1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ C H 6 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Expander; use Expander;
|
33 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
34 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
35 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
36 |
|
|
with Exp_Disp; use Exp_Disp;
|
37 |
|
|
with Exp_Tss; use Exp_Tss;
|
38 |
|
|
with Exp_Util; use Exp_Util;
|
39 |
|
|
with Fname; use Fname;
|
40 |
|
|
with Freeze; use Freeze;
|
41 |
|
|
with Itypes; use Itypes;
|
42 |
|
|
with Lib.Xref; use Lib.Xref;
|
43 |
|
|
with Layout; use Layout;
|
44 |
|
|
with Namet; use Namet;
|
45 |
|
|
with Lib; use Lib;
|
46 |
|
|
with Nlists; use Nlists;
|
47 |
|
|
with Nmake; use Nmake;
|
48 |
|
|
with Opt; use Opt;
|
49 |
|
|
with Output; use Output;
|
50 |
|
|
with Restrict; use Restrict;
|
51 |
|
|
with Rident; use Rident;
|
52 |
|
|
with Rtsfind; use Rtsfind;
|
53 |
|
|
with Sem; use Sem;
|
54 |
|
|
with Sem_Aux; use Sem_Aux;
|
55 |
|
|
with Sem_Cat; use Sem_Cat;
|
56 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
57 |
|
|
with Sem_Ch4; use Sem_Ch4;
|
58 |
|
|
with Sem_Ch5; use Sem_Ch5;
|
59 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
60 |
|
|
with Sem_Ch10; use Sem_Ch10;
|
61 |
|
|
with Sem_Ch12; use Sem_Ch12;
|
62 |
|
|
with Sem_Disp; use Sem_Disp;
|
63 |
|
|
with Sem_Dist; use Sem_Dist;
|
64 |
|
|
with Sem_Elim; use Sem_Elim;
|
65 |
|
|
with Sem_Eval; use Sem_Eval;
|
66 |
|
|
with Sem_Mech; use Sem_Mech;
|
67 |
|
|
with Sem_Prag; use Sem_Prag;
|
68 |
|
|
with Sem_Res; use Sem_Res;
|
69 |
|
|
with Sem_Util; use Sem_Util;
|
70 |
|
|
with Sem_Type; use Sem_Type;
|
71 |
|
|
with Sem_Warn; use Sem_Warn;
|
72 |
|
|
with Sinput; use Sinput;
|
73 |
|
|
with Stand; use Stand;
|
74 |
|
|
with Sinfo; use Sinfo;
|
75 |
|
|
with Sinfo.CN; use Sinfo.CN;
|
76 |
|
|
with Snames; use Snames;
|
77 |
|
|
with Stringt; use Stringt;
|
78 |
|
|
with Style;
|
79 |
|
|
with Stylesw; use Stylesw;
|
80 |
|
|
with Tbuild; use Tbuild;
|
81 |
|
|
with Uintp; use Uintp;
|
82 |
|
|
with Urealp; use Urealp;
|
83 |
|
|
with Validsw; use Validsw;
|
84 |
|
|
|
85 |
|
|
package body Sem_Ch6 is
|
86 |
|
|
|
87 |
|
|
May_Hide_Profile : Boolean := False;
|
88 |
|
|
-- This flag is used to indicate that two formals in two subprograms being
|
89 |
|
|
-- checked for conformance differ only in that one is an access parameter
|
90 |
|
|
-- while the other is of a general access type with the same designated
|
91 |
|
|
-- type. In this case, if the rest of the signatures match, a call to
|
92 |
|
|
-- either subprogram may be ambiguous, which is worth a warning. The flag
|
93 |
|
|
-- is set in Compatible_Types, and the warning emitted in
|
94 |
|
|
-- New_Overloaded_Entity.
|
95 |
|
|
|
96 |
|
|
-----------------------
|
97 |
|
|
-- Local Subprograms --
|
98 |
|
|
-----------------------
|
99 |
|
|
|
100 |
|
|
procedure Analyze_Return_Statement (N : Node_Id);
|
101 |
|
|
-- Common processing for simple_ and extended_return_statements
|
102 |
|
|
|
103 |
|
|
procedure Analyze_Function_Return (N : Node_Id);
|
104 |
|
|
-- Subsidiary to Analyze_Return_Statement. Called when the return statement
|
105 |
|
|
-- applies to a [generic] function.
|
106 |
|
|
|
107 |
|
|
procedure Analyze_Return_Type (N : Node_Id);
|
108 |
|
|
-- Subsidiary to Process_Formals: analyze subtype mark in function
|
109 |
|
|
-- specification, in a context where the formals are visible and hide
|
110 |
|
|
-- outer homographs.
|
111 |
|
|
|
112 |
|
|
procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
|
113 |
|
|
-- Does all the real work of Analyze_Subprogram_Body
|
114 |
|
|
|
115 |
|
|
procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
|
116 |
|
|
-- Analyze a generic subprogram body. N is the body to be analyzed, and
|
117 |
|
|
-- Gen_Id is the defining entity Id for the corresponding spec.
|
118 |
|
|
|
119 |
|
|
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
|
120 |
|
|
-- If a subprogram has pragma Inline and inlining is active, use generic
|
121 |
|
|
-- machinery to build an unexpanded body for the subprogram. This body is
|
122 |
|
|
-- subsequently used for inline expansions at call sites. If subprogram can
|
123 |
|
|
-- be inlined (depending on size and nature of local declarations) this
|
124 |
|
|
-- function returns true. Otherwise subprogram body is treated normally.
|
125 |
|
|
-- If proper warnings are enabled and the subprogram contains a construct
|
126 |
|
|
-- that cannot be inlined, the offending construct is flagged accordingly.
|
127 |
|
|
|
128 |
|
|
procedure Check_Conformance
|
129 |
|
|
(New_Id : Entity_Id;
|
130 |
|
|
Old_Id : Entity_Id;
|
131 |
|
|
Ctype : Conformance_Type;
|
132 |
|
|
Errmsg : Boolean;
|
133 |
|
|
Conforms : out Boolean;
|
134 |
|
|
Err_Loc : Node_Id := Empty;
|
135 |
|
|
Get_Inst : Boolean := False;
|
136 |
|
|
Skip_Controlling_Formals : Boolean := False);
|
137 |
|
|
-- Given two entities, this procedure checks that the profiles associated
|
138 |
|
|
-- with these entities meet the conformance criterion given by the third
|
139 |
|
|
-- parameter. If they conform, Conforms is set True and control returns
|
140 |
|
|
-- to the caller. If they do not conform, Conforms is set to False, and
|
141 |
|
|
-- in addition, if Errmsg is True on the call, proper messages are output
|
142 |
|
|
-- to complain about the conformance failure. If Err_Loc is non_Empty
|
143 |
|
|
-- the error messages are placed on Err_Loc, if Err_Loc is empty, then
|
144 |
|
|
-- error messages are placed on the appropriate part of the construct
|
145 |
|
|
-- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
|
146 |
|
|
-- against a formal access-to-subprogram type so Get_Instance_Of must
|
147 |
|
|
-- be called.
|
148 |
|
|
|
149 |
|
|
procedure Check_Subprogram_Order (N : Node_Id);
|
150 |
|
|
-- N is the N_Subprogram_Body node for a subprogram. This routine applies
|
151 |
|
|
-- the alpha ordering rule for N if this ordering requirement applicable.
|
152 |
|
|
|
153 |
|
|
procedure Check_Returns
|
154 |
|
|
(HSS : Node_Id;
|
155 |
|
|
Mode : Character;
|
156 |
|
|
Err : out Boolean;
|
157 |
|
|
Proc : Entity_Id := Empty);
|
158 |
|
|
-- Called to check for missing return statements in a function body, or for
|
159 |
|
|
-- returns present in a procedure body which has No_Return set. HSS is the
|
160 |
|
|
-- handled statement sequence for the subprogram body. This procedure
|
161 |
|
|
-- checks all flow paths to make sure they either have return (Mode = 'F',
|
162 |
|
|
-- used for functions) or do not have a return (Mode = 'P', used for
|
163 |
|
|
-- No_Return procedures). The flag Err is set if there are any control
|
164 |
|
|
-- paths not explicitly terminated by a return in the function case, and is
|
165 |
|
|
-- True otherwise. Proc is the entity for the procedure case and is used
|
166 |
|
|
-- in posting the warning message.
|
167 |
|
|
|
168 |
|
|
procedure Enter_Overloaded_Entity (S : Entity_Id);
|
169 |
|
|
-- This procedure makes S, a new overloaded entity, into the first visible
|
170 |
|
|
-- entity with that name.
|
171 |
|
|
|
172 |
|
|
procedure Install_Entity (E : Entity_Id);
|
173 |
|
|
-- Make single entity visible. Used for generic formals as well
|
174 |
|
|
|
175 |
|
|
function Is_Non_Overriding_Operation
|
176 |
|
|
(Prev_E : Entity_Id;
|
177 |
|
|
New_E : Entity_Id) return Boolean;
|
178 |
|
|
-- Enforce the rule given in 12.3(18): a private operation in an instance
|
179 |
|
|
-- overrides an inherited operation only if the corresponding operation
|
180 |
|
|
-- was overriding in the generic. This can happen for primitive operations
|
181 |
|
|
-- of types derived (in the generic unit) from formal private or formal
|
182 |
|
|
-- derived types.
|
183 |
|
|
|
184 |
|
|
procedure Make_Inequality_Operator (S : Entity_Id);
|
185 |
|
|
-- Create the declaration for an inequality operator that is implicitly
|
186 |
|
|
-- created by a user-defined equality operator that yields a boolean.
|
187 |
|
|
|
188 |
|
|
procedure May_Need_Actuals (Fun : Entity_Id);
|
189 |
|
|
-- Flag functions that can be called without parameters, i.e. those that
|
190 |
|
|
-- have no parameters, or those for which defaults exist for all parameters
|
191 |
|
|
|
192 |
|
|
procedure Process_PPCs
|
193 |
|
|
(N : Node_Id;
|
194 |
|
|
Spec_Id : Entity_Id;
|
195 |
|
|
Body_Id : Entity_Id);
|
196 |
|
|
-- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
|
197 |
|
|
-- conditions for the body and assembling and inserting the _postconditions
|
198 |
|
|
-- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
|
199 |
|
|
-- the entities for the body and separate spec (if there is no separate
|
200 |
|
|
-- spec, Spec_Id is Empty).
|
201 |
|
|
|
202 |
|
|
procedure Set_Formal_Validity (Formal_Id : Entity_Id);
|
203 |
|
|
-- Formal_Id is an formal parameter entity. This procedure deals with
|
204 |
|
|
-- setting the proper validity status for this entity, which depends on
|
205 |
|
|
-- the kind of parameter and the validity checking mode.
|
206 |
|
|
|
207 |
|
|
------------------------------
|
208 |
|
|
-- Analyze_Return_Statement --
|
209 |
|
|
------------------------------
|
210 |
|
|
|
211 |
|
|
procedure Analyze_Return_Statement (N : Node_Id) is
|
212 |
|
|
|
213 |
|
|
pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
|
214 |
|
|
N_Extended_Return_Statement));
|
215 |
|
|
|
216 |
|
|
Returns_Object : constant Boolean :=
|
217 |
|
|
Nkind (N) = N_Extended_Return_Statement
|
218 |
|
|
or else
|
219 |
|
|
(Nkind (N) = N_Simple_Return_Statement
|
220 |
|
|
and then Present (Expression (N)));
|
221 |
|
|
-- True if we're returning something; that is, "return <expression>;"
|
222 |
|
|
-- or "return Result : T [:= ...]". False for "return;". Used for error
|
223 |
|
|
-- checking: If Returns_Object is True, N should apply to a function
|
224 |
|
|
-- body; otherwise N should apply to a procedure body, entry body,
|
225 |
|
|
-- accept statement, or extended return statement.
|
226 |
|
|
|
227 |
|
|
function Find_What_It_Applies_To return Entity_Id;
|
228 |
|
|
-- Find the entity representing the innermost enclosing body, accept
|
229 |
|
|
-- statement, or extended return statement. If the result is a callable
|
230 |
|
|
-- construct or extended return statement, then this will be the value
|
231 |
|
|
-- of the Return_Applies_To attribute. Otherwise, the program is
|
232 |
|
|
-- illegal. See RM-6.5(4/2).
|
233 |
|
|
|
234 |
|
|
-----------------------------
|
235 |
|
|
-- Find_What_It_Applies_To --
|
236 |
|
|
-----------------------------
|
237 |
|
|
|
238 |
|
|
function Find_What_It_Applies_To return Entity_Id is
|
239 |
|
|
Result : Entity_Id := Empty;
|
240 |
|
|
|
241 |
|
|
begin
|
242 |
|
|
-- Loop outward through the Scope_Stack, skipping blocks and loops
|
243 |
|
|
|
244 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
245 |
|
|
Result := Scope_Stack.Table (J).Entity;
|
246 |
|
|
exit when Ekind (Result) /= E_Block and then
|
247 |
|
|
Ekind (Result) /= E_Loop;
|
248 |
|
|
end loop;
|
249 |
|
|
|
250 |
|
|
pragma Assert (Present (Result));
|
251 |
|
|
return Result;
|
252 |
|
|
end Find_What_It_Applies_To;
|
253 |
|
|
|
254 |
|
|
-- Local declarations
|
255 |
|
|
|
256 |
|
|
Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
|
257 |
|
|
Kind : constant Entity_Kind := Ekind (Scope_Id);
|
258 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
259 |
|
|
Stm_Entity : constant Entity_Id :=
|
260 |
|
|
New_Internal_Entity
|
261 |
|
|
(E_Return_Statement, Current_Scope, Loc, 'R');
|
262 |
|
|
|
263 |
|
|
-- Start of processing for Analyze_Return_Statement
|
264 |
|
|
|
265 |
|
|
begin
|
266 |
|
|
Set_Return_Statement_Entity (N, Stm_Entity);
|
267 |
|
|
|
268 |
|
|
Set_Etype (Stm_Entity, Standard_Void_Type);
|
269 |
|
|
Set_Return_Applies_To (Stm_Entity, Scope_Id);
|
270 |
|
|
|
271 |
|
|
-- Place Return entity on scope stack, to simplify enforcement of 6.5
|
272 |
|
|
-- (4/2): an inner return statement will apply to this extended return.
|
273 |
|
|
|
274 |
|
|
if Nkind (N) = N_Extended_Return_Statement then
|
275 |
|
|
Push_Scope (Stm_Entity);
|
276 |
|
|
end if;
|
277 |
|
|
|
278 |
|
|
-- Check that pragma No_Return is obeyed. Don't complain about the
|
279 |
|
|
-- implicitly-generated return that is placed at the end.
|
280 |
|
|
|
281 |
|
|
if No_Return (Scope_Id) and then Comes_From_Source (N) then
|
282 |
|
|
Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
|
283 |
|
|
end if;
|
284 |
|
|
|
285 |
|
|
-- Warn on any unassigned OUT parameters if in procedure
|
286 |
|
|
|
287 |
|
|
if Ekind (Scope_Id) = E_Procedure then
|
288 |
|
|
Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
|
289 |
|
|
end if;
|
290 |
|
|
|
291 |
|
|
-- Check that functions return objects, and other things do not
|
292 |
|
|
|
293 |
|
|
if Kind = E_Function or else Kind = E_Generic_Function then
|
294 |
|
|
if not Returns_Object then
|
295 |
|
|
Error_Msg_N ("missing expression in return from function", N);
|
296 |
|
|
end if;
|
297 |
|
|
|
298 |
|
|
elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
|
299 |
|
|
if Returns_Object then
|
300 |
|
|
Error_Msg_N ("procedure cannot return value (use function)", N);
|
301 |
|
|
end if;
|
302 |
|
|
|
303 |
|
|
elsif Kind = E_Entry or else Kind = E_Entry_Family then
|
304 |
|
|
if Returns_Object then
|
305 |
|
|
if Is_Protected_Type (Scope (Scope_Id)) then
|
306 |
|
|
Error_Msg_N ("entry body cannot return value", N);
|
307 |
|
|
else
|
308 |
|
|
Error_Msg_N ("accept statement cannot return value", N);
|
309 |
|
|
end if;
|
310 |
|
|
end if;
|
311 |
|
|
|
312 |
|
|
elsif Kind = E_Return_Statement then
|
313 |
|
|
|
314 |
|
|
-- We are nested within another return statement, which must be an
|
315 |
|
|
-- extended_return_statement.
|
316 |
|
|
|
317 |
|
|
if Returns_Object then
|
318 |
|
|
Error_Msg_N
|
319 |
|
|
("extended_return_statement cannot return value; " &
|
320 |
|
|
"use `""RETURN;""`", N);
|
321 |
|
|
end if;
|
322 |
|
|
|
323 |
|
|
else
|
324 |
|
|
Error_Msg_N ("illegal context for return statement", N);
|
325 |
|
|
end if;
|
326 |
|
|
|
327 |
|
|
if Kind = E_Function or else Kind = E_Generic_Function then
|
328 |
|
|
Analyze_Function_Return (N);
|
329 |
|
|
end if;
|
330 |
|
|
|
331 |
|
|
if Nkind (N) = N_Extended_Return_Statement then
|
332 |
|
|
End_Scope;
|
333 |
|
|
end if;
|
334 |
|
|
|
335 |
|
|
Kill_Current_Values (Last_Assignment_Only => True);
|
336 |
|
|
Check_Unreachable_Code (N);
|
337 |
|
|
end Analyze_Return_Statement;
|
338 |
|
|
|
339 |
|
|
---------------------------------------------
|
340 |
|
|
-- Analyze_Abstract_Subprogram_Declaration --
|
341 |
|
|
---------------------------------------------
|
342 |
|
|
|
343 |
|
|
procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
|
344 |
|
|
Designator : constant Entity_Id :=
|
345 |
|
|
Analyze_Subprogram_Specification (Specification (N));
|
346 |
|
|
Scop : constant Entity_Id := Current_Scope;
|
347 |
|
|
|
348 |
|
|
begin
|
349 |
|
|
Generate_Definition (Designator);
|
350 |
|
|
Set_Is_Abstract_Subprogram (Designator);
|
351 |
|
|
New_Overloaded_Entity (Designator);
|
352 |
|
|
Check_Delayed_Subprogram (Designator);
|
353 |
|
|
|
354 |
|
|
Set_Categorization_From_Scope (Designator, Scop);
|
355 |
|
|
|
356 |
|
|
if Ekind (Scope (Designator)) = E_Protected_Type then
|
357 |
|
|
Error_Msg_N
|
358 |
|
|
("abstract subprogram not allowed in protected type", N);
|
359 |
|
|
|
360 |
|
|
-- Issue a warning if the abstract subprogram is neither a dispatching
|
361 |
|
|
-- operation nor an operation that overrides an inherited subprogram or
|
362 |
|
|
-- predefined operator, since this most likely indicates a mistake.
|
363 |
|
|
|
364 |
|
|
elsif Warn_On_Redundant_Constructs
|
365 |
|
|
and then not Is_Dispatching_Operation (Designator)
|
366 |
|
|
and then not Is_Overriding_Operation (Designator)
|
367 |
|
|
and then (not Is_Operator_Symbol_Name (Chars (Designator))
|
368 |
|
|
or else Scop /= Scope (Etype (First_Formal (Designator))))
|
369 |
|
|
then
|
370 |
|
|
Error_Msg_N
|
371 |
|
|
("?abstract subprogram is not dispatching or overriding", N);
|
372 |
|
|
end if;
|
373 |
|
|
|
374 |
|
|
Generate_Reference_To_Formals (Designator);
|
375 |
|
|
Check_Eliminated (Designator);
|
376 |
|
|
end Analyze_Abstract_Subprogram_Declaration;
|
377 |
|
|
|
378 |
|
|
----------------------------------------
|
379 |
|
|
-- Analyze_Extended_Return_Statement --
|
380 |
|
|
----------------------------------------
|
381 |
|
|
|
382 |
|
|
procedure Analyze_Extended_Return_Statement (N : Node_Id) is
|
383 |
|
|
begin
|
384 |
|
|
Analyze_Return_Statement (N);
|
385 |
|
|
end Analyze_Extended_Return_Statement;
|
386 |
|
|
|
387 |
|
|
----------------------------
|
388 |
|
|
-- Analyze_Function_Call --
|
389 |
|
|
----------------------------
|
390 |
|
|
|
391 |
|
|
procedure Analyze_Function_Call (N : Node_Id) is
|
392 |
|
|
P : constant Node_Id := Name (N);
|
393 |
|
|
L : constant List_Id := Parameter_Associations (N);
|
394 |
|
|
Actual : Node_Id;
|
395 |
|
|
|
396 |
|
|
begin
|
397 |
|
|
Analyze (P);
|
398 |
|
|
|
399 |
|
|
-- A call of the form A.B (X) may be an Ada05 call, which is rewritten
|
400 |
|
|
-- as B (A, X). If the rewriting is successful, the call has been
|
401 |
|
|
-- analyzed and we just return.
|
402 |
|
|
|
403 |
|
|
if Nkind (P) = N_Selected_Component
|
404 |
|
|
and then Name (N) /= P
|
405 |
|
|
and then Is_Rewrite_Substitution (N)
|
406 |
|
|
and then Present (Etype (N))
|
407 |
|
|
then
|
408 |
|
|
return;
|
409 |
|
|
end if;
|
410 |
|
|
|
411 |
|
|
-- If error analyzing name, then set Any_Type as result type and return
|
412 |
|
|
|
413 |
|
|
if Etype (P) = Any_Type then
|
414 |
|
|
Set_Etype (N, Any_Type);
|
415 |
|
|
return;
|
416 |
|
|
end if;
|
417 |
|
|
|
418 |
|
|
-- Otherwise analyze the parameters
|
419 |
|
|
|
420 |
|
|
if Present (L) then
|
421 |
|
|
Actual := First (L);
|
422 |
|
|
while Present (Actual) loop
|
423 |
|
|
Analyze (Actual);
|
424 |
|
|
Check_Parameterless_Call (Actual);
|
425 |
|
|
Next (Actual);
|
426 |
|
|
end loop;
|
427 |
|
|
end if;
|
428 |
|
|
|
429 |
|
|
Analyze_Call (N);
|
430 |
|
|
end Analyze_Function_Call;
|
431 |
|
|
|
432 |
|
|
-----------------------------
|
433 |
|
|
-- Analyze_Function_Return --
|
434 |
|
|
-----------------------------
|
435 |
|
|
|
436 |
|
|
procedure Analyze_Function_Return (N : Node_Id) is
|
437 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
438 |
|
|
Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
|
439 |
|
|
Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
|
440 |
|
|
|
441 |
|
|
R_Type : constant Entity_Id := Etype (Scope_Id);
|
442 |
|
|
-- Function result subtype
|
443 |
|
|
|
444 |
|
|
procedure Check_Limited_Return (Expr : Node_Id);
|
445 |
|
|
-- Check the appropriate (Ada 95 or Ada 2005) rules for returning
|
446 |
|
|
-- limited types. Used only for simple return statements.
|
447 |
|
|
-- Expr is the expression returned.
|
448 |
|
|
|
449 |
|
|
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
|
450 |
|
|
-- Check that the return_subtype_indication properly matches the result
|
451 |
|
|
-- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
|
452 |
|
|
|
453 |
|
|
--------------------------
|
454 |
|
|
-- Check_Limited_Return --
|
455 |
|
|
--------------------------
|
456 |
|
|
|
457 |
|
|
procedure Check_Limited_Return (Expr : Node_Id) is
|
458 |
|
|
begin
|
459 |
|
|
-- Ada 2005 (AI-318-02): Return-by-reference types have been
|
460 |
|
|
-- removed and replaced by anonymous access results. This is an
|
461 |
|
|
-- incompatibility with Ada 95. Not clear whether this should be
|
462 |
|
|
-- enforced yet or perhaps controllable with special switch. ???
|
463 |
|
|
|
464 |
|
|
if Is_Limited_Type (R_Type)
|
465 |
|
|
and then Comes_From_Source (N)
|
466 |
|
|
and then not In_Instance_Body
|
467 |
|
|
and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
|
468 |
|
|
then
|
469 |
|
|
-- Error in Ada 2005
|
470 |
|
|
|
471 |
|
|
if Ada_Version >= Ada_05
|
472 |
|
|
and then not Debug_Flag_Dot_L
|
473 |
|
|
and then not GNAT_Mode
|
474 |
|
|
then
|
475 |
|
|
Error_Msg_N
|
476 |
|
|
("(Ada 2005) cannot copy object of a limited type " &
|
477 |
|
|
"(RM-2005 6.5(5.5/2))", Expr);
|
478 |
|
|
if Is_Inherently_Limited_Type (R_Type) then
|
479 |
|
|
Error_Msg_N
|
480 |
|
|
("\return by reference not permitted in Ada 2005", Expr);
|
481 |
|
|
end if;
|
482 |
|
|
|
483 |
|
|
-- Warn in Ada 95 mode, to give folks a heads up about this
|
484 |
|
|
-- incompatibility.
|
485 |
|
|
|
486 |
|
|
-- In GNAT mode, this is just a warning, to allow it to be
|
487 |
|
|
-- evilly turned off. Otherwise it is a real error.
|
488 |
|
|
|
489 |
|
|
elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
|
490 |
|
|
if Is_Inherently_Limited_Type (R_Type) then
|
491 |
|
|
Error_Msg_N
|
492 |
|
|
("return by reference not permitted in Ada 2005 " &
|
493 |
|
|
"(RM-2005 6.5(5.5/2))?", Expr);
|
494 |
|
|
else
|
495 |
|
|
Error_Msg_N
|
496 |
|
|
("cannot copy object of a limited type in Ada 2005 " &
|
497 |
|
|
"(RM-2005 6.5(5.5/2))?", Expr);
|
498 |
|
|
end if;
|
499 |
|
|
|
500 |
|
|
-- Ada 95 mode, compatibility warnings disabled
|
501 |
|
|
|
502 |
|
|
else
|
503 |
|
|
return; -- skip continuation messages below
|
504 |
|
|
end if;
|
505 |
|
|
|
506 |
|
|
Error_Msg_N
|
507 |
|
|
("\consider switching to return of access type", Expr);
|
508 |
|
|
Explain_Limited_Type (R_Type, Expr);
|
509 |
|
|
end if;
|
510 |
|
|
end Check_Limited_Return;
|
511 |
|
|
|
512 |
|
|
-------------------------------------
|
513 |
|
|
-- Check_Return_Subtype_Indication --
|
514 |
|
|
-------------------------------------
|
515 |
|
|
|
516 |
|
|
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
|
517 |
|
|
Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
|
518 |
|
|
R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
|
519 |
|
|
-- Subtype given in the extended return statement;
|
520 |
|
|
-- this must match R_Type.
|
521 |
|
|
|
522 |
|
|
Subtype_Ind : constant Node_Id :=
|
523 |
|
|
Object_Definition (Original_Node (Obj_Decl));
|
524 |
|
|
|
525 |
|
|
R_Type_Is_Anon_Access :
|
526 |
|
|
constant Boolean :=
|
527 |
|
|
Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
|
528 |
|
|
or else
|
529 |
|
|
Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
|
530 |
|
|
or else
|
531 |
|
|
Ekind (R_Type) = E_Anonymous_Access_Type;
|
532 |
|
|
-- True if return type of the function is an anonymous access type
|
533 |
|
|
-- Can't we make Is_Anonymous_Access_Type in einfo ???
|
534 |
|
|
|
535 |
|
|
R_Stm_Type_Is_Anon_Access :
|
536 |
|
|
constant Boolean :=
|
537 |
|
|
Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
|
538 |
|
|
or else
|
539 |
|
|
Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
|
540 |
|
|
or else
|
541 |
|
|
Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
|
542 |
|
|
-- True if type of the return object is an anonymous access type
|
543 |
|
|
|
544 |
|
|
begin
|
545 |
|
|
-- First, avoid cascade errors:
|
546 |
|
|
|
547 |
|
|
if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
|
548 |
|
|
return;
|
549 |
|
|
end if;
|
550 |
|
|
|
551 |
|
|
-- "return access T" case; check that the return statement also has
|
552 |
|
|
-- "access T", and that the subtypes statically match:
|
553 |
|
|
-- if this is an access to subprogram the signatures must match.
|
554 |
|
|
|
555 |
|
|
if R_Type_Is_Anon_Access then
|
556 |
|
|
if R_Stm_Type_Is_Anon_Access then
|
557 |
|
|
if
|
558 |
|
|
Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
|
559 |
|
|
then
|
560 |
|
|
if Base_Type (Designated_Type (R_Stm_Type)) /=
|
561 |
|
|
Base_Type (Designated_Type (R_Type))
|
562 |
|
|
or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
|
563 |
|
|
then
|
564 |
|
|
Error_Msg_N
|
565 |
|
|
("subtype must statically match function result subtype",
|
566 |
|
|
Subtype_Mark (Subtype_Ind));
|
567 |
|
|
end if;
|
568 |
|
|
|
569 |
|
|
else
|
570 |
|
|
-- For two anonymous access to subprogram types, the
|
571 |
|
|
-- types themselves must be type conformant.
|
572 |
|
|
|
573 |
|
|
if not Conforming_Types
|
574 |
|
|
(R_Stm_Type, R_Type, Fully_Conformant)
|
575 |
|
|
then
|
576 |
|
|
Error_Msg_N
|
577 |
|
|
("subtype must statically match function result subtype",
|
578 |
|
|
Subtype_Ind);
|
579 |
|
|
end if;
|
580 |
|
|
end if;
|
581 |
|
|
|
582 |
|
|
else
|
583 |
|
|
Error_Msg_N ("must use anonymous access type", Subtype_Ind);
|
584 |
|
|
end if;
|
585 |
|
|
|
586 |
|
|
-- Subtype indication case: check that the return object's type is
|
587 |
|
|
-- covered by the result type, and that the subtypes statically match
|
588 |
|
|
-- when the result subtype is constrained. Also handle record types
|
589 |
|
|
-- with unknown discriminants for which we have built the underlying
|
590 |
|
|
-- record view. Coverage is needed to allow specific-type return
|
591 |
|
|
-- objects when the result type is class-wide (see AI05-32).
|
592 |
|
|
|
593 |
|
|
elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
|
594 |
|
|
or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
|
595 |
|
|
and then
|
596 |
|
|
Covers
|
597 |
|
|
(Base_Type (R_Type),
|
598 |
|
|
Underlying_Record_View (Base_Type (R_Stm_Type))))
|
599 |
|
|
then
|
600 |
|
|
-- A null exclusion may be present on the return type, on the
|
601 |
|
|
-- function specification, on the object declaration or on the
|
602 |
|
|
-- subtype itself.
|
603 |
|
|
|
604 |
|
|
if Is_Access_Type (R_Type)
|
605 |
|
|
and then
|
606 |
|
|
(Can_Never_Be_Null (R_Type)
|
607 |
|
|
or else Null_Exclusion_Present (Parent (Scope_Id))) /=
|
608 |
|
|
Can_Never_Be_Null (R_Stm_Type)
|
609 |
|
|
then
|
610 |
|
|
Error_Msg_N
|
611 |
|
|
("subtype must statically match function result subtype",
|
612 |
|
|
Subtype_Ind);
|
613 |
|
|
end if;
|
614 |
|
|
|
615 |
|
|
if Is_Constrained (R_Type) then
|
616 |
|
|
if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
|
617 |
|
|
Error_Msg_N
|
618 |
|
|
("subtype must statically match function result subtype",
|
619 |
|
|
Subtype_Ind);
|
620 |
|
|
end if;
|
621 |
|
|
end if;
|
622 |
|
|
|
623 |
|
|
elsif Etype (Base_Type (R_Type)) = R_Stm_Type
|
624 |
|
|
and then Is_Null_Extension (Base_Type (R_Type))
|
625 |
|
|
then
|
626 |
|
|
null;
|
627 |
|
|
|
628 |
|
|
else
|
629 |
|
|
Error_Msg_N
|
630 |
|
|
("wrong type for return_subtype_indication", Subtype_Ind);
|
631 |
|
|
end if;
|
632 |
|
|
end Check_Return_Subtype_Indication;
|
633 |
|
|
|
634 |
|
|
---------------------
|
635 |
|
|
-- Local Variables --
|
636 |
|
|
---------------------
|
637 |
|
|
|
638 |
|
|
Expr : Node_Id;
|
639 |
|
|
|
640 |
|
|
-- Start of processing for Analyze_Function_Return
|
641 |
|
|
|
642 |
|
|
begin
|
643 |
|
|
Set_Return_Present (Scope_Id);
|
644 |
|
|
|
645 |
|
|
if Nkind (N) = N_Simple_Return_Statement then
|
646 |
|
|
Expr := Expression (N);
|
647 |
|
|
Analyze_And_Resolve (Expr, R_Type);
|
648 |
|
|
Check_Limited_Return (Expr);
|
649 |
|
|
|
650 |
|
|
else
|
651 |
|
|
-- Analyze parts specific to extended_return_statement:
|
652 |
|
|
|
653 |
|
|
declare
|
654 |
|
|
Obj_Decl : constant Node_Id :=
|
655 |
|
|
Last (Return_Object_Declarations (N));
|
656 |
|
|
|
657 |
|
|
HSS : constant Node_Id := Handled_Statement_Sequence (N);
|
658 |
|
|
|
659 |
|
|
begin
|
660 |
|
|
Expr := Expression (Obj_Decl);
|
661 |
|
|
|
662 |
|
|
-- Note: The check for OK_For_Limited_Init will happen in
|
663 |
|
|
-- Analyze_Object_Declaration; we treat it as a normal
|
664 |
|
|
-- object declaration.
|
665 |
|
|
|
666 |
|
|
Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
|
667 |
|
|
Analyze (Obj_Decl);
|
668 |
|
|
|
669 |
|
|
Check_Return_Subtype_Indication (Obj_Decl);
|
670 |
|
|
|
671 |
|
|
if Present (HSS) then
|
672 |
|
|
Analyze (HSS);
|
673 |
|
|
|
674 |
|
|
if Present (Exception_Handlers (HSS)) then
|
675 |
|
|
|
676 |
|
|
-- ???Has_Nested_Block_With_Handler needs to be set.
|
677 |
|
|
-- Probably by creating an actual N_Block_Statement.
|
678 |
|
|
-- Probably in Expand.
|
679 |
|
|
|
680 |
|
|
null;
|
681 |
|
|
end if;
|
682 |
|
|
end if;
|
683 |
|
|
|
684 |
|
|
-- Mark the return object as referenced, since the return is an
|
685 |
|
|
-- implicit reference of the object.
|
686 |
|
|
|
687 |
|
|
Set_Referenced (Defining_Identifier (Obj_Decl));
|
688 |
|
|
|
689 |
|
|
Check_References (Stm_Entity);
|
690 |
|
|
end;
|
691 |
|
|
end if;
|
692 |
|
|
|
693 |
|
|
-- Case of Expr present
|
694 |
|
|
|
695 |
|
|
if Present (Expr)
|
696 |
|
|
|
697 |
|
|
-- Defend against previous errors
|
698 |
|
|
|
699 |
|
|
and then Nkind (Expr) /= N_Empty
|
700 |
|
|
and then Present (Etype (Expr))
|
701 |
|
|
then
|
702 |
|
|
-- Apply constraint check. Note that this is done before the implicit
|
703 |
|
|
-- conversion of the expression done for anonymous access types to
|
704 |
|
|
-- ensure correct generation of the null-excluding check associated
|
705 |
|
|
-- with null-excluding expressions found in return statements.
|
706 |
|
|
|
707 |
|
|
Apply_Constraint_Check (Expr, R_Type);
|
708 |
|
|
|
709 |
|
|
-- Ada 2005 (AI-318-02): When the result type is an anonymous access
|
710 |
|
|
-- type, apply an implicit conversion of the expression to that type
|
711 |
|
|
-- to force appropriate static and run-time accessibility checks.
|
712 |
|
|
|
713 |
|
|
if Ada_Version >= Ada_05
|
714 |
|
|
and then Ekind (R_Type) = E_Anonymous_Access_Type
|
715 |
|
|
then
|
716 |
|
|
Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
|
717 |
|
|
Analyze_And_Resolve (Expr, R_Type);
|
718 |
|
|
end if;
|
719 |
|
|
|
720 |
|
|
-- If the result type is class-wide, then check that the return
|
721 |
|
|
-- expression's type is not declared at a deeper level than the
|
722 |
|
|
-- function (RM05-6.5(5.6/2)).
|
723 |
|
|
|
724 |
|
|
if Ada_Version >= Ada_05
|
725 |
|
|
and then Is_Class_Wide_Type (R_Type)
|
726 |
|
|
then
|
727 |
|
|
if Type_Access_Level (Etype (Expr)) >
|
728 |
|
|
Subprogram_Access_Level (Scope_Id)
|
729 |
|
|
then
|
730 |
|
|
Error_Msg_N
|
731 |
|
|
("level of return expression type is deeper than " &
|
732 |
|
|
"class-wide function!", Expr);
|
733 |
|
|
end if;
|
734 |
|
|
end if;
|
735 |
|
|
|
736 |
|
|
-- Check incorrect use of dynamically tagged expression
|
737 |
|
|
|
738 |
|
|
if Is_Tagged_Type (R_Type) then
|
739 |
|
|
Check_Dynamically_Tagged_Expression
|
740 |
|
|
(Expr => Expr,
|
741 |
|
|
Typ => R_Type,
|
742 |
|
|
Related_Nod => N);
|
743 |
|
|
end if;
|
744 |
|
|
|
745 |
|
|
-- ??? A real run-time accessibility check is needed in cases
|
746 |
|
|
-- involving dereferences of access parameters. For now we just
|
747 |
|
|
-- check the static cases.
|
748 |
|
|
|
749 |
|
|
if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
|
750 |
|
|
and then Is_Inherently_Limited_Type (Etype (Scope_Id))
|
751 |
|
|
and then Object_Access_Level (Expr) >
|
752 |
|
|
Subprogram_Access_Level (Scope_Id)
|
753 |
|
|
then
|
754 |
|
|
Rewrite (N,
|
755 |
|
|
Make_Raise_Program_Error (Loc,
|
756 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
757 |
|
|
Analyze (N);
|
758 |
|
|
|
759 |
|
|
Error_Msg_N
|
760 |
|
|
("cannot return a local value by reference?", N);
|
761 |
|
|
Error_Msg_NE
|
762 |
|
|
("\& will be raised at run time?",
|
763 |
|
|
N, Standard_Program_Error);
|
764 |
|
|
end if;
|
765 |
|
|
|
766 |
|
|
if Known_Null (Expr)
|
767 |
|
|
and then Nkind (Parent (Scope_Id)) = N_Function_Specification
|
768 |
|
|
and then Null_Exclusion_Present (Parent (Scope_Id))
|
769 |
|
|
then
|
770 |
|
|
Apply_Compile_Time_Constraint_Error
|
771 |
|
|
(N => Expr,
|
772 |
|
|
Msg => "(Ada 2005) null not allowed for "
|
773 |
|
|
& "null-excluding return?",
|
774 |
|
|
Reason => CE_Null_Not_Allowed);
|
775 |
|
|
end if;
|
776 |
|
|
end if;
|
777 |
|
|
end Analyze_Function_Return;
|
778 |
|
|
|
779 |
|
|
-------------------------------------
|
780 |
|
|
-- Analyze_Generic_Subprogram_Body --
|
781 |
|
|
-------------------------------------
|
782 |
|
|
|
783 |
|
|
procedure Analyze_Generic_Subprogram_Body
|
784 |
|
|
(N : Node_Id;
|
785 |
|
|
Gen_Id : Entity_Id)
|
786 |
|
|
is
|
787 |
|
|
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
|
788 |
|
|
Kind : constant Entity_Kind := Ekind (Gen_Id);
|
789 |
|
|
Body_Id : Entity_Id;
|
790 |
|
|
New_N : Node_Id;
|
791 |
|
|
Spec : Node_Id;
|
792 |
|
|
|
793 |
|
|
begin
|
794 |
|
|
-- Copy body and disable expansion while analyzing the generic For a
|
795 |
|
|
-- stub, do not copy the stub (which would load the proper body), this
|
796 |
|
|
-- will be done when the proper body is analyzed.
|
797 |
|
|
|
798 |
|
|
if Nkind (N) /= N_Subprogram_Body_Stub then
|
799 |
|
|
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
|
800 |
|
|
Rewrite (N, New_N);
|
801 |
|
|
Start_Generic;
|
802 |
|
|
end if;
|
803 |
|
|
|
804 |
|
|
Spec := Specification (N);
|
805 |
|
|
|
806 |
|
|
-- Within the body of the generic, the subprogram is callable, and
|
807 |
|
|
-- behaves like the corresponding non-generic unit.
|
808 |
|
|
|
809 |
|
|
Body_Id := Defining_Entity (Spec);
|
810 |
|
|
|
811 |
|
|
if Kind = E_Generic_Procedure
|
812 |
|
|
and then Nkind (Spec) /= N_Procedure_Specification
|
813 |
|
|
then
|
814 |
|
|
Error_Msg_N ("invalid body for generic procedure ", Body_Id);
|
815 |
|
|
return;
|
816 |
|
|
|
817 |
|
|
elsif Kind = E_Generic_Function
|
818 |
|
|
and then Nkind (Spec) /= N_Function_Specification
|
819 |
|
|
then
|
820 |
|
|
Error_Msg_N ("invalid body for generic function ", Body_Id);
|
821 |
|
|
return;
|
822 |
|
|
end if;
|
823 |
|
|
|
824 |
|
|
Set_Corresponding_Body (Gen_Decl, Body_Id);
|
825 |
|
|
|
826 |
|
|
if Has_Completion (Gen_Id)
|
827 |
|
|
and then Nkind (Parent (N)) /= N_Subunit
|
828 |
|
|
then
|
829 |
|
|
Error_Msg_N ("duplicate generic body", N);
|
830 |
|
|
return;
|
831 |
|
|
else
|
832 |
|
|
Set_Has_Completion (Gen_Id);
|
833 |
|
|
end if;
|
834 |
|
|
|
835 |
|
|
if Nkind (N) = N_Subprogram_Body_Stub then
|
836 |
|
|
Set_Ekind (Defining_Entity (Specification (N)), Kind);
|
837 |
|
|
else
|
838 |
|
|
Set_Corresponding_Spec (N, Gen_Id);
|
839 |
|
|
end if;
|
840 |
|
|
|
841 |
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
842 |
|
|
Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
|
843 |
|
|
end if;
|
844 |
|
|
|
845 |
|
|
-- Make generic parameters immediately visible in the body. They are
|
846 |
|
|
-- needed to process the formals declarations. Then make the formals
|
847 |
|
|
-- visible in a separate step.
|
848 |
|
|
|
849 |
|
|
Push_Scope (Gen_Id);
|
850 |
|
|
|
851 |
|
|
declare
|
852 |
|
|
E : Entity_Id;
|
853 |
|
|
First_Ent : Entity_Id;
|
854 |
|
|
|
855 |
|
|
begin
|
856 |
|
|
First_Ent := First_Entity (Gen_Id);
|
857 |
|
|
|
858 |
|
|
E := First_Ent;
|
859 |
|
|
while Present (E) and then not Is_Formal (E) loop
|
860 |
|
|
Install_Entity (E);
|
861 |
|
|
Next_Entity (E);
|
862 |
|
|
end loop;
|
863 |
|
|
|
864 |
|
|
Set_Use (Generic_Formal_Declarations (Gen_Decl));
|
865 |
|
|
|
866 |
|
|
-- Now generic formals are visible, and the specification can be
|
867 |
|
|
-- analyzed, for subsequent conformance check.
|
868 |
|
|
|
869 |
|
|
Body_Id := Analyze_Subprogram_Specification (Spec);
|
870 |
|
|
|
871 |
|
|
-- Make formal parameters visible
|
872 |
|
|
|
873 |
|
|
if Present (E) then
|
874 |
|
|
|
875 |
|
|
-- E is the first formal parameter, we loop through the formals
|
876 |
|
|
-- installing them so that they will be visible.
|
877 |
|
|
|
878 |
|
|
Set_First_Entity (Gen_Id, E);
|
879 |
|
|
while Present (E) loop
|
880 |
|
|
Install_Entity (E);
|
881 |
|
|
Next_Formal (E);
|
882 |
|
|
end loop;
|
883 |
|
|
end if;
|
884 |
|
|
|
885 |
|
|
-- Visible generic entity is callable within its own body
|
886 |
|
|
|
887 |
|
|
Set_Ekind (Gen_Id, Ekind (Body_Id));
|
888 |
|
|
Set_Ekind (Body_Id, E_Subprogram_Body);
|
889 |
|
|
Set_Convention (Body_Id, Convention (Gen_Id));
|
890 |
|
|
Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
|
891 |
|
|
Set_Scope (Body_Id, Scope (Gen_Id));
|
892 |
|
|
Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
|
893 |
|
|
|
894 |
|
|
if Nkind (N) = N_Subprogram_Body_Stub then
|
895 |
|
|
|
896 |
|
|
-- No body to analyze, so restore state of generic unit
|
897 |
|
|
|
898 |
|
|
Set_Ekind (Gen_Id, Kind);
|
899 |
|
|
Set_Ekind (Body_Id, Kind);
|
900 |
|
|
|
901 |
|
|
if Present (First_Ent) then
|
902 |
|
|
Set_First_Entity (Gen_Id, First_Ent);
|
903 |
|
|
end if;
|
904 |
|
|
|
905 |
|
|
End_Scope;
|
906 |
|
|
return;
|
907 |
|
|
end if;
|
908 |
|
|
|
909 |
|
|
-- If this is a compilation unit, it must be made visible explicitly,
|
910 |
|
|
-- because the compilation of the declaration, unlike other library
|
911 |
|
|
-- unit declarations, does not. If it is not a unit, the following
|
912 |
|
|
-- is redundant but harmless.
|
913 |
|
|
|
914 |
|
|
Set_Is_Immediately_Visible (Gen_Id);
|
915 |
|
|
Reference_Body_Formals (Gen_Id, Body_Id);
|
916 |
|
|
|
917 |
|
|
if Is_Child_Unit (Gen_Id) then
|
918 |
|
|
Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
|
919 |
|
|
end if;
|
920 |
|
|
|
921 |
|
|
Set_Actual_Subtypes (N, Current_Scope);
|
922 |
|
|
Process_PPCs (N, Gen_Id, Body_Id);
|
923 |
|
|
|
924 |
|
|
-- If the generic unit carries pre- or post-conditions, copy them
|
925 |
|
|
-- to the original generic tree, so that they are properly added
|
926 |
|
|
-- to any instantiation.
|
927 |
|
|
|
928 |
|
|
declare
|
929 |
|
|
Orig : constant Node_Id := Original_Node (N);
|
930 |
|
|
Cond : Node_Id;
|
931 |
|
|
|
932 |
|
|
begin
|
933 |
|
|
Cond := First (Declarations (N));
|
934 |
|
|
while Present (Cond) loop
|
935 |
|
|
if Nkind (Cond) = N_Pragma
|
936 |
|
|
and then Pragma_Name (Cond) = Name_Check
|
937 |
|
|
then
|
938 |
|
|
Prepend (New_Copy_Tree (Cond), Declarations (Orig));
|
939 |
|
|
|
940 |
|
|
elsif Nkind (Cond) = N_Pragma
|
941 |
|
|
and then Pragma_Name (Cond) = Name_Postcondition
|
942 |
|
|
then
|
943 |
|
|
Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
|
944 |
|
|
Prepend (New_Copy_Tree (Cond), Declarations (Orig));
|
945 |
|
|
else
|
946 |
|
|
exit;
|
947 |
|
|
end if;
|
948 |
|
|
|
949 |
|
|
Next (Cond);
|
950 |
|
|
end loop;
|
951 |
|
|
end;
|
952 |
|
|
|
953 |
|
|
Analyze_Declarations (Declarations (N));
|
954 |
|
|
Check_Completion;
|
955 |
|
|
Analyze (Handled_Statement_Sequence (N));
|
956 |
|
|
|
957 |
|
|
Save_Global_References (Original_Node (N));
|
958 |
|
|
|
959 |
|
|
-- Prior to exiting the scope, include generic formals again (if any
|
960 |
|
|
-- are present) in the set of local entities.
|
961 |
|
|
|
962 |
|
|
if Present (First_Ent) then
|
963 |
|
|
Set_First_Entity (Gen_Id, First_Ent);
|
964 |
|
|
end if;
|
965 |
|
|
|
966 |
|
|
Check_References (Gen_Id);
|
967 |
|
|
end;
|
968 |
|
|
|
969 |
|
|
Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
|
970 |
|
|
End_Scope;
|
971 |
|
|
Check_Subprogram_Order (N);
|
972 |
|
|
|
973 |
|
|
-- Outside of its body, unit is generic again
|
974 |
|
|
|
975 |
|
|
Set_Ekind (Gen_Id, Kind);
|
976 |
|
|
Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
|
977 |
|
|
|
978 |
|
|
if Style_Check then
|
979 |
|
|
Style.Check_Identifier (Body_Id, Gen_Id);
|
980 |
|
|
end if;
|
981 |
|
|
End_Generic;
|
982 |
|
|
end Analyze_Generic_Subprogram_Body;
|
983 |
|
|
|
984 |
|
|
-----------------------------
|
985 |
|
|
-- Analyze_Operator_Symbol --
|
986 |
|
|
-----------------------------
|
987 |
|
|
|
988 |
|
|
-- An operator symbol such as "+" or "and" may appear in context where the
|
989 |
|
|
-- literal denotes an entity name, such as "+"(x, y) or in context when it
|
990 |
|
|
-- is just a string, as in (conjunction = "or"). In these cases the parser
|
991 |
|
|
-- generates this node, and the semantics does the disambiguation. Other
|
992 |
|
|
-- such case are actuals in an instantiation, the generic unit in an
|
993 |
|
|
-- instantiation, and pragma arguments.
