Op_Name = Name_Op_Ne
|
2709 |
|
|
then
|
2710 |
|
|
Find_Equality_Types (Act1, Act2, Op_Id, N);
|
2711 |
|
|
|
2712 |
|
|
elsif Op_Name = Name_Op_Concat then
|
2713 |
|
|
Find_Concatenation_Types (Act1, Act2, Op_Id, N);
|
2714 |
|
|
|
2715 |
|
|
-- Is this else null correct, or should it be an abort???
|
2716 |
|
|
|
2717 |
|
|
else
|
2718 |
|
|
null;
|
2719 |
|
|
end if;
|
2720 |
|
|
|
2721 |
|
|
-- Unary operator case
|
2722 |
|
|
|
2723 |
|
|
else
|
2724 |
|
|
if Op_Name = Name_Op_Subtract or else
|
2725 |
|
|
Op_Name = Name_Op_Add or else
|
2726 |
|
|
Op_Name = Name_Op_Abs
|
2727 |
|
|
then
|
2728 |
|
|
Find_Unary_Types (Act1, Op_Id, N);
|
2729 |
|
|
|
2730 |
|
|
elsif
|
2731 |
|
|
Op_Name = Name_Op_Not
|
2732 |
|
|
then
|
2733 |
|
|
Find_Negation_Types (Act1, Op_Id, N);
|
2734 |
|
|
|
2735 |
|
|
-- Is this else null correct, or should it be an abort???
|
2736 |
|
|
|
2737 |
|
|
else
|
2738 |
|
|
null;
|
2739 |
|
|
end if;
|
2740 |
|
|
end if;
|
2741 |
|
|
end Analyze_Operator_Call;
|
2742 |
|
|
|
2743 |
|
|
-------------------------------------------
|
2744 |
|
|
-- Analyze_Overloaded_Selected_Component --
|
2745 |
|
|
-------------------------------------------
|
2746 |
|
|
|
2747 |
|
|
procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
|
2748 |
|
|
Nam : constant Node_Id := Prefix (N);
|
2749 |
|
|
Sel : constant Node_Id := Selector_Name (N);
|
2750 |
|
|
Comp : Entity_Id;
|
2751 |
|
|
I : Interp_Index;
|
2752 |
|
|
It : Interp;
|
2753 |
|
|
T : Entity_Id;
|
2754 |
|
|
|
2755 |
|
|
begin
|
2756 |
|
|
Set_Etype (Sel, Any_Type);
|
2757 |
|
|
|
2758 |
|
|
Get_First_Interp (Nam, I, It);
|
2759 |
|
|
while Present (It.Typ) loop
|
2760 |
|
|
if Is_Access_Type (It.Typ) then
|
2761 |
|
|
T := Designated_Type (It.Typ);
|
2762 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
2763 |
|
|
else
|
2764 |
|
|
T := It.Typ;
|
2765 |
|
|
end if;
|
2766 |
|
|
|
2767 |
|
|
if Is_Record_Type (T) then
|
2768 |
|
|
|
2769 |
|
|
-- If the prefix is a class-wide type, the visible components are
|
2770 |
|
|
-- those of the base type.
|
2771 |
|
|
|
2772 |
|
|
if Is_Class_Wide_Type (T) then
|
2773 |
|
|
T := Etype (T);
|
2774 |
|
|
end if;
|
2775 |
|
|
|
2776 |
|
|
Comp := First_Entity (T);
|
2777 |
|
|
while Present (Comp) loop
|
2778 |
|
|
if Chars (Comp) = Chars (Sel)
|
2779 |
|
|
and then Is_Visible_Component (Comp)
|
2780 |
|
|
then
|
2781 |
|
|
|
2782 |
|
|
-- AI05-105: if the context is an object renaming with
|
2783 |
|
|
-- an anonymous access type, the expected type of the
|
2784 |
|
|
-- object must be anonymous. This is a name resolution rule.
|
2785 |
|
|
|
2786 |
|
|
if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
|
2787 |
|
|
or else No (Access_Definition (Parent (N)))
|
2788 |
|
|
or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
|
2789 |
|
|
or else
|
2790 |
|
|
Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
|
2791 |
|
|
then
|
2792 |
|
|
Set_Entity (Sel, Comp);
|
2793 |
|
|
Set_Etype (Sel, Etype (Comp));
|
2794 |
|
|
Add_One_Interp (N, Etype (Comp), Etype (Comp));
|
2795 |
|
|
|
2796 |
|
|
-- This also specifies a candidate to resolve the name.
|
2797 |
|
|
-- Further overloading will be resolved from context.
|
2798 |
|
|
-- The selector name itself does not carry overloading
|
2799 |
|
|
-- information.
|
2800 |
|
|
|
2801 |
|
|
Set_Etype (Nam, It.Typ);
|
2802 |
|
|
|
2803 |
|
|
else
|
2804 |
|
|
-- Named access type in the context of a renaming
|
2805 |
|
|
-- declaration with an access definition. Remove
|
2806 |
|
|
-- inapplicable candidate.
|
2807 |
|
|
|
2808 |
|
|
Remove_Interp (I);
|
2809 |
|
|
end if;
|
2810 |
|
|
end if;
|
2811 |
|
|
|
2812 |
|
|
Next_Entity (Comp);
|
2813 |
|
|
end loop;
|
2814 |
|
|
|
2815 |
|
|
elsif Is_Concurrent_Type (T) then
|
2816 |
|
|
Comp := First_Entity (T);
|
2817 |
|
|
while Present (Comp)
|
2818 |
|
|
and then Comp /= First_Private_Entity (T)
|
2819 |
|
|
loop
|
2820 |
|
|
if Chars (Comp) = Chars (Sel) then
|
2821 |
|
|
if Is_Overloadable (Comp) then
|
2822 |
|
|
Add_One_Interp (Sel, Comp, Etype (Comp));
|
2823 |
|
|
else
|
2824 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
2825 |
|
|
Generate_Reference (Comp, Sel);
|
2826 |
|
|
end if;
|
2827 |
|
|
|
2828 |
|
|
Set_Etype (Sel, Etype (Comp));
|
2829 |
|
|
Set_Etype (N, Etype (Comp));
|
2830 |
|
|
Set_Etype (Nam, It.Typ);
|
2831 |
|
|
|
2832 |
|
|
-- For access type case, introduce explicit dereference for
|
2833 |
|
|
-- more uniform treatment of entry calls. Do this only once
|
2834 |
|
|
-- if several interpretations yield an access type.
|
2835 |
|
|
|
2836 |
|
|
if Is_Access_Type (Etype (Nam))
|
2837 |
|
|
and then Nkind (Nam) /= N_Explicit_Dereference
|
2838 |
|
|
then
|
2839 |
|
|
Insert_Explicit_Dereference (Nam);
|
2840 |
|
|
Error_Msg_NW
|
2841 |
|
|
(Warn_On_Dereference, "?implicit dereference", N);
|
2842 |
|
|
end if;
|
2843 |
|
|
end if;
|
2844 |
|
|
|
2845 |
|
|
Next_Entity (Comp);
|
2846 |
|
|
end loop;
|
2847 |
|
|
|
2848 |
|
|
Set_Is_Overloaded (N, Is_Overloaded (Sel));
|
2849 |
|
|
end if;
|
2850 |
|
|
|
2851 |
|
|
Get_Next_Interp (I, It);
|
2852 |
|
|
end loop;
|
2853 |
|
|
|
2854 |
|
|
if Etype (N) = Any_Type
|
2855 |
|
|
and then not Try_Object_Operation (N)
|
2856 |
|
|
then
|
2857 |
|
|
Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
|
2858 |
|
|
Set_Entity (Sel, Any_Id);
|
2859 |
|
|
Set_Etype (Sel, Any_Type);
|
2860 |
|
|
end if;
|
2861 |
|
|
end Analyze_Overloaded_Selected_Component;
|
2862 |
|
|
|
2863 |
|
|
----------------------------------
|
2864 |
|
|
-- Analyze_Qualified_Expression --
|
2865 |
|
|
----------------------------------
|
2866 |
|
|
|
2867 |
|
|
procedure Analyze_Qualified_Expression (N : Node_Id) is
|
2868 |
|
|
Mark : constant Entity_Id := Subtype_Mark (N);
|
2869 |
|
|
Expr : constant Node_Id := Expression (N);
|
2870 |
|
|
I : Interp_Index;
|
2871 |
|
|
It : Interp;
|
2872 |
|
|
T : Entity_Id;
|
2873 |
|
|
|
2874 |
|
|
begin
|
2875 |
|
|
Analyze_Expression (Expr);
|
2876 |
|
|
|
2877 |
|
|
Set_Etype (N, Any_Type);
|
2878 |
|
|
Find_Type (Mark);
|
2879 |
|
|
T := Entity (Mark);
|
2880 |
|
|
Set_Etype (N, T);
|
2881 |
|
|
|
2882 |
|
|
if T = Any_Type then
|
2883 |
|
|
return;
|
2884 |
|
|
end if;
|
2885 |
|
|
|
2886 |
|
|
Check_Fully_Declared (T, N);
|
2887 |
|
|
|
2888 |
|
|
-- If expected type is class-wide, check for exact match before
|
2889 |
|
|
-- expansion, because if the expression is a dispatching call it
|
2890 |
|
|
-- may be rewritten as explicit dereference with class-wide result.
|
2891 |
|
|
-- If expression is overloaded, retain only interpretations that
|
2892 |
|
|
-- will yield exact matches.
|
2893 |
|
|
|
2894 |
|
|
if Is_Class_Wide_Type (T) then
|
2895 |
|
|
if not Is_Overloaded (Expr) then
|
2896 |
|
|
if Base_Type (Etype (Expr)) /= Base_Type (T) then
|
2897 |
|
|
if Nkind (Expr) = N_Aggregate then
|
2898 |
|
|
Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
|
2899 |
|
|
else
|
2900 |
|
|
Wrong_Type (Expr, T);
|
2901 |
|
|
end if;
|
2902 |
|
|
end if;
|
2903 |
|
|
|
2904 |
|
|
else
|
2905 |
|
|
Get_First_Interp (Expr, I, It);
|
2906 |
|
|
|
2907 |
|
|
while Present (It.Nam) loop
|
2908 |
|
|
if Base_Type (It.Typ) /= Base_Type (T) then
|
2909 |
|
|
Remove_Interp (I);
|
2910 |
|
|
end if;
|
2911 |
|
|
|
2912 |
|
|
Get_Next_Interp (I, It);
|
2913 |
|
|
end loop;
|
2914 |
|
|
end if;
|
2915 |
|
|
end if;
|
2916 |
|
|
|
2917 |
|
|
Set_Etype (N, T);
|
2918 |
|
|
end Analyze_Qualified_Expression;
|
2919 |
|
|
|
2920 |
|
|
-------------------
|
2921 |
|
|
-- Analyze_Range --
|
2922 |
|
|
-------------------
|
2923 |
|
|
|
2924 |
|
|
procedure Analyze_Range (N : Node_Id) is
|
2925 |
|
|
L : constant Node_Id := Low_Bound (N);
|
2926 |
|
|
H : constant Node_Id := High_Bound (N);
|
2927 |
|
|
I1, I2 : Interp_Index;
|
2928 |
|
|
It1, It2 : Interp;
|
2929 |
|
|
|
2930 |
|
|
procedure Check_Common_Type (T1, T2 : Entity_Id);
|
2931 |
|
|
-- Verify the compatibility of two types, and choose the
|
2932 |
|
|
-- non universal one if the other is universal.
|
2933 |
|
|
|
2934 |
|
|
procedure Check_High_Bound (T : Entity_Id);
|
2935 |
|
|
-- Test one interpretation of the low bound against all those
|
2936 |
|
|
-- of the high bound.
|
2937 |
|
|
|
2938 |
|
|
procedure Check_Universal_Expression (N : Node_Id);
|
2939 |
|
|
-- In Ada83, reject bounds of a universal range that are not
|
2940 |
|
|
-- literals or entity names.
|
2941 |
|
|
|
2942 |
|
|
-----------------------
|
2943 |
|
|
-- Check_Common_Type --
|
2944 |
|
|
-----------------------
|
2945 |
|
|
|
2946 |
|
|
procedure Check_Common_Type (T1, T2 : Entity_Id) is
|
2947 |
|
|
begin
|
2948 |
|
|
if Covers (T1 => T1, T2 => T2)
|
2949 |
|
|
or else
|
2950 |
|
|
Covers (T1 => T2, T2 => T1)
|
2951 |
|
|
then
|
2952 |
|
|
if T1 = Universal_Integer
|
2953 |
|
|
or else T1 = Universal_Real
|
2954 |
|
|
or else T1 = Any_Character
|
2955 |
|
|
then
|
2956 |
|
|
Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
|
2957 |
|
|
|
2958 |
|
|
elsif T1 = T2 then
|
2959 |
|
|
Add_One_Interp (N, T1, T1);
|
2960 |
|
|
|
2961 |
|
|
else
|
2962 |
|
|
Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
|
2963 |
|
|
end if;
|
2964 |
|
|
end if;
|
2965 |
|
|
end Check_Common_Type;
|
2966 |
|
|
|
2967 |
|
|
----------------------
|
2968 |
|
|
-- Check_High_Bound --
|
2969 |
|
|
----------------------
|
2970 |
|
|
|
2971 |
|
|
procedure Check_High_Bound (T : Entity_Id) is
|
2972 |
|
|
begin
|
2973 |
|
|
if not Is_Overloaded (H) then
|
2974 |
|
|
Check_Common_Type (T, Etype (H));
|
2975 |
|
|
else
|
2976 |
|
|
Get_First_Interp (H, I2, It2);
|
2977 |
|
|
while Present (It2.Typ) loop
|
2978 |
|
|
Check_Common_Type (T, It2.Typ);
|
2979 |
|
|
Get_Next_Interp (I2, It2);
|
2980 |
|
|
end loop;
|
2981 |
|
|
end if;
|
2982 |
|
|
end Check_High_Bound;
|
2983 |
|
|
|
2984 |
|
|
-----------------------------
|
2985 |
|
|
-- Is_Universal_Expression --
|
2986 |
|
|
-----------------------------
|
2987 |
|
|
|
2988 |
|
|
procedure Check_Universal_Expression (N : Node_Id) is
|
2989 |
|
|
begin
|
2990 |
|
|
if Etype (N) = Universal_Integer
|
2991 |
|
|
and then Nkind (N) /= N_Integer_Literal
|
2992 |
|
|
and then not Is_Entity_Name (N)
|
2993 |
|
|
and then Nkind (N) /= N_Attribute_Reference
|
2994 |
|
|
then
|
2995 |
|
|
Error_Msg_N ("illegal bound in discrete range", N);
|
2996 |
|
|
end if;
|
2997 |
|
|
end Check_Universal_Expression;
|
2998 |
|
|
|
2999 |
|
|
-- Start of processing for Analyze_Range
|
3000 |
|
|
|
3001 |
|
|
begin
|
3002 |
|
|
Set_Etype (N, Any_Type);
|
3003 |
|
|
Analyze_Expression (L);
|
3004 |
|
|
Analyze_Expression (H);
|
3005 |
|
|
|
3006 |
|
|
if Etype (L) = Any_Type or else Etype (H) = Any_Type then
|
3007 |
|
|
return;
|
3008 |
|
|
|
3009 |
|
|
else
|
3010 |
|
|
if not Is_Overloaded (L) then
|
3011 |
|
|
Check_High_Bound (Etype (L));
|
3012 |
|
|
else
|
3013 |
|
|
Get_First_Interp (L, I1, It1);
|
3014 |
|
|
while Present (It1.Typ) loop
|
3015 |
|
|
Check_High_Bound (It1.Typ);
|
3016 |
|
|
Get_Next_Interp (I1, It1);
|
3017 |
|
|
end loop;
|
3018 |
|
|
end if;
|
3019 |
|
|
|
3020 |
|
|
-- If result is Any_Type, then we did not find a compatible pair
|
3021 |
|
|
|
3022 |
|
|
if Etype (N) = Any_Type then
|
3023 |
|
|
Error_Msg_N ("incompatible types in range ", N);
|
3024 |
|
|
end if;
|
3025 |
|
|
end if;
|
3026 |
|
|
|
3027 |
|
|
if Ada_Version = Ada_83
|
3028 |
|
|
and then
|
3029 |
|
|
(Nkind (Parent (N)) = N_Loop_Parameter_Specification
|
3030 |
|
|
or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
|
3031 |
|
|
then
|
3032 |
|
|
Check_Universal_Expression (L);
|
3033 |
|
|
Check_Universal_Expression (H);
|
3034 |
|
|
end if;
|
3035 |
|
|
end Analyze_Range;
|
3036 |
|
|
|
3037 |
|
|
-----------------------
|
3038 |
|
|
-- Analyze_Reference --
|
3039 |
|
|
-----------------------
|
3040 |
|
|
|
3041 |
|
|
procedure Analyze_Reference (N : Node_Id) is
|
3042 |
|
|
P : constant Node_Id := Prefix (N);
|
3043 |
|
|
E : Entity_Id;
|
3044 |
|
|
T : Entity_Id;
|
3045 |
|
|
Acc_Type : Entity_Id;
|
3046 |
|
|
|
3047 |
|
|
begin
|
3048 |
|
|
Analyze (P);
|
3049 |
|
|
|
3050 |
|
|
-- An interesting error check, if we take the 'Reference of an object
|
3051 |
|
|
-- for which a pragma Atomic or Volatile has been given, and the type
|
3052 |
|
|
-- of the object is not Atomic or Volatile, then we are in trouble. The
|
3053 |
|
|
-- problem is that no trace of the atomic/volatile status will remain
|
3054 |
|
|
-- for the backend to respect when it deals with the resulting pointer,
|
3055 |
|
|
-- since the pointer type will not be marked atomic (it is a pointer to
|
3056 |
|
|
-- the base type of the object).
|
3057 |
|
|
|
3058 |
|
|
-- It is not clear if that can ever occur, but in case it does, we will
|
3059 |
|
|
-- generate an error message. Not clear if this message can ever be
|
3060 |
|
|
-- generated, and pretty clear that it represents a bug if it is, still
|
3061 |
|
|
-- seems worth checking!
|
3062 |
|
|
|
3063 |
|
|
T := Etype (P);
|
3064 |
|
|
|
3065 |
|
|
if Is_Entity_Name (P)
|
3066 |
|
|
and then Is_Object_Reference (P)
|
3067 |
|
|
then
|
3068 |
|
|
E := Entity (P);
|
3069 |
|
|
T := Etype (P);
|
3070 |
|
|
|
3071 |
|
|
if (Has_Atomic_Components (E)
|
3072 |
|
|
and then not Has_Atomic_Components (T))
|
3073 |
|
|
or else
|
3074 |
|
|
(Has_Volatile_Components (E)
|
3075 |
|
|
and then not Has_Volatile_Components (T))
|
3076 |
|
|
or else (Is_Atomic (E) and then not Is_Atomic (T))
|
3077 |
|
|
or else (Is_Volatile (E) and then not Is_Volatile (T))
|
3078 |
|
|
then
|
3079 |
|
|
Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
|
3080 |
|
|
end if;
|
3081 |
|
|
end if;
|
3082 |
|
|
|
3083 |
|
|
-- Carry on with normal processing
|
3084 |
|
|
|
3085 |
|
|
Acc_Type := Create_Itype (E_Allocator_Type, N);
|
3086 |
|
|
Set_Etype (Acc_Type, Acc_Type);
|
3087 |
|
|
Set_Directly_Designated_Type (Acc_Type, Etype (P));
|
3088 |
|
|
Set_Etype (N, Acc_Type);
|
3089 |
|
|
end Analyze_Reference;
|
3090 |
|
|
|
3091 |
|
|
--------------------------------
|
3092 |
|
|
-- Analyze_Selected_Component --
|
3093 |
|
|
--------------------------------
|
3094 |
|
|
|
3095 |
|
|
-- Prefix is a record type or a task or protected type. In the
|
3096 |
|
|
-- later case, the selector must denote a visible entry.
|
3097 |
|
|
|
3098 |
|
|
procedure Analyze_Selected_Component (N : Node_Id) is
|
3099 |
|
|
Name : constant Node_Id := Prefix (N);
|
3100 |
|
|
Sel : constant Node_Id := Selector_Name (N);
|
3101 |
|
|
Act_Decl : Node_Id;
|
3102 |
|
|
Comp : Entity_Id;
|
3103 |
|
|
Has_Candidate : Boolean := False;
|
3104 |
|
|
In_Scope : Boolean;
|
3105 |
|
|
Parent_N : Node_Id;
|
3106 |
|
|
Pent : Entity_Id := Empty;
|
3107 |
|
|
Prefix_Type : Entity_Id;
|
3108 |
|
|
|
3109 |
|
|
Type_To_Use : Entity_Id;
|
3110 |
|
|
-- In most cases this is the Prefix_Type, but if the Prefix_Type is
|
3111 |
|
|
-- a class-wide type, we use its root type, whose components are
|
3112 |
|
|
-- present in the class-wide type.
|
3113 |
|
|
|
3114 |
|
|
function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
|
3115 |
|
|
-- It is known that the parent of N denotes a subprogram call. Comp
|
3116 |
|
|
-- is an overloadable component of the concurrent type of the prefix.
|
3117 |
|
|
-- Determine whether all formals of the parent of N and Comp are mode
|
3118 |
|
|
-- conformant. If the parent node is not analyzed yet it may be an
|
3119 |
|
|
-- indexed component rather than a function call.
|
3120 |
|
|
|
3121 |
|
|
------------------------------
|
3122 |
|
|
-- Has_Mode_Conformant_Spec --
|
3123 |
|
|
------------------------------
|
3124 |
|
|
|
3125 |
|
|
function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
|
3126 |
|
|
Comp_Param : Entity_Id;
|
3127 |
|
|
Param : Node_Id;
|
3128 |
|
|
Param_Typ : Entity_Id;
|
3129 |
|
|
|
3130 |
|
|
begin
|
3131 |
|
|
Comp_Param := First_Formal (Comp);
|
3132 |
|
|
|
3133 |
|
|
if Nkind (Parent (N)) = N_Indexed_Component then
|
3134 |
|
|
Param := First (Expressions (Parent (N)));
|
3135 |
|
|
else
|
3136 |
|
|
Param := First (Parameter_Associations (Parent (N)));
|
3137 |
|
|
end if;
|
3138 |
|
|
|
3139 |
|
|
while Present (Comp_Param)
|
3140 |
|
|
and then Present (Param)
|
3141 |
|
|
loop
|
3142 |
|
|
Param_Typ := Find_Parameter_Type (Param);
|
3143 |
|
|
|
3144 |
|
|
if Present (Param_Typ)
|
3145 |
|
|
and then
|
3146 |
|
|
not Conforming_Types
|
3147 |
|
|
(Etype (Comp_Param), Param_Typ, Mode_Conformant)
|
3148 |
|
|
then
|
3149 |
|
|
return False;
|
3150 |
|
|
end if;
|
3151 |
|
|
|
3152 |
|
|
Next_Formal (Comp_Param);
|
3153 |
|
|
Next (Param);
|
3154 |
|
|
end loop;
|
3155 |
|
|
|
3156 |
|
|
-- One of the specs has additional formals
|
3157 |
|
|
|
3158 |
|
|
if Present (Comp_Param) or else Present (Param) then
|
3159 |
|
|
return False;
|
3160 |
|
|
end if;
|
3161 |
|
|
|
3162 |
|
|
return True;
|
3163 |
|
|
end Has_Mode_Conformant_Spec;
|
3164 |
|
|
|
3165 |
|
|
-- Start of processing for Analyze_Selected_Component
|
3166 |
|
|
|
3167 |
|
|
begin
|
3168 |
|
|
Set_Etype (N, Any_Type);
|
3169 |
|
|
|
3170 |
|
|
if Is_Overloaded (Name) then
|
3171 |
|
|
Analyze_Overloaded_Selected_Component (N);
|
3172 |
|
|
return;
|
3173 |
|
|
|
3174 |
|
|
elsif Etype (Name) = Any_Type then
|
3175 |
|
|
Set_Entity (Sel, Any_Id);
|
3176 |
|
|
Set_Etype (Sel, Any_Type);
|
3177 |
|
|
return;
|
3178 |
|
|
|
3179 |
|
|
else
|
3180 |
|
|
Prefix_Type := Etype (Name);
|
3181 |
|
|
end if;
|
3182 |
|
|
|
3183 |
|
|
if Is_Access_Type (Prefix_Type) then
|
3184 |
|
|
|
3185 |
|
|
-- A RACW object can never be used as prefix of a selected
|
3186 |
|
|
-- component since that means it is dereferenced without
|
3187 |
|
|
-- being a controlling operand of a dispatching operation
|
3188 |
|
|
-- (RM E.2.2(16/1)). Before reporting an error, we must check
|
3189 |
|
|
-- whether this is actually a dispatching call in prefix form.
|
3190 |
|
|
|
3191 |
|
|
if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
|
3192 |
|
|
and then Comes_From_Source (N)
|
3193 |
|
|
then
|
3194 |
|
|
if Try_Object_Operation (N) then
|
3195 |
|
|
return;
|
3196 |
|
|
else
|
3197 |
|
|
Error_Msg_N
|
3198 |
|
|
("invalid dereference of a remote access-to-class-wide value",
|
3199 |
|
|
N);
|
3200 |
|
|
end if;
|
3201 |
|
|
|
3202 |
|
|
-- Normal case of selected component applied to access type
|
3203 |
|
|
|
3204 |
|
|
else
|
3205 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
3206 |
|
|
|
3207 |
|
|
if Is_Entity_Name (Name) then
|
3208 |
|
|
Pent := Entity (Name);
|
3209 |
|
|
elsif Nkind (Name) = N_Selected_Component
|
3210 |
|
|
and then Is_Entity_Name (Selector_Name (Name))
|
3211 |
|
|
then
|
3212 |
|
|
Pent := Entity (Selector_Name (Name));
|
3213 |
|
|
end if;
|
3214 |
|
|
|
3215 |
|
|
Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
|
3216 |
|
|
end if;
|
3217 |
|
|
|
3218 |
|
|
-- If we have an explicit dereference of a remote access-to-class-wide
|
3219 |
|
|
-- value, then issue an error (see RM-E.2.2(16/1)). However we first
|
3220 |
|
|
-- have to check for the case of a prefix that is a controlling operand
|
3221 |
|
|
-- of a prefixed dispatching call, as the dereference is legal in that
|
3222 |
|
|
-- case. Normally this condition is checked in Validate_Remote_Access_
|
3223 |
|
|
-- To_Class_Wide_Type, but we have to defer the checking for selected
|
3224 |
|
|
-- component prefixes because of the prefixed dispatching call case.
|
3225 |
|
|
-- Note that implicit dereferences are checked for this just above.
|
3226 |
|
|
|
3227 |
|
|
elsif Nkind (Name) = N_Explicit_Dereference
|
3228 |
|
|
and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
|
3229 |
|
|
and then Comes_From_Source (N)
|
3230 |
|
|
then
|
3231 |
|
|
if Try_Object_Operation (N) then
|
3232 |
|
|
return;
|
3233 |
|
|
else
|
3234 |
|
|
Error_Msg_N
|
3235 |
|
|
("invalid dereference of a remote access-to-class-wide value",
|
3236 |
|
|
N);
|
3237 |
|
|
end if;
|
3238 |
|
|
end if;
|
3239 |
|
|
|
3240 |
|
|
-- (Ada 2005): if the prefix is the limited view of a type, and
|
3241 |
|
|
-- the context already includes the full view, use the full view
|
3242 |
|
|
-- in what follows, either to retrieve a component of to find
|
3243 |
|
|
-- a primitive operation. If the prefix is an explicit dereference,
|
3244 |
|
|
-- set the type of the prefix to reflect this transformation.
|
3245 |
|
|
-- If the non-limited view is itself an incomplete type, get the
|
3246 |
|
|
-- full view if available.