|
994 |
|
|
|
995 |
|
|
procedure Analyze_Operator_Symbol (N : Node_Id) is
|
996 |
|
|
Par : constant Node_Id := Parent (N);
|
997 |
|
|
|
998 |
|
|
begin
|
999 |
|
|
if (Nkind (Par) = N_Function_Call
|
1000 |
|
|
and then N = Name (Par))
|
1001 |
|
|
or else Nkind (Par) = N_Function_Instantiation
|
1002 |
|
|
or else (Nkind (Par) = N_Indexed_Component
|
1003 |
|
|
and then N = Prefix (Par))
|
1004 |
|
|
or else (Nkind (Par) = N_Pragma_Argument_Association
|
1005 |
|
|
and then not Is_Pragma_String_Literal (Par))
|
1006 |
|
|
or else Nkind (Par) = N_Subprogram_Renaming_Declaration
|
1007 |
|
|
or else (Nkind (Par) = N_Attribute_Reference
|
1008 |
|
|
and then Attribute_Name (Par) /= Name_Value)
|
1009 |
|
|
then
|
1010 |
|
|
Find_Direct_Name (N);
|
1011 |
|
|
|
1012 |
|
|
else
|
1013 |
|
|
Change_Operator_Symbol_To_String_Literal (N);
|
1014 |
|
|
Analyze (N);
|
1015 |
|
|
end if;
|
1016 |
|
|
end Analyze_Operator_Symbol;
|
1017 |
|
|
|
1018 |
|
|
-----------------------------------
|
1019 |
|
|
-- Analyze_Parameter_Association --
|
1020 |
|
|
-----------------------------------
|
1021 |
|
|
|
1022 |
|
|
procedure Analyze_Parameter_Association (N : Node_Id) is
|
1023 |
|
|
begin
|
1024 |
|
|
Analyze (Explicit_Actual_Parameter (N));
|
1025 |
|
|
end Analyze_Parameter_Association;
|
1026 |
|
|
|
1027 |
|
|
----------------------------
|
1028 |
|
|
-- Analyze_Procedure_Call --
|
1029 |
|
|
----------------------------
|
1030 |
|
|
|
1031 |
|
|
procedure Analyze_Procedure_Call (N : Node_Id) is
|
1032 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1033 |
|
|
P : constant Node_Id := Name (N);
|
1034 |
|
|
Actuals : constant List_Id := Parameter_Associations (N);
|
1035 |
|
|
Actual : Node_Id;
|
1036 |
|
|
New_N : Node_Id;
|
1037 |
|
|
|
1038 |
|
|
procedure Analyze_Call_And_Resolve;
|
1039 |
|
|
-- Do Analyze and Resolve calls for procedure call
|
1040 |
|
|
|
1041 |
|
|
------------------------------
|
1042 |
|
|
-- Analyze_Call_And_Resolve --
|
1043 |
|
|
------------------------------
|
1044 |
|
|
|
1045 |
|
|
procedure Analyze_Call_And_Resolve is
|
1046 |
|
|
begin
|
1047 |
|
|
if Nkind (N) = N_Procedure_Call_Statement then
|
1048 |
|
|
Analyze_Call (N);
|
1049 |
|
|
Resolve (N, Standard_Void_Type);
|
1050 |
|
|
else
|
1051 |
|
|
Analyze (N);
|
1052 |
|
|
end if;
|
1053 |
|
|
end Analyze_Call_And_Resolve;
|
1054 |
|
|
|
1055 |
|
|
-- Start of processing for Analyze_Procedure_Call
|
1056 |
|
|
|
1057 |
|
|
begin
|
1058 |
|
|
-- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
|
1059 |
|
|
-- a procedure call or an entry call. The prefix may denote an access
|
1060 |
|
|
-- to subprogram type, in which case an implicit dereference applies.
|
1061 |
|
|
-- If the prefix is an indexed component (without implicit dereference)
|
1062 |
|
|
-- then the construct denotes a call to a member of an entire family.
|
1063 |
|
|
-- If the prefix is a simple name, it may still denote a call to a
|
1064 |
|
|
-- parameterless member of an entry family. Resolution of these various
|
1065 |
|
|
-- interpretations is delicate.
|
1066 |
|
|
|
1067 |
|
|
Analyze (P);
|
1068 |
|
|
|
1069 |
|
|
-- If this is a call of the form Obj.Op, the call may have been
|
1070 |
|
|
-- analyzed and possibly rewritten into a block, in which case
|
1071 |
|
|
-- we are done.
|
1072 |
|
|
|
1073 |
|
|
if Analyzed (N) then
|
1074 |
|
|
return;
|
1075 |
|
|
end if;
|
1076 |
|
|
|
1077 |
|
|
-- If error analyzing prefix, then set Any_Type as result and return
|
1078 |
|
|
|
1079 |
|
|
if Etype (P) = Any_Type then
|
1080 |
|
|
Set_Etype (N, Any_Type);
|
1081 |
|
|
return;
|
1082 |
|
|
end if;
|
1083 |
|
|
|
1084 |
|
|
-- Otherwise analyze the parameters
|
1085 |
|
|
|
1086 |
|
|
if Present (Actuals) then
|
1087 |
|
|
Actual := First (Actuals);
|
1088 |
|
|
|
1089 |
|
|
while Present (Actual) loop
|
1090 |
|
|
Analyze (Actual);
|
1091 |
|
|
Check_Parameterless_Call (Actual);
|
1092 |
|
|
Next (Actual);
|
1093 |
|
|
end loop;
|
1094 |
|
|
end if;
|
1095 |
|
|
|
1096 |
|
|
-- Special processing for Elab_Spec and Elab_Body calls
|
1097 |
|
|
|
1098 |
|
|
if Nkind (P) = N_Attribute_Reference
|
1099 |
|
|
and then (Attribute_Name (P) = Name_Elab_Spec
|
1100 |
|
|
or else Attribute_Name (P) = Name_Elab_Body)
|
1101 |
|
|
then
|
1102 |
|
|
if Present (Actuals) then
|
1103 |
|
|
Error_Msg_N
|
1104 |
|
|
("no parameters allowed for this call", First (Actuals));
|
1105 |
|
|
return;
|
1106 |
|
|
end if;
|
1107 |
|
|
|
1108 |
|
|
Set_Etype (N, Standard_Void_Type);
|
1109 |
|
|
Set_Analyzed (N);
|
1110 |
|
|
|
1111 |
|
|
elsif Is_Entity_Name (P)
|
1112 |
|
|
and then Is_Record_Type (Etype (Entity (P)))
|
1113 |
|
|
and then Remote_AST_I_Dereference (P)
|
1114 |
|
|
then
|
1115 |
|
|
return;
|
1116 |
|
|
|
1117 |
|
|
elsif Is_Entity_Name (P)
|
1118 |
|
|
and then Ekind (Entity (P)) /= E_Entry_Family
|
1119 |
|
|
then
|
1120 |
|
|
if Is_Access_Type (Etype (P))
|
1121 |
|
|
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
|
1122 |
|
|
and then No (Actuals)
|
1123 |
|
|
and then Comes_From_Source (N)
|
1124 |
|
|
then
|
1125 |
|
|
Error_Msg_N ("missing explicit dereference in call", N);
|
1126 |
|
|
end if;
|
1127 |
|
|
|
1128 |
|
|
Analyze_Call_And_Resolve;
|
1129 |
|
|
|
1130 |
|
|
-- If the prefix is the simple name of an entry family, this is
|
1131 |
|
|
-- a parameterless call from within the task body itself.
|
1132 |
|
|
|
1133 |
|
|
elsif Is_Entity_Name (P)
|
1134 |
|
|
and then Nkind (P) = N_Identifier
|
1135 |
|
|
and then Ekind (Entity (P)) = E_Entry_Family
|
1136 |
|
|
and then Present (Actuals)
|
1137 |
|
|
and then No (Next (First (Actuals)))
|
1138 |
|
|
then
|
1139 |
|
|
-- Can be call to parameterless entry family. What appears to be the
|
1140 |
|
|
-- sole argument is in fact the entry index. Rewrite prefix of node
|
1141 |
|
|
-- accordingly. Source representation is unchanged by this
|
1142 |
|
|
-- transformation.
|
1143 |
|
|
|
1144 |
|
|
New_N :=
|
1145 |
|
|
Make_Indexed_Component (Loc,
|
1146 |
|
|
Prefix =>
|
1147 |
|
|
Make_Selected_Component (Loc,
|
1148 |
|
|
Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
|
1149 |
|
|
Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
|
1150 |
|
|
Expressions => Actuals);
|
1151 |
|
|
Set_Name (N, New_N);
|
1152 |
|
|
Set_Etype (New_N, Standard_Void_Type);
|
1153 |
|
|
Set_Parameter_Associations (N, No_List);
|
1154 |
|
|
Analyze_Call_And_Resolve;
|
1155 |
|
|
|
1156 |
|
|
elsif Nkind (P) = N_Explicit_Dereference then
|
1157 |
|
|
if Ekind (Etype (P)) = E_Subprogram_Type then
|
1158 |
|
|
Analyze_Call_And_Resolve;
|
1159 |
|
|
else
|
1160 |
|
|
Error_Msg_N ("expect access to procedure in call", P);
|
1161 |
|
|
end if;
|
1162 |
|
|
|
1163 |
|
|
-- The name can be a selected component or an indexed component that
|
1164 |
|
|
-- yields an access to subprogram. Such a prefix is legal if the call
|
1165 |
|
|
-- has parameter associations.
|
1166 |
|
|
|
1167 |
|
|
elsif Is_Access_Type (Etype (P))
|
1168 |
|
|
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
|
1169 |
|
|
then
|
1170 |
|
|
if Present (Actuals) then
|
1171 |
|
|
Analyze_Call_And_Resolve;
|
1172 |
|
|
else
|
1173 |
|
|
Error_Msg_N ("missing explicit dereference in call ", N);
|
1174 |
|
|
end if;
|
1175 |
|
|
|
1176 |
|
|
-- If not an access to subprogram, then the prefix must resolve to the
|
1177 |
|
|
-- name of an entry, entry family, or protected operation.
|
1178 |
|
|
|
1179 |
|
|
-- For the case of a simple entry call, P is a selected component where
|
1180 |
|
|
-- the prefix is the task and the selector name is the entry. A call to
|
1181 |
|
|
-- a protected procedure will have the same syntax. If the protected
|
1182 |
|
|
-- object contains overloaded operations, the entity may appear as a
|
1183 |
|
|
-- function, the context will select the operation whose type is Void.
|
1184 |
|
|
|
1185 |
|
|
elsif Nkind (P) = N_Selected_Component
|
1186 |
|
|
and then (Ekind (Entity (Selector_Name (P))) = E_Entry
|
1187 |
|
|
or else
|
1188 |
|
|
Ekind (Entity (Selector_Name (P))) = E_Procedure
|
1189 |
|
|
or else
|
1190 |
|
|
Ekind (Entity (Selector_Name (P))) = E_Function)
|
1191 |
|
|
then
|
1192 |
|
|
Analyze_Call_And_Resolve;
|
1193 |
|
|
|
1194 |
|
|
elsif Nkind (P) = N_Selected_Component
|
1195 |
|
|
and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
|
1196 |
|
|
and then Present (Actuals)
|
1197 |
|
|
and then No (Next (First (Actuals)))
|
1198 |
|
|
then
|
1199 |
|
|
-- Can be call to parameterless entry family. What appears to be the
|
1200 |
|
|
-- sole argument is in fact the entry index. Rewrite prefix of node
|
1201 |
|
|
-- accordingly. Source representation is unchanged by this
|
1202 |
|
|
-- transformation.
|
1203 |
|
|
|
1204 |
|
|
New_N :=
|
1205 |
|
|
Make_Indexed_Component (Loc,
|
1206 |
|
|
Prefix => New_Copy (P),
|
1207 |
|
|
Expressions => Actuals);
|
1208 |
|
|
Set_Name (N, New_N);
|
1209 |
|
|
Set_Etype (New_N, Standard_Void_Type);
|
1210 |
|
|
Set_Parameter_Associations (N, No_List);
|
1211 |
|
|
Analyze_Call_And_Resolve;
|
1212 |
|
|
|
1213 |
|
|
-- For the case of a reference to an element of an entry family, P is
|
1214 |
|
|
-- an indexed component whose prefix is a selected component (task and
|
1215 |
|
|
-- entry family), and whose index is the entry family index.
|
1216 |
|
|
|
1217 |
|
|
elsif Nkind (P) = N_Indexed_Component
|
1218 |
|
|
and then Nkind (Prefix (P)) = N_Selected_Component
|
1219 |
|
|
and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
|
1220 |
|
|
then
|
1221 |
|
|
Analyze_Call_And_Resolve;
|
1222 |
|
|
|
1223 |
|
|
-- If the prefix is the name of an entry family, it is a call from
|
1224 |
|
|
-- within the task body itself.
|
1225 |
|
|
|
1226 |
|
|
elsif Nkind (P) = N_Indexed_Component
|
1227 |
|
|
and then Nkind (Prefix (P)) = N_Identifier
|
1228 |
|
|
and then Ekind (Entity (Prefix (P))) = E_Entry_Family
|
1229 |
|
|
then
|
1230 |
|
|
New_N :=
|
1231 |
|
|
Make_Selected_Component (Loc,
|
1232 |
|
|
Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
|
1233 |
|
|
Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
|
1234 |
|
|
Rewrite (Prefix (P), New_N);
|
1235 |
|
|
Analyze (P);
|
1236 |
|
|
Analyze_Call_And_Resolve;
|
1237 |
|
|
|
1238 |
|
|
-- Anything else is an error
|
1239 |
|
|
|
1240 |
|
|
else
|
1241 |
|
|
Error_Msg_N ("invalid procedure or entry call", N);
|
1242 |
|
|
end if;
|
1243 |
|
|
end Analyze_Procedure_Call;
|
1244 |
|
|
|
1245 |
|
|
-------------------------------------
|
1246 |
|
|
-- Analyze_Simple_Return_Statement --
|
1247 |
|
|
-------------------------------------
|
1248 |
|
|
|
1249 |
|
|
procedure Analyze_Simple_Return_Statement (N : Node_Id) is
|
1250 |
|
|
begin
|
1251 |
|
|
if Present (Expression (N)) then
|
1252 |
|
|
Mark_Coextensions (N, Expression (N));
|
1253 |
|
|
end if;
|
1254 |
|
|
|
1255 |
|
|
Analyze_Return_Statement (N);
|
1256 |
|
|
end Analyze_Simple_Return_Statement;
|
1257 |
|
|
|
1258 |
|
|
-------------------------
|
1259 |
|
|
-- Analyze_Return_Type --
|
1260 |
|
|
-------------------------
|
1261 |
|
|
|
1262 |
|
|
procedure Analyze_Return_Type (N : Node_Id) is
|
1263 |
|
|
Designator : constant Entity_Id := Defining_Entity (N);
|
1264 |
|
|
Typ : Entity_Id := Empty;
|
1265 |
|
|
|
1266 |
|
|
begin
|
1267 |
|
|
-- Normal case where result definition does not indicate an error
|
1268 |
|
|
|
1269 |
|
|
if Result_Definition (N) /= Error then
|
1270 |
|
|
if Nkind (Result_Definition (N)) = N_Access_Definition then
|
1271 |
|
|
|
1272 |
|
|
-- Ada 2005 (AI-254): Handle anonymous access to subprograms
|
1273 |
|
|
|
1274 |
|
|
declare
|
1275 |
|
|
AD : constant Node_Id :=
|
1276 |
|
|
Access_To_Subprogram_Definition (Result_Definition (N));
|
1277 |
|
|
begin
|
1278 |
|
|
if Present (AD) and then Protected_Present (AD) then
|
1279 |
|
|
Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
|
1280 |
|
|
else
|
1281 |
|
|
Typ := Access_Definition (N, Result_Definition (N));
|
1282 |
|
|
end if;
|
1283 |
|
|
end;
|
1284 |
|
|
|
1285 |
|
|
Set_Parent (Typ, Result_Definition (N));
|
1286 |
|
|
Set_Is_Local_Anonymous_Access (Typ);
|
1287 |
|
|
Set_Etype (Designator, Typ);
|
1288 |
|
|
|
1289 |
|
|
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
|
1290 |
|
|
|
1291 |
|
|
Null_Exclusion_Static_Checks (N);
|
1292 |
|
|
|
1293 |
|
|
-- Subtype_Mark case
|
1294 |
|
|
|
1295 |
|
|
else
|
1296 |
|
|
Find_Type (Result_Definition (N));
|
1297 |
|
|
Typ := Entity (Result_Definition (N));
|
1298 |
|
|
Set_Etype (Designator, Typ);
|
1299 |
|
|
|
1300 |
|
|
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
|
1301 |
|
|
|
1302 |
|
|
Null_Exclusion_Static_Checks (N);
|
1303 |
|
|
|
1304 |
|
|
-- If a null exclusion is imposed on the result type, then create
|
1305 |
|
|
-- a null-excluding itype (an access subtype) and use it as the
|
1306 |
|
|
-- function's Etype. Note that the null exclusion checks are done
|
1307 |
|
|
-- right before this, because they don't get applied to types that
|
1308 |
|
|
-- do not come from source.
|
1309 |
|
|
|
1310 |
|
|
if Is_Access_Type (Typ)
|
1311 |
|
|
and then Null_Exclusion_Present (N)
|
1312 |
|
|
then
|
1313 |
|
|
Set_Etype (Designator,
|
1314 |
|
|
Create_Null_Excluding_Itype
|
1315 |
|
|
(T => Typ,
|
1316 |
|
|
Related_Nod => N,
|
1317 |
|
|
Scope_Id => Scope (Current_Scope)));
|
1318 |
|
|
|
1319 |
|
|
-- The new subtype must be elaborated before use because
|
1320 |
|
|
-- it is visible outside of the function. However its base
|
1321 |
|
|
-- type may not be frozen yet, so the reference that will
|
1322 |
|
|
-- force elaboration must be attached to the freezing of
|
1323 |
|
|
-- the base type.
|
1324 |
|
|
|
1325 |
|
|
-- If the return specification appears on a proper body,
|
1326 |
|
|
-- the subtype will have been created already on the spec.
|
1327 |
|
|
|
1328 |
|
|
if Is_Frozen (Typ) then
|
1329 |
|
|
if Nkind (Parent (N)) = N_Subprogram_Body
|
1330 |
|
|
and then Nkind (Parent (Parent (N))) = N_Subunit
|
1331 |
|
|
then
|
1332 |
|
|
null;
|
1333 |
|
|
else
|
1334 |
|
|
Build_Itype_Reference (Etype (Designator), Parent (N));
|
1335 |
|
|
end if;
|
1336 |
|
|
|
1337 |
|
|
else
|
1338 |
|
|
Ensure_Freeze_Node (Typ);
|
1339 |
|
|
|
1340 |
|
|
declare
|
1341 |
|
|
IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
|
1342 |
|
|
begin
|
1343 |
|
|
Set_Itype (IR, Etype (Designator));
|
1344 |
|
|
Append_Freeze_Actions (Typ, New_List (IR));
|
1345 |
|
|
end;
|
1346 |
|
|
end if;
|
1347 |
|
|
|
1348 |
|
|
else
|
1349 |
|
|
Set_Etype (Designator, Typ);
|
1350 |
|
|
end if;
|
1351 |
|
|
|
1352 |
|
|
if Ekind (Typ) = E_Incomplete_Type
|
1353 |
|
|
and then Is_Value_Type (Typ)
|
1354 |
|
|
then
|
1355 |
|
|
null;
|
1356 |
|
|
|
1357 |
|
|
elsif Ekind (Typ) = E_Incomplete_Type
|
1358 |
|
|
or else (Is_Class_Wide_Type (Typ)
|
1359 |
|
|
and then
|
1360 |
|
|
Ekind (Root_Type (Typ)) = E_Incomplete_Type)
|
1361 |
|
|
then
|
1362 |
|
|
Error_Msg_NE
|
1363 |
|
|
("invalid use of incomplete type&", Designator, Typ);
|
1364 |
|
|
end if;
|
1365 |
|
|
end if;
|
1366 |
|
|
|
1367 |
|
|
-- Case where result definition does indicate an error
|
1368 |
|
|
|
1369 |
|
|
else
|
1370 |
|
|
Set_Etype (Designator, Any_Type);
|
1371 |
|
|
end if;
|
1372 |
|
|
end Analyze_Return_Type;
|
1373 |
|
|
|
1374 |
|
|
-----------------------------
|
1375 |
|
|
-- Analyze_Subprogram_Body --
|
1376 |
|
|
-----------------------------
|
1377 |
|
|
|
1378 |
|
|
procedure Analyze_Subprogram_Body (N : Node_Id) is
|
1379 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1380 |
|
|
Body_Spec : constant Node_Id := Specification (N);
|
1381 |
|
|
Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
|
1382 |
|
|
|
1383 |
|
|
begin
|
1384 |
|
|
if Debug_Flag_C then
|
1385 |
|
|
Write_Str ("==> subprogram body ");
|
1386 |
|
|
Write_Name (Chars (Body_Id));
|
1387 |
|
|
Write_Str (" from ");
|
1388 |
|
|
Write_Location (Loc);
|
1389 |
|
|
Write_Eol;
|
1390 |
|
|
Indent;
|
1391 |
|
|
end if;
|
1392 |
|
|
|
1393 |
|
|
Trace_Scope (N, Body_Id, " Analyze subprogram: ");
|
1394 |
|
|
|
1395 |
|
|
-- The real work is split out into the helper, so it can do "return;"
|
1396 |
|
|
-- without skipping the debug output:
|
1397 |
|
|
|
1398 |
|
|
Analyze_Subprogram_Body_Helper (N);
|
1399 |
|
|
|
1400 |
|
|
if Debug_Flag_C then
|
1401 |
|
|
Outdent;
|
1402 |
|
|
Write_Str ("<== subprogram body ");
|
1403 |
|
|
Write_Name (Chars (Body_Id));
|
1404 |
|
|
Write_Str (" from ");
|
1405 |
|
|
Write_Location (Loc);
|
1406 |
|
|
Write_Eol;
|
1407 |
|
|
end if;
|
1408 |
|
|
end Analyze_Subprogram_Body;
|
1409 |
|
|
|
1410 |
|
|
------------------------------------
|
1411 |
|
|
-- Analyze_Subprogram_Body_Helper --
|
1412 |
|
|
------------------------------------
|
1413 |
|
|
|
1414 |
|
|
-- This procedure is called for regular subprogram bodies, generic bodies,
|
1415 |
|
|
-- and for subprogram stubs of both kinds. In the case of stubs, only the
|
1416 |
|
|
-- specification matters, and is used to create a proper declaration for
|
1417 |
|
|
-- the subprogram, or to perform conformance checks.
|
1418 |
|
|
|
1419 |
|
|
procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
|
1420 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1421 |
|
|
Body_Deleted : constant Boolean := False;
|
1422 |
|
|
Body_Spec : constant Node_Id := Specification (N);
|
1423 |
|
|
Body_Id : Entity_Id := Defining_Entity (Body_Spec);
|
1424 |
|
|
Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
|
1425 |
|
|
Conformant : Boolean;
|
1426 |
|
|
HSS : Node_Id;
|
1427 |
|
|
Missing_Ret : Boolean;
|
1428 |
|
|
P_Ent : Entity_Id;
|
1429 |
|
|
Prot_Typ : Entity_Id := Empty;
|
1430 |
|
|
Spec_Id : Entity_Id;
|
1431 |
|
|
Spec_Decl : Node_Id := Empty;
|
1432 |
|
|
|
1433 |
|
|
Last_Real_Spec_Entity : Entity_Id := Empty;
|
1434 |
|
|
-- When we analyze a separate spec, the entity chain ends up containing
|
1435 |
|
|
-- the formals, as well as any itypes generated during analysis of the
|
1436 |
|
|
-- default expressions for parameters, or the arguments of associated
|
1437 |
|
|
-- precondition/postcondition pragmas (which are analyzed in the context
|
1438 |
|
|
-- of the spec since they have visibility on formals).
|
1439 |
|
|
--
|
1440 |
|
|
-- These entities belong with the spec and not the body. However we do
|
1441 |
|
|
-- the analysis of the body in the context of the spec (again to obtain
|
1442 |
|
|
-- visibility to the formals), and all the entities generated during
|
1443 |
|
|
-- this analysis end up also chained to the entity chain of the spec.
|
1444 |
|
|
-- But they really belong to the body, and there is circuitry to move
|
1445 |
|
|
-- them from the spec to the body.
|
1446 |
|
|
--
|
1447 |
|
|
-- However, when we do this move, we don't want to move the real spec
|
1448 |
|
|
-- entities (first para above) to the body. The Last_Real_Spec_Entity
|
1449 |
|
|
-- variable points to the last real spec entity, so we only move those
|
1450 |
|
|
-- chained beyond that point. It is initialized to Empty to deal with
|
1451 |
|
|
-- the case where there is no separate spec.
|
1452 |
|
|
|
1453 |
|
|
procedure Check_Anonymous_Return;
|
1454 |
|
|
-- Ada 2005: if a function returns an access type that denotes a task,
|
1455 |
|
|
-- or a type that contains tasks, we must create a master entity for
|
1456 |
|
|
-- the anonymous type, which typically will be used in an allocator
|
1457 |
|
|
-- in the body of the function.
|
1458 |
|
|
|
1459 |
|
|
procedure Check_Inline_Pragma (Spec : in out Node_Id);
|
1460 |
|
|
-- Look ahead to recognize a pragma that may appear after the body.
|
1461 |
|
|
-- If there is a previous spec, check that it appears in the same
|
1462 |
|
|
-- declarative part. If the pragma is Inline_Always, perform inlining
|
1463 |
|
|
-- unconditionally, otherwise only if Front_End_Inlining is requested.
|
1464 |
|
|
-- If the body acts as a spec, and inlining is required, we create a
|
1465 |
|
|
-- subprogram declaration for it, in order to attach the body to inline.
|
1466 |
|
|
-- If pragma does not appear after the body, check whether there is
|
1467 |
|
|
-- an inline pragma before any local declarations.
|
1468 |
|
|
|
1469 |
|
|
function Disambiguate_Spec return Entity_Id;
|
1470 |
|
|
-- When a primitive is declared between the private view and the full
|
1471 |
|
|
-- view of a concurrent type which implements an interface, a special
|
1472 |
|
|
-- mechanism is used to find the corresponding spec of the primitive
|
1473 |
|
|
-- body.
|
1474 |
|
|
|
1475 |
|
|
function Is_Private_Concurrent_Primitive
|
1476 |
|
|
(Subp_Id : Entity_Id) return Boolean;
|
1477 |
|
|
-- Determine whether subprogram Subp_Id is a primitive of a concurrent
|
1478 |
|
|
-- type that implements an interface and has a private view.
|
1479 |
|
|
|
1480 |
|
|
procedure Set_Trivial_Subprogram (N : Node_Id);
|
1481 |
|
|
-- Sets the Is_Trivial_Subprogram flag in both spec and body of the
|
1482 |
|
|
-- subprogram whose body is being analyzed. N is the statement node
|
1483 |
|
|
-- causing the flag to be set, if the following statement is a return
|
1484 |
|
|
-- of an entity, we mark the entity as set in source to suppress any
|
1485 |
|
|
-- warning on the stylized use of function stubs with a dummy return.
|
1486 |
|
|
|
1487 |
|
|
procedure Verify_Overriding_Indicator;
|
1488 |
|
|
-- If there was a previous spec, the entity has been entered in the
|
1489 |
|
|
-- current scope previously. If the body itself carries an overriding
|
1490 |
|
|
-- indicator, check that it is consistent with the known status of the
|
1491 |
|
|
-- entity.
|
1492 |
|
|
|
1493 |
|
|
----------------------------
|
1494 |
|
|
-- Check_Anonymous_Return --
|
1495 |
|
|
----------------------------
|
1496 |
|
|
|
1497 |
|
|
procedure Check_Anonymous_Return is
|
1498 |
|
|
Decl : Node_Id;
|
1499 |
|
|
Par : Node_Id;
|
1500 |
|
|
Scop : Entity_Id;
|
1501 |
|
|
|
1502 |
|
|
begin
|
1503 |
|
|
if Present (Spec_Id) then
|
1504 |
|
|
Scop := Spec_Id;
|
1505 |
|
|
else
|
1506 |
|
|
Scop := Body_Id;
|
1507 |
|
|
end if;
|
1508 |
|
|
|
1509 |
|
|
if Ekind (Scop) = E_Function
|
1510 |
|
|
and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
|
1511 |
|
|
and then not Is_Thunk (Scop)
|
1512 |
|
|
and then (Has_Task (Designated_Type (Etype (Scop)))
|
1513 |
|
|
or else
|
1514 |
|
|
(Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
|
1515 |
|
|
and then
|
1516 |
|
|
Is_Limited_Record (Designated_Type (Etype (Scop)))))
|
1517 |
|
|
and then Expander_Active
|
1518 |
|
|
|
1519 |
|
|
-- Avoid cases with no tasking support
|
1520 |
|
|
|
1521 |
|
|
and then RTE_Available (RE_Current_Master)
|
1522 |
|
|
and then not Restriction_Active (No_Task_Hierarchy)
|
1523 |
|
|
then
|
1524 |
|
|
Decl :=
|
1525 |
|
|
Make_Object_Declaration (Loc,
|
1526 |
|
|
Defining_Identifier =>
|
1527 |
|
|
Make_Defining_Identifier (Loc, Name_uMaster),
|
1528 |
|
|
Constant_Present => True,
|
1529 |
|
|
Object_Definition =>
|
1530 |
|
|
New_Reference_To (RTE (RE_Master_Id), Loc),
|
1531 |
|
|
Expression =>
|
1532 |
|
|
Make_Explicit_Dereference (Loc,
|
1533 |
|
|
New_Reference_To (RTE (RE_Current_Master), Loc)));
|
1534 |
|
|
|
1535 |
|
|
if Present (Declarations (N)) then
|
1536 |
|
|
Prepend (Decl, Declarations (N));
|
1537 |
|
|
else
|
1538 |
|
|
Set_Declarations (N, New_List (Decl));
|
1539 |
|
|
end if;
|
1540 |
|
|
|
1541 |
|
|
Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
|
1542 |
|
|
Set_Has_Master_Entity (Scop);
|
1543 |
|
|
|
1544 |
|
|
-- Now mark the containing scope as a task master
|
1545 |
|
|
|
1546 |
|
|
Par := N;
|
1547 |
|
|
while Nkind (Par) /= N_Compilation_Unit loop
|
1548 |
|
|
Par := Parent (Par);
|
1549 |
|
|
pragma Assert (Present (Par));
|
1550 |
|
|
|
1551 |
|
|
-- If we fall off the top, we are at the outer level, and
|
1552 |
|
|
-- the environment task is our effective master, so nothing
|
1553 |
|
|
-- to mark.
|
1554 |
|
|
|
1555 |
|
|
if Nkind_In
|
1556 |
|
|
(Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
|
1557 |
|
|
then
|
1558 |
|
|
Set_Is_Task_Master (Par, True);
|
1559 |
|
|
exit;
|
1560 |
|
|
end if;
|
1561 |
|
|
end loop;
|
1562 |
|
|
end if;
|
1563 |
|
|
end Check_Anonymous_Return;
|
1564 |
|
|
|
1565 |
|
|
-------------------------
|
1566 |
|
|
-- Check_Inline_Pragma --
|
1567 |
|
|
-------------------------
|
1568 |
|
|
|
1569 |
|
|
procedure Check_Inline_Pragma (Spec : in out Node_Id) is
|
1570 |
|
|
Prag : Node_Id;
|
1571 |
|
|
Plist : List_Id;
|
1572 |
|
|
|
1573 |
|
|
function Is_Inline_Pragma (N : Node_Id) return Boolean;
|
1574 |
|
|
-- True when N is a pragma Inline or Inline_Always that applies
|
1575 |
|
|
-- to this subprogram.
|
1576 |
|
|
|
1577 |
|
|
-----------------------
|
1578 |
|
|
-- Is_Inline_Pragma --
|
1579 |
|
|
-----------------------
|
1580 |
|
|
|
1581 |
|
|
function Is_Inline_Pragma (N : Node_Id) return Boolean is
|
1582 |
|
|
begin
|
1583 |
|
|
return
|
1584 |
|
|
Nkind (N) = N_Pragma
|
1585 |
|
|
and then
|
1586 |
|
|
(Pragma_Name (N) = Name_Inline_Always
|
1587 |
|
|
or else
|
1588 |
|
|
(Front_End_Inlining
|
1589 |
|
|
and then Pragma_Name (N) = Name_Inline))
|
1590 |
|
|
and then
|
1591 |
|
|
Chars
|
1592 |
|
|
(Expression (First (Pragma_Argument_Associations (N))))
|
1593 |
|
|
= Chars (Body_Id);
|
1594 |
|
|
end Is_Inline_Pragma;
|
1595 |
|
|
|
1596 |
|
|
-- Start of processing for Check_Inline_Pragma
|
1597 |
|
|
|
1598 |
|
|
begin
|
1599 |
|
|
if not Expander_Active then
|
1600 |
|
|
return;
|
1601 |
|
|
end if;
|
1602 |
|
|
|
1603 |
|
|
if Is_List_Member (N)
|
1604 |
|
|
and then Present (Next (N))
|
1605 |
|
|
and then Is_Inline_Pragma (Next (N))
|
1606 |
|
|
then
|
1607 |
|
|
Prag := Next (N);
|
1608 |
|
|
|
1609 |
|
|
elsif Nkind (N) /= N_Subprogram_Body_Stub
|
1610 |
|
|
and then Present (Declarations (N))
|
1611 |
|
|
and then Is_Inline_Pragma (First (Declarations (N)))
|
1612 |
|
|
then
|
1613 |
|
|
Prag := First (Declarations (N));
|
1614 |
|
|
|
1615 |
|
|
else
|
1616 |
|
|
Prag := Empty;
|
1617 |
|
|
end if;
|
1618 |
|
|
|
1619 |
|
|
if Present (Prag) then
|
1620 |
|
|
if Present (Spec_Id) then
|
1621 |
|
|
if List_Containing (N) =
|
1622 |
|
|
List_Containing (Unit_Declaration_Node (Spec_Id))
|
1623 |
|
|
then
|
1624 |
|
|
Analyze (Prag);
|
1625 |
|
|
end if;
|
1626 |
|
|
|
1627 |
|
|
else
|
1628 |
|
|
-- Create a subprogram declaration, to make treatment uniform
|
1629 |
|
|
|
1630 |
|
|
declare
|
1631 |
|
|
Subp : constant Entity_Id :=
|
1632 |
|
|
Make_Defining_Identifier (Loc, Chars (Body_Id));
|
1633 |
|
|
Decl : constant Node_Id :=
|
1634 |
|
|
Make_Subprogram_Declaration (Loc,
|
1635 |
|
|
Specification => New_Copy_Tree (Specification (N)));
|
1636 |
|
|
begin
|
1637 |
|
|
Set_Defining_Unit_Name (Specification (Decl), Subp);
|
1638 |
|
|
|
1639 |
|
|
if Present (First_Formal (Body_Id)) then
|
1640 |
|
|
Plist := Copy_Parameter_List (Body_Id);
|
1641 |
|
|
Set_Parameter_Specifications
|
1642 |
|
|
(Specification (Decl), Plist);
|
1643 |
|
|
end if;
|
1644 |
|
|
|
1645 |
|
|
Insert_Before (N, Decl);
|
1646 |
|
|
Analyze (Decl);
|
1647 |
|
|
Analyze (Prag);
|
1648 |
|
|
Set_Has_Pragma_Inline (Subp);
|
1649 |
|
|
|
1650 |
|
|
if Pragma_Name (Prag) = Name_Inline_Always then
|
1651 |
|
|
Set_Is_Inlined (Subp);
|
1652 |
|
|
Set_Has_Pragma_Inline_Always (Subp);
|
1653 |
|
|
end if;
|
1654 |
|
|
|
1655 |
|
|
Spec := Subp;
|
1656 |
|
|
end;
|
1657 |
|
|
end if;
|
1658 |
|
|
end if;
|
1659 |
|
|
end Check_Inline_Pragma;
|
1660 |
|
|
|
1661 |
|
|
-----------------------
|
1662 |
|
|
-- Disambiguate_Spec --
|
1663 |
|
|
-----------------------
|
1664 |
|
|
|
1665 |
|
|
function Disambiguate_Spec return Entity_Id is
|
1666 |
|
|
Priv_Spec : Entity_Id;
|
1667 |
|
|
Spec_N : Entity_Id;
|
1668 |
|
|
|
1669 |
|
|
procedure Replace_Types (To_Corresponding : Boolean);
|
1670 |
|
|
-- Depending on the flag, replace the type of formal parameters of
|
1671 |
|
|
-- Body_Id if it is a concurrent type implementing interfaces with
|
1672 |
|
|
-- the corresponding record type or the other way around.
|
1673 |
|
|
|
1674 |
|
|
procedure Replace_Types (To_Corresponding : Boolean) is
|
1675 |
|
|
Formal : Entity_Id;
|
1676 |
|
|
Formal_Typ : Entity_Id;
|
1677 |
|
|
|
1678 |
|
|
begin
|
1679 |
|
|
Formal := First_Formal (Body_Id);
|
1680 |
|
|
while Present (Formal) loop
|
1681 |
|
|
Formal_Typ := Etype (Formal);
|
1682 |
|
|
|
1683 |
|
|
-- From concurrent type to corresponding record
|
1684 |
|
|
|
1685 |
|
|
if To_Corresponding then
|
1686 |
|
|
if Is_Concurrent_Type (Formal_Typ)
|
1687 |
|
|
and then Present (Corresponding_Record_Type (Formal_Typ))
|
1688 |
|
|
and then Present (Interfaces (
|
1689 |
|
|
Corresponding_Record_Type (Formal_Typ)))
|
1690 |
|
|
then
|
1691 |
|
|
Set_Etype (Formal,
|
1692 |
|
|
Corresponding_Record_Type (Formal_Typ));
|
1693 |
|
|
end if;
|
1694 |
|
|
|
1695 |
|
|
-- From corresponding record to concurrent type
|
1696 |
|
|
|
1697 |
|
|
else
|
1698 |
|
|
if Is_Concurrent_Record_Type (Formal_Typ)
|
1699 |
|
|
and then Present (Interfaces (Formal_Typ))
|
1700 |
|
|
then
|
1701 |
|
|
Set_Etype (Formal,
|
1702 |
|
|
Corresponding_Concurrent_Type (Formal_Typ));
|
1703 |
|
|
end if;
|
1704 |
|
|
end if;
|
1705 |
|
|
|
1706 |
|
|
Next_Formal (Formal);
|
1707 |
|
|
end loop;
|
1708 |
|
|
end Replace_Types;
|
1709 |
|
|
|
1710 |
|
|
-- Start of processing for Disambiguate_Spec
|
1711 |
|
|
|
1712 |
|
|
begin
|
1713 |
|
|
-- Try to retrieve the specification of the body as is. All error
|
1714 |
|
|
-- messages are suppressed because the body may not have a spec in
|
1715 |
|
|
-- its current state.
|
1716 |
|
|
|
1717 |
|
|
Spec_N := Find_Corresponding_Spec (N, False);
|
1718 |
|
|
|
1719 |
|
|
-- It is possible that this is the body of a primitive declared
|
1720 |
|
|
-- between a private and a full view of a concurrent type. The
|
1721 |
|
|
-- controlling parameter of the spec carries the concurrent type,
|
1722 |
|
|
-- not the corresponding record type as transformed by Analyze_
|
1723 |
|
|
-- Subprogram_Specification. In such cases, we undo the change
|
1724 |
|
|
-- made by the analysis of the specification and try to find the
|
1725 |
|
|
-- spec again.
|
1726 |
|
|
|
1727 |
|
|
-- Note that wrappers already have their corresponding specs and
|
1728 |
|
|
-- bodies set during their creation, so if the candidate spec is
|
1729 |
|
|
-- a wrapper, then we definitely need to swap all types to their
|
1730 |
|
|
-- original concurrent status.
|
1731 |
|
|
|
1732 |
|
|
if No (Spec_N)
|
1733 |
|
|
or else Is_Primitive_Wrapper (Spec_N)
|
1734 |
|
|
then
|
1735 |
|
|
-- Restore all references of corresponding record types to the
|
1736 |
|
|
-- original concurrent types.
|
1737 |
|
|
|
1738 |
|
|
Replace_Types (To_Corresponding => False);
|
1739 |
|
|
Priv_Spec := Find_Corresponding_Spec (N, False);
|
1740 |
|
|
|
1741 |
|
|
-- The current body truly belongs to a primitive declared between
|
1742 |
|
|
-- a private and a full view. We leave the modified body as is,
|
1743 |
|
|
-- and return the true spec.
|
1744 |
|
|
|
1745 |
|
|
if Present (Priv_Spec)
|
1746 |
|
|
and then Is_Private_Primitive (Priv_Spec)
|
1747 |
|
|
then
|
1748 |
|
|
return Priv_Spec;
|
1749 |
|
|
end if;
|
1750 |
|
|
|
1751 |
|
|
-- In case that this is some sort of error, restore the original
|
1752 |
|
|
-- state of the body.
|
1753 |
|
|
|
1754 |
|
|
Replace_Types (To_Corresponding => True);
|
1755 |
|
|
end if;
|
1756 |
|
|
|
1757 |
|
|
return Spec_N;
|
1758 |
|
|
end Disambiguate_Spec;
|
1759 |
|
|
|
1760 |
|
|
-------------------------------------
|
1761 |
|
|
-- Is_Private_Concurrent_Primitive --
|
1762 |
|
|
-------------------------------------
|
1763 |
|
|
|
1764 |
|
|
function Is_Private_Concurrent_Primitive
|
1765 |
|
|
(Subp_Id : Entity_Id) return Boolean
|
1766 |
|
|
is
|
1767 |
|
|
Formal_Typ : Entity_Id;
|
1768 |
|
|
|
1769 |
|
|
begin
|
1770 |
|
|
if Present (First_Formal (Subp_Id)) then
|
1771 |
|
|
Formal_Typ := Etype (First_Formal (Subp_Id));
|
1772 |
|
|
|
1773 |
|
|
if Is_Concurrent_Record_Type (Formal_Typ) then
|
1774 |
|
|
Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
|
1775 |
|
|
end if;
|
1776 |
|
|
|
1777 |
|
|
-- The type of the first formal is a concurrent tagged type with
|
1778 |
|
|
-- a private view.
|
1779 |
|
|
|
1780 |
|
|
return
|
1781 |
|
|
Is_Concurrent_Type (Formal_Typ)
|
1782 |
|
|
and then Is_Tagged_Type (Formal_Typ)
|
1783 |
|
|
and then Has_Private_Declaration (Formal_Typ);
|
1784 |
|
|
end if;
|
1785 |
|
|
|
1786 |
|
|
return False;
|
1787 |
|
|
end Is_Private_Concurrent_Primitive;
|
1788 |
|
|
|
1789 |
|
|
----------------------------
|
1790 |
|
|
-- Set_Trivial_Subprogram --
|
1791 |
|
|
----------------------------
|
1792 |
|
|
|
1793 |
|
|
procedure Set_Trivial_Subprogram (N : Node_Id) is
|
1794 |
|
|
Nxt : constant Node_Id := Next (N);
|
1795 |
|
|
|
1796 |
|
|
begin
|
1797 |
|
|
Set_Is_Trivial_Subprogram (Body_Id);
|
1798 |
|
|
|
1799 |
|
|
if Present (Spec_Id) then
|
1800 |
|
|
Set_Is_Trivial_Subprogram (Spec_Id);
|
1801 |
|
|
end if;
|
1802 |
|
|
|
1803 |
|
|
if Present (Nxt)
|
1804 |
|
|
and then Nkind (Nxt) = N_Simple_Return_Statement
|
1805 |
|
|
and then No (Next (Nxt))
|
1806 |
|
|
and then Present (Expression (Nxt))
|
1807 |
|
|
and then Is_Entity_Name (Expression (Nxt))
|
1808 |
|
|
then
|
1809 |
|
|
Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
|
1810 |
|
|
end if;
|
1811 |
|
|
end Set_Trivial_Subprogram;
|
1812 |
|
|
|
1813 |
|
|
---------------------------------
|
1814 |
|
|
-- Verify_Overriding_Indicator --
|
1815 |
|
|
---------------------------------
|
1816 |
|
|
|
1817 |
|
|
procedure Verify_Overriding_Indicator is
|
1818 |
|
|
begin
|
1819 |
|
|
if Must_Override (Body_Spec) then
|
1820 |
|
|
if Nkind (Spec_Id) = N_Defining_Operator_Symbol
|
1821 |
|
|
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
|
1822 |
|
|
then
|
1823 |
|
|
null;
|
1824 |
|
|
|
1825 |
|
|
elsif not Is_Overriding_Operation (Spec_Id) then
|
1826 |
|
|
Error_Msg_NE
|
1827 |
|
|
("subprogram& is not overriding", Body_Spec, Spec_Id);
|
1828 |
|
|
end if;
|
1829 |
|
|
|
1830 |
|
|
elsif Must_Not_Override (Body_Spec) then
|
1831 |
|
|
if Is_Overriding_Operation (Spec_Id) then
|
1832 |
|
|
Error_Msg_NE
|
1833 |
|
|
("subprogram& overrides inherited operation",
|
1834 |
|
|
Body_Spec, Spec_Id);
|
1835 |
|
|
|
1836 |
|
|
elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
|
1837 |
|
|
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
|
1838 |
|
|
then
|
1839 |
|
|
Error_Msg_NE
|
1840 |
|
|
("subprogram & overrides predefined operator ",
|
1841 |
|
|
Body_Spec, Spec_Id);
|
1842 |
|
|
|
1843 |
|
|
-- If this is not a primitive operation or protected subprogram,
|
1844 |
|
|
-- then the overriding indicator is altogether illegal.
|
1845 |
|
|
|
1846 |
|
|
elsif not Is_Primitive (Spec_Id)
|
1847 |
|
|
and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
|
1848 |
|
|
then
|
1849 |
|
|
Error_Msg_N ("overriding indicator only allowed " &
|
1850 |
|
|
"if subprogram is primitive",
|
1851 |
|
|
Body_Spec);
|
1852 |
|
|
end if;
|
1853 |
|
|
|
1854 |
|
|
elsif Style_Check -- ??? incorrect use of Style_Check!
|
1855 |
|
|
and then Is_Overriding_Operation (Spec_Id)
|
1856 |
|
|
then
|
1857 |
|
|
pragma Assert (Unit_Declaration_Node (Body_Id) = N);
|
1858 |
|
|
Style.Missing_Overriding (N, Body_Id);
|
1859 |
|
|
end if;
|
1860 |
|
|
end Verify_Overriding_Indicator;
|
1861 |
|
|
|
1862 |
|
|
-- Start of processing for Analyze_Subprogram_Body_Helper
|
1863 |
|
|
|
1864 |
|
|
begin
|
1865 |
|
|
-- Generic subprograms are handled separately. They always have a
|
1866 |
|
|
-- generic specification. Determine whether current scope has a
|
1867 |
|
|
-- previous declaration.
|
1868 |
|
|
|
1869 |
|
|
-- If the subprogram body is defined within an instance of the same
|
1870 |
|
|
-- name, the instance appears as a package renaming, and will be hidden
|
1871 |
|
|
-- within the subprogram.
|
1872 |
|
|
|
1873 |
|
|
if Present (Prev_Id)
|
1874 |
|
|
and then not Is_Overloadable (Prev_Id)
|
1875 |
|
|
and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
|
1876 |
|
|
or else Comes_From_Source (Prev_Id))
|
1877 |
|
|
then
|
1878 |
|
|
if Is_Generic_Subprogram (Prev_Id) then
|
1879 |
|
|
Spec_Id := Prev_Id;
|
1880 |
|
|
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
|
1881 |
|
|
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
|
1882 |
|
|
|
1883 |
|
|
Analyze_Generic_Subprogram_Body (N, Spec_Id);
|
1884 |
|
|
return;
|
1885 |
|
|
|
1886 |
|
|
else
|
1887 |
|
|
-- Previous entity conflicts with subprogram name. Attempting to
|
1888 |
|
|
-- enter name will post error.
|
1889 |
|
|
|
1890 |
|
|
Enter_Name (Body_Id);
|
1891 |
|
|
return;
|
1892 |
|
|
end if;
|
1893 |
|
|
|
1894 |
|
|
-- Non-generic case, find the subprogram declaration, if one was seen,
|
1895 |
|
|
-- or enter new overloaded entity in the current scope. If the
|
1896 |
|
|
-- Current_Entity is the Body_Id itself, the unit is being analyzed as
|
1897 |
|
|
-- part of the context of one of its subunits. No need to redo the
|
1898 |
|
|
-- analysis.
|
1899 |
|
|
|
1900 |
|
|
elsif Prev_Id = Body_Id
|
1901 |
|
|
and then Has_Completion (Body_Id)
|
1902 |
|
|
then
|
1903 |
|
|
return;
|
1904 |
|
|
|
1905 |
|
|
else
|
1906 |
|
|
Body_Id := Analyze_Subprogram_Specification (Body_Spec);
|
1907 |
|
|
|
1908 |
|
|
if Nkind (N) = N_Subprogram_Body_Stub
|
1909 |
|
|
or else No (Corresponding_Spec (N))
|
1910 |
|
|
then
|
1911 |
|
|
if Is_Private_Concurrent_Primitive (Body_Id) then
|
1912 |
|
|
Spec_Id := Disambiguate_Spec;
|
1913 |
|
|
else
|
1914 |
|
|
Spec_Id := Find_Corresponding_Spec (N);
|
1915 |
|
|
end if;
|
1916 |
|
|
|
1917 |
|
|
-- If this is a duplicate body, no point in analyzing it
|
1918 |
|
|
|
1919 |
|
|
if Error_Posted (N) then
|
1920 |
|
|
return;
|
1921 |
|
|
end if;
|
1922 |
|
|
|
1923 |
|
|
-- A subprogram body should cause freezing of its own declaration,
|
1924 |
|
|
-- but if there was no previous explicit declaration, then the
|
1925 |
|
|
-- subprogram will get frozen too late (there may be code within
|
1926 |
|
|
-- the body that depends on the subprogram having been frozen,
|
1927 |
|
|
-- such as uses of extra formals), so we force it to be frozen
|
1928 |
|
|
-- here. Same holds if the body and spec are compilation units.
|
1929 |
|
|
-- Finally, if the return type is an anonymous access to protected
|
1930 |
|
|
-- subprogram, it must be frozen before the body because its
|
1931 |
|
|
-- expansion has generated an equivalent type that is used when
|
1932 |
|
|
-- elaborating the body.
|
1933 |
|
|
|
1934 |
|
|
if No (Spec_Id) then
|
1935 |
|
|
Freeze_Before (N, Body_Id);
|
1936 |
|
|
|
1937 |
|
|
elsif Nkind (Parent (N)) = N_Compilation_Unit then
|
1938 |
|
|
Freeze_Before (N, Spec_Id);
|
1939 |
|
|
|
1940 |
|
|
elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
|
1941 |
|
|
Freeze_Before (N, Etype (Body_Id));
|
1942 |
|
|
end if;
|
1943 |
|
|
|
1944 |
|
|
else
|
1945 |
|
|
Spec_Id := Corresponding_Spec (N);
|
1946 |
|
|
end if;
|
1947 |
|
|
end if;
|
1948 |
|
|
|
1949 |
|
|
-- Do not inline any subprogram that contains nested subprograms, since
|
1950 |
|
|
-- the backend inlining circuit seems to generate uninitialized
|
1951 |
|
|
-- references in this case. We know this happens in the case of front
|
1952 |
|
|
-- end ZCX support, but it also appears it can happen in other cases as
|
1953 |
|
|
-- well. The backend often rejects attempts to inline in the case of
|
1954 |
|
|
-- nested procedures anyway, so little if anything is lost by this.
|
1955 |
|
|
-- Note that this is test is for the benefit of the back-end. There is
|
1956 |
|
|
-- a separate test for front-end inlining that also rejects nested
|
1957 |
|
|
-- subprograms.
|
1958 |
|
|
|
1959 |
|
|
-- Do not do this test if errors have been detected, because in some
|
1960 |
|
|
-- error cases, this code blows up, and we don't need it anyway if
|
1961 |
|
|
-- there have been errors, since we won't get to the linker anyway.
|
1962 |
|
|
|
1963 |
|
|
if Comes_From_Source (Body_Id)
|
1964 |
|
|
and then Serious_Errors_Detected = 0
|
1965 |
|
|
then
|
1966 |
|
|
P_Ent := Body_Id;
|
1967 |
|
|
loop
|
1968 |
|
|
P_Ent := Scope (P_Ent);
|
1969 |
|
|
exit when No (P_Ent) or else P_Ent = Standard_Standard;
|
1970 |
|
|
|
1971 |
|
|
if Is_Subprogram (P_Ent) then
|
1972 |
|
|
Set_Is_Inlined (P_Ent, False);
|
1973 |
|
|
|
1974 |
|
|
if Comes_From_Source (P_Ent)
|
1975 |
|
|
and then Has_Pragma_Inline (P_Ent)
|
1976 |
|
|
then
|
1977 |
|
|
Cannot_Inline
|
1978 |
|
|
("cannot inline& (nested subprogram)?",
|
1979 |
|
|
N, P_Ent);
|
1980 |
|
|
end if;
|
1981 |
|
|
end if;
|
1982 |
|
|
end loop;
|
1983 |
|
|
end if;
|
1984 |
|
|
|
1985 |
|
|
Check_Inline_Pragma (Spec_Id);
|
1986 |
|
|
|
1987 |
|
|
-- Deal with special case of a fully private operation in the body of
|
1988 |
|
|
-- the protected type. We must create a declaration for the subprogram,
|
1989 |
|
|
-- in order to attach the protected subprogram that will be used in
|
1990 |
|
|
-- internal calls. We exclude compiler generated bodies from the
|
1991 |
|
|
-- expander since the issue does not arise for those cases.
|
1992 |
|
|
|
1993 |
|
|
if No (Spec_Id)
|
1994 |
|
|
and then Comes_From_Source (N)
|
1995 |
|
|
and then Is_Protected_Type (Current_Scope)
|
1996 |
|
|
then
|
1997 |
|
|
Spec_Id := Build_Private_Protected_Declaration (N);
|
1998 |
|
|
end if;
|
1999 |
|
|
|
2000 |
|
|
-- If a separate spec is present, then deal with freezing issues
|
2001 |
|
|
|
2002 |
|
|
if Present (Spec_Id) then
|
2003 |
|
|
Spec_Decl := Unit_Declaration_Node (Spec_Id);
|
2004 |
|
|
Verify_Overriding_Indicator;
|
2005 |
|
|
|
2006 |
|
|
-- In general, the spec will be frozen when we start analyzing the
|
2007 |
|
|
-- body. However, for internally generated operations, such as
|
2008 |
|
|
-- wrapper functions for inherited operations with controlling
|
2009 |
|
|
-- results, the spec may not have been frozen by the time we
|
2010 |
|
|
-- expand the freeze actions that include the bodies. In particular,
|
2011 |
|
|
-- extra formals for accessibility or for return-in-place may need
|
2012 |
|
|
-- to be generated. Freeze nodes, if any, are inserted before the
|
2013 |
|
|
-- current body.
|
2014 |
|
|
|
2015 |
|
|
if not Is_Frozen (Spec_Id)
|
2016 |
|
|
and then Expander_Active
|
2017 |
|
|
then
|
2018 |
|
|
-- Force the generation of its freezing node to ensure proper
|
2019 |
|
|
-- management of access types in the backend.
|
2020 |
|
|
|
2021 |
|
|
-- This is definitely needed for some cases, but it is not clear
|
2022 |
|
|
-- why, to be investigated further???
|
2023 |
|
|
|
2024 |
|
|
Set_Has_Delayed_Freeze (Spec_Id);
|
2025 |
|
|
Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
|
2026 |
|
|
end if;
|
2027 |
|
|
end if;
|
2028 |
|
|
|
2029 |
|
|
-- Mark presence of postcondition proc in current scope
|
2030 |
|
|
|
2031 |
|
|
if Chars (Body_Id) = Name_uPostconditions then
|
2032 |
|
|
Set_Has_Postconditions (Current_Scope);
|
2033 |
|
|
end if;
|
2034 |
|
|
|
2035 |
|
|
-- Place subprogram on scope stack, and make formals visible. If there
|
2036 |
|
|
-- is a spec, the visible entity remains that of the spec.
|
2037 |
|
|
|
2038 |
|
|
if Present (Spec_Id) then
|
2039 |
|
|
Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
|
2040 |
|
|
|
2041 |
|
|
if Is_Child_Unit (Spec_Id) then
|
2042 |
|
|
Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
|
2043 |
|
|
end if;
|
2044 |
|
|
|
2045 |
|
|
if Style_Check then
|
2046 |
|
|
Style.Check_Identifier (Body_Id, Spec_Id);
|
2047 |
|
|
end if;
|
2048 |
|
|
|
2049 |
|
|
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
|
2050 |
|
|
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
|
2051 |
|
|
|
2052 |
|
|
if Is_Abstract_Subprogram (Spec_Id) then
|
2053 |
|
|
Error_Msg_N ("an abstract subprogram cannot have a body", N);
|
2054 |
|
|
return;
|
2055 |
|
|
|
2056 |
|
|
else
|
2057 |
|
|
Set_Convention (Body_Id, Convention (Spec_Id));
|
2058 |
|
|
Set_Has_Completion (Spec_Id);
|
2059 |
|
|
|
2060 |
|
|
if Is_Protected_Type (Scope (Spec_Id)) then
|
2061 |
|
|
Prot_Typ := Scope (Spec_Id);
|
2062 |
|
|
end if;
|
2063 |
|
|
|
2064 |
|
|
-- If this is a body generated for a renaming, do not check for
|
2065 |
|
|
-- full conformance. The check is redundant, because the spec of
|
2066 |
|
|
-- the body is a copy of the spec in the renaming declaration,
|
2067 |
|
|
-- and the test can lead to spurious errors on nested defaults.
|
2068 |
|
|
|
2069 |
|
|
if Present (Spec_Decl)
|
2070 |
|
|
and then not Comes_From_Source (N)
|
2071 |
|
|
and then
|
2072 |
|
|
(Nkind (Original_Node (Spec_Decl)) =
|
2073 |
|
|
N_Subprogram_Renaming_Declaration
|
2074 |
|
|
or else (Present (Corresponding_Body (Spec_Decl))
|
2075 |
|
|
and then
|
2076 |
|
|
Nkind (Unit_Declaration_Node
|
2077 |
|
|
(Corresponding_Body (Spec_Decl))) =
|
2078 |
|
|
N_Subprogram_Renaming_Declaration))
|
2079 |
|
|
then
|
2080 |
|
|
Conformant := True;
|
2081 |
|
|
|
2082 |
|
|
else
|
2083 |
|
|
Check_Conformance
|
2084 |
|
|
(Body_Id, Spec_Id,
|
2085 |
|
|
Fully_Conformant, True, Conformant, Body_Id);
|
2086 |
|
|
end if;
|
2087 |
|
|
|
2088 |
|
|
-- If the body is not fully conformant, we have to decide if we
|
2089 |
|
|
-- should analyze it or not. If it has a really messed up profile
|
2090 |
|
|
-- then we probably should not analyze it, since we will get too
|
2091 |
|
|
-- many bogus messages.
|
2092 |
|
|
|
2093 |
|
|
-- Our decision is to go ahead in the non-fully conformant case
|
2094 |
|
|
-- only if it is at least mode conformant with the spec. Note
|
2095 |
|
|
-- that the call to Check_Fully_Conformant has issued the proper
|
2096 |
|
|
-- error messages to complain about the lack of conformance.
|
2097 |
|
|
|
2098 |
|
|
if not Conformant
|
2099 |
|
|
and then not Mode_Conformant (Body_Id, Spec_Id)
|
2100 |
|
|
then
|
2101 |
|
|
return;
|
2102 |
|
|
end if;
|
2103 |
|
|
end if;
|
2104 |
|
|
|
2105 |
|
|
if Spec_Id /= Body_Id then
|
2106 |
|
|
Reference_Body_Formals (Spec_Id, Body_Id);
|
2107 |
|
|
end if;
|
2108 |
|
|
|
2109 |
|
|
if Nkind (N) /= N_Subprogram_Body_Stub then
|
2110 |
|
|
Set_Corresponding_Spec (N, Spec_Id);
|
2111 |
|
|
|
2112 |
|
|
-- Ada 2005 (AI-345): If the operation is a primitive operation
|
2113 |
|
|
-- of a concurrent type, the type of the first parameter has been
|
2114 |
|
|
-- replaced with the corresponding record, which is the proper
|
2115 |
|
|
-- run-time structure to use. However, within the body there may
|
2116 |
|
|
-- be uses of the formals that depend on primitive operations
|
2117 |
|
|
-- of the type (in particular calls in prefixed form) for which
|
2118 |
|
|
-- we need the original concurrent type. The operation may have
|
2119 |
|
|
-- several controlling formals, so the replacement must be done
|
2120 |
|
|
-- for all of them.
|
2121 |
|
|
|
2122 |
|
|
if Comes_From_Source (Spec_Id)
|
2123 |
|
|
and then Present (First_Entity (Spec_Id))
|
2124 |
|
|
and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
|
2125 |
|
|
and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
|
2126 |
|
|
and then
|
2127 |
|
|
Present (Interfaces (Etype (First_Entity (Spec_Id))))
|
2128 |
|
|
and then
|
2129 |
|
|
Present
|
2130 |
|
|
(Corresponding_Concurrent_Type
|
2131 |
|
|
(Etype (First_Entity (Spec_Id))))
|
2132 |
|
|
then
|
2133 |
|
|
declare
|
2134 |
|
|
Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
|
2135 |
|
|
Form : Entity_Id;
|
2136 |
|
|
|
2137 |
|
|
begin
|
2138 |
|
|
Form := First_Formal (Spec_Id);
|
2139 |
|
|
while Present (Form) loop
|
2140 |
|
|
if Etype (Form) = Typ then
|
2141 |
|
|
Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
|
2142 |
|
|
end if;
|
2143 |
|
|
|
2144 |
|
|
Next_Formal (Form);
|
2145 |
|
|
end loop;
|
2146 |
|
|
end;
|
2147 |
|
|
end if;
|
2148 |
|
|
|
2149 |
|
|
-- Make the formals visible, and place subprogram on scope stack.
|
2150 |
|
|
-- This is also the point at which we set Last_Real_Spec_Entity
|
2151 |
|
|
-- to mark the entities which will not be moved to the body.
|
2152 |
|
|
|
2153 |
|
|
Install_Formals (Spec_Id);
|
2154 |
|
|
Last_Real_Spec_Entity := Last_Entity (Spec_Id);
|
2155 |
|
|
Push_Scope (Spec_Id);
|
2156 |
|
|
|
2157 |
|
|
-- Make sure that the subprogram is immediately visible. For
|
2158 |
|
|
-- child units that have no separate spec this is indispensable.
|
2159 |
|
|
-- Otherwise it is safe albeit redundant.
|
2160 |
|
|
|
2161 |
|
|
Set_Is_Immediately_Visible (Spec_Id);
|
2162 |
|
|
end if;
|
2163 |
|
|
|
2164 |
|
|
Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
|
2165 |
|
|
Set_Ekind (Body_Id, E_Subprogram_Body);
|
2166 |
|
|
Set_Scope (Body_Id, Scope (Spec_Id));
|
2167 |
|
|
Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
|
2168 |
|
|
|
2169 |
|
|
-- Case of subprogram body with no previous spec
|
2170 |
|
|
|
2171 |
|
|
else
|
2172 |
|
|
if Style_Check
|
2173 |
|
|
and then Comes_From_Source (Body_Id)
|
2174 |
|
|
and then not Suppress_Style_Checks (Body_Id)
|
2175 |
|
|
and then not In_Instance
|
2176 |
|
|
then
|
2177 |
|
|
Style.Body_With_No_Spec (N);
|
2178 |
|
|
end if;
|
2179 |
|
|
|
2180 |
|
|
New_Overloaded_Entity (Body_Id);
|
2181 |
|
|
|
2182 |
|
|
if Nkind (N) /= N_Subprogram_Body_Stub then
|
2183 |
|
|
Set_Acts_As_Spec (N);
|
2184 |
|
|
Generate_Definition (Body_Id);
|
2185 |
|
|
Generate_Reference
|
2186 |
|
|
(Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
|
2187 |
|
|
Generate_Reference_To_Formals (Body_Id);
|
2188 |
|
|
Install_Formals (Body_Id);
|
2189 |
|
|
Push_Scope (Body_Id);
|
2190 |
|
|
end if;
|
2191 |
|
|
end if;
|
2192 |
|
|
|
2193 |
|
|
-- If the return type is an anonymous access type whose designated type
|
2194 |
|
|
-- is the limited view of a class-wide type and the non-limited view is
|
2195 |
|
|
-- available, update the return type accordingly.
|
2196 |
|
|
|
2197 |
|
|
if Ada_Version >= Ada_05
|
2198 |
|
|
and then Comes_From_Source (N)
|
2199 |
|
|
then
|
2200 |
|
|
declare
|
2201 |
|
|
Etyp : Entity_Id;
|
2202 |
|
|
Rtyp : Entity_Id;
|
2203 |
|
|
|
2204 |
|
|
begin
|
2205 |
|
|
Rtyp := Etype (Current_Scope);
|
2206 |
|
|
|
2207 |
|
|
if Ekind (Rtyp) = E_Anonymous_Access_Type then
|
2208 |
|
|
Etyp := Directly_Designated_Type (Rtyp);
|
2209 |
|
|
|
2210 |
|
|
if Is_Class_Wide_Type (Etyp)
|
2211 |
|
|
and then From_With_Type (Etyp)
|
2212 |
|
|
then
|
2213 |
|
|
Set_Directly_Designated_Type
|
2214 |
|
|
(Etype (Current_Scope), Available_View (Etyp));
|
2215 |
|
|
end if;
|
2216 |
|
|
end if;
|
2217 |
|
|
end;
|
2218 |
|
|
end if;
|
2219 |
|
|
|
2220 |
|
|
-- If this is the proper body of a stub, we must verify that the stub
|
2221 |
|
|
-- conforms to the body, and to the previous spec if one was present.
|
2222 |
|
|
-- we know already that the body conforms to that spec. This test is
|
2223 |
|
|
-- only required for subprograms that come from source.
|
2224 |
|
|
|
2225 |
|
|
if Nkind (Parent (N)) = N_Subunit
|
2226 |
|
|
and then Comes_From_Source (N)
|
2227 |
|
|
and then not Error_Posted (Body_Id)
|
2228 |
|
|
and then Nkind (Corresponding_Stub (Parent (N))) =
|
2229 |
|
|
N_Subprogram_Body_Stub
|
2230 |
|
|
then
|
2231 |
|
|
declare
|
2232 |
|
|
Old_Id : constant Entity_Id :=
|
2233 |
|
|
Defining_Entity
|
2234 |
|
|
(Specification (Corresponding_Stub (Parent (N))));
|
2235 |
|
|
|
2236 |
|
|
Conformant : Boolean := False;
|
2237 |
|
|
|
2238 |
|
|
begin
|
2239 |
|
|
if No (Spec_Id) then
|
2240 |
|
|
Check_Fully_Conformant (Body_Id, Old_Id);
|
2241 |
|
|
|
2242 |
|
|
else
|
2243 |
|
|
Check_Conformance
|
2244 |
|
|
(Body_Id, Old_Id, Fully_Conformant, False, Conformant);
|
2245 |
|
|
|
2246 |
|
|
if not Conformant then
|
2247 |
|
|
|
2248 |
|
|
-- The stub was taken to be a new declaration. Indicate
|
2249 |
|
|
-- that it lacks a body.
|
2250 |
|
|
|
2251 |
|
|
Set_Has_Completion (Old_Id, False);
|
2252 |
|
|
end if;
|
2253 |
|
|
end if;
|
2254 |
|
|
end;
|
2255 |
|
|
end if;
|
2256 |
|
|
|
2257 |
|
|
Set_Has_Completion (Body_Id);
|
2258 |
|
|
Check_Eliminated (Body_Id);
|
2259 |
|
|
|
2260 |
|
|
if Nkind (N) = N_Subprogram_Body_Stub then
|
2261 |
|
|
return;
|
2262 |
|
|
|
2263 |
|
|
elsif Present (Spec_Id)
|
2264 |
|
|
and then Expander_Active
|
2265 |
|
|
and then
|
2266 |
|
|
(Has_Pragma_Inline_Always (Spec_Id)
|
2267 |
|
|
or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
|
2268 |
|
|
then
|
2269 |
|
|
Build_Body_To_Inline (N, Spec_Id);
|
2270 |
|
|
end if;
|
2271 |
|
|
|
2272 |
|
|
-- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
|
2273 |
|
|
-- if its specification we have to install the private withed units.
|
2274 |
|
|
-- This holds for child units as well.
|
2275 |
|
|
|
2276 |
|
|
if Is_Compilation_Unit (Body_Id)
|
2277 |
|
|
or else Nkind (Parent (N)) = N_Compilation_Unit
|
2278 |
|
|
then
|
2279 |
|
|
Install_Private_With_Clauses (Body_Id);
|
2280 |
|
|
end if;
|
2281 |
|
|
|
2282 |
|
|
Check_Anonymous_Return;
|
2283 |
|
|
|
2284 |
|
|
-- Set the Protected_Formal field of each extra formal of the protected
|
2285 |
|
|
-- subprogram to reference the corresponding extra formal of the
|
2286 |
|
|
-- subprogram that implements it. For regular formals this occurs when
|
2287 |
|
|
-- the protected subprogram's declaration is expanded, but the extra
|
2288 |
|
|
-- formals don't get created until the subprogram is frozen. We need to
|
2289 |
|
|
-- do this before analyzing the protected subprogram's body so that any
|
2290 |
|
|
-- references to the original subprogram's extra formals will be changed
|
2291 |
|
|
-- refer to the implementing subprogram's formals (see Expand_Formal).
|
2292 |
|
|
|
2293 |
|
|
if Present (Spec_Id)
|
2294 |
|
|
and then Is_Protected_Type (Scope (Spec_Id))
|
2295 |
|
|
and then Present (Protected_Body_Subprogram (Spec_Id))
|
2296 |
|
|
then
|
2297 |
|
|
declare
|
2298 |
|
|
Impl_Subp : constant Entity_Id :=
|
2299 |
|
|
Protected_Body_Subprogram (Spec_Id);
|
2300 |
|
|
Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
|
2301 |
|
|
Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
|
2302 |
|
|
begin
|
2303 |
|
|
while Present (Prot_Ext_Formal) loop
|
2304 |
|
|
pragma Assert (Present (Impl_Ext_Formal));
|
2305 |
|
|
Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
|
2306 |
|
|
Next_Formal_With_Extras (Prot_Ext_Formal);
|
2307 |
|
|
Next_Formal_With_Extras (Impl_Ext_Formal);
|
2308 |
|
|
end loop;
|
2309 |
|
|
end;
|
2310 |
|
|
end if;
|
2311 |
|
|
|
2312 |
|
|
-- Now we can go on to analyze the body
|
2313 |
|
|
|
2314 |
|
|
HSS := Handled_Statement_Sequence (N);
|
2315 |
|
|
Set_Actual_Subtypes (N, Current_Scope);
|
2316 |
|
|
|
2317 |
|
|
-- Deal with preconditions and postconditions
|
2318 |
|
|
|
2319 |
|
|
Process_PPCs (N, Spec_Id, Body_Id);
|
2320 |
|
|
|
2321 |
|
|
-- Add a declaration for the Protection object, renaming declarations
|
2322 |
|
|
-- for discriminals and privals and finally a declaration for the entry
|
2323 |
|
|
-- family index (if applicable). This form of early expansion is done
|
2324 |
|
|
-- when the Expander is active because Install_Private_Data_Declarations
|
2325 |
|
|
-- references entities which were created during regular expansion.
|
2326 |
|
|
|
2327 |
|
|
if Expander_Active
|
2328 |
|
|
and then Comes_From_Source (N)
|
2329 |
|
|
and then Present (Prot_Typ)
|
2330 |
|
|
and then Present (Spec_Id)
|
2331 |
|
|
and then not Is_Eliminated (Spec_Id)
|
2332 |
|
|
then
|
2333 |
|
|
Install_Private_Data_Declarations
|
2334 |
|
|
(Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
|
2335 |
|
|
end if;
|
2336 |
|
|
|
2337 |
|
|
-- Analyze the declarations (this call will analyze the precondition
|
2338 |
|
|
-- Check pragmas we prepended to the list, as well as the declaration
|
2339 |
|
|
-- of the _Postconditions procedure).
|
2340 |
|
|
|
2341 |
|
|
Analyze_Declarations (Declarations (N));
|
2342 |
|
|
|
2343 |
|
|
-- Check completion, and analyze the statements
|
2344 |
|
|
|
2345 |
|
|
Check_Completion;
|
2346 |
|
|
Inspect_Deferred_Constant_Completion (Declarations (N));
|
2347 |
|
|
Analyze (HSS);
|
2348 |
|
|
|
2349 |
|
|
-- Deal with end of scope processing for the body
|
2350 |
|
|
|
2351 |
|
|
Process_End_Label (HSS, 't', Current_Scope);
|
2352 |
|
|
End_Scope;
|
2353 |
|
|
Check_Subprogram_Order (N);
|
2354 |
|
|
Set_Analyzed (Body_Id);
|
2355 |
|
|
|
2356 |
|
|
-- If we have a separate spec, then the analysis of the declarations
|
2357 |
|
|
-- caused the entities in the body to be chained to the spec id, but
|
2358 |
|
|
-- we want them chained to the body id. Only the formal parameters
|
2359 |
|
|
-- end up chained to the spec id in this case.
|
2360 |
|
|
|
2361 |
|
|
if Present (Spec_Id) then
|
2362 |
|
|
|
2363 |
|
|
-- We must conform to the categorization of our spec
|
2364 |
|
|
|
2365 |
|
|
Validate_Categorization_Dependency (N, Spec_Id);
|
2366 |
|
|
|
2367 |
|
|
-- And if this is a child unit, the parent units must conform
|
2368 |
|
|
|
2369 |
|
|
if Is_Child_Unit (Spec_Id) then
|
2370 |
|
|
Validate_Categorization_Dependency
|
2371 |
|
|
(Unit_Declaration_Node (Spec_Id), Spec_Id);
|
2372 |
|
|
end if;
|
2373 |
|
|
|
2374 |
|
|
-- Here is where we move entities from the spec to the body
|
2375 |
|
|
|
2376 |
|
|
-- Case where there are entities that stay with the spec
|
2377 |
|
|
|
2378 |
|
|
if Present (Last_Real_Spec_Entity) then
|
2379 |
|
|
|
2380 |
|
|
-- No body entities (happens when the only real spec entities
|
2381 |
|
|
-- come from precondition and postcondition pragmas)
|
2382 |
|
|
|
2383 |
|
|
if No (Last_Entity (Body_Id)) then
|
2384 |
|
|
Set_First_Entity
|
2385 |
|
|
(Body_Id, Next_Entity (Last_Real_Spec_Entity));
|
2386 |
|
|
|
2387 |
|
|
-- Body entities present (formals), so chain stuff past them
|
2388 |
|
|
|
2389 |
|
|
else
|
2390 |
|
|
Set_Next_Entity
|
2391 |
|
|
(Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
|
2392 |
|
|
end if;
|
2393 |
|
|
|
2394 |
|
|
Set_Next_Entity (Last_Real_Spec_Entity, Empty);
|
2395 |
|
|
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
|
2396 |
|
|
Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
|
2397 |
|
|
|
2398 |
|
|
-- Case where there are no spec entities, in this case there can
|
2399 |
|
|
-- be no body entities either, so just move everything.
|
2400 |
|
|
|
2401 |
|
|
else
|
2402 |
|
|
pragma Assert (No (Last_Entity (Body_Id)));
|
2403 |
|
|
Set_First_Entity (Body_Id, First_Entity (Spec_Id));
|
2404 |
|
|
Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
|
2405 |
|
|
Set_First_Entity (Spec_Id, Empty);
|
2406 |
|
|
Set_Last_Entity (Spec_Id, Empty);
|
2407 |
|
|
end if;
|
2408 |
|
|
end if;
|
2409 |
|
|
|
2410 |
|
|
-- If function, check return statements
|
2411 |
|
|
|
2412 |
|
|
if Nkind (Body_Spec) = N_Function_Specification then
|
2413 |
|
|
declare
|
2414 |
|
|
Id : Entity_Id;
|
2415 |
|
|
|
2416 |
|
|
begin
|
2417 |
|
|
if Present (Spec_Id) then
|
2418 |
|
|
Id := Spec_Id;
|
2419 |
|
|
else
|
2420 |
|
|
Id := Body_Id;
|
2421 |
|
|
end if;
|
2422 |
|
|
|
2423 |
|
|
if Return_Present (Id) then
|
2424 |
|
|
Check_Returns (HSS, 'F', Missing_Ret);
|
2425 |
|
|
|
2426 |
|
|
if Missing_Ret then
|
2427 |
|
|
Set_Has_Missing_Return (Id);
|
2428 |
|
|
end if;
|
2429 |
|
|
|
2430 |
|
|
elsif not Is_Machine_Code_Subprogram (Id)
|
2431 |
|
|
and then not Body_Deleted
|
2432 |
|
|
then
|
2433 |
|
|
Error_Msg_N ("missing RETURN statement in function body", N);
|
2434 |
|
|
end if;
|
2435 |
|
|
end;
|
2436 |
|
|
|
2437 |
|
|
-- If procedure with No_Return, check returns
|
2438 |
|
|
|
2439 |
|
|
elsif Nkind (Body_Spec) = N_Procedure_Specification
|
2440 |
|
|
and then Present (Spec_Id)
|
2441 |
|
|
and then No_Return (Spec_Id)
|
2442 |
|
|
then
|
2443 |
|
|
Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
|
2444 |
|
|
end if;
|
2445 |
|
|
|
2446 |
|
|
-- Now we are going to check for variables that are never modified in
|
2447 |
|
|
-- the body of the procedure. But first we deal with a special case
|
2448 |
|
|
-- where we want to modify this check. If the body of the subprogram
|
2449 |
|
|
-- starts with a raise statement or its equivalent, or if the body
|
2450 |
|
|
-- consists entirely of a null statement, then it is pretty obvious
|
2451 |
|
|
-- that it is OK to not reference the parameters. For example, this
|
2452 |
|
|
-- might be the following common idiom for a stubbed function:
|
2453 |
|
|
-- statement of the procedure raises an exception. In particular this
|
2454 |
|
|
-- deals with the common idiom of a stubbed function, which might
|
2455 |
|
|
-- appear as something like
|
2456 |
|
|
|
2457 |
|
|
-- function F (A : Integer) return Some_Type;
|
2458 |
|
|
-- X : Some_Type;
|
2459 |
|
|
-- begin
|
2460 |
|
|
-- raise Program_Error;
|
2461 |
|
|
-- return X;
|
2462 |
|
|
-- end F;
|
2463 |
|
|
|
2464 |
|
|
-- Here the purpose of X is simply to satisfy the annoying requirement
|
2465 |
|
|
-- in Ada that there be at least one return, and we certainly do not
|
2466 |
|
|
-- want to go posting warnings on X that it is not initialized! On
|
2467 |
|
|
-- the other hand, if X is entirely unreferenced that should still
|
2468 |
|
|
-- get a warning.
|
2469 |
|
|
|
2470 |
|
|
-- What we do is to detect these cases, and if we find them, flag the
|
2471 |
|
|
-- subprogram as being Is_Trivial_Subprogram and then use that flag to
|
2472 |
|
|
-- suppress unwanted warnings. For the case of the function stub above
|
2473 |
|
|
-- we have a special test to set X as apparently assigned to suppress
|
2474 |
|
|
-- the warning.
|
2475 |
|
|
|
2476 |
|
|
declare
|
2477 |
|
|
Stm : Node_Id;
|
2478 |
|
|
|
2479 |
|
|
begin
|
2480 |
|
|
-- Skip initial labels (for one thing this occurs when we are in
|
2481 |
|
|
-- front end ZCX mode, but in any case it is irrelevant), and also
|
2482 |
|
|
-- initial Push_xxx_Error_Label nodes, which are also irrelevant.
|
2483 |
|
|
|
2484 |
|
|
Stm := First (Statements (HSS));
|
2485 |
|
|
while Nkind (Stm) = N_Label
|
2486 |
|
|
or else Nkind (Stm) in N_Push_xxx_Label
|
2487 |
|
|
loop
|
2488 |
|
|
Next (Stm);
|
2489 |
|
|
end loop;
|
2490 |
|
|
|
2491 |
|
|
-- Do the test on the original statement before expansion
|
2492 |
|
|
|
2493 |
|
|
declare
|
2494 |
|
|
Ostm : constant Node_Id := Original_Node (Stm);
|
2495 |
|
|
|
2496 |
|
|
begin
|
2497 |
|
|
-- If explicit raise statement, turn on flag
|
2498 |
|
|
|
2499 |
|
|
if Nkind (Ostm) = N_Raise_Statement then
|
2500 |
|
|
Set_Trivial_Subprogram (Stm);
|
2501 |
|
|
|
2502 |
|
|
-- If null statement, and no following statements, turn on flag
|
2503 |
|
|
|
2504 |
|
|
elsif Nkind (Stm) = N_Null_Statement
|
2505 |
|
|
and then Comes_From_Source (Stm)
|
2506 |
|
|
and then No (Next (Stm))
|
2507 |
|
|
then
|
2508 |
|
|
Set_Trivial_Subprogram (Stm);
|
2509 |
|
|
|
2510 |
|
|
-- Check for explicit call cases which likely raise an exception
|
2511 |
|
|
|
2512 |
|
|
elsif Nkind (Ostm) = N_Procedure_Call_Statement then
|
2513 |
|
|
if Is_Entity_Name (Name (Ostm)) then
|
2514 |
|
|
declare
|
2515 |
|
|
Ent : constant Entity_Id := Entity (Name (Ostm));
|
2516 |
|
|
|
2517 |
|
|
begin
|
2518 |
|
|
-- If the procedure is marked No_Return, then likely it
|
2519 |
|
|
-- raises an exception, but in any case it is not coming
|
2520 |
|
|
-- back here, so turn on the flag.
|
2521 |
|
|
|
2522 |
|
|
if Ekind (Ent) = E_Procedure
|
2523 |
|
|
and then No_Return (Ent)
|
2524 |
|
|
then
|
2525 |
|
|
Set_Trivial_Subprogram (Stm);
|
2526 |
|
|
end if;
|
2527 |
|
|
end;
|
2528 |
|
|
end if;
|
2529 |
|
|
end if;
|
2530 |
|
|
end;
|
2531 |
|
|
end;
|
2532 |
|
|
|
2533 |
|
|
-- Check for variables that are never modified
|
2534 |
|
|
|
2535 |
|
|
declare
|
2536 |
|
|
E1, E2 : Entity_Id;
|
2537 |
|
|
|
2538 |
|
|
begin
|
2539 |
|
|
-- If there is a separate spec, then transfer Never_Set_In_Source
|
2540 |
|
|
-- flags from out parameters to the corresponding entities in the
|
2541 |
|
|
-- body. The reason we do that is we want to post error flags on
|
2542 |
|
|
-- the body entities, not the spec entities.
|
2543 |
|
|
|
2544 |
|
|
if Present (Spec_Id) then
|
2545 |
|
|
E1 := First_Entity (Spec_Id);
|
2546 |
|
|
while Present (E1) loop
|
2547 |
|
|
if Ekind (E1) = E_Out_Parameter then
|
2548 |
|
|
E2 := First_Entity (Body_Id);
|
2549 |
|
|
while Present (E2) loop
|
2550 |
|
|
exit when Chars (E1) = Chars (E2);
|
2551 |
|
|
Next_Entity (E2);
|
2552 |
|
|
end loop;
|
2553 |
|
|
|
2554 |
|
|
if Present (E2) then
|
2555 |
|
|
Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
|
2556 |
|
|
end if;
|
2557 |
|
|
end if;
|
2558 |
|
|
|
2559 |
|
|
Next_Entity (E1);
|
2560 |
|
|
end loop;
|
2561 |
|
|
end if;
|
2562 |
|
|
|
2563 |
|
|
-- Check references in body unless it was deleted. Note that the
|
2564 |
|
|
-- check of Body_Deleted here is not just for efficiency, it is
|
2565 |
|
|
-- necessary to avoid junk warnings on formal parameters.
|
2566 |
|
|
|
2567 |
|
|
if not Body_Deleted then
|
2568 |
|
|
Check_References (Body_Id);
|
2569 |
|
|
end if;
|
2570 |
|
|
end;
|
2571 |
|
|
end Analyze_Subprogram_Body_Helper;
|
2572 |
|
|
|
2573 |
|
|
------------------------------------
|
2574 |
|
|
-- Analyze_Subprogram_Declaration --
|
2575 |
|
|
------------------------------------
|
2576 |
|
|
|
2577 |
|
|
procedure Analyze_Subprogram_Declaration (N : Node_Id) is
|
2578 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2579 |
|
|
Designator : Entity_Id;
|
2580 |
|
|
Form : Node_Id;
|
2581 |
|
|
Scop : constant Entity_Id := Current_Scope;
|
2582 |
|
|
Null_Body : Node_Id := Empty;
|
2583 |
|
|
|
2584 |
|
|
-- Start of processing for Analyze_Subprogram_Declaration
|
2585 |
|
|
|
2586 |
|
|
begin
|
2587 |
|
|
-- For a null procedure, capture the profile before analysis, for
|
2588 |
|
|
-- expansion at the freeze point and at each point of call.
|
2589 |
|
|
-- The body will only be used if the procedure has preconditions.
|
2590 |
|
|
-- In that case the body is analyzed at the freeze point.
|
2591 |
|
|
|
2592 |
|
|
if Nkind (Specification (N)) = N_Procedure_Specification
|
2593 |
|
|
and then Null_Present (Specification (N))
|
2594 |
|
|
and then Expander_Active
|
2595 |
|
|
then
|
2596 |
|
|
Null_Body :=
|
2597 |
|
|
Make_Subprogram_Body (Loc,
|
2598 |
|
|
Specification =>
|
2599 |
|
|
New_Copy_Tree (Specification (N)),
|
2600 |
|
|
Declarations =>
|
2601 |
|
|
New_List,
|
2602 |
|
|
Handled_Statement_Sequence =>
|
2603 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
2604 |
|
|
Statements => New_List (Make_Null_Statement (Loc))));
|
2605 |
|
|
|
2606 |
|
|
-- Create new entities for body and formals
|
2607 |
|
|
|
2608 |
|
|
Set_Defining_Unit_Name (Specification (Null_Body),
|
2609 |
|
|
Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
|
2610 |
|
|
Set_Corresponding_Body (N, Defining_Entity (Null_Body));
|
2611 |
|
|
|
2612 |
|
|
Form := First (Parameter_Specifications (Specification (Null_Body)));
|
2613 |
|
|
while Present (Form) loop
|
2614 |
|
|
Set_Defining_Identifier (Form,
|
2615 |
|
|
Make_Defining_Identifier (Loc,
|
2616 |
|
|
Chars (Defining_Identifier (Form))));
|
2617 |
|
|
Next (Form);
|
2618 |
|
|
end loop;
|
2619 |
|
|
|
2620 |
|
|
if Is_Protected_Type (Current_Scope) then
|
2621 |
|
|
Error_Msg_N
|
2622 |
|
|
("protected operation cannot be a null procedure", N);
|
2623 |
|
|
end if;
|
2624 |
|
|
end if;
|
2625 |
|
|
|
2626 |
|
|
Designator := Analyze_Subprogram_Specification (Specification (N));
|
2627 |
|
|
Generate_Definition (Designator);
|
2628 |
|
|
|
2629 |
|
|
if Debug_Flag_C then
|
2630 |
|
|
Write_Str ("==> subprogram spec ");
|
2631 |
|
|
Write_Name (Chars (Designator));
|
2632 |
|
|
Write_Str (" from ");
|
2633 |
|
|
Write_Location (Sloc (N));
|
2634 |
|
|
Write_Eol;
|
2635 |
|
|
Indent;
|
2636 |
|
|
end if;
|
2637 |
|
|
|
2638 |
|
|
if Nkind (Specification (N)) = N_Procedure_Specification
|
2639 |
|
|
and then Null_Present (Specification (N))
|
2640 |
|
|
then
|
2641 |
|
|
Set_Has_Completion (Designator);
|
2642 |
|
|
|
2643 |
|
|
if Present (Null_Body) then
|
2644 |
|
|
Set_Corresponding_Body (N, Defining_Entity (Null_Body));
|
2645 |
|
|
Set_Body_To_Inline (N, Null_Body);
|
2646 |
|
|
Set_Is_Inlined (Designator);
|
2647 |
|
|
end if;
|
2648 |
|
|
end if;
|
2649 |
|
|
|
2650 |
|
|
Validate_RCI_Subprogram_Declaration (N);
|
2651 |
|
|
New_Overloaded_Entity (Designator);
|
2652 |
|
|
Check_Delayed_Subprogram (Designator);
|
2653 |
|
|
|
2654 |
|
|
-- If the type of the first formal of the current subprogram is a
|
2655 |
|
|
-- nongeneric tagged private type, mark the subprogram as being a
|
2656 |
|
|
-- private primitive. Ditto if this is a function with controlling
|
2657 |
|
|
-- result, and the return type is currently private. In both cases,
|
2658 |
|
|
-- the type of the controlling argument or result must be in the
|
2659 |
|
|
-- current scope for the operation to be primitive.
|
2660 |
|
|
|
2661 |
|
|
if Has_Controlling_Result (Designator)
|
2662 |
|
|
and then Is_Private_Type (Etype (Designator))
|
2663 |
|
|
and then Scope (Etype (Designator)) = Current_Scope
|
2664 |
|
|
and then not Is_Generic_Actual_Type (Etype (Designator))
|
2665 |
|
|
then
|
2666 |
|
|
Set_Is_Private_Primitive (Designator);
|
2667 |
|
|
|
2668 |
|
|
elsif Present (First_Formal (Designator)) then
|
2669 |
|
|
declare
|
2670 |
|
|
Formal_Typ : constant Entity_Id :=
|
2671 |
|
|
Etype (First_Formal (Designator));
|
2672 |
|
|
begin
|
2673 |
|
|
Set_Is_Private_Primitive (Designator,
|
2674 |
|
|
Is_Tagged_Type (Formal_Typ)
|
2675 |
|
|
and then Scope (Formal_Typ) = Current_Scope
|
2676 |
|
|
and then Is_Private_Type (Formal_Typ)
|
2677 |
|
|
and then not Is_Generic_Actual_Type (Formal_Typ));
|
2678 |
|
|
end;
|
2679 |
|
|
end if;
|
2680 |
|
|
|
2681 |
|
|
-- Ada 2005 (AI-251): Abstract interface primitives must be abstract
|
2682 |
|
|
-- or null.
|
2683 |
|
|
|
2684 |
|
|
if Ada_Version >= Ada_05
|
2685 |
|
|
and then Comes_From_Source (N)
|
2686 |
|
|
and then Is_Dispatching_Operation (Designator)
|
2687 |
|
|
then
|
2688 |
|
|
declare
|
2689 |
|
|
E : Entity_Id;
|
2690 |
|
|
Etyp : Entity_Id;
|
2691 |
|
|
|
2692 |
|
|
begin
|
2693 |
|
|
if Has_Controlling_Result (Designator) then
|
2694 |
|
|
Etyp := Etype (Designator);
|
2695 |
|
|
|
2696 |
|
|
else
|
2697 |
|
|
E := First_Entity (Designator);
|
2698 |
|
|
while Present (E)
|
2699 |
|
|
and then Is_Formal (E)
|
2700 |
|
|
and then not Is_Controlling_Formal (E)
|
2701 |
|
|
loop
|
2702 |
|
|
Next_Entity (E);
|
2703 |
|
|
end loop;
|
2704 |
|
|
|
2705 |
|
|
Etyp := Etype (E);
|
2706 |
|
|
end if;
|
2707 |
|
|
|
2708 |
|
|
if Is_Access_Type (Etyp) then
|
2709 |
|
|
Etyp := Directly_Designated_Type (Etyp);
|
2710 |
|
|
end if;
|
2711 |
|
|
|
2712 |
|
|
if Is_Interface (Etyp)
|
2713 |
|
|
and then not Is_Abstract_Subprogram (Designator)
|
2714 |
|
|
and then not (Ekind (Designator) = E_Procedure
|
2715 |
|
|
and then Null_Present (Specification (N)))
|
2716 |
|
|
then
|
2717 |
|
|
Error_Msg_Name_1 := Chars (Defining_Entity (N));
|
2718 |
|
|
Error_Msg_N
|
2719 |
|
|
("(Ada 2005) interface subprogram % must be abstract or null",
|
2720 |
|
|
N);
|
2721 |
|
|
end if;
|
2722 |
|
|
end;
|
2723 |
|
|
end if;
|
2724 |
|
|
|
2725 |
|
|
-- What is the following code for, it used to be
|
2726 |
|
|
|
2727 |
|
|
-- ??? Set_Suppress_Elaboration_Checks
|
2728 |
|
|
-- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
|
2729 |
|
|
|
2730 |
|
|
-- The following seems equivalent, but a bit dubious
|
2731 |
|
|
|
2732 |
|
|
if Elaboration_Checks_Suppressed (Designator) then
|
2733 |
|
|
Set_Kill_Elaboration_Checks (Designator);
|
2734 |
|
|
end if;
|
2735 |
|
|
|
2736 |
|
|
if Scop /= Standard_Standard
|
2737 |
|
|
and then not Is_Child_Unit (Designator)
|
2738 |
|
|
then
|
2739 |
|
|
Set_Categorization_From_Scope (Designator, Scop);
|
2740 |
|
|
else
|
2741 |
|
|
-- For a compilation unit, check for library-unit pragmas
|
2742 |
|
|
|
2743 |
|
|
Push_Scope (Designator);
|
2744 |
|
|
Set_Categorization_From_Pragmas (N);
|
2745 |
|
|
Validate_Categorization_Dependency (N, Designator);
|
2746 |
|
|
Pop_Scope;
|
2747 |
|
|
end if;
|
2748 |
|
|
|
2749 |
|
|
-- For a compilation unit, set body required. This flag will only be
|
2750 |
|
|
-- reset if a valid Import or Interface pragma is processed later on.
|
2751 |
|
|
|
2752 |
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
2753 |
|
|
Set_Body_Required (Parent (N), True);
|
2754 |
|
|
|
2755 |
|
|
if Ada_Version >= Ada_05
|
2756 |
|
|
and then Nkind (Specification (N)) = N_Procedure_Specification
|
2757 |
|
|
and then Null_Present (Specification (N))
|
2758 |
|
|
then
|
2759 |
|
|
Error_Msg_N
|
2760 |
|
|
("null procedure cannot be declared at library level", N);
|
2761 |
|
|
end if;
|
2762 |
|
|
end if;
|
2763 |
|
|
|
2764 |
|
|
Generate_Reference_To_Formals (Designator);
|
2765 |
|
|
Check_Eliminated (Designator);
|
2766 |
|
|
|
2767 |
|
|
if Debug_Flag_C then
|
2768 |
|
|
Outdent;
|
2769 |
|
|
Write_Str ("<== subprogram spec ");
|
2770 |
|
|
Write_Name (Chars (Designator));
|
2771 |
|
|
Write_Str (" from ");
|
2772 |
|
|
Write_Location (Sloc (N));
|
2773 |
|
|
Write_Eol;
|
2774 |
|
|
end if;
|
2775 |
|
|
end Analyze_Subprogram_Declaration;
|
2776 |
|
|
|
2777 |
|
|
--------------------------------------
|
2778 |
|
|
-- Analyze_Subprogram_Specification --
|
2779 |
|
|
--------------------------------------
|
2780 |
|
|
|
2781 |
|
|
-- Reminder: N here really is a subprogram specification (not a subprogram
|
2782 |
|
|
-- declaration). This procedure is called to analyze the specification in
|
2783 |
|
|
-- both subprogram bodies and subprogram declarations (specs).
|
2784 |
|
|
|
2785 |
|
|
function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
|
2786 |
|
|
Designator : constant Entity_Id := Defining_Entity (N);
|
2787 |
|
|
Formals : constant List_Id := Parameter_Specifications (N);
|
2788 |
|
|
|
2789 |
|
|
-- Start of processing for Analyze_Subprogram_Specification
|
2790 |
|
|
|
2791 |
|
|
begin
|
2792 |
|
|
Generate_Definition (Designator);
|
2793 |
|
|
|
2794 |
|
|
if Nkind (N) = N_Function_Specification then
|
2795 |
|
|
Set_Ekind (Designator, E_Function);
|
2796 |
|
|
Set_Mechanism (Designator, Default_Mechanism);
|
2797 |
|
|
|
2798 |
|
|
else
|
2799 |
|
|
Set_Ekind (Designator, E_Procedure);
|
2800 |
|
|
Set_Etype (Designator, Standard_Void_Type);
|
2801 |
|
|
end if;
|
2802 |
|
|
|
2803 |
|
|
-- Introduce new scope for analysis of the formals and the return type
|
2804 |
|
|
|
2805 |
|
|
Set_Scope (Designator, Current_Scope);
|
2806 |
|
|
|
2807 |
|
|
if Present (Formals) then
|
2808 |
|
|
Push_Scope (Designator);
|
2809 |
|
|
Process_Formals (Formals, N);
|
2810 |
|
|
|
2811 |
|
|
-- Ada 2005 (AI-345): If this is an overriding operation of an
|
2812 |
|
|
-- inherited interface operation, and the controlling type is
|
2813 |
|
|
-- a synchronized type, replace the type with its corresponding
|
2814 |
|
|
-- record, to match the proper signature of an overriding operation.
|
2815 |
|
|
-- Same processing for an access parameter whose designated type is
|
2816 |
|
|
-- derived from a synchronized interface.
|
2817 |
|
|
|
2818 |
|
|
if Ada_Version >= Ada_05 then
|
2819 |
|
|
declare
|
2820 |
|
|
Formal : Entity_Id;
|
2821 |
|
|
Formal_Typ : Entity_Id;
|
2822 |
|
|
Rec_Typ : Entity_Id;
|
2823 |
|
|
Desig_Typ : Entity_Id;
|
2824 |
|
|
|
2825 |
|
|
begin
|
2826 |
|
|
Formal := First_Formal (Designator);
|
2827 |
|
|
while Present (Formal) loop
|
2828 |
|
|
Formal_Typ := Etype (Formal);
|
2829 |
|
|
|
2830 |
|
|
if Is_Concurrent_Type (Formal_Typ)
|
2831 |
|
|
and then Present (Corresponding_Record_Type (Formal_Typ))
|
2832 |
|
|
then
|
2833 |
|
|
Rec_Typ := Corresponding_Record_Type (Formal_Typ);
|
2834 |
|
|
|
2835 |
|
|
if Present (Interfaces (Rec_Typ)) then
|
2836 |
|
|
Set_Etype (Formal, Rec_Typ);
|
2837 |
|
|
end if;
|
2838 |
|
|
|
2839 |
|
|
elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
|
2840 |
|
|
Desig_Typ := Designated_Type (Formal_Typ);
|
2841 |
|
|
|
2842 |
|
|
if Is_Concurrent_Type (Desig_Typ)
|
2843 |
|
|
and then Present (Corresponding_Record_Type (Desig_Typ))
|
2844 |
|
|
then
|
2845 |
|
|
Rec_Typ := Corresponding_Record_Type (Desig_Typ);
|
2846 |
|
|
|
2847 |
|
|
if Present (Interfaces (Rec_Typ)) then
|
2848 |
|
|
Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
|
2849 |
|
|
end if;
|
2850 |
|
|
end if;
|
2851 |
|
|
end if;
|
2852 |
|
|
|
2853 |
|
|
Next_Formal (Formal);
|
2854 |
|
|
end loop;
|
2855 |
|
|
end;
|
2856 |
|
|
end if;
|
2857 |
|
|
|
2858 |
|
|
End_Scope;
|
2859 |
|
|
|
2860 |
|
|
-- The subprogram scope is pushed and popped around the processing of
|
2861 |
|
|
-- the return type for consistency with call above to Process_Formals
|
2862 |
|
|
-- (which itself can call Analyze_Return_Type), and to ensure that any
|
2863 |
|
|
-- itype created for the return type will be associated with the proper
|
2864 |
|
|
-- scope.
|
2865 |
|
|
|
2866 |
|
|
elsif Nkind (N) = N_Function_Specification then
|
2867 |
|
|
Push_Scope (Designator);
|
2868 |
|
|
|
2869 |
|
|
Analyze_Return_Type (N);
|
2870 |
|
|
|
2871 |
|
|
End_Scope;
|
2872 |
|
|
end if;
|
2873 |
|
|
|
2874 |
|
|
if Nkind (N) = N_Function_Specification then
|
2875 |
|
|
if Nkind (Designator) = N_Defining_Operator_Symbol then
|
2876 |
|
|
Valid_Operator_Definition (Designator);
|
2877 |
|
|
end if;
|
2878 |
|
|
|
2879 |
|
|
May_Need_Actuals (Designator);
|
2880 |
|
|
|
2881 |
|
|
-- Ada 2005 (AI-251): If the return type is abstract, verify that
|
2882 |
|
|
-- the subprogram is abstract also. This does not apply to renaming
|
2883 |
|
|
-- declarations, where abstractness is inherited.
|
2884 |
|
|
-- In case of primitives associated with abstract interface types
|
2885 |
|
|
-- the check is applied later (see Analyze_Subprogram_Declaration).
|
2886 |
|
|
|
2887 |
|
|
if Is_Abstract_Type (Etype (Designator))
|
2888 |
|
|
and then not Is_Interface (Etype (Designator))
|
2889 |
|
|
and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
|
2890 |
|
|
and then Nkind (Parent (N)) /=
|
2891 |
|
|
N_Abstract_Subprogram_Declaration
|
2892 |
|
|
and then
|
2893 |
|
|
(Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
|
2894 |
|
|
then
|
2895 |
|
|
Error_Msg_N
|
2896 |
|
|
("function that returns abstract type must be abstract", N);
|
2897 |
|
|
end if;
|
2898 |
|
|
end if;
|
2899 |
|
|
|
2900 |
|
|
return Designator;
|
2901 |
|
|
end Analyze_Subprogram_Specification;
|
2902 |
|
|
|
2903 |
|
|
--------------------------
|
2904 |
|
|
-- Build_Body_To_Inline --
|
2905 |
|
|
--------------------------
|
2906 |
|
|
|
2907 |
|
|
procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
|
2908 |
|
|
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
|
2909 |
|
|
Original_Body : Node_Id;
|
2910 |
|
|
Body_To_Analyze : Node_Id;
|
2911 |
|
|
Max_Size : constant := 10;
|
2912 |
|
|
Stat_Count : Integer := 0;
|
2913 |
|
|
|
2914 |
|
|
function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
|
2915 |
|
|
-- Check for declarations that make inlining not worthwhile
|
2916 |
|
|
|
2917 |
|
|
function Has_Excluded_Statement (Stats : List_Id) return Boolean;
|
2918 |
|
|
-- Check for statements that make inlining not worthwhile: any tasking
|
2919 |
|
|
-- statement, nested at any level. Keep track of total number of
|
2920 |
|
|
-- elementary statements, as a measure of acceptable size.