|
3247 |
|
|
|
3248 |
|
|
if Is_Incomplete_Type (Prefix_Type)
|
3249 |
|
|
and then From_With_Type (Prefix_Type)
|
3250 |
|
|
and then Present (Non_Limited_View (Prefix_Type))
|
3251 |
|
|
then
|
3252 |
|
|
Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
|
3253 |
|
|
|
3254 |
|
|
if Nkind (N) = N_Explicit_Dereference then
|
3255 |
|
|
Set_Etype (Prefix (N), Prefix_Type);
|
3256 |
|
|
end if;
|
3257 |
|
|
|
3258 |
|
|
elsif Ekind (Prefix_Type) = E_Class_Wide_Type
|
3259 |
|
|
and then From_With_Type (Prefix_Type)
|
3260 |
|
|
and then Present (Non_Limited_View (Etype (Prefix_Type)))
|
3261 |
|
|
then
|
3262 |
|
|
Prefix_Type :=
|
3263 |
|
|
Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
|
3264 |
|
|
|
3265 |
|
|
if Nkind (N) = N_Explicit_Dereference then
|
3266 |
|
|
Set_Etype (Prefix (N), Prefix_Type);
|
3267 |
|
|
end if;
|
3268 |
|
|
end if;
|
3269 |
|
|
|
3270 |
|
|
if Ekind (Prefix_Type) = E_Private_Subtype then
|
3271 |
|
|
Prefix_Type := Base_Type (Prefix_Type);
|
3272 |
|
|
end if;
|
3273 |
|
|
|
3274 |
|
|
Type_To_Use := Prefix_Type;
|
3275 |
|
|
|
3276 |
|
|
-- For class-wide types, use the entity list of the root type. This
|
3277 |
|
|
-- indirection is specially important for private extensions because
|
3278 |
|
|
-- only the root type get switched (not the class-wide type).
|
3279 |
|
|
|
3280 |
|
|
if Is_Class_Wide_Type (Prefix_Type) then
|
3281 |
|
|
Type_To_Use := Root_Type (Prefix_Type);
|
3282 |
|
|
end if;
|
3283 |
|
|
|
3284 |
|
|
Comp := First_Entity (Type_To_Use);
|
3285 |
|
|
|
3286 |
|
|
-- If the selector has an original discriminant, the node appears in
|
3287 |
|
|
-- an instance. Replace the discriminant with the corresponding one
|
3288 |
|
|
-- in the current discriminated type. For nested generics, this must
|
3289 |
|
|
-- be done transitively, so note the new original discriminant.
|
3290 |
|
|
|
3291 |
|
|
if Nkind (Sel) = N_Identifier
|
3292 |
|
|
and then Present (Original_Discriminant (Sel))
|
3293 |
|
|
then
|
3294 |
|
|
Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
|
3295 |
|
|
|
3296 |
|
|
-- Mark entity before rewriting, for completeness and because
|
3297 |
|
|
-- subsequent semantic checks might examine the original node.
|
3298 |
|
|
|
3299 |
|
|
Set_Entity (Sel, Comp);
|
3300 |
|
|
Rewrite (Selector_Name (N),
|
3301 |
|
|
New_Occurrence_Of (Comp, Sloc (N)));
|
3302 |
|
|
Set_Original_Discriminant (Selector_Name (N), Comp);
|
3303 |
|
|
Set_Etype (N, Etype (Comp));
|
3304 |
|
|
|
3305 |
|
|
if Is_Access_Type (Etype (Name)) then
|
3306 |
|
|
Insert_Explicit_Dereference (Name);
|
3307 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
3308 |
|
|
end if;
|
3309 |
|
|
|
3310 |
|
|
elsif Is_Record_Type (Prefix_Type) then
|
3311 |
|
|
|
3312 |
|
|
-- Find component with given name
|
3313 |
|
|
|
3314 |
|
|
while Present (Comp) loop
|
3315 |
|
|
if Chars (Comp) = Chars (Sel)
|
3316 |
|
|
and then Is_Visible_Component (Comp)
|
3317 |
|
|
then
|
3318 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
3319 |
|
|
Set_Etype (Sel, Etype (Comp));
|
3320 |
|
|
|
3321 |
|
|
if Ekind (Comp) = E_Discriminant then
|
3322 |
|
|
if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
|
3323 |
|
|
Error_Msg_N
|
3324 |
|
|
("cannot reference discriminant of Unchecked_Union",
|
3325 |
|
|
Sel);
|
3326 |
|
|
end if;
|
3327 |
|
|
|
3328 |
|
|
if Is_Generic_Type (Prefix_Type)
|
3329 |
|
|
or else
|
3330 |
|
|
Is_Generic_Type (Root_Type (Prefix_Type))
|
3331 |
|
|
then
|
3332 |
|
|
Set_Original_Discriminant (Sel, Comp);
|
3333 |
|
|
end if;
|
3334 |
|
|
end if;
|
3335 |
|
|
|
3336 |
|
|
-- Resolve the prefix early otherwise it is not possible to
|
3337 |
|
|
-- build the actual subtype of the component: it may need
|
3338 |
|
|
-- to duplicate this prefix and duplication is only allowed
|
3339 |
|
|
-- on fully resolved expressions.
|
3340 |
|
|
|
3341 |
|
|
Resolve (Name);
|
3342 |
|
|
|
3343 |
|
|
-- Ada 2005 (AI-50217): Check wrong use of incomplete types or
|
3344 |
|
|
-- subtypes in a package specification.
|
3345 |
|
|
-- Example:
|
3346 |
|
|
|
3347 |
|
|
-- limited with Pkg;
|
3348 |
|
|
-- package Pkg is
|
3349 |
|
|
-- type Acc_Inc is access Pkg.T;
|
3350 |
|
|
-- X : Acc_Inc;
|
3351 |
|
|
-- N : Natural := X.all.Comp; -- ERROR, limited view
|
3352 |
|
|
-- end Pkg; -- Comp is not visible
|
3353 |
|
|
|
3354 |
|
|
if Nkind (Name) = N_Explicit_Dereference
|
3355 |
|
|
and then From_With_Type (Etype (Prefix (Name)))
|
3356 |
|
|
and then not Is_Potentially_Use_Visible (Etype (Name))
|
3357 |
|
|
and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
|
3358 |
|
|
N_Package_Specification
|
3359 |
|
|
then
|
3360 |
|
|
Error_Msg_NE
|
3361 |
|
|
("premature usage of incomplete}", Prefix (Name),
|
3362 |
|
|
Etype (Prefix (Name)));
|
3363 |
|
|
end if;
|
3364 |
|
|
|
3365 |
|
|
-- We never need an actual subtype for the case of a selection
|
3366 |
|
|
-- for a indexed component of a non-packed array, since in
|
3367 |
|
|
-- this case gigi generates all the checks and can find the
|
3368 |
|
|
-- necessary bounds information.
|
3369 |
|
|
|
3370 |
|
|
-- We also do not need an actual subtype for the case of
|
3371 |
|
|
-- a first, last, length, or range attribute applied to a
|
3372 |
|
|
-- non-packed array, since gigi can again get the bounds in
|
3373 |
|
|
-- these cases (gigi cannot handle the packed case, since it
|
3374 |
|
|
-- has the bounds of the packed array type, not the original
|
3375 |
|
|
-- bounds of the type). However, if the prefix is itself a
|
3376 |
|
|
-- selected component, as in a.b.c (i), gigi may regard a.b.c
|
3377 |
|
|
-- as a dynamic-sized temporary, so we do generate an actual
|
3378 |
|
|
-- subtype for this case.
|
3379 |
|
|
|
3380 |
|
|
Parent_N := Parent (N);
|
3381 |
|
|
|
3382 |
|
|
if not Is_Packed (Etype (Comp))
|
3383 |
|
|
and then
|
3384 |
|
|
((Nkind (Parent_N) = N_Indexed_Component
|
3385 |
|
|
and then Nkind (Name) /= N_Selected_Component)
|
3386 |
|
|
or else
|
3387 |
|
|
(Nkind (Parent_N) = N_Attribute_Reference
|
3388 |
|
|
and then (Attribute_Name (Parent_N) = Name_First
|
3389 |
|
|
or else
|
3390 |
|
|
Attribute_Name (Parent_N) = Name_Last
|
3391 |
|
|
or else
|
3392 |
|
|
Attribute_Name (Parent_N) = Name_Length
|
3393 |
|
|
or else
|
3394 |
|
|
Attribute_Name (Parent_N) = Name_Range)))
|
3395 |
|
|
then
|
3396 |
|
|
Set_Etype (N, Etype (Comp));
|
3397 |
|
|
|
3398 |
|
|
-- If full analysis is not enabled, we do not generate an
|
3399 |
|
|
-- actual subtype, because in the absence of expansion
|
3400 |
|
|
-- reference to a formal of a protected type, for example,
|
3401 |
|
|
-- will not be properly transformed, and will lead to
|
3402 |
|
|
-- out-of-scope references in gigi.
|
3403 |
|
|
|
3404 |
|
|
-- In all other cases, we currently build an actual subtype.
|
3405 |
|
|
-- It seems likely that many of these cases can be avoided,
|
3406 |
|
|
-- but right now, the front end makes direct references to the
|
3407 |
|
|
-- bounds (e.g. in generating a length check), and if we do
|
3408 |
|
|
-- not make an actual subtype, we end up getting a direct
|
3409 |
|
|
-- reference to a discriminant, which will not do.
|
3410 |
|
|
|
3411 |
|
|
elsif Full_Analysis then
|
3412 |
|
|
Act_Decl :=
|
3413 |
|
|
Build_Actual_Subtype_Of_Component (Etype (Comp), N);
|
3414 |
|
|
Insert_Action (N, Act_Decl);
|
3415 |
|
|
|
3416 |
|
|
if No (Act_Decl) then
|
3417 |
|
|
Set_Etype (N, Etype (Comp));
|
3418 |
|
|
|
3419 |
|
|
else
|
3420 |
|
|
-- Component type depends on discriminants. Enter the
|
3421 |
|
|
-- main attributes of the subtype.
|
3422 |
|
|
|
3423 |
|
|
declare
|
3424 |
|
|
Subt : constant Entity_Id :=
|
3425 |
|
|
Defining_Identifier (Act_Decl);
|
3426 |
|
|
|
3427 |
|
|
begin
|
3428 |
|
|
Set_Etype (Subt, Base_Type (Etype (Comp)));
|
3429 |
|
|
Set_Ekind (Subt, Ekind (Etype (Comp)));
|
3430 |
|
|
Set_Etype (N, Subt);
|
3431 |
|
|
end;
|
3432 |
|
|
end if;
|
3433 |
|
|
|
3434 |
|
|
-- If Full_Analysis not enabled, just set the Etype
|
3435 |
|
|
|
3436 |
|
|
else
|
3437 |
|
|
Set_Etype (N, Etype (Comp));
|
3438 |
|
|
end if;
|
3439 |
|
|
|
3440 |
|
|
return;
|
3441 |
|
|
end if;
|
3442 |
|
|
|
3443 |
|
|
-- If the prefix is a private extension, check only the visible
|
3444 |
|
|
-- components of the partial view. This must include the tag,
|
3445 |
|
|
-- which can appear in expanded code in a tag check.
|
3446 |
|
|
|
3447 |
|
|
if Ekind (Type_To_Use) = E_Record_Type_With_Private
|
3448 |
|
|
and then Chars (Selector_Name (N)) /= Name_uTag
|
3449 |
|
|
then
|
3450 |
|
|
exit when Comp = Last_Entity (Type_To_Use);
|
3451 |
|
|
end if;
|
3452 |
|
|
|
3453 |
|
|
Next_Entity (Comp);
|
3454 |
|
|
end loop;
|
3455 |
|
|
|
3456 |
|
|
-- Ada 2005 (AI-252): The selected component can be interpreted as
|
3457 |
|
|
-- a prefixed view of a subprogram. Depending on the context, this is
|
3458 |
|
|
-- either a name that can appear in a renaming declaration, or part
|
3459 |
|
|
-- of an enclosing call given in prefix form.
|
3460 |
|
|
|
3461 |
|
|
-- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
|
3462 |
|
|
-- selected component should resolve to a name.
|
3463 |
|
|
|
3464 |
|
|
if Ada_Version >= Ada_05
|
3465 |
|
|
and then Is_Tagged_Type (Prefix_Type)
|
3466 |
|
|
and then not Is_Concurrent_Type (Prefix_Type)
|
3467 |
|
|
then
|
3468 |
|
|
if Nkind (Parent (N)) = N_Generic_Association
|
3469 |
|
|
or else Nkind (Parent (N)) = N_Requeue_Statement
|
3470 |
|
|
or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
|
3471 |
|
|
then
|
3472 |
|
|
if Find_Primitive_Operation (N) then
|
3473 |
|
|
return;
|
3474 |
|
|
end if;
|
3475 |
|
|
|
3476 |
|
|
elsif Try_Object_Operation (N) then
|
3477 |
|
|
return;
|
3478 |
|
|
end if;
|
3479 |
|
|
|
3480 |
|
|
-- If the transformation fails, it will be necessary to redo the
|
3481 |
|
|
-- analysis with all errors enabled, to indicate candidate
|
3482 |
|
|
-- interpretations and reasons for each failure ???
|
3483 |
|
|
|
3484 |
|
|
end if;
|
3485 |
|
|
|
3486 |
|
|
elsif Is_Private_Type (Prefix_Type) then
|
3487 |
|
|
|
3488 |
|
|
-- Allow access only to discriminants of the type. If the type has
|
3489 |
|
|
-- no full view, gigi uses the parent type for the components, so we
|
3490 |
|
|
-- do the same here.
|
3491 |
|
|
|
3492 |
|
|
if No (Full_View (Prefix_Type)) then
|
3493 |
|
|
Type_To_Use := Root_Type (Base_Type (Prefix_Type));
|
3494 |
|
|
Comp := First_Entity (Type_To_Use);
|
3495 |
|
|
end if;
|
3496 |
|
|
|
3497 |
|
|
while Present (Comp) loop
|
3498 |
|
|
if Chars (Comp) = Chars (Sel) then
|
3499 |
|
|
if Ekind (Comp) = E_Discriminant then
|
3500 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
3501 |
|
|
Generate_Reference (Comp, Sel);
|
3502 |
|
|
|
3503 |
|
|
Set_Etype (Sel, Etype (Comp));
|
3504 |
|
|
Set_Etype (N, Etype (Comp));
|
3505 |
|
|
|
3506 |
|
|
if Is_Generic_Type (Prefix_Type)
|
3507 |
|
|
or else Is_Generic_Type (Root_Type (Prefix_Type))
|
3508 |
|
|
then
|
3509 |
|
|
Set_Original_Discriminant (Sel, Comp);
|
3510 |
|
|
end if;
|
3511 |
|
|
|
3512 |
|
|
-- Before declaring an error, check whether this is tagged
|
3513 |
|
|
-- private type and a call to a primitive operation.
|
3514 |
|
|
|
3515 |
|
|
elsif Ada_Version >= Ada_05
|
3516 |
|
|
and then Is_Tagged_Type (Prefix_Type)
|
3517 |
|
|
and then Try_Object_Operation (N)
|
3518 |
|
|
then
|
3519 |
|
|
return;
|
3520 |
|
|
|
3521 |
|
|
else
|
3522 |
|
|
Error_Msg_NE
|
3523 |
|
|
("invisible selector for }",
|
3524 |
|
|
N, First_Subtype (Prefix_Type));
|
3525 |
|
|
Set_Entity (Sel, Any_Id);
|
3526 |
|
|
Set_Etype (N, Any_Type);
|
3527 |
|
|
end if;
|
3528 |
|
|
|
3529 |
|
|
return;
|
3530 |
|
|
end if;
|
3531 |
|
|
|
3532 |
|
|
Next_Entity (Comp);
|
3533 |
|
|
end loop;
|
3534 |
|
|
|
3535 |
|
|
elsif Is_Concurrent_Type (Prefix_Type) then
|
3536 |
|
|
|
3537 |
|
|
-- Find visible operation with given name. For a protected type,
|
3538 |
|
|
-- the possible candidates are discriminants, entries or protected
|
3539 |
|
|
-- procedures. For a task type, the set can only include entries or
|
3540 |
|
|
-- discriminants if the task type is not an enclosing scope. If it
|
3541 |
|
|
-- is an enclosing scope (e.g. in an inner task) then all entities
|
3542 |
|
|
-- are visible, but the prefix must denote the enclosing scope, i.e.
|
3543 |
|
|
-- can only be a direct name or an expanded name.
|
3544 |
|
|
|
3545 |
|
|
Set_Etype (Sel, Any_Type);
|
3546 |
|
|
In_Scope := In_Open_Scopes (Prefix_Type);
|
3547 |
|
|
|
3548 |
|
|
while Present (Comp) loop
|
3549 |
|
|
if Chars (Comp) = Chars (Sel) then
|
3550 |
|
|
if Is_Overloadable (Comp) then
|
3551 |
|
|
Add_One_Interp (Sel, Comp, Etype (Comp));
|
3552 |
|
|
|
3553 |
|
|
-- If the prefix is tagged, the correct interpretation may
|
3554 |
|
|
-- lie in the primitive or class-wide operations of the
|
3555 |
|
|
-- type. Perform a simple conformance check to determine
|
3556 |
|
|
-- whether Try_Object_Operation should be invoked even if
|
3557 |
|
|
-- a visible entity is found.
|
3558 |
|
|
|
3559 |
|
|
if Is_Tagged_Type (Prefix_Type)
|
3560 |
|
|
and then
|
3561 |
|
|
Nkind_In (Parent (N), N_Procedure_Call_Statement,
|
3562 |
|
|
N_Function_Call,
|
3563 |
|
|
N_Indexed_Component)
|
3564 |
|
|
and then Has_Mode_Conformant_Spec (Comp)
|
3565 |
|
|
then
|
3566 |
|
|
Has_Candidate := True;
|
3567 |
|
|
end if;
|
3568 |
|
|
|
3569 |
|
|
elsif Ekind (Comp) = E_Discriminant
|
3570 |
|
|
or else Ekind (Comp) = E_Entry_Family
|
3571 |
|
|
or else (In_Scope
|
3572 |
|
|
and then Is_Entity_Name (Name))
|
3573 |
|
|
then
|
3574 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
3575 |
|
|
Generate_Reference (Comp, Sel);
|
3576 |
|
|
|
3577 |
|
|
else
|
3578 |
|
|
goto Next_Comp;
|
3579 |
|
|
end if;
|
3580 |
|
|
|
3581 |
|
|
Set_Etype (Sel, Etype (Comp));
|
3582 |
|
|
Set_Etype (N, Etype (Comp));
|
3583 |
|
|
|
3584 |
|
|
if Ekind (Comp) = E_Discriminant then
|
3585 |
|
|
Set_Original_Discriminant (Sel, Comp);
|
3586 |
|
|
end if;
|
3587 |
|
|
|
3588 |
|
|
-- For access type case, introduce explicit dereference for
|
3589 |
|
|
-- more uniform treatment of entry calls.
|
3590 |
|
|
|
3591 |
|
|
if Is_Access_Type (Etype (Name)) then
|
3592 |
|
|
Insert_Explicit_Dereference (Name);
|
3593 |
|
|
Error_Msg_NW
|
3594 |
|
|
(Warn_On_Dereference, "?implicit dereference", N);
|
3595 |
|
|
end if;
|
3596 |
|
|
end if;
|
3597 |
|
|
|
3598 |
|
|
<<Next_Comp>>
|
3599 |
|
|
Next_Entity (Comp);
|
3600 |
|
|
exit when not In_Scope
|
3601 |
|
|
and then
|
3602 |
|
|
Comp = First_Private_Entity (Base_Type (Prefix_Type));
|
3603 |
|
|
end loop;
|
3604 |
|
|
|
3605 |
|
|
-- If there is no visible entity with the given name or none of the
|
3606 |
|
|
-- visible entities are plausible interpretations, check whether
|
3607 |
|
|
-- there is some other primitive operation with that name.
|
3608 |
|
|
|
3609 |
|
|
if Ada_Version >= Ada_05
|
3610 |
|
|
and then Is_Tagged_Type (Prefix_Type)
|
3611 |
|
|
then
|
3612 |
|
|
if (Etype (N) = Any_Type
|
3613 |
|
|
or else not Has_Candidate)
|
3614 |
|
|
and then Try_Object_Operation (N)
|
3615 |
|
|
then
|
3616 |
|
|
return;
|
3617 |
|
|
|
3618 |
|
|
-- If the context is not syntactically a procedure call, it
|
3619 |
|
|
-- may be a call to a primitive function declared outside of
|
3620 |
|
|
-- the synchronized type.
|
3621 |
|
|
|
3622 |
|
|
-- If the context is a procedure call, there might still be
|
3623 |
|
|
-- an overloading between an entry and a primitive procedure
|
3624 |
|
|
-- declared outside of the synchronized type, called in prefix
|
3625 |
|
|
-- notation. This is harder to disambiguate because in one case
|
3626 |
|
|
-- the controlling formal is implicit ???
|
3627 |
|
|
|
3628 |
|
|
elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
|
3629 |
|
|
and then Nkind (Parent (N)) /= N_Indexed_Component
|
3630 |
|
|
and then Try_Object_Operation (N)
|
3631 |
|
|
then
|
3632 |
|
|
return;
|
3633 |
|
|
end if;
|
3634 |
|
|
end if;
|
3635 |
|
|
|
3636 |
|
|
Set_Is_Overloaded (N, Is_Overloaded (Sel));
|
3637 |
|
|
|
3638 |
|
|
else
|
3639 |
|
|
-- Invalid prefix
|
3640 |
|
|
|
3641 |
|
|
Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
|
3642 |
|
|
end if;
|
3643 |
|
|
|
3644 |
|
|
-- If N still has no type, the component is not defined in the prefix
|
3645 |
|
|
|
3646 |
|
|
if Etype (N) = Any_Type then
|
3647 |
|
|
|
3648 |
|
|
-- If the prefix is a single concurrent object, use its name in the
|
3649 |
|
|
-- error message, rather than that of its anonymous type.
|
3650 |
|
|
|
3651 |
|
|
if Is_Concurrent_Type (Prefix_Type)
|
3652 |
|
|
and then Is_Internal_Name (Chars (Prefix_Type))
|
3653 |
|
|
and then not Is_Derived_Type (Prefix_Type)
|
3654 |
|
|
and then Is_Entity_Name (Name)
|
3655 |
|
|
then
|
3656 |
|
|
|
3657 |
|
|
Error_Msg_Node_2 := Entity (Name);
|
3658 |
|
|
Error_Msg_NE ("no selector& for&", N, Sel);
|
3659 |
|
|
|
3660 |
|
|
Check_Misspelled_Selector (Type_To_Use, Sel);
|
3661 |
|
|
|
3662 |
|
|
elsif Is_Generic_Type (Prefix_Type)
|
3663 |
|
|
and then Ekind (Prefix_Type) = E_Record_Type_With_Private
|
3664 |
|
|
and then Prefix_Type /= Etype (Prefix_Type)
|
3665 |
|
|
and then Is_Record_Type (Etype (Prefix_Type))
|
3666 |
|
|
then
|
3667 |
|
|
-- If this is a derived formal type, the parent may have
|
3668 |
|
|
-- different visibility at this point. Try for an inherited
|
3669 |
|
|
-- component before reporting an error.
|
3670 |
|
|
|
3671 |
|
|
Set_Etype (Prefix (N), Etype (Prefix_Type));
|
3672 |
|
|
Analyze_Selected_Component (N);
|
3673 |
|
|
return;
|
3674 |
|
|
|
3675 |
|
|
elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
|
3676 |
|
|
and then Is_Generic_Actual_Type (Prefix_Type)
|
3677 |
|
|
and then Present (Full_View (Prefix_Type))
|
3678 |
|
|
then
|
3679 |
|
|
-- Similarly, if this the actual for a formal derived type, the
|
3680 |
|
|
-- component inherited from the generic parent may not be visible
|
3681 |
|
|
-- in the actual, but the selected component is legal.
|
3682 |
|
|
|
3683 |
|
|
declare
|
3684 |
|
|
Comp : Entity_Id;
|
3685 |
|
|
|
3686 |
|
|
begin
|
3687 |
|
|
Comp :=
|
3688 |
|
|
First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
|
3689 |
|
|
while Present (Comp) loop
|
3690 |
|
|
if Chars (Comp) = Chars (Sel) then
|
3691 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
3692 |
|
|
Set_Etype (Sel, Etype (Comp));
|
3693 |
|
|
Set_Etype (N, Etype (Comp));
|
3694 |
|
|
return;
|
3695 |
|
|
end if;
|
3696 |
|
|
|
3697 |
|
|
Next_Component (Comp);
|
3698 |
|
|
end loop;
|
3699 |
|
|
|
3700 |
|
|
pragma Assert (Etype (N) /= Any_Type);
|
3701 |
|
|
end;
|
3702 |
|
|
|
3703 |
|
|
else
|
3704 |
|
|
if Ekind (Prefix_Type) = E_Record_Subtype then
|
3705 |
|
|
|
3706 |
|
|
-- Check whether this is a component of the base type
|
3707 |
|
|
-- which is absent from a statically constrained subtype.
|
3708 |
|
|
-- This will raise constraint error at run-time, but is
|
3709 |
|
|
-- not a compile-time error. When the selector is illegal
|
3710 |
|
|
-- for base type as well fall through and generate a
|
3711 |
|
|
-- compilation error anyway.
|
3712 |
|
|
|
3713 |
|
|
Comp := First_Component (Base_Type (Prefix_Type));
|
3714 |
|
|
while Present (Comp) loop
|
3715 |
|
|
if Chars (Comp) = Chars (Sel)
|
3716 |
|
|
and then Is_Visible_Component (Comp)
|
3717 |
|
|
then
|
3718 |
|
|
Set_Entity_With_Style_Check (Sel, Comp);
|
3719 |
|
|
Generate_Reference (Comp, Sel);
|
3720 |
|
|
Set_Etype (Sel, Etype (Comp));
|
3721 |
|
|
Set_Etype (N, Etype (Comp));
|
3722 |
|
|
|
3723 |
|
|
-- Emit appropriate message. Gigi will replace the
|
3724 |
|
|
-- node subsequently with the appropriate Raise.
|
3725 |
|
|
|
3726 |
|
|
Apply_Compile_Time_Constraint_Error
|
3727 |
|
|
(N, "component not present in }?",
|
3728 |
|
|
CE_Discriminant_Check_Failed,
|
3729 |
|
|
Ent => Prefix_Type, Rep => False);
|
3730 |
|
|
Set_Raises_Constraint_Error (N);
|
3731 |
|
|
return;
|
3732 |
|
|
end if;
|
3733 |
|
|
|
3734 |
|
|
Next_Component (Comp);
|
3735 |
|
|
end loop;
|
3736 |
|
|
|
3737 |
|
|
end if;
|
3738 |
|
|
|
3739 |
|
|
Error_Msg_Node_2 := First_Subtype (Prefix_Type);
|
3740 |
|
|
Error_Msg_NE ("no selector& for}", N, Sel);
|
3741 |
|
|
|
3742 |
|
|
Check_Misspelled_Selector (Type_To_Use, Sel);
|
3743 |
|
|
end if;
|
3744 |
|
|
|
3745 |
|
|
Set_Entity (Sel, Any_Id);
|
3746 |
|
|
Set_Etype (Sel, Any_Type);
|
3747 |
|
|
end if;
|
3748 |
|
|
end Analyze_Selected_Component;
|
3749 |
|
|
|
3750 |
|
|
---------------------------
|
3751 |
|
|
-- Analyze_Short_Circuit --
|
3752 |
|
|
---------------------------
|
3753 |
|
|
|
3754 |
|
|
procedure Analyze_Short_Circuit (N : Node_Id) is
|
3755 |
|
|
L : constant Node_Id := Left_Opnd (N);
|
3756 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
3757 |
|
|
Ind : Interp_Index;
|
3758 |
|
|
It : Interp;
|
3759 |
|
|
|
3760 |
|
|
begin
|
3761 |
|
|
Analyze_Expression (L);
|
3762 |
|
|
Analyze_Expression (R);
|
3763 |
|
|
Set_Etype (N, Any_Type);
|
3764 |
|
|
|
3765 |
|
|
if not Is_Overloaded (L) then
|
3766 |
|
|
if Root_Type (Etype (L)) = Standard_Boolean
|
3767 |
|
|
and then Has_Compatible_Type (R, Etype (L))
|
3768 |
|
|
then
|
3769 |
|
|
Add_One_Interp (N, Etype (L), Etype (L));
|
3770 |
|
|
end if;
|
3771 |
|
|
|
3772 |
|
|
else
|
3773 |
|
|
Get_First_Interp (L, Ind, It);
|
3774 |
|
|
while Present (It.Typ) loop
|
3775 |
|
|
if Root_Type (It.Typ) = Standard_Boolean
|
3776 |
|
|
and then Has_Compatible_Type (R, It.Typ)
|
3777 |
|
|
then
|
3778 |
|
|
Add_One_Interp (N, It.Typ, It.Typ);
|
3779 |
|
|
end if;
|
3780 |
|
|
|
3781 |
|
|
Get_Next_Interp (Ind, It);
|
3782 |
|
|
end loop;
|
3783 |
|
|
end if;
|
3784 |
|
|
|
3785 |
|
|
-- Here we have failed to find an interpretation. Clearly we know that
|
3786 |
|
|
-- it is not the case that both operands can have an interpretation of
|
3787 |
|
|
-- Boolean, but this is by far the most likely intended interpretation.
|
3788 |
|
|
-- So we simply resolve both operands as Booleans, and at least one of
|
3789 |
|
|
-- these resolutions will generate an error message, and we do not need
|
3790 |
|
|
-- to give another error message on the short circuit operation itself.
|
3791 |
|
|
|
3792 |
|
|
if Etype (N) = Any_Type then
|
3793 |
|
|
Resolve (L, Standard_Boolean);
|
3794 |
|
|
Resolve (R, Standard_Boolean);
|
3795 |
|
|
Set_Etype (N, Standard_Boolean);
|
3796 |
|
|
end if;
|
3797 |
|
|
end Analyze_Short_Circuit;
|
3798 |
|
|
|
3799 |
|
|
-------------------
|
3800 |
|
|
-- Analyze_Slice --
|
3801 |
|
|
-------------------
|
3802 |
|
|
|
3803 |
|
|
procedure Analyze_Slice (N : Node_Id) is
|
3804 |
|
|
P : constant Node_Id := Prefix (N);
|
3805 |
|
|
D : constant Node_Id := Discrete_Range (N);
|
3806 |
|
|
Array_Type : Entity_Id;
|
3807 |
|
|
|
3808 |
|
|
procedure Analyze_Overloaded_Slice;
|
3809 |
|
|
-- If the prefix is overloaded, select those interpretations that
|
3810 |
|
|
-- yield a one-dimensional array type.
|
3811 |
|
|
|
3812 |
|
|
------------------------------
|
3813 |
|
|
-- Analyze_Overloaded_Slice --
|
3814 |
|
|
------------------------------
|
3815 |
|
|
|
3816 |
|
|
procedure Analyze_Overloaded_Slice is
|
3817 |
|
|
I : Interp_Index;
|
3818 |
|
|
It : Interp;
|
3819 |
|
|
Typ : Entity_Id;
|
3820 |
|
|
|
3821 |
|
|
begin
|
3822 |
|
|
Set_Etype (N, Any_Type);
|
3823 |
|
|
|
3824 |
|
|
Get_First_Interp (P, I, It);
|
3825 |
|
|
while Present (It.Nam) loop
|
3826 |
|
|
Typ := It.Typ;
|
3827 |
|
|
|
3828 |
|
|
if Is_Access_Type (Typ) then
|
3829 |
|
|
Typ := Designated_Type (Typ);
|
3830 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
3831 |
|
|
end if;
|
3832 |
|
|
|
3833 |
|
|
if Is_Array_Type (Typ)
|
3834 |
|
|
and then Number_Dimensions (Typ) = 1
|
3835 |
|
|
and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
|
3836 |
|
|
then
|
3837 |
|
|
Add_One_Interp (N, Typ, Typ);
|
3838 |
|
|
end if;
|
3839 |
|
|
|
3840 |
|
|
Get_Next_Interp (I, It);
|
3841 |
|
|
end loop;
|
3842 |
|
|
|
3843 |
|
|
if Etype (N) = Any_Type then
|
3844 |
|
|
Error_Msg_N ("expect array type in prefix of slice", N);
|
3845 |
|
|
end if;
|
3846 |
|
|
end Analyze_Overloaded_Slice;
|
3847 |
|
|
|
3848 |
|
|
-- Start of processing for Analyze_Slice
|
3849 |
|
|
|
3850 |
|
|
begin
|
3851 |
|
|
Analyze (P);
|
3852 |
|
|
Analyze (D);
|
3853 |
|
|
|
3854 |
|
|
if Is_Overloaded (P) then
|
3855 |
|
|
Analyze_Overloaded_Slice;
|
3856 |
|
|
|
3857 |
|
|
else
|
3858 |
|
|
Array_Type := Etype (P);
|
3859 |
|
|
Set_Etype (N, Any_Type);
|
3860 |
|
|
|
3861 |
|
|
if Is_Access_Type (Array_Type) then
|
3862 |
|
|
Array_Type := Designated_Type (Array_Type);
|
3863 |
|
|
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
|
3864 |
|
|
end if;
|
3865 |
|
|
|
3866 |
|
|
if not Is_Array_Type (Array_Type) then
|
3867 |
|
|
Wrong_Type (P, Any_Array);
|
3868 |
|
|
|
3869 |
|
|
elsif Number_Dimensions (Array_Type) > 1 then
|
3870 |
|
|
Error_Msg_N
|
3871 |
|
|
("type is not one-dimensional array in slice prefix", N);
|
3872 |
|
|
|
3873 |
|
|
elsif not
|
3874 |
|
|
Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
|
3875 |
|
|
then
|
3876 |
|
|
Wrong_Type (D, Etype (First_Index (Array_Type)));
|
3877 |
|
|
|
3878 |
|
|
else
|
3879 |
|
|
Set_Etype (N, Array_Type);
|
3880 |
|
|
end if;
|
3881 |
|
|
end if;
|
3882 |
|
|
end Analyze_Slice;
|
3883 |
|
|
|
3884 |
|
|
-----------------------------
|
3885 |
|
|
-- Analyze_Type_Conversion --
|
3886 |
|
|
-----------------------------
|
3887 |
|
|
|
3888 |
|
|
procedure Analyze_Type_Conversion (N : Node_Id) is
|
3889 |
|
|
Expr : constant Node_Id := Expression (N);
|
3890 |
|
|
T : Entity_Id;
|
3891 |
|
|
|
3892 |
|
|
begin
|
3893 |
|
|
-- Check if the expression is a function call for which we need to
|
3894 |
|
|
-- adjust a SCIL dispatching node.
|
3895 |
|
|
|
3896 |
|
|
if Generate_SCIL
|
3897 |
|
|
and then Nkind (Expr) = N_Function_Call
|
3898 |
|
|
then
|
3899 |
|
|
Adjust_SCIL_Node (N, Expr);
|
3900 |
|
|
end if;
|
3901 |
|
|
|
3902 |
|
|
-- If Conversion_OK is set, then the Etype is already set, and the
|
3903 |
|
|
-- only processing required is to analyze the expression. This is
|
3904 |
|
|
-- used to construct certain "illegal" conversions which are not
|
3905 |
|
|
-- allowed by Ada semantics, but can be handled OK by Gigi, see
|
3906 |
|
|
-- Sinfo for further details.
|
3907 |
|
|
|
3908 |
|
|
if Conversion_OK (N) then
|
3909 |
|
|
Analyze (Expr);
|
3910 |
|
|
return;
|
3911 |
|
|
end if;
|
3912 |
|
|
|
3913 |
|
|
-- Otherwise full type analysis is required, as well as some semantic
|
3914 |
|
|
-- checks to make sure the argument of the conversion is appropriate.
|
3915 |
|
|
|
3916 |
|
|
Find_Type (Subtype_Mark (N));
|
3917 |
|
|
T := Entity (Subtype_Mark (N));
|
3918 |
|
|
Set_Etype (N, T);
|
3919 |
|
|
Check_Fully_Declared (T, N);
|
3920 |
|
|
Analyze_Expression (Expr);
|
3921 |
|
|
Validate_Remote_Type_Type_Conversion (N);
|
3922 |
|
|
|
3923 |
|
|
-- Only remaining step is validity checks on the argument. These
|
3924 |
|
|
-- are skipped if the conversion does not come from the source.
|
3925 |
|
|
|
3926 |
|
|
if not Comes_From_Source (N) then
|
3927 |
|
|
return;
|
3928 |
|
|
|
3929 |
|
|
-- If there was an error in a generic unit, no need to replicate the
|
3930 |
|
|
-- error message. Conversely, constant-folding in the generic may
|
3931 |
|
|
-- transform the argument of a conversion into a string literal, which
|
3932 |
|
|
-- is legal. Therefore the following tests are not performed in an
|
3933 |
|
|
-- instance.
|
3934 |
|
|
|
3935 |
|
|
elsif In_Instance then
|
3936 |
|
|
return;
|
3937 |
|
|
|
3938 |
|
|
elsif Nkind (Expr) = N_Null then
|
3939 |
|
|
Error_Msg_N ("argument of conversion cannot be null", N);
|
3940 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3941 |
|
|
Set_Etype (N, Any_Type);
|
3942 |
|
|
|
3943 |
|
|
elsif Nkind (Expr) = N_Aggregate then
|
3944 |
|
|
Error_Msg_N ("argument of conversion cannot be aggregate", N);
|
3945 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3946 |
|
|
|
3947 |
|
|
elsif Nkind (Expr) = N_Allocator then
|
3948 |
|
|
Error_Msg_N ("argument of conversion cannot be an allocator", N);
|
3949 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3950 |
|
|
|
3951 |
|
|
elsif Nkind (Expr) = N_String_Literal then
|
3952 |
|
|
Error_Msg_N ("argument of conversion cannot be string literal", N);
|
3953 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3954 |
|
|
|
3955 |
|
|
elsif Nkind (Expr) = N_Character_Literal then
|
3956 |
|
|
if Ada_Version = Ada_83 then
|
3957 |
|
|
Resolve (Expr, T);
|
3958 |
|
|
else
|
3959 |
|
|
Error_Msg_N ("argument of conversion cannot be character literal",
|
3960 |
|
|
N);
|
3961 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3962 |
|
|
end if;
|
3963 |
|
|
|
3964 |
|
|
elsif Nkind (Expr) = N_Attribute_Reference
|
3965 |
|
|
and then
|
3966 |
|
|
(Attribute_Name (Expr) = Name_Access or else
|
3967 |
|
|
Attribute_Name (Expr) = Name_Unchecked_Access or else
|
3968 |
|
|
Attribute_Name (Expr) = Name_Unrestricted_Access)
|
3969 |
|
|
then
|
3970 |
|
|
Error_Msg_N ("argument of conversion cannot be access", N);
|
3971 |
|
|
Error_Msg_N ("\use qualified expression instead", N);
|
3972 |
|
|
end if;
|
3973 |
|
|
end Analyze_Type_Conversion;
|
3974 |
|
|
|
3975 |
|
|
----------------------
|
3976 |
|
|
-- Analyze_Unary_Op --
|
3977 |
|
|
----------------------
|
3978 |
|
|
|
3979 |
|
|
procedure Analyze_Unary_Op (N : Node_Id) is
|
3980 |
|
|
R : constant Node_Id := Right_Opnd (N);
|
3981 |
|
|
Op_Id : Entity_Id := Entity (N);
|
3982 |
|
|
|
3983 |
|
|
begin
|
3984 |
|
|
Set_Etype (N, Any_Type);
|
3985 |
|
|
Candidate_Type := Empty;
|
3986 |
|
|
|
3987 |
|
|
Analyze_Expression (R);
|
3988 |
|
|
|
3989 |
|
|
if Present (Op_Id) then
|
3990 |
|
|
if Ekind (Op_Id) = E_Operator then
|
3991 |
|
|
Find_Unary_Types (R, Op_Id, N);
|
3992 |
|
|
else
|
3993 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
3994 |
|
|
end if;
|
3995 |
|
|
|
3996 |
|
|
else
|
3997 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
3998 |
|
|
while Present (Op_Id) loop
|
3999 |
|
|
if Ekind (Op_Id) = E_Operator then
|
4000 |
|
|
if No (Next_Entity (First_Entity (Op_Id))) then
|
4001 |
|
|
Find_Unary_Types (R, Op_Id, N);
|
4002 |
|
|
end if;
|
4003 |
|
|
|
4004 |
|
|
elsif Is_Overloadable (Op_Id) then
|
4005 |
|
|
Analyze_User_Defined_Unary_Op (N, Op_Id);
|
4006 |
|
|
end if;
|
4007 |
|
|
|
4008 |
|
|
Op_Id := Homonym (Op_Id);
|
4009 |
|
|
end loop;
|
4010 |
|
|
end if;
|
4011 |
|
|
|
4012 |
|
|
Operator_Check (N);
|
4013 |
|
|
end Analyze_Unary_Op;
|
4014 |
|
|
|
4015 |
|
|
----------------------------------
|
4016 |
|
|
-- Analyze_Unchecked_Expression --
|
4017 |
|
|
----------------------------------
|
4018 |
|
|
|
4019 |
|
|
procedure Analyze_Unchecked_Expression (N : Node_Id) is
|
4020 |
|
|
begin
|
4021 |
|
|
Analyze (Expression (N), Suppress => All_Checks);
|
4022 |
|
|
Set_Etype (N, Etype (Expression (N)));
|
4023 |
|
|
Save_Interps (Expression (N), N);
|
4024 |
|
|
end Analyze_Unchecked_Expression;
|
4025 |
|
|
|
4026 |
|
|
---------------------------------------
|
4027 |
|
|
-- Analyze_Unchecked_Type_Conversion --
|
4028 |
|
|
---------------------------------------
|
4029 |
|
|
|
4030 |
|
|
procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
|
4031 |
|
|
begin
|
4032 |
|
|
Find_Type (Subtype_Mark (N));
|
4033 |
|
|
Analyze_Expression (Expression (N));
|
4034 |
|
|
Set_Etype (N, Entity (Subtype_Mark (N)));
|
4035 |
|
|
end Analyze_Unchecked_Type_Conversion;
|
4036 |
|
|
|
4037 |
|
|
------------------------------------
|
4038 |
|
|
-- Analyze_User_Defined_Binary_Op --
|
4039 |
|
|
------------------------------------
|
4040 |
|
|
|
4041 |
|
|
procedure Analyze_User_Defined_Binary_Op
|
4042 |
|
|
(N : Node_Id;
|
4043 |
|
|
Op_Id : Entity_Id)
|
4044 |
|
|
is
|
4045 |
|
|
begin
|
4046 |
|
|
-- Only do analysis if the operator Comes_From_Source, since otherwise
|
4047 |
|
|
-- the operator was generated by the expander, and all such operators
|
4048 |
|
|
-- always refer to the operators in package Standard.
|
4049 |
|
|
|
4050 |
|
|
if Comes_From_Source (N) then
|
4051 |
|
|
declare
|
4052 |
|
|
F1 : constant Entity_Id := First_Formal (Op_Id);
|
4053 |
|
|
F2 : constant Entity_Id := Next_Formal (F1);
|
4054 |
|
|
|
4055 |
|
|
begin
|
4056 |
|
|
-- Verify that Op_Id is a visible binary function. Note that since
|
4057 |
|
|
-- we know Op_Id is overloaded, potentially use visible means use
|
4058 |
|
|
-- visible for sure (RM 9.4(11)).
|
4059 |
|
|
|
4060 |
|
|
if Ekind (Op_Id) = E_Function
|
4061 |
|
|
and then Present (F2)
|
4062 |
|
|
and then (Is_Immediately_Visible (Op_Id)
|
4063 |
|
|
or else Is_Potentially_Use_Visible (Op_Id))
|
4064 |
|
|
and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
|
4065 |
|
|
and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
|
4066 |
|
|
then
|
4067 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
4068 |
|
|
|
4069 |
|
|
-- If the left operand is overloaded, indicate that the
|
4070 |
|
|
-- current type is a viable candidate. This is redundant
|
4071 |
|
|
-- in most cases, but for equality and comparison operators
|
4072 |
|
|
-- where the context does not impose a type on the operands,
|
4073 |
|
|
-- setting the proper type is necessary to avoid subsequent
|
4074 |
|
|
-- ambiguities during resolution, when both user-defined and
|
4075 |
|
|
-- predefined operators may be candidates.
|
4076 |
|
|
|
4077 |
|
|
if Is_Overloaded (Left_Opnd (N)) then
|
4078 |
|
|
Set_Etype (Left_Opnd (N), Etype (F1));
|
4079 |
|
|
end if;
|
4080 |
|
|
|
4081 |
|
|
if Debug_Flag_E then
|
4082 |
|
|
Write_Str ("user defined operator ");
|
4083 |
|
|
Write_Name (Chars (Op_Id));
|
4084 |
|
|
Write_Str (" on node ");
|
4085 |
|
|
Write_Int (Int (N));
|
4086 |
|
|
Write_Eol;
|
4087 |
|
|
end if;
|
4088 |
|
|
end if;
|
4089 |
|
|
end;
|
4090 |
|
|
end if;
|
4091 |
|
|
end Analyze_User_Defined_Binary_Op;
|
4092 |
|
|
|
4093 |
|
|
-----------------------------------
|
4094 |
|
|
-- Analyze_User_Defined_Unary_Op --
|
4095 |
|
|
-----------------------------------
|
4096 |
|
|
|
4097 |
|
|
procedure Analyze_User_Defined_Unary_Op
|
4098 |
|
|
(N : Node_Id;
|
4099 |
|
|
Op_Id : Entity_Id)
|
4100 |
|
|
is
|
4101 |
|
|
begin
|
4102 |
|
|
-- Only do analysis if the operator Comes_From_Source, since otherwise
|
4103 |
|
|
-- the operator was generated by the expander, and all such operators
|
4104 |
|
|
-- always refer to the operators in package Standard.
|
4105 |
|
|
|
4106 |
|
|
if Comes_From_Source (N) then
|
4107 |
|
|
declare
|
4108 |
|
|
F : constant Entity_Id := First_Formal (Op_Id);
|
4109 |
|
|
|
4110 |
|
|
begin
|
4111 |
|
|
-- Verify that Op_Id is a visible unary function. Note that since
|
4112 |
|
|
-- we know Op_Id is overloaded, potentially use visible means use
|
4113 |
|
|
-- visible for sure (RM 9.4(11)).
|
4114 |
|
|
|
4115 |
|
|
if Ekind (Op_Id) = E_Function
|
4116 |
|
|
and then No (Next_Formal (F))
|
4117 |
|
|
and then (Is_Immediately_Visible (Op_Id)
|
4118 |
|
|
or else Is_Potentially_Use_Visible (Op_Id))
|
4119 |
|
|
and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
|
4120 |
|
|
then
|
4121 |
|
|
Add_One_Interp (N, Op_Id, Etype (Op_Id));
|
4122 |
|
|
end if;
|
4123 |
|
|
end;
|
4124 |
|
|
end if;
|
4125 |
|
|
end Analyze_User_Defined_Unary_Op;
|
4126 |
|
|
|
4127 |
|
|
---------------------------
|
4128 |
|
|
-- Check_Arithmetic_Pair --
|
4129 |
|
|
---------------------------
|
4130 |
|
|
|
4131 |
|
|
procedure Check_Arithmetic_Pair
|
4132 |
|
|
(T1, T2 : Entity_Id;
|
4133 |
|
|
Op_Id : Entity_Id;
|
4134 |
|
|
N : Node_Id)
|
4135 |
|
|
is
|
4136 |
|
|
Op_Name : constant Name_Id := Chars (Op_Id);
|
4137 |
|
|
|
4138 |
|
|
function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
|
4139 |
|
|
-- Check whether the fixed-point type Typ has a user-defined operator
|
4140 |
|
|
-- (multiplication or division) that should hide the corresponding
|
4141 |
|
|
-- predefined operator. Used to implement Ada 2005 AI-264, to make
|
4142 |
|
|
-- such operators more visible and therefore useful.
|
4143 |
|
|
|
4144 |
|
|
-- If the name of the operation is an expanded name with prefix
|
4145 |
|
|
-- Standard, the predefined universal fixed operator is available,
|
4146 |
|
|
-- as specified by AI-420 (RM 4.5.5 (19.1/2)).
|
4147 |
|
|
|
4148 |
|
|
function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
|
4149 |
|
|
-- Get specific type (i.e. non-universal type if there is one)
|
4150 |
|
|
|
4151 |
|
|
------------------
|
4152 |
|
|
-- Has_Fixed_Op --
|
4153 |
|
|
------------------
|
4154 |
|
|
|
4155 |
|
|
function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
|
4156 |
|
|
Bas : constant Entity_Id := Base_Type (Typ);
|
4157 |
|
|
Ent : Entity_Id;
|
4158 |
|
|
F1 : Entity_Id;
|
4159 |
|
|
F2 : Entity_Id;
|
4160 |
|
|
|
4161 |
|
|
begin
|
4162 |
|
|
-- If the universal_fixed operation is given explicitly the rule
|
4163 |
|
|
-- concerning primitive operations of the type do not apply.
|
4164 |
|
|
|
4165 |
|
|
if Nkind (N) = N_Function_Call
|
4166 |
|
|
and then Nkind (Name (N)) = N_Expanded_Name
|
4167 |
|
|
and then Entity (Prefix (Name (N))) = Standard_Standard
|
4168 |
|
|
then
|
4169 |
|
|
return False;
|
4170 |
|
|
end if;
|
4171 |
|
|
|
4172 |
|
|
-- The operation is treated as primitive if it is declared in the
|
4173 |
|
|
-- same scope as the type, and therefore on the same entity chain.
|
4174 |
|
|
|
4175 |
|
|
Ent := Next_Entity (Typ);
|
4176 |
|
|
while Present (Ent) loop
|
4177 |
|
|
if Chars (Ent) = Chars (Op) then
|
4178 |
|
|
F1 := First_Formal (Ent);
|
4179 |
|
|
F2 := Next_Formal (F1);
|
4180 |
|
|
|
4181 |
|
|
-- The operation counts as primitive if either operand or
|
4182 |
|
|
-- result are of the given base type, and both operands are
|
4183 |
|
|
-- fixed point types.
|
4184 |
|
|
|
4185 |
|
|
if (Base_Type (Etype (F1)) = Bas
|
4186 |
|
|
and then Is_Fixed_Point_Type (Etype (F2)))
|
4187 |
|
|
|
4188 |
|
|
or else
|
4189 |
|
|
(Base_Type (Etype (F2)) = Bas
|
4190 |
|
|
and then Is_Fixed_Point_Type (Etype (F1)))
|
4191 |
|
|
|
4192 |
|
|
or else
|
4193 |
|
|
(Base_Type (Etype (Ent)) = Bas
|
4194 |
|
|
and then Is_Fixed_Point_Type (Etype (F1))
|
4195 |
|
|
and then Is_Fixed_Point_Type (Etype (F2)))
|
4196 |
|
|
then
|
4197 |
|
|
return True;
|
4198 |
|
|
end if;
|
4199 |
|
|
end if;
|
4200 |
|
|
|
4201 |
|
|
Next_Entity (Ent);
|
4202 |
|
|
end loop;
|
4203 |
|
|
|
4204 |
|
|
return False;
|
4205 |
|
|
end Has_Fixed_Op;
|
4206 |
|
|
|
4207 |
|
|
-------------------
|
4208 |
|
|
-- Specific_Type --
|
4209 |
|
|
-------------------
|
4210 |
|
|
|
4211 |
|
|
function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
|
4212 |
|
|
begin
|
4213 |
|
|
if T1 = Universal_Integer or else T1 = Universal_Real then
|
4214 |
|
|
return Base_Type (T2);
|
4215 |
|
|
else
|
4216 |
|
|
return Base_Type (T1);
|
4217 |
|
|
end if;
|
4218 |
|
|
end Specific_Type;
|
4219 |
|
|
|
4220 |
|
|
-- Start of processing for Check_Arithmetic_Pair
|
4221 |
|
|
|
4222 |
|
|
begin
|
4223 |
|
|
if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
|
4224 |
|
|
|
4225 |
|
|
if Is_Numeric_Type (T1)
|
4226 |
|
|
and then Is_Numeric_Type (T2)
|
4227 |
|
|
and then (Covers (T1 => T1, T2 => T2)
|
4228 |
|
|
or else
|
4229 |
|
|
Covers (T1 => T2, T2 => T1))
|
4230 |
|
|
then
|
4231 |
|
|
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
|
4232 |
|
|
end if;
|
4233 |
|
|
|
4234 |
|
|
elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
|
4235 |
|
|
|
4236 |
|
|
if Is_Fixed_Point_Type (T1)
|
4237 |
|
|
and then (Is_Fixed_Point_Type (T2)
|
4238 |
|
|
or else T2 = Universal_Real)
|
4239 |
|
|
then
|
4240 |
|
|
-- If Treat_Fixed_As_Integer is set then the Etype is already set
|
4241 |
|
|
-- and no further processing is required (this is the case of an
|
4242 |
|
|
-- operator constructed by Exp_Fixd for a fixed point operation)
|
4243 |
|
|
-- Otherwise add one interpretation with universal fixed result
|
4244 |
|
|
-- If the operator is given in functional notation, it comes
|
4245 |
|
|
-- from source and Fixed_As_Integer cannot apply.
|
4246 |
|
|
|
4247 |
|
|
if (Nkind (N) not in N_Op
|
4248 |
|
|
or else not Treat_Fixed_As_Integer (N))
|
4249 |
|
|
and then
|
4250 |
|
|
(not Has_Fixed_Op (T1, Op_Id)
|
4251 |
|
|
or else Nkind (Parent (N)) = N_Type_Conversion)
|
4252 |
|
|
then
|
4253 |
|
|
Add_One_Interp (N, Op_Id, Universal_Fixed);
|
4254 |
|
|
end if;
|
4255 |
|
|
|
4256 |
|
|
elsif Is_Fixed_Point_Type (T2)
|
4257 |
|
|
and then (Nkind (N) not in N_Op
|
4258 |
|
|
or else not Treat_Fixed_As_Integer (N))
|
4259 |
|
|
and then T1 = Universal_Real
|
4260 |
|
|
and then
|
4261 |
|
|
(not Has_Fixed_Op (T1, Op_Id)
|
4262 |
|
|
or else Nkind (Parent (N)) = N_Type_Conversion)
|
4263 |
|
|
then
|
4264 |
|
|
Add_One_Interp (N, Op_Id, Universal_Fixed);
|
4265 |
|
|
|
4266 |
|
|
elsif Is_Numeric_Type (T1)
|
4267 |
|
|
and then Is_Numeric_Type (T2)
|
4268 |
|
|
and then (Covers (T1 => T1, T2 => T2)
|
4269 |
|
|
or else
|
4270 |
|
|
Covers (T1 => T2, T2 => T1))
|
4271 |
|
|
then
|
4272 |
|
|
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
|
4273 |
|
|
|
4274 |
|
|
elsif Is_Fixed_Point_Type (T1)
|
4275 |
|
|
and then (Base_Type (T2) = Base_Type (Standard_Integer)
|
4276 |
|
|
or else T2 = Universal_Integer)
|
4277 |
|
|
then
|
4278 |
|
|
Add_One_Interp (N, Op_Id, T1);
|
4279 |
|
|
|
4280 |
|
|
elsif T2 = Universal_Real
|
4281 |
|
|
and then Base_Type (T1) = Base_Type (Standard_Integer)
|
4282 |
|
|
and then Op_Name = Name_Op_Multiply
|
4283 |
|
|
then
|
4284 |
|
|
Add_One_Interp (N, Op_Id, Any_Fixed);
|
4285 |
|
|
|
4286 |
|
|
elsif T1 = Universal_Real
|
4287 |
|
|
and then Base_Type (T2) = Base_Type (Standard_Integer)
|
4288 |
|
|
then
|
4289 |
|
|
Add_One_Interp (N, Op_Id, Any_Fixed);
|
4290 |
|
|
|
4291 |
|
|
elsif Is_Fixed_Point_Type (T2)
|
4292 |
|
|
and then (Base_Type (T1) = Base_Type (Standard_Integer)
|
4293 |
|
|
or else T1 = Universal_Integer)
|
4294 |
|
|
and then Op_Name = Name_Op_Multiply
|
4295 |
|
|
then
|
4296 |
|
|
Add_One_Interp (N, Op_Id, T2);
|
4297 |
|
|
|
4298 |
|
|
elsif T1 = Universal_Real and then T2 = Universal_Integer then
|
4299 |
|
|
Add_One_Interp (N, Op_Id, T1);
|
4300 |
|
|
|
4301 |
|
|
elsif T2 = Universal_Real
|
4302 |
|
|
and then T1 = Universal_Integer
|
4303 |
|
|
and then Op_Name = Name_Op_Multiply
|
4304 |
|
|
then
|
4305 |
|
|
Add_One_Interp (N, Op_Id, T2);
|
4306 |
|
|
end if;
|
4307 |
|
|
|
4308 |
|
|
elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
|
4309 |
|
|
|
4310 |
|
|
-- Note: The fixed-point operands case with Treat_Fixed_As_Integer
|
4311 |
|
|
-- set does not require any special processing, since the Etype is
|
4312 |
|
|
-- already set (case of operation constructed by Exp_Fixed).