|
2921 |
|
|
|
2922 |
|
|
function Has_Pending_Instantiation return Boolean;
|
2923 |
|
|
-- If some enclosing body contains instantiations that appear before the
|
2924 |
|
|
-- corresponding generic body, the enclosing body has a freeze node so
|
2925 |
|
|
-- that it can be elaborated after the generic itself. This might
|
2926 |
|
|
-- conflict with subsequent inlinings, so that it is unsafe to try to
|
2927 |
|
|
-- inline in such a case.
|
2928 |
|
|
|
2929 |
|
|
function Has_Single_Return return Boolean;
|
2930 |
|
|
-- In general we cannot inline functions that return unconstrained type.
|
2931 |
|
|
-- However, we can handle such functions if all return statements return
|
2932 |
|
|
-- a local variable that is the only declaration in the body of the
|
2933 |
|
|
-- function. In that case the call can be replaced by that local
|
2934 |
|
|
-- variable as is done for other inlined calls.
|
2935 |
|
|
|
2936 |
|
|
procedure Remove_Pragmas;
|
2937 |
|
|
-- A pragma Unreferenced or pragma Unmodified that mentions a formal
|
2938 |
|
|
-- parameter has no meaning when the body is inlined and the formals
|
2939 |
|
|
-- are rewritten. Remove it from body to inline. The analysis of the
|
2940 |
|
|
-- non-inlined body will handle the pragma properly.
|
2941 |
|
|
|
2942 |
|
|
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
|
2943 |
|
|
-- If the body of the subprogram includes a call that returns an
|
2944 |
|
|
-- unconstrained type, the secondary stack is involved, and it
|
2945 |
|
|
-- is not worth inlining.
|
2946 |
|
|
|
2947 |
|
|
------------------------------
|
2948 |
|
|
-- Has_Excluded_Declaration --
|
2949 |
|
|
------------------------------
|
2950 |
|
|
|
2951 |
|
|
function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
|
2952 |
|
|
D : Node_Id;
|
2953 |
|
|
|
2954 |
|
|
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
|
2955 |
|
|
-- Nested subprograms make a given body ineligible for inlining, but
|
2956 |
|
|
-- we make an exception for instantiations of unchecked conversion.
|
2957 |
|
|
-- The body has not been analyzed yet, so check the name, and verify
|
2958 |
|
|
-- that the visible entity with that name is the predefined unit.
|
2959 |
|
|
|
2960 |
|
|
-----------------------------
|
2961 |
|
|
-- Is_Unchecked_Conversion --
|
2962 |
|
|
-----------------------------
|
2963 |
|
|
|
2964 |
|
|
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
|
2965 |
|
|
Id : constant Node_Id := Name (D);
|
2966 |
|
|
Conv : Entity_Id;
|
2967 |
|
|
|
2968 |
|
|
begin
|
2969 |
|
|
if Nkind (Id) = N_Identifier
|
2970 |
|
|
and then Chars (Id) = Name_Unchecked_Conversion
|
2971 |
|
|
then
|
2972 |
|
|
Conv := Current_Entity (Id);
|
2973 |
|
|
|
2974 |
|
|
elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
|
2975 |
|
|
and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
|
2976 |
|
|
then
|
2977 |
|
|
Conv := Current_Entity (Selector_Name (Id));
|
2978 |
|
|
else
|
2979 |
|
|
return False;
|
2980 |
|
|
end if;
|
2981 |
|
|
|
2982 |
|
|
return Present (Conv)
|
2983 |
|
|
and then Is_Predefined_File_Name
|
2984 |
|
|
(Unit_File_Name (Get_Source_Unit (Conv)))
|
2985 |
|
|
and then Is_Intrinsic_Subprogram (Conv);
|
2986 |
|
|
end Is_Unchecked_Conversion;
|
2987 |
|
|
|
2988 |
|
|
-- Start of processing for Has_Excluded_Declaration
|
2989 |
|
|
|
2990 |
|
|
begin
|
2991 |
|
|
D := First (Decls);
|
2992 |
|
|
while Present (D) loop
|
2993 |
|
|
if (Nkind (D) = N_Function_Instantiation
|
2994 |
|
|
and then not Is_Unchecked_Conversion (D))
|
2995 |
|
|
or else Nkind_In (D, N_Protected_Type_Declaration,
|
2996 |
|
|
N_Package_Declaration,
|
2997 |
|
|
N_Package_Instantiation,
|
2998 |
|
|
N_Subprogram_Body,
|
2999 |
|
|
N_Procedure_Instantiation,
|
3000 |
|
|
N_Task_Type_Declaration)
|
3001 |
|
|
then
|
3002 |
|
|
Cannot_Inline
|
3003 |
|
|
("cannot inline & (non-allowed declaration)?", D, Subp);
|
3004 |
|
|
return True;
|
3005 |
|
|
end if;
|
3006 |
|
|
|
3007 |
|
|
Next (D);
|
3008 |
|
|
end loop;
|
3009 |
|
|
|
3010 |
|
|
return False;
|
3011 |
|
|
end Has_Excluded_Declaration;
|
3012 |
|
|
|
3013 |
|
|
----------------------------
|
3014 |
|
|
-- Has_Excluded_Statement --
|
3015 |
|
|
----------------------------
|
3016 |
|
|
|
3017 |
|
|
function Has_Excluded_Statement (Stats : List_Id) return Boolean is
|
3018 |
|
|
S : Node_Id;
|
3019 |
|
|
E : Node_Id;
|
3020 |
|
|
|
3021 |
|
|
begin
|
3022 |
|
|
S := First (Stats);
|
3023 |
|
|
while Present (S) loop
|
3024 |
|
|
Stat_Count := Stat_Count + 1;
|
3025 |
|
|
|
3026 |
|
|
if Nkind_In (S, N_Abort_Statement,
|
3027 |
|
|
N_Asynchronous_Select,
|
3028 |
|
|
N_Conditional_Entry_Call,
|
3029 |
|
|
N_Delay_Relative_Statement,
|
3030 |
|
|
N_Delay_Until_Statement,
|
3031 |
|
|
N_Selective_Accept,
|
3032 |
|
|
N_Timed_Entry_Call)
|
3033 |
|
|
then
|
3034 |
|
|
Cannot_Inline
|
3035 |
|
|
("cannot inline & (non-allowed statement)?", S, Subp);
|
3036 |
|
|
return True;
|
3037 |
|
|
|
3038 |
|
|
elsif Nkind (S) = N_Block_Statement then
|
3039 |
|
|
if Present (Declarations (S))
|
3040 |
|
|
and then Has_Excluded_Declaration (Declarations (S))
|
3041 |
|
|
then
|
3042 |
|
|
return True;
|
3043 |
|
|
|
3044 |
|
|
elsif Present (Handled_Statement_Sequence (S))
|
3045 |
|
|
and then
|
3046 |
|
|
(Present
|
3047 |
|
|
(Exception_Handlers (Handled_Statement_Sequence (S)))
|
3048 |
|
|
or else
|
3049 |
|
|
Has_Excluded_Statement
|
3050 |
|
|
(Statements (Handled_Statement_Sequence (S))))
|
3051 |
|
|
then
|
3052 |
|
|
return True;
|
3053 |
|
|
end if;
|
3054 |
|
|
|
3055 |
|
|
elsif Nkind (S) = N_Case_Statement then
|
3056 |
|
|
E := First (Alternatives (S));
|
3057 |
|
|
while Present (E) loop
|
3058 |
|
|
if Has_Excluded_Statement (Statements (E)) then
|
3059 |
|
|
return True;
|
3060 |
|
|
end if;
|
3061 |
|
|
|
3062 |
|
|
Next (E);
|
3063 |
|
|
end loop;
|
3064 |
|
|
|
3065 |
|
|
elsif Nkind (S) = N_If_Statement then
|
3066 |
|
|
if Has_Excluded_Statement (Then_Statements (S)) then
|
3067 |
|
|
return True;
|
3068 |
|
|
end if;
|
3069 |
|
|
|
3070 |
|
|
if Present (Elsif_Parts (S)) then
|
3071 |
|
|
E := First (Elsif_Parts (S));
|
3072 |
|
|
while Present (E) loop
|
3073 |
|
|
if Has_Excluded_Statement (Then_Statements (E)) then
|
3074 |
|
|
return True;
|
3075 |
|
|
end if;
|
3076 |
|
|
Next (E);
|
3077 |
|
|
end loop;
|
3078 |
|
|
end if;
|
3079 |
|
|
|
3080 |
|
|
if Present (Else_Statements (S))
|
3081 |
|
|
and then Has_Excluded_Statement (Else_Statements (S))
|
3082 |
|
|
then
|
3083 |
|
|
return True;
|
3084 |
|
|
end if;
|
3085 |
|
|
|
3086 |
|
|
elsif Nkind (S) = N_Loop_Statement
|
3087 |
|
|
and then Has_Excluded_Statement (Statements (S))
|
3088 |
|
|
then
|
3089 |
|
|
return True;
|
3090 |
|
|
end if;
|
3091 |
|
|
|
3092 |
|
|
Next (S);
|
3093 |
|
|
end loop;
|
3094 |
|
|
|
3095 |
|
|
return False;
|
3096 |
|
|
end Has_Excluded_Statement;
|
3097 |
|
|
|
3098 |
|
|
-------------------------------
|
3099 |
|
|
-- Has_Pending_Instantiation --
|
3100 |
|
|
-------------------------------
|
3101 |
|
|
|
3102 |
|
|
function Has_Pending_Instantiation return Boolean is
|
3103 |
|
|
S : Entity_Id;
|
3104 |
|
|
|
3105 |
|
|
begin
|
3106 |
|
|
S := Current_Scope;
|
3107 |
|
|
while Present (S) loop
|
3108 |
|
|
if Is_Compilation_Unit (S)
|
3109 |
|
|
or else Is_Child_Unit (S)
|
3110 |
|
|
then
|
3111 |
|
|
return False;
|
3112 |
|
|
elsif Ekind (S) = E_Package
|
3113 |
|
|
and then Has_Forward_Instantiation (S)
|
3114 |
|
|
then
|
3115 |
|
|
return True;
|
3116 |
|
|
end if;
|
3117 |
|
|
|
3118 |
|
|
S := Scope (S);
|
3119 |
|
|
end loop;
|
3120 |
|
|
|
3121 |
|
|
return False;
|
3122 |
|
|
end Has_Pending_Instantiation;
|
3123 |
|
|
|
3124 |
|
|
------------------------
|
3125 |
|
|
-- Has_Single_Return --
|
3126 |
|
|
------------------------
|
3127 |
|
|
|
3128 |
|
|
function Has_Single_Return return Boolean is
|
3129 |
|
|
Return_Statement : Node_Id := Empty;
|
3130 |
|
|
|
3131 |
|
|
function Check_Return (N : Node_Id) return Traverse_Result;
|
3132 |
|
|
|
3133 |
|
|
------------------
|
3134 |
|
|
-- Check_Return --
|
3135 |
|
|
------------------
|
3136 |
|
|
|
3137 |
|
|
function Check_Return (N : Node_Id) return Traverse_Result is
|
3138 |
|
|
begin
|
3139 |
|
|
if Nkind (N) = N_Simple_Return_Statement then
|
3140 |
|
|
if Present (Expression (N))
|
3141 |
|
|
and then Is_Entity_Name (Expression (N))
|
3142 |
|
|
then
|
3143 |
|
|
if No (Return_Statement) then
|
3144 |
|
|
Return_Statement := N;
|
3145 |
|
|
return OK;
|
3146 |
|
|
|
3147 |
|
|
elsif Chars (Expression (N)) =
|
3148 |
|
|
Chars (Expression (Return_Statement))
|
3149 |
|
|
then
|
3150 |
|
|
return OK;
|
3151 |
|
|
|
3152 |
|
|
else
|
3153 |
|
|
return Abandon;
|
3154 |
|
|
end if;
|
3155 |
|
|
|
3156 |
|
|
else
|
3157 |
|
|
-- Expression has wrong form
|
3158 |
|
|
|
3159 |
|
|
return Abandon;
|
3160 |
|
|
end if;
|
3161 |
|
|
|
3162 |
|
|
else
|
3163 |
|
|
return OK;
|
3164 |
|
|
end if;
|
3165 |
|
|
end Check_Return;
|
3166 |
|
|
|
3167 |
|
|
function Check_All_Returns is new Traverse_Func (Check_Return);
|
3168 |
|
|
|
3169 |
|
|
-- Start of processing for Has_Single_Return
|
3170 |
|
|
|
3171 |
|
|
begin
|
3172 |
|
|
return Check_All_Returns (N) = OK
|
3173 |
|
|
and then Present (Declarations (N))
|
3174 |
|
|
and then Present (First (Declarations (N)))
|
3175 |
|
|
and then Chars (Expression (Return_Statement)) =
|
3176 |
|
|
Chars (Defining_Identifier (First (Declarations (N))));
|
3177 |
|
|
end Has_Single_Return;
|
3178 |
|
|
|
3179 |
|
|
--------------------
|
3180 |
|
|
-- Remove_Pragmas --
|
3181 |
|
|
--------------------
|
3182 |
|
|
|
3183 |
|
|
procedure Remove_Pragmas is
|
3184 |
|
|
Decl : Node_Id;
|
3185 |
|
|
Nxt : Node_Id;
|
3186 |
|
|
|
3187 |
|
|
begin
|
3188 |
|
|
Decl := First (Declarations (Body_To_Analyze));
|
3189 |
|
|
while Present (Decl) loop
|
3190 |
|
|
Nxt := Next (Decl);
|
3191 |
|
|
|
3192 |
|
|
if Nkind (Decl) = N_Pragma
|
3193 |
|
|
and then (Pragma_Name (Decl) = Name_Unreferenced
|
3194 |
|
|
or else
|
3195 |
|
|
Pragma_Name (Decl) = Name_Unmodified)
|
3196 |
|
|
then
|
3197 |
|
|
Remove (Decl);
|
3198 |
|
|
end if;
|
3199 |
|
|
|
3200 |
|
|
Decl := Nxt;
|
3201 |
|
|
end loop;
|
3202 |
|
|
end Remove_Pragmas;
|
3203 |
|
|
|
3204 |
|
|
--------------------------
|
3205 |
|
|
-- Uses_Secondary_Stack --
|
3206 |
|
|
--------------------------
|
3207 |
|
|
|
3208 |
|
|
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
|
3209 |
|
|
function Check_Call (N : Node_Id) return Traverse_Result;
|
3210 |
|
|
-- Look for function calls that return an unconstrained type
|
3211 |
|
|
|
3212 |
|
|
----------------
|
3213 |
|
|
-- Check_Call --
|
3214 |
|
|
----------------
|
3215 |
|
|
|
3216 |
|
|
function Check_Call (N : Node_Id) return Traverse_Result is
|
3217 |
|
|
begin
|
3218 |
|
|
if Nkind (N) = N_Function_Call
|
3219 |
|
|
and then Is_Entity_Name (Name (N))
|
3220 |
|
|
and then Is_Composite_Type (Etype (Entity (Name (N))))
|
3221 |
|
|
and then not Is_Constrained (Etype (Entity (Name (N))))
|
3222 |
|
|
then
|
3223 |
|
|
Cannot_Inline
|
3224 |
|
|
("cannot inline & (call returns unconstrained type)?",
|
3225 |
|
|
N, Subp);
|
3226 |
|
|
return Abandon;
|
3227 |
|
|
else
|
3228 |
|
|
return OK;
|
3229 |
|
|
end if;
|
3230 |
|
|
end Check_Call;
|
3231 |
|
|
|
3232 |
|
|
function Check_Calls is new Traverse_Func (Check_Call);
|
3233 |
|
|
|
3234 |
|
|
begin
|
3235 |
|
|
return Check_Calls (Bod) = Abandon;
|
3236 |
|
|
end Uses_Secondary_Stack;
|
3237 |
|
|
|
3238 |
|
|
-- Start of processing for Build_Body_To_Inline
|
3239 |
|
|
|
3240 |
|
|
begin
|
3241 |
|
|
-- Return immediately if done already
|
3242 |
|
|
|
3243 |
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
3244 |
|
|
and then Present (Body_To_Inline (Decl))
|
3245 |
|
|
then
|
3246 |
|
|
return;
|
3247 |
|
|
|
3248 |
|
|
-- Functions that return unconstrained composite types require
|
3249 |
|
|
-- secondary stack handling, and cannot currently be inlined, unless
|
3250 |
|
|
-- all return statements return a local variable that is the first
|
3251 |
|
|
-- local declaration in the body.
|
3252 |
|
|
|
3253 |
|
|
elsif Ekind (Subp) = E_Function
|
3254 |
|
|
and then not Is_Scalar_Type (Etype (Subp))
|
3255 |
|
|
and then not Is_Access_Type (Etype (Subp))
|
3256 |
|
|
and then not Is_Constrained (Etype (Subp))
|
3257 |
|
|
then
|
3258 |
|
|
if not Has_Single_Return then
|
3259 |
|
|
Cannot_Inline
|
3260 |
|
|
("cannot inline & (unconstrained return type)?", N, Subp);
|
3261 |
|
|
return;
|
3262 |
|
|
end if;
|
3263 |
|
|
|
3264 |
|
|
-- Ditto for functions that return controlled types, where controlled
|
3265 |
|
|
-- actions interfere in complex ways with inlining.
|
3266 |
|
|
|
3267 |
|
|
elsif Ekind (Subp) = E_Function
|
3268 |
|
|
and then Needs_Finalization (Etype (Subp))
|
3269 |
|
|
then
|
3270 |
|
|
Cannot_Inline
|
3271 |
|
|
("cannot inline & (controlled return type)?", N, Subp);
|
3272 |
|
|
return;
|
3273 |
|
|
end if;
|
3274 |
|
|
|
3275 |
|
|
if Present (Declarations (N))
|
3276 |
|
|
and then Has_Excluded_Declaration (Declarations (N))
|
3277 |
|
|
then
|
3278 |
|
|
return;
|
3279 |
|
|
end if;
|
3280 |
|
|
|
3281 |
|
|
if Present (Handled_Statement_Sequence (N)) then
|
3282 |
|
|
if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
|
3283 |
|
|
Cannot_Inline
|
3284 |
|
|
("cannot inline& (exception handler)?",
|
3285 |
|
|
First (Exception_Handlers (Handled_Statement_Sequence (N))),
|
3286 |
|
|
Subp);
|
3287 |
|
|
return;
|
3288 |
|
|
elsif
|
3289 |
|
|
Has_Excluded_Statement
|
3290 |
|
|
(Statements (Handled_Statement_Sequence (N)))
|
3291 |
|
|
then
|
3292 |
|
|
return;
|
3293 |
|
|
end if;
|
3294 |
|
|
end if;
|
3295 |
|
|
|
3296 |
|
|
-- We do not inline a subprogram that is too large, unless it is
|
3297 |
|
|
-- marked Inline_Always. This pragma does not suppress the other
|
3298 |
|
|
-- checks on inlining (forbidden declarations, handlers, etc).
|
3299 |
|
|
|
3300 |
|
|
if Stat_Count > Max_Size
|
3301 |
|
|
and then not Has_Pragma_Inline_Always (Subp)
|
3302 |
|
|
then
|
3303 |
|
|
Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
|
3304 |
|
|
return;
|
3305 |
|
|
end if;
|
3306 |
|
|
|
3307 |
|
|
if Has_Pending_Instantiation then
|
3308 |
|
|
Cannot_Inline
|
3309 |
|
|
("cannot inline& (forward instance within enclosing body)?",
|
3310 |
|
|
N, Subp);
|
3311 |
|
|
return;
|
3312 |
|
|
end if;
|
3313 |
|
|
|
3314 |
|
|
-- Within an instance, the body to inline must be treated as a nested
|
3315 |
|
|
-- generic, so that the proper global references are preserved.
|
3316 |
|
|
|
3317 |
|
|
-- Note that we do not do this at the library level, because it is not
|
3318 |
|
|
-- needed, and furthermore this causes trouble if front end inlining
|
3319 |
|
|
-- is activated (-gnatN).
|
3320 |
|
|
|
3321 |
|
|
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
|
3322 |
|
|
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
|
3323 |
|
|
Original_Body := Copy_Generic_Node (N, Empty, True);
|
3324 |
|
|
else
|
3325 |
|
|
Original_Body := Copy_Separate_Tree (N);
|
3326 |
|
|
end if;
|
3327 |
|
|
|
3328 |
|
|
-- We need to capture references to the formals in order to substitute
|
3329 |
|
|
-- the actuals at the point of inlining, i.e. instantiation. To treat
|
3330 |
|
|
-- the formals as globals to the body to inline, we nest it within
|
3331 |
|
|
-- a dummy parameterless subprogram, declared within the real one.
|
3332 |
|
|
-- To avoid generating an internal name (which is never public, and
|
3333 |
|
|
-- which affects serial numbers of other generated names), we use
|
3334 |
|
|
-- an internal symbol that cannot conflict with user declarations.
|
3335 |
|
|
|
3336 |
|
|
Set_Parameter_Specifications (Specification (Original_Body), No_List);
|
3337 |
|
|
Set_Defining_Unit_Name
|
3338 |
|
|
(Specification (Original_Body),
|
3339 |
|
|
Make_Defining_Identifier (Sloc (N), Name_uParent));
|
3340 |
|
|
Set_Corresponding_Spec (Original_Body, Empty);
|
3341 |
|
|
|
3342 |
|
|
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
|
3343 |
|
|
|
3344 |
|
|
-- Set return type of function, which is also global and does not need
|
3345 |
|
|
-- to be resolved.
|
3346 |
|
|
|
3347 |
|
|
if Ekind (Subp) = E_Function then
|
3348 |
|
|
Set_Result_Definition (Specification (Body_To_Analyze),
|
3349 |
|
|
New_Occurrence_Of (Etype (Subp), Sloc (N)));
|
3350 |
|
|
end if;
|
3351 |
|
|
|
3352 |
|
|
if No (Declarations (N)) then
|
3353 |
|
|
Set_Declarations (N, New_List (Body_To_Analyze));
|
3354 |
|
|
else
|
3355 |
|
|
Append (Body_To_Analyze, Declarations (N));
|
3356 |
|
|
end if;
|
3357 |
|
|
|
3358 |
|
|
Expander_Mode_Save_And_Set (False);
|
3359 |
|
|
Remove_Pragmas;
|
3360 |
|
|
|
3361 |
|
|
Analyze (Body_To_Analyze);
|
3362 |
|
|
Push_Scope (Defining_Entity (Body_To_Analyze));
|
3363 |
|
|
Save_Global_References (Original_Body);
|
3364 |
|
|
End_Scope;
|
3365 |
|
|
Remove (Body_To_Analyze);
|
3366 |
|
|
|
3367 |
|
|
Expander_Mode_Restore;
|
3368 |
|
|
|
3369 |
|
|
-- Restore environment if previously saved
|
3370 |
|
|
|
3371 |
|
|
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
|
3372 |
|
|
Restore_Env;
|
3373 |
|
|
end if;
|
3374 |
|
|
|
3375 |
|
|
-- If secondary stk used there is no point in inlining. We have
|
3376 |
|
|
-- already issued the warning in this case, so nothing to do.
|
3377 |
|
|
|
3378 |
|
|
if Uses_Secondary_Stack (Body_To_Analyze) then
|
3379 |
|
|
return;
|
3380 |
|
|
end if;
|
3381 |
|
|
|
3382 |
|
|
Set_Body_To_Inline (Decl, Original_Body);
|
3383 |
|
|
Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
|
3384 |
|
|
Set_Is_Inlined (Subp);
|
3385 |
|
|
end Build_Body_To_Inline;
|
3386 |
|
|
|
3387 |
|
|
-------------------
|
3388 |
|
|
-- Cannot_Inline --
|
3389 |
|
|
-------------------
|
3390 |
|
|
|
3391 |
|
|
procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
|
3392 |
|
|
begin
|
3393 |
|
|
-- Do not emit warning if this is a predefined unit which is not
|
3394 |
|
|
-- the main unit. With validity checks enabled, some predefined
|
3395 |
|
|
-- subprograms may contain nested subprograms and become ineligible
|
3396 |
|
|
-- for inlining.
|
3397 |
|
|
|
3398 |
|
|
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
|
3399 |
|
|
and then not In_Extended_Main_Source_Unit (Subp)
|
3400 |
|
|
then
|
3401 |
|
|
null;
|
3402 |
|
|
|
3403 |
|
|
elsif Has_Pragma_Inline_Always (Subp) then
|
3404 |
|
|
|
3405 |
|
|
-- Remove last character (question mark) to make this into an error,
|
3406 |
|
|
-- because the Inline_Always pragma cannot be obeyed.
|
3407 |
|
|
|
3408 |
|
|
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
|
3409 |
|
|
|
3410 |
|
|
elsif Ineffective_Inline_Warnings then
|
3411 |
|
|
Error_Msg_NE (Msg, N, Subp);
|
3412 |
|
|
end if;
|
3413 |
|
|
end Cannot_Inline;
|
3414 |
|
|
|
3415 |
|
|
-----------------------
|
3416 |
|
|
-- Check_Conformance --
|
3417 |
|
|
-----------------------
|
3418 |
|
|
|
3419 |
|
|
procedure Check_Conformance
|
3420 |
|
|
(New_Id : Entity_Id;
|
3421 |
|
|
Old_Id : Entity_Id;
|
3422 |
|
|
Ctype : Conformance_Type;
|
3423 |
|
|
Errmsg : Boolean;
|
3424 |
|
|
Conforms : out Boolean;
|
3425 |
|
|
Err_Loc : Node_Id := Empty;
|
3426 |
|
|
Get_Inst : Boolean := False;
|
3427 |
|
|
Skip_Controlling_Formals : Boolean := False)
|
3428 |
|
|
is
|
3429 |
|
|
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
|
3430 |
|
|
-- Sets Conforms to False. If Errmsg is False, then that's all it does.
|
3431 |
|
|
-- If Errmsg is True, then processing continues to post an error message
|
3432 |
|
|
-- for conformance error on given node. Two messages are output. The
|
3433 |
|
|
-- first message points to the previous declaration with a general "no
|
3434 |
|
|
-- conformance" message. The second is the detailed reason, supplied as
|
3435 |
|
|
-- Msg. The parameter N provide information for a possible & insertion
|
3436 |
|
|
-- in the message, and also provides the location for posting the
|
3437 |
|
|
-- message in the absence of a specified Err_Loc location.
|
3438 |
|
|
|
3439 |
|
|
-----------------------
|
3440 |
|
|
-- Conformance_Error --
|
3441 |
|
|
-----------------------
|
3442 |
|
|
|
3443 |
|
|
procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
|
3444 |
|
|
Enode : Node_Id;
|
3445 |
|
|
|
3446 |
|
|
begin
|
3447 |
|
|
Conforms := False;
|
3448 |
|
|
|
3449 |
|
|
if Errmsg then
|
3450 |
|
|
if No (Err_Loc) then
|
3451 |
|
|
Enode := N;
|
3452 |
|
|
else
|
3453 |
|
|
Enode := Err_Loc;
|
3454 |
|
|
end if;
|
3455 |
|
|
|
3456 |
|
|
Error_Msg_Sloc := Sloc (Old_Id);
|
3457 |
|
|
|
3458 |
|
|
case Ctype is
|
3459 |
|
|
when Type_Conformant =>
|
3460 |
|
|
Error_Msg_N -- CODEFIX
|
3461 |
|
|
("not type conformant with declaration#!", Enode);
|
3462 |
|
|
|
3463 |
|
|
when Mode_Conformant =>
|
3464 |
|
|
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
|
3465 |
|
|
Error_Msg_N -- CODEFIX???
|
3466 |
|
|
("not mode conformant with operation inherited#!",
|
3467 |
|
|
Enode);
|
3468 |
|
|
else
|
3469 |
|
|
Error_Msg_N -- CODEFIX???
|
3470 |
|
|
("not mode conformant with declaration#!", Enode);
|
3471 |
|
|
end if;
|
3472 |
|
|
|
3473 |
|
|
when Subtype_Conformant =>
|
3474 |
|
|
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
|
3475 |
|
|
Error_Msg_N -- CODEFIX???
|
3476 |
|
|
("not subtype conformant with operation inherited#!",
|
3477 |
|
|
Enode);
|
3478 |
|
|
else
|
3479 |
|
|
Error_Msg_N -- CODEFIX???
|
3480 |
|
|
("not subtype conformant with declaration#!", Enode);
|
3481 |
|
|
end if;
|
3482 |
|
|
|
3483 |
|
|
when Fully_Conformant =>
|
3484 |
|
|
if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
|
3485 |
|
|
Error_Msg_N -- CODEFIX
|
3486 |
|
|
("not fully conformant with operation inherited#!",
|
3487 |
|
|
Enode);
|
3488 |
|
|
else
|
3489 |
|
|
Error_Msg_N -- CODEFIX
|
3490 |
|
|
("not fully conformant with declaration#!", Enode);
|
3491 |
|
|
end if;
|
3492 |
|
|
end case;
|
3493 |
|
|
|
3494 |
|
|
Error_Msg_NE (Msg, Enode, N);
|
3495 |
|
|
end if;
|
3496 |
|
|
end Conformance_Error;
|
3497 |
|
|
|
3498 |
|
|
-- Local Variables
|
3499 |
|
|
|
3500 |
|
|
Old_Type : constant Entity_Id := Etype (Old_Id);
|
3501 |
|
|
New_Type : constant Entity_Id := Etype (New_Id);
|
3502 |
|
|
Old_Formal : Entity_Id;
|
3503 |
|
|
New_Formal : Entity_Id;
|
3504 |
|
|
Access_Types_Match : Boolean;
|
3505 |
|
|
Old_Formal_Base : Entity_Id;
|
3506 |
|
|
New_Formal_Base : Entity_Id;
|
3507 |
|
|
|
3508 |
|
|
-- Start of processing for Check_Conformance
|
3509 |
|
|
|
3510 |
|
|
begin
|
3511 |
|
|
Conforms := True;
|
3512 |
|
|
|
3513 |
|
|
-- We need a special case for operators, since they don't appear
|
3514 |
|
|
-- explicitly.
|
3515 |
|
|
|
3516 |
|
|
if Ctype = Type_Conformant then
|
3517 |
|
|
if Ekind (New_Id) = E_Operator
|
3518 |
|
|
and then Operator_Matches_Spec (New_Id, Old_Id)
|
3519 |
|
|
then
|
3520 |
|
|
return;
|
3521 |
|
|
end if;
|
3522 |
|
|
end if;
|
3523 |
|
|
|
3524 |
|
|
-- If both are functions/operators, check return types conform
|
3525 |
|
|
|
3526 |
|
|
if Old_Type /= Standard_Void_Type
|
3527 |
|
|
and then New_Type /= Standard_Void_Type
|
3528 |
|
|
then
|
3529 |
|
|
|
3530 |
|
|
-- If we are checking interface conformance we omit controlling
|
3531 |
|
|
-- arguments and result, because we are only checking the conformance
|
3532 |
|
|
-- of the remaining parameters.
|
3533 |
|
|
|
3534 |
|
|
if Has_Controlling_Result (Old_Id)
|
3535 |
|
|
and then Has_Controlling_Result (New_Id)
|
3536 |
|
|
and then Skip_Controlling_Formals
|
3537 |
|
|
then
|
3538 |
|
|
null;
|
3539 |
|
|
|
3540 |
|
|
elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
|
3541 |
|
|
Conformance_Error ("\return type does not match!", New_Id);
|
3542 |
|
|
return;
|
3543 |
|
|
end if;
|
3544 |
|
|
|
3545 |
|
|
-- Ada 2005 (AI-231): In case of anonymous access types check the
|
3546 |
|
|
-- null-exclusion and access-to-constant attributes match.
|
3547 |
|
|
|
3548 |
|
|
if Ada_Version >= Ada_05
|
3549 |
|
|
and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
|
3550 |
|
|
and then
|
3551 |
|
|
(Can_Never_Be_Null (Old_Type)
|
3552 |
|
|
/= Can_Never_Be_Null (New_Type)
|
3553 |
|
|
or else Is_Access_Constant (Etype (Old_Type))
|
3554 |
|
|
/= Is_Access_Constant (Etype (New_Type)))
|
3555 |
|
|
then
|
3556 |
|
|
Conformance_Error ("\return type does not match!", New_Id);
|
3557 |
|
|
return;
|
3558 |
|
|
end if;
|
3559 |
|
|
|
3560 |
|
|
-- If either is a function/operator and the other isn't, error
|
3561 |
|
|
|
3562 |
|
|
elsif Old_Type /= Standard_Void_Type
|
3563 |
|
|
or else New_Type /= Standard_Void_Type
|
3564 |
|
|
then
|
3565 |
|
|
Conformance_Error ("\functions can only match functions!", New_Id);
|
3566 |
|
|
return;
|
3567 |
|
|
end if;
|
3568 |
|
|
|
3569 |
|
|
-- In subtype conformant case, conventions must match (RM 6.3.1(16)).
|
3570 |
|
|
-- If this is a renaming as body, refine error message to indicate that
|
3571 |
|
|
-- the conflict is with the original declaration. If the entity is not
|
3572 |
|
|
-- frozen, the conventions don't have to match, the one of the renamed
|
3573 |
|
|
-- entity is inherited.
|
3574 |
|
|
|
3575 |
|
|
if Ctype >= Subtype_Conformant then
|
3576 |
|
|
if Convention (Old_Id) /= Convention (New_Id) then
|
3577 |
|
|
|
3578 |
|
|
if not Is_Frozen (New_Id) then
|
3579 |
|
|
null;
|
3580 |
|
|
|
3581 |
|
|
elsif Present (Err_Loc)
|
3582 |
|
|
and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
|
3583 |
|
|
and then Present (Corresponding_Spec (Err_Loc))
|
3584 |
|
|
then
|
3585 |
|
|
Error_Msg_Name_1 := Chars (New_Id);
|
3586 |
|
|
Error_Msg_Name_2 :=
|
3587 |
|
|
Name_Ada + Convention_Id'Pos (Convention (New_Id));
|
3588 |
|
|
|
3589 |
|
|
Conformance_Error ("\prior declaration for% has convention %!");
|
3590 |
|
|
|
3591 |
|
|
else
|
3592 |
|
|
Conformance_Error ("\calling conventions do not match!");
|
3593 |
|
|
end if;
|
3594 |
|
|
|
3595 |
|
|
return;
|
3596 |
|
|
|
3597 |
|
|
elsif Is_Formal_Subprogram (Old_Id)
|
3598 |
|
|
or else Is_Formal_Subprogram (New_Id)
|
3599 |
|
|
then
|
3600 |
|
|
Conformance_Error ("\formal subprograms not allowed!");
|
3601 |
|
|
return;
|
3602 |
|
|
end if;
|
3603 |
|
|
end if;
|
3604 |
|
|
|
3605 |
|
|
-- Deal with parameters
|
3606 |
|
|
|
3607 |
|
|
-- Note: we use the entity information, rather than going directly
|
3608 |
|
|
-- to the specification in the tree. This is not only simpler, but
|
3609 |
|
|
-- absolutely necessary for some cases of conformance tests between
|
3610 |
|
|
-- operators, where the declaration tree simply does not exist!
|
3611 |
|
|
|
3612 |
|
|
Old_Formal := First_Formal (Old_Id);
|
3613 |
|
|
New_Formal := First_Formal (New_Id);
|
3614 |
|
|
while Present (Old_Formal) and then Present (New_Formal) loop
|
3615 |
|
|
if Is_Controlling_Formal (Old_Formal)
|
3616 |
|
|
and then Is_Controlling_Formal (New_Formal)
|
3617 |
|
|
and then Skip_Controlling_Formals
|
3618 |
|
|
then
|
3619 |
|
|
-- The controlling formals will have different types when
|
3620 |
|
|
-- comparing an interface operation with its match, but both
|
3621 |
|
|
-- or neither must be access parameters.
|
3622 |
|
|
|
3623 |
|
|
if Is_Access_Type (Etype (Old_Formal))
|
3624 |
|
|
=
|
3625 |
|
|
Is_Access_Type (Etype (New_Formal))
|
3626 |
|
|
then
|
3627 |
|
|
goto Skip_Controlling_Formal;
|
3628 |
|
|
else
|
3629 |
|
|
Conformance_Error
|
3630 |
|
|
("\access parameter does not match!", New_Formal);
|
3631 |
|
|
end if;
|
3632 |
|
|
end if;
|
3633 |
|
|
|
3634 |
|
|
if Ctype = Fully_Conformant then
|
3635 |
|
|
|
3636 |
|
|
-- Names must match. Error message is more accurate if we do
|
3637 |
|
|
-- this before checking that the types of the formals match.
|
3638 |
|
|
|
3639 |
|
|
if Chars (Old_Formal) /= Chars (New_Formal) then
|
3640 |
|
|
Conformance_Error ("\name & does not match!", New_Formal);
|
3641 |
|
|
|
3642 |
|
|
-- Set error posted flag on new formal as well to stop
|
3643 |
|
|
-- junk cascaded messages in some cases.
|
3644 |
|
|
|
3645 |
|
|
Set_Error_Posted (New_Formal);
|
3646 |
|
|
return;
|
3647 |
|
|
end if;
|
3648 |
|
|
end if;
|
3649 |
|
|
|
3650 |
|
|
-- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
|
3651 |
|
|
-- case occurs whenever a subprogram is being renamed and one of its
|
3652 |
|
|
-- parameters imposes a null exclusion. For example:
|
3653 |
|
|
|
3654 |
|
|
-- type T is null record;
|
3655 |
|
|
-- type Acc_T is access T;
|
3656 |
|
|
-- subtype Acc_T_Sub is Acc_T;
|
3657 |
|
|
|
3658 |
|
|
-- procedure P (Obj : not null Acc_T_Sub); -- itype
|
3659 |
|
|
-- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
|
3660 |
|
|
-- renames P;
|
3661 |
|
|
|
3662 |
|
|
Old_Formal_Base := Etype (Old_Formal);
|
3663 |
|
|
New_Formal_Base := Etype (New_Formal);
|
3664 |
|
|
|
3665 |
|
|
if Get_Inst then
|
3666 |
|
|
Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
|
3667 |
|
|
New_Formal_Base := Get_Instance_Of (New_Formal_Base);
|
3668 |
|
|
end if;
|
3669 |
|
|
|
3670 |
|
|
Access_Types_Match := Ada_Version >= Ada_05
|
3671 |
|
|
|
3672 |
|
|
-- Ensure that this rule is only applied when New_Id is a
|
3673 |
|
|
-- renaming of Old_Id.
|
3674 |
|
|
|
3675 |
|
|
and then Nkind (Parent (Parent (New_Id))) =
|
3676 |
|
|
N_Subprogram_Renaming_Declaration
|
3677 |
|
|
and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
|
3678 |
|
|
and then Present (Entity (Name (Parent (Parent (New_Id)))))
|
3679 |
|
|
and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
|
3680 |
|
|
|
3681 |
|
|
-- Now handle the allowed access-type case
|
3682 |
|
|
|
3683 |
|
|
and then Is_Access_Type (Old_Formal_Base)
|
3684 |
|
|
and then Is_Access_Type (New_Formal_Base)
|
3685 |
|
|
|
3686 |
|
|
-- The type kinds must match. The only exception occurs with
|
3687 |
|
|
-- multiple generics of the form:
|
3688 |
|
|
|
3689 |
|
|
-- generic generic
|
3690 |
|
|
-- type F is private; type A is private;
|
3691 |
|
|
-- type F_Ptr is access F; type A_Ptr is access A;
|
3692 |
|
|
-- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
|
3693 |
|
|
-- package F_Pack is ... package A_Pack is
|
3694 |
|
|
-- package F_Inst is
|
3695 |
|
|
-- new F_Pack (A, A_Ptr, A_P);
|
3696 |
|
|
|
3697 |
|
|
-- When checking for conformance between the parameters of A_P
|
3698 |
|
|
-- and F_P, the type kinds of F_Ptr and A_Ptr will not match
|
3699 |
|
|
-- because the compiler has transformed A_Ptr into a subtype of
|
3700 |
|
|
-- F_Ptr. We catch this case in the code below.
|
3701 |
|
|
|
3702 |
|
|
and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
|
3703 |
|
|
or else
|
3704 |
|
|
(Is_Generic_Type (Old_Formal_Base)
|
3705 |
|
|
and then Is_Generic_Type (New_Formal_Base)
|
3706 |
|
|
and then Is_Internal (New_Formal_Base)
|
3707 |
|
|
and then Etype (Etype (New_Formal_Base)) =
|
3708 |
|
|
Old_Formal_Base))
|
3709 |
|
|
and then Directly_Designated_Type (Old_Formal_Base) =
|
3710 |
|
|
Directly_Designated_Type (New_Formal_Base)
|
3711 |
|
|
and then ((Is_Itype (Old_Formal_Base)
|
3712 |
|
|
and then Can_Never_Be_Null (Old_Formal_Base))
|
3713 |
|
|
or else
|
3714 |
|
|
(Is_Itype (New_Formal_Base)
|
3715 |
|
|
and then Can_Never_Be_Null (New_Formal_Base)));
|
3716 |
|
|
|
3717 |
|
|
-- Types must always match. In the visible part of an instance,
|
3718 |
|
|
-- usual overloading rules for dispatching operations apply, and
|
3719 |
|
|
-- we check base types (not the actual subtypes).
|
3720 |
|
|
|
3721 |
|
|
if In_Instance_Visible_Part
|
3722 |
|
|
and then Is_Dispatching_Operation (New_Id)
|
3723 |
|
|
then
|
3724 |
|
|
if not Conforming_Types
|
3725 |
|
|
(T1 => Base_Type (Etype (Old_Formal)),
|
3726 |
|
|
T2 => Base_Type (Etype (New_Formal)),
|
3727 |
|
|
Ctype => Ctype,
|
3728 |
|
|
Get_Inst => Get_Inst)
|
3729 |
|
|
and then not Access_Types_Match
|
3730 |
|
|
then
|
3731 |
|
|
Conformance_Error ("\type of & does not match!", New_Formal);
|
3732 |
|
|
return;
|
3733 |
|
|
end if;
|
3734 |
|
|
|
3735 |
|
|
elsif not Conforming_Types
|
3736 |
|
|
(T1 => Old_Formal_Base,
|
3737 |
|
|
T2 => New_Formal_Base,
|
3738 |
|
|
Ctype => Ctype,
|
3739 |
|
|
Get_Inst => Get_Inst)
|
3740 |
|
|
and then not Access_Types_Match
|
3741 |
|
|
then
|
3742 |
|
|
-- Don't give error message if old type is Any_Type. This test
|
3743 |
|
|
-- avoids some cascaded errors, e.g. in case of a bad spec.
|
3744 |
|
|
|
3745 |
|
|
if Errmsg and then Old_Formal_Base = Any_Type then
|
3746 |
|
|
Conforms := False;
|
3747 |
|
|
else
|
3748 |
|
|
Conformance_Error ("\type of & does not match!", New_Formal);
|
3749 |
|
|
end if;
|
3750 |
|
|
|
3751 |
|
|
return;
|
3752 |
|
|
end if;
|
3753 |
|
|
|
3754 |
|
|
-- For mode conformance, mode must match
|
3755 |
|
|
|
3756 |
|
|
if Ctype >= Mode_Conformant then
|
3757 |
|
|
if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
|
3758 |
|
|
Conformance_Error ("\mode of & does not match!", New_Formal);
|
3759 |
|
|
return;
|
3760 |
|
|
|
3761 |
|
|
-- Part of mode conformance for access types is having the same
|
3762 |
|
|
-- constant modifier.
|
3763 |
|
|
|
3764 |
|
|
elsif Access_Types_Match
|
3765 |
|
|
and then Is_Access_Constant (Old_Formal_Base) /=
|
3766 |
|
|
Is_Access_Constant (New_Formal_Base)
|
3767 |
|
|
then
|
3768 |
|
|
Conformance_Error
|
3769 |
|
|
("\constant modifier does not match!", New_Formal);
|
3770 |
|
|
return;
|
3771 |
|
|
end if;
|
3772 |
|
|
end if;
|
3773 |
|
|
|
3774 |
|
|
if Ctype >= Subtype_Conformant then
|
3775 |
|
|
|
3776 |
|
|
-- Ada 2005 (AI-231): In case of anonymous access types check
|
3777 |
|
|
-- the null-exclusion and access-to-constant attributes must
|
3778 |
|
|
-- match.
|
3779 |
|
|
|
3780 |
|
|
if Ada_Version >= Ada_05
|
3781 |
|
|
and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
|
3782 |
|
|
and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
|
3783 |
|
|
and then
|
3784 |
|
|
(Can_Never_Be_Null (Old_Formal) /=
|
3785 |
|
|
Can_Never_Be_Null (New_Formal)
|
3786 |
|
|
or else
|
3787 |
|
|
Is_Access_Constant (Etype (Old_Formal)) /=
|
3788 |
|
|
Is_Access_Constant (Etype (New_Formal)))
|
3789 |
|
|
then
|
3790 |
|
|
-- It is allowed to omit the null-exclusion in case of stream
|
3791 |
|
|
-- attribute subprograms. We recognize stream subprograms
|
3792 |
|
|
-- through their TSS-generated suffix.
|
3793 |
|
|
|
3794 |
|
|
declare
|
3795 |
|
|
TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
|
3796 |
|
|
begin
|
3797 |
|
|
if TSS_Name /= TSS_Stream_Read
|
3798 |
|
|
and then TSS_Name /= TSS_Stream_Write
|
3799 |
|
|
and then TSS_Name /= TSS_Stream_Input
|
3800 |
|
|
and then TSS_Name /= TSS_Stream_Output
|
3801 |
|
|
then
|
3802 |
|
|
Conformance_Error
|
3803 |
|
|
("\type of & does not match!", New_Formal);
|
3804 |
|
|
return;
|
3805 |
|
|
end if;
|
3806 |
|
|
end;
|
3807 |
|
|
end if;
|
3808 |
|
|
end if;
|
3809 |
|
|
|
3810 |
|
|
-- Full conformance checks
|
3811 |
|
|
|
3812 |
|
|
if Ctype = Fully_Conformant then
|
3813 |
|
|
|
3814 |
|
|
-- We have checked already that names match
|
3815 |
|
|
|
3816 |
|
|
if Parameter_Mode (Old_Formal) = E_In_Parameter then
|
3817 |
|
|
|
3818 |
|
|
-- Check default expressions for in parameters
|
3819 |
|
|
|
3820 |
|
|
declare
|
3821 |
|
|
NewD : constant Boolean :=
|
3822 |
|
|
Present (Default_Value (New_Formal));
|
3823 |
|
|
OldD : constant Boolean :=
|
3824 |
|
|
Present (Default_Value (Old_Formal));
|
3825 |
|
|
begin
|
3826 |
|
|
if NewD or OldD then
|
3827 |
|
|
|
3828 |
|
|
-- The old default value has been analyzed because the
|
3829 |
|
|
-- current full declaration will have frozen everything
|
3830 |
|
|
-- before. The new default value has not been analyzed,
|
3831 |
|
|
-- so analyze it now before we check for conformance.
|
3832 |
|
|
|
3833 |
|
|
if NewD then
|
3834 |
|
|
Push_Scope (New_Id);
|
3835 |
|
|
Preanalyze_Spec_Expression
|
3836 |
|
|
(Default_Value (New_Formal), Etype (New_Formal));
|
3837 |
|
|
End_Scope;
|
3838 |
|
|
end if;
|
3839 |
|
|
|
3840 |
|
|
if not (NewD and OldD)
|
3841 |
|
|
or else not Fully_Conformant_Expressions
|
3842 |
|
|
(Default_Value (Old_Formal),
|
3843 |
|
|
Default_Value (New_Formal))
|
3844 |
|
|
then
|
3845 |
|
|
Conformance_Error
|
3846 |
|
|
("\default expression for & does not match!",
|
3847 |
|
|
New_Formal);
|
3848 |
|
|
return;
|
3849 |
|
|
end if;
|
3850 |
|
|
end if;
|
3851 |
|
|
end;
|
3852 |
|
|
end if;
|
3853 |
|
|
end if;
|
3854 |
|
|
|
3855 |
|
|
-- A couple of special checks for Ada 83 mode. These checks are
|
3856 |
|
|
-- skipped if either entity is an operator in package Standard,
|
3857 |
|
|
-- or if either old or new instance is not from the source program.
|
3858 |
|
|
|
3859 |
|
|
if Ada_Version = Ada_83
|
3860 |
|
|
and then Sloc (Old_Id) > Standard_Location
|
3861 |
|
|
and then Sloc (New_Id) > Standard_Location
|
3862 |
|
|
and then Comes_From_Source (Old_Id)
|
3863 |
|
|
and then Comes_From_Source (New_Id)
|
3864 |
|
|
then
|
3865 |
|
|
declare
|
3866 |
|
|
Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
|
3867 |
|
|
New_Param : constant Node_Id := Declaration_Node (New_Formal);
|
3868 |
|
|
|
3869 |
|
|
begin
|
3870 |
|
|
-- Explicit IN must be present or absent in both cases. This
|
3871 |
|
|
-- test is required only in the full conformance case.
|
3872 |
|
|
|
3873 |
|
|
if In_Present (Old_Param) /= In_Present (New_Param)
|
3874 |
|
|
and then Ctype = Fully_Conformant
|
3875 |
|
|
then
|
3876 |
|
|
Conformance_Error
|
3877 |
|
|
("\(Ada 83) IN must appear in both declarations",
|
3878 |
|
|
New_Formal);
|
3879 |
|
|
return;
|
3880 |
|
|
end if;
|
3881 |
|
|
|
3882 |
|
|
-- Grouping (use of comma in param lists) must be the same
|
3883 |
|
|
-- This is where we catch a misconformance like:
|
3884 |
|
|
|
3885 |
|
|
-- A, B : Integer
|
3886 |
|
|
-- A : Integer; B : Integer
|
3887 |
|
|
|
3888 |
|
|
-- which are represented identically in the tree except
|
3889 |
|
|
-- for the setting of the flags More_Ids and Prev_Ids.
|
3890 |
|
|
|
3891 |
|
|
if More_Ids (Old_Param) /= More_Ids (New_Param)
|
3892 |
|
|
or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
|
3893 |
|
|
then
|
3894 |
|
|
Conformance_Error
|
3895 |
|
|
("\grouping of & does not match!", New_Formal);
|
3896 |
|
|
return;
|
3897 |
|
|
end if;
|
3898 |
|
|
end;
|
3899 |
|
|
end if;
|
3900 |
|
|
|
3901 |
|
|
-- This label is required when skipping controlling formals
|
3902 |
|
|
|
3903 |
|
|
<<Skip_Controlling_Formal>>
|
3904 |
|
|
|
3905 |
|
|
Next_Formal (Old_Formal);
|
3906 |
|
|
Next_Formal (New_Formal);
|
3907 |
|
|
end loop;
|
3908 |
|
|
|
3909 |
|
|
if Present (Old_Formal) then
|
3910 |
|
|
Conformance_Error ("\too few parameters!");
|
3911 |
|
|
return;
|
3912 |
|
|
|
3913 |
|
|
elsif Present (New_Formal) then
|
3914 |
|
|
Conformance_Error ("\too many parameters!", New_Formal);
|
3915 |
|
|
return;
|
3916 |
|
|
end if;
|
3917 |
|
|
end Check_Conformance;
|
3918 |
|
|
|
3919 |
|
|
-----------------------
|
3920 |
|
|
-- Check_Conventions --
|
3921 |
|
|
-----------------------
|
3922 |
|
|
|
3923 |
|
|
procedure Check_Conventions (Typ : Entity_Id) is
|
3924 |
|
|
Ifaces_List : Elist_Id;
|
3925 |
|
|
|
3926 |
|
|
procedure Check_Convention (Op : Entity_Id);
|
3927 |
|
|
-- Verify that the convention of inherited dispatching operation Op is
|
3928 |
|
|
-- consistent among all subprograms it overrides. In order to minimize
|
3929 |
|
|
-- the search, Search_From is utilized to designate a specific point in
|
3930 |
|
|
-- the list rather than iterating over the whole list once more.
|
3931 |
|
|
|
3932 |
|
|
----------------------
|
3933 |
|
|
-- Check_Convention --
|
3934 |
|
|
----------------------
|
3935 |
|
|
|
3936 |
|
|
procedure Check_Convention (Op : Entity_Id) is
|
3937 |
|
|
Iface_Elmt : Elmt_Id;
|
3938 |
|
|
Iface_Prim_Elmt : Elmt_Id;
|
3939 |
|
|
Iface_Prim : Entity_Id;
|
3940 |
|
|
|
3941 |
|
|
begin
|
3942 |
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
3943 |
|
|
while Present (Iface_Elmt) loop
|
3944 |
|
|
Iface_Prim_Elmt :=
|
3945 |
|
|
First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
|
3946 |
|
|
while Present (Iface_Prim_Elmt) loop
|
3947 |
|
|
Iface_Prim := Node (Iface_Prim_Elmt);
|
3948 |
|
|
|
3949 |
|
|
if Is_Interface_Conformant (Typ, Iface_Prim, Op)
|
3950 |
|
|
and then Convention (Iface_Prim) /= Convention (Op)
|
3951 |
|
|
then
|
3952 |
|
|
Error_Msg_N
|
3953 |
|
|
("inconsistent conventions in primitive operations", Typ);
|
3954 |
|
|
|
3955 |
|
|
Error_Msg_Name_1 := Chars (Op);
|
3956 |
|
|
Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
|
3957 |
|
|
Error_Msg_Sloc := Sloc (Op);
|
3958 |
|
|
|
3959 |
|
|
if Comes_From_Source (Op) then
|
3960 |
|
|
if not Is_Overriding_Operation (Op) then
|
3961 |
|
|
Error_Msg_N ("\\primitive % defined #", Typ);
|
3962 |
|
|
else
|
3963 |
|
|
Error_Msg_N ("\\overriding operation % with " &
|
3964 |
|
|
"convention % defined #", Typ);
|
3965 |
|
|
end if;
|
3966 |
|
|
|
3967 |
|
|
else pragma Assert (Present (Alias (Op)));
|
3968 |
|
|
Error_Msg_Sloc := Sloc (Alias (Op));
|
3969 |
|
|
Error_Msg_N ("\\inherited operation % with " &
|
3970 |
|
|
"convention % defined #", Typ);
|
3971 |
|
|
end if;
|
3972 |
|
|
|
3973 |
|
|
Error_Msg_Name_1 := Chars (Op);
|
3974 |
|
|
Error_Msg_Name_2 :=
|
3975 |
|
|
Get_Convention_Name (Convention (Iface_Prim));
|
3976 |
|
|
Error_Msg_Sloc := Sloc (Iface_Prim);
|
3977 |
|
|
Error_Msg_N ("\\overridden operation % with " &
|
3978 |
|
|
"convention % defined #", Typ);
|
3979 |
|
|
|
3980 |
|
|
-- Avoid cascading errors
|
3981 |
|
|
|
3982 |
|
|
return;
|
3983 |
|
|
end if;
|
3984 |
|
|
|
3985 |
|
|
Next_Elmt (Iface_Prim_Elmt);
|
3986 |
|
|
end loop;
|
3987 |
|
|
|
3988 |
|
|
Next_Elmt (Iface_Elmt);
|
3989 |
|
|
end loop;
|
3990 |
|
|
end Check_Convention;
|
3991 |
|
|
|
3992 |
|
|
-- Local variables
|
3993 |
|
|
|
3994 |
|
|
Prim_Op : Entity_Id;
|
3995 |
|
|
Prim_Op_Elmt : Elmt_Id;
|
3996 |
|
|
|
3997 |
|
|
-- Start of processing for Check_Conventions
|
3998 |
|
|
|
3999 |
|
|
begin
|
4000 |
|
|
if not Has_Interfaces (Typ) then
|
4001 |
|
|
return;
|
4002 |
|
|
end if;
|
4003 |
|
|
|
4004 |
|
|
Collect_Interfaces (Typ, Ifaces_List);
|
4005 |
|
|
|
4006 |
|
|
-- The algorithm checks every overriding dispatching operation against
|
4007 |
|
|
-- all the corresponding overridden dispatching operations, detecting
|
4008 |
|
|
-- differences in conventions.
|
4009 |
|
|
|
4010 |
|
|
Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
|
4011 |
|
|
while Present (Prim_Op_Elmt) loop
|
4012 |
|
|
Prim_Op := Node (Prim_Op_Elmt);
|
4013 |
|
|
|
4014 |
|
|
-- A small optimization: skip the predefined dispatching operations
|
4015 |
|
|
-- since they always have the same convention.
|
4016 |
|
|
|
4017 |
|
|
if not Is_Predefined_Dispatching_Operation (Prim_Op) then
|
4018 |
|
|
Check_Convention (Prim_Op);
|
4019 |
|
|
end if;
|
4020 |
|
|
|
4021 |
|
|
Next_Elmt (Prim_Op_Elmt);
|
4022 |
|
|
end loop;
|
4023 |
|
|
end Check_Conventions;
|
4024 |
|
|
|
4025 |
|
|
------------------------------
|
4026 |
|
|
-- Check_Delayed_Subprogram --
|
4027 |
|
|
------------------------------
|
4028 |
|
|
|
4029 |
|
|
procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
|
4030 |
|
|
F : Entity_Id;
|
4031 |
|
|
|
4032 |
|
|
procedure Possible_Freeze (T : Entity_Id);
|
4033 |
|
|
-- T is the type of either a formal parameter or of the return type.
|
4034 |
|
|
-- If T is not yet frozen and needs a delayed freeze, then the
|
4035 |
|
|
-- subprogram itself must be delayed. If T is the limited view of an
|
4036 |
|
|
-- incomplete type the subprogram must be frozen as well, because
|
4037 |
|
|
-- T may depend on local types that have not been frozen yet.
|
4038 |
|
|
|
4039 |
|
|
---------------------
|
4040 |
|
|
-- Possible_Freeze --
|
4041 |
|
|
---------------------
|
4042 |
|
|
|
4043 |
|
|
procedure Possible_Freeze (T : Entity_Id) is
|
4044 |
|
|
begin
|
4045 |
|
|
if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
|
4046 |
|
|
Set_Has_Delayed_Freeze (Designator);
|
4047 |
|
|
|
4048 |
|
|
elsif Is_Access_Type (T)
|
4049 |
|
|
and then Has_Delayed_Freeze (Designated_Type (T))
|
4050 |
|
|
and then not Is_Frozen (Designated_Type (T))
|
4051 |
|
|
then
|
4052 |
|
|
Set_Has_Delayed_Freeze (Designator);
|
4053 |
|
|
|
4054 |
|
|
elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
|
4055 |
|
|
Set_Has_Delayed_Freeze (Designator);
|
4056 |
|
|
end if;
|
4057 |
|
|
|
4058 |
|
|
end Possible_Freeze;
|
4059 |
|
|
|
4060 |
|
|
-- Start of processing for Check_Delayed_Subprogram
|
4061 |
|
|
|
4062 |
|
|
begin
|
4063 |
|
|
-- Never need to freeze abstract subprogram
|
4064 |
|
|
|
4065 |
|
|
if Ekind (Designator) /= E_Subprogram_Type
|
4066 |
|
|
and then Is_Abstract_Subprogram (Designator)
|
4067 |
|
|
then
|
4068 |
|
|
null;
|
4069 |
|
|
else
|
4070 |
|
|
-- Need delayed freeze if return type itself needs a delayed
|
4071 |
|
|
-- freeze and is not yet frozen.
|
4072 |
|
|
|
4073 |
|
|
Possible_Freeze (Etype (Designator));
|
4074 |
|
|
Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
|
4075 |
|
|
|
4076 |
|
|
-- Need delayed freeze if any of the formal types themselves need
|
4077 |
|
|
-- a delayed freeze and are not yet frozen.
|
4078 |
|
|
|
4079 |
|
|
F := First_Formal (Designator);
|
4080 |
|
|
while Present (F) loop
|
4081 |
|
|
Possible_Freeze (Etype (F));
|
4082 |
|
|
Possible_Freeze (Base_Type (Etype (F))); -- needed ???
|
4083 |
|
|
Next_Formal (F);
|
4084 |
|
|
end loop;
|
4085 |
|
|
end if;
|
4086 |
|
|
|
4087 |
|
|
-- Mark functions that return by reference. Note that it cannot be
|
4088 |
|
|
-- done for delayed_freeze subprograms because the underlying
|
4089 |
|
|
-- returned type may not be known yet (for private types)
|
4090 |
|
|
|
4091 |
|
|
if not Has_Delayed_Freeze (Designator)
|
4092 |
|
|
and then Expander_Active
|
4093 |
|
|
then
|
4094 |
|
|
declare
|
4095 |
|
|
Typ : constant Entity_Id := Etype (Designator);
|
4096 |
|
|
Utyp : constant Entity_Id := Underlying_Type (Typ);
|
4097 |
|
|
|
4098 |
|
|
begin
|
4099 |
|
|
if Is_Inherently_Limited_Type (Typ) then
|
4100 |
|
|
Set_Returns_By_Ref (Designator);
|
4101 |
|
|
|
4102 |
|
|
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
|
4103 |
|
|
Set_Returns_By_Ref (Designator);
|
4104 |
|
|
end if;
|
4105 |
|
|
end;
|
4106 |
|
|
end if;
|
4107 |
|
|
end Check_Delayed_Subprogram;
|
4108 |
|
|
|
4109 |
|
|
------------------------------------
|
4110 |
|
|
-- Check_Discriminant_Conformance --
|
4111 |
|
|
------------------------------------
|
4112 |
|
|
|
4113 |
|
|
procedure Check_Discriminant_Conformance
|
4114 |
|
|
(N : Node_Id;
|
4115 |
|
|
Prev : Entity_Id;
|
4116 |
|
|
Prev_Loc : Node_Id)
|
4117 |
|
|
is
|
4118 |
|
|
Old_Discr : Entity_Id := First_Discriminant (Prev);
|
4119 |
|
|
New_Discr : Node_Id := First (Discriminant_Specifications (N));
|
4120 |
|
|
New_Discr_Id : Entity_Id;
|
4121 |
|
|
New_Discr_Type : Entity_Id;
|
4122 |
|
|
|
4123 |
|
|
procedure Conformance_Error (Msg : String; N : Node_Id);
|
4124 |
|
|
-- Post error message for conformance error on given node. Two messages
|
4125 |
|
|
-- are output. The first points to the previous declaration with a
|
4126 |
|
|
-- general "no conformance" message. The second is the detailed reason,
|
4127 |
|
|
-- supplied as Msg. The parameter N provide information for a possible
|
4128 |
|
|
-- & insertion in the message.
|
4129 |
|
|
|
4130 |
|
|
-----------------------
|
4131 |
|
|
-- Conformance_Error --
|
4132 |
|
|
-----------------------
|
4133 |
|
|
|
4134 |
|
|
procedure Conformance_Error (Msg : String; N : Node_Id) is
|
4135 |
|
|
begin
|
4136 |
|
|
Error_Msg_Sloc := Sloc (Prev_Loc);
|
4137 |
|
|
Error_Msg_N -- CODEFIX
|
4138 |
|
|
("not fully conformant with declaration#!", N);
|
4139 |
|
|
Error_Msg_NE (Msg, N, N);
|
4140 |
|
|
end Conformance_Error;
|
4141 |
|
|
|
4142 |
|
|
-- Start of processing for Check_Discriminant_Conformance
|
4143 |
|
|
|
4144 |
|
|
begin
|
4145 |
|
|
while Present (Old_Discr) and then Present (New_Discr) loop
|
4146 |
|
|
|
4147 |
|
|
New_Discr_Id := Defining_Identifier (New_Discr);
|
4148 |
|
|
|
4149 |
|
|
-- The subtype mark of the discriminant on the full type has not
|
4150 |
|
|
-- been analyzed so we do it here. For an access discriminant a new
|
4151 |
|
|
-- type is created.
|
4152 |
|
|
|
4153 |
|
|
if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
|
4154 |
|
|
New_Discr_Type :=
|
4155 |
|
|
Access_Definition (N, Discriminant_Type (New_Discr));
|
4156 |
|
|
|
4157 |
|
|
else
|
4158 |
|
|
Analyze (Discriminant_Type (New_Discr));
|
4159 |
|
|
New_Discr_Type := Etype (Discriminant_Type (New_Discr));
|
4160 |
|
|
|
4161 |
|
|
-- Ada 2005: if the discriminant definition carries a null
|
4162 |
|
|
-- exclusion, create an itype to check properly for consistency
|
4163 |
|
|
-- with partial declaration.
|
4164 |
|
|
|
4165 |
|
|
if Is_Access_Type (New_Discr_Type)
|
4166 |
|
|
and then Null_Exclusion_Present (New_Discr)
|
4167 |
|
|
then
|
4168 |
|
|
New_Discr_Type :=
|
4169 |
|
|
Create_Null_Excluding_Itype
|
4170 |
|
|
(T => New_Discr_Type,
|
4171 |
|
|
Related_Nod => New_Discr,
|
4172 |
|
|
Scope_Id => Current_Scope);
|
4173 |
|
|
end if;
|
4174 |
|
|
end if;
|
4175 |
|
|
|
4176 |
|
|
if not Conforming_Types
|
4177 |
|
|
(Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
|
4178 |
|
|
then
|
4179 |
|
|
Conformance_Error ("type of & does not match!", New_Discr_Id);
|
4180 |
|
|
return;
|
4181 |
|
|
else
|
4182 |
|
|
-- Treat the new discriminant as an occurrence of the old one,
|
4183 |
|
|
-- for navigation purposes, and fill in some semantic
|
4184 |
|
|
-- information, for completeness.
|
4185 |
|
|
|
4186 |
|
|
Generate_Reference (Old_Discr, New_Discr_Id, 'r');
|
4187 |
|
|
Set_Etype (New_Discr_Id, Etype (Old_Discr));
|
4188 |
|
|
Set_Scope (New_Discr_Id, Scope (Old_Discr));
|
4189 |
|
|
end if;
|
4190 |
|
|
|
4191 |
|
|
-- Names must match
|
4192 |
|
|
|
4193 |
|
|
if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
|
4194 |
|
|
Conformance_Error ("name & does not match!", New_Discr_Id);
|
4195 |
|
|
return;
|
4196 |
|
|
end if;
|
4197 |
|
|
|
4198 |
|
|
-- Default expressions must match
|
4199 |
|
|
|
4200 |
|
|
declare
|
4201 |
|
|
NewD : constant Boolean :=
|
4202 |
|
|
Present (Expression (New_Discr));
|
4203 |
|
|
OldD : constant Boolean :=
|
4204 |
|
|
Present (Expression (Parent (Old_Discr)));
|
4205 |
|
|
|
4206 |
|
|
begin
|
4207 |
|
|
if NewD or OldD then
|
4208 |
|
|
|
4209 |
|
|
-- The old default value has been analyzed and expanded,
|
4210 |
|
|
-- because the current full declaration will have frozen
|
4211 |
|
|
-- everything before. The new default values have not been
|
4212 |
|
|
-- expanded, so expand now to check conformance.
|
4213 |
|
|
|
4214 |
|
|
if NewD then
|
4215 |
|
|
Preanalyze_Spec_Expression
|
4216 |
|
|
(Expression (New_Discr), New_Discr_Type);
|
4217 |
|
|
end if;
|
4218 |
|
|
|
4219 |
|
|
if not (NewD and OldD)
|
4220 |
|
|
or else not Fully_Conformant_Expressions
|
4221 |
|
|
(Expression (Parent (Old_Discr)),
|
4222 |
|
|
Expression (New_Discr))
|
4223 |
|
|
|
4224 |
|
|
then
|
4225 |
|
|
Conformance_Error
|
4226 |
|
|
("default expression for & does not match!",
|
4227 |
|
|
New_Discr_Id);
|
4228 |
|
|
return;
|
4229 |
|
|
end if;
|
4230 |
|
|
end if;
|
4231 |
|
|
end;
|
4232 |
|
|
|
4233 |
|
|
-- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
|
4234 |
|
|
|
4235 |
|
|
if Ada_Version = Ada_83 then
|
4236 |
|
|
declare
|
4237 |
|
|
Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
|
4238 |
|
|
|
4239 |
|
|
begin
|
4240 |
|
|
-- Grouping (use of comma in param lists) must be the same
|
4241 |
|
|
-- This is where we catch a misconformance like:
|
4242 |
|
|
|
4243 |
|
|
-- A,B : Integer
|
4244 |
|
|
-- A : Integer; B : Integer
|
4245 |
|
|
|
4246 |
|
|
-- which are represented identically in the tree except
|
4247 |
|
|
-- for the setting of the flags More_Ids and Prev_Ids.
|
4248 |
|
|
|
4249 |
|
|
if More_Ids (Old_Disc) /= More_Ids (New_Discr)
|
4250 |
|
|
or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
|
4251 |
|
|
then
|
4252 |
|
|
Conformance_Error
|
4253 |
|
|
("grouping of & does not match!", New_Discr_Id);
|
4254 |
|
|
return;
|
4255 |
|
|
end if;
|
4256 |
|
|
end;
|
4257 |
|
|
end if;
|
4258 |
|
|
|
4259 |
|
|
Next_Discriminant (Old_Discr);
|
4260 |
|
|
Next (New_Discr);
|
4261 |
|
|
end loop;
|
4262 |
|
|
|
4263 |
|
|
if Present (Old_Discr) then
|
4264 |
|
|
Conformance_Error ("too few discriminants!", Defining_Identifier (N));
|
4265 |
|
|
return;
|
4266 |
|
|
|
4267 |
|
|
elsif Present (New_Discr) then
|
4268 |
|
|
Conformance_Error
|
4269 |
|
|
("too many discriminants!", Defining_Identifier (New_Discr));
|
4270 |
|
|
return;
|
4271 |
|
|
end if;
|
4272 |
|
|
end Check_Discriminant_Conformance;
|
4273 |
|
|
|
4274 |
|
|
----------------------------
|
4275 |
|
|
-- Check_Fully_Conformant --
|
4276 |
|
|
----------------------------
|
4277 |
|
|
|
4278 |
|
|
procedure Check_Fully_Conformant
|
4279 |
|
|
(New_Id : Entity_Id;
|
4280 |
|
|
Old_Id : Entity_Id;
|
4281 |
|
|
Err_Loc : Node_Id := Empty)
|
4282 |
|
|
is
|
4283 |
|
|
Result : Boolean;
|
4284 |
|
|
pragma Warnings (Off, Result);
|
4285 |
|
|
begin
|
4286 |
|
|
Check_Conformance
|
4287 |
|
|
(New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
|
4288 |
|
|
end Check_Fully_Conformant;
|
4289 |
|
|
|
4290 |
|
|
---------------------------
|
4291 |
|
|
-- Check_Mode_Conformant --
|
4292 |
|
|
---------------------------
|
4293 |
|
|
|
4294 |
|
|
procedure Check_Mode_Conformant
|
4295 |
|
|
(New_Id : Entity_Id;
|
4296 |
|
|
Old_Id : Entity_Id;
|
4297 |
|
|
Err_Loc : Node_Id := Empty;
|
4298 |
|
|
Get_Inst : Boolean := False)
|
4299 |
|
|
is
|
4300 |
|
|
Result : Boolean;
|
4301 |
|
|
pragma Warnings (Off, Result);
|
4302 |
|
|
begin
|
4303 |
|
|
Check_Conformance
|
4304 |
|
|
(New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
|
4305 |
|
|
end Check_Mode_Conformant;
|
4306 |
|
|
|
4307 |
|
|
--------------------------------
|
4308 |
|
|
-- Check_Overriding_Indicator --
|
4309 |
|
|
--------------------------------
|
4310 |
|
|
|
4311 |
|
|
procedure Check_Overriding_Indicator
|
4312 |
|
|
(Subp : Entity_Id;
|
4313 |
|
|
Overridden_Subp : Entity_Id;
|
4314 |
|
|
Is_Primitive : Boolean)
|
4315 |
|
|
is
|
4316 |
|
|
Decl : Node_Id;
|
4317 |
|
|
Spec : Node_Id;
|
4318 |
|
|
|
4319 |
|
|
begin
|
4320 |
|
|
-- No overriding indicator for literals
|
4321 |
|
|
|
4322 |
|
|
if Ekind (Subp) = E_Enumeration_Literal then
|
4323 |
|
|
return;
|
4324 |
|
|
|
4325 |
|
|
elsif Ekind (Subp) = E_Entry then
|
4326 |
|
|
Decl := Parent (Subp);
|
4327 |
|
|
|
4328 |
|
|
-- No point in analyzing a malformed operator
|
4329 |
|
|
|
4330 |
|
|
elsif Nkind (Subp) = N_Defining_Operator_Symbol
|
4331 |
|
|
and then Error_Posted (Subp)
|
4332 |
|
|
then
|
4333 |
|
|
return;
|
4334 |
|
|
|
4335 |
|
|
else
|
4336 |
|
|
Decl := Unit_Declaration_Node (Subp);
|
4337 |
|
|
end if;
|
4338 |
|
|
|
4339 |
|
|
if Nkind_In (Decl, N_Subprogram_Body,
|
4340 |
|
|
N_Subprogram_Body_Stub,
|
4341 |
|
|
N_Subprogram_Declaration,
|
4342 |
|
|
N_Abstract_Subprogram_Declaration,
|
4343 |
|
|
N_Subprogram_Renaming_Declaration)
|
4344 |
|
|
then
|
4345 |
|
|
Spec := Specification (Decl);
|
4346 |
|
|
|
4347 |
|
|
elsif Nkind (Decl) = N_Entry_Declaration then
|
4348 |
|
|
Spec := Decl;
|
4349 |
|
|
|
4350 |
|
|
else
|
4351 |
|
|
return;
|
4352 |
|
|
end if;
|
4353 |
|
|
|
4354 |
|
|
-- The overriding operation is type conformant with the overridden one,
|
4355 |
|
|
-- but the names of the formals are not required to match. If the names
|
4356 |
|
|
-- appear permuted in the overriding operation, this is a possible
|
4357 |
|
|
-- source of confusion that is worth diagnosing. Controlling formals
|
4358 |
|
|
-- often carry names that reflect the type, and it is not worthwhile
|
4359 |
|
|
-- requiring that their names match.
|
4360 |
|
|
|
4361 |
|
|
if Present (Overridden_Subp)
|
4362 |
|
|
and then Nkind (Subp) /= N_Defining_Operator_Symbol
|
4363 |
|
|
then
|
4364 |
|
|
declare
|
4365 |
|
|
Form1 : Entity_Id;
|
4366 |
|
|
Form2 : Entity_Id;
|
4367 |
|
|
|
4368 |
|
|
begin
|
4369 |
|
|
Form1 := First_Formal (Subp);
|
4370 |
|
|
Form2 := First_Formal (Overridden_Subp);
|
4371 |
|
|
|
4372 |
|
|
-- If the overriding operation is a synchronized operation, skip
|
4373 |
|
|
-- the first parameter of the overridden operation, which is
|
4374 |
|
|
-- implicit in the new one. If the operation is declared in the
|
4375 |
|
|
-- body it is not primitive and all formals must match.
|
4376 |
|
|
|
4377 |
|
|
if Is_Concurrent_Type (Scope (Subp))
|
4378 |
|
|
and then Is_Tagged_Type (Scope (Subp))
|
4379 |
|
|
and then not Has_Completion (Scope (Subp))
|
4380 |
|
|
then
|
4381 |
|
|
Form2 := Next_Formal (Form2);
|
4382 |
|
|
end if;
|
4383 |
|
|
|
4384 |
|
|
if Present (Form1) then
|
4385 |
|
|
Form1 := Next_Formal (Form1);
|
4386 |
|
|
Form2 := Next_Formal (Form2);
|
4387 |
|
|
end if;
|
4388 |
|
|
|
4389 |
|
|
while Present (Form1) loop
|
4390 |
|
|
if not Is_Controlling_Formal (Form1)
|
4391 |
|
|
and then Present (Next_Formal (Form2))
|
4392 |
|
|
and then Chars (Form1) = Chars (Next_Formal (Form2))
|
4393 |
|
|
then
|
4394 |
|
|
Error_Msg_Node_2 := Alias (Overridden_Subp);
|
4395 |
|
|
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
|
4396 |
|
|
Error_Msg_NE ("& does not match corresponding formal of&#",
|
4397 |
|
|
Form1, Form1);
|
4398 |
|
|
exit;
|
4399 |
|
|
end if;
|
4400 |
|
|
|
4401 |
|
|
Next_Formal (Form1);
|
4402 |
|
|
Next_Formal (Form2);
|
4403 |
|
|
end loop;
|
4404 |
|
|
end;
|
4405 |
|
|
end if;
|
4406 |
|
|
|
4407 |
|
|
if Present (Overridden_Subp)
|
4408 |
|
|
and then not Is_Hidden (Overridden_Subp)
|
4409 |
|
|
then
|
4410 |
|
|
if Must_Not_Override (Spec) then
|
4411 |
|
|
Error_Msg_Sloc := Sloc (Overridden_Subp);
|
4412 |
|
|
|
4413 |
|
|
if Ekind (Subp) = E_Entry then
|
4414 |
|
|
Error_Msg_NE
|
4415 |
|
|
("entry & overrides inherited operation #", Spec, Subp);
|
4416 |
|
|
else
|
4417 |
|
|
Error_Msg_NE
|
4418 |
|
|
("subprogram & overrides inherited operation #", Spec, Subp);
|
4419 |
|
|
end if;
|
4420 |
|
|
|
4421 |
|
|
elsif Is_Subprogram (Subp) then
|
4422 |
|
|
Set_Is_Overriding_Operation (Subp);
|
4423 |
|
|
end if;
|
4424 |
|
|
|
4425 |
|
|
-- If primitive flag is set or this is a protected operation, then
|
4426 |
|
|
-- the operation is overriding at the point of its declaration, so
|
4427 |
|
|
-- warn if necessary. Otherwise it may have been declared before the
|
4428 |
|
|
-- operation it overrides and no check is required.
|
4429 |
|
|
|
4430 |
|
|
if Style_Check
|
4431 |
|
|
and then not Must_Override (Spec)
|
4432 |
|
|
and then (Is_Primitive
|
4433 |
|
|
or else Ekind (Scope (Subp)) = E_Protected_Type)
|
4434 |
|
|
then
|
4435 |
|
|
Style.Missing_Overriding (Decl, Subp);
|
4436 |
|
|
end if;
|
4437 |
|
|
|
4438 |
|
|
-- If Subp is an operator, it may override a predefined operation, if
|
4439 |
|
|
-- it is defined in the same scope as the type to which it applies.
|
4440 |
|
|
-- In that case overridden_subp is empty because of our implicit
|
4441 |
|
|
-- representation for predefined operators. We have to check whether the
|
4442 |
|
|
-- signature of Subp matches that of a predefined operator. Note that
|
4443 |
|
|
-- first argument provides the name of the operator, and the second
|
4444 |
|
|
-- argument the signature that may match that of a standard operation.
|
4445 |
|
|
-- If the indicator is overriding, then the operator must match a
|
4446 |
|
|
-- predefined signature, because we know already that there is no
|
4447 |
|
|
-- explicit overridden operation.
|
4448 |
|
|
|
4449 |
|
|
elsif Nkind (Subp) = N_Defining_Operator_Symbol then
|
4450 |
|
|
declare
|
4451 |
|
|
Typ : constant Entity_Id :=
|
4452 |
|
|
Base_Type (Etype (First_Formal (Subp)));
|
4453 |
|
|
|
4454 |
|
|
Can_Override : constant Boolean :=
|
4455 |
|
|
Operator_Matches_Spec (Subp, Subp)
|
4456 |
|
|
and then Scope (Subp) = Scope (Typ)
|
4457 |
|
|
and then not Is_Class_Wide_Type (Typ);
|
4458 |
|
|
|
4459 |
|
|
begin
|
4460 |
|
|
if Must_Not_Override (Spec) then
|
4461 |
|
|
|
4462 |
|
|
-- If this is not a primitive or a protected subprogram, then
|
4463 |
|
|
-- "not overriding" is illegal.
|
4464 |
|
|
|
4465 |
|
|
if not Is_Primitive
|
4466 |
|
|
and then Ekind (Scope (Subp)) /= E_Protected_Type
|
4467 |
|
|
then
|
4468 |
|
|
Error_Msg_N
|
4469 |
|
|
("overriding indicator only allowed "
|
4470 |
|
|
& "if subprogram is primitive", Subp);
|
4471 |
|
|
|
4472 |
|
|
elsif Can_Override then
|
4473 |
|
|
Error_Msg_NE
|
4474 |
|
|
("subprogram & overrides predefined operator ",
|
4475 |
|
|
Spec, Subp);
|
4476 |
|
|
end if;
|
4477 |
|
|
|
4478 |
|
|
elsif Must_Override (Spec) then
|
4479 |
|
|
if Is_Overriding_Operation (Subp) then
|
4480 |
|
|
Set_Is_Overriding_Operation (Subp);
|
4481 |
|
|
|
4482 |
|
|
elsif not Can_Override then
|
4483 |
|
|
Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
|
4484 |
|
|
end if;
|
4485 |
|
|
|
4486 |
|
|
elsif not Error_Posted (Subp)
|
4487 |
|
|
and then Style_Check
|
4488 |
|
|
and then Can_Override
|
4489 |
|
|
and then
|
4490 |
|
|
not Is_Predefined_File_Name
|
4491 |
|
|
(Unit_File_Name (Get_Source_Unit (Subp)))
|
4492 |
|
|
then
|
4493 |
|
|
Set_Is_Overriding_Operation (Subp);
|
4494 |
|
|
|
4495 |
|
|
-- If style checks are enabled, indicate that the indicator is
|
4496 |
|
|
-- missing. However, at the point of declaration, the type of
|
4497 |
|
|
-- which this is a primitive operation may be private, in which
|
4498 |
|
|
-- case the indicator would be premature.
|
4499 |
|
|
|
4500 |
|
|
if Has_Private_Declaration (Etype (Subp))
|
4501 |
|
|
or else Has_Private_Declaration (Etype (First_Formal (Subp)))
|
4502 |
|
|
then
|
4503 |
|
|
null;
|
4504 |
|
|
else
|
4505 |
|
|
Style.Missing_Overriding (Decl, Subp);
|
4506 |
|
|
end if;
|
4507 |
|
|
end if;
|
4508 |
|
|
end;
|
4509 |
|
|
|
4510 |
|
|
elsif Must_Override (Spec) then
|
4511 |
|
|
if Ekind (Subp) = E_Entry then
|
4512 |
|
|
Error_Msg_NE ("entry & is not overriding", Spec, Subp);
|
4513 |
|
|
else
|
4514 |
|
|
Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
|
4515 |
|
|
end if;
|
4516 |
|
|
|
4517 |
|
|
-- If the operation is marked "not overriding" and it's not primitive
|
4518 |
|
|
-- then an error is issued, unless this is an operation of a task or
|
4519 |
|
|
-- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
|
4520 |
|
|
-- has been specified have already been checked above.
|
4521 |
|
|
|
4522 |
|
|
elsif Must_Not_Override (Spec)
|
4523 |
|
|
and then not Is_Primitive
|
4524 |
|
|
and then Ekind (Subp) /= E_Entry
|
4525 |
|
|
and then Ekind (Scope (Subp)) /= E_Protected_Type
|
4526 |
|
|
then
|
4527 |
|
|
Error_Msg_N
|
4528 |
|
|
("overriding indicator only allowed if subprogram is primitive",
|
4529 |
|
|
Subp);
|
4530 |
|
|
return;
|
4531 |
|
|
end if;
|
4532 |
|
|
end Check_Overriding_Indicator;
|
4533 |
|
|
|
4534 |
|
|
-------------------
|
4535 |
|
|
-- Check_Returns --
|
4536 |
|
|
-------------------
|
4537 |
|
|
|
4538 |
|
|
-- Note: this procedure needs to know far too much about how the expander
|
4539 |
|
|
-- messes with exceptions. The use of the flag Exception_Junk and the
|
4540 |
|
|
-- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
|
4541 |
|
|
-- works, but is not very clean. It would be better if the expansion
|
4542 |
|
|
-- routines would leave Original_Node working nicely, and we could use
|
4543 |
|
|
-- Original_Node here to ignore all the peculiar expander messing ???
|
4544 |
|
|
|
4545 |
|
|
procedure Check_Returns
|
4546 |
|
|
(HSS : Node_Id;
|
4547 |
|
|
Mode : Character;
|
4548 |
|
|
Err : out Boolean;
|
4549 |
|
|
Proc : Entity_Id := Empty)
|
4550 |
|
|
is
|
4551 |
|
|
Handler : Node_Id;
|
4552 |
|
|
|
4553 |
|
|
procedure Check_Statement_Sequence (L : List_Id);
|
4554 |
|
|
-- Internal recursive procedure to check a list of statements for proper
|
4555 |
|
|
-- termination by a return statement (or a transfer of control or a
|
4556 |
|
|
-- compound statement that is itself internally properly terminated).
|
4557 |
|
|
|
4558 |
|
|
------------------------------
|
4559 |
|
|
-- Check_Statement_Sequence --
|
4560 |
|
|
------------------------------
|
4561 |
|
|
|
4562 |
|
|
procedure Check_Statement_Sequence (L : List_Id) is
|
4563 |
|
|
Last_Stm : Node_Id;
|
4564 |
|
|
Stm : Node_Id;
|
4565 |
|
|
Kind : Node_Kind;
|
4566 |
|
|
|
4567 |
|
|
Raise_Exception_Call : Boolean;
|
4568 |
|
|
-- Set True if statement sequence terminated by Raise_Exception call
|
4569 |
|
|
-- or a Reraise_Occurrence call.
|
4570 |
|
|
|
4571 |
|
|
begin
|
4572 |
|
|
Raise_Exception_Call := False;
|
4573 |
|
|
|
4574 |
|
|
-- Get last real statement
|
4575 |
|
|
|
4576 |
|
|
Last_Stm := Last (L);
|
4577 |
|
|
|
4578 |
|
|
-- Deal with digging out exception handler statement sequences that
|
4579 |
|
|
-- have been transformed by the local raise to goto optimization.
|
4580 |
|
|
-- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
|
4581 |
|
|
-- optimization has occurred, we are looking at something like:
|
4582 |
|
|
|
4583 |
|
|
-- begin
|
4584 |
|
|
-- original stmts in block
|
4585 |
|
|
|
4586 |
|
|
-- exception \
|
4587 |
|
|
-- when excep1 => |
|
4588 |
|
|
-- goto L1; | omitted if No_Exception_Propagation
|
4589 |
|
|
-- when excep2 => |
|
4590 |
|
|
-- goto L2; /
|
4591 |
|
|
-- end;
|
4592 |
|
|
|
4593 |
|
|
-- goto L3; -- skip handler when exception not raised
|
4594 |
|
|
|
4595 |
|
|
-- <<L1>> -- target label for local exception
|
4596 |
|
|
-- begin
|
4597 |
|
|
-- estmts1
|
4598 |
|
|
-- end;
|
4599 |
|
|
|
4600 |
|
|
-- goto L3;
|
4601 |
|
|
|
4602 |
|
|
-- <<L2>>
|
4603 |
|
|
-- begin
|
4604 |
|
|
-- estmts2
|
4605 |
|
|
-- end;
|
4606 |
|
|
|
4607 |
|
|
-- <<L3>>
|
4608 |
|
|
|
4609 |
|
|
-- and what we have to do is to dig out the estmts1 and estmts2
|
4610 |
|
|
-- sequences (which were the original sequences of statements in
|
4611 |
|
|
-- the exception handlers) and check them.
|
4612 |
|
|
|
4613 |
|
|
if Nkind (Last_Stm) = N_Label
|
4614 |
|
|
and then Exception_Junk (Last_Stm)
|
4615 |
|
|
then
|
4616 |
|
|
Stm := Last_Stm;
|
4617 |
|
|
loop
|
4618 |
|
|
Prev (Stm);
|
4619 |
|
|
exit when No (Stm);
|
4620 |
|
|
exit when Nkind (Stm) /= N_Block_Statement;
|
4621 |
|
|
exit when not Exception_Junk (Stm);
|
4622 |
|
|
Prev (Stm);
|
4623 |
|
|
exit when No (Stm);
|
4624 |
|
|
exit when Nkind (Stm) /= N_Label;
|
4625 |
|
|
exit when not Exception_Junk (Stm);
|
4626 |
|
|
Check_Statement_Sequence
|
4627 |
|
|
(Statements (Handled_Statement_Sequence (Next (Stm))));
|
4628 |
|
|
|
4629 |
|
|
Prev (Stm);
|
4630 |
|
|
Last_Stm := Stm;
|
4631 |
|
|
exit when No (Stm);
|
4632 |
|
|
exit when Nkind (Stm) /= N_Goto_Statement;
|
4633 |
|
|
exit when not Exception_Junk (Stm);
|
4634 |
|
|
end loop;
|
4635 |
|
|
end if;
|
4636 |
|
|
|
4637 |
|
|
-- Don't count pragmas
|
4638 |
|
|
|
4639 |
|
|
while Nkind (Last_Stm) = N_Pragma
|
4640 |
|
|
|
4641 |
|
|
-- Don't count call to SS_Release (can happen after Raise_Exception)
|
4642 |
|
|
|
4643 |
|
|
or else
|
4644 |
|
|
(Nkind (Last_Stm) = N_Procedure_Call_Statement
|
4645 |
|
|
and then
|
4646 |
|
|
Nkind (Name (Last_Stm)) = N_Identifier
|
4647 |
|
|
and then
|
4648 |
|
|
Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
|
4649 |
|
|
|
4650 |
|
|
-- Don't count exception junk
|
4651 |
|
|
|
4652 |
|
|
or else
|
4653 |
|
|
(Nkind_In (Last_Stm, N_Goto_Statement,
|
4654 |
|
|
N_Label,
|
4655 |
|
|
N_Object_Declaration)
|
4656 |
|
|
and then Exception_Junk (Last_Stm))
|
4657 |
|
|
or else Nkind (Last_Stm) in N_Push_xxx_Label
|
4658 |
|
|
or else Nkind (Last_Stm) in N_Pop_xxx_Label
|
4659 |
|
|
loop
|
4660 |
|
|
Prev (Last_Stm);
|
4661 |
|
|
end loop;
|
4662 |
|
|
|
4663 |
|
|
-- Here we have the "real" last statement
|
4664 |
|
|
|
4665 |
|
|
Kind := Nkind (Last_Stm);
|
4666 |
|
|
|
4667 |
|
|
-- Transfer of control, OK. Note that in the No_Return procedure
|
4668 |
|
|
-- case, we already diagnosed any explicit return statements, so
|
4669 |
|
|
-- we can treat them as OK in this context.
|
4670 |
|
|
|
4671 |
|
|
if Is_Transfer (Last_Stm) then
|
4672 |
|
|
return;
|
4673 |
|
|
|
4674 |
|
|
-- Check cases of explicit non-indirect procedure calls
|
4675 |
|
|
|
4676 |
|
|
elsif Kind = N_Procedure_Call_Statement
|
4677 |
|
|
and then Is_Entity_Name (Name (Last_Stm))
|
4678 |
|
|
then
|
4679 |
|
|
-- Check call to Raise_Exception procedure which is treated
|
4680 |
|
|
-- specially, as is a call to Reraise_Occurrence.
|
4681 |
|
|
|
4682 |
|
|
-- We suppress the warning in these cases since it is likely that
|
4683 |
|
|
-- the programmer really does not expect to deal with the case
|
4684 |
|
|
-- of Null_Occurrence, and thus would find a warning about a
|
4685 |
|
|
-- missing return curious, and raising Program_Error does not
|
4686 |
|
|
-- seem such a bad behavior if this does occur.
|
4687 |
|
|
|
4688 |
|
|
-- Note that in the Ada 2005 case for Raise_Exception, the actual
|
4689 |
|
|
-- behavior will be to raise Constraint_Error (see AI-329).
|
4690 |
|
|
|
4691 |
|
|
if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
|
4692 |
|
|
or else
|
4693 |
|
|
Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
|
4694 |
|
|
then
|
4695 |
|
|
Raise_Exception_Call := True;
|
4696 |
|
|
|
4697 |
|
|
-- For Raise_Exception call, test first argument, if it is
|
4698 |
|
|
-- an attribute reference for a 'Identity call, then we know
|
4699 |
|
|
-- that the call cannot possibly return.
|
4700 |
|
|
|
4701 |
|
|
declare
|
4702 |
|
|
Arg : constant Node_Id :=
|
4703 |
|
|
Original_Node (First_Actual (Last_Stm));
|
4704 |
|
|
begin
|
4705 |
|
|
if Nkind (Arg) = N_Attribute_Reference
|
4706 |
|
|
and then Attribute_Name (Arg) = Name_Identity
|
4707 |
|
|
then
|
4708 |
|
|
return;
|
4709 |
|
|
end if;
|
4710 |
|
|
end;
|
4711 |
|
|
end if;
|
4712 |
|
|
|
4713 |
|
|
-- If statement, need to look inside if there is an else and check
|
4714 |
|
|
-- each constituent statement sequence for proper termination.
|
4715 |
|
|
|
4716 |
|
|
elsif Kind = N_If_Statement
|
4717 |
|
|
and then Present (Else_Statements (Last_Stm))
|
4718 |
|
|
then
|
4719 |
|
|
Check_Statement_Sequence (Then_Statements (Last_Stm));
|
4720 |
|
|
Check_Statement_Sequence (Else_Statements (Last_Stm));
|
4721 |
|
|
|
4722 |
|
|
if Present (Elsif_Parts (Last_Stm)) then
|
4723 |
|
|
declare
|
4724 |
|
|
Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
|
4725 |
|
|
|
4726 |
|
|
begin
|
4727 |
|
|
while Present (Elsif_Part) loop
|
4728 |
|
|
Check_Statement_Sequence (Then_Statements (Elsif_Part));
|
4729 |
|
|
Next (Elsif_Part);
|
4730 |
|
|
end loop;
|
4731 |
|
|
end;
|
4732 |
|
|
end if;
|
4733 |
|
|
|
4734 |
|
|
return;
|
4735 |
|
|
|
4736 |
|
|
-- Case statement, check each case for proper termination
|
4737 |
|
|
|
4738 |
|
|
elsif Kind = N_Case_Statement then
|
4739 |
|
|
declare
|
4740 |
|
|
Case_Alt : Node_Id;
|
4741 |
|
|
begin
|
4742 |
|
|
Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
|
4743 |
|
|
while Present (Case_Alt) loop
|
4744 |
|
|
Check_Statement_Sequence (Statements (Case_Alt));
|
4745 |
|
|
Next_Non_Pragma (Case_Alt);
|
4746 |
|
|
end loop;
|
4747 |
|
|
end;
|
4748 |
|
|
|
4749 |
|
|
return;
|
4750 |
|
|
|
4751 |
|
|
-- Block statement, check its handled sequence of statements
|
4752 |
|
|
|
4753 |
|
|
elsif Kind = N_Block_Statement then
|
4754 |
|
|
declare
|
4755 |
|
|
Err1 : Boolean;
|
4756 |
|
|
|
4757 |
|
|
begin
|
4758 |
|
|
Check_Returns
|
4759 |
|
|
(Handled_Statement_Sequence (Last_Stm), Mode, Err1);
|
4760 |
|
|
|
4761 |
|
|
if Err1 then
|
4762 |
|
|
Err := True;
|
4763 |
|
|
end if;
|
4764 |
|
|
|
4765 |
|
|
return;
|
4766 |
|
|
end;
|
4767 |
|
|
|
4768 |
|
|
-- Loop statement. If there is an iteration scheme, we can definitely
|
4769 |
|
|
-- fall out of the loop. Similarly if there is an exit statement, we
|
4770 |
|
|
-- can fall out. In either case we need a following return.
|
4771 |
|
|
|
4772 |
|
|
elsif Kind = N_Loop_Statement then
|
4773 |
|
|
if Present (Iteration_Scheme (Last_Stm))
|
4774 |
|
|
or else Has_Exit (Entity (Identifier (Last_Stm)))
|
4775 |
|
|
then
|
4776 |
|
|
null;
|
4777 |
|
|
|
4778 |
|
|
-- A loop with no exit statement or iteration scheme is either
|
4779 |
|
|
-- an infinite loop, or it has some other exit (raise/return).
|
4780 |
|
|
-- In either case, no warning is required.
|
4781 |
|
|
|
4782 |
|
|
else
|
4783 |
|
|
return;
|
4784 |
|
|
end if;
|
4785 |
|
|
|
4786 |
|
|
-- Timed entry call, check entry call and delay alternatives
|
4787 |
|
|
|
4788 |
|
|
-- Note: in expanded code, the timed entry call has been converted
|
4789 |
|
|
-- to a set of expanded statements on which the check will work
|
4790 |
|
|
-- correctly in any case.
|
4791 |
|
|
|
4792 |
|
|
elsif Kind = N_Timed_Entry_Call then
|
4793 |
|
|
declare
|
4794 |
|
|
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
|
4795 |
|
|
DCA : constant Node_Id := Delay_Alternative (Last_Stm);
|
4796 |
|
|
|
4797 |
|
|
begin
|
4798 |
|
|
-- If statement sequence of entry call alternative is missing,
|
4799 |
|
|
-- then we can definitely fall through, and we post the error
|
4800 |
|
|
-- message on the entry call alternative itself.
|
4801 |
|
|
|
4802 |
|
|
if No (Statements (ECA)) then
|
4803 |
|
|
Last_Stm := ECA;
|
4804 |
|
|
|
4805 |
|
|
-- If statement sequence of delay alternative is missing, then
|
4806 |
|
|
-- we can definitely fall through, and we post the error
|
4807 |
|
|
-- message on the delay alternative itself.
|
4808 |
|
|
|
4809 |
|
|
-- Note: if both ECA and DCA are missing the return, then we
|
4810 |
|
|
-- post only one message, should be enough to fix the bugs.
|
4811 |
|
|
-- If not we will get a message next time on the DCA when the
|
4812 |
|
|
-- ECA is fixed!
|
4813 |
|
|
|
4814 |
|
|
elsif No (Statements (DCA)) then
|
4815 |
|
|
Last_Stm := DCA;
|
4816 |
|
|
|
4817 |
|
|
-- Else check both statement sequences
|
4818 |
|
|
|
4819 |
|
|
else
|
4820 |
|
|
Check_Statement_Sequence (Statements (ECA));
|
4821 |
|
|
Check_Statement_Sequence (Statements (DCA));
|
4822 |
|
|
return;
|
4823 |
|
|
end if;
|
4824 |
|
|
end;
|
4825 |
|
|
|
4826 |
|
|
-- Conditional entry call, check entry call and else part
|
4827 |
|
|
|
4828 |
|
|
-- Note: in expanded code, the conditional entry call has been
|
4829 |
|
|
-- converted to a set of expanded statements on which the check
|
4830 |
|
|
-- will work correctly in any case.
|
4831 |
|
|
|
4832 |
|
|
elsif Kind = N_Conditional_Entry_Call then
|
4833 |
|
|
declare
|
4834 |
|
|
ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
|
4835 |
|
|
|
4836 |
|
|
begin
|
4837 |
|
|
-- If statement sequence of entry call alternative is missing,
|
4838 |
|
|
-- then we can definitely fall through, and we post the error
|
4839 |
|
|
-- message on the entry call alternative itself.
|
4840 |
|
|
|
4841 |
|
|
if No (Statements (ECA)) then
|
4842 |
|
|
Last_Stm := ECA;
|
4843 |
|
|
|
4844 |
|
|
-- Else check statement sequence and else part
|
4845 |
|
|
|
4846 |
|
|
else
|
4847 |
|
|
Check_Statement_Sequence (Statements (ECA));
|
4848 |
|
|
Check_Statement_Sequence (Else_Statements (Last_Stm));
|
4849 |
|
|
return;
|
4850 |
|
|
end if;
|
4851 |
|
|
end;
|
4852 |
|
|
end if;
|
4853 |
|
|
|
4854 |
|
|
-- If we fall through, issue appropriate message
|
4855 |
|
|
|
4856 |
|
|
if Mode = 'F' then
|
4857 |
|
|
if not Raise_Exception_Call then
|
4858 |
|
|
Error_Msg_N
|
4859 |
|
|
("?RETURN statement missing following this statement!",
|
4860 |
|
|
Last_Stm);
|
4861 |
|
|
Error_Msg_N
|
4862 |
|
|
("\?Program_Error may be raised at run time!",
|
4863 |
|
|
Last_Stm);
|
4864 |
|
|
end if;
|
4865 |
|
|
|
4866 |
|
|
-- Note: we set Err even though we have not issued a warning
|
4867 |
|
|
-- because we still have a case of a missing return. This is
|
4868 |
|
|
-- an extremely marginal case, probably will never be noticed
|
4869 |
|
|
-- but we might as well get it right.
|
4870 |
|
|
|
4871 |
|
|
Err := True;
|
4872 |
|
|
|
4873 |
|
|
-- Otherwise we have the case of a procedure marked No_Return
|
4874 |
|
|
|
4875 |
|
|
else
|
4876 |
|
|
if not Raise_Exception_Call then
|
4877 |
|
|
Error_Msg_N
|
4878 |
|
|
("?implied return after this statement " &
|
4879 |
|
|
"will raise Program_Error",
|
4880 |
|
|
Last_Stm);
|
4881 |
|
|
Error_Msg_NE
|
4882 |
|
|
("\?procedure & is marked as No_Return!",
|
4883 |
|
|
Last_Stm, Proc);
|
4884 |
|
|
end if;
|
4885 |
|
|
|
4886 |
|
|
declare
|
4887 |
|
|
RE : constant Node_Id :=
|
4888 |
|
|
Make_Raise_Program_Error (Sloc (Last_Stm),
|
4889 |
|
|
Reason => PE_Implicit_Return);
|
4890 |
|
|
begin
|
4891 |
|
|
Insert_After (Last_Stm, RE);
|
4892 |
|
|
Analyze (RE);
|
4893 |
|
|
end;
|
4894 |
|
|
end if;
|
4895 |
|
|
end Check_Statement_Sequence;
|
4896 |
|
|
|
4897 |
|
|
-- Start of processing for Check_Returns
|
4898 |
|
|
|
4899 |
|
|
begin
|
4900 |
|
|
Err := False;
|
4901 |
|
|
Check_Statement_Sequence (Statements (HSS));
|
4902 |
|
|
|
4903 |
|
|
if Present (Exception_Handlers (HSS)) then
|
4904 |
|
|
Handler := First_Non_Pragma (Exception_Handlers (HSS));
|
4905 |
|
|
while Present (Handler) loop
|
4906 |
|
|
Check_Statement_Sequence (Statements (Handler));
|
4907 |
|
|
Next_Non_Pragma (Handler);
|
4908 |
|
|
end loop;
|
4909 |
|
|
end if;
|
4910 |
|
|
end Check_Returns;
|
4911 |
|
|
|
4912 |
|
|
----------------------------
|
4913 |
|
|
-- Check_Subprogram_Order --
|
4914 |
|
|
----------------------------
|
4915 |
|
|
|
4916 |
|
|
procedure Check_Subprogram_Order (N : Node_Id) is
|
4917 |
|
|
|
4918 |
|
|
function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
|
4919 |
|
|
-- This is used to check if S1 > S2 in the sense required by this
|
4920 |
|
|
-- test, for example nameab < namec, but name2 < name10.