|
4313 |
|
|
|
4314 |
|
|
if Is_Integer_Type (T1)
|
4315 |
|
|
and then (Covers (T1 => T1, T2 => T2)
|
4316 |
|
|
or else
|
4317 |
|
|
Covers (T1 => T2, T2 => T1))
|
4318 |
|
|
then
|
4319 |
|
|
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
|
4320 |
|
|
end if;
|
4321 |
|
|
|
4322 |
|
|
elsif Op_Name = Name_Op_Expon then
|
4323 |
|
|
if Is_Numeric_Type (T1)
|
4324 |
|
|
and then not Is_Fixed_Point_Type (T1)
|
4325 |
|
|
and then (Base_Type (T2) = Base_Type (Standard_Integer)
|
4326 |
|
|
or else T2 = Universal_Integer)
|
4327 |
|
|
then
|
4328 |
|
|
Add_One_Interp (N, Op_Id, Base_Type (T1));
|
4329 |
|
|
end if;
|
4330 |
|
|
|
4331 |
|
|
else pragma Assert (Nkind (N) in N_Op_Shift);
|
4332 |
|
|
|
4333 |
|
|
-- If not one of the predefined operators, the node may be one
|
4334 |
|
|
-- of the intrinsic functions. Its kind is always specific, and
|
4335 |
|
|
-- we can use it directly, rather than the name of the operation.
|
4336 |
|
|
|
4337 |
|
|
if Is_Integer_Type (T1)
|
4338 |
|
|
and then (Base_Type (T2) = Base_Type (Standard_Integer)
|
4339 |
|
|
or else T2 = Universal_Integer)
|
4340 |
|
|
then
|
4341 |
|
|
Add_One_Interp (N, Op_Id, Base_Type (T1));
|
4342 |
|
|
end if;
|
4343 |
|
|
end if;
|
4344 |
|
|
end Check_Arithmetic_Pair;
|
4345 |
|
|
|
4346 |
|
|
-------------------------------
|
4347 |
|
|
-- Check_Misspelled_Selector --
|
4348 |
|
|
-------------------------------
|
4349 |
|
|
|
4350 |
|
|
procedure Check_Misspelled_Selector
|
4351 |
|
|
(Prefix : Entity_Id;
|
4352 |
|
|
Sel : Node_Id)
|
4353 |
|
|
is
|
4354 |
|
|
Max_Suggestions : constant := 2;
|
4355 |
|
|
Nr_Of_Suggestions : Natural := 0;
|
4356 |
|
|
|
4357 |
|
|
Suggestion_1 : Entity_Id := Empty;
|
4358 |
|
|
Suggestion_2 : Entity_Id := Empty;
|
4359 |
|
|
|
4360 |
|
|
Comp : Entity_Id;
|
4361 |
|
|
|
4362 |
|
|
begin
|
4363 |
|
|
-- All the components of the prefix of selector Sel are matched
|
4364 |
|
|
-- against Sel and a count is maintained of possible misspellings.
|
4365 |
|
|
-- When at the end of the analysis there are one or two (not more!)
|
4366 |
|
|
-- possible misspellings, these misspellings will be suggested as
|
4367 |
|
|
-- possible correction.
|
4368 |
|
|
|
4369 |
|
|
if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
|
4370 |
|
|
|
4371 |
|
|
-- Concurrent types should be handled as well ???
|
4372 |
|
|
|
4373 |
|
|
return;
|
4374 |
|
|
end if;
|
4375 |
|
|
|
4376 |
|
|
Comp := First_Entity (Prefix);
|
4377 |
|
|
while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
|
4378 |
|
|
if Is_Visible_Component (Comp) then
|
4379 |
|
|
if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
|
4380 |
|
|
Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
|
4381 |
|
|
|
4382 |
|
|
case Nr_Of_Suggestions is
|
4383 |
|
|
when 1 => Suggestion_1 := Comp;
|
4384 |
|
|
when 2 => Suggestion_2 := Comp;
|
4385 |
|
|
when others => exit;
|
4386 |
|
|
end case;
|
4387 |
|
|
end if;
|
4388 |
|
|
end if;
|
4389 |
|
|
|
4390 |
|
|
Comp := Next_Entity (Comp);
|
4391 |
|
|
end loop;
|
4392 |
|
|
|
4393 |
|
|
-- Report at most two suggestions
|
4394 |
|
|
|
4395 |
|
|
if Nr_Of_Suggestions = 1 then
|
4396 |
|
|
Error_Msg_NE -- CODEFIX
|
4397 |
|
|
("\possible misspelling of&", Sel, Suggestion_1);
|
4398 |
|
|
|
4399 |
|
|
elsif Nr_Of_Suggestions = 2 then
|
4400 |
|
|
Error_Msg_Node_2 := Suggestion_2;
|
4401 |
|
|
Error_Msg_NE -- CODEFIX
|
4402 |
|
|
("\possible misspelling of& or&", Sel, Suggestion_1);
|
4403 |
|
|
end if;
|
4404 |
|
|
end Check_Misspelled_Selector;
|
4405 |
|
|
|
4406 |
|
|
----------------------
|
4407 |
|
|
-- Defined_In_Scope --
|
4408 |
|
|
----------------------
|
4409 |
|
|
|
4410 |
|
|
function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
|
4411 |
|
|
is
|
4412 |
|
|
S1 : constant Entity_Id := Scope (Base_Type (T));
|
4413 |
|
|
begin
|
4414 |
|
|
return S1 = S
|
4415 |
|
|
or else (S1 = System_Aux_Id and then S = Scope (S1));
|
4416 |
|
|
end Defined_In_Scope;
|
4417 |
|
|
|
4418 |
|
|
-------------------
|
4419 |
|
|
-- Diagnose_Call --
|
4420 |
|
|
-------------------
|
4421 |
|
|
|
4422 |
|
|
procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
|
4423 |
|
|
Actual : Node_Id;
|
4424 |
|
|
X : Interp_Index;
|
4425 |
|
|
It : Interp;
|
4426 |
|
|
Err_Mode : Boolean;
|
4427 |
|
|
New_Nam : Node_Id;
|
4428 |
|
|
Void_Interp_Seen : Boolean := False;
|
4429 |
|
|
|
4430 |
|
|
Success : Boolean;
|
4431 |
|
|
pragma Warnings (Off, Boolean);
|
4432 |
|
|
|
4433 |
|
|
begin
|
4434 |
|
|
if Ada_Version >= Ada_05 then
|
4435 |
|
|
Actual := First_Actual (N);
|
4436 |
|
|
while Present (Actual) loop
|
4437 |
|
|
|
4438 |
|
|
-- Ada 2005 (AI-50217): Post an error in case of premature
|
4439 |
|
|
-- usage of an entity from the limited view.
|
4440 |
|
|
|
4441 |
|
|
if not Analyzed (Etype (Actual))
|
4442 |
|
|
and then From_With_Type (Etype (Actual))
|
4443 |
|
|
then
|
4444 |
|
|
Error_Msg_Qual_Level := 1;
|
4445 |
|
|
Error_Msg_NE
|
4446 |
|
|
("missing with_clause for scope of imported type&",
|
4447 |
|
|
Actual, Etype (Actual));
|
4448 |
|
|
Error_Msg_Qual_Level := 0;
|
4449 |
|
|
end if;
|
4450 |
|
|
|
4451 |
|
|
Next_Actual (Actual);
|
4452 |
|
|
end loop;
|
4453 |
|
|
end if;
|
4454 |
|
|
|
4455 |
|
|
-- Analyze each candidate call again, with full error reporting
|
4456 |
|
|
-- for each.
|
4457 |
|
|
|
4458 |
|
|
Error_Msg_N
|
4459 |
|
|
("no candidate interpretations match the actuals:!", Nam);
|
4460 |
|
|
Err_Mode := All_Errors_Mode;
|
4461 |
|
|
All_Errors_Mode := True;
|
4462 |
|
|
|
4463 |
|
|
-- If this is a call to an operation of a concurrent type,
|
4464 |
|
|
-- the failed interpretations have been removed from the
|
4465 |
|
|
-- name. Recover them to provide full diagnostics.
|
4466 |
|
|
|
4467 |
|
|
if Nkind (Parent (Nam)) = N_Selected_Component then
|
4468 |
|
|
Set_Entity (Nam, Empty);
|
4469 |
|
|
New_Nam := New_Copy_Tree (Parent (Nam));
|
4470 |
|
|
Set_Is_Overloaded (New_Nam, False);
|
4471 |
|
|
Set_Is_Overloaded (Selector_Name (New_Nam), False);
|
4472 |
|
|
Set_Parent (New_Nam, Parent (Parent (Nam)));
|
4473 |
|
|
Analyze_Selected_Component (New_Nam);
|
4474 |
|
|
Get_First_Interp (Selector_Name (New_Nam), X, It);
|
4475 |
|
|
else
|
4476 |
|
|
Get_First_Interp (Nam, X, It);
|
4477 |
|
|
end if;
|
4478 |
|
|
|
4479 |
|
|
while Present (It.Nam) loop
|
4480 |
|
|
if Etype (It.Nam) = Standard_Void_Type then
|
4481 |
|
|
Void_Interp_Seen := True;
|
4482 |
|
|
end if;
|
4483 |
|
|
|
4484 |
|
|
Analyze_One_Call (N, It.Nam, True, Success);
|
4485 |
|
|
Get_Next_Interp (X, It);
|
4486 |
|
|
end loop;
|
4487 |
|
|
|
4488 |
|
|
if Nkind (N) = N_Function_Call then
|
4489 |
|
|
Get_First_Interp (Nam, X, It);
|
4490 |
|
|
while Present (It.Nam) loop
|
4491 |
|
|
if Ekind (It.Nam) = E_Function
|
4492 |
|
|
or else Ekind (It.Nam) = E_Operator
|
4493 |
|
|
then
|
4494 |
|
|
return;
|
4495 |
|
|
else
|
4496 |
|
|
Get_Next_Interp (X, It);
|
4497 |
|
|
end if;
|
4498 |
|
|
end loop;
|
4499 |
|
|
|
4500 |
|
|
-- If all interpretations are procedures, this deserves a
|
4501 |
|
|
-- more precise message. Ditto if this appears as the prefix
|
4502 |
|
|
-- of a selected component, which may be a lexical error.
|
4503 |
|
|
|
4504 |
|
|
Error_Msg_N
|
4505 |
|
|
("\context requires function call, found procedure name", Nam);
|
4506 |
|
|
|
4507 |
|
|
if Nkind (Parent (N)) = N_Selected_Component
|
4508 |
|
|
and then N = Prefix (Parent (N))
|
4509 |
|
|
then
|
4510 |
|
|
Error_Msg_N -- CODEFIX
|
4511 |
|
|
("\period should probably be semicolon", Parent (N));
|
4512 |
|
|
end if;
|
4513 |
|
|
|
4514 |
|
|
elsif Nkind (N) = N_Procedure_Call_Statement
|
4515 |
|
|
and then not Void_Interp_Seen
|
4516 |
|
|
then
|
4517 |
|
|
Error_Msg_N (
|
4518 |
|
|
"\function name found in procedure call", Nam);
|
4519 |
|
|
end if;
|
4520 |
|
|
|
4521 |
|
|
All_Errors_Mode := Err_Mode;
|
4522 |
|
|
end Diagnose_Call;
|
4523 |
|
|
|
4524 |
|
|
---------------------------
|
4525 |
|
|
-- Find_Arithmetic_Types --
|
4526 |
|
|
---------------------------
|
4527 |
|
|
|
4528 |
|
|
procedure Find_Arithmetic_Types
|
4529 |
|
|
(L, R : Node_Id;
|
4530 |
|
|
Op_Id : Entity_Id;
|
4531 |
|
|
N : Node_Id)
|
4532 |
|
|
is
|
4533 |
|
|
Index1 : Interp_Index;
|
4534 |
|
|
Index2 : Interp_Index;
|
4535 |
|
|
It1 : Interp;
|
4536 |
|
|
It2 : Interp;
|
4537 |
|
|
|
4538 |
|
|
procedure Check_Right_Argument (T : Entity_Id);
|
4539 |
|
|
-- Check right operand of operator
|
4540 |
|
|
|
4541 |
|
|
--------------------------
|
4542 |
|
|
-- Check_Right_Argument --
|
4543 |
|
|
--------------------------
|
4544 |
|
|
|
4545 |
|
|
procedure Check_Right_Argument (T : Entity_Id) is
|
4546 |
|
|
begin
|
4547 |
|
|
if not Is_Overloaded (R) then
|
4548 |
|
|
Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
|
4549 |
|
|
else
|
4550 |
|
|
Get_First_Interp (R, Index2, It2);
|
4551 |
|
|
while Present (It2.Typ) loop
|
4552 |
|
|
Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
|
4553 |
|
|
Get_Next_Interp (Index2, It2);
|
4554 |
|
|
end loop;
|
4555 |
|
|
end if;
|
4556 |
|
|
end Check_Right_Argument;
|
4557 |
|
|
|
4558 |
|
|
-- Start of processing for Find_Arithmetic_Types
|
4559 |
|
|
|
4560 |
|
|
begin
|
4561 |
|
|
if not Is_Overloaded (L) then
|
4562 |
|
|
Check_Right_Argument (Etype (L));
|
4563 |
|
|
|
4564 |
|
|
else
|
4565 |
|
|
Get_First_Interp (L, Index1, It1);
|
4566 |
|
|
while Present (It1.Typ) loop
|
4567 |
|
|
Check_Right_Argument (It1.Typ);
|
4568 |
|
|
Get_Next_Interp (Index1, It1);
|
4569 |
|
|
end loop;
|
4570 |
|
|
end if;
|
4571 |
|
|
|
4572 |
|
|
end Find_Arithmetic_Types;
|
4573 |
|
|
|
4574 |
|
|
------------------------
|
4575 |
|
|
-- Find_Boolean_Types --
|
4576 |
|
|
------------------------
|
4577 |
|
|
|
4578 |
|
|
procedure Find_Boolean_Types
|
4579 |
|
|
(L, R : Node_Id;
|
4580 |
|
|
Op_Id : Entity_Id;
|
4581 |
|
|
N : Node_Id)
|
4582 |
|
|
is
|
4583 |
|
|
Index : Interp_Index;
|
4584 |
|
|
It : Interp;
|
4585 |
|
|
|
4586 |
|
|
procedure Check_Numeric_Argument (T : Entity_Id);
|
4587 |
|
|
-- Special case for logical operations one of whose operands is an
|
4588 |
|
|
-- integer literal. If both are literal the result is any modular type.
|
4589 |
|
|
|
4590 |
|
|
----------------------------
|
4591 |
|
|
-- Check_Numeric_Argument --
|
4592 |
|
|
----------------------------
|
4593 |
|
|
|
4594 |
|
|
procedure Check_Numeric_Argument (T : Entity_Id) is
|
4595 |
|
|
begin
|
4596 |
|
|
if T = Universal_Integer then
|
4597 |
|
|
Add_One_Interp (N, Op_Id, Any_Modular);
|
4598 |
|
|
|
4599 |
|
|
elsif Is_Modular_Integer_Type (T) then
|
4600 |
|
|
Add_One_Interp (N, Op_Id, T);
|
4601 |
|
|
end if;
|
4602 |
|
|
end Check_Numeric_Argument;
|
4603 |
|
|
|
4604 |
|
|
-- Start of processing for Find_Boolean_Types
|
4605 |
|
|
|
4606 |
|
|
begin
|
4607 |
|
|
if not Is_Overloaded (L) then
|
4608 |
|
|
if Etype (L) = Universal_Integer
|
4609 |
|
|
or else Etype (L) = Any_Modular
|
4610 |
|
|
then
|
4611 |
|
|
if not Is_Overloaded (R) then
|
4612 |
|
|
Check_Numeric_Argument (Etype (R));
|
4613 |
|
|
|
4614 |
|
|
else
|
4615 |
|
|
Get_First_Interp (R, Index, It);
|
4616 |
|
|
while Present (It.Typ) loop
|
4617 |
|
|
Check_Numeric_Argument (It.Typ);
|
4618 |
|
|
Get_Next_Interp (Index, It);
|
4619 |
|
|
end loop;
|
4620 |
|
|
end if;
|
4621 |
|
|
|
4622 |
|
|
-- If operands are aggregates, we must assume that they may be
|
4623 |
|
|
-- boolean arrays, and leave disambiguation for the second pass.
|
4624 |
|
|
-- If only one is an aggregate, verify that the other one has an
|
4625 |
|
|
-- interpretation as a boolean array
|
4626 |
|
|
|
4627 |
|
|
elsif Nkind (L) = N_Aggregate then
|
4628 |
|
|
if Nkind (R) = N_Aggregate then
|
4629 |
|
|
Add_One_Interp (N, Op_Id, Etype (L));
|
4630 |
|
|
|
4631 |
|
|
elsif not Is_Overloaded (R) then
|
4632 |
|
|
if Valid_Boolean_Arg (Etype (R)) then
|
4633 |
|
|
Add_One_Interp (N, Op_Id, Etype (R));
|
4634 |
|
|
end if;
|
4635 |
|
|
|
4636 |
|
|
else
|
4637 |
|
|
Get_First_Interp (R, Index, It);
|
4638 |
|
|
while Present (It.Typ) loop
|
4639 |
|
|
if Valid_Boolean_Arg (It.Typ) then
|
4640 |
|
|
Add_One_Interp (N, Op_Id, It.Typ);
|
4641 |
|
|
end if;
|
4642 |
|
|
|
4643 |
|
|
Get_Next_Interp (Index, It);
|
4644 |
|
|
end loop;
|
4645 |
|
|
end if;
|
4646 |
|
|
|
4647 |
|
|
elsif Valid_Boolean_Arg (Etype (L))
|
4648 |
|
|
and then Has_Compatible_Type (R, Etype (L))
|
4649 |
|
|
then
|
4650 |
|
|
Add_One_Interp (N, Op_Id, Etype (L));
|
4651 |
|
|
end if;
|
4652 |
|
|
|
4653 |
|
|
else
|
4654 |
|
|
Get_First_Interp (L, Index, It);
|
4655 |
|
|
while Present (It.Typ) loop
|
4656 |
|
|
if Valid_Boolean_Arg (It.Typ)
|
4657 |
|
|
and then Has_Compatible_Type (R, It.Typ)
|
4658 |
|
|
then
|
4659 |
|
|
Add_One_Interp (N, Op_Id, It.Typ);
|
4660 |
|
|
end if;
|
4661 |
|
|
|
4662 |
|
|
Get_Next_Interp (Index, It);
|
4663 |
|
|
end loop;
|
4664 |
|
|
end if;
|
4665 |
|
|
end Find_Boolean_Types;
|
4666 |
|
|
|
4667 |
|
|
---------------------------
|
4668 |
|
|
-- Find_Comparison_Types --
|
4669 |
|
|
---------------------------
|
4670 |
|
|
|
4671 |
|
|
procedure Find_Comparison_Types
|
4672 |
|
|
(L, R : Node_Id;
|
4673 |
|
|
Op_Id : Entity_Id;
|
4674 |
|
|
N : Node_Id)
|
4675 |
|
|
is
|
4676 |
|
|
Index : Interp_Index;
|
4677 |
|
|
It : Interp;
|
4678 |
|
|
Found : Boolean := False;
|
4679 |
|
|
I_F : Interp_Index;
|
4680 |
|
|
T_F : Entity_Id;
|
4681 |
|
|
Scop : Entity_Id := Empty;
|
4682 |
|
|
|
4683 |
|
|
procedure Try_One_Interp (T1 : Entity_Id);
|
4684 |
|
|
-- Routine to try one proposed interpretation. Note that the context
|
4685 |
|
|
-- of the operator plays no role in resolving the arguments, so that
|
4686 |
|
|
-- if there is more than one interpretation of the operands that is
|
4687 |
|
|
-- compatible with comparison, the operation is ambiguous.
|
4688 |
|
|
|
4689 |
|
|
--------------------
|
4690 |
|
|
-- Try_One_Interp --
|
4691 |
|
|
--------------------
|
4692 |
|
|
|
4693 |
|
|
procedure Try_One_Interp (T1 : Entity_Id) is
|
4694 |
|
|
begin
|
4695 |
|
|
|
4696 |
|
|
-- If the operator is an expanded name, then the type of the operand
|
4697 |
|
|
-- must be defined in the corresponding scope. If the type is
|
4698 |
|
|
-- universal, the context will impose the correct type.
|
4699 |
|
|
|
4700 |
|
|
if Present (Scop)
|
4701 |
|
|
and then not Defined_In_Scope (T1, Scop)
|
4702 |
|
|
and then T1 /= Universal_Integer
|
4703 |
|
|
and then T1 /= Universal_Real
|
4704 |
|
|
and then T1 /= Any_String
|
4705 |
|
|
and then T1 /= Any_Composite
|
4706 |
|
|
then
|
4707 |
|
|
return;
|
4708 |
|
|
end if;
|
4709 |
|
|
|
4710 |
|
|
if Valid_Comparison_Arg (T1)
|
4711 |
|
|
and then Has_Compatible_Type (R, T1)
|
4712 |
|
|
then
|
4713 |
|
|
if Found
|
4714 |
|
|
and then Base_Type (T1) /= Base_Type (T_F)
|
4715 |
|
|
then
|
4716 |
|
|
It := Disambiguate (L, I_F, Index, Any_Type);
|
4717 |
|
|
|
4718 |
|
|
if It = No_Interp then
|
4719 |
|
|
Ambiguous_Operands (N);
|
4720 |
|
|
Set_Etype (L, Any_Type);
|
4721 |
|
|
return;
|
4722 |
|
|
|
4723 |
|
|
else
|
4724 |
|
|
T_F := It.Typ;
|
4725 |
|
|
end if;
|
4726 |
|
|
|
4727 |
|
|
else
|
4728 |
|
|
Found := True;
|
4729 |
|
|
T_F := T1;
|
4730 |
|
|
I_F := Index;
|
4731 |
|
|
end if;
|
4732 |
|
|
|
4733 |
|
|
Set_Etype (L, T_F);
|
4734 |
|
|
Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
|
4735 |
|
|
|
4736 |
|
|
end if;
|
4737 |
|
|
end Try_One_Interp;
|
4738 |
|
|
|
4739 |
|
|
-- Start of processing for Find_Comparison_Types
|
4740 |
|
|
|
4741 |
|
|
begin
|
4742 |
|
|
-- If left operand is aggregate, the right operand has to
|
4743 |
|
|
-- provide a usable type for it.
|
4744 |
|
|
|
4745 |
|
|
if Nkind (L) = N_Aggregate
|
4746 |
|
|
and then Nkind (R) /= N_Aggregate
|
4747 |
|
|
then
|
4748 |
|
|
Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
|
4749 |
|
|
return;
|
4750 |
|
|
end if;
|
4751 |
|
|
|
4752 |
|
|
if Nkind (N) = N_Function_Call
|
4753 |
|
|
and then Nkind (Name (N)) = N_Expanded_Name
|
4754 |
|
|
then
|
4755 |
|
|
Scop := Entity (Prefix (Name (N)));
|
4756 |
|
|
|
4757 |
|
|
-- The prefix may be a package renaming, and the subsequent test
|
4758 |
|
|
-- requires the original package.
|
4759 |
|
|
|
4760 |
|
|
if Ekind (Scop) = E_Package
|
4761 |
|
|
and then Present (Renamed_Entity (Scop))
|
4762 |
|
|
then
|
4763 |
|
|
Scop := Renamed_Entity (Scop);
|
4764 |
|
|
Set_Entity (Prefix (Name (N)), Scop);
|
4765 |
|
|
end if;
|
4766 |
|
|
end if;
|
4767 |
|
|
|
4768 |
|
|
if not Is_Overloaded (L) then
|
4769 |
|
|
Try_One_Interp (Etype (L));
|
4770 |
|
|
|
4771 |
|
|
else
|
4772 |
|
|
Get_First_Interp (L, Index, It);
|
4773 |
|
|
while Present (It.Typ) loop
|
4774 |
|
|
Try_One_Interp (It.Typ);
|
4775 |
|
|
Get_Next_Interp (Index, It);
|
4776 |
|
|
end loop;
|
4777 |
|
|
end if;
|
4778 |
|
|
end Find_Comparison_Types;
|
4779 |
|
|
|
4780 |
|
|
----------------------------------------
|
4781 |
|
|
-- Find_Non_Universal_Interpretations --
|
4782 |
|
|
----------------------------------------
|
4783 |
|
|
|
4784 |
|
|
procedure Find_Non_Universal_Interpretations
|
4785 |
|
|
(N : Node_Id;
|
4786 |
|
|
R : Node_Id;
|
4787 |
|
|
Op_Id : Entity_Id;
|
4788 |
|
|
T1 : Entity_Id)
|
4789 |
|
|
is
|
4790 |
|
|
Index : Interp_Index;
|
4791 |
|
|
It : Interp;
|
4792 |
|
|
|
4793 |
|
|
begin
|
4794 |
|
|
if T1 = Universal_Integer
|
4795 |
|
|
or else T1 = Universal_Real
|
4796 |
|
|
then
|
4797 |
|
|
if not Is_Overloaded (R) then
|
4798 |
|
|
Add_One_Interp
|
4799 |
|
|
(N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
|
4800 |
|
|
else
|
4801 |
|
|
Get_First_Interp (R, Index, It);
|
4802 |
|
|
while Present (It.Typ) loop
|
4803 |
|
|
if Covers (It.Typ, T1) then
|
4804 |
|
|
Add_One_Interp
|
4805 |
|
|
(N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
|
4806 |
|
|
end if;
|
4807 |
|
|
|
4808 |
|
|
Get_Next_Interp (Index, It);
|
4809 |
|
|
end loop;
|
4810 |
|
|
end if;
|
4811 |
|
|
else
|
4812 |
|
|
Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
|
4813 |
|
|
end if;
|
4814 |
|
|
end Find_Non_Universal_Interpretations;
|
4815 |
|
|
|
4816 |
|
|
------------------------------
|
4817 |
|
|
-- Find_Concatenation_Types --
|
4818 |
|
|
------------------------------
|
4819 |
|
|
|
4820 |
|
|
procedure Find_Concatenation_Types
|
4821 |
|
|
(L, R : Node_Id;
|
4822 |
|
|
Op_Id : Entity_Id;
|
4823 |
|
|
N : Node_Id)
|
4824 |
|
|
is
|
4825 |
|
|
Op_Type : constant Entity_Id := Etype (Op_Id);
|
4826 |
|
|
|
4827 |
|
|
begin
|
4828 |
|
|
if Is_Array_Type (Op_Type)
|
4829 |
|
|
and then not Is_Limited_Type (Op_Type)
|
4830 |
|
|
|
4831 |
|
|
and then (Has_Compatible_Type (L, Op_Type)
|
4832 |
|
|
or else
|
4833 |
|
|
Has_Compatible_Type (L, Component_Type (Op_Type)))
|
4834 |
|
|
|
4835 |
|
|
and then (Has_Compatible_Type (R, Op_Type)
|
4836 |
|
|
or else
|
4837 |
|
|
Has_Compatible_Type (R, Component_Type (Op_Type)))
|
4838 |
|
|
then
|
4839 |
|
|
Add_One_Interp (N, Op_Id, Op_Type);
|
4840 |
|
|
end if;
|
4841 |
|
|
end Find_Concatenation_Types;
|
4842 |
|
|
|
4843 |
|
|
-------------------------
|
4844 |
|
|
-- Find_Equality_Types --
|
4845 |
|
|
-------------------------
|
4846 |
|
|
|
4847 |
|
|
procedure Find_Equality_Types
|
4848 |
|
|
(L, R : Node_Id;
|
4849 |
|
|
Op_Id : Entity_Id;
|
4850 |
|
|
N : Node_Id)
|
4851 |
|
|
is
|
4852 |
|
|
Index : Interp_Index;
|
4853 |
|
|
It : Interp;
|
4854 |
|
|
Found : Boolean := False;
|
4855 |
|
|
I_F : Interp_Index;
|
4856 |
|
|
T_F : Entity_Id;
|
4857 |
|
|
Scop : Entity_Id := Empty;
|
4858 |
|
|
|
4859 |
|
|
procedure Try_One_Interp (T1 : Entity_Id);
|
4860 |
|
|
-- The context of the equality operator plays no role in resolving the
|
4861 |
|
|
-- arguments, so that if there is more than one interpretation of the
|
4862 |
|
|
-- operands that is compatible with equality, the construct is ambiguous
|
4863 |
|
|
-- and an error can be emitted now, after trying to disambiguate, i.e.
|
4864 |
|
|
-- applying preference rules.
|
4865 |
|
|
|
4866 |
|
|
--------------------
|
4867 |
|
|
-- Try_One_Interp --
|
4868 |
|
|
--------------------
|
4869 |
|
|
|
4870 |
|
|
procedure Try_One_Interp (T1 : Entity_Id) is
|
4871 |
|
|
Bas : constant Entity_Id := Base_Type (T1);
|
4872 |
|
|
|
4873 |
|
|
begin
|
4874 |
|
|
-- If the operator is an expanded name, then the type of the operand
|
4875 |
|
|
-- must be defined in the corresponding scope. If the type is
|
4876 |
|
|
-- universal, the context will impose the correct type. An anonymous
|
4877 |
|
|
-- type for a 'Access reference is also universal in this sense, as
|
4878 |
|
|
-- the actual type is obtained from context.
|
4879 |
|
|
-- In Ada 2005, the equality operator for anonymous access types
|
4880 |
|
|
-- is declared in Standard, and preference rules apply to it.
|
4881 |
|
|
|
4882 |
|
|
if Present (Scop) then
|
4883 |
|
|
if Defined_In_Scope (T1, Scop)
|
4884 |
|
|
or else T1 = Universal_Integer
|
4885 |
|
|
or else T1 = Universal_Real
|
4886 |
|
|
or else T1 = Any_Access
|
4887 |
|
|
or else T1 = Any_String
|
4888 |
|
|
or else T1 = Any_Composite
|
4889 |
|
|
or else (Ekind (T1) = E_Access_Subprogram_Type
|
4890 |
|
|
and then not Comes_From_Source (T1))
|
4891 |
|
|
then
|
4892 |
|
|
null;
|
4893 |
|
|
|
4894 |
|
|
elsif Ekind (T1) = E_Anonymous_Access_Type
|
4895 |
|
|
and then Scop = Standard_Standard
|
4896 |
|
|
then
|
4897 |
|
|
null;
|
4898 |
|
|
|
4899 |
|
|
else
|
4900 |
|
|
-- The scope does not contain an operator for the type
|
4901 |
|
|
|
4902 |
|
|
return;
|
4903 |
|
|
end if;
|
4904 |
|
|
|
4905 |
|
|
-- If we have infix notation, the operator must be usable.
|
4906 |
|
|
-- Within an instance, if the type is already established we
|
4907 |
|
|
-- know it is correct.
|
4908 |
|
|
-- In Ada 2005, the equality on anonymous access types is declared
|
4909 |
|
|
-- in Standard, and is always visible.
|
4910 |
|
|
|
4911 |
|
|
elsif In_Open_Scopes (Scope (Bas))
|
4912 |
|
|
or else Is_Potentially_Use_Visible (Bas)
|
4913 |
|
|
or else In_Use (Bas)
|
4914 |
|
|
or else (In_Use (Scope (Bas))
|
4915 |
|
|
and then not Is_Hidden (Bas))
|
4916 |
|
|
or else (In_Instance
|
4917 |
|
|
and then First_Subtype (T1) = First_Subtype (Etype (R)))
|
4918 |
|
|
or else Ekind (T1) = E_Anonymous_Access_Type
|
4919 |
|
|
then
|
4920 |
|
|
null;
|
4921 |
|
|
|
4922 |
|
|
else
|
4923 |
|
|
-- Save candidate type for subsquent error message, if any
|
4924 |
|
|
|
4925 |
|
|
if not Is_Limited_Type (T1) then
|
4926 |
|
|
Candidate_Type := T1;
|
4927 |
|
|
end if;
|
4928 |
|
|
|
4929 |
|
|
return;
|
4930 |
|
|
end if;
|
4931 |
|
|
|
4932 |
|
|
-- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
|
4933 |
|
|
-- Do not allow anonymous access types in equality operators.
|
4934 |
|
|
|
4935 |
|
|
if Ada_Version < Ada_05
|
4936 |
|
|
and then Ekind (T1) = E_Anonymous_Access_Type
|
4937 |
|
|
then
|
4938 |
|
|
return;
|
4939 |
|
|
end if;
|
4940 |
|
|
|
4941 |
|
|
if T1 /= Standard_Void_Type
|
4942 |
|
|
and then not Is_Limited_Type (T1)
|
4943 |
|
|
and then not Is_Limited_Composite (T1)
|
4944 |
|
|
and then Has_Compatible_Type (R, T1)
|
4945 |
|
|
then
|
4946 |
|
|
if Found
|
4947 |
|
|
and then Base_Type (T1) /= Base_Type (T_F)
|
4948 |
|
|
then
|
4949 |
|
|
It := Disambiguate (L, I_F, Index, Any_Type);
|
4950 |
|
|
|
4951 |
|
|
if It = No_Interp then
|
4952 |
|
|
Ambiguous_Operands (N);
|
4953 |
|
|
Set_Etype (L, Any_Type);
|
4954 |
|
|
return;
|
4955 |
|
|
|
4956 |
|
|
else
|
4957 |
|
|
T_F := It.Typ;
|
4958 |
|
|
end if;
|
4959 |
|
|
|
4960 |
|
|
else
|
4961 |
|
|
Found := True;
|
4962 |
|
|
T_F := T1;
|
4963 |
|
|
I_F := Index;
|
4964 |
|
|
end if;
|
4965 |
|
|
|
4966 |
|
|
if not Analyzed (L) then
|
4967 |
|
|
Set_Etype (L, T_F);
|
4968 |
|
|
end if;
|
4969 |
|
|
|
4970 |
|
|
Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
|
4971 |
|
|
|
4972 |
|
|
-- Case of operator was not visible, Etype still set to Any_Type
|
4973 |
|
|
|
4974 |
|
|
if Etype (N) = Any_Type then
|
4975 |
|
|
Found := False;
|
4976 |
|
|
end if;
|
4977 |
|
|
|
4978 |
|
|
elsif Scop = Standard_Standard
|
4979 |
|
|
and then Ekind (T1) = E_Anonymous_Access_Type
|
4980 |
|
|
then
|
4981 |
|
|
Found := True;
|
4982 |
|
|
end if;
|
4983 |
|
|
end Try_One_Interp;
|
4984 |
|
|
|
4985 |
|
|
-- Start of processing for Find_Equality_Types
|
4986 |
|
|
|
4987 |
|
|
begin
|
4988 |
|
|
-- If left operand is aggregate, the right operand has to
|
4989 |
|
|
-- provide a usable type for it.
|
4990 |
|
|
|
4991 |
|
|
if Nkind (L) = N_Aggregate
|
4992 |
|
|
and then Nkind (R) /= N_Aggregate
|
4993 |
|
|
then
|
4994 |
|
|
Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
|
4995 |
|
|
return;
|
4996 |
|
|
end if;
|
4997 |
|
|
|
4998 |
|
|
if Nkind (N) = N_Function_Call
|
4999 |
|
|
and then Nkind (Name (N)) = N_Expanded_Name
|
5000 |
|
|
then
|
5001 |
|
|
Scop := Entity (Prefix (Name (N)));
|
5002 |
|
|
|
5003 |
|
|
-- The prefix may be a package renaming, and the subsequent test
|
5004 |
|
|
-- requires the original package.
|
5005 |
|
|
|
5006 |
|
|
if Ekind (Scop) = E_Package
|
5007 |
|
|
and then Present (Renamed_Entity (Scop))
|
5008 |
|
|
then
|
5009 |
|
|
Scop := Renamed_Entity (Scop);
|
5010 |
|
|
Set_Entity (Prefix (Name (N)), Scop);
|
5011 |
|
|
end if;
|
5012 |
|
|
end if;
|
5013 |
|
|
|
5014 |
|
|
if not Is_Overloaded (L) then
|
5015 |
|
|
Try_One_Interp (Etype (L));
|
5016 |
|
|
|
5017 |
|
|
else
|
5018 |
|
|
Get_First_Interp (L, Index, It);
|
5019 |
|
|
while Present (It.Typ) loop
|
5020 |
|
|
Try_One_Interp (It.Typ);
|
5021 |
|
|
Get_Next_Interp (Index, It);
|
5022 |
|
|
end loop;
|
5023 |
|
|
end if;
|
5024 |
|
|
end Find_Equality_Types;
|
5025 |
|
|
|
5026 |
|
|
-------------------------
|
5027 |
|
|
-- Find_Negation_Types --
|
5028 |
|
|
-------------------------
|
5029 |
|
|
|
5030 |
|
|
procedure Find_Negation_Types
|
5031 |
|
|
(R : Node_Id;
|
5032 |
|
|
Op_Id : Entity_Id;
|
5033 |
|
|
N : Node_Id)
|
5034 |
|
|
is
|
5035 |
|
|
Index : Interp_Index;
|
5036 |
|
|
It : Interp;
|
5037 |
|
|
|
5038 |
|
|
begin
|
5039 |
|
|
if not Is_Overloaded (R) then
|
5040 |
|
|
if Etype (R) = Universal_Integer then
|
5041 |
|
|
Add_One_Interp (N, Op_Id, Any_Modular);
|
5042 |
|
|
elsif Valid_Boolean_Arg (Etype (R)) then
|
5043 |
|
|
Add_One_Interp (N, Op_Id, Etype (R));
|
5044 |
|
|
end if;
|
5045 |
|
|
|
5046 |
|
|
else
|
5047 |
|
|
Get_First_Interp (R, Index, It);
|
5048 |
|
|
while Present (It.Typ) loop
|
5049 |
|
|
if Valid_Boolean_Arg (It.Typ) then
|
5050 |
|
|
Add_One_Interp (N, Op_Id, It.Typ);
|
5051 |
|
|
end if;
|
5052 |
|
|
|
5053 |
|
|
Get_Next_Interp (Index, It);
|
5054 |
|
|
end loop;
|
5055 |
|
|
end if;
|
5056 |
|
|
end Find_Negation_Types;
|
5057 |
|
|
|
5058 |
|
|
------------------------------
|
5059 |
|
|
-- Find_Primitive_Operation --
|
5060 |
|
|
------------------------------
|
5061 |
|
|
|
5062 |
|
|
function Find_Primitive_Operation (N : Node_Id) return Boolean is
|
5063 |
|
|
Obj : constant Node_Id := Prefix (N);
|
5064 |
|
|
Op : constant Node_Id := Selector_Name (N);
|
5065 |
|
|
|
5066 |
|
|
Prim : Elmt_Id;
|
5067 |
|
|
Prims : Elist_Id;
|
5068 |
|
|
Typ : Entity_Id;
|
5069 |
|
|
|
5070 |
|
|
begin
|
5071 |
|
|
Set_Etype (Op, Any_Type);
|
5072 |
|
|
|
5073 |
|
|
if Is_Access_Type (Etype (Obj)) then
|
5074 |
|
|
Typ := Designated_Type (Etype (Obj));
|
5075 |
|
|
else
|
5076 |
|
|
Typ := Etype (Obj);
|
5077 |
|
|
end if;
|
5078 |
|
|
|
5079 |
|
|
if Is_Class_Wide_Type (Typ) then
|
5080 |
|
|
Typ := Root_Type (Typ);
|
5081 |
|
|
end if;
|
5082 |
|
|
|
5083 |
|
|
Prims := Primitive_Operations (Typ);
|
5084 |
|
|
|
5085 |
|
|
Prim := First_Elmt (Prims);
|
5086 |
|
|
while Present (Prim) loop
|
5087 |
|
|
if Chars (Node (Prim)) = Chars (Op) then
|
5088 |
|
|
Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
|
5089 |
|
|
Set_Etype (N, Etype (Node (Prim)));
|
5090 |
|
|
end if;
|
5091 |
|
|
|
5092 |
|
|
Next_Elmt (Prim);
|
5093 |
|
|
end loop;
|
5094 |
|
|
|
5095 |
|
|
-- Now look for class-wide operations of the type or any of its
|
5096 |
|
|
-- ancestors by iterating over the homonyms of the selector.
|
5097 |
|
|
|
5098 |
|
|
declare
|
5099 |
|
|
Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
|
5100 |
|
|
Hom : Entity_Id;
|
5101 |
|
|
|
5102 |
|
|
begin
|
5103 |
|
|
Hom := Current_Entity (Op);
|
5104 |
|
|
while Present (Hom) loop
|
5105 |
|
|
if (Ekind (Hom) = E_Procedure
|
5106 |
|
|
or else
|
5107 |
|
|
Ekind (Hom) = E_Function)
|
5108 |
|
|
and then Scope (Hom) = Scope (Typ)
|
5109 |
|
|
and then Present (First_Formal (Hom))
|
5110 |
|
|
and then
|
5111 |
|
|
(Base_Type (Etype (First_Formal (Hom))) = Cls_Type
|
5112 |
|
|
or else
|
5113 |
|
|
(Is_Access_Type (Etype (First_Formal (Hom)))
|
5114 |
|
|
and then
|
5115 |
|
|
Ekind (Etype (First_Formal (Hom))) =
|
5116 |
|
|
E_Anonymous_Access_Type
|
5117 |
|
|
and then
|
5118 |
|
|
Base_Type
|
5119 |
|
|
(Designated_Type (Etype (First_Formal (Hom)))) =
|
5120 |
|
|
Cls_Type))
|
5121 |
|
|
then
|
5122 |
|
|
Add_One_Interp (Op, Hom, Etype (Hom));
|
5123 |
|
|
Set_Etype (N, Etype (Hom));
|
5124 |
|
|
end if;
|
5125 |
|
|
|
5126 |
|
|
Hom := Homonym (Hom);
|
5127 |
|
|
end loop;
|
5128 |
|
|
end;
|
5129 |
|
|
|
5130 |
|
|
return Etype (Op) /= Any_Type;
|
5131 |
|
|
end Find_Primitive_Operation;
|
5132 |
|
|
|
5133 |
|
|
----------------------
|
5134 |
|
|
-- Find_Unary_Types --
|
5135 |
|
|
----------------------
|
5136 |
|
|
|
5137 |
|
|
procedure Find_Unary_Types
|
5138 |
|
|
(R : Node_Id;
|
5139 |
|
|
Op_Id : Entity_Id;
|
5140 |
|
|
N : Node_Id)
|
5141 |
|
|
is
|
5142 |
|
|
Index : Interp_Index;
|
5143 |
|
|
It : Interp;
|
5144 |
|
|
|
5145 |
|
|
begin
|
5146 |
|
|
if not Is_Overloaded (R) then
|
5147 |
|
|
if Is_Numeric_Type (Etype (R)) then
|
5148 |
|
|
Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
|
5149 |
|
|
end if;
|
5150 |
|
|
|
5151 |
|
|
else
|
5152 |
|
|
Get_First_Interp (R, Index, It);
|
5153 |
|
|
while Present (It.Typ) loop
|
5154 |
|
|
if Is_Numeric_Type (It.Typ) then
|
5155 |
|
|
Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
|
5156 |
|
|
end if;
|
5157 |
|
|
|
5158 |
|
|
Get_Next_Interp (Index, It);
|
5159 |
|
|
end loop;
|
5160 |
|
|
end if;
|
5161 |
|
|
end Find_Unary_Types;
|
5162 |
|
|
|
5163 |
|
|
------------------
|
5164 |
|
|
-- Junk_Operand --
|
5165 |
|
|
------------------
|
5166 |
|
|
|
5167 |
|
|
function Junk_Operand (N : Node_Id) return Boolean is
|
5168 |
|
|
Enode : Node_Id;
|
5169 |
|
|
|
5170 |
|
|
begin
|
5171 |
|
|
if Error_Posted (N) then
|
5172 |
|
|
return False;
|
5173 |
|
|
end if;
|
5174 |
|
|
|
5175 |
|
|
-- Get entity to be tested
|
5176 |
|
|
|
5177 |
|
|
if Is_Entity_Name (N)
|
5178 |
|
|
and then Present (Entity (N))
|
5179 |
|
|
then
|
5180 |
|
|
Enode := N;
|
5181 |
|
|
|
5182 |
|
|
-- An odd case, a procedure name gets converted to a very peculiar
|
5183 |
|
|
-- function call, and here is where we detect this happening.
|
5184 |
|
|
|
5185 |
|
|
elsif Nkind (N) = N_Function_Call
|
5186 |
|
|
and then Is_Entity_Name (Name (N))
|
5187 |
|
|
and then Present (Entity (Name (N)))
|
5188 |
|
|
then
|
5189 |
|
|
Enode := Name (N);
|
5190 |
|
|
|
5191 |
|
|
-- Another odd case, there are at least some cases of selected
|
5192 |
|
|
-- components where the selected component is not marked as having
|
5193 |
|
|
-- an entity, even though the selector does have an entity
|
5194 |
|
|
|
5195 |
|
|
elsif Nkind (N) = N_Selected_Component
|
5196 |
|
|
and then Present (Entity (Selector_Name (N)))
|
5197 |
|
|
then
|
5198 |
|
|
Enode := Selector_Name (N);
|
5199 |
|
|
|
5200 |
|
|
else
|
5201 |
|
|
return False;
|
5202 |
|
|
end if;
|
5203 |
|
|
|
5204 |
|
|
-- Now test the entity we got to see if it is a bad case
|
5205 |
|
|
|
5206 |
|
|
case Ekind (Entity (Enode)) is
|
5207 |
|
|
|
5208 |
|
|
when E_Package =>
|
5209 |
|
|
Error_Msg_N
|
5210 |
|
|
("package name cannot be used as operand", Enode);
|
5211 |
|
|
|
5212 |
|
|
when Generic_Unit_Kind =>
|
5213 |
|
|
Error_Msg_N
|
5214 |
|
|
("generic unit name cannot be used as operand", Enode);
|
5215 |
|
|
|
5216 |
|
|
when Type_Kind =>
|
5217 |
|
|
Error_Msg_N
|
5218 |
|
|
("subtype name cannot be used as operand", Enode);
|
5219 |
|
|
|
5220 |
|
|
when Entry_Kind =>
|
5221 |
|
|
Error_Msg_N
|
5222 |
|
|
("entry name cannot be used as operand", Enode);
|
5223 |
|
|
|
5224 |
|
|
when E_Procedure =>
|
5225 |
|
|
Error_Msg_N
|
5226 |
|
|
("procedure name cannot be used as operand", Enode);
|
5227 |
|
|
|
5228 |
|
|
when E_Exception =>
|
5229 |
|
|
Error_Msg_N
|
5230 |
|
|
("exception name cannot be used as operand", Enode);
|
5231 |
|
|
|
5232 |
|
|
when E_Block | E_Label | E_Loop =>
|
5233 |
|
|
Error_Msg_N
|
5234 |
|
|
("label name cannot be used as operand", Enode);
|
5235 |
|
|
|
5236 |
|
|
when others =>
|
5237 |
|
|
return False;
|
5238 |
|
|
|
5239 |
|
|
end case;
|
5240 |
|
|
|
5241 |
|
|
return True;
|
5242 |
|
|
end Junk_Operand;
|
5243 |
|
|
|
5244 |
|
|
--------------------
|
5245 |
|
|
-- Operator_Check --
|
5246 |
|
|
--------------------
|
5247 |
|
|
|
5248 |
|
|
procedure Operator_Check (N : Node_Id) is
|
5249 |
|
|
begin
|
5250 |
|
|
Remove_Abstract_Operations (N);
|
5251 |
|
|
|
5252 |
|
|
-- Test for case of no interpretation found for operator
|
5253 |
|
|
|
5254 |
|
|
if Etype (N) = Any_Type then
|
5255 |
|
|
declare
|
5256 |
|
|
L : Node_Id;
|
5257 |
|
|
R : Node_Id;
|
5258 |
|
|
Op_Id : Entity_Id := Empty;
|
5259 |
|
|
|
5260 |
|
|
begin
|
5261 |
|
|
R := Right_Opnd (N);
|
5262 |
|
|
|
5263 |
|
|
if Nkind (N) in N_Binary_Op then
|
5264 |
|
|
L := Left_Opnd (N);
|
5265 |
|
|
else
|
5266 |
|
|
L := Empty;
|
5267 |
|
|
end if;
|
5268 |
|
|
|
5269 |
|
|
-- If either operand has no type, then don't complain further,
|
5270 |
|
|
-- since this simply means that we have a propagated error.
|
5271 |
|
|
|
5272 |
|
|
if R = Error
|
5273 |
|
|
or else Etype (R) = Any_Type
|
5274 |
|
|
or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
|
5275 |
|
|
then
|
5276 |
|
|
return;
|
5277 |
|
|
|
5278 |
|
|
-- We explicitly check for the case of concatenation of component
|
5279 |
|
|
-- with component to avoid reporting spurious matching array types
|
5280 |
|
|
-- that might happen to be lurking in distant packages (such as
|
5281 |
|
|
-- run-time packages). This also prevents inconsistencies in the
|
5282 |
|
|
-- messages for certain ACVC B tests, which can vary depending on
|
5283 |
|
|
-- types declared in run-time interfaces. Another improvement when
|
5284 |
|
|
-- aggregates are present is to look for a well-typed operand.
|
5285 |
|
|
|
5286 |
|
|
elsif Present (Candidate_Type)
|
5287 |
|
|
and then (Nkind (N) /= N_Op_Concat
|
5288 |
|
|
or else Is_Array_Type (Etype (L))
|
5289 |
|
|
or else Is_Array_Type (Etype (R)))
|
5290 |
|
|
then
|
5291 |
|
|
|
5292 |
|
|
if Nkind (N) = N_Op_Concat then
|
5293 |
|
|
if Etype (L) /= Any_Composite
|
5294 |
|
|
and then Is_Array_Type (Etype (L))
|
5295 |
|
|
then
|
5296 |
|
|
Candidate_Type := Etype (L);
|
5297 |
|
|
|
5298 |
|
|
elsif Etype (R) /= Any_Composite
|
5299 |
|
|
and then Is_Array_Type (Etype (R))
|
5300 |
|
|
then
|
5301 |
|
|
Candidate_Type := Etype (R);
|
5302 |
|
|
end if;
|
5303 |
|
|
end if;
|
5304 |
|
|
|
5305 |
|
|
Error_Msg_NE
|
5306 |
|
|
("operator for} is not directly visible!",
|
5307 |
|
|
N, First_Subtype (Candidate_Type));
|
5308 |
|
|
Error_Msg_N ("use clause would make operation legal!", N);
|
5309 |
|
|
return;
|
5310 |
|
|
|
5311 |
|
|
-- If either operand is a junk operand (e.g. package name), then
|
5312 |
|
|
-- post appropriate error messages, but do not complain further.
|
5313 |
|
|
|
5314 |
|
|
-- Note that the use of OR in this test instead of OR ELSE is
|
5315 |
|
|
-- quite deliberate, we may as well check both operands in the
|
5316 |
|
|
-- binary operator case.
|
5317 |
|
|
|
5318 |
|
|
elsif Junk_Operand (R)
|
5319 |
|
|
or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
|
5320 |
|
|
then
|
5321 |
|
|
return;
|
5322 |
|
|
|
5323 |
|
|
-- If we have a logical operator, one of whose operands is
|
5324 |
|
|
-- Boolean, then we know that the other operand cannot resolve to
|
5325 |
|
|
-- Boolean (since we got no interpretations), but in that case we
|
5326 |
|
|
-- pretty much know that the other operand should be Boolean, so
|
5327 |
|
|
-- resolve it that way (generating an error)
|
5328 |
|
|
|
5329 |
|
|
elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
|
5330 |
|
|
if Etype (L) = Standard_Boolean then
|
5331 |
|
|
Resolve (R, Standard_Boolean);
|
5332 |
|
|
return;
|
5333 |
|
|
elsif Etype (R) = Standard_Boolean then
|
5334 |
|
|
Resolve (L, Standard_Boolean);
|
5335 |
|
|
return;
|
5336 |
|
|
end if;
|
5337 |
|
|
|
5338 |
|
|
-- For an arithmetic operator or comparison operator, if one
|
5339 |
|
|
-- of the operands is numeric, then we know the other operand
|
5340 |
|
|
-- is not the same numeric type. If it is a non-numeric type,
|
5341 |
|
|
-- then probably it is intended to match the other operand.
|
5342 |
|
|
|
5343 |
|
|
elsif Nkind_In (N, N_Op_Add,
|
5344 |
|
|
N_Op_Divide,
|
5345 |
|
|
N_Op_Ge,
|
5346 |
|
|
N_Op_Gt,
|
5347 |
|
|
N_Op_Le)
|
5348 |
|
|
or else
|
5349 |
|
|
Nkind_In (N, N_Op_Lt,
|
5350 |
|
|
N_Op_Mod,
|
5351 |
|
|
N_Op_Multiply,
|
5352 |
|
|
N_Op_Rem,
|
5353 |
|
|
N_Op_Subtract)
|
5354 |
|
|
then
|
5355 |
|
|
if Is_Numeric_Type (Etype (L))
|
5356 |
|
|
and then not Is_Numeric_Type (Etype (R))
|
5357 |
|
|
then
|
5358 |
|
|
Resolve (R, Etype (L));
|
5359 |
|
|
return;
|
5360 |
|
|
|
5361 |
|
|
elsif Is_Numeric_Type (Etype (R))
|
5362 |
|
|
and then not Is_Numeric_Type (Etype (L))
|
5363 |
|
|
then
|
5364 |
|
|
Resolve (L, Etype (R));
|
5365 |
|
|
return;
|
5366 |
|
|
end if;
|
5367 |
|
|
|
5368 |
|
|
-- Comparisons on A'Access are common enough to deserve a
|
5369 |
|
|
-- special message.