|
4921 |
|
|
|
4922 |
|
|
-----------------------------
|
4923 |
|
|
-- Subprogram_Name_Greater --
|
4924 |
|
|
-----------------------------
|
4925 |
|
|
|
4926 |
|
|
function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
|
4927 |
|
|
L1, L2 : Positive;
|
4928 |
|
|
N1, N2 : Natural;
|
4929 |
|
|
|
4930 |
|
|
begin
|
4931 |
|
|
-- Remove trailing numeric parts
|
4932 |
|
|
|
4933 |
|
|
L1 := S1'Last;
|
4934 |
|
|
while S1 (L1) in '0' .. '9' loop
|
4935 |
|
|
L1 := L1 - 1;
|
4936 |
|
|
end loop;
|
4937 |
|
|
|
4938 |
|
|
L2 := S2'Last;
|
4939 |
|
|
while S2 (L2) in '0' .. '9' loop
|
4940 |
|
|
L2 := L2 - 1;
|
4941 |
|
|
end loop;
|
4942 |
|
|
|
4943 |
|
|
-- If non-numeric parts non-equal, that's decisive
|
4944 |
|
|
|
4945 |
|
|
if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
|
4946 |
|
|
return False;
|
4947 |
|
|
|
4948 |
|
|
elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
|
4949 |
|
|
return True;
|
4950 |
|
|
|
4951 |
|
|
-- If non-numeric parts equal, compare suffixed numeric parts. Note
|
4952 |
|
|
-- that a missing suffix is treated as numeric zero in this test.
|
4953 |
|
|
|
4954 |
|
|
else
|
4955 |
|
|
N1 := 0;
|
4956 |
|
|
while L1 < S1'Last loop
|
4957 |
|
|
L1 := L1 + 1;
|
4958 |
|
|
N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
|
4959 |
|
|
end loop;
|
4960 |
|
|
|
4961 |
|
|
N2 := 0;
|
4962 |
|
|
while L2 < S2'Last loop
|
4963 |
|
|
L2 := L2 + 1;
|
4964 |
|
|
N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
|
4965 |
|
|
end loop;
|
4966 |
|
|
|
4967 |
|
|
return N1 > N2;
|
4968 |
|
|
end if;
|
4969 |
|
|
end Subprogram_Name_Greater;
|
4970 |
|
|
|
4971 |
|
|
-- Start of processing for Check_Subprogram_Order
|
4972 |
|
|
|
4973 |
|
|
begin
|
4974 |
|
|
-- Check body in alpha order if this is option
|
4975 |
|
|
|
4976 |
|
|
if Style_Check
|
4977 |
|
|
and then Style_Check_Order_Subprograms
|
4978 |
|
|
and then Nkind (N) = N_Subprogram_Body
|
4979 |
|
|
and then Comes_From_Source (N)
|
4980 |
|
|
and then In_Extended_Main_Source_Unit (N)
|
4981 |
|
|
then
|
4982 |
|
|
declare
|
4983 |
|
|
LSN : String_Ptr
|
4984 |
|
|
renames Scope_Stack.Table
|
4985 |
|
|
(Scope_Stack.Last).Last_Subprogram_Name;
|
4986 |
|
|
|
4987 |
|
|
Body_Id : constant Entity_Id :=
|
4988 |
|
|
Defining_Entity (Specification (N));
|
4989 |
|
|
|
4990 |
|
|
begin
|
4991 |
|
|
Get_Decoded_Name_String (Chars (Body_Id));
|
4992 |
|
|
|
4993 |
|
|
if LSN /= null then
|
4994 |
|
|
if Subprogram_Name_Greater
|
4995 |
|
|
(LSN.all, Name_Buffer (1 .. Name_Len))
|
4996 |
|
|
then
|
4997 |
|
|
Style.Subprogram_Not_In_Alpha_Order (Body_Id);
|
4998 |
|
|
end if;
|
4999 |
|
|
|
5000 |
|
|
Free (LSN);
|
5001 |
|
|
end if;
|
5002 |
|
|
|
5003 |
|
|
LSN := new String'(Name_Buffer (1 .. Name_Len));
|
5004 |
|
|
end;
|
5005 |
|
|
end if;
|
5006 |
|
|
end Check_Subprogram_Order;
|
5007 |
|
|
|
5008 |
|
|
------------------------------
|
5009 |
|
|
-- Check_Subtype_Conformant --
|
5010 |
|
|
------------------------------
|
5011 |
|
|
|
5012 |
|
|
procedure Check_Subtype_Conformant
|
5013 |
|
|
(New_Id : Entity_Id;
|
5014 |
|
|
Old_Id : Entity_Id;
|
5015 |
|
|
Err_Loc : Node_Id := Empty;
|
5016 |
|
|
Skip_Controlling_Formals : Boolean := False)
|
5017 |
|
|
is
|
5018 |
|
|
Result : Boolean;
|
5019 |
|
|
pragma Warnings (Off, Result);
|
5020 |
|
|
begin
|
5021 |
|
|
Check_Conformance
|
5022 |
|
|
(New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
|
5023 |
|
|
Skip_Controlling_Formals => Skip_Controlling_Formals);
|
5024 |
|
|
end Check_Subtype_Conformant;
|
5025 |
|
|
|
5026 |
|
|
---------------------------
|
5027 |
|
|
-- Check_Type_Conformant --
|
5028 |
|
|
---------------------------
|
5029 |
|
|
|
5030 |
|
|
procedure Check_Type_Conformant
|
5031 |
|
|
(New_Id : Entity_Id;
|
5032 |
|
|
Old_Id : Entity_Id;
|
5033 |
|
|
Err_Loc : Node_Id := Empty)
|
5034 |
|
|
is
|
5035 |
|
|
Result : Boolean;
|
5036 |
|
|
pragma Warnings (Off, Result);
|
5037 |
|
|
begin
|
5038 |
|
|
Check_Conformance
|
5039 |
|
|
(New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
|
5040 |
|
|
end Check_Type_Conformant;
|
5041 |
|
|
|
5042 |
|
|
----------------------
|
5043 |
|
|
-- Conforming_Types --
|
5044 |
|
|
----------------------
|
5045 |
|
|
|
5046 |
|
|
function Conforming_Types
|
5047 |
|
|
(T1 : Entity_Id;
|
5048 |
|
|
T2 : Entity_Id;
|
5049 |
|
|
Ctype : Conformance_Type;
|
5050 |
|
|
Get_Inst : Boolean := False) return Boolean
|
5051 |
|
|
is
|
5052 |
|
|
Type_1 : Entity_Id := T1;
|
5053 |
|
|
Type_2 : Entity_Id := T2;
|
5054 |
|
|
Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
|
5055 |
|
|
|
5056 |
|
|
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
|
5057 |
|
|
-- If neither T1 nor T2 are generic actual types, or if they are in
|
5058 |
|
|
-- different scopes (e.g. parent and child instances), then verify that
|
5059 |
|
|
-- the base types are equal. Otherwise T1 and T2 must be on the same
|
5060 |
|
|
-- subtype chain. The whole purpose of this procedure is to prevent
|
5061 |
|
|
-- spurious ambiguities in an instantiation that may arise if two
|
5062 |
|
|
-- distinct generic types are instantiated with the same actual.
|
5063 |
|
|
|
5064 |
|
|
function Find_Designated_Type (T : Entity_Id) return Entity_Id;
|
5065 |
|
|
-- An access parameter can designate an incomplete type. If the
|
5066 |
|
|
-- incomplete type is the limited view of a type from a limited_
|
5067 |
|
|
-- with_clause, check whether the non-limited view is available. If
|
5068 |
|
|
-- it is a (non-limited) incomplete type, get the full view.
|
5069 |
|
|
|
5070 |
|
|
function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
|
5071 |
|
|
-- Returns True if and only if either T1 denotes a limited view of T2
|
5072 |
|
|
-- or T2 denotes a limited view of T1. This can arise when the limited
|
5073 |
|
|
-- with view of a type is used in a subprogram declaration and the
|
5074 |
|
|
-- subprogram body is in the scope of a regular with clause for the
|
5075 |
|
|
-- same unit. In such a case, the two type entities can be considered
|
5076 |
|
|
-- identical for purposes of conformance checking.
|
5077 |
|
|
|
5078 |
|
|
----------------------
|
5079 |
|
|
-- Base_Types_Match --
|
5080 |
|
|
----------------------
|
5081 |
|
|
|
5082 |
|
|
function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
|
5083 |
|
|
begin
|
5084 |
|
|
if T1 = T2 then
|
5085 |
|
|
return True;
|
5086 |
|
|
|
5087 |
|
|
elsif Base_Type (T1) = Base_Type (T2) then
|
5088 |
|
|
|
5089 |
|
|
-- The following is too permissive. A more precise test should
|
5090 |
|
|
-- check that the generic actual is an ancestor subtype of the
|
5091 |
|
|
-- other ???.
|
5092 |
|
|
|
5093 |
|
|
return not Is_Generic_Actual_Type (T1)
|
5094 |
|
|
or else not Is_Generic_Actual_Type (T2)
|
5095 |
|
|
or else Scope (T1) /= Scope (T2);
|
5096 |
|
|
|
5097 |
|
|
else
|
5098 |
|
|
return False;
|
5099 |
|
|
end if;
|
5100 |
|
|
end Base_Types_Match;
|
5101 |
|
|
|
5102 |
|
|
--------------------------
|
5103 |
|
|
-- Find_Designated_Type --
|
5104 |
|
|
--------------------------
|
5105 |
|
|
|
5106 |
|
|
function Find_Designated_Type (T : Entity_Id) return Entity_Id is
|
5107 |
|
|
Desig : Entity_Id;
|
5108 |
|
|
|
5109 |
|
|
begin
|
5110 |
|
|
Desig := Directly_Designated_Type (T);
|
5111 |
|
|
|
5112 |
|
|
if Ekind (Desig) = E_Incomplete_Type then
|
5113 |
|
|
|
5114 |
|
|
-- If regular incomplete type, get full view if available
|
5115 |
|
|
|
5116 |
|
|
if Present (Full_View (Desig)) then
|
5117 |
|
|
Desig := Full_View (Desig);
|
5118 |
|
|
|
5119 |
|
|
-- If limited view of a type, get non-limited view if available,
|
5120 |
|
|
-- and check again for a regular incomplete type.
|
5121 |
|
|
|
5122 |
|
|
elsif Present (Non_Limited_View (Desig)) then
|
5123 |
|
|
Desig := Get_Full_View (Non_Limited_View (Desig));
|
5124 |
|
|
end if;
|
5125 |
|
|
end if;
|
5126 |
|
|
|
5127 |
|
|
return Desig;
|
5128 |
|
|
end Find_Designated_Type;
|
5129 |
|
|
|
5130 |
|
|
-------------------------------
|
5131 |
|
|
-- Matches_Limited_With_View --
|
5132 |
|
|
-------------------------------
|
5133 |
|
|
|
5134 |
|
|
function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
|
5135 |
|
|
begin
|
5136 |
|
|
-- In some cases a type imported through a limited_with clause, and
|
5137 |
|
|
-- its nonlimited view are both visible, for example in an anonymous
|
5138 |
|
|
-- access-to-class-wide type in a formal. Both entities designate the
|
5139 |
|
|
-- same type.
|
5140 |
|
|
|
5141 |
|
|
if From_With_Type (T1)
|
5142 |
|
|
and then T2 = Available_View (T1)
|
5143 |
|
|
then
|
5144 |
|
|
return True;
|
5145 |
|
|
|
5146 |
|
|
elsif From_With_Type (T2)
|
5147 |
|
|
and then T1 = Available_View (T2)
|
5148 |
|
|
then
|
5149 |
|
|
return True;
|
5150 |
|
|
|
5151 |
|
|
else
|
5152 |
|
|
return False;
|
5153 |
|
|
end if;
|
5154 |
|
|
end Matches_Limited_With_View;
|
5155 |
|
|
|
5156 |
|
|
-- Start of processing for Conforming_Types
|
5157 |
|
|
|
5158 |
|
|
begin
|
5159 |
|
|
-- The context is an instance association for a formal
|
5160 |
|
|
-- access-to-subprogram type; the formal parameter types require
|
5161 |
|
|
-- mapping because they may denote other formal parameters of the
|
5162 |
|
|
-- generic unit.
|
5163 |
|
|
|
5164 |
|
|
if Get_Inst then
|
5165 |
|
|
Type_1 := Get_Instance_Of (T1);
|
5166 |
|
|
Type_2 := Get_Instance_Of (T2);
|
5167 |
|
|
end if;
|
5168 |
|
|
|
5169 |
|
|
-- If one of the types is a view of the other introduced by a limited
|
5170 |
|
|
-- with clause, treat these as conforming for all purposes.
|
5171 |
|
|
|
5172 |
|
|
if Matches_Limited_With_View (T1, T2) then
|
5173 |
|
|
return True;
|
5174 |
|
|
|
5175 |
|
|
elsif Base_Types_Match (Type_1, Type_2) then
|
5176 |
|
|
return Ctype <= Mode_Conformant
|
5177 |
|
|
or else Subtypes_Statically_Match (Type_1, Type_2);
|
5178 |
|
|
|
5179 |
|
|
elsif Is_Incomplete_Or_Private_Type (Type_1)
|
5180 |
|
|
and then Present (Full_View (Type_1))
|
5181 |
|
|
and then Base_Types_Match (Full_View (Type_1), Type_2)
|
5182 |
|
|
then
|
5183 |
|
|
return Ctype <= Mode_Conformant
|
5184 |
|
|
or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
|
5185 |
|
|
|
5186 |
|
|
elsif Ekind (Type_2) = E_Incomplete_Type
|
5187 |
|
|
and then Present (Full_View (Type_2))
|
5188 |
|
|
and then Base_Types_Match (Type_1, Full_View (Type_2))
|
5189 |
|
|
then
|
5190 |
|
|
return Ctype <= Mode_Conformant
|
5191 |
|
|
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
|
5192 |
|
|
|
5193 |
|
|
elsif Is_Private_Type (Type_2)
|
5194 |
|
|
and then In_Instance
|
5195 |
|
|
and then Present (Full_View (Type_2))
|
5196 |
|
|
and then Base_Types_Match (Type_1, Full_View (Type_2))
|
5197 |
|
|
then
|
5198 |
|
|
return Ctype <= Mode_Conformant
|
5199 |
|
|
or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
|
5200 |
|
|
end if;
|
5201 |
|
|
|
5202 |
|
|
-- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
|
5203 |
|
|
-- treated recursively because they carry a signature.
|
5204 |
|
|
|
5205 |
|
|
Are_Anonymous_Access_To_Subprogram_Types :=
|
5206 |
|
|
Ekind (Type_1) = Ekind (Type_2)
|
5207 |
|
|
and then
|
5208 |
|
|
(Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
|
5209 |
|
|
or else
|
5210 |
|
|
Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
|
5211 |
|
|
|
5212 |
|
|
-- Test anonymous access type case. For this case, static subtype
|
5213 |
|
|
-- matching is required for mode conformance (RM 6.3.1(15)). We check
|
5214 |
|
|
-- the base types because we may have built internal subtype entities
|
5215 |
|
|
-- to handle null-excluding types (see Process_Formals).
|
5216 |
|
|
|
5217 |
|
|
if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
|
5218 |
|
|
and then
|
5219 |
|
|
Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
|
5220 |
|
|
or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
|
5221 |
|
|
then
|
5222 |
|
|
declare
|
5223 |
|
|
Desig_1 : Entity_Id;
|
5224 |
|
|
Desig_2 : Entity_Id;
|
5225 |
|
|
|
5226 |
|
|
begin
|
5227 |
|
|
-- In Ada2005, access constant indicators must match for
|
5228 |
|
|
-- subtype conformance.
|
5229 |
|
|
|
5230 |
|
|
if Ada_Version >= Ada_05
|
5231 |
|
|
and then Ctype >= Subtype_Conformant
|
5232 |
|
|
and then
|
5233 |
|
|
Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
|
5234 |
|
|
then
|
5235 |
|
|
return False;
|
5236 |
|
|
end if;
|
5237 |
|
|
|
5238 |
|
|
Desig_1 := Find_Designated_Type (Type_1);
|
5239 |
|
|
|
5240 |
|
|
Desig_2 := Find_Designated_Type (Type_2);
|
5241 |
|
|
|
5242 |
|
|
-- If the context is an instance association for a formal
|
5243 |
|
|
-- access-to-subprogram type; formal access parameter designated
|
5244 |
|
|
-- types require mapping because they may denote other formal
|
5245 |
|
|
-- parameters of the generic unit.
|
5246 |
|
|
|
5247 |
|
|
if Get_Inst then
|
5248 |
|
|
Desig_1 := Get_Instance_Of (Desig_1);
|
5249 |
|
|
Desig_2 := Get_Instance_Of (Desig_2);
|
5250 |
|
|
end if;
|
5251 |
|
|
|
5252 |
|
|
-- It is possible for a Class_Wide_Type to be introduced for an
|
5253 |
|
|
-- incomplete type, in which case there is a separate class_ wide
|
5254 |
|
|
-- type for the full view. The types conform if their Etypes
|
5255 |
|
|
-- conform, i.e. one may be the full view of the other. This can
|
5256 |
|
|
-- only happen in the context of an access parameter, other uses
|
5257 |
|
|
-- of an incomplete Class_Wide_Type are illegal.
|
5258 |
|
|
|
5259 |
|
|
if Is_Class_Wide_Type (Desig_1)
|
5260 |
|
|
and then Is_Class_Wide_Type (Desig_2)
|
5261 |
|
|
then
|
5262 |
|
|
return
|
5263 |
|
|
Conforming_Types
|
5264 |
|
|
(Etype (Base_Type (Desig_1)),
|
5265 |
|
|
Etype (Base_Type (Desig_2)), Ctype);
|
5266 |
|
|
|
5267 |
|
|
elsif Are_Anonymous_Access_To_Subprogram_Types then
|
5268 |
|
|
if Ada_Version < Ada_05 then
|
5269 |
|
|
return Ctype = Type_Conformant
|
5270 |
|
|
or else
|
5271 |
|
|
Subtypes_Statically_Match (Desig_1, Desig_2);
|
5272 |
|
|
|
5273 |
|
|
-- We must check the conformance of the signatures themselves
|
5274 |
|
|
|
5275 |
|
|
else
|
5276 |
|
|
declare
|
5277 |
|
|
Conformant : Boolean;
|
5278 |
|
|
begin
|
5279 |
|
|
Check_Conformance
|
5280 |
|
|
(Desig_1, Desig_2, Ctype, False, Conformant);
|
5281 |
|
|
return Conformant;
|
5282 |
|
|
end;
|
5283 |
|
|
end if;
|
5284 |
|
|
|
5285 |
|
|
else
|
5286 |
|
|
return Base_Type (Desig_1) = Base_Type (Desig_2)
|
5287 |
|
|
and then (Ctype = Type_Conformant
|
5288 |
|
|
or else
|
5289 |
|
|
Subtypes_Statically_Match (Desig_1, Desig_2));
|
5290 |
|
|
end if;
|
5291 |
|
|
end;
|
5292 |
|
|
|
5293 |
|
|
-- Otherwise definitely no match
|
5294 |
|
|
|
5295 |
|
|
else
|
5296 |
|
|
if ((Ekind (Type_1) = E_Anonymous_Access_Type
|
5297 |
|
|
and then Is_Access_Type (Type_2))
|
5298 |
|
|
or else (Ekind (Type_2) = E_Anonymous_Access_Type
|
5299 |
|
|
and then Is_Access_Type (Type_1)))
|
5300 |
|
|
and then
|
5301 |
|
|
Conforming_Types
|
5302 |
|
|
(Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
|
5303 |
|
|
then
|
5304 |
|
|
May_Hide_Profile := True;
|
5305 |
|
|
end if;
|
5306 |
|
|
|
5307 |
|
|
return False;
|
5308 |
|
|
end if;
|
5309 |
|
|
end Conforming_Types;
|
5310 |
|
|
|
5311 |
|
|
--------------------------
|
5312 |
|
|
-- Create_Extra_Formals --
|
5313 |
|
|
--------------------------
|
5314 |
|
|
|
5315 |
|
|
procedure Create_Extra_Formals (E : Entity_Id) is
|
5316 |
|
|
Formal : Entity_Id;
|
5317 |
|
|
First_Extra : Entity_Id := Empty;
|
5318 |
|
|
Last_Extra : Entity_Id;
|
5319 |
|
|
Formal_Type : Entity_Id;
|
5320 |
|
|
P_Formal : Entity_Id := Empty;
|
5321 |
|
|
|
5322 |
|
|
function Add_Extra_Formal
|
5323 |
|
|
(Assoc_Entity : Entity_Id;
|
5324 |
|
|
Typ : Entity_Id;
|
5325 |
|
|
Scope : Entity_Id;
|
5326 |
|
|
Suffix : String) return Entity_Id;
|
5327 |
|
|
-- Add an extra formal to the current list of formals and extra formals.
|
5328 |
|
|
-- The extra formal is added to the end of the list of extra formals,
|
5329 |
|
|
-- and also returned as the result. These formals are always of mode IN.
|
5330 |
|
|
-- The new formal has the type Typ, is declared in Scope, and its name
|
5331 |
|
|
-- is given by a concatenation of the name of Assoc_Entity and Suffix.
|
5332 |
|
|
|
5333 |
|
|
----------------------
|
5334 |
|
|
-- Add_Extra_Formal --
|
5335 |
|
|
----------------------
|
5336 |
|
|
|
5337 |
|
|
function Add_Extra_Formal
|
5338 |
|
|
(Assoc_Entity : Entity_Id;
|
5339 |
|
|
Typ : Entity_Id;
|
5340 |
|
|
Scope : Entity_Id;
|
5341 |
|
|
Suffix : String) return Entity_Id
|
5342 |
|
|
is
|
5343 |
|
|
EF : constant Entity_Id :=
|
5344 |
|
|
Make_Defining_Identifier (Sloc (Assoc_Entity),
|
5345 |
|
|
Chars => New_External_Name (Chars (Assoc_Entity),
|
5346 |
|
|
Suffix => Suffix));
|
5347 |
|
|
|
5348 |
|
|
begin
|
5349 |
|
|
-- A little optimization. Never generate an extra formal for the
|
5350 |
|
|
-- _init operand of an initialization procedure, since it could
|
5351 |
|
|
-- never be used.
|
5352 |
|
|
|
5353 |
|
|
if Chars (Formal) = Name_uInit then
|
5354 |
|
|
return Empty;
|
5355 |
|
|
end if;
|
5356 |
|
|
|
5357 |
|
|
Set_Ekind (EF, E_In_Parameter);
|
5358 |
|
|
Set_Actual_Subtype (EF, Typ);
|
5359 |
|
|
Set_Etype (EF, Typ);
|
5360 |
|
|
Set_Scope (EF, Scope);
|
5361 |
|
|
Set_Mechanism (EF, Default_Mechanism);
|
5362 |
|
|
Set_Formal_Validity (EF);
|
5363 |
|
|
|
5364 |
|
|
if No (First_Extra) then
|
5365 |
|
|
First_Extra := EF;
|
5366 |
|
|
Set_Extra_Formals (Scope, First_Extra);
|
5367 |
|
|
end if;
|
5368 |
|
|
|
5369 |
|
|
if Present (Last_Extra) then
|
5370 |
|
|
Set_Extra_Formal (Last_Extra, EF);
|
5371 |
|
|
end if;
|
5372 |
|
|
|
5373 |
|
|
Last_Extra := EF;
|
5374 |
|
|
|
5375 |
|
|
return EF;
|
5376 |
|
|
end Add_Extra_Formal;
|
5377 |
|
|
|
5378 |
|
|
-- Start of processing for Create_Extra_Formals
|
5379 |
|
|
|
5380 |
|
|
begin
|
5381 |
|
|
-- We never generate extra formals if expansion is not active
|
5382 |
|
|
-- because we don't need them unless we are generating code.
|
5383 |
|
|
|
5384 |
|
|
if not Expander_Active then
|
5385 |
|
|
return;
|
5386 |
|
|
end if;
|
5387 |
|
|
|
5388 |
|
|
-- If this is a derived subprogram then the subtypes of the parent
|
5389 |
|
|
-- subprogram's formal parameters will be used to determine the need
|
5390 |
|
|
-- for extra formals.
|
5391 |
|
|
|
5392 |
|
|
if Is_Overloadable (E) and then Present (Alias (E)) then
|
5393 |
|
|
P_Formal := First_Formal (Alias (E));
|
5394 |
|
|
end if;
|
5395 |
|
|
|
5396 |
|
|
Last_Extra := Empty;
|
5397 |
|
|
Formal := First_Formal (E);
|
5398 |
|
|
while Present (Formal) loop
|
5399 |
|
|
Last_Extra := Formal;
|
5400 |
|
|
Next_Formal (Formal);
|
5401 |
|
|
end loop;
|
5402 |
|
|
|
5403 |
|
|
-- If Extra_formals were already created, don't do it again. This
|
5404 |
|
|
-- situation may arise for subprogram types created as part of
|
5405 |
|
|
-- dispatching calls (see Expand_Dispatching_Call)
|
5406 |
|
|
|
5407 |
|
|
if Present (Last_Extra) and then
|
5408 |
|
|
Present (Extra_Formal (Last_Extra))
|
5409 |
|
|
then
|
5410 |
|
|
return;
|
5411 |
|
|
end if;
|
5412 |
|
|
|
5413 |
|
|
-- If the subprogram is a predefined dispatching subprogram then don't
|
5414 |
|
|
-- generate any extra constrained or accessibility level formals. In
|
5415 |
|
|
-- general we suppress these for internal subprograms (by not calling
|
5416 |
|
|
-- Freeze_Subprogram and Create_Extra_Formals at all), but internally
|
5417 |
|
|
-- generated stream attributes do get passed through because extra
|
5418 |
|
|
-- build-in-place formals are needed in some cases (limited 'Input).
|
5419 |
|
|
|
5420 |
|
|
if Is_Predefined_Internal_Operation (E) then
|
5421 |
|
|
goto Test_For_BIP_Extras;
|
5422 |
|
|
end if;
|
5423 |
|
|
|
5424 |
|
|
Formal := First_Formal (E);
|
5425 |
|
|
while Present (Formal) loop
|
5426 |
|
|
|
5427 |
|
|
-- Create extra formal for supporting the attribute 'Constrained.
|
5428 |
|
|
-- The case of a private type view without discriminants also
|
5429 |
|
|
-- requires the extra formal if the underlying type has defaulted
|
5430 |
|
|
-- discriminants.
|
5431 |
|
|
|
5432 |
|
|
if Ekind (Formal) /= E_In_Parameter then
|
5433 |
|
|
if Present (P_Formal) then
|
5434 |
|
|
Formal_Type := Etype (P_Formal);
|
5435 |
|
|
else
|
5436 |
|
|
Formal_Type := Etype (Formal);
|
5437 |
|
|
end if;
|
5438 |
|
|
|
5439 |
|
|
-- Do not produce extra formals for Unchecked_Union parameters.
|
5440 |
|
|
-- Jump directly to the end of the loop.
|
5441 |
|
|
|
5442 |
|
|
if Is_Unchecked_Union (Base_Type (Formal_Type)) then
|
5443 |
|
|
goto Skip_Extra_Formal_Generation;
|
5444 |
|
|
end if;
|
5445 |
|
|
|
5446 |
|
|
if not Has_Discriminants (Formal_Type)
|
5447 |
|
|
and then Ekind (Formal_Type) in Private_Kind
|
5448 |
|
|
and then Present (Underlying_Type (Formal_Type))
|
5449 |
|
|
then
|
5450 |
|
|
Formal_Type := Underlying_Type (Formal_Type);
|
5451 |
|
|
end if;
|
5452 |
|
|
|
5453 |
|
|
if Has_Discriminants (Formal_Type)
|
5454 |
|
|
and then not Is_Constrained (Formal_Type)
|
5455 |
|
|
and then not Is_Indefinite_Subtype (Formal_Type)
|
5456 |
|
|
then
|
5457 |
|
|
Set_Extra_Constrained
|
5458 |
|
|
(Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
|
5459 |
|
|
end if;
|
5460 |
|
|
end if;
|
5461 |
|
|
|
5462 |
|
|
-- Create extra formal for supporting accessibility checking. This
|
5463 |
|
|
-- is done for both anonymous access formals and formals of named
|
5464 |
|
|
-- access types that are marked as controlling formals. The latter
|
5465 |
|
|
-- case can occur when Expand_Dispatching_Call creates a subprogram
|
5466 |
|
|
-- type and substitutes the types of access-to-class-wide actuals
|
5467 |
|
|
-- for the anonymous access-to-specific-type of controlling formals.
|
5468 |
|
|
-- Base_Type is applied because in cases where there is a null
|
5469 |
|
|
-- exclusion the formal may have an access subtype.
|
5470 |
|
|
|
5471 |
|
|
-- This is suppressed if we specifically suppress accessibility
|
5472 |
|
|
-- checks at the package level for either the subprogram, or the
|
5473 |
|
|
-- package in which it resides. However, we do not suppress it
|
5474 |
|
|
-- simply if the scope has accessibility checks suppressed, since
|
5475 |
|
|
-- this could cause trouble when clients are compiled with a
|
5476 |
|
|
-- different suppression setting. The explicit checks at the
|
5477 |
|
|
-- package level are safe from this point of view.
|
5478 |
|
|
|
5479 |
|
|
if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
|
5480 |
|
|
or else (Is_Controlling_Formal (Formal)
|
5481 |
|
|
and then Is_Access_Type (Base_Type (Etype (Formal)))))
|
5482 |
|
|
and then not
|
5483 |
|
|
(Explicit_Suppress (E, Accessibility_Check)
|
5484 |
|
|
or else
|
5485 |
|
|
Explicit_Suppress (Scope (E), Accessibility_Check))
|
5486 |
|
|
and then
|
5487 |
|
|
(No (P_Formal)
|
5488 |
|
|
or else Present (Extra_Accessibility (P_Formal)))
|
5489 |
|
|
then
|
5490 |
|
|
Set_Extra_Accessibility
|
5491 |
|
|
(Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
|
5492 |
|
|
end if;
|
5493 |
|
|
|
5494 |
|
|
-- This label is required when skipping extra formal generation for
|
5495 |
|
|
-- Unchecked_Union parameters.
|
5496 |
|
|
|
5497 |
|
|
<<Skip_Extra_Formal_Generation>>
|
5498 |
|
|
|
5499 |
|
|
if Present (P_Formal) then
|
5500 |
|
|
Next_Formal (P_Formal);
|
5501 |
|
|
end if;
|
5502 |
|
|
|
5503 |
|
|
Next_Formal (Formal);
|
5504 |
|
|
end loop;
|
5505 |
|
|
|
5506 |
|
|
<<Test_For_BIP_Extras>>
|
5507 |
|
|
|
5508 |
|
|
-- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
|
5509 |
|
|
-- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
|
5510 |
|
|
|
5511 |
|
|
if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
|
5512 |
|
|
declare
|
5513 |
|
|
Result_Subt : constant Entity_Id := Etype (E);
|
5514 |
|
|
|
5515 |
|
|
Discard : Entity_Id;
|
5516 |
|
|
pragma Warnings (Off, Discard);
|
5517 |
|
|
|
5518 |
|
|
begin
|
5519 |
|
|
-- In the case of functions with unconstrained result subtypes,
|
5520 |
|
|
-- add a 3-state formal indicating whether the return object is
|
5521 |
|
|
-- allocated by the caller (0), or should be allocated by the
|
5522 |
|
|
-- callee on the secondary stack (1) or in the global heap (2).
|
5523 |
|
|
-- For the moment we just use Natural for the type of this formal.
|
5524 |
|
|
-- Note that this formal isn't usually needed in the case where
|
5525 |
|
|
-- the result subtype is constrained, but it is needed when the
|
5526 |
|
|
-- function has a tagged result, because generally such functions
|
5527 |
|
|
-- can be called in a dispatching context and such calls must be
|
5528 |
|
|
-- handled like calls to a class-wide function.
|
5529 |
|
|
|
5530 |
|
|
if not Is_Constrained (Underlying_Type (Result_Subt))
|
5531 |
|
|
or else Is_Tagged_Type (Underlying_Type (Result_Subt))
|
5532 |
|
|
then
|
5533 |
|
|
Discard :=
|
5534 |
|
|
Add_Extra_Formal
|
5535 |
|
|
(E, Standard_Natural,
|
5536 |
|
|
E, BIP_Formal_Suffix (BIP_Alloc_Form));
|
5537 |
|
|
end if;
|
5538 |
|
|
|
5539 |
|
|
-- In the case of functions whose result type has controlled
|
5540 |
|
|
-- parts, we have an extra formal of type
|
5541 |
|
|
-- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
|
5542 |
|
|
-- is, we are passing a pointer to a finalization list (which is
|
5543 |
|
|
-- itself a pointer). This extra formal is then passed along to
|
5544 |
|
|
-- Move_Final_List in case of successful completion of a return
|
5545 |
|
|
-- statement. We cannot pass an 'in out' parameter, because we
|
5546 |
|
|
-- need to update the finalization list during an abort-deferred
|
5547 |
|
|
-- region, rather than using copy-back after the function
|
5548 |
|
|
-- returns. This is true even if we are able to get away with
|
5549 |
|
|
-- having 'in out' parameters, which are normally illegal for
|
5550 |
|
|
-- functions. This formal is also needed when the function has
|
5551 |
|
|
-- a tagged result.
|
5552 |
|
|
|
5553 |
|
|
if Needs_BIP_Final_List (E) then
|
5554 |
|
|
Discard :=
|
5555 |
|
|
Add_Extra_Formal
|
5556 |
|
|
(E, RTE (RE_Finalizable_Ptr_Ptr),
|
5557 |
|
|
E, BIP_Formal_Suffix (BIP_Final_List));
|
5558 |
|
|
end if;
|
5559 |
|
|
|
5560 |
|
|
-- If the result type contains tasks, we have two extra formals:
|
5561 |
|
|
-- the master of the tasks to be created, and the caller's
|
5562 |
|
|
-- activation chain.
|
5563 |
|
|
|
5564 |
|
|
if Has_Task (Result_Subt) then
|
5565 |
|
|
Discard :=
|
5566 |
|
|
Add_Extra_Formal
|
5567 |
|
|
(E, RTE (RE_Master_Id),
|
5568 |
|
|
E, BIP_Formal_Suffix (BIP_Master));
|
5569 |
|
|
Discard :=
|
5570 |
|
|
Add_Extra_Formal
|
5571 |
|
|
(E, RTE (RE_Activation_Chain_Access),
|
5572 |
|
|
E, BIP_Formal_Suffix (BIP_Activation_Chain));
|
5573 |
|
|
end if;
|
5574 |
|
|
|
5575 |
|
|
-- All build-in-place functions get an extra formal that will be
|
5576 |
|
|
-- passed the address of the return object within the caller.
|
5577 |
|
|
|
5578 |
|
|
declare
|
5579 |
|
|
Formal_Type : constant Entity_Id :=
|
5580 |
|
|
Create_Itype
|
5581 |
|
|
(E_Anonymous_Access_Type, E,
|
5582 |
|
|
Scope_Id => Scope (E));
|
5583 |
|
|
begin
|
5584 |
|
|
Set_Directly_Designated_Type (Formal_Type, Result_Subt);
|
5585 |
|
|
Set_Etype (Formal_Type, Formal_Type);
|
5586 |
|
|
Set_Depends_On_Private
|
5587 |
|
|
(Formal_Type, Has_Private_Component (Formal_Type));
|
5588 |
|
|
Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
|
5589 |
|
|
Set_Is_Access_Constant (Formal_Type, False);
|
5590 |
|
|
|
5591 |
|
|
-- Ada 2005 (AI-50217): Propagate the attribute that indicates
|
5592 |
|
|
-- the designated type comes from the limited view (for
|
5593 |
|
|
-- back-end purposes).
|
5594 |
|
|
|
5595 |
|
|
Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
|
5596 |
|
|
|
5597 |
|
|
Layout_Type (Formal_Type);
|
5598 |
|
|
|
5599 |
|
|
Discard :=
|
5600 |
|
|
Add_Extra_Formal
|
5601 |
|
|
(E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
|
5602 |
|
|
end;
|
5603 |
|
|
end;
|
5604 |
|
|
end if;
|
5605 |
|
|
end Create_Extra_Formals;
|
5606 |
|
|
|
5607 |
|
|
-----------------------------
|
5608 |
|
|
-- Enter_Overloaded_Entity --
|
5609 |
|
|
-----------------------------
|
5610 |
|
|
|
5611 |
|
|
procedure Enter_Overloaded_Entity (S : Entity_Id) is
|
5612 |
|
|
E : Entity_Id := Current_Entity_In_Scope (S);
|
5613 |
|
|
C_E : Entity_Id := Current_Entity (S);
|
5614 |
|
|
|
5615 |
|
|
begin
|
5616 |
|
|
if Present (E) then
|
5617 |
|
|
Set_Has_Homonym (E);
|
5618 |
|
|
Set_Has_Homonym (S);
|
5619 |
|
|
end if;
|
5620 |
|
|
|
5621 |
|
|
Set_Is_Immediately_Visible (S);
|
5622 |
|
|
Set_Scope (S, Current_Scope);
|
5623 |
|
|
|
5624 |
|
|
-- Chain new entity if front of homonym in current scope, so that
|
5625 |
|
|
-- homonyms are contiguous.
|
5626 |
|
|
|
5627 |
|
|
if Present (E)
|
5628 |
|
|
and then E /= C_E
|
5629 |
|
|
then
|
5630 |
|
|
while Homonym (C_E) /= E loop
|
5631 |
|
|
C_E := Homonym (C_E);
|
5632 |
|
|
end loop;
|
5633 |
|
|
|
5634 |
|
|
Set_Homonym (C_E, S);
|
5635 |
|
|
|
5636 |
|
|
else
|
5637 |
|
|
E := C_E;
|
5638 |
|
|
Set_Current_Entity (S);
|
5639 |
|
|
end if;
|
5640 |
|
|
|
5641 |
|
|
Set_Homonym (S, E);
|
5642 |
|
|
|
5643 |
|
|
Append_Entity (S, Current_Scope);
|
5644 |
|
|
Set_Public_Status (S);
|
5645 |
|
|
|
5646 |
|
|
if Debug_Flag_E then
|
5647 |
|
|
Write_Str ("New overloaded entity chain: ");
|
5648 |
|
|
Write_Name (Chars (S));
|
5649 |
|
|
|
5650 |
|
|
E := S;
|
5651 |
|
|
while Present (E) loop
|
5652 |
|
|
Write_Str (" "); Write_Int (Int (E));
|
5653 |
|
|
E := Homonym (E);
|
5654 |
|
|
end loop;
|
5655 |
|
|
|
5656 |
|
|
Write_Eol;
|
5657 |
|
|
end if;
|
5658 |
|
|
|
5659 |
|
|
-- Generate warning for hiding
|
5660 |
|
|
|
5661 |
|
|
if Warn_On_Hiding
|
5662 |
|
|
and then Comes_From_Source (S)
|
5663 |
|
|
and then In_Extended_Main_Source_Unit (S)
|
5664 |
|
|
then
|
5665 |
|
|
E := S;
|
5666 |
|
|
loop
|
5667 |
|
|
E := Homonym (E);
|
5668 |
|
|
exit when No (E);
|
5669 |
|
|
|
5670 |
|
|
-- Warn unless genuine overloading
|
5671 |
|
|
|
5672 |
|
|
if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
|
5673 |
|
|
and then (Is_Immediately_Visible (E)
|
5674 |
|
|
or else
|
5675 |
|
|
Is_Potentially_Use_Visible (S))
|
5676 |
|
|
then
|
5677 |
|
|
Error_Msg_Sloc := Sloc (E);
|
5678 |
|
|
Error_Msg_N ("declaration of & hides one#?", S);
|
5679 |
|
|
end if;
|
5680 |
|
|
end loop;
|
5681 |
|
|
end if;
|
5682 |
|
|
end Enter_Overloaded_Entity;
|
5683 |
|
|
|
5684 |
|
|
-----------------------------
|
5685 |
|
|
-- Find_Corresponding_Spec --
|
5686 |
|
|
-----------------------------
|
5687 |
|
|
|
5688 |
|
|
function Find_Corresponding_Spec
|
5689 |
|
|
(N : Node_Id;
|
5690 |
|
|
Post_Error : Boolean := True) return Entity_Id
|
5691 |
|
|
is
|
5692 |
|
|
Spec : constant Node_Id := Specification (N);
|
5693 |
|
|
Designator : constant Entity_Id := Defining_Entity (Spec);
|
5694 |
|
|
|
5695 |
|
|
E : Entity_Id;
|
5696 |
|
|
|
5697 |
|
|
begin
|
5698 |
|
|
E := Current_Entity (Designator);
|
5699 |
|
|
while Present (E) loop
|
5700 |
|
|
|
5701 |
|
|
-- We are looking for a matching spec. It must have the same scope,
|
5702 |
|
|
-- and the same name, and either be type conformant, or be the case
|
5703 |
|
|
-- of a library procedure spec and its body (which belong to one
|
5704 |
|
|
-- another regardless of whether they are type conformant or not).
|
5705 |
|
|
|
5706 |
|
|
if Scope (E) = Current_Scope then
|
5707 |
|
|
if Current_Scope = Standard_Standard
|
5708 |
|
|
or else (Ekind (E) = Ekind (Designator)
|
5709 |
|
|
and then Type_Conformant (E, Designator))
|
5710 |
|
|
then
|
5711 |
|
|
-- Within an instantiation, we know that spec and body are
|
5712 |
|
|
-- subtype conformant, because they were subtype conformant
|
5713 |
|
|
-- in the generic. We choose the subtype-conformant entity
|
5714 |
|
|
-- here as well, to resolve spurious ambiguities in the
|
5715 |
|
|
-- instance that were not present in the generic (i.e. when
|
5716 |
|
|
-- two different types are given the same actual). If we are
|
5717 |
|
|
-- looking for a spec to match a body, full conformance is
|
5718 |
|
|
-- expected.
|
5719 |
|
|
|
5720 |
|
|
if In_Instance then
|
5721 |
|
|
Set_Convention (Designator, Convention (E));
|
5722 |
|
|
|
5723 |
|
|
if Nkind (N) = N_Subprogram_Body
|
5724 |
|
|
and then Present (Homonym (E))
|
5725 |
|
|
and then not Fully_Conformant (E, Designator)
|
5726 |
|
|
then
|
5727 |
|
|
goto Next_Entity;
|
5728 |
|
|
|
5729 |
|
|
elsif not Subtype_Conformant (E, Designator) then
|
5730 |
|
|
goto Next_Entity;
|
5731 |
|
|
end if;
|
5732 |
|
|
end if;
|
5733 |
|
|
|
5734 |
|
|
if not Has_Completion (E) then
|
5735 |
|
|
if Nkind (N) /= N_Subprogram_Body_Stub then
|
5736 |
|
|
Set_Corresponding_Spec (N, E);
|
5737 |
|
|
end if;
|
5738 |
|
|
|
5739 |
|
|
Set_Has_Completion (E);
|
5740 |
|
|
return E;
|
5741 |
|
|
|
5742 |
|
|
elsif Nkind (Parent (N)) = N_Subunit then
|
5743 |
|
|
|
5744 |
|
|
-- If this is the proper body of a subunit, the completion
|
5745 |
|
|
-- flag is set when analyzing the stub.
|
5746 |
|
|
|
5747 |
|
|
return E;
|
5748 |
|
|
|
5749 |
|
|
-- If E is an internal function with a controlling result
|
5750 |
|
|
-- that was created for an operation inherited by a null
|
5751 |
|
|
-- extension, it may be overridden by a body without a previous
|
5752 |
|
|
-- spec (one more reason why these should be shunned). In that
|
5753 |
|
|
-- case remove the generated body, because the current one is
|
5754 |
|
|
-- the explicit overriding.
|
5755 |
|
|
|
5756 |
|
|
elsif Ekind (E) = E_Function
|
5757 |
|
|
and then Ada_Version >= Ada_05
|
5758 |
|
|
and then not Comes_From_Source (E)
|
5759 |
|
|
and then Has_Controlling_Result (E)
|
5760 |
|
|
and then Is_Null_Extension (Etype (E))
|
5761 |
|
|
and then Comes_From_Source (Spec)
|
5762 |
|
|
then
|
5763 |
|
|
Set_Has_Completion (E, False);
|
5764 |
|
|
|
5765 |
|
|
if Expander_Active then
|
5766 |
|
|
Remove
|
5767 |
|
|
(Unit_Declaration_Node
|
5768 |
|
|
(Corresponding_Body (Unit_Declaration_Node (E))));
|
5769 |
|
|
return E;
|
5770 |
|
|
|
5771 |
|
|
-- If expansion is disabled, the wrapper function has not
|
5772 |
|
|
-- been generated, and this is the standard case of a late
|
5773 |
|
|
-- body overriding an inherited operation.
|
5774 |
|
|
|
5775 |
|
|
else
|
5776 |
|
|
return Empty;
|
5777 |
|
|
end if;
|
5778 |
|
|
|
5779 |
|
|
-- If the body already exists, then this is an error unless
|
5780 |
|
|
-- the previous declaration is the implicit declaration of a
|
5781 |
|
|
-- derived subprogram, or this is a spurious overloading in an
|
5782 |
|
|
-- instance.
|
5783 |
|
|
|
5784 |
|
|
elsif No (Alias (E))
|
5785 |
|
|
and then not Is_Intrinsic_Subprogram (E)
|
5786 |
|
|
and then not In_Instance
|
5787 |
|
|
and then Post_Error
|
5788 |
|
|
then
|
5789 |
|
|
Error_Msg_Sloc := Sloc (E);
|
5790 |
|
|
|
5791 |
|
|
if Is_Imported (E) then
|
5792 |
|
|
Error_Msg_NE
|
5793 |
|
|
("body not allowed for imported subprogram & declared#",
|
5794 |
|
|
N, E);
|
5795 |
|
|
else
|
5796 |
|
|
Error_Msg_NE ("duplicate body for & declared#", N, E);
|
5797 |
|
|
end if;
|
5798 |
|
|
end if;
|
5799 |
|
|
|
5800 |
|
|
-- Child units cannot be overloaded, so a conformance mismatch
|
5801 |
|
|
-- between body and a previous spec is an error.
|
5802 |
|
|
|
5803 |
|
|
elsif Is_Child_Unit (E)
|
5804 |
|
|
and then
|
5805 |
|
|
Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
|
5806 |
|
|
and then
|
5807 |
|
|
Nkind (Parent (Unit_Declaration_Node (Designator))) =
|
5808 |
|
|
N_Compilation_Unit
|
5809 |
|
|
and then Post_Error
|
5810 |
|
|
then
|
5811 |
|
|
Error_Msg_N
|
5812 |
|
|
("body of child unit does not match previous declaration", N);
|
5813 |
|
|
end if;
|
5814 |
|
|
end if;
|
5815 |
|
|
|
5816 |
|
|
<<Next_Entity>>
|
5817 |
|
|
E := Homonym (E);
|
5818 |
|
|
end loop;
|
5819 |
|
|
|
5820 |
|
|
-- On exit, we know that no previous declaration of subprogram exists
|
5821 |
|
|
|
5822 |
|
|
return Empty;
|
5823 |
|
|
end Find_Corresponding_Spec;
|
5824 |
|
|
|
5825 |
|
|
----------------------
|
5826 |
|
|
-- Fully_Conformant --
|
5827 |
|
|
----------------------
|
5828 |
|
|
|
5829 |
|
|
function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
|
5830 |
|
|
Result : Boolean;
|
5831 |
|
|
begin
|
5832 |
|
|
Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
|
5833 |
|
|
return Result;
|
5834 |
|
|
end Fully_Conformant;
|
5835 |
|
|
|
5836 |
|
|
----------------------------------
|
5837 |
|
|
-- Fully_Conformant_Expressions --
|
5838 |
|
|
----------------------------------
|
5839 |
|
|
|
5840 |
|
|
function Fully_Conformant_Expressions
|
5841 |
|
|
(Given_E1 : Node_Id;
|
5842 |
|
|
Given_E2 : Node_Id) return Boolean
|
5843 |
|
|
is
|
5844 |
|
|
E1 : constant Node_Id := Original_Node (Given_E1);
|
5845 |
|
|
E2 : constant Node_Id := Original_Node (Given_E2);
|
5846 |
|
|
-- We always test conformance on original nodes, since it is possible
|
5847 |
|
|
-- for analysis and/or expansion to make things look as though they
|
5848 |
|
|
-- conform when they do not, e.g. by converting 1+2 into 3.
|
5849 |
|
|
|
5850 |
|
|
function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
|
5851 |
|
|
renames Fully_Conformant_Expressions;
|
5852 |
|
|
|
5853 |
|
|
function FCL (L1, L2 : List_Id) return Boolean;
|
5854 |
|
|
-- Compare elements of two lists for conformance. Elements have to
|
5855 |
|
|
-- be conformant, and actuals inserted as default parameters do not
|
5856 |
|
|
-- match explicit actuals with the same value.
|
5857 |
|
|
|
5858 |
|
|
function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
|
5859 |
|
|
-- Compare an operator node with a function call
|
5860 |
|
|
|
5861 |
|
|
---------
|
5862 |
|
|
-- FCL --
|
5863 |
|
|
---------
|
5864 |
|
|
|
5865 |
|
|
function FCL (L1, L2 : List_Id) return Boolean is
|
5866 |
|
|
N1, N2 : Node_Id;
|
5867 |
|
|
|
5868 |
|
|
begin
|
5869 |
|
|
if L1 = No_List then
|
5870 |
|
|
N1 := Empty;
|
5871 |
|
|
else
|
5872 |
|
|
N1 := First (L1);
|
5873 |
|
|
end if;
|
5874 |
|
|
|
5875 |
|
|
if L2 = No_List then
|
5876 |
|
|
N2 := Empty;
|
5877 |
|
|
else
|
5878 |
|
|
N2 := First (L2);
|
5879 |
|
|
end if;
|
5880 |
|
|
|
5881 |
|
|
-- Compare two lists, skipping rewrite insertions (we want to
|
5882 |
|
|
-- compare the original trees, not the expanded versions!)