|
5370 |
|
|
|
5371 |
|
|
elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
|
5372 |
|
|
and then Ekind (Etype (L)) = E_Access_Attribute_Type
|
5373 |
|
|
and then Ekind (Etype (R)) = E_Access_Attribute_Type
|
5374 |
|
|
then
|
5375 |
|
|
Error_Msg_N
|
5376 |
|
|
("two access attributes cannot be compared directly", N);
|
5377 |
|
|
Error_Msg_N
|
5378 |
|
|
("\use qualified expression for one of the operands",
|
5379 |
|
|
N);
|
5380 |
|
|
return;
|
5381 |
|
|
|
5382 |
|
|
-- Another one for C programmers
|
5383 |
|
|
|
5384 |
|
|
elsif Nkind (N) = N_Op_Concat
|
5385 |
|
|
and then Valid_Boolean_Arg (Etype (L))
|
5386 |
|
|
and then Valid_Boolean_Arg (Etype (R))
|
5387 |
|
|
then
|
5388 |
|
|
Error_Msg_N ("invalid operands for concatenation", N);
|
5389 |
|
|
Error_Msg_N -- CODEFIX
|
5390 |
|
|
("\maybe AND was meant", N);
|
5391 |
|
|
return;
|
5392 |
|
|
|
5393 |
|
|
-- A special case for comparison of access parameter with null
|
5394 |
|
|
|
5395 |
|
|
elsif Nkind (N) = N_Op_Eq
|
5396 |
|
|
and then Is_Entity_Name (L)
|
5397 |
|
|
and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
|
5398 |
|
|
and then Nkind (Parameter_Type (Parent (Entity (L)))) =
|
5399 |
|
|
N_Access_Definition
|
5400 |
|
|
and then Nkind (R) = N_Null
|
5401 |
|
|
then
|
5402 |
|
|
Error_Msg_N ("access parameter is not allowed to be null", L);
|
5403 |
|
|
Error_Msg_N ("\(call would raise Constraint_Error)", L);
|
5404 |
|
|
return;
|
5405 |
|
|
|
5406 |
|
|
-- Another special case for exponentiation, where the right
|
5407 |
|
|
-- operand must be Natural, independently of the base.
|
5408 |
|
|
|
5409 |
|
|
elsif Nkind (N) = N_Op_Expon
|
5410 |
|
|
and then Is_Numeric_Type (Etype (L))
|
5411 |
|
|
and then not Is_Overloaded (R)
|
5412 |
|
|
and then
|
5413 |
|
|
First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
|
5414 |
|
|
and then Base_Type (Etype (R)) /= Universal_Integer
|
5415 |
|
|
then
|
5416 |
|
|
Error_Msg_NE
|
5417 |
|
|
("exponent must be of type Natural, found}", R, Etype (R));
|
5418 |
|
|
return;
|
5419 |
|
|
end if;
|
5420 |
|
|
|
5421 |
|
|
-- If we fall through then just give general message. Note that in
|
5422 |
|
|
-- the following messages, if the operand is overloaded we choose
|
5423 |
|
|
-- an arbitrary type to complain about, but that is probably more
|
5424 |
|
|
-- useful than not giving a type at all.
|
5425 |
|
|
|
5426 |
|
|
if Nkind (N) in N_Unary_Op then
|
5427 |
|
|
Error_Msg_Node_2 := Etype (R);
|
5428 |
|
|
Error_Msg_N ("operator& not defined for}", N);
|
5429 |
|
|
return;
|
5430 |
|
|
|
5431 |
|
|
else
|
5432 |
|
|
if Nkind (N) in N_Binary_Op then
|
5433 |
|
|
if not Is_Overloaded (L)
|
5434 |
|
|
and then not Is_Overloaded (R)
|
5435 |
|
|
and then Base_Type (Etype (L)) = Base_Type (Etype (R))
|
5436 |
|
|
then
|
5437 |
|
|
Error_Msg_Node_2 := First_Subtype (Etype (R));
|
5438 |
|
|
Error_Msg_N ("there is no applicable operator& for}", N);
|
5439 |
|
|
|
5440 |
|
|
else
|
5441 |
|
|
-- Another attempt to find a fix: one of the candidate
|
5442 |
|
|
-- interpretations may not be use-visible. This has
|
5443 |
|
|
-- already been checked for predefined operators, so
|
5444 |
|
|
-- we examine only user-defined functions.
|
5445 |
|
|
|
5446 |
|
|
Op_Id := Get_Name_Entity_Id (Chars (N));
|
5447 |
|
|
|
5448 |
|
|
while Present (Op_Id) loop
|
5449 |
|
|
if Ekind (Op_Id) /= E_Operator
|
5450 |
|
|
and then Is_Overloadable (Op_Id)
|
5451 |
|
|
then
|
5452 |
|
|
if not Is_Immediately_Visible (Op_Id)
|
5453 |
|
|
and then not In_Use (Scope (Op_Id))
|
5454 |
|
|
and then not Is_Abstract_Subprogram (Op_Id)
|
5455 |
|
|
and then not Is_Hidden (Op_Id)
|
5456 |
|
|
and then Ekind (Scope (Op_Id)) = E_Package
|
5457 |
|
|
and then
|
5458 |
|
|
Has_Compatible_Type
|
5459 |
|
|
(L, Etype (First_Formal (Op_Id)))
|
5460 |
|
|
and then Present
|
5461 |
|
|
(Next_Formal (First_Formal (Op_Id)))
|
5462 |
|
|
and then
|
5463 |
|
|
Has_Compatible_Type
|
5464 |
|
|
(R,
|
5465 |
|
|
Etype (Next_Formal (First_Formal (Op_Id))))
|
5466 |
|
|
then
|
5467 |
|
|
Error_Msg_N
|
5468 |
|
|
("No legal interpretation for operator&", N);
|
5469 |
|
|
Error_Msg_NE
|
5470 |
|
|
("\use clause on& would make operation legal",
|
5471 |
|
|
N, Scope (Op_Id));
|
5472 |
|
|
exit;
|
5473 |
|
|
end if;
|
5474 |
|
|
end if;
|
5475 |
|
|
|
5476 |
|
|
Op_Id := Homonym (Op_Id);
|
5477 |
|
|
end loop;
|
5478 |
|
|
|
5479 |
|
|
if No (Op_Id) then
|
5480 |
|
|
Error_Msg_N ("invalid operand types for operator&", N);
|
5481 |
|
|
|
5482 |
|
|
if Nkind (N) /= N_Op_Concat then
|
5483 |
|
|
Error_Msg_NE ("\left operand has}!", N, Etype (L));
|
5484 |
|
|
Error_Msg_NE ("\right operand has}!", N, Etype (R));
|
5485 |
|
|
end if;
|
5486 |
|
|
end if;
|
5487 |
|
|
end if;
|
5488 |
|
|
end if;
|
5489 |
|
|
end if;
|
5490 |
|
|
end;
|
5491 |
|
|
end if;
|
5492 |
|
|
end Operator_Check;
|
5493 |
|
|
|
5494 |
|
|
-----------------------------------------
|
5495 |
|
|
-- Process_Implicit_Dereference_Prefix --
|
5496 |
|
|
-----------------------------------------
|
5497 |
|
|
|
5498 |
|
|
function Process_Implicit_Dereference_Prefix
|
5499 |
|
|
(E : Entity_Id;
|
5500 |
|
|
P : Entity_Id) return Entity_Id
|
5501 |
|
|
is
|
5502 |
|
|
Ref : Node_Id;
|
5503 |
|
|
Typ : constant Entity_Id := Designated_Type (Etype (P));
|
5504 |
|
|
|
5505 |
|
|
begin
|
5506 |
|
|
if Present (E)
|
5507 |
|
|
and then (Operating_Mode = Check_Semantics or else not Expander_Active)
|
5508 |
|
|
then
|
5509 |
|
|
-- We create a dummy reference to E to ensure that the reference
|
5510 |
|
|
-- is not considered as part of an assignment (an implicit
|
5511 |
|
|
-- dereference can never assign to its prefix). The Comes_From_Source
|
5512 |
|
|
-- attribute needs to be propagated for accurate warnings.
|
5513 |
|
|
|
5514 |
|
|
Ref := New_Reference_To (E, Sloc (P));
|
5515 |
|
|
Set_Comes_From_Source (Ref, Comes_From_Source (P));
|
5516 |
|
|
Generate_Reference (E, Ref);
|
5517 |
|
|
end if;
|
5518 |
|
|
|
5519 |
|
|
-- An implicit dereference is a legal occurrence of an
|
5520 |
|
|
-- incomplete type imported through a limited_with clause,
|
5521 |
|
|
-- if the full view is visible.
|
5522 |
|
|
|
5523 |
|
|
if From_With_Type (Typ)
|
5524 |
|
|
and then not From_With_Type (Scope (Typ))
|
5525 |
|
|
and then
|
5526 |
|
|
(Is_Immediately_Visible (Scope (Typ))
|
5527 |
|
|
or else
|
5528 |
|
|
(Is_Child_Unit (Scope (Typ))
|
5529 |
|
|
and then Is_Visible_Child_Unit (Scope (Typ))))
|
5530 |
|
|
then
|
5531 |
|
|
return Available_View (Typ);
|
5532 |
|
|
else
|
5533 |
|
|
return Typ;
|
5534 |
|
|
end if;
|
5535 |
|
|
|
5536 |
|
|
end Process_Implicit_Dereference_Prefix;
|
5537 |
|
|
|
5538 |
|
|
--------------------------------
|
5539 |
|
|
-- Remove_Abstract_Operations --
|
5540 |
|
|
--------------------------------
|
5541 |
|
|
|
5542 |
|
|
procedure Remove_Abstract_Operations (N : Node_Id) is
|
5543 |
|
|
Abstract_Op : Entity_Id := Empty;
|
5544 |
|
|
Address_Kludge : Boolean := False;
|
5545 |
|
|
I : Interp_Index;
|
5546 |
|
|
It : Interp;
|
5547 |
|
|
|
5548 |
|
|
-- AI-310: If overloaded, remove abstract non-dispatching operations. We
|
5549 |
|
|
-- activate this if either extensions are enabled, or if the abstract
|
5550 |
|
|
-- operation in question comes from a predefined file. This latter test
|
5551 |
|
|
-- allows us to use abstract to make operations invisible to users. In
|
5552 |
|
|
-- particular, if type Address is non-private and abstract subprograms
|
5553 |
|
|
-- are used to hide its operators, they will be truly hidden.
|
5554 |
|
|
|
5555 |
|
|
type Operand_Position is (First_Op, Second_Op);
|
5556 |
|
|
Univ_Type : constant Entity_Id := Universal_Interpretation (N);
|
5557 |
|
|
|
5558 |
|
|
procedure Remove_Address_Interpretations (Op : Operand_Position);
|
5559 |
|
|
-- Ambiguities may arise when the operands are literal and the address
|
5560 |
|
|
-- operations in s-auxdec are visible. In that case, remove the
|
5561 |
|
|
-- interpretation of a literal as Address, to retain the semantics of
|
5562 |
|
|
-- Address as a private type.
|
5563 |
|
|
|
5564 |
|
|
------------------------------------
|
5565 |
|
|
-- Remove_Address_Interpretations --
|
5566 |
|
|
------------------------------------
|
5567 |
|
|
|
5568 |
|
|
procedure Remove_Address_Interpretations (Op : Operand_Position) is
|
5569 |
|
|
Formal : Entity_Id;
|
5570 |
|
|
|
5571 |
|
|
begin
|
5572 |
|
|
if Is_Overloaded (N) then
|
5573 |
|
|
Get_First_Interp (N, I, It);
|
5574 |
|
|
while Present (It.Nam) loop
|
5575 |
|
|
Formal := First_Entity (It.Nam);
|
5576 |
|
|
|
5577 |
|
|
if Op = Second_Op then
|
5578 |
|
|
Formal := Next_Entity (Formal);
|
5579 |
|
|
end if;
|
5580 |
|
|
|
5581 |
|
|
if Is_Descendent_Of_Address (Etype (Formal)) then
|
5582 |
|
|
Address_Kludge := True;
|
5583 |
|
|
Remove_Interp (I);
|
5584 |
|
|
end if;
|
5585 |
|
|
|
5586 |
|
|
Get_Next_Interp (I, It);
|
5587 |
|
|
end loop;
|
5588 |
|
|
end if;
|
5589 |
|
|
end Remove_Address_Interpretations;
|
5590 |
|
|
|
5591 |
|
|
-- Start of processing for Remove_Abstract_Operations
|
5592 |
|
|
|
5593 |
|
|
begin
|
5594 |
|
|
if Is_Overloaded (N) then
|
5595 |
|
|
Get_First_Interp (N, I, It);
|
5596 |
|
|
|
5597 |
|
|
while Present (It.Nam) loop
|
5598 |
|
|
if Is_Overloadable (It.Nam)
|
5599 |
|
|
and then Is_Abstract_Subprogram (It.Nam)
|
5600 |
|
|
and then not Is_Dispatching_Operation (It.Nam)
|
5601 |
|
|
then
|
5602 |
|
|
Abstract_Op := It.Nam;
|
5603 |
|
|
|
5604 |
|
|
if Is_Descendent_Of_Address (It.Typ) then
|
5605 |
|
|
Address_Kludge := True;
|
5606 |
|
|
Remove_Interp (I);
|
5607 |
|
|
exit;
|
5608 |
|
|
|
5609 |
|
|
-- In Ada 2005, this operation does not participate in Overload
|
5610 |
|
|
-- resolution. If the operation is defined in a predefined
|
5611 |
|
|
-- unit, it is one of the operations declared abstract in some
|
5612 |
|
|
-- variants of System, and it must be removed as well.
|
5613 |
|
|
|
5614 |
|
|
elsif Ada_Version >= Ada_05
|
5615 |
|
|
or else Is_Predefined_File_Name
|
5616 |
|
|
(Unit_File_Name (Get_Source_Unit (It.Nam)))
|
5617 |
|
|
then
|
5618 |
|
|
Remove_Interp (I);
|
5619 |
|
|
exit;
|
5620 |
|
|
end if;
|
5621 |
|
|
end if;
|
5622 |
|
|
|
5623 |
|
|
Get_Next_Interp (I, It);
|
5624 |
|
|
end loop;
|
5625 |
|
|
|
5626 |
|
|
if No (Abstract_Op) then
|
5627 |
|
|
|
5628 |
|
|
-- If some interpretation yields an integer type, it is still
|
5629 |
|
|
-- possible that there are address interpretations. Remove them
|
5630 |
|
|
-- if one operand is a literal, to avoid spurious ambiguities
|
5631 |
|
|
-- on systems where Address is a visible integer type.
|
5632 |
|
|
|
5633 |
|
|
if Is_Overloaded (N)
|
5634 |
|
|
and then Nkind (N) in N_Op
|
5635 |
|
|
and then Is_Integer_Type (Etype (N))
|
5636 |
|
|
then
|
5637 |
|
|
if Nkind (N) in N_Binary_Op then
|
5638 |
|
|
if Nkind (Right_Opnd (N)) = N_Integer_Literal then
|
5639 |
|
|
Remove_Address_Interpretations (Second_Op);
|
5640 |
|
|
|
5641 |
|
|
elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
|
5642 |
|
|
Remove_Address_Interpretations (First_Op);
|
5643 |
|
|
end if;
|
5644 |
|
|
end if;
|
5645 |
|
|
end if;
|
5646 |
|
|
|
5647 |
|
|
elsif Nkind (N) in N_Op then
|
5648 |
|
|
|
5649 |
|
|
-- Remove interpretations that treat literals as addresses. This
|
5650 |
|
|
-- is never appropriate, even when Address is defined as a visible
|
5651 |
|
|
-- Integer type. The reason is that we would really prefer Address
|
5652 |
|
|
-- to behave as a private type, even in this case, which is there
|
5653 |
|
|
-- only to accommodate oddities of VMS address sizes. If Address
|
5654 |
|
|
-- is a visible integer type, we get lots of overload ambiguities.
|
5655 |
|
|
|
5656 |
|
|
if Nkind (N) in N_Binary_Op then
|
5657 |
|
|
declare
|
5658 |
|
|
U1 : constant Boolean :=
|
5659 |
|
|
Present (Universal_Interpretation (Right_Opnd (N)));
|
5660 |
|
|
U2 : constant Boolean :=
|
5661 |
|
|
Present (Universal_Interpretation (Left_Opnd (N)));
|
5662 |
|
|
|
5663 |
|
|
begin
|
5664 |
|
|
if U1 then
|
5665 |
|
|
Remove_Address_Interpretations (Second_Op);
|
5666 |
|
|
end if;
|
5667 |
|
|
|
5668 |
|
|
if U2 then
|
5669 |
|
|
Remove_Address_Interpretations (First_Op);
|
5670 |
|
|
end if;
|
5671 |
|
|
|
5672 |
|
|
if not (U1 and U2) then
|
5673 |
|
|
|
5674 |
|
|
-- Remove corresponding predefined operator, which is
|
5675 |
|
|
-- always added to the overload set.
|
5676 |
|
|
|
5677 |
|
|
Get_First_Interp (N, I, It);
|
5678 |
|
|
while Present (It.Nam) loop
|
5679 |
|
|
if Scope (It.Nam) = Standard_Standard
|
5680 |
|
|
and then Base_Type (It.Typ) =
|
5681 |
|
|
Base_Type (Etype (Abstract_Op))
|
5682 |
|
|
then
|
5683 |
|
|
Remove_Interp (I);
|
5684 |
|
|
end if;
|
5685 |
|
|
|
5686 |
|
|
Get_Next_Interp (I, It);
|
5687 |
|
|
end loop;
|
5688 |
|
|
|
5689 |
|
|
elsif Is_Overloaded (N)
|
5690 |
|
|
and then Present (Univ_Type)
|
5691 |
|
|
then
|
5692 |
|
|
-- If both operands have a universal interpretation,
|
5693 |
|
|
-- it is still necessary to remove interpretations that
|
5694 |
|
|
-- yield Address. Any remaining ambiguities will be
|
5695 |
|
|
-- removed in Disambiguate.
|
5696 |
|
|
|
5697 |
|
|
Get_First_Interp (N, I, It);
|
5698 |
|
|
while Present (It.Nam) loop
|
5699 |
|
|
if Is_Descendent_Of_Address (It.Typ) then
|
5700 |
|
|
Remove_Interp (I);
|
5701 |
|
|
|
5702 |
|
|
elsif not Is_Type (It.Nam) then
|
5703 |
|
|
Set_Entity (N, It.Nam);
|
5704 |
|
|
end if;
|
5705 |
|
|
|
5706 |
|
|
Get_Next_Interp (I, It);
|
5707 |
|
|
end loop;
|
5708 |
|
|
end if;
|
5709 |
|
|
end;
|
5710 |
|
|
end if;
|
5711 |
|
|
|
5712 |
|
|
elsif Nkind (N) = N_Function_Call
|
5713 |
|
|
and then
|
5714 |
|
|
(Nkind (Name (N)) = N_Operator_Symbol
|
5715 |
|
|
or else
|
5716 |
|
|
(Nkind (Name (N)) = N_Expanded_Name
|
5717 |
|
|
and then
|
5718 |
|
|
Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
|
5719 |
|
|
then
|
5720 |
|
|
|
5721 |
|
|
declare
|
5722 |
|
|
Arg1 : constant Node_Id := First (Parameter_Associations (N));
|
5723 |
|
|
U1 : constant Boolean :=
|
5724 |
|
|
Present (Universal_Interpretation (Arg1));
|
5725 |
|
|
U2 : constant Boolean :=
|
5726 |
|
|
Present (Next (Arg1)) and then
|
5727 |
|
|
Present (Universal_Interpretation (Next (Arg1)));
|
5728 |
|
|
|
5729 |
|
|
begin
|
5730 |
|
|
if U1 then
|
5731 |
|
|
Remove_Address_Interpretations (First_Op);
|
5732 |
|
|
end if;
|
5733 |
|
|
|
5734 |
|
|
if U2 then
|
5735 |
|
|
Remove_Address_Interpretations (Second_Op);
|
5736 |
|
|
end if;
|
5737 |
|
|
|
5738 |
|
|
if not (U1 and U2) then
|
5739 |
|
|
Get_First_Interp (N, I, It);
|
5740 |
|
|
while Present (It.Nam) loop
|
5741 |
|
|
if Scope (It.Nam) = Standard_Standard
|
5742 |
|
|
and then It.Typ = Base_Type (Etype (Abstract_Op))
|
5743 |
|
|
then
|
5744 |
|
|
Remove_Interp (I);
|
5745 |
|
|
end if;
|
5746 |
|
|
|
5747 |
|
|
Get_Next_Interp (I, It);
|
5748 |
|
|
end loop;
|
5749 |
|
|
end if;
|
5750 |
|
|
end;
|
5751 |
|
|
end if;
|
5752 |
|
|
|
5753 |
|
|
-- If the removal has left no valid interpretations, emit an error
|
5754 |
|
|
-- message now and label node as illegal.
|
5755 |
|
|
|
5756 |
|
|
if Present (Abstract_Op) then
|
5757 |
|
|
Get_First_Interp (N, I, It);
|
5758 |
|
|
|
5759 |
|
|
if No (It.Nam) then
|
5760 |
|
|
|
5761 |
|
|
-- Removal of abstract operation left no viable candidate
|
5762 |
|
|
|
5763 |
|
|
Set_Etype (N, Any_Type);
|
5764 |
|
|
Error_Msg_Sloc := Sloc (Abstract_Op);
|
5765 |
|
|
Error_Msg_NE
|
5766 |
|
|
("cannot call abstract operation& declared#", N, Abstract_Op);
|
5767 |
|
|
|
5768 |
|
|
-- In Ada 2005, an abstract operation may disable predefined
|
5769 |
|
|
-- operators. Since the context is not yet known, we mark the
|
5770 |
|
|
-- predefined operators as potentially hidden. Do not include
|
5771 |
|
|
-- predefined operators when addresses are involved since this
|
5772 |
|
|
-- case is handled separately.
|
5773 |
|
|
|
5774 |
|
|
elsif Ada_Version >= Ada_05
|
5775 |
|
|
and then not Address_Kludge
|
5776 |
|
|
then
|
5777 |
|
|
while Present (It.Nam) loop
|
5778 |
|
|
if Is_Numeric_Type (It.Typ)
|
5779 |
|
|
and then Scope (It.Typ) = Standard_Standard
|
5780 |
|
|
then
|
5781 |
|
|
Set_Abstract_Op (I, Abstract_Op);
|
5782 |
|
|
end if;
|
5783 |
|
|
|
5784 |
|
|
Get_Next_Interp (I, It);
|
5785 |
|
|
end loop;
|
5786 |
|
|
end if;
|
5787 |
|
|
end if;
|
5788 |
|
|
end if;
|
5789 |
|
|
end Remove_Abstract_Operations;
|
5790 |
|
|
|
5791 |
|
|
-----------------------
|
5792 |
|
|
-- Try_Indirect_Call --
|
5793 |
|
|
-----------------------
|
5794 |
|
|
|
5795 |
|
|
function Try_Indirect_Call
|
5796 |
|
|
(N : Node_Id;
|
5797 |
|
|
Nam : Entity_Id;
|
5798 |
|
|
Typ : Entity_Id) return Boolean
|
5799 |
|
|
is
|
5800 |
|
|
Actual : Node_Id;
|
5801 |
|
|
Formal : Entity_Id;
|
5802 |
|
|
|
5803 |
|
|
Call_OK : Boolean;
|
5804 |
|
|
pragma Warnings (Off, Call_OK);
|
5805 |
|
|
|
5806 |
|
|
begin
|
5807 |
|
|
Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
|
5808 |
|
|
|
5809 |
|
|
Actual := First_Actual (N);
|
5810 |
|
|
Formal := First_Formal (Designated_Type (Typ));
|
5811 |
|
|
while Present (Actual) and then Present (Formal) loop
|
5812 |
|
|
if not Has_Compatible_Type (Actual, Etype (Formal)) then
|
5813 |
|
|
return False;
|
5814 |
|
|
end if;
|
5815 |
|
|
|
5816 |
|
|
Next (Actual);
|
5817 |
|
|
Next_Formal (Formal);
|
5818 |
|
|
end loop;
|
5819 |
|
|
|
5820 |
|
|
if No (Actual) and then No (Formal) then
|
5821 |
|
|
Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
|
5822 |
|
|
|
5823 |
|
|
-- Nam is a candidate interpretation for the name in the call,
|
5824 |
|
|
-- if it is not an indirect call.
|
5825 |
|
|
|
5826 |
|
|
if not Is_Type (Nam)
|
5827 |
|
|
and then Is_Entity_Name (Name (N))
|
5828 |
|
|
then
|
5829 |
|
|
Set_Entity (Name (N), Nam);
|
5830 |
|
|
end if;
|
5831 |
|
|
|
5832 |
|
|
return True;
|
5833 |
|
|
else
|
5834 |
|
|
return False;
|
5835 |
|
|
end if;
|
5836 |
|
|
end Try_Indirect_Call;
|
5837 |
|
|
|
5838 |
|
|
----------------------
|
5839 |
|
|
-- Try_Indexed_Call --
|
5840 |
|
|
----------------------
|
5841 |
|
|
|
5842 |
|
|
function Try_Indexed_Call
|
5843 |
|
|
(N : Node_Id;
|
5844 |
|
|
Nam : Entity_Id;
|
5845 |
|
|
Typ : Entity_Id;
|
5846 |
|
|
Skip_First : Boolean) return Boolean
|
5847 |
|
|
is
|
5848 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5849 |
|
|
Actuals : constant List_Id := Parameter_Associations (N);
|
5850 |
|
|
Actual : Node_Id;
|
5851 |
|
|
Index : Entity_Id;
|
5852 |
|
|
|
5853 |
|
|
begin
|
5854 |
|
|
Actual := First (Actuals);
|
5855 |
|
|
|
5856 |
|
|
-- If the call was originally written in prefix form, skip the first
|
5857 |
|
|
-- actual, which is obviously not defaulted.
|
5858 |
|
|
|
5859 |
|
|
if Skip_First then
|
5860 |
|
|
Next (Actual);
|
5861 |
|
|
end if;
|
5862 |
|
|
|
5863 |
|
|
Index := First_Index (Typ);
|
5864 |
|
|
while Present (Actual) and then Present (Index) loop
|
5865 |
|
|
|
5866 |
|
|
-- If the parameter list has a named association, the expression
|
5867 |
|
|
-- is definitely a call and not an indexed component.
|
5868 |
|
|
|
5869 |
|
|
if Nkind (Actual) = N_Parameter_Association then
|
5870 |
|
|
return False;
|
5871 |
|
|
end if;
|
5872 |
|
|
|
5873 |
|
|
if Is_Entity_Name (Actual)
|
5874 |
|
|
and then Is_Type (Entity (Actual))
|
5875 |
|
|
and then No (Next (Actual))
|
5876 |
|
|
then
|
5877 |
|
|
Rewrite (N,
|
5878 |
|
|
Make_Slice (Loc,
|
5879 |
|
|
Prefix => Make_Function_Call (Loc,
|
5880 |
|
|
Name => Relocate_Node (Name (N))),
|
5881 |
|
|
Discrete_Range =>
|
5882 |
|
|
New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
|
5883 |
|
|
|
5884 |
|
|
Analyze (N);
|
5885 |
|
|
return True;
|
5886 |
|
|
|
5887 |
|
|
elsif not Has_Compatible_Type (Actual, Etype (Index)) then
|
5888 |
|
|
return False;
|
5889 |
|
|
end if;
|
5890 |
|
|
|
5891 |
|
|
Next (Actual);
|
5892 |
|
|
Next_Index (Index);
|
5893 |
|
|
end loop;
|
5894 |
|
|
|
5895 |
|
|
if No (Actual) and then No (Index) then
|
5896 |
|
|
Add_One_Interp (N, Nam, Component_Type (Typ));
|
5897 |
|
|
|
5898 |
|
|
-- Nam is a candidate interpretation for the name in the call,
|
5899 |
|
|
-- if it is not an indirect call.