|
5883 |
|
|
|
5884 |
|
|
loop
|
5885 |
|
|
if Is_Rewrite_Insertion (N1) then
|
5886 |
|
|
Next (N1);
|
5887 |
|
|
elsif Is_Rewrite_Insertion (N2) then
|
5888 |
|
|
Next (N2);
|
5889 |
|
|
elsif No (N1) then
|
5890 |
|
|
return No (N2);
|
5891 |
|
|
elsif No (N2) then
|
5892 |
|
|
return False;
|
5893 |
|
|
elsif not FCE (N1, N2) then
|
5894 |
|
|
return False;
|
5895 |
|
|
else
|
5896 |
|
|
Next (N1);
|
5897 |
|
|
Next (N2);
|
5898 |
|
|
end if;
|
5899 |
|
|
end loop;
|
5900 |
|
|
end FCL;
|
5901 |
|
|
|
5902 |
|
|
---------
|
5903 |
|
|
-- FCO --
|
5904 |
|
|
---------
|
5905 |
|
|
|
5906 |
|
|
function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
|
5907 |
|
|
Actuals : constant List_Id := Parameter_Associations (Call_Node);
|
5908 |
|
|
Act : Node_Id;
|
5909 |
|
|
|
5910 |
|
|
begin
|
5911 |
|
|
if No (Actuals)
|
5912 |
|
|
or else Entity (Op_Node) /= Entity (Name (Call_Node))
|
5913 |
|
|
then
|
5914 |
|
|
return False;
|
5915 |
|
|
|
5916 |
|
|
else
|
5917 |
|
|
Act := First (Actuals);
|
5918 |
|
|
|
5919 |
|
|
if Nkind (Op_Node) in N_Binary_Op then
|
5920 |
|
|
if not FCE (Left_Opnd (Op_Node), Act) then
|
5921 |
|
|
return False;
|
5922 |
|
|
end if;
|
5923 |
|
|
|
5924 |
|
|
Next (Act);
|
5925 |
|
|
end if;
|
5926 |
|
|
|
5927 |
|
|
return Present (Act)
|
5928 |
|
|
and then FCE (Right_Opnd (Op_Node), Act)
|
5929 |
|
|
and then No (Next (Act));
|
5930 |
|
|
end if;
|
5931 |
|
|
end FCO;
|
5932 |
|
|
|
5933 |
|
|
-- Start of processing for Fully_Conformant_Expressions
|
5934 |
|
|
|
5935 |
|
|
begin
|
5936 |
|
|
-- Non-conformant if paren count does not match. Note: if some idiot
|
5937 |
|
|
-- complains that we don't do this right for more than 3 levels of
|
5938 |
|
|
-- parentheses, they will be treated with the respect they deserve!
|
5939 |
|
|
|
5940 |
|
|
if Paren_Count (E1) /= Paren_Count (E2) then
|
5941 |
|
|
return False;
|
5942 |
|
|
|
5943 |
|
|
-- If same entities are referenced, then they are conformant even if
|
5944 |
|
|
-- they have different forms (RM 8.3.1(19-20)).
|
5945 |
|
|
|
5946 |
|
|
elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
|
5947 |
|
|
if Present (Entity (E1)) then
|
5948 |
|
|
return Entity (E1) = Entity (E2)
|
5949 |
|
|
or else (Chars (Entity (E1)) = Chars (Entity (E2))
|
5950 |
|
|
and then Ekind (Entity (E1)) = E_Discriminant
|
5951 |
|
|
and then Ekind (Entity (E2)) = E_In_Parameter);
|
5952 |
|
|
|
5953 |
|
|
elsif Nkind (E1) = N_Expanded_Name
|
5954 |
|
|
and then Nkind (E2) = N_Expanded_Name
|
5955 |
|
|
and then Nkind (Selector_Name (E1)) = N_Character_Literal
|
5956 |
|
|
and then Nkind (Selector_Name (E2)) = N_Character_Literal
|
5957 |
|
|
then
|
5958 |
|
|
return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
|
5959 |
|
|
|
5960 |
|
|
else
|
5961 |
|
|
-- Identifiers in component associations don't always have
|
5962 |
|
|
-- entities, but their names must conform.
|
5963 |
|
|
|
5964 |
|
|
return Nkind (E1) = N_Identifier
|
5965 |
|
|
and then Nkind (E2) = N_Identifier
|
5966 |
|
|
and then Chars (E1) = Chars (E2);
|
5967 |
|
|
end if;
|
5968 |
|
|
|
5969 |
|
|
elsif Nkind (E1) = N_Character_Literal
|
5970 |
|
|
and then Nkind (E2) = N_Expanded_Name
|
5971 |
|
|
then
|
5972 |
|
|
return Nkind (Selector_Name (E2)) = N_Character_Literal
|
5973 |
|
|
and then Chars (E1) = Chars (Selector_Name (E2));
|
5974 |
|
|
|
5975 |
|
|
elsif Nkind (E2) = N_Character_Literal
|
5976 |
|
|
and then Nkind (E1) = N_Expanded_Name
|
5977 |
|
|
then
|
5978 |
|
|
return Nkind (Selector_Name (E1)) = N_Character_Literal
|
5979 |
|
|
and then Chars (E2) = Chars (Selector_Name (E1));
|
5980 |
|
|
|
5981 |
|
|
elsif Nkind (E1) in N_Op
|
5982 |
|
|
and then Nkind (E2) = N_Function_Call
|
5983 |
|
|
then
|
5984 |
|
|
return FCO (E1, E2);
|
5985 |
|
|
|
5986 |
|
|
elsif Nkind (E2) in N_Op
|
5987 |
|
|
and then Nkind (E1) = N_Function_Call
|
5988 |
|
|
then
|
5989 |
|
|
return FCO (E2, E1);
|
5990 |
|
|
|
5991 |
|
|
-- Otherwise we must have the same syntactic entity
|
5992 |
|
|
|
5993 |
|
|
elsif Nkind (E1) /= Nkind (E2) then
|
5994 |
|
|
return False;
|
5995 |
|
|
|
5996 |
|
|
-- At this point, we specialize by node type
|
5997 |
|
|
|
5998 |
|
|
else
|
5999 |
|
|
case Nkind (E1) is
|
6000 |
|
|
|
6001 |
|
|
when N_Aggregate =>
|
6002 |
|
|
return
|
6003 |
|
|
FCL (Expressions (E1), Expressions (E2))
|
6004 |
|
|
and then FCL (Component_Associations (E1),
|
6005 |
|
|
Component_Associations (E2));
|
6006 |
|
|
|
6007 |
|
|
when N_Allocator =>
|
6008 |
|
|
if Nkind (Expression (E1)) = N_Qualified_Expression
|
6009 |
|
|
or else
|
6010 |
|
|
Nkind (Expression (E2)) = N_Qualified_Expression
|
6011 |
|
|
then
|
6012 |
|
|
return FCE (Expression (E1), Expression (E2));
|
6013 |
|
|
|
6014 |
|
|
-- Check that the subtype marks and any constraints
|
6015 |
|
|
-- are conformant
|
6016 |
|
|
|
6017 |
|
|
else
|
6018 |
|
|
declare
|
6019 |
|
|
Indic1 : constant Node_Id := Expression (E1);
|
6020 |
|
|
Indic2 : constant Node_Id := Expression (E2);
|
6021 |
|
|
Elt1 : Node_Id;
|
6022 |
|
|
Elt2 : Node_Id;
|
6023 |
|
|
|
6024 |
|
|
begin
|
6025 |
|
|
if Nkind (Indic1) /= N_Subtype_Indication then
|
6026 |
|
|
return
|
6027 |
|
|
Nkind (Indic2) /= N_Subtype_Indication
|
6028 |
|
|
and then Entity (Indic1) = Entity (Indic2);
|
6029 |
|
|
|
6030 |
|
|
elsif Nkind (Indic2) /= N_Subtype_Indication then
|
6031 |
|
|
return
|
6032 |
|
|
Nkind (Indic1) /= N_Subtype_Indication
|
6033 |
|
|
and then Entity (Indic1) = Entity (Indic2);
|
6034 |
|
|
|
6035 |
|
|
else
|
6036 |
|
|
if Entity (Subtype_Mark (Indic1)) /=
|
6037 |
|
|
Entity (Subtype_Mark (Indic2))
|
6038 |
|
|
then
|
6039 |
|
|
return False;
|
6040 |
|
|
end if;
|
6041 |
|
|
|
6042 |
|
|
Elt1 := First (Constraints (Constraint (Indic1)));
|
6043 |
|
|
Elt2 := First (Constraints (Constraint (Indic2)));
|
6044 |
|
|
while Present (Elt1) and then Present (Elt2) loop
|
6045 |
|
|
if not FCE (Elt1, Elt2) then
|
6046 |
|
|
return False;
|
6047 |
|
|
end if;
|
6048 |
|
|
|
6049 |
|
|
Next (Elt1);
|
6050 |
|
|
Next (Elt2);
|
6051 |
|
|
end loop;
|
6052 |
|
|
|
6053 |
|
|
return True;
|
6054 |
|
|
end if;
|
6055 |
|
|
end;
|
6056 |
|
|
end if;
|
6057 |
|
|
|
6058 |
|
|
when N_Attribute_Reference =>
|
6059 |
|
|
return
|
6060 |
|
|
Attribute_Name (E1) = Attribute_Name (E2)
|
6061 |
|
|
and then FCL (Expressions (E1), Expressions (E2));
|
6062 |
|
|
|
6063 |
|
|
when N_Binary_Op =>
|
6064 |
|
|
return
|
6065 |
|
|
Entity (E1) = Entity (E2)
|
6066 |
|
|
and then FCE (Left_Opnd (E1), Left_Opnd (E2))
|
6067 |
|
|
and then FCE (Right_Opnd (E1), Right_Opnd (E2));
|
6068 |
|
|
|
6069 |
|
|
when N_Short_Circuit | N_Membership_Test =>
|
6070 |
|
|
return
|
6071 |
|
|
FCE (Left_Opnd (E1), Left_Opnd (E2))
|
6072 |
|
|
and then
|
6073 |
|
|
FCE (Right_Opnd (E1), Right_Opnd (E2));
|
6074 |
|
|
|
6075 |
|
|
when N_Character_Literal =>
|
6076 |
|
|
return
|
6077 |
|
|
Char_Literal_Value (E1) = Char_Literal_Value (E2);
|
6078 |
|
|
|
6079 |
|
|
when N_Component_Association =>
|
6080 |
|
|
return
|
6081 |
|
|
FCL (Choices (E1), Choices (E2))
|
6082 |
|
|
and then FCE (Expression (E1), Expression (E2));
|
6083 |
|
|
|
6084 |
|
|
when N_Conditional_Expression =>
|
6085 |
|
|
return
|
6086 |
|
|
FCL (Expressions (E1), Expressions (E2));
|
6087 |
|
|
|
6088 |
|
|
when N_Explicit_Dereference =>
|
6089 |
|
|
return
|
6090 |
|
|
FCE (Prefix (E1), Prefix (E2));
|
6091 |
|
|
|
6092 |
|
|
when N_Extension_Aggregate =>
|
6093 |
|
|
return
|
6094 |
|
|
FCL (Expressions (E1), Expressions (E2))
|
6095 |
|
|
and then Null_Record_Present (E1) =
|
6096 |
|
|
Null_Record_Present (E2)
|
6097 |
|
|
and then FCL (Component_Associations (E1),
|
6098 |
|
|
Component_Associations (E2));
|
6099 |
|
|
|
6100 |
|
|
when N_Function_Call =>
|
6101 |
|
|
return
|
6102 |
|
|
FCE (Name (E1), Name (E2))
|
6103 |
|
|
and then FCL (Parameter_Associations (E1),
|
6104 |
|
|
Parameter_Associations (E2));
|
6105 |
|
|
|
6106 |
|
|
when N_Indexed_Component =>
|
6107 |
|
|
return
|
6108 |
|
|
FCE (Prefix (E1), Prefix (E2))
|
6109 |
|
|
and then FCL (Expressions (E1), Expressions (E2));
|
6110 |
|
|
|
6111 |
|
|
when N_Integer_Literal =>
|
6112 |
|
|
return (Intval (E1) = Intval (E2));
|
6113 |
|
|
|
6114 |
|
|
when N_Null =>
|
6115 |
|
|
return True;
|
6116 |
|
|
|
6117 |
|
|
when N_Operator_Symbol =>
|
6118 |
|
|
return
|
6119 |
|
|
Chars (E1) = Chars (E2);
|
6120 |
|
|
|
6121 |
|
|
when N_Others_Choice =>
|
6122 |
|
|
return True;
|
6123 |
|
|
|
6124 |
|
|
when N_Parameter_Association =>
|
6125 |
|
|
return
|
6126 |
|
|
Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
|
6127 |
|
|
and then FCE (Explicit_Actual_Parameter (E1),
|
6128 |
|
|
Explicit_Actual_Parameter (E2));
|
6129 |
|
|
|
6130 |
|
|
when N_Qualified_Expression =>
|
6131 |
|
|
return
|
6132 |
|
|
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
|
6133 |
|
|
and then FCE (Expression (E1), Expression (E2));
|
6134 |
|
|
|
6135 |
|
|
when N_Range =>
|
6136 |
|
|
return
|
6137 |
|
|
FCE (Low_Bound (E1), Low_Bound (E2))
|
6138 |
|
|
and then FCE (High_Bound (E1), High_Bound (E2));
|
6139 |
|
|
|
6140 |
|
|
when N_Real_Literal =>
|
6141 |
|
|
return (Realval (E1) = Realval (E2));
|
6142 |
|
|
|
6143 |
|
|
when N_Selected_Component =>
|
6144 |
|
|
return
|
6145 |
|
|
FCE (Prefix (E1), Prefix (E2))
|
6146 |
|
|
and then FCE (Selector_Name (E1), Selector_Name (E2));
|
6147 |
|
|
|
6148 |
|
|
when N_Slice =>
|
6149 |
|
|
return
|
6150 |
|
|
FCE (Prefix (E1), Prefix (E2))
|
6151 |
|
|
and then FCE (Discrete_Range (E1), Discrete_Range (E2));
|
6152 |
|
|
|
6153 |
|
|
when N_String_Literal =>
|
6154 |
|
|
declare
|
6155 |
|
|
S1 : constant String_Id := Strval (E1);
|
6156 |
|
|
S2 : constant String_Id := Strval (E2);
|
6157 |
|
|
L1 : constant Nat := String_Length (S1);
|
6158 |
|
|
L2 : constant Nat := String_Length (S2);
|
6159 |
|
|
|
6160 |
|
|
begin
|
6161 |
|
|
if L1 /= L2 then
|
6162 |
|
|
return False;
|
6163 |
|
|
|
6164 |
|
|
else
|
6165 |
|
|
for J in 1 .. L1 loop
|
6166 |
|
|
if Get_String_Char (S1, J) /=
|
6167 |
|
|
Get_String_Char (S2, J)
|
6168 |
|
|
then
|
6169 |
|
|
return False;
|
6170 |
|
|
end if;
|
6171 |
|
|
end loop;
|
6172 |
|
|
|
6173 |
|
|
return True;
|
6174 |
|
|
end if;
|
6175 |
|
|
end;
|
6176 |
|
|
|
6177 |
|
|
when N_Type_Conversion =>
|
6178 |
|
|
return
|
6179 |
|
|
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
|
6180 |
|
|
and then FCE (Expression (E1), Expression (E2));
|
6181 |
|
|
|
6182 |
|
|
when N_Unary_Op =>
|
6183 |
|
|
return
|
6184 |
|
|
Entity (E1) = Entity (E2)
|
6185 |
|
|
and then FCE (Right_Opnd (E1), Right_Opnd (E2));
|
6186 |
|
|
|
6187 |
|
|
when N_Unchecked_Type_Conversion =>
|
6188 |
|
|
return
|
6189 |
|
|
FCE (Subtype_Mark (E1), Subtype_Mark (E2))
|
6190 |
|
|
and then FCE (Expression (E1), Expression (E2));
|
6191 |
|
|
|
6192 |
|
|
-- All other node types cannot appear in this context. Strictly
|
6193 |
|
|
-- we should raise a fatal internal error. Instead we just ignore
|
6194 |
|
|
-- the nodes. This means that if anyone makes a mistake in the
|
6195 |
|
|
-- expander and mucks an expression tree irretrievably, the
|
6196 |
|
|
-- result will be a failure to detect a (probably very obscure)
|
6197 |
|
|
-- case of non-conformance, which is better than bombing on some
|
6198 |
|
|
-- case where two expressions do in fact conform.
|
6199 |
|
|
|
6200 |
|
|
when others =>
|
6201 |
|
|
return True;
|
6202 |
|
|
|
6203 |
|
|
end case;
|
6204 |
|
|
end if;
|
6205 |
|
|
end Fully_Conformant_Expressions;
|
6206 |
|
|
|
6207 |
|
|
----------------------------------------
|
6208 |
|
|
-- Fully_Conformant_Discrete_Subtypes --
|
6209 |
|
|
----------------------------------------
|
6210 |
|
|
|
6211 |
|
|
function Fully_Conformant_Discrete_Subtypes
|
6212 |
|
|
(Given_S1 : Node_Id;
|
6213 |
|
|
Given_S2 : Node_Id) return Boolean
|
6214 |
|
|
is
|
6215 |
|
|
S1 : constant Node_Id := Original_Node (Given_S1);
|
6216 |
|
|
S2 : constant Node_Id := Original_Node (Given_S2);
|
6217 |
|
|
|
6218 |
|
|
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
|
6219 |
|
|
-- Special-case for a bound given by a discriminant, which in the body
|
6220 |
|
|
-- is replaced with the discriminal of the enclosing type.
|
6221 |
|
|
|
6222 |
|
|
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
|
6223 |
|
|
-- Check both bounds
|
6224 |
|
|
|
6225 |
|
|
-----------------------
|
6226 |
|
|
-- Conforming_Bounds --
|
6227 |
|
|
-----------------------
|
6228 |
|
|
|
6229 |
|
|
function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
|
6230 |
|
|
begin
|
6231 |
|
|
if Is_Entity_Name (B1)
|
6232 |
|
|
and then Is_Entity_Name (B2)
|
6233 |
|
|
and then Ekind (Entity (B1)) = E_Discriminant
|
6234 |
|
|
then
|
6235 |
|
|
return Chars (B1) = Chars (B2);
|
6236 |
|
|
|
6237 |
|
|
else
|
6238 |
|
|
return Fully_Conformant_Expressions (B1, B2);
|
6239 |
|
|
end if;
|
6240 |
|
|
end Conforming_Bounds;
|
6241 |
|
|
|
6242 |
|
|
-----------------------
|
6243 |
|
|
-- Conforming_Ranges --
|
6244 |
|
|
-----------------------
|
6245 |
|
|
|
6246 |
|
|
function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
|
6247 |
|
|
begin
|
6248 |
|
|
return
|
6249 |
|
|
Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
|
6250 |
|
|
and then
|
6251 |
|
|
Conforming_Bounds (High_Bound (R1), High_Bound (R2));
|
6252 |
|
|
end Conforming_Ranges;
|
6253 |
|
|
|
6254 |
|
|
-- Start of processing for Fully_Conformant_Discrete_Subtypes
|
6255 |
|
|
|
6256 |
|
|
begin
|
6257 |
|
|
if Nkind (S1) /= Nkind (S2) then
|
6258 |
|
|
return False;
|
6259 |
|
|
|
6260 |
|
|
elsif Is_Entity_Name (S1) then
|
6261 |
|
|
return Entity (S1) = Entity (S2);
|
6262 |
|
|
|
6263 |
|
|
elsif Nkind (S1) = N_Range then
|
6264 |
|
|
return Conforming_Ranges (S1, S2);
|
6265 |
|
|
|
6266 |
|
|
elsif Nkind (S1) = N_Subtype_Indication then
|
6267 |
|
|
return
|
6268 |
|
|
Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
|
6269 |
|
|
and then
|
6270 |
|
|
Conforming_Ranges
|
6271 |
|
|
(Range_Expression (Constraint (S1)),
|
6272 |
|
|
Range_Expression (Constraint (S2)));
|
6273 |
|
|
else
|
6274 |
|
|
return True;
|
6275 |
|
|
end if;
|
6276 |
|
|
end Fully_Conformant_Discrete_Subtypes;
|
6277 |
|
|
|
6278 |
|
|
--------------------
|
6279 |
|
|
-- Install_Entity --
|
6280 |
|
|
--------------------
|
6281 |
|
|
|
6282 |
|
|
procedure Install_Entity (E : Entity_Id) is
|
6283 |
|
|
Prev : constant Entity_Id := Current_Entity (E);
|
6284 |
|
|
begin
|
6285 |
|
|
Set_Is_Immediately_Visible (E);
|
6286 |
|
|
Set_Current_Entity (E);
|
6287 |
|
|
Set_Homonym (E, Prev);
|
6288 |
|
|
end Install_Entity;
|
6289 |
|
|
|
6290 |
|
|
---------------------
|
6291 |
|
|
-- Install_Formals --
|
6292 |
|
|
---------------------
|
6293 |
|
|
|
6294 |
|
|
procedure Install_Formals (Id : Entity_Id) is
|
6295 |
|
|
F : Entity_Id;
|
6296 |
|
|
begin
|
6297 |
|
|
F := First_Formal (Id);
|
6298 |
|
|
while Present (F) loop
|
6299 |
|
|
Install_Entity (F);
|
6300 |
|
|
Next_Formal (F);
|
6301 |
|
|
end loop;
|
6302 |
|
|
end Install_Formals;
|
6303 |
|
|
|
6304 |
|
|
-----------------------------
|
6305 |
|
|
-- Is_Interface_Conformant --
|
6306 |
|
|
-----------------------------
|
6307 |
|
|
|
6308 |
|
|
function Is_Interface_Conformant
|
6309 |
|
|
(Tagged_Type : Entity_Id;
|
6310 |
|
|
Iface_Prim : Entity_Id;
|
6311 |
|
|
Prim : Entity_Id) return Boolean
|
6312 |
|
|
is
|
6313 |
|
|
Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
|
6314 |
|
|
Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
|
6315 |
|
|
|
6316 |
|
|
begin
|
6317 |
|
|
pragma Assert (Is_Subprogram (Iface_Prim)
|
6318 |
|
|
and then Is_Subprogram (Prim)
|
6319 |
|
|
and then Is_Dispatching_Operation (Iface_Prim)
|
6320 |
|
|
and then Is_Dispatching_Operation (Prim));
|
6321 |
|
|
|
6322 |
|
|
pragma Assert (Is_Interface (Iface)
|
6323 |
|
|
or else (Present (Alias (Iface_Prim))
|
6324 |
|
|
and then
|
6325 |
|
|
Is_Interface
|
6326 |
|
|
(Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
|
6327 |
|
|
|
6328 |
|
|
if Prim = Iface_Prim
|
6329 |
|
|
or else not Is_Subprogram (Prim)
|
6330 |
|
|
or else Ekind (Prim) /= Ekind (Iface_Prim)
|
6331 |
|
|
or else not Is_Dispatching_Operation (Prim)
|
6332 |
|
|
or else Scope (Prim) /= Scope (Tagged_Type)
|
6333 |
|
|
or else No (Typ)
|
6334 |
|
|
or else Base_Type (Typ) /= Tagged_Type
|
6335 |
|
|
or else not Primitive_Names_Match (Iface_Prim, Prim)
|
6336 |
|
|
then
|
6337 |
|
|
return False;
|
6338 |
|
|
|
6339 |
|
|
-- Case of a procedure, or a function that does not have a controlling
|
6340 |
|
|
-- result (I or access I).
|
6341 |
|
|
|
6342 |
|
|
elsif Ekind (Iface_Prim) = E_Procedure
|
6343 |
|
|
or else Etype (Prim) = Etype (Iface_Prim)
|
6344 |
|
|
or else not Has_Controlling_Result (Prim)
|
6345 |
|
|
then
|
6346 |
|
|
return Type_Conformant (Prim, Iface_Prim,
|
6347 |
|
|
Skip_Controlling_Formals => True);
|
6348 |
|
|
|
6349 |
|
|
-- Case of a function returning an interface, or an access to one.
|
6350 |
|
|
-- Check that the return types correspond.
|
6351 |
|
|
|
6352 |
|
|
elsif Implements_Interface (Typ, Iface) then
|
6353 |
|
|
if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
|
6354 |
|
|
/=
|
6355 |
|
|
(Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
|
6356 |
|
|
then
|
6357 |
|
|
return False;
|
6358 |
|
|
else
|
6359 |
|
|
return
|
6360 |
|
|
Type_Conformant (Prim, Iface_Prim,
|
6361 |
|
|
Skip_Controlling_Formals => True);
|
6362 |
|
|
end if;
|
6363 |
|
|
|
6364 |
|
|
else
|
6365 |
|
|
return False;
|
6366 |
|
|
end if;
|
6367 |
|
|
end Is_Interface_Conformant;
|
6368 |
|
|
|
6369 |
|
|
---------------------------------
|
6370 |
|
|
-- Is_Non_Overriding_Operation --
|
6371 |
|
|
---------------------------------
|
6372 |
|
|
|
6373 |
|
|
function Is_Non_Overriding_Operation
|
6374 |
|
|
(Prev_E : Entity_Id;
|
6375 |
|
|
New_E : Entity_Id) return Boolean
|
6376 |
|
|
is
|
6377 |
|
|
Formal : Entity_Id;
|
6378 |
|
|
F_Typ : Entity_Id;
|
6379 |
|
|
G_Typ : Entity_Id := Empty;
|
6380 |
|
|
|
6381 |
|
|
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
|
6382 |
|
|
-- If F_Type is a derived type associated with a generic actual subtype,
|
6383 |
|
|
-- then return its Generic_Parent_Type attribute, else return Empty.
|
6384 |
|
|
|
6385 |
|
|
function Types_Correspond
|
6386 |
|
|
(P_Type : Entity_Id;
|
6387 |
|
|
N_Type : Entity_Id) return Boolean;
|
6388 |
|
|
-- Returns true if and only if the types (or designated types in the
|
6389 |
|
|
-- case of anonymous access types) are the same or N_Type is derived
|
6390 |
|
|
-- directly or indirectly from P_Type.
|
6391 |
|
|
|
6392 |
|
|
-----------------------------
|
6393 |
|
|
-- Get_Generic_Parent_Type --
|
6394 |
|
|
-----------------------------
|
6395 |
|
|
|
6396 |
|
|
function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
|
6397 |
|
|
G_Typ : Entity_Id;
|
6398 |
|
|
Indic : Node_Id;
|
6399 |
|
|
|
6400 |
|
|
begin
|
6401 |
|
|
if Is_Derived_Type (F_Typ)
|
6402 |
|
|
and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
|
6403 |
|
|
then
|
6404 |
|
|
-- The tree must be traversed to determine the parent subtype in
|
6405 |
|
|
-- the generic unit, which unfortunately isn't always available
|
6406 |
|
|
-- via semantic attributes. ??? (Note: The use of Original_Node
|
6407 |
|
|
-- is needed for cases where a full derived type has been
|
6408 |
|
|
-- rewritten.)
|
6409 |
|
|
|
6410 |
|
|
Indic := Subtype_Indication
|
6411 |
|
|
(Type_Definition (Original_Node (Parent (F_Typ))));
|
6412 |
|
|
|
6413 |
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
6414 |
|
|
G_Typ := Entity (Subtype_Mark (Indic));
|
6415 |
|
|
else
|
6416 |
|
|
G_Typ := Entity (Indic);
|
6417 |
|
|
end if;
|
6418 |
|
|
|
6419 |
|
|
if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
|
6420 |
|
|
and then Present (Generic_Parent_Type (Parent (G_Typ)))
|
6421 |
|
|
then
|
6422 |
|
|
return Generic_Parent_Type (Parent (G_Typ));
|
6423 |
|
|
end if;
|
6424 |
|
|
end if;
|
6425 |
|
|
|
6426 |
|
|
return Empty;
|
6427 |
|
|
end Get_Generic_Parent_Type;
|
6428 |
|
|
|
6429 |
|
|
----------------------
|
6430 |
|
|
-- Types_Correspond --
|
6431 |
|
|
----------------------
|
6432 |
|
|
|
6433 |
|
|
function Types_Correspond
|
6434 |
|
|
(P_Type : Entity_Id;
|
6435 |
|
|
N_Type : Entity_Id) return Boolean
|
6436 |
|
|
is
|
6437 |
|
|
Prev_Type : Entity_Id := Base_Type (P_Type);
|
6438 |
|
|
New_Type : Entity_Id := Base_Type (N_Type);
|
6439 |
|
|
|
6440 |
|
|
begin
|
6441 |
|
|
if Ekind (Prev_Type) = E_Anonymous_Access_Type then
|
6442 |
|
|
Prev_Type := Designated_Type (Prev_Type);
|
6443 |
|
|
end if;
|
6444 |
|
|
|
6445 |
|
|
if Ekind (New_Type) = E_Anonymous_Access_Type then
|
6446 |
|
|
New_Type := Designated_Type (New_Type);
|
6447 |
|
|
end if;
|
6448 |
|
|
|
6449 |
|
|
if Prev_Type = New_Type then
|
6450 |
|
|
return True;
|
6451 |
|
|
|
6452 |
|
|
elsif not Is_Class_Wide_Type (New_Type) then
|
6453 |
|
|
while Etype (New_Type) /= New_Type loop
|
6454 |
|
|
New_Type := Etype (New_Type);
|
6455 |
|
|
if New_Type = Prev_Type then
|
6456 |
|
|
return True;
|
6457 |
|
|
end if;
|
6458 |
|
|
end loop;
|
6459 |
|
|
end if;
|
6460 |
|
|
return False;
|
6461 |
|
|
end Types_Correspond;
|
6462 |
|
|
|
6463 |
|
|
-- Start of processing for Is_Non_Overriding_Operation
|
6464 |
|
|
|
6465 |
|
|
begin
|
6466 |
|
|
-- In the case where both operations are implicit derived subprograms
|
6467 |
|
|
-- then neither overrides the other. This can only occur in certain
|
6468 |
|
|
-- obscure cases (e.g., derivation from homographs created in a generic
|
6469 |
|
|
-- instantiation).
|
6470 |
|
|
|
6471 |
|
|
if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
|
6472 |
|
|
return True;
|
6473 |
|
|
|
6474 |
|
|
elsif Ekind (Current_Scope) = E_Package
|
6475 |
|
|
and then Is_Generic_Instance (Current_Scope)
|
6476 |
|
|
and then In_Private_Part (Current_Scope)
|
6477 |
|
|
and then Comes_From_Source (New_E)
|
6478 |
|
|
then
|
6479 |
|
|
-- We examine the formals and result subtype of the inherited
|
6480 |
|
|
-- operation, to determine whether their type is derived from (the
|
6481 |
|
|
-- instance of) a generic type.
|
6482 |
|
|
|
6483 |
|
|
Formal := First_Formal (Prev_E);
|
6484 |
|
|
|
6485 |
|
|
while Present (Formal) loop
|
6486 |
|
|
F_Typ := Base_Type (Etype (Formal));
|
6487 |
|
|
|
6488 |
|
|
if Ekind (F_Typ) = E_Anonymous_Access_Type then
|
6489 |
|
|
F_Typ := Designated_Type (F_Typ);
|
6490 |
|
|
end if;
|
6491 |
|
|
|
6492 |
|
|
G_Typ := Get_Generic_Parent_Type (F_Typ);
|
6493 |
|
|
|
6494 |
|
|
Next_Formal (Formal);
|
6495 |
|
|
end loop;
|
6496 |
|
|
|
6497 |
|
|
if No (G_Typ) and then Ekind (Prev_E) = E_Function then
|
6498 |
|
|
G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
|
6499 |
|
|
end if;
|
6500 |
|
|
|
6501 |
|
|
if No (G_Typ) then
|
6502 |
|
|
return False;
|
6503 |
|
|
end if;
|
6504 |
|
|
|
6505 |
|
|
-- If the generic type is a private type, then the original operation
|
6506 |
|
|
-- was not overriding in the generic, because there was no primitive
|
6507 |
|
|
-- operation to override.
|
6508 |
|
|
|
6509 |
|
|
if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
|
6510 |
|
|
and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
|
6511 |
|
|
N_Formal_Private_Type_Definition
|
6512 |
|
|
then
|
6513 |
|
|
return True;
|
6514 |
|
|
|
6515 |
|
|
-- The generic parent type is the ancestor of a formal derived
|
6516 |
|
|
-- type declaration. We need to check whether it has a primitive
|
6517 |
|
|
-- operation that should be overridden by New_E in the generic.
|
6518 |
|
|
|
6519 |
|
|
else
|
6520 |
|
|
declare
|
6521 |
|
|
P_Formal : Entity_Id;
|
6522 |
|
|
N_Formal : Entity_Id;
|
6523 |
|
|
P_Typ : Entity_Id;
|
6524 |
|
|
N_Typ : Entity_Id;
|
6525 |
|
|
P_Prim : Entity_Id;
|
6526 |
|
|
Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
|
6527 |
|
|
|
6528 |
|
|
begin
|
6529 |
|
|
while Present (Prim_Elt) loop
|
6530 |
|
|
P_Prim := Node (Prim_Elt);
|
6531 |
|
|
|
6532 |
|
|
if Chars (P_Prim) = Chars (New_E)
|
6533 |
|
|
and then Ekind (P_Prim) = Ekind (New_E)
|
6534 |
|
|
then
|
6535 |
|
|
P_Formal := First_Formal (P_Prim);
|
6536 |
|
|
N_Formal := First_Formal (New_E);
|
6537 |
|
|
while Present (P_Formal) and then Present (N_Formal) loop
|
6538 |
|
|
P_Typ := Etype (P_Formal);
|
6539 |
|
|
N_Typ := Etype (N_Formal);
|
6540 |
|
|
|
6541 |
|
|
if not Types_Correspond (P_Typ, N_Typ) then
|
6542 |
|
|
exit;
|
6543 |
|
|
end if;
|
6544 |
|
|
|
6545 |
|
|
Next_Entity (P_Formal);
|
6546 |
|
|
Next_Entity (N_Formal);
|
6547 |
|
|
end loop;
|
6548 |
|
|
|
6549 |
|
|
-- Found a matching primitive operation belonging to the
|
6550 |
|
|
-- formal ancestor type, so the new subprogram is
|
6551 |
|
|
-- overriding.
|
6552 |
|
|
|
6553 |
|
|
if No (P_Formal)
|
6554 |
|
|
and then No (N_Formal)
|
6555 |
|
|
and then (Ekind (New_E) /= E_Function
|
6556 |
|
|
or else
|
6557 |
|
|
Types_Correspond
|
6558 |
|
|
(Etype (P_Prim), Etype (New_E)))
|
6559 |
|
|
then
|
6560 |
|
|
return False;
|
6561 |
|
|
end if;
|
6562 |
|
|
end if;
|
6563 |
|
|
|
6564 |
|
|
Next_Elmt (Prim_Elt);
|
6565 |
|
|
end loop;
|
6566 |
|
|
|
6567 |
|
|
-- If no match found, then the new subprogram does not
|
6568 |
|
|
-- override in the generic (nor in the instance).
|
6569 |
|
|
|
6570 |
|
|
return True;
|
6571 |
|
|
end;
|
6572 |
|
|
end if;
|
6573 |
|
|
else
|
6574 |
|
|
return False;
|
6575 |
|
|
end if;
|
6576 |
|
|
end Is_Non_Overriding_Operation;
|
6577 |
|
|
|
6578 |
|
|
------------------------------
|
6579 |
|
|
-- Make_Inequality_Operator --
|
6580 |
|
|
------------------------------
|
6581 |
|
|
|
6582 |
|
|
-- S is the defining identifier of an equality operator. We build a
|
6583 |
|
|
-- subprogram declaration with the right signature. This operation is
|
6584 |
|
|
-- intrinsic, because it is always expanded as the negation of the
|
6585 |
|
|
-- call to the equality function.
|
6586 |
|
|
|
6587 |
|
|
procedure Make_Inequality_Operator (S : Entity_Id) is
|
6588 |
|
|
Loc : constant Source_Ptr := Sloc (S);
|
6589 |
|
|
Decl : Node_Id;
|
6590 |
|
|
Formals : List_Id;
|
6591 |
|
|
Op_Name : Entity_Id;
|
6592 |
|
|
|
6593 |
|
|
FF : constant Entity_Id := First_Formal (S);
|
6594 |
|
|
NF : constant Entity_Id := Next_Formal (FF);
|
6595 |
|
|
|
6596 |
|
|
begin
|
6597 |
|
|
-- Check that equality was properly defined, ignore call if not
|
6598 |
|
|
|
6599 |
|
|
if No (NF) then
|
6600 |
|
|
return;
|
6601 |
|
|
end if;
|
6602 |
|
|
|
6603 |
|
|
declare
|
6604 |
|
|
A : constant Entity_Id :=
|
6605 |
|
|
Make_Defining_Identifier (Sloc (FF),
|
6606 |
|
|
Chars => Chars (FF));
|
6607 |
|
|
|
6608 |
|
|
B : constant Entity_Id :=
|
6609 |
|
|
Make_Defining_Identifier (Sloc (NF),
|
6610 |
|
|
Chars => Chars (NF));
|
6611 |
|
|
|
6612 |
|
|
begin
|
6613 |
|
|
Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
|
6614 |
|
|
|
6615 |
|
|
Formals := New_List (
|
6616 |
|
|
Make_Parameter_Specification (Loc,
|
6617 |
|
|
Defining_Identifier => A,
|
6618 |
|
|
Parameter_Type =>
|
6619 |
|
|
New_Reference_To (Etype (First_Formal (S)),
|
6620 |
|
|
Sloc (Etype (First_Formal (S))))),
|
6621 |
|
|
|
6622 |
|
|
Make_Parameter_Specification (Loc,
|
6623 |
|
|
Defining_Identifier => B,
|
6624 |
|
|
Parameter_Type =>
|
6625 |
|
|
New_Reference_To (Etype (Next_Formal (First_Formal (S))),
|
6626 |
|
|
Sloc (Etype (Next_Formal (First_Formal (S)))))));
|
6627 |
|
|
|
6628 |
|
|
Decl :=
|
6629 |
|
|
Make_Subprogram_Declaration (Loc,
|
6630 |
|
|
Specification =>
|
6631 |
|
|
Make_Function_Specification (Loc,
|
6632 |
|
|
Defining_Unit_Name => Op_Name,
|
6633 |
|
|
Parameter_Specifications => Formals,
|
6634 |
|
|
Result_Definition =>
|
6635 |
|
|
New_Reference_To (Standard_Boolean, Loc)));
|
6636 |
|
|
|
6637 |
|
|
-- Insert inequality right after equality if it is explicit or after
|
6638 |
|
|
-- the derived type when implicit. These entities are created only
|
6639 |
|
|
-- for visibility purposes, and eventually replaced in the course of
|
6640 |
|
|
-- expansion, so they do not need to be attached to the tree and seen
|
6641 |
|
|
-- by the back-end. Keeping them internal also avoids spurious
|
6642 |
|
|
-- freezing problems. The declaration is inserted in the tree for
|
6643 |
|
|
-- analysis, and removed afterwards. If the equality operator comes
|
6644 |
|
|
-- from an explicit declaration, attach the inequality immediately
|
6645 |
|
|
-- after. Else the equality is inherited from a derived type
|
6646 |
|
|
-- declaration, so insert inequality after that declaration.
|
6647 |
|
|
|
6648 |
|
|
if No (Alias (S)) then
|
6649 |
|
|
Insert_After (Unit_Declaration_Node (S), Decl);
|
6650 |
|
|
elsif Is_List_Member (Parent (S)) then
|
6651 |
|
|
Insert_After (Parent (S), Decl);
|
6652 |
|
|
else
|
6653 |
|
|
Insert_After (Parent (Etype (First_Formal (S))), Decl);
|
6654 |
|
|
end if;
|
6655 |
|
|
|
6656 |
|
|
Mark_Rewrite_Insertion (Decl);
|
6657 |
|
|
Set_Is_Intrinsic_Subprogram (Op_Name);
|
6658 |
|
|
Analyze (Decl);
|
6659 |
|
|
Remove (Decl);
|
6660 |
|
|
Set_Has_Completion (Op_Name);
|
6661 |
|
|
Set_Corresponding_Equality (Op_Name, S);
|
6662 |
|
|
Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
|
6663 |
|
|
end;
|
6664 |
|
|
end Make_Inequality_Operator;
|
6665 |
|
|
|
6666 |
|
|
----------------------
|
6667 |
|
|
-- May_Need_Actuals --
|
6668 |
|
|
----------------------
|
6669 |
|
|
|
6670 |
|
|
procedure May_Need_Actuals (Fun : Entity_Id) is
|
6671 |
|
|
F : Entity_Id;
|
6672 |
|
|
B : Boolean;
|
6673 |
|
|
|
6674 |
|
|
begin
|
6675 |
|
|
F := First_Formal (Fun);
|
6676 |
|
|
B := True;
|
6677 |
|
|
while Present (F) loop
|
6678 |
|
|
if No (Default_Value (F)) then
|
6679 |
|
|
B := False;
|
6680 |
|
|
exit;
|
6681 |
|
|
end if;
|
6682 |
|
|
|
6683 |
|
|
Next_Formal (F);
|
6684 |
|
|
end loop;
|
6685 |
|
|
|
6686 |
|
|
Set_Needs_No_Actuals (Fun, B);
|
6687 |
|
|
end May_Need_Actuals;
|
6688 |
|
|
|
6689 |
|
|
---------------------
|
6690 |
|
|
-- Mode_Conformant --
|
6691 |
|
|
---------------------
|
6692 |
|
|
|
6693 |
|
|
function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
|
6694 |
|
|
Result : Boolean;
|
6695 |
|
|
begin
|
6696 |
|
|
Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
|
6697 |
|
|
return Result;
|
6698 |
|
|
end Mode_Conformant;
|
6699 |
|
|
|
6700 |
|
|
---------------------------
|
6701 |
|
|
-- New_Overloaded_Entity --
|
6702 |
|
|
---------------------------
|
6703 |
|
|
|
6704 |
|
|
procedure New_Overloaded_Entity
|
6705 |
|
|
(S : Entity_Id;
|
6706 |
|
|
Derived_Type : Entity_Id := Empty)
|
6707 |
|
|
is
|
6708 |
|
|
Overridden_Subp : Entity_Id := Empty;
|
6709 |
|
|
-- Set if the current scope has an operation that is type-conformant
|
6710 |
|
|
-- with S, and becomes hidden by S.
|
6711 |
|
|
|
6712 |
|
|
Is_Primitive_Subp : Boolean;
|
6713 |
|
|
-- Set to True if the new subprogram is primitive
|
6714 |
|
|
|
6715 |
|
|
E : Entity_Id;
|
6716 |
|
|
-- Entity that S overrides
|
6717 |
|
|
|
6718 |
|
|
Prev_Vis : Entity_Id := Empty;
|
6719 |
|
|
-- Predecessor of E in Homonym chain
|
6720 |
|
|
|
6721 |
|
|
procedure Check_For_Primitive_Subprogram
|
6722 |
|
|
(Is_Primitive : out Boolean;
|
6723 |
|
|
Is_Overriding : Boolean := False);
|
6724 |
|
|
-- If the subprogram being analyzed is a primitive operation of the type
|
6725 |
|
|
-- of a formal or result, set the Has_Primitive_Operations flag on the
|
6726 |
|
|
-- type, and set Is_Primitive to True (otherwise set to False). Set the
|
6727 |
|
|
-- corresponding flag on the entity itself for later use.
|
6728 |
|
|
|
6729 |
|
|
procedure Check_Synchronized_Overriding
|
6730 |
|
|
(Def_Id : Entity_Id;
|
6731 |
|
|
Overridden_Subp : out Entity_Id);
|
6732 |
|
|
-- First determine if Def_Id is an entry or a subprogram either defined
|
6733 |
|
|
-- in the scope of a task or protected type, or is a primitive of such
|
6734 |
|
|
-- a type. Check whether Def_Id overrides a subprogram of an interface
|
6735 |
|
|
-- implemented by the synchronized type, return the overridden entity
|
6736 |
|
|
-- or Empty.
|
6737 |
|
|
|
6738 |
|
|
function Is_Private_Declaration (E : Entity_Id) return Boolean;
|
6739 |
|
|
-- Check that E is declared in the private part of the current package,
|
6740 |
|
|
-- or in the package body, where it may hide a previous declaration.
|
6741 |
|
|
-- We can't use In_Private_Part by itself because this flag is also
|
6742 |
|
|
-- set when freezing entities, so we must examine the place of the
|
6743 |
|
|
-- declaration in the tree, and recognize wrapper packages as well.
|
6744 |
|
|
|
6745 |
|
|
function Is_Overriding_Alias
|
6746 |
|
|
(Old_E : Entity_Id;
|
6747 |
|
|
New_E : Entity_Id) return Boolean;
|
6748 |
|
|
-- Check whether new subprogram and old subprogram are both inherited
|
6749 |
|
|
-- from subprograms that have distinct dispatch table entries. This can
|
6750 |
|
|
-- occur with derivations from instances with accidental homonyms.
|
6751 |
|
|
-- The function is conservative given that the converse is only true
|
6752 |
|
|
-- within instances that contain accidental overloadings.
|
6753 |
|
|
|
6754 |
|
|
------------------------------------
|
6755 |
|
|
-- Check_For_Primitive_Subprogram --
|
6756 |
|
|
------------------------------------
|
6757 |
|
|
|
6758 |
|
|
procedure Check_For_Primitive_Subprogram
|
6759 |
|
|
(Is_Primitive : out Boolean;
|
6760 |
|
|
Is_Overriding : Boolean := False)
|
6761 |
|
|
is
|
6762 |
|
|
Formal : Entity_Id;
|
6763 |
|
|
F_Typ : Entity_Id;
|
6764 |
|
|
B_Typ : Entity_Id;
|
6765 |
|
|
|
6766 |
|
|
function Visible_Part_Type (T : Entity_Id) return Boolean;
|
6767 |
|
|
-- Returns true if T is declared in the visible part of the current
|
6768 |
|
|
-- package scope; otherwise returns false. Assumes that T is declared
|
6769 |
|
|
-- in a package.
|
6770 |
|
|
|
6771 |
|
|
procedure Check_Private_Overriding (T : Entity_Id);
|
6772 |
|
|
-- Checks that if a primitive abstract subprogram of a visible
|
6773 |
|
|
-- abstract type is declared in a private part, then it must override
|
6774 |
|
|
-- an abstract subprogram declared in the visible part. Also checks
|
6775 |
|
|
-- that if a primitive function with a controlling result is declared
|
6776 |
|
|
-- in a private part, then it must override a function declared in
|
6777 |
|
|
-- the visible part.
|
6778 |
|
|
|
6779 |
|
|
------------------------------
|
6780 |
|
|
-- Check_Private_Overriding --
|
6781 |
|
|
------------------------------
|
6782 |
|
|
|
6783 |
|
|
procedure Check_Private_Overriding (T : Entity_Id) is
|
6784 |
|
|
begin
|
6785 |
|
|
if Is_Package_Or_Generic_Package (Current_Scope)
|
6786 |
|
|
and then In_Private_Part (Current_Scope)
|
6787 |
|
|
and then Visible_Part_Type (T)
|
6788 |
|
|
and then not In_Instance
|
6789 |
|
|
then
|
6790 |
|
|
if Is_Abstract_Type (T)
|
6791 |
|
|
and then Is_Abstract_Subprogram (S)
|
6792 |
|
|
and then (not Is_Overriding
|
6793 |
|
|
or else not Is_Abstract_Subprogram (E))
|
6794 |
|
|
then
|
6795 |
|
|
Error_Msg_N ("abstract subprograms must be visible "
|
6796 |
|
|
& "(RM 3.9.3(10))!", S);
|
6797 |
|
|
|
6798 |
|
|
elsif Ekind (S) = E_Function
|
6799 |
|
|
and then Is_Tagged_Type (T)
|
6800 |
|
|
and then T = Base_Type (Etype (S))
|
6801 |
|
|
and then not Is_Overriding
|
6802 |
|
|
then
|
6803 |
|
|
Error_Msg_N
|
6804 |
|
|
("private function with tagged result must"
|
6805 |
|
|
& " override visible-part function", S);
|
6806 |
|
|
Error_Msg_N
|
6807 |
|
|
("\move subprogram to the visible part"
|
6808 |
|
|
& " (RM 3.9.3(10))", S);
|
6809 |
|
|
end if;
|
6810 |
|
|
end if;
|
6811 |
|
|
end Check_Private_Overriding;
|
6812 |
|
|
|
6813 |
|
|
-----------------------
|
6814 |
|
|
-- Visible_Part_Type --
|
6815 |
|
|
-----------------------
|
6816 |
|
|
|
6817 |
|
|
function Visible_Part_Type (T : Entity_Id) return Boolean is
|
6818 |
|
|
P : constant Node_Id := Unit_Declaration_Node (Scope (T));
|
6819 |
|
|
N : Node_Id;
|
6820 |
|
|
|
6821 |
|
|
begin
|
6822 |
|
|
-- If the entity is a private type, then it must be declared in a
|
6823 |
|
|
-- visible part.
|
6824 |
|
|
|
6825 |
|
|
if Ekind (T) in Private_Kind then
|
6826 |
|
|
return True;
|
6827 |
|
|
end if;
|
6828 |
|
|
|
6829 |
|
|
-- Otherwise, we traverse the visible part looking for its
|
6830 |
|
|
-- corresponding declaration. We cannot use the declaration
|
6831 |
|
|
-- node directly because in the private part the entity of a
|
6832 |
|
|
-- private type is the one in the full view, which does not
|
6833 |
|
|
-- indicate that it is the completion of something visible.