|
5900 |
|
|
|
5901 |
|
|
if not Is_Type (Nam)
|
5902 |
|
|
and then Is_Entity_Name (Name (N))
|
5903 |
|
|
then
|
5904 |
|
|
Set_Entity (Name (N), Nam);
|
5905 |
|
|
end if;
|
5906 |
|
|
|
5907 |
|
|
return True;
|
5908 |
|
|
else
|
5909 |
|
|
return False;
|
5910 |
|
|
end if;
|
5911 |
|
|
end Try_Indexed_Call;
|
5912 |
|
|
|
5913 |
|
|
--------------------------
|
5914 |
|
|
-- Try_Object_Operation --
|
5915 |
|
|
--------------------------
|
5916 |
|
|
|
5917 |
|
|
function Try_Object_Operation (N : Node_Id) return Boolean is
|
5918 |
|
|
K : constant Node_Kind := Nkind (Parent (N));
|
5919 |
|
|
Is_Subprg_Call : constant Boolean := Nkind_In
|
5920 |
|
|
(K, N_Procedure_Call_Statement,
|
5921 |
|
|
N_Function_Call);
|
5922 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5923 |
|
|
Obj : constant Node_Id := Prefix (N);
|
5924 |
|
|
Subprog : constant Node_Id :=
|
5925 |
|
|
Make_Identifier (Sloc (Selector_Name (N)),
|
5926 |
|
|
Chars => Chars (Selector_Name (N)));
|
5927 |
|
|
-- Identifier on which possible interpretations will be collected
|
5928 |
|
|
|
5929 |
|
|
Report_Error : Boolean := False;
|
5930 |
|
|
-- If no candidate interpretation matches the context, redo the
|
5931 |
|
|
-- analysis with error enabled to provide additional information.
|
5932 |
|
|
|
5933 |
|
|
Actual : Node_Id;
|
5934 |
|
|
Candidate : Entity_Id := Empty;
|
5935 |
|
|
New_Call_Node : Node_Id := Empty;
|
5936 |
|
|
Node_To_Replace : Node_Id;
|
5937 |
|
|
Obj_Type : Entity_Id := Etype (Obj);
|
5938 |
|
|
Success : Boolean := False;
|
5939 |
|
|
|
5940 |
|
|
function Valid_Candidate
|
5941 |
|
|
(Success : Boolean;
|
5942 |
|
|
Call : Node_Id;
|
5943 |
|
|
Subp : Entity_Id) return Entity_Id;
|
5944 |
|
|
-- If the subprogram is a valid interpretation, record it, and add
|
5945 |
|
|
-- to the list of interpretations of Subprog.
|
5946 |
|
|
|
5947 |
|
|
procedure Complete_Object_Operation
|
5948 |
|
|
(Call_Node : Node_Id;
|
5949 |
|
|
Node_To_Replace : Node_Id);
|
5950 |
|
|
-- Make Subprog the name of Call_Node, replace Node_To_Replace with
|
5951 |
|
|
-- Call_Node, insert the object (or its dereference) as the first actual
|
5952 |
|
|
-- in the call, and complete the analysis of the call.
|
5953 |
|
|
|
5954 |
|
|
procedure Report_Ambiguity (Op : Entity_Id);
|
5955 |
|
|
-- If a prefixed procedure call is ambiguous, indicate whether the
|
5956 |
|
|
-- call includes an implicit dereference or an implicit 'Access.
|
5957 |
|
|
|
5958 |
|
|
procedure Transform_Object_Operation
|
5959 |
|
|
(Call_Node : out Node_Id;
|
5960 |
|
|
Node_To_Replace : out Node_Id);
|
5961 |
|
|
-- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
|
5962 |
|
|
-- Call_Node is the resulting subprogram call, Node_To_Replace is
|
5963 |
|
|
-- either N or the parent of N, and Subprog is a reference to the
|
5964 |
|
|
-- subprogram we are trying to match.
|
5965 |
|
|
|
5966 |
|
|
function Try_Class_Wide_Operation
|
5967 |
|
|
(Call_Node : Node_Id;
|
5968 |
|
|
Node_To_Replace : Node_Id) return Boolean;
|
5969 |
|
|
-- Traverse all ancestor types looking for a class-wide subprogram
|
5970 |
|
|
-- for which the current operation is a valid non-dispatching call.
|
5971 |
|
|
|
5972 |
|
|
procedure Try_One_Prefix_Interpretation (T : Entity_Id);
|
5973 |
|
|
-- If prefix is overloaded, its interpretation may include different
|
5974 |
|
|
-- tagged types, and we must examine the primitive operations and
|
5975 |
|
|
-- the class-wide operations of each in order to find candidate
|
5976 |
|
|
-- interpretations for the call as a whole.
|
5977 |
|
|
|
5978 |
|
|
function Try_Primitive_Operation
|
5979 |
|
|
(Call_Node : Node_Id;
|
5980 |
|
|
Node_To_Replace : Node_Id) return Boolean;
|
5981 |
|
|
-- Traverse the list of primitive subprograms looking for a dispatching
|
5982 |
|
|
-- operation for which the current node is a valid call .
|
5983 |
|
|
|
5984 |
|
|
---------------------
|
5985 |
|
|
-- Valid_Candidate --
|
5986 |
|
|
---------------------
|
5987 |
|
|
|
5988 |
|
|
function Valid_Candidate
|
5989 |
|
|
(Success : Boolean;
|
5990 |
|
|
Call : Node_Id;
|
5991 |
|
|
Subp : Entity_Id) return Entity_Id
|
5992 |
|
|
is
|
5993 |
|
|
Arr_Type : Entity_Id;
|
5994 |
|
|
Comp_Type : Entity_Id;
|
5995 |
|
|
|
5996 |
|
|
begin
|
5997 |
|
|
-- If the subprogram is a valid interpretation, record it in global
|
5998 |
|
|
-- variable Subprog, to collect all possible overloadings.
|
5999 |
|
|
|
6000 |
|
|
if Success then
|
6001 |
|
|
if Subp /= Entity (Subprog) then
|
6002 |
|
|
Add_One_Interp (Subprog, Subp, Etype (Subp));
|
6003 |
|
|
end if;
|
6004 |
|
|
end if;
|
6005 |
|
|
|
6006 |
|
|
-- If the call may be an indexed call, retrieve component type of
|
6007 |
|
|
-- resulting expression, and add possible interpretation.
|
6008 |
|
|
|
6009 |
|
|
Arr_Type := Empty;
|
6010 |
|
|
Comp_Type := Empty;
|
6011 |
|
|
|
6012 |
|
|
if Nkind (Call) = N_Function_Call
|
6013 |
|
|
and then Nkind (Parent (N)) = N_Indexed_Component
|
6014 |
|
|
and then Needs_One_Actual (Subp)
|
6015 |
|
|
then
|
6016 |
|
|
if Is_Array_Type (Etype (Subp)) then
|
6017 |
|
|
Arr_Type := Etype (Subp);
|
6018 |
|
|
|
6019 |
|
|
elsif Is_Access_Type (Etype (Subp))
|
6020 |
|
|
and then Is_Array_Type (Designated_Type (Etype (Subp)))
|
6021 |
|
|
then
|
6022 |
|
|
Arr_Type := Designated_Type (Etype (Subp));
|
6023 |
|
|
end if;
|
6024 |
|
|
end if;
|
6025 |
|
|
|
6026 |
|
|
if Present (Arr_Type) then
|
6027 |
|
|
|
6028 |
|
|
-- Verify that the actuals (excluding the object)
|
6029 |
|
|
-- match the types of the indices.
|
6030 |
|
|
|
6031 |
|
|
declare
|
6032 |
|
|
Actual : Node_Id;
|
6033 |
|
|
Index : Node_Id;
|
6034 |
|
|
|
6035 |
|
|
begin
|
6036 |
|
|
Actual := Next (First_Actual (Call));
|
6037 |
|
|
Index := First_Index (Arr_Type);
|
6038 |
|
|
while Present (Actual) and then Present (Index) loop
|
6039 |
|
|
if not Has_Compatible_Type (Actual, Etype (Index)) then
|
6040 |
|
|
Arr_Type := Empty;
|
6041 |
|
|
exit;
|
6042 |
|
|
end if;
|
6043 |
|
|
|
6044 |
|
|
Next_Actual (Actual);
|
6045 |
|
|
Next_Index (Index);
|
6046 |
|
|
end loop;
|
6047 |
|
|
|
6048 |
|
|
if No (Actual)
|
6049 |
|
|
and then No (Index)
|
6050 |
|
|
and then Present (Arr_Type)
|
6051 |
|
|
then
|
6052 |
|
|
Comp_Type := Component_Type (Arr_Type);
|
6053 |
|
|
end if;
|
6054 |
|
|
end;
|
6055 |
|
|
|
6056 |
|
|
if Present (Comp_Type)
|
6057 |
|
|
and then Etype (Subprog) /= Comp_Type
|
6058 |
|
|
then
|
6059 |
|
|
Add_One_Interp (Subprog, Subp, Comp_Type);
|
6060 |
|
|
end if;
|
6061 |
|
|
end if;
|
6062 |
|
|
|
6063 |
|
|
if Etype (Call) /= Any_Type then
|
6064 |
|
|
return Subp;
|
6065 |
|
|
else
|
6066 |
|
|
return Empty;
|
6067 |
|
|
end if;
|
6068 |
|
|
end Valid_Candidate;
|
6069 |
|
|
|
6070 |
|
|
-------------------------------
|
6071 |
|
|
-- Complete_Object_Operation --
|
6072 |
|
|
-------------------------------
|
6073 |
|
|
|
6074 |
|
|
procedure Complete_Object_Operation
|
6075 |
|
|
(Call_Node : Node_Id;
|
6076 |
|
|
Node_To_Replace : Node_Id)
|
6077 |
|
|
is
|
6078 |
|
|
Control : constant Entity_Id := First_Formal (Entity (Subprog));
|
6079 |
|
|
Formal_Type : constant Entity_Id := Etype (Control);
|
6080 |
|
|
First_Actual : Node_Id;
|
6081 |
|
|
|
6082 |
|
|
begin
|
6083 |
|
|
-- Place the name of the operation, with its interpretations,
|
6084 |
|
|
-- on the rewritten call.
|
6085 |
|
|
|
6086 |
|
|
Set_Name (Call_Node, Subprog);
|
6087 |
|
|
|
6088 |
|
|
First_Actual := First (Parameter_Associations (Call_Node));
|
6089 |
|
|
|
6090 |
|
|
-- For cross-reference purposes, treat the new node as being in
|
6091 |
|
|
-- the source if the original one is.
|
6092 |
|
|
|
6093 |
|
|
Set_Comes_From_Source (Subprog, Comes_From_Source (N));
|
6094 |
|
|
Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
|
6095 |
|
|
|
6096 |
|
|
if Nkind (N) = N_Selected_Component
|
6097 |
|
|
and then not Inside_A_Generic
|
6098 |
|
|
then
|
6099 |
|
|
Set_Entity (Selector_Name (N), Entity (Subprog));
|
6100 |
|
|
end if;
|
6101 |
|
|
|
6102 |
|
|
-- If need be, rewrite first actual as an explicit dereference
|
6103 |
|
|
-- If the call is overloaded, the rewriting can only be done
|
6104 |
|
|
-- once the primitive operation is identified.
|
6105 |
|
|
|
6106 |
|
|
if Is_Overloaded (Subprog) then
|
6107 |
|
|
|
6108 |
|
|
-- The prefix itself may be overloaded, and its interpretations
|
6109 |
|
|
-- must be propagated to the new actual in the call.
|
6110 |
|
|
|
6111 |
|
|
if Is_Overloaded (Obj) then
|
6112 |
|
|
Save_Interps (Obj, First_Actual);
|
6113 |
|
|
end if;
|
6114 |
|
|
|
6115 |
|
|
Rewrite (First_Actual, Obj);
|
6116 |
|
|
|
6117 |
|
|
elsif not Is_Access_Type (Formal_Type)
|
6118 |
|
|
and then Is_Access_Type (Etype (Obj))
|
6119 |
|
|
then
|
6120 |
|
|
Rewrite (First_Actual,
|
6121 |
|
|
Make_Explicit_Dereference (Sloc (Obj), Obj));
|
6122 |
|
|
Analyze (First_Actual);
|
6123 |
|
|
|
6124 |
|
|
-- If we need to introduce an explicit dereference, verify that
|
6125 |
|
|
-- the resulting actual is compatible with the mode of the formal.
|
6126 |
|
|
|
6127 |
|
|
if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
|
6128 |
|
|
and then Is_Access_Constant (Etype (Obj))
|
6129 |
|
|
then
|
6130 |
|
|
Error_Msg_NE
|
6131 |
|
|
("expect variable in call to&", Prefix (N), Entity (Subprog));
|
6132 |
|
|
end if;
|
6133 |
|
|
|
6134 |
|
|
-- Conversely, if the formal is an access parameter and the object
|
6135 |
|
|
-- is not, replace the actual with a 'Access reference. Its analysis
|
6136 |
|
|
-- will check that the object is aliased.
|
6137 |
|
|
|
6138 |
|
|
elsif Is_Access_Type (Formal_Type)
|
6139 |
|
|
and then not Is_Access_Type (Etype (Obj))
|
6140 |
|
|
then
|
6141 |
|
|
-- A special case: A.all'access is illegal if A is an access to a
|
6142 |
|
|
-- constant and the context requires an access to a variable.
|
6143 |
|
|
|
6144 |
|
|
if not Is_Access_Constant (Formal_Type) then
|
6145 |
|
|
if (Nkind (Obj) = N_Explicit_Dereference
|
6146 |
|
|
and then Is_Access_Constant (Etype (Prefix (Obj))))
|
6147 |
|
|
or else not Is_Variable (Obj)
|
6148 |
|
|
then
|
6149 |
|
|
Error_Msg_NE
|
6150 |
|
|
("actual for& must be a variable", Obj, Control);
|
6151 |
|
|
end if;
|
6152 |
|
|
end if;
|
6153 |
|
|
|
6154 |
|
|
Rewrite (First_Actual,
|
6155 |
|
|
Make_Attribute_Reference (Loc,
|
6156 |
|
|
Attribute_Name => Name_Access,
|
6157 |
|
|
Prefix => Relocate_Node (Obj)));
|
6158 |
|
|
|
6159 |
|
|
if not Is_Aliased_View (Obj) then
|
6160 |
|
|
Error_Msg_NE
|
6161 |
|
|
("object in prefixed call to& must be aliased"
|
6162 |
|
|
& " (RM-2005 4.3.1 (13))",
|
6163 |
|
|
Prefix (First_Actual), Subprog);
|
6164 |
|
|
end if;
|
6165 |
|
|
|
6166 |
|
|
Analyze (First_Actual);
|
6167 |
|
|
|
6168 |
|
|
else
|
6169 |
|
|
if Is_Overloaded (Obj) then
|
6170 |
|
|
Save_Interps (Obj, First_Actual);
|
6171 |
|
|
end if;
|
6172 |
|
|
|
6173 |
|
|
Rewrite (First_Actual, Obj);
|
6174 |
|
|
end if;
|
6175 |
|
|
|
6176 |
|
|
Rewrite (Node_To_Replace, Call_Node);
|
6177 |
|
|
|
6178 |
|
|
-- Propagate the interpretations collected in subprog to the new
|
6179 |
|
|
-- function call node, to be resolved from context.
|
6180 |
|
|
|
6181 |
|
|
if Is_Overloaded (Subprog) then
|
6182 |
|
|
Save_Interps (Subprog, Node_To_Replace);
|
6183 |
|
|
else
|
6184 |
|
|
Analyze (Node_To_Replace);
|
6185 |
|
|
end if;
|
6186 |
|
|
end Complete_Object_Operation;
|
6187 |
|
|
|
6188 |
|
|
----------------------
|
6189 |
|
|
-- Report_Ambiguity --
|
6190 |
|
|
----------------------
|
6191 |
|
|
|
6192 |
|
|
procedure Report_Ambiguity (Op : Entity_Id) is
|
6193 |
|
|
Access_Formal : constant Boolean :=
|
6194 |
|
|
Is_Access_Type (Etype (First_Formal (Op)));
|
6195 |
|
|
Access_Actual : constant Boolean :=
|
6196 |
|
|
Is_Access_Type (Etype (Prefix (N)));
|
6197 |
|
|
|
6198 |
|
|
begin
|
6199 |
|
|
Error_Msg_Sloc := Sloc (Op);
|
6200 |
|
|
|
6201 |
|
|
if Access_Formal and then not Access_Actual then
|
6202 |
|
|
if Nkind (Parent (Op)) = N_Full_Type_Declaration then
|
6203 |
|
|
Error_Msg_N
|
6204 |
|
|
("\possible interpretation"
|
6205 |
|
|
& " (inherited, with implicit 'Access) #", N);
|
6206 |
|
|
else
|
6207 |
|
|
Error_Msg_N
|
6208 |
|
|
("\possible interpretation (with implicit 'Access) #", N);
|
6209 |
|
|
end if;
|
6210 |
|
|
|
6211 |
|
|
elsif not Access_Formal and then Access_Actual then
|
6212 |
|
|
if Nkind (Parent (Op)) = N_Full_Type_Declaration then
|
6213 |
|
|
Error_Msg_N
|
6214 |
|
|
("\possible interpretation"
|
6215 |
|
|
& " ( inherited, with implicit dereference) #", N);
|
6216 |
|
|
else
|
6217 |
|
|
Error_Msg_N
|
6218 |
|
|
("\possible interpretation (with implicit dereference) #", N);
|
6219 |
|
|
end if;
|
6220 |
|
|
|
6221 |
|
|
else
|
6222 |
|
|
if Nkind (Parent (Op)) = N_Full_Type_Declaration then
|
6223 |
|
|
Error_Msg_N ("\possible interpretation (inherited)#", N);
|
6224 |
|
|
else
|
6225 |
|
|
Error_Msg_N -- CODEFIX
|
6226 |
|
|
("\possible interpretation#", N);
|
6227 |
|
|
end if;
|
6228 |
|
|
end if;
|
6229 |
|
|
end Report_Ambiguity;
|
6230 |
|
|
|
6231 |
|
|
--------------------------------
|
6232 |
|
|
-- Transform_Object_Operation --
|
6233 |
|
|
--------------------------------
|
6234 |
|
|
|
6235 |
|
|
procedure Transform_Object_Operation
|
6236 |
|
|
(Call_Node : out Node_Id;
|
6237 |
|
|
Node_To_Replace : out Node_Id)
|
6238 |
|
|
is
|
6239 |
|
|
Dummy : constant Node_Id := New_Copy (Obj);
|
6240 |
|
|
-- Placeholder used as a first parameter in the call, replaced
|
6241 |
|
|
-- eventually by the proper object.
|
6242 |
|
|
|
6243 |
|
|
Parent_Node : constant Node_Id := Parent (N);
|
6244 |
|
|
|
6245 |
|
|
Actual : Node_Id;
|
6246 |
|
|
Actuals : List_Id;
|
6247 |
|
|
|
6248 |
|
|
begin
|
6249 |
|
|
-- Common case covering 1) Call to a procedure and 2) Call to a
|
6250 |
|
|
-- function that has some additional actuals.
|
6251 |
|
|
|
6252 |
|
|
if Nkind_In (Parent_Node, N_Function_Call,
|
6253 |
|
|
N_Procedure_Call_Statement)
|
6254 |
|
|
|
6255 |
|
|
-- N is a selected component node containing the name of the
|
6256 |
|
|
-- subprogram. If N is not the name of the parent node we must
|
6257 |
|
|
-- not replace the parent node by the new construct. This case
|
6258 |
|
|
-- occurs when N is a parameterless call to a subprogram that
|
6259 |
|
|
-- is an actual parameter of a call to another subprogram. For
|
6260 |
|
|
-- example:
|
6261 |
|
|
-- Some_Subprogram (..., Obj.Operation, ...)
|
6262 |
|
|
|
6263 |
|
|
and then Name (Parent_Node) = N
|
6264 |
|
|
then
|
6265 |
|
|
Node_To_Replace := Parent_Node;
|
6266 |
|
|
|
6267 |
|
|
Actuals := Parameter_Associations (Parent_Node);
|
6268 |
|
|
|
6269 |
|
|
if Present (Actuals) then
|
6270 |
|
|
Prepend (Dummy, Actuals);
|
6271 |
|
|
else
|
6272 |
|
|
Actuals := New_List (Dummy);
|
6273 |
|
|
end if;
|
6274 |
|
|
|
6275 |
|
|
if Nkind (Parent_Node) = N_Procedure_Call_Statement then
|
6276 |
|
|
Call_Node :=
|
6277 |
|
|
Make_Procedure_Call_Statement (Loc,
|
6278 |
|
|
Name => New_Copy (Subprog),
|
6279 |
|
|
Parameter_Associations => Actuals);
|
6280 |
|
|
|
6281 |
|
|
else
|
6282 |
|
|
Call_Node :=
|
6283 |
|
|
Make_Function_Call (Loc,
|
6284 |
|
|
Name => New_Copy (Subprog),
|
6285 |
|
|
Parameter_Associations => Actuals);
|
6286 |
|
|
|
6287 |
|
|
end if;
|
6288 |
|
|
|
6289 |
|
|
-- Before analysis, a function call appears as an indexed component
|
6290 |
|
|
-- if there are no named associations.
|
6291 |
|
|
|
6292 |
|
|
elsif Nkind (Parent_Node) = N_Indexed_Component
|
6293 |
|
|
and then N = Prefix (Parent_Node)
|
6294 |
|
|
then
|
6295 |
|
|
Node_To_Replace := Parent_Node;
|
6296 |
|
|
|
6297 |
|
|
Actuals := Expressions (Parent_Node);
|
6298 |
|
|
|
6299 |
|
|
Actual := First (Actuals);
|
6300 |
|
|
while Present (Actual) loop
|
6301 |
|
|
Analyze (Actual);
|
6302 |
|
|
Next (Actual);
|
6303 |
|
|
end loop;
|
6304 |
|
|
|
6305 |
|
|
Prepend (Dummy, Actuals);
|
6306 |
|
|
|
6307 |
|
|
Call_Node :=
|
6308 |
|
|
Make_Function_Call (Loc,
|
6309 |
|
|
Name => New_Copy (Subprog),
|
6310 |
|
|
Parameter_Associations => Actuals);
|
6311 |
|
|
|
6312 |
|
|
-- Parameterless call: Obj.F is rewritten as F (Obj)
|
6313 |
|
|
|
6314 |
|
|
else
|
6315 |
|
|
Node_To_Replace := N;
|
6316 |
|
|
|
6317 |
|
|
Call_Node :=
|
6318 |
|
|
Make_Function_Call (Loc,
|
6319 |
|
|
Name => New_Copy (Subprog),
|
6320 |
|
|
Parameter_Associations => New_List (Dummy));
|
6321 |
|
|
end if;
|
6322 |
|
|
end Transform_Object_Operation;
|
6323 |
|
|
|
6324 |
|
|
------------------------------
|
6325 |
|
|
-- Try_Class_Wide_Operation --
|
6326 |
|
|
------------------------------
|
6327 |
|
|
|
6328 |
|
|
function Try_Class_Wide_Operation
|
6329 |
|
|
(Call_Node : Node_Id;
|
6330 |
|
|
Node_To_Replace : Node_Id) return Boolean
|
6331 |
|
|
is
|
6332 |
|
|
Anc_Type : Entity_Id;
|
6333 |
|
|
Matching_Op : Entity_Id := Empty;
|
6334 |
|
|
Error : Boolean;
|
6335 |
|
|
|
6336 |
|
|
procedure Traverse_Homonyms
|
6337 |
|
|
(Anc_Type : Entity_Id;
|
6338 |
|
|
Error : out Boolean);
|
6339 |
|
|
-- Traverse the homonym chain of the subprogram searching for those
|
6340 |
|
|
-- homonyms whose first formal has the Anc_Type's class-wide type,
|
6341 |
|
|
-- or an anonymous access type designating the class-wide type. If
|
6342 |
|
|
-- an ambiguity is detected, then Error is set to True.
|
6343 |
|
|
|
6344 |
|
|
procedure Traverse_Interfaces
|
6345 |
|
|
(Anc_Type : Entity_Id;
|
6346 |
|
|
Error : out Boolean);
|
6347 |
|
|
-- Traverse the list of interfaces, if any, associated with Anc_Type
|
6348 |
|
|
-- and search for acceptable class-wide homonyms associated with each
|
6349 |
|
|
-- interface. If an ambiguity is detected, then Error is set to True.
|
6350 |
|
|
|
6351 |
|
|
-----------------------
|
6352 |
|
|
-- Traverse_Homonyms --
|
6353 |
|
|
-----------------------
|
6354 |
|
|
|
6355 |
|
|
procedure Traverse_Homonyms
|
6356 |
|
|
(Anc_Type : Entity_Id;
|
6357 |
|
|
Error : out Boolean)
|
6358 |
|
|
is
|
6359 |
|
|
Cls_Type : Entity_Id;
|
6360 |
|
|
Hom : Entity_Id;
|
6361 |
|
|
Hom_Ref : Node_Id;
|
6362 |
|
|
Success : Boolean;
|
6363 |
|
|
|
6364 |
|
|
begin
|
6365 |
|
|
Error := False;
|
6366 |
|
|
|
6367 |
|
|
Cls_Type := Class_Wide_Type (Anc_Type);
|
6368 |
|
|
|
6369 |
|
|
Hom := Current_Entity (Subprog);
|
6370 |
|
|
|
6371 |
|
|
-- Find operation whose first parameter is of the class-wide
|
6372 |
|
|
-- type, a subtype thereof, or an anonymous access to same.
|
6373 |
|
|
|
6374 |
|
|
while Present (Hom) loop
|
6375 |
|
|
if (Ekind (Hom) = E_Procedure
|
6376 |
|
|
or else
|
6377 |
|
|
Ekind (Hom) = E_Function)
|
6378 |
|
|
and then Scope (Hom) = Scope (Anc_Type)
|
6379 |
|
|
and then Present (First_Formal (Hom))
|
6380 |
|
|
and then
|
6381 |
|
|
(Base_Type (Etype (First_Formal (Hom))) = Cls_Type
|
6382 |
|
|
or else
|
6383 |
|
|
(Is_Access_Type (Etype (First_Formal (Hom)))
|
6384 |
|
|
and then
|
6385 |
|
|
Ekind (Etype (First_Formal (Hom))) =
|
6386 |
|
|
E_Anonymous_Access_Type
|
6387 |
|
|
and then
|
6388 |
|
|
Base_Type
|
6389 |
|
|
(Designated_Type (Etype (First_Formal (Hom)))) =
|
6390 |
|
|
Cls_Type))
|
6391 |
|
|
then
|
6392 |
|
|
Set_Etype (Call_Node, Any_Type);
|
6393 |
|
|
Set_Is_Overloaded (Call_Node, False);
|
6394 |
|
|
Success := False;
|
6395 |
|
|
|
6396 |
|
|
if No (Matching_Op) then
|
6397 |
|
|
Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
|
6398 |
|
|
Set_Etype (Call_Node, Any_Type);
|
6399 |
|
|
Set_Parent (Call_Node, Parent (Node_To_Replace));
|
6400 |
|
|
|
6401 |
|
|
Set_Name (Call_Node, Hom_Ref);
|
6402 |
|
|
|
6403 |
|
|
Analyze_One_Call
|
6404 |
|
|
(N => Call_Node,
|
6405 |
|
|
Nam => Hom,
|
6406 |
|
|
Report => Report_Error,
|
6407 |
|
|
Success => Success,
|
6408 |
|
|
Skip_First => True);
|
6409 |
|
|
|
6410 |
|
|
Matching_Op :=
|
6411 |
|
|
Valid_Candidate (Success, Call_Node, Hom);
|
6412 |
|
|
|
6413 |
|
|
else
|
6414 |
|
|
Analyze_One_Call
|
6415 |
|
|
(N => Call_Node,
|
6416 |
|
|
Nam => Hom,
|
6417 |
|
|
Report => Report_Error,
|
6418 |
|
|
Success => Success,
|
6419 |
|
|
Skip_First => True);
|
6420 |
|
|
|
6421 |
|
|
if Present (Valid_Candidate (Success, Call_Node, Hom))
|
6422 |
|
|
and then Nkind (Call_Node) /= N_Function_Call
|
6423 |
|
|
then
|
6424 |
|
|
Error_Msg_NE ("ambiguous call to&", N, Hom);
|
6425 |
|
|
Report_Ambiguity (Matching_Op);
|
6426 |
|
|
Report_Ambiguity (Hom);
|
6427 |
|
|
Error := True;
|
6428 |
|
|
return;
|
6429 |
|
|
end if;
|
6430 |
|
|
end if;
|
6431 |
|
|
end if;
|
6432 |
|
|
|
6433 |
|
|
Hom := Homonym (Hom);
|
6434 |
|
|
end loop;
|
6435 |
|
|
end Traverse_Homonyms;
|
6436 |
|
|
|
6437 |
|
|
-------------------------
|
6438 |
|
|
-- Traverse_Interfaces --
|
6439 |
|
|
-------------------------
|
6440 |
|
|
|
6441 |
|
|
procedure Traverse_Interfaces
|
6442 |
|
|
(Anc_Type : Entity_Id;
|
6443 |
|
|
Error : out Boolean)
|
6444 |
|
|
is
|
6445 |
|
|
Intface_List : constant List_Id :=
|
6446 |
|
|
Abstract_Interface_List (Anc_Type);
|
6447 |
|
|
Intface : Node_Id;
|
6448 |
|
|
|
6449 |
|
|
begin
|
6450 |
|
|
Error := False;
|
6451 |
|
|
|
6452 |
|
|
if Is_Non_Empty_List (Intface_List) then
|
6453 |
|
|
Intface := First (Intface_List);
|
6454 |
|
|
while Present (Intface) loop
|
6455 |
|
|
|
6456 |
|
|
-- Look for acceptable class-wide homonyms associated with
|
6457 |
|
|
-- the interface.
|
6458 |
|
|
|
6459 |
|
|
Traverse_Homonyms (Etype (Intface), Error);
|
6460 |
|
|
|
6461 |
|
|
if Error then
|
6462 |
|
|
return;
|
6463 |
|
|
end if;
|
6464 |
|
|
|
6465 |
|
|
-- Continue the search by looking at each of the interface's
|
6466 |
|
|
-- associated interface ancestors.
|
6467 |
|
|
|
6468 |
|
|
Traverse_Interfaces (Etype (Intface), Error);
|
6469 |
|
|
|
6470 |
|
|
if Error then
|
6471 |
|
|
return;
|
6472 |
|
|
end if;
|
6473 |
|
|
|
6474 |
|
|
Next (Intface);
|
6475 |
|
|
end loop;
|
6476 |
|
|
end if;
|
6477 |
|
|
end Traverse_Interfaces;
|
6478 |
|
|
|
6479 |
|
|
-- Start of processing for Try_Class_Wide_Operation
|
6480 |
|
|
|
6481 |
|
|
begin
|
6482 |
|
|
-- Loop through ancestor types (including interfaces), traversing
|
6483 |
|
|
-- the homonym chain of the subprogram, trying out those homonyms
|
6484 |
|
|
-- whose first formal has the class-wide type of the ancestor, or
|
6485 |
|
|
-- an anonymous access type designating the class-wide type.
|
6486 |
|
|
|
6487 |
|
|
Anc_Type := Obj_Type;
|
6488 |
|
|
loop
|
6489 |
|
|
-- Look for a match among homonyms associated with the ancestor
|
6490 |
|
|
|
6491 |
|
|
Traverse_Homonyms (Anc_Type, Error);
|
6492 |
|
|
|
6493 |
|
|
if Error then
|
6494 |
|
|
return True;
|
6495 |
|
|
end if;
|
6496 |
|
|
|
6497 |
|
|
-- Continue the search for matches among homonyms associated with
|
6498 |
|
|
-- any interfaces implemented by the ancestor.
|
6499 |
|
|
|
6500 |
|
|
Traverse_Interfaces (Anc_Type, Error);
|
6501 |
|
|
|
6502 |
|
|
if Error then
|
6503 |
|
|
return True;
|
6504 |
|
|
end if;
|
6505 |
|
|
|
6506 |
|
|
exit when Etype (Anc_Type) = Anc_Type;
|
6507 |
|
|
Anc_Type := Etype (Anc_Type);
|
6508 |
|
|
end loop;
|
6509 |
|
|
|
6510 |
|
|
if Present (Matching_Op) then
|
6511 |
|
|
Set_Etype (Call_Node, Etype (Matching_Op));
|
6512 |
|
|
end if;
|
6513 |
|
|
|
6514 |
|
|
return Present (Matching_Op);
|
6515 |
|
|
end Try_Class_Wide_Operation;
|
6516 |
|
|
|
6517 |
|
|
-----------------------------------
|
6518 |
|
|
-- Try_One_Prefix_Interpretation --
|
6519 |
|
|
-----------------------------------
|
6520 |
|
|
|
6521 |
|
|
procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
|
6522 |
|
|
begin
|
6523 |
|
|
Obj_Type := T;
|
6524 |
|
|
|
6525 |
|
|
if Is_Access_Type (Obj_Type) then
|
6526 |
|
|
Obj_Type := Designated_Type (Obj_Type);
|
6527 |
|
|
end if;
|
6528 |
|
|
|
6529 |
|
|
if Ekind (Obj_Type) = E_Private_Subtype then
|
6530 |
|
|
Obj_Type := Base_Type (Obj_Type);
|
6531 |
|
|
end if;
|
6532 |
|
|
|
6533 |
|
|
if Is_Class_Wide_Type (Obj_Type) then
|
6534 |
|
|
Obj_Type := Etype (Class_Wide_Type (Obj_Type));
|
6535 |
|
|
end if;
|
6536 |
|
|
|
6537 |
|
|
-- The type may have be obtained through a limited_with clause,
|
6538 |
|
|
-- in which case the primitive operations are available on its
|
6539 |
|
|
-- non-limited view. If still incomplete, retrieve full view.
|
6540 |
|
|
|
6541 |
|
|
if Ekind (Obj_Type) = E_Incomplete_Type
|
6542 |
|
|
and then From_With_Type (Obj_Type)
|
6543 |
|
|
then
|
6544 |
|
|
Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
|
6545 |
|
|
end if;
|
6546 |
|
|
|
6547 |
|
|
-- If the object is not tagged, or the type is still an incomplete
|
6548 |
|
|
-- type, this is not a prefixed call.
|
6549 |
|
|
|
6550 |
|
|
if not Is_Tagged_Type (Obj_Type)
|
6551 |
|
|
or else Is_Incomplete_Type (Obj_Type)
|
6552 |
|
|
then
|
6553 |
|
|
return;
|
6554 |
|
|
end if;
|
6555 |
|
|
|
6556 |
|
|
if Try_Primitive_Operation
|
6557 |
|
|
(Call_Node => New_Call_Node,
|
6558 |
|
|
Node_To_Replace => Node_To_Replace)
|
6559 |
|
|
or else
|
6560 |
|
|
Try_Class_Wide_Operation
|
6561 |
|
|
(Call_Node => New_Call_Node,
|
6562 |
|
|
Node_To_Replace => Node_To_Replace)
|
6563 |
|
|
then
|
6564 |
|
|
null;
|
6565 |
|
|
end if;
|
6566 |
|
|
end Try_One_Prefix_Interpretation;
|
6567 |
|
|
|
6568 |
|
|
-----------------------------
|
6569 |
|
|
-- Try_Primitive_Operation --
|
6570 |
|
|
-----------------------------
|
6571 |
|
|
|
6572 |
|
|
function Try_Primitive_Operation
|
6573 |
|
|
(Call_Node : Node_Id;
|
6574 |
|
|
Node_To_Replace : Node_Id) return Boolean
|
6575 |
|
|
is
|
6576 |
|
|
Elmt : Elmt_Id;
|
6577 |
|
|
Prim_Op : Entity_Id;
|
6578 |
|
|
Matching_Op : Entity_Id := Empty;
|
6579 |
|
|
Prim_Op_Ref : Node_Id := Empty;
|
6580 |
|
|
|
6581 |
|
|
Corr_Type : Entity_Id := Empty;
|
6582 |
|
|
-- If the prefix is a synchronized type, the controlling type of
|
6583 |
|
|
-- the primitive operation is the corresponding record type, else
|
6584 |
|
|
-- this is the object type itself.
|
6585 |
|
|
|
6586 |
|
|
Success : Boolean := False;
|
6587 |
|
|
|
6588 |
|
|
function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
|
6589 |
|
|
-- For tagged types the candidate interpretations are found in
|
6590 |
|
|
-- the list of primitive operations of the type and its ancestors.
|
6591 |
|
|
-- For formal tagged types we have to find the operations declared
|
6592 |
|
|
-- in the same scope as the type (including in the generic formal
|
6593 |
|
|
-- part) because the type itself carries no primitive operations,
|
6594 |
|
|
-- except for formal derived types that inherit the operations of
|
6595 |
|
|
-- the parent and progenitors.
|
6596 |
|
|
-- If the context is a generic subprogram body, the generic formals
|
6597 |
|
|
-- are visible by name, but are not in the entity list of the
|
6598 |
|
|
-- subprogram because that list starts with the subprogram formals.
|
6599 |
|
|
-- We retrieve the candidate operations from the generic declaration.
|
6600 |
|
|
|
6601 |
|
|
function Is_Private_Overriding (Op : Entity_Id) return Boolean;
|
6602 |
|
|
-- An operation that overrides an inherited operation in the private
|
6603 |
|
|
-- part of its package may be hidden, but if the inherited operation
|
6604 |
|
|
-- is visible a direct call to it will dispatch to the private one,
|
6605 |
|
|
-- which is therefore a valid candidate.
|
6606 |
|
|
|
6607 |
|
|
function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
|
6608 |
|
|
-- Verify that the prefix, dereferenced if need be, is a valid
|
6609 |
|
|
-- controlling argument in a call to Op. The remaining actuals
|
6610 |
|
|
-- are checked in the subsequent call to Analyze_One_Call.
|
6611 |
|
|
|
6612 |
|
|
------------------------------
|
6613 |
|
|
-- Collect_Generic_Type_Ops --
|
6614 |
|
|
------------------------------
|
6615 |
|
|
|
6616 |
|
|
function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
|
6617 |
|
|
Bas : constant Entity_Id := Base_Type (T);
|
6618 |
|
|
Candidates : constant Elist_Id := New_Elmt_List;
|
6619 |
|
|
Subp : Entity_Id;
|
6620 |
|
|
Formal : Entity_Id;
|
6621 |
|
|
|
6622 |
|
|
procedure Check_Candidate;
|
6623 |
|
|
-- The operation is a candidate if its first parameter is a
|
6624 |
|
|
-- controlling operand of the desired type.
|
6625 |
|
|
|
6626 |
|
|
-----------------------
|
6627 |
|
|
-- Check_Candidate; --
|
6628 |
|
|
-----------------------
|
6629 |
|
|
|
6630 |
|
|
procedure Check_Candidate is
|
6631 |
|
|
begin
|
6632 |
|
|
Formal := First_Formal (Subp);
|
6633 |
|
|
|
6634 |
|
|
if Present (Formal)
|
6635 |
|
|
and then Is_Controlling_Formal (Formal)
|
6636 |
|
|
and then
|
6637 |
|
|
(Base_Type (Etype (Formal)) = Bas
|
6638 |
|
|
or else
|
6639 |
|
|
(Is_Access_Type (Etype (Formal))
|
6640 |
|
|
and then Designated_Type (Etype (Formal)) = Bas))
|
6641 |
|
|
then
|
6642 |
|
|
Append_Elmt (Subp, Candidates);
|
6643 |
|
|
end if;
|
6644 |
|
|
end Check_Candidate;
|
6645 |
|
|
|
6646 |
|
|
-- Start of processing for Collect_Generic_Type_Ops
|
6647 |
|
|
|
6648 |
|
|
begin
|
6649 |
|
|
if Is_Derived_Type (T) then
|
6650 |
|
|
return Primitive_Operations (T);
|
6651 |
|
|
|
6652 |
|
|
elsif Ekind (Scope (T)) = E_Procedure
|
6653 |
|
|
or else Ekind (Scope (T)) = E_Function
|
6654 |
|
|
then
|
6655 |
|
|
-- Scan the list of generic formals to find subprograms
|
6656 |
|
|
-- that may have a first controlling formal of the type.
|
6657 |
|
|
|
6658 |
|
|
declare
|
6659 |
|
|
Decl : Node_Id;
|
6660 |
|
|
|
6661 |
|
|
begin
|
6662 |
|
|
Decl :=
|
6663 |
|
|
First (Generic_Formal_Declarations
|
6664 |
|
|
(Unit_Declaration_Node (Scope (T))));
|
6665 |
|
|
while Present (Decl) loop
|
6666 |
|
|
if Nkind (Decl) in N_Formal_Subprogram_Declaration then
|
6667 |
|
|
Subp := Defining_Entity (Decl);
|
6668 |
|
|
Check_Candidate;
|
6669 |
|
|
end if;
|
6670 |
|
|
|
6671 |
|
|
Next (Decl);
|
6672 |
|
|
end loop;
|
6673 |
|
|
end;
|
6674 |
|
|
|
6675 |
|
|
return Candidates;
|
6676 |
|
|
|
6677 |
|
|
else
|
6678 |
|
|
-- Scan the list of entities declared in the same scope as
|
6679 |
|
|
-- the type. In general this will be an open scope, given that
|
6680 |
|
|
-- the call we are analyzing can only appear within a generic
|
6681 |
|
|
-- declaration or body (either the one that declares T, or a
|
6682 |
|
|
-- child unit).
|
6683 |
|
|
|
6684 |
|
|
Subp := First_Entity (Scope (T));
|
6685 |
|
|
while Present (Subp) loop
|
6686 |
|
|
if Is_Overloadable (Subp) then
|
6687 |
|
|
Check_Candidate;
|
6688 |
|
|
end if;
|
6689 |
|
|
|
6690 |
|
|
Next_Entity (Subp);
|
6691 |
|
|
end loop;
|
6692 |
|
|
|
6693 |
|
|
return Candidates;
|
6694 |
|
|
end if;
|
6695 |
|
|
end Collect_Generic_Type_Ops;
|
6696 |
|
|
|
6697 |
|
|
---------------------------
|
6698 |
|
|
-- Is_Private_Overriding --
|
6699 |
|
|
---------------------------
|
6700 |
|
|
|
6701 |
|
|
function Is_Private_Overriding (Op : Entity_Id) return Boolean is
|
6702 |
|
|
Visible_Op : constant Entity_Id := Homonym (Op);
|
6703 |
|
|
|
6704 |
|
|
begin
|
6705 |
|
|
return Present (Visible_Op)
|
6706 |
|
|
and then Scope (Op) = Scope (Visible_Op)
|
6707 |
|
|
and then not Comes_From_Source (Visible_Op)
|
6708 |
|
|
and then Alias (Visible_Op) = Op
|
6709 |
|
|
and then not Is_Hidden (Visible_Op);
|
6710 |
|
|
end Is_Private_Overriding;
|
6711 |
|
|
|
6712 |
|
|
-----------------------------
|
6713 |
|
|
-- Valid_First_Argument_Of --
|
6714 |
|
|
-----------------------------
|
6715 |
|
|
|
6716 |
|
|
function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
|
6717 |
|
|
Typ : Entity_Id := Etype (First_Formal (Op));
|
6718 |
|
|
|
6719 |
|
|
begin
|
6720 |
|
|
if Is_Concurrent_Type (Typ)
|
6721 |
|
|
and then Present (Corresponding_Record_Type (Typ))
|
6722 |
|
|
then
|
6723 |
|
|
Typ := Corresponding_Record_Type (Typ);
|
6724 |
|
|
end if;
|
6725 |
|
|
|
6726 |
|
|
-- Simple case. Object may be a subtype of the tagged type or
|
6727 |
|
|
-- may be the corresponding record of a synchronized type.
|
6728 |
|
|
|
6729 |
|
|
return Obj_Type = Typ
|
6730 |
|
|
or else Base_Type (Obj_Type) = Typ
|
6731 |
|
|
or else Corr_Type = Typ
|
6732 |
|
|
|
6733 |
|
|
-- Prefix can be dereferenced
|
6734 |
|
|
|
6735 |
|
|
or else
|
6736 |
|
|
(Is_Access_Type (Corr_Type)
|
6737 |
|
|
and then Designated_Type (Corr_Type) = Typ)
|
6738 |
|
|
|
6739 |
|
|
-- Formal is an access parameter, for which the object
|
6740 |
|
|
-- can provide an access.
|
6741 |
|
|
|
6742 |
|
|
or else
|
6743 |
|
|
(Ekind (Typ) = E_Anonymous_Access_Type
|
6744 |
|
|
and then Designated_Type (Typ) = Base_Type (Corr_Type));
|
6745 |
|
|
end Valid_First_Argument_Of;
|
6746 |
|
|
|
6747 |
|
|
-- Start of processing for Try_Primitive_Operation
|
6748 |
|
|
|
6749 |
|
|
begin
|
6750 |
|
|
-- Look for subprograms in the list of primitive operations. The name
|
6751 |
|
|
-- must be identical, and the kind of call indicates the expected
|
6752 |
|
|
-- kind of operation (function or procedure). If the type is a
|
6753 |
|
|
-- (tagged) synchronized type, the primitive ops are attached to the
|
6754 |
|
|
-- corresponding record (base) type.
|
6755 |
|
|
|
6756 |
|
|
if Is_Concurrent_Type (Obj_Type) then
|
6757 |
|
|
if not Present (Corresponding_Record_Type (Obj_Type)) then
|
6758 |
|
|
return False;
|
6759 |
|
|
end if;
|
6760 |
|
|
|
6761 |
|
|
Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
|
6762 |
|
|
Elmt := First_Elmt (Primitive_Operations (Corr_Type));
|
6763 |
|
|
|
6764 |
|
|
elsif not Is_Generic_Type (Obj_Type) then
|
6765 |
|
|
Corr_Type := Obj_Type;
|
6766 |
|
|
Elmt := First_Elmt (Primitive_Operations (Obj_Type));
|
6767 |
|
|
|
6768 |
|
|
else
|
6769 |
|
|
Corr_Type := Obj_Type;
|
6770 |
|
|
Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
|
6771 |
|
|
end if;
|
6772 |
|
|
|
6773 |
|
|
while Present (Elmt) loop
|
6774 |
|
|
Prim_Op := Node (Elmt);
|
6775 |
|
|
|
6776 |
|
|
if Chars (Prim_Op) = Chars (Subprog)
|
6777 |
|
|
and then Present (First_Formal (Prim_Op))
|
6778 |
|
|
and then Valid_First_Argument_Of (Prim_Op)
|
6779 |
|
|
and then
|
6780 |
|
|
(Nkind (Call_Node) = N_Function_Call)
|
6781 |
|
|
= (Ekind (Prim_Op) = E_Function)
|
6782 |
|
|
then
|
6783 |
|
|
-- Ada 2005 (AI-251): If this primitive operation corresponds
|
6784 |
|
|
-- with an immediate ancestor interface there is no need to add
|
6785 |
|
|
-- it to the list of interpretations; the corresponding aliased
|
6786 |
|
|
-- primitive is also in this list of primitive operations and
|
6787 |
|
|
-- will be used instead.
|
6788 |
|
|
|
6789 |
|
|
if (Present (Interface_Alias (Prim_Op))
|
6790 |
|
|
and then Is_Ancestor (Find_Dispatching_Type
|
6791 |
|
|
(Alias (Prim_Op)), Corr_Type))
|
6792 |
|
|
|
6793 |
|
|
-- Do not consider hidden primitives unless the type is in an
|
6794 |
|
|
-- open scope or we are within an instance, where visibility
|
6795 |
|
|
-- is known to be correct, or else if this is an overriding
|
6796 |
|
|
-- operation in the private part for an inherited operation.
|
6797 |
|
|
|
6798 |
|
|
or else (Is_Hidden (Prim_Op)
|
6799 |
|
|
and then not Is_Immediately_Visible (Obj_Type)
|
6800 |
|
|
and then not In_Instance
|
6801 |
|
|
and then not Is_Private_Overriding (Prim_Op))
|
6802 |
|
|
then
|
6803 |
|
|
goto Continue;
|
6804 |
|
|
end if;
|
6805 |
|
|
|
6806 |
|
|
Set_Etype (Call_Node, Any_Type);
|
6807 |
|
|
Set_Is_Overloaded (Call_Node, False);
|
6808 |
|
|
|
6809 |
|
|
if No (Matching_Op) then
|
6810 |
|
|
Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
|
6811 |
|
|
Candidate := Prim_Op;
|
6812 |
|
|
|
6813 |
|
|
Set_Parent (Call_Node, Parent (Node_To_Replace));
|
6814 |
|
|
|
6815 |
|
|
Set_Name (Call_Node, Prim_Op_Ref);
|
6816 |
|
|
Success := False;
|
6817 |
|
|
|
6818 |
|
|
Analyze_One_Call
|
6819 |
|
|
(N => Call_Node,
|
6820 |
|
|
Nam => Prim_Op,
|
6821 |
|
|
Report => Report_Error,
|
6822 |
|
|
Success => Success,
|
6823 |
|
|
Skip_First => True);
|
6824 |
|
|
|
6825 |
|
|
Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
|
6826 |
|
|
|
6827 |
|
|
-- More than one interpretation, collect for subsequent
|
6828 |
|
|
-- disambiguation. If this is a procedure call and there
|
6829 |
|
|
-- is another match, report ambiguity now.
|
6830 |
|
|
|
6831 |
|
|
else
|
6832 |
|
|
Analyze_One_Call
|
6833 |
|
|
(N => Call_Node,
|
6834 |
|
|
Nam => Prim_Op,
|
6835 |
|
|
Report => Report_Error,
|
6836 |
|
|
Success => Success,
|
6837 |
|
|
Skip_First => True);
|
6838 |
|
|
|
6839 |
|
|
if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
|
6840 |
|
|
and then Nkind (Call_Node) /= N_Function_Call
|
6841 |
|
|
then
|
6842 |
|
|
Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
|
6843 |
|
|
Report_Ambiguity (Matching_Op);
|
6844 |
|
|
Report_Ambiguity (Prim_Op);
|
6845 |
|
|
return True;
|
6846 |
|
|
end if;
|
6847 |
|
|
end if;
|
6848 |
|
|
end if;
|
6849 |
|
|
|
6850 |
|
|
<<Continue>>
|
6851 |
|
|
Next_Elmt (Elmt);
|
6852 |
|
|
end loop;
|
6853 |
|
|
|
6854 |
|
|
if Present (Matching_Op) then
|
6855 |
|
|
Set_Etype (Call_Node, Etype (Matching_Op));
|
6856 |
|
|
end if;
|
6857 |
|
|
|
6858 |
|
|
return Present (Matching_Op);
|
6859 |
|
|
end Try_Primitive_Operation;
|
6860 |
|
|
|
6861 |
|
|
-- Start of processing for Try_Object_Operation
|
6862 |
|
|
|
6863 |
|
|
begin
|
6864 |
|
|
Analyze_Expression (Obj);
|
6865 |
|
|
|
6866 |
|
|
-- Analyze the actuals if node is known to be a subprogram call
|
6867 |
|
|
|
6868 |
|
|
if Is_Subprg_Call and then N = Name (Parent (N)) then
|
6869 |
|
|
Actual := First (Parameter_Associations (Parent (N)));
|
6870 |
|
|
while Present (Actual) loop
|
6871 |
|
|
Analyze_Expression (Actual);
|
6872 |
|
|
Next (Actual);
|
6873 |
|
|
end loop;
|
6874 |
|
|
end if;
|
6875 |
|
|
|
6876 |
|
|
-- Build a subprogram call node, using a copy of Obj as its first
|
6877 |
|
|
-- actual. This is a placeholder, to be replaced by an explicit
|
6878 |
|
|
-- dereference when needed.
|
6879 |
|
|
|
6880 |
|
|
Transform_Object_Operation
|
6881 |
|
|
(Call_Node => New_Call_Node,
|
6882 |
|
|
Node_To_Replace => Node_To_Replace);
|
6883 |
|
|
|
6884 |
|
|
Set_Etype (New_Call_Node, Any_Type);
|
6885 |
|
|
Set_Etype (Subprog, Any_Type);
|
6886 |
|
|
Set_Parent (New_Call_Node, Parent (Node_To_Replace));
|
6887 |
|
|
|
6888 |
|
|
if not Is_Overloaded (Obj) then
|
6889 |
|
|
Try_One_Prefix_Interpretation (Obj_Type);
|
6890 |
|
|
|
6891 |
|
|
else
|
6892 |
|
|
declare
|
6893 |
|
|
I : Interp_Index;
|
6894 |
|
|
It : Interp;
|
6895 |
|
|
begin
|
6896 |
|
|
Get_First_Interp (Obj, I, It);
|
6897 |
|
|
while Present (It.Nam) loop
|
6898 |
|
|
Try_One_Prefix_Interpretation (It.Typ);
|
6899 |
|
|
Get_Next_Interp (I, It);
|
6900 |
|
|
end loop;
|
6901 |
|
|
end;
|
6902 |
|
|
end if;
|
6903 |
|
|
|
6904 |
|
|
if Etype (New_Call_Node) /= Any_Type then
|
6905 |
|
|
Complete_Object_Operation
|
6906 |
|
|
(Call_Node => New_Call_Node,
|
6907 |
|
|
Node_To_Replace => Node_To_Replace);
|
6908 |
|
|
return True;
|
6909 |
|
|
|
6910 |
|
|
elsif Present (Candidate) then
|
6911 |
|
|
|
6912 |
|
|
-- The argument list is not type correct. Re-analyze with error
|
6913 |
|
|
-- reporting enabled, and use one of the possible candidates.
|
6914 |
|
|
-- In All_Errors_Mode, re-analyze all failed interpretations.
|
6915 |
|
|
|
6916 |
|
|
if All_Errors_Mode then
|
6917 |
|
|
Report_Error := True;
|
6918 |
|
|
if Try_Primitive_Operation
|
6919 |
|
|
(Call_Node => New_Call_Node,
|
6920 |
|
|
Node_To_Replace => Node_To_Replace)
|
6921 |
|
|
|
6922 |
|
|
or else
|
6923 |
|
|
Try_Class_Wide_Operation
|
6924 |
|
|
(Call_Node => New_Call_Node,
|
6925 |
|
|
Node_To_Replace => Node_To_Replace)
|
6926 |
|
|
then
|
6927 |
|
|
null;
|
6928 |
|
|
end if;
|
6929 |
|
|
|
6930 |
|
|
else
|
6931 |
|
|
Analyze_One_Call
|
6932 |
|
|
(N => New_Call_Node,
|
6933 |
|
|
Nam => Candidate,
|
6934 |
|
|
Report => True,
|
6935 |
|
|
Success => Success,
|
6936 |
|
|
Skip_First => True);
|
6937 |
|
|
end if;
|
6938 |
|
|
|
6939 |
|
|
-- No need for further errors
|
6940 |
|
|
|
6941 |
|
|
return True;
|
6942 |
|
|
|
6943 |
|
|
else
|
6944 |
|
|
-- There was no candidate operation, so report it as an error
|
6945 |
|
|
-- in the caller: Analyze_Selected_Component.
|
6946 |
|
|
|
6947 |
|
|
return False;
|
6948 |
|
|
end if;
|
6949 |
|
|
end Try_Object_Operation;
|
6950 |
|
|
|
6951 |
|
|
---------
|
6952 |
|
|
-- wpo --
|
6953 |
|
|
---------
|
6954 |
|
|
|
6955 |
|
|
procedure wpo (T : Entity_Id) is
|
6956 |
|
|
Op : Entity_Id;
|
6957 |
|
|
E : Elmt_Id;
|
6958 |
|
|
|
6959 |
|
|
begin
|
6960 |
|
|
if not Is_Tagged_Type (T) then
|
6961 |
|
|
return;
|
6962 |
|
|
end if;
|
6963 |
|
|
|
6964 |
|
|
E := First_Elmt (Primitive_Operations (Base_Type (T)));
|
6965 |
|
|
while Present (E) loop
|
6966 |
|
|
Op := Node (E);
|
6967 |
|
|
Write_Int (Int (Op));
|
6968 |
|
|
Write_Str (" === ");
|
6969 |
|
|
Write_Name (Chars (Op));
|
6970 |
|
|
Write_Str (" in ");
|
6971 |
|
|
Write_Name (Chars (Scope (Op)));
|
6972 |
|
|
Next_Elmt (E);
|
6973 |
|
|
Write_Eol;
|
6974 |
|
|
end loop;
|
6975 |
|
|
end wpo;
|
6976 |
|
|
|
6977 |
|
|
end Sem_Ch4;
|