|
6834 |
|
|
|
6835 |
|
|
N := First (Visible_Declarations (Specification (P)));
|
6836 |
|
|
while Present (N) loop
|
6837 |
|
|
if Nkind (N) = N_Full_Type_Declaration
|
6838 |
|
|
and then Present (Defining_Identifier (N))
|
6839 |
|
|
and then T = Defining_Identifier (N)
|
6840 |
|
|
then
|
6841 |
|
|
return True;
|
6842 |
|
|
|
6843 |
|
|
elsif Nkind_In (N, N_Private_Type_Declaration,
|
6844 |
|
|
N_Private_Extension_Declaration)
|
6845 |
|
|
and then Present (Defining_Identifier (N))
|
6846 |
|
|
and then T = Full_View (Defining_Identifier (N))
|
6847 |
|
|
then
|
6848 |
|
|
return True;
|
6849 |
|
|
end if;
|
6850 |
|
|
|
6851 |
|
|
Next (N);
|
6852 |
|
|
end loop;
|
6853 |
|
|
|
6854 |
|
|
return False;
|
6855 |
|
|
end Visible_Part_Type;
|
6856 |
|
|
|
6857 |
|
|
-- Start of processing for Check_For_Primitive_Subprogram
|
6858 |
|
|
|
6859 |
|
|
begin
|
6860 |
|
|
Is_Primitive := False;
|
6861 |
|
|
|
6862 |
|
|
if not Comes_From_Source (S) then
|
6863 |
|
|
null;
|
6864 |
|
|
|
6865 |
|
|
-- If subprogram is at library level, it is not primitive operation
|
6866 |
|
|
|
6867 |
|
|
elsif Current_Scope = Standard_Standard then
|
6868 |
|
|
null;
|
6869 |
|
|
|
6870 |
|
|
elsif (Is_Package_Or_Generic_Package (Current_Scope)
|
6871 |
|
|
and then not In_Package_Body (Current_Scope))
|
6872 |
|
|
or else Is_Overriding
|
6873 |
|
|
then
|
6874 |
|
|
-- For function, check return type
|
6875 |
|
|
|
6876 |
|
|
if Ekind (S) = E_Function then
|
6877 |
|
|
if Ekind (Etype (S)) = E_Anonymous_Access_Type then
|
6878 |
|
|
F_Typ := Designated_Type (Etype (S));
|
6879 |
|
|
else
|
6880 |
|
|
F_Typ := Etype (S);
|
6881 |
|
|
end if;
|
6882 |
|
|
|
6883 |
|
|
B_Typ := Base_Type (F_Typ);
|
6884 |
|
|
|
6885 |
|
|
if Scope (B_Typ) = Current_Scope
|
6886 |
|
|
and then not Is_Class_Wide_Type (B_Typ)
|
6887 |
|
|
and then not Is_Generic_Type (B_Typ)
|
6888 |
|
|
then
|
6889 |
|
|
Is_Primitive := True;
|
6890 |
|
|
Set_Has_Primitive_Operations (B_Typ);
|
6891 |
|
|
Set_Is_Primitive (S);
|
6892 |
|
|
Check_Private_Overriding (B_Typ);
|
6893 |
|
|
end if;
|
6894 |
|
|
end if;
|
6895 |
|
|
|
6896 |
|
|
-- For all subprograms, check formals
|
6897 |
|
|
|
6898 |
|
|
Formal := First_Formal (S);
|
6899 |
|
|
while Present (Formal) loop
|
6900 |
|
|
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
|
6901 |
|
|
F_Typ := Designated_Type (Etype (Formal));
|
6902 |
|
|
else
|
6903 |
|
|
F_Typ := Etype (Formal);
|
6904 |
|
|
end if;
|
6905 |
|
|
|
6906 |
|
|
B_Typ := Base_Type (F_Typ);
|
6907 |
|
|
|
6908 |
|
|
if Ekind (B_Typ) = E_Access_Subtype then
|
6909 |
|
|
B_Typ := Base_Type (B_Typ);
|
6910 |
|
|
end if;
|
6911 |
|
|
|
6912 |
|
|
if Scope (B_Typ) = Current_Scope
|
6913 |
|
|
and then not Is_Class_Wide_Type (B_Typ)
|
6914 |
|
|
and then not Is_Generic_Type (B_Typ)
|
6915 |
|
|
then
|
6916 |
|
|
Is_Primitive := True;
|
6917 |
|
|
Set_Is_Primitive (S);
|
6918 |
|
|
Set_Has_Primitive_Operations (B_Typ);
|
6919 |
|
|
Check_Private_Overriding (B_Typ);
|
6920 |
|
|
end if;
|
6921 |
|
|
|
6922 |
|
|
Next_Formal (Formal);
|
6923 |
|
|
end loop;
|
6924 |
|
|
end if;
|
6925 |
|
|
end Check_For_Primitive_Subprogram;
|
6926 |
|
|
|
6927 |
|
|
-----------------------------------
|
6928 |
|
|
-- Check_Synchronized_Overriding --
|
6929 |
|
|
-----------------------------------
|
6930 |
|
|
|
6931 |
|
|
procedure Check_Synchronized_Overriding
|
6932 |
|
|
(Def_Id : Entity_Id;
|
6933 |
|
|
Overridden_Subp : out Entity_Id)
|
6934 |
|
|
is
|
6935 |
|
|
Ifaces_List : Elist_Id;
|
6936 |
|
|
In_Scope : Boolean;
|
6937 |
|
|
Typ : Entity_Id;
|
6938 |
|
|
|
6939 |
|
|
function Matches_Prefixed_View_Profile
|
6940 |
|
|
(Prim_Params : List_Id;
|
6941 |
|
|
Iface_Params : List_Id) return Boolean;
|
6942 |
|
|
-- Determine whether a subprogram's parameter profile Prim_Params
|
6943 |
|
|
-- matches that of a potentially overridden interface subprogram
|
6944 |
|
|
-- Iface_Params. Also determine if the type of first parameter of
|
6945 |
|
|
-- Iface_Params is an implemented interface.
|
6946 |
|
|
|
6947 |
|
|
-----------------------------------
|
6948 |
|
|
-- Matches_Prefixed_View_Profile --
|
6949 |
|
|
-----------------------------------
|
6950 |
|
|
|
6951 |
|
|
function Matches_Prefixed_View_Profile
|
6952 |
|
|
(Prim_Params : List_Id;
|
6953 |
|
|
Iface_Params : List_Id) return Boolean
|
6954 |
|
|
is
|
6955 |
|
|
Iface_Id : Entity_Id;
|
6956 |
|
|
Iface_Param : Node_Id;
|
6957 |
|
|
Iface_Typ : Entity_Id;
|
6958 |
|
|
Prim_Id : Entity_Id;
|
6959 |
|
|
Prim_Param : Node_Id;
|
6960 |
|
|
Prim_Typ : Entity_Id;
|
6961 |
|
|
|
6962 |
|
|
function Is_Implemented
|
6963 |
|
|
(Ifaces_List : Elist_Id;
|
6964 |
|
|
Iface : Entity_Id) return Boolean;
|
6965 |
|
|
-- Determine if Iface is implemented by the current task or
|
6966 |
|
|
-- protected type.
|
6967 |
|
|
|
6968 |
|
|
--------------------
|
6969 |
|
|
-- Is_Implemented --
|
6970 |
|
|
--------------------
|
6971 |
|
|
|
6972 |
|
|
function Is_Implemented
|
6973 |
|
|
(Ifaces_List : Elist_Id;
|
6974 |
|
|
Iface : Entity_Id) return Boolean
|
6975 |
|
|
is
|
6976 |
|
|
Iface_Elmt : Elmt_Id;
|
6977 |
|
|
|
6978 |
|
|
begin
|
6979 |
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
6980 |
|
|
while Present (Iface_Elmt) loop
|
6981 |
|
|
if Node (Iface_Elmt) = Iface then
|
6982 |
|
|
return True;
|
6983 |
|
|
end if;
|
6984 |
|
|
|
6985 |
|
|
Next_Elmt (Iface_Elmt);
|
6986 |
|
|
end loop;
|
6987 |
|
|
|
6988 |
|
|
return False;
|
6989 |
|
|
end Is_Implemented;
|
6990 |
|
|
|
6991 |
|
|
-- Start of processing for Matches_Prefixed_View_Profile
|
6992 |
|
|
|
6993 |
|
|
begin
|
6994 |
|
|
Iface_Param := First (Iface_Params);
|
6995 |
|
|
Iface_Typ := Etype (Defining_Identifier (Iface_Param));
|
6996 |
|
|
|
6997 |
|
|
if Is_Access_Type (Iface_Typ) then
|
6998 |
|
|
Iface_Typ := Designated_Type (Iface_Typ);
|
6999 |
|
|
end if;
|
7000 |
|
|
|
7001 |
|
|
Prim_Param := First (Prim_Params);
|
7002 |
|
|
|
7003 |
|
|
-- The first parameter of the potentially overridden subprogram
|
7004 |
|
|
-- must be an interface implemented by Prim.
|
7005 |
|
|
|
7006 |
|
|
if not Is_Interface (Iface_Typ)
|
7007 |
|
|
or else not Is_Implemented (Ifaces_List, Iface_Typ)
|
7008 |
|
|
then
|
7009 |
|
|
return False;
|
7010 |
|
|
end if;
|
7011 |
|
|
|
7012 |
|
|
-- The checks on the object parameters are done, move onto the
|
7013 |
|
|
-- rest of the parameters.
|
7014 |
|
|
|
7015 |
|
|
if not In_Scope then
|
7016 |
|
|
Prim_Param := Next (Prim_Param);
|
7017 |
|
|
end if;
|
7018 |
|
|
|
7019 |
|
|
Iface_Param := Next (Iface_Param);
|
7020 |
|
|
while Present (Iface_Param) and then Present (Prim_Param) loop
|
7021 |
|
|
Iface_Id := Defining_Identifier (Iface_Param);
|
7022 |
|
|
Iface_Typ := Find_Parameter_Type (Iface_Param);
|
7023 |
|
|
|
7024 |
|
|
Prim_Id := Defining_Identifier (Prim_Param);
|
7025 |
|
|
Prim_Typ := Find_Parameter_Type (Prim_Param);
|
7026 |
|
|
|
7027 |
|
|
if Ekind (Iface_Typ) = E_Anonymous_Access_Type
|
7028 |
|
|
and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
|
7029 |
|
|
and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
|
7030 |
|
|
then
|
7031 |
|
|
Iface_Typ := Designated_Type (Iface_Typ);
|
7032 |
|
|
Prim_Typ := Designated_Type (Prim_Typ);
|
7033 |
|
|
end if;
|
7034 |
|
|
|
7035 |
|
|
-- Case of multiple interface types inside a parameter profile
|
7036 |
|
|
|
7037 |
|
|
-- (Obj_Param : in out Iface; ...; Param : Iface)
|
7038 |
|
|
|
7039 |
|
|
-- If the interface type is implemented, then the matching type
|
7040 |
|
|
-- in the primitive should be the implementing record type.
|
7041 |
|
|
|
7042 |
|
|
if Ekind (Iface_Typ) = E_Record_Type
|
7043 |
|
|
and then Is_Interface (Iface_Typ)
|
7044 |
|
|
and then Is_Implemented (Ifaces_List, Iface_Typ)
|
7045 |
|
|
then
|
7046 |
|
|
if Prim_Typ /= Typ then
|
7047 |
|
|
return False;
|
7048 |
|
|
end if;
|
7049 |
|
|
|
7050 |
|
|
-- The two parameters must be both mode and subtype conformant
|
7051 |
|
|
|
7052 |
|
|
elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
|
7053 |
|
|
or else not
|
7054 |
|
|
Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
|
7055 |
|
|
then
|
7056 |
|
|
return False;
|
7057 |
|
|
end if;
|
7058 |
|
|
|
7059 |
|
|
Next (Iface_Param);
|
7060 |
|
|
Next (Prim_Param);
|
7061 |
|
|
end loop;
|
7062 |
|
|
|
7063 |
|
|
-- One of the two lists contains more parameters than the other
|
7064 |
|
|
|
7065 |
|
|
if Present (Iface_Param) or else Present (Prim_Param) then
|
7066 |
|
|
return False;
|
7067 |
|
|
end if;
|
7068 |
|
|
|
7069 |
|
|
return True;
|
7070 |
|
|
end Matches_Prefixed_View_Profile;
|
7071 |
|
|
|
7072 |
|
|
-- Start of processing for Check_Synchronized_Overriding
|
7073 |
|
|
|
7074 |
|
|
begin
|
7075 |
|
|
Overridden_Subp := Empty;
|
7076 |
|
|
|
7077 |
|
|
-- Def_Id must be an entry or a subprogram. We should skip predefined
|
7078 |
|
|
-- primitives internally generated by the frontend; however at this
|
7079 |
|
|
-- stage predefined primitives are still not fully decorated. As a
|
7080 |
|
|
-- minor optimization we skip here internally generated subprograms.
|
7081 |
|
|
|
7082 |
|
|
if (Ekind (Def_Id) /= E_Entry
|
7083 |
|
|
and then Ekind (Def_Id) /= E_Function
|
7084 |
|
|
and then Ekind (Def_Id) /= E_Procedure)
|
7085 |
|
|
or else not Comes_From_Source (Def_Id)
|
7086 |
|
|
then
|
7087 |
|
|
return;
|
7088 |
|
|
end if;
|
7089 |
|
|
|
7090 |
|
|
-- Search for the concurrent declaration since it contains the list
|
7091 |
|
|
-- of all implemented interfaces. In this case, the subprogram is
|
7092 |
|
|
-- declared within the scope of a protected or a task type.
|
7093 |
|
|
|
7094 |
|
|
if Present (Scope (Def_Id))
|
7095 |
|
|
and then Is_Concurrent_Type (Scope (Def_Id))
|
7096 |
|
|
and then not Is_Generic_Actual_Type (Scope (Def_Id))
|
7097 |
|
|
then
|
7098 |
|
|
Typ := Scope (Def_Id);
|
7099 |
|
|
In_Scope := True;
|
7100 |
|
|
|
7101 |
|
|
-- The enclosing scope is not a synchronized type and the subprogram
|
7102 |
|
|
-- has no formals
|
7103 |
|
|
|
7104 |
|
|
elsif No (First_Formal (Def_Id)) then
|
7105 |
|
|
return;
|
7106 |
|
|
|
7107 |
|
|
-- The subprogram has formals and hence it may be a primitive of a
|
7108 |
|
|
-- concurrent type
|
7109 |
|
|
|
7110 |
|
|
else
|
7111 |
|
|
Typ := Etype (First_Formal (Def_Id));
|
7112 |
|
|
|
7113 |
|
|
if Is_Access_Type (Typ) then
|
7114 |
|
|
Typ := Directly_Designated_Type (Typ);
|
7115 |
|
|
end if;
|
7116 |
|
|
|
7117 |
|
|
if Is_Concurrent_Type (Typ)
|
7118 |
|
|
and then not Is_Generic_Actual_Type (Typ)
|
7119 |
|
|
then
|
7120 |
|
|
In_Scope := False;
|
7121 |
|
|
|
7122 |
|
|
-- This case occurs when the concurrent type is declared within
|
7123 |
|
|
-- a generic unit. As a result the corresponding record has been
|
7124 |
|
|
-- built and used as the type of the first formal, we just have
|
7125 |
|
|
-- to retrieve the corresponding concurrent type.
|
7126 |
|
|
|
7127 |
|
|
elsif Is_Concurrent_Record_Type (Typ)
|
7128 |
|
|
and then Present (Corresponding_Concurrent_Type (Typ))
|
7129 |
|
|
then
|
7130 |
|
|
Typ := Corresponding_Concurrent_Type (Typ);
|
7131 |
|
|
In_Scope := False;
|
7132 |
|
|
|
7133 |
|
|
else
|
7134 |
|
|
return;
|
7135 |
|
|
end if;
|
7136 |
|
|
end if;
|
7137 |
|
|
|
7138 |
|
|
-- There is no overriding to check if is an inherited operation in a
|
7139 |
|
|
-- type derivation on for a generic actual.
|
7140 |
|
|
|
7141 |
|
|
Collect_Interfaces (Typ, Ifaces_List);
|
7142 |
|
|
|
7143 |
|
|
if Is_Empty_Elmt_List (Ifaces_List) then
|
7144 |
|
|
return;
|
7145 |
|
|
end if;
|
7146 |
|
|
|
7147 |
|
|
-- Determine whether entry or subprogram Def_Id overrides a primitive
|
7148 |
|
|
-- operation that belongs to one of the interfaces in Ifaces_List.
|
7149 |
|
|
|
7150 |
|
|
declare
|
7151 |
|
|
Candidate : Entity_Id := Empty;
|
7152 |
|
|
Hom : Entity_Id := Empty;
|
7153 |
|
|
Iface_Typ : Entity_Id;
|
7154 |
|
|
Subp : Entity_Id := Empty;
|
7155 |
|
|
|
7156 |
|
|
begin
|
7157 |
|
|
-- Traverse the homonym chain, looking at a potentially
|
7158 |
|
|
-- overridden subprogram that belongs to an implemented
|
7159 |
|
|
-- interface.
|
7160 |
|
|
|
7161 |
|
|
Hom := Current_Entity_In_Scope (Def_Id);
|
7162 |
|
|
while Present (Hom) loop
|
7163 |
|
|
Subp := Hom;
|
7164 |
|
|
|
7165 |
|
|
if Subp = Def_Id
|
7166 |
|
|
or else not Is_Overloadable (Subp)
|
7167 |
|
|
or else not Is_Primitive (Subp)
|
7168 |
|
|
or else not Is_Dispatching_Operation (Subp)
|
7169 |
|
|
or else not Present (Find_Dispatching_Type (Subp))
|
7170 |
|
|
or else not Is_Interface (Find_Dispatching_Type (Subp))
|
7171 |
|
|
then
|
7172 |
|
|
null;
|
7173 |
|
|
|
7174 |
|
|
-- Entries and procedures can override abstract or null
|
7175 |
|
|
-- interface procedures
|
7176 |
|
|
|
7177 |
|
|
elsif (Ekind (Def_Id) = E_Procedure
|
7178 |
|
|
or else Ekind (Def_Id) = E_Entry)
|
7179 |
|
|
and then Ekind (Subp) = E_Procedure
|
7180 |
|
|
and then Matches_Prefixed_View_Profile
|
7181 |
|
|
(Parameter_Specifications (Parent (Def_Id)),
|
7182 |
|
|
Parameter_Specifications (Parent (Subp)))
|
7183 |
|
|
then
|
7184 |
|
|
Candidate := Subp;
|
7185 |
|
|
|
7186 |
|
|
-- For an overridden subprogram Subp, check whether the mode
|
7187 |
|
|
-- of its first parameter is correct depending on the kind
|
7188 |
|
|
-- of synchronized type.
|
7189 |
|
|
|
7190 |
|
|
declare
|
7191 |
|
|
Formal : constant Node_Id := First_Formal (Candidate);
|
7192 |
|
|
|
7193 |
|
|
begin
|
7194 |
|
|
-- In order for an entry or a protected procedure to
|
7195 |
|
|
-- override, the first parameter of the overridden
|
7196 |
|
|
-- routine must be of mode "out", "in out" or
|
7197 |
|
|
-- access-to-variable.
|
7198 |
|
|
|
7199 |
|
|
if (Ekind (Candidate) = E_Entry
|
7200 |
|
|
or else Ekind (Candidate) = E_Procedure)
|
7201 |
|
|
and then Is_Protected_Type (Typ)
|
7202 |
|
|
and then Ekind (Formal) /= E_In_Out_Parameter
|
7203 |
|
|
and then Ekind (Formal) /= E_Out_Parameter
|
7204 |
|
|
and then Nkind (Parameter_Type (Parent (Formal)))
|
7205 |
|
|
/= N_Access_Definition
|
7206 |
|
|
then
|
7207 |
|
|
null;
|
7208 |
|
|
|
7209 |
|
|
-- All other cases are OK since a task entry or routine
|
7210 |
|
|
-- does not have a restriction on the mode of the first
|
7211 |
|
|
-- parameter of the overridden interface routine.
|
7212 |
|
|
|
7213 |
|
|
else
|
7214 |
|
|
Overridden_Subp := Candidate;
|
7215 |
|
|
return;
|
7216 |
|
|
end if;
|
7217 |
|
|
end;
|
7218 |
|
|
|
7219 |
|
|
-- Functions can override abstract interface functions
|
7220 |
|
|
|
7221 |
|
|
elsif Ekind (Def_Id) = E_Function
|
7222 |
|
|
and then Ekind (Subp) = E_Function
|
7223 |
|
|
and then Matches_Prefixed_View_Profile
|
7224 |
|
|
(Parameter_Specifications (Parent (Def_Id)),
|
7225 |
|
|
Parameter_Specifications (Parent (Subp)))
|
7226 |
|
|
and then Etype (Result_Definition (Parent (Def_Id))) =
|
7227 |
|
|
Etype (Result_Definition (Parent (Subp)))
|
7228 |
|
|
then
|
7229 |
|
|
Overridden_Subp := Subp;
|
7230 |
|
|
return;
|
7231 |
|
|
end if;
|
7232 |
|
|
|
7233 |
|
|
Hom := Homonym (Hom);
|
7234 |
|
|
end loop;
|
7235 |
|
|
|
7236 |
|
|
-- After examining all candidates for overriding, we are
|
7237 |
|
|
-- left with the best match which is a mode incompatible
|
7238 |
|
|
-- interface routine. Do not emit an error if the Expander
|
7239 |
|
|
-- is active since this error will be detected later on
|
7240 |
|
|
-- after all concurrent types are expanded and all wrappers
|
7241 |
|
|
-- are built. This check is meant for spec-only
|
7242 |
|
|
-- compilations.
|
7243 |
|
|
|
7244 |
|
|
if Present (Candidate)
|
7245 |
|
|
and then not Expander_Active
|
7246 |
|
|
then
|
7247 |
|
|
Iface_Typ :=
|
7248 |
|
|
Find_Parameter_Type (Parent (First_Formal (Candidate)));
|
7249 |
|
|
|
7250 |
|
|
-- Def_Id is primitive of a protected type, declared
|
7251 |
|
|
-- inside the type, and the candidate is primitive of a
|
7252 |
|
|
-- limited or synchronized interface.
|
7253 |
|
|
|
7254 |
|
|
if In_Scope
|
7255 |
|
|
and then Is_Protected_Type (Typ)
|
7256 |
|
|
and then
|
7257 |
|
|
(Is_Limited_Interface (Iface_Typ)
|
7258 |
|
|
or else Is_Protected_Interface (Iface_Typ)
|
7259 |
|
|
or else Is_Synchronized_Interface (Iface_Typ)
|
7260 |
|
|
or else Is_Task_Interface (Iface_Typ))
|
7261 |
|
|
then
|
7262 |
|
|
-- Must reword this message, comma before to in -gnatj
|
7263 |
|
|
-- mode ???
|
7264 |
|
|
|
7265 |
|
|
Error_Msg_NE
|
7266 |
|
|
("first formal of & must be of mode `OUT`, `IN OUT`"
|
7267 |
|
|
& " or access-to-variable", Typ, Candidate);
|
7268 |
|
|
Error_Msg_N
|
7269 |
|
|
("\to be overridden by protected procedure or entry "
|
7270 |
|
|
& "(RM 9.4(11.9/2))", Typ);
|
7271 |
|
|
end if;
|
7272 |
|
|
end if;
|
7273 |
|
|
|
7274 |
|
|
Overridden_Subp := Candidate;
|
7275 |
|
|
return;
|
7276 |
|
|
end;
|
7277 |
|
|
end Check_Synchronized_Overriding;
|
7278 |
|
|
|
7279 |
|
|
----------------------------
|
7280 |
|
|
-- Is_Private_Declaration --
|
7281 |
|
|
----------------------------
|
7282 |
|
|
|
7283 |
|
|
function Is_Private_Declaration (E : Entity_Id) return Boolean is
|
7284 |
|
|
Priv_Decls : List_Id;
|
7285 |
|
|
Decl : constant Node_Id := Unit_Declaration_Node (E);
|
7286 |
|
|
|
7287 |
|
|
begin
|
7288 |
|
|
if Is_Package_Or_Generic_Package (Current_Scope)
|
7289 |
|
|
and then In_Private_Part (Current_Scope)
|
7290 |
|
|
then
|
7291 |
|
|
Priv_Decls :=
|
7292 |
|
|
Private_Declarations (
|
7293 |
|
|
Specification (Unit_Declaration_Node (Current_Scope)));
|
7294 |
|
|
|
7295 |
|
|
return In_Package_Body (Current_Scope)
|
7296 |
|
|
or else
|
7297 |
|
|
(Is_List_Member (Decl)
|
7298 |
|
|
and then List_Containing (Decl) = Priv_Decls)
|
7299 |
|
|
or else (Nkind (Parent (Decl)) = N_Package_Specification
|
7300 |
|
|
and then not
|
7301 |
|
|
Is_Compilation_Unit
|
7302 |
|
|
(Defining_Entity (Parent (Decl)))
|
7303 |
|
|
and then List_Containing (Parent (Parent (Decl)))
|
7304 |
|
|
= Priv_Decls);
|
7305 |
|
|
else
|
7306 |
|
|
return False;
|
7307 |
|
|
end if;
|
7308 |
|
|
end Is_Private_Declaration;
|
7309 |
|
|
|
7310 |
|
|
--------------------------
|
7311 |
|
|
-- Is_Overriding_Alias --
|
7312 |
|
|
--------------------------
|
7313 |
|
|
|
7314 |
|
|
function Is_Overriding_Alias
|
7315 |
|
|
(Old_E : Entity_Id;
|
7316 |
|
|
New_E : Entity_Id) return Boolean
|
7317 |
|
|
is
|
7318 |
|
|
AO : constant Entity_Id := Alias (Old_E);
|
7319 |
|
|
AN : constant Entity_Id := Alias (New_E);
|
7320 |
|
|
|
7321 |
|
|
begin
|
7322 |
|
|
return Scope (AO) /= Scope (AN)
|
7323 |
|
|
or else No (DTC_Entity (AO))
|
7324 |
|
|
or else No (DTC_Entity (AN))
|
7325 |
|
|
or else DT_Position (AO) = DT_Position (AN);
|
7326 |
|
|
end Is_Overriding_Alias;
|
7327 |
|
|
|
7328 |
|
|
-- Start of processing for New_Overloaded_Entity
|
7329 |
|
|
|
7330 |
|
|
begin
|
7331 |
|
|
-- We need to look for an entity that S may override. This must be a
|
7332 |
|
|
-- homonym in the current scope, so we look for the first homonym of
|
7333 |
|
|
-- S in the current scope as the starting point for the search.
|
7334 |
|
|
|
7335 |
|
|
E := Current_Entity_In_Scope (S);
|
7336 |
|
|
|
7337 |
|
|
-- If there is no homonym then this is definitely not overriding
|
7338 |
|
|
|
7339 |
|
|
if No (E) then
|
7340 |
|
|
Enter_Overloaded_Entity (S);
|
7341 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7342 |
|
|
Check_For_Primitive_Subprogram (Is_Primitive_Subp);
|
7343 |
|
|
|
7344 |
|
|
-- If subprogram has an explicit declaration, check whether it
|
7345 |
|
|
-- has an overriding indicator.
|
7346 |
|
|
|
7347 |
|
|
if Comes_From_Source (S) then
|
7348 |
|
|
Check_Synchronized_Overriding (S, Overridden_Subp);
|
7349 |
|
|
Check_Overriding_Indicator
|
7350 |
|
|
(S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
|
7351 |
|
|
end if;
|
7352 |
|
|
|
7353 |
|
|
-- If there is a homonym that is not overloadable, then we have an
|
7354 |
|
|
-- error, except for the special cases checked explicitly below.
|
7355 |
|
|
|
7356 |
|
|
elsif not Is_Overloadable (E) then
|
7357 |
|
|
|
7358 |
|
|
-- Check for spurious conflict produced by a subprogram that has the
|
7359 |
|
|
-- same name as that of the enclosing generic package. The conflict
|
7360 |
|
|
-- occurs within an instance, between the subprogram and the renaming
|
7361 |
|
|
-- declaration for the package. After the subprogram, the package
|
7362 |
|
|
-- renaming declaration becomes hidden.
|
7363 |
|
|
|
7364 |
|
|
if Ekind (E) = E_Package
|
7365 |
|
|
and then Present (Renamed_Object (E))
|
7366 |
|
|
and then Renamed_Object (E) = Current_Scope
|
7367 |
|
|
and then Nkind (Parent (Renamed_Object (E))) =
|
7368 |
|
|
N_Package_Specification
|
7369 |
|
|
and then Present (Generic_Parent (Parent (Renamed_Object (E))))
|
7370 |
|
|
then
|
7371 |
|
|
Set_Is_Hidden (E);
|
7372 |
|
|
Set_Is_Immediately_Visible (E, False);
|
7373 |
|
|
Enter_Overloaded_Entity (S);
|
7374 |
|
|
Set_Homonym (S, Homonym (E));
|
7375 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7376 |
|
|
Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
|
7377 |
|
|
|
7378 |
|
|
-- If the subprogram is implicit it is hidden by the previous
|
7379 |
|
|
-- declaration. However if it is dispatching, it must appear in the
|
7380 |
|
|
-- dispatch table anyway, because it can be dispatched to even if it
|
7381 |
|
|
-- cannot be called directly.
|
7382 |
|
|
|
7383 |
|
|
elsif Present (Alias (S))
|
7384 |
|
|
and then not Comes_From_Source (S)
|
7385 |
|
|
then
|
7386 |
|
|
Set_Scope (S, Current_Scope);
|
7387 |
|
|
|
7388 |
|
|
if Is_Dispatching_Operation (Alias (S)) then
|
7389 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7390 |
|
|
end if;
|
7391 |
|
|
|
7392 |
|
|
return;
|
7393 |
|
|
|
7394 |
|
|
else
|
7395 |
|
|
Error_Msg_Sloc := Sloc (E);
|
7396 |
|
|
|
7397 |
|
|
-- Generate message, with useful additional warning if in generic
|
7398 |
|
|
|
7399 |
|
|
if Is_Generic_Unit (E) then
|
7400 |
|
|
Error_Msg_N ("previous generic unit cannot be overloaded", S);
|
7401 |
|
|
Error_Msg_N ("\& conflicts with declaration#", S);
|
7402 |
|
|
else
|
7403 |
|
|
Error_Msg_N ("& conflicts with declaration#", S);
|
7404 |
|
|
end if;
|
7405 |
|
|
|
7406 |
|
|
return;
|
7407 |
|
|
end if;
|
7408 |
|
|
|
7409 |
|
|
-- E exists and is overloadable
|
7410 |
|
|
|
7411 |
|
|
else
|
7412 |
|
|
-- Ada 2005 (AI-251): Derivation of abstract interface primitives
|
7413 |
|
|
-- need no check against the homonym chain. They are directly added
|
7414 |
|
|
-- to the list of primitive operations of Derived_Type.
|
7415 |
|
|
|
7416 |
|
|
if Ada_Version >= Ada_05
|
7417 |
|
|
and then Present (Derived_Type)
|
7418 |
|
|
and then Is_Dispatching_Operation (Alias (S))
|
7419 |
|
|
and then Present (Find_Dispatching_Type (Alias (S)))
|
7420 |
|
|
and then Is_Interface (Find_Dispatching_Type (Alias (S)))
|
7421 |
|
|
then
|
7422 |
|
|
goto Add_New_Entity;
|
7423 |
|
|
end if;
|
7424 |
|
|
|
7425 |
|
|
Check_Synchronized_Overriding (S, Overridden_Subp);
|
7426 |
|
|
|
7427 |
|
|
-- Loop through E and its homonyms to determine if any of them is
|
7428 |
|
|
-- the candidate for overriding by S.
|
7429 |
|
|
|
7430 |
|
|
while Present (E) loop
|
7431 |
|
|
|
7432 |
|
|
-- Definitely not interesting if not in the current scope
|
7433 |
|
|
|
7434 |
|
|
if Scope (E) /= Current_Scope then
|
7435 |
|
|
null;
|
7436 |
|
|
|
7437 |
|
|
-- Check if we have type conformance
|
7438 |
|
|
|
7439 |
|
|
elsif Type_Conformant (E, S) then
|
7440 |
|
|
|
7441 |
|
|
-- If the old and new entities have the same profile and one
|
7442 |
|
|
-- is not the body of the other, then this is an error, unless
|
7443 |
|
|
-- one of them is implicitly declared.
|
7444 |
|
|
|
7445 |
|
|
-- There are some cases when both can be implicit, for example
|
7446 |
|
|
-- when both a literal and a function that overrides it are
|
7447 |
|
|
-- inherited in a derivation, or when an inherited operation
|
7448 |
|
|
-- of a tagged full type overrides the inherited operation of
|
7449 |
|
|
-- a private extension. Ada 83 had a special rule for the
|
7450 |
|
|
-- literal case. In Ada95, the later implicit operation hides
|
7451 |
|
|
-- the former, and the literal is always the former. In the
|
7452 |
|
|
-- odd case where both are derived operations declared at the
|
7453 |
|
|
-- same point, both operations should be declared, and in that
|
7454 |
|
|
-- case we bypass the following test and proceed to the next
|
7455 |
|
|
-- part. This can only occur for certain obscure cases in
|
7456 |
|
|
-- instances, when an operation on a type derived from a formal
|
7457 |
|
|
-- private type does not override a homograph inherited from
|
7458 |
|
|
-- the actual. In subsequent derivations of such a type, the
|
7459 |
|
|
-- DT positions of these operations remain distinct, if they
|
7460 |
|
|
-- have been set.
|
7461 |
|
|
|
7462 |
|
|
if Present (Alias (S))
|
7463 |
|
|
and then (No (Alias (E))
|
7464 |
|
|
or else Comes_From_Source (E)
|
7465 |
|
|
or else Is_Abstract_Subprogram (S)
|
7466 |
|
|
or else
|
7467 |
|
|
(Is_Dispatching_Operation (E)
|
7468 |
|
|
and then Is_Overriding_Alias (E, S)))
|
7469 |
|
|
and then Ekind (E) /= E_Enumeration_Literal
|
7470 |
|
|
then
|
7471 |
|
|
-- When an derived operation is overloaded it may be due to
|
7472 |
|
|
-- the fact that the full view of a private extension
|
7473 |
|
|
-- re-inherits. It has to be dealt with.
|
7474 |
|
|
|
7475 |
|
|
if Is_Package_Or_Generic_Package (Current_Scope)
|
7476 |
|
|
and then In_Private_Part (Current_Scope)
|
7477 |
|
|
then
|
7478 |
|
|
Check_Operation_From_Private_View (S, E);
|
7479 |
|
|
end if;
|
7480 |
|
|
|
7481 |
|
|
-- In any case the implicit operation remains hidden by
|
7482 |
|
|
-- the existing declaration, which is overriding.
|
7483 |
|
|
|
7484 |
|
|
Set_Is_Overriding_Operation (E);
|
7485 |
|
|
|
7486 |
|
|
if Comes_From_Source (E) then
|
7487 |
|
|
Check_Overriding_Indicator (E, S, Is_Primitive => False);
|
7488 |
|
|
|
7489 |
|
|
-- Indicate that E overrides the operation from which
|
7490 |
|
|
-- S is inherited.
|
7491 |
|
|
|
7492 |
|
|
if Present (Alias (S)) then
|
7493 |
|
|
Set_Overridden_Operation (E, Alias (S));
|
7494 |
|
|
else
|
7495 |
|
|
Set_Overridden_Operation (E, S);
|
7496 |
|
|
end if;
|
7497 |
|
|
end if;
|
7498 |
|
|
|
7499 |
|
|
return;
|
7500 |
|
|
|
7501 |
|
|
-- Within an instance, the renaming declarations for actual
|
7502 |
|
|
-- subprograms may become ambiguous, but they do not hide each
|
7503 |
|
|
-- other.
|
7504 |
|
|
|
7505 |
|
|
elsif Ekind (E) /= E_Entry
|
7506 |
|
|
and then not Comes_From_Source (E)
|
7507 |
|
|
and then not Is_Generic_Instance (E)
|
7508 |
|
|
and then (Present (Alias (E))
|
7509 |
|
|
or else Is_Intrinsic_Subprogram (E))
|
7510 |
|
|
and then (not In_Instance
|
7511 |
|
|
or else No (Parent (E))
|
7512 |
|
|
or else Nkind (Unit_Declaration_Node (E)) /=
|
7513 |
|
|
N_Subprogram_Renaming_Declaration)
|
7514 |
|
|
then
|
7515 |
|
|
-- A subprogram child unit is not allowed to override an
|
7516 |
|
|
-- inherited subprogram (10.1.1(20)).
|
7517 |
|
|
|
7518 |
|
|
if Is_Child_Unit (S) then
|
7519 |
|
|
Error_Msg_N
|
7520 |
|
|
("child unit overrides inherited subprogram in parent",
|
7521 |
|
|
S);
|
7522 |
|
|
return;
|
7523 |
|
|
end if;
|
7524 |
|
|
|
7525 |
|
|
if Is_Non_Overriding_Operation (E, S) then
|
7526 |
|
|
Enter_Overloaded_Entity (S);
|
7527 |
|
|
|
7528 |
|
|
if No (Derived_Type)
|
7529 |
|
|
or else Is_Tagged_Type (Derived_Type)
|
7530 |
|
|
then
|
7531 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7532 |
|
|
end if;
|
7533 |
|
|
|
7534 |
|
|
return;
|
7535 |
|
|
end if;
|
7536 |
|
|
|
7537 |
|
|
-- E is a derived operation or an internal operator which
|
7538 |
|
|
-- is being overridden. Remove E from further visibility.
|
7539 |
|
|
-- Furthermore, if E is a dispatching operation, it must be
|
7540 |
|
|
-- replaced in the list of primitive operations of its type
|
7541 |
|
|
-- (see Override_Dispatching_Operation).
|
7542 |
|
|
|
7543 |
|
|
Overridden_Subp := E;
|
7544 |
|
|
|
7545 |
|
|
declare
|
7546 |
|
|
Prev : Entity_Id;
|
7547 |
|
|
|
7548 |
|
|
begin
|
7549 |
|
|
Prev := First_Entity (Current_Scope);
|
7550 |
|
|
while Present (Prev)
|
7551 |
|
|
and then Next_Entity (Prev) /= E
|
7552 |
|
|
loop
|
7553 |
|
|
Next_Entity (Prev);
|
7554 |
|
|
end loop;
|
7555 |
|
|
|
7556 |
|
|
-- It is possible for E to be in the current scope and
|
7557 |
|
|
-- yet not in the entity chain. This can only occur in a
|
7558 |
|
|
-- generic context where E is an implicit concatenation
|
7559 |
|
|
-- in the formal part, because in a generic body the
|
7560 |
|
|
-- entity chain starts with the formals.
|
7561 |
|
|
|
7562 |
|
|
pragma Assert
|
7563 |
|
|
(Present (Prev) or else Chars (E) = Name_Op_Concat);
|
7564 |
|
|
|
7565 |
|
|
-- E must be removed both from the entity_list of the
|
7566 |
|
|
-- current scope, and from the visibility chain
|
7567 |
|
|
|
7568 |
|
|
if Debug_Flag_E then
|
7569 |
|
|
Write_Str ("Override implicit operation ");
|
7570 |
|
|
Write_Int (Int (E));
|
7571 |
|
|
Write_Eol;
|
7572 |
|
|
end if;
|
7573 |
|
|
|
7574 |
|
|
-- If E is a predefined concatenation, it stands for four
|
7575 |
|
|
-- different operations. As a result, a single explicit
|
7576 |
|
|
-- declaration does not hide it. In a possible ambiguous
|
7577 |
|
|
-- situation, Disambiguate chooses the user-defined op,
|
7578 |
|
|
-- so it is correct to retain the previous internal one.
|
7579 |
|
|
|
7580 |
|
|
if Chars (E) /= Name_Op_Concat
|
7581 |
|
|
or else Ekind (E) /= E_Operator
|
7582 |
|
|
then
|
7583 |
|
|
-- For nondispatching derived operations that are
|
7584 |
|
|
-- overridden by a subprogram declared in the private
|
7585 |
|
|
-- part of a package, we retain the derived subprogram
|
7586 |
|
|
-- but mark it as not immediately visible. If the
|
7587 |
|
|
-- derived operation was declared in the visible part
|
7588 |
|
|
-- then this ensures that it will still be visible
|
7589 |
|
|
-- outside the package with the proper signature
|
7590 |
|
|
-- (calls from outside must also be directed to this
|
7591 |
|
|
-- version rather than the overriding one, unlike the
|
7592 |
|
|
-- dispatching case). Calls from inside the package
|
7593 |
|
|
-- will still resolve to the overriding subprogram
|
7594 |
|
|
-- since the derived one is marked as not visible
|
7595 |
|
|
-- within the package.
|
7596 |
|
|
|
7597 |
|
|
-- If the private operation is dispatching, we achieve
|
7598 |
|
|
-- the overriding by keeping the implicit operation
|
7599 |
|
|
-- but setting its alias to be the overriding one. In
|
7600 |
|
|
-- this fashion the proper body is executed in all
|
7601 |
|
|
-- cases, but the original signature is used outside
|
7602 |
|
|
-- of the package.
|
7603 |
|
|
|
7604 |
|
|
-- If the overriding is not in the private part, we
|
7605 |
|
|
-- remove the implicit operation altogether.
|
7606 |
|
|
|
7607 |
|
|
if Is_Private_Declaration (S) then
|
7608 |
|
|
if not Is_Dispatching_Operation (E) then
|
7609 |
|
|
Set_Is_Immediately_Visible (E, False);
|
7610 |
|
|
else
|
7611 |
|
|
-- Work done in Override_Dispatching_Operation,
|
7612 |
|
|
-- so nothing else need to be done here.
|
7613 |
|
|
|
7614 |
|
|
null;
|
7615 |
|
|
end if;
|
7616 |
|
|
|
7617 |
|
|
else
|
7618 |
|
|
-- Find predecessor of E in Homonym chain
|
7619 |
|
|
|
7620 |
|
|
if E = Current_Entity (E) then
|
7621 |
|
|
Prev_Vis := Empty;
|
7622 |
|
|
else
|
7623 |
|
|
Prev_Vis := Current_Entity (E);
|
7624 |
|
|
while Homonym (Prev_Vis) /= E loop
|
7625 |
|
|
Prev_Vis := Homonym (Prev_Vis);
|
7626 |
|
|
end loop;
|
7627 |
|
|
end if;
|
7628 |
|
|
|
7629 |
|
|
if Prev_Vis /= Empty then
|
7630 |
|
|
|
7631 |
|
|
-- Skip E in the visibility chain
|
7632 |
|
|
|
7633 |
|
|
Set_Homonym (Prev_Vis, Homonym (E));
|
7634 |
|
|
|
7635 |
|
|
else
|
7636 |
|
|
Set_Name_Entity_Id (Chars (E), Homonym (E));
|
7637 |
|
|
end if;
|
7638 |
|
|
|
7639 |
|
|
Set_Next_Entity (Prev, Next_Entity (E));
|
7640 |
|
|
|
7641 |
|
|
if No (Next_Entity (Prev)) then
|
7642 |
|
|
Set_Last_Entity (Current_Scope, Prev);
|
7643 |
|
|
end if;
|
7644 |
|
|
|
7645 |
|
|
end if;
|
7646 |
|
|
end if;
|
7647 |
|
|
|
7648 |
|
|
Enter_Overloaded_Entity (S);
|
7649 |
|
|
Set_Is_Overriding_Operation (S);
|
7650 |
|
|
Check_Overriding_Indicator (S, E, Is_Primitive => True);
|
7651 |
|
|
|
7652 |
|
|
-- If S is a user-defined subprogram or a null procedure
|
7653 |
|
|
-- expanded to override an inherited null procedure, then
|
7654 |
|
|
-- indicate that E overrides the operation from which S
|
7655 |
|
|
-- is inherited. It seems odd that Overridden_Operation
|
7656 |
|
|
-- isn't set in all cases where Is_Overriding_Operation
|
7657 |
|
|
-- is true, but doing so causes infinite loops in the
|
7658 |
|
|
-- compiler for implicit overriding subprograms. ???
|
7659 |
|
|
|
7660 |
|
|
if Comes_From_Source (S)
|
7661 |
|
|
or else
|
7662 |
|
|
(Present (Parent (S))
|
7663 |
|
|
and then
|
7664 |
|
|
Nkind (Parent (S)) = N_Procedure_Specification
|
7665 |
|
|
and then
|
7666 |
|
|
Null_Present (Parent (S)))
|
7667 |
|
|
then
|
7668 |
|
|
if Present (Alias (E)) then
|
7669 |
|
|
Set_Overridden_Operation (S, Alias (E));
|
7670 |
|
|
else
|
7671 |
|
|
Set_Overridden_Operation (S, E);
|
7672 |
|
|
end if;
|
7673 |
|
|
end if;
|
7674 |
|
|
|
7675 |
|
|
if Is_Dispatching_Operation (E) then
|
7676 |
|
|
|
7677 |
|
|
-- An overriding dispatching subprogram inherits the
|
7678 |
|
|
-- convention of the overridden subprogram (by
|
7679 |
|
|
-- AI-117).
|
7680 |
|
|
|
7681 |
|
|
Set_Convention (S, Convention (E));
|
7682 |
|
|
Check_Dispatching_Operation (S, E);
|
7683 |
|
|
|
7684 |
|
|
else
|
7685 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7686 |
|
|
end if;
|
7687 |
|
|
|
7688 |
|
|
Check_For_Primitive_Subprogram
|
7689 |
|
|
(Is_Primitive_Subp, Is_Overriding => True);
|
7690 |
|
|
goto Check_Inequality;
|
7691 |
|
|
end;
|
7692 |
|
|
|
7693 |
|
|
-- Apparent redeclarations in instances can occur when two
|
7694 |
|
|
-- formal types get the same actual type. The subprograms in
|
7695 |
|
|
-- in the instance are legal, even if not callable from the
|
7696 |
|
|
-- outside. Calls from within are disambiguated elsewhere.
|
7697 |
|
|
-- For dispatching operations in the visible part, the usual
|
7698 |
|
|
-- rules apply, and operations with the same profile are not
|
7699 |
|
|
-- legal (B830001).
|
7700 |
|
|
|
7701 |
|
|
elsif (In_Instance_Visible_Part
|
7702 |
|
|
and then not Is_Dispatching_Operation (E))
|
7703 |
|
|
or else In_Instance_Not_Visible
|
7704 |
|
|
then
|
7705 |
|
|
null;
|
7706 |
|
|
|
7707 |
|
|
-- Here we have a real error (identical profile)
|
7708 |
|
|
|
7709 |
|
|
else
|
7710 |
|
|
Error_Msg_Sloc := Sloc (E);
|
7711 |
|
|
|
7712 |
|
|
-- Avoid cascaded errors if the entity appears in
|
7713 |
|
|
-- subsequent calls.
|
7714 |
|
|
|
7715 |
|
|
Set_Scope (S, Current_Scope);
|
7716 |
|
|
|
7717 |
|
|
-- Generate error, with extra useful warning for the case
|
7718 |
|
|
-- of a generic instance with no completion.
|
7719 |
|
|
|
7720 |
|
|
if Is_Generic_Instance (S)
|
7721 |
|
|
and then not Has_Completion (E)
|
7722 |
|
|
then
|
7723 |
|
|
Error_Msg_N
|
7724 |
|
|
("instantiation cannot provide body for&", S);
|
7725 |
|
|
Error_Msg_N ("\& conflicts with declaration#", S);
|
7726 |
|
|
else
|
7727 |
|
|
Error_Msg_N ("& conflicts with declaration#", S);
|
7728 |
|
|
end if;
|
7729 |
|
|
|
7730 |
|
|
return;
|
7731 |
|
|
end if;
|
7732 |
|
|
|
7733 |
|
|
else
|
7734 |
|
|
-- If one subprogram has an access parameter and the other
|
7735 |
|
|
-- a parameter of an access type, calls to either might be
|
7736 |
|
|
-- ambiguous. Verify that parameters match except for the
|
7737 |
|
|
-- access parameter.
|
7738 |
|
|
|
7739 |
|
|
if May_Hide_Profile then
|
7740 |
|
|
declare
|
7741 |
|
|
F1 : Entity_Id;
|
7742 |
|
|
F2 : Entity_Id;
|
7743 |
|
|
|
7744 |
|
|
begin
|
7745 |
|
|
F1 := First_Formal (S);
|
7746 |
|
|
F2 := First_Formal (E);
|
7747 |
|
|
while Present (F1) and then Present (F2) loop
|
7748 |
|
|
if Is_Access_Type (Etype (F1)) then
|
7749 |
|
|
if not Is_Access_Type (Etype (F2))
|
7750 |
|
|
or else not Conforming_Types
|
7751 |
|
|
(Designated_Type (Etype (F1)),
|
7752 |
|
|
Designated_Type (Etype (F2)),
|
7753 |
|
|
Type_Conformant)
|
7754 |
|
|
then
|
7755 |
|
|
May_Hide_Profile := False;
|
7756 |
|
|
end if;
|
7757 |
|
|
|
7758 |
|
|
elsif
|
7759 |
|
|
not Conforming_Types
|
7760 |
|
|
(Etype (F1), Etype (F2), Type_Conformant)
|
7761 |
|
|
then
|
7762 |
|
|
May_Hide_Profile := False;
|
7763 |
|
|
end if;
|
7764 |
|
|
|
7765 |
|
|
Next_Formal (F1);
|
7766 |
|
|
Next_Formal (F2);
|
7767 |
|
|
end loop;
|
7768 |
|
|
|
7769 |
|
|
if May_Hide_Profile
|
7770 |
|
|
and then No (F1)
|
7771 |
|
|
and then No (F2)
|
7772 |
|
|
then
|
7773 |
|
|
Error_Msg_NE ("calls to& may be ambiguous?", S, S);
|
7774 |
|
|
end if;
|
7775 |
|
|
end;
|
7776 |
|
|
end if;
|
7777 |
|
|
end if;
|
7778 |
|
|
|
7779 |
|
|
E := Homonym (E);
|
7780 |
|
|
end loop;
|
7781 |
|
|
|
7782 |
|
|
<<Add_New_Entity>>
|
7783 |
|
|
|
7784 |
|
|
-- On exit, we know that S is a new entity
|
7785 |
|
|
|
7786 |
|
|
Enter_Overloaded_Entity (S);
|
7787 |
|
|
Check_For_Primitive_Subprogram (Is_Primitive_Subp);
|
7788 |
|
|
Check_Overriding_Indicator
|
7789 |
|
|
(S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
|
7790 |
|
|
|
7791 |
|
|
-- If S is a derived operation for an untagged type then by
|
7792 |
|
|
-- definition it's not a dispatching operation (even if the parent
|
7793 |
|
|
-- operation was dispatching), so we don't call
|
7794 |
|
|
-- Check_Dispatching_Operation in that case.
|
7795 |
|
|
|
7796 |
|
|
if No (Derived_Type)
|
7797 |
|
|
or else Is_Tagged_Type (Derived_Type)
|
7798 |
|
|
then
|
7799 |
|
|
Check_Dispatching_Operation (S, Empty);
|
7800 |
|
|
end if;
|
7801 |
|
|
end if;
|
7802 |
|
|
|
7803 |
|
|
-- If this is a user-defined equality operator that is not a derived
|
7804 |
|
|
-- subprogram, create the corresponding inequality. If the operation is
|
7805 |
|
|
-- dispatching, the expansion is done elsewhere, and we do not create
|
7806 |
|
|
-- an explicit inequality operation.
|
7807 |
|
|
|
7808 |
|
|
<<Check_Inequality>>
|
7809 |
|
|
if Chars (S) = Name_Op_Eq
|
7810 |
|
|
and then Etype (S) = Standard_Boolean
|
7811 |
|
|
and then Present (Parent (S))
|
7812 |
|
|
and then not Is_Dispatching_Operation (S)
|
7813 |
|
|
then
|
7814 |
|
|
Make_Inequality_Operator (S);
|
7815 |
|
|
end if;
|
7816 |
|
|
end New_Overloaded_Entity;
|
7817 |
|
|
|
7818 |
|
|
---------------------
|
7819 |
|
|
-- Process_Formals --
|
7820 |
|
|
---------------------
|
7821 |
|
|
|
7822 |
|
|
procedure Process_Formals
|
7823 |
|
|
(T : List_Id;
|
7824 |
|
|
Related_Nod : Node_Id)
|
7825 |
|
|
is
|
7826 |
|
|
Param_Spec : Node_Id;
|
7827 |
|
|
Formal : Entity_Id;
|
7828 |
|
|
Formal_Type : Entity_Id;
|
7829 |
|
|
Default : Node_Id;
|
7830 |
|
|
Ptype : Entity_Id;
|
7831 |
|
|
|
7832 |
|
|
Num_Out_Params : Nat := 0;
|
7833 |
|
|
First_Out_Param : Entity_Id := Empty;
|
7834 |
|
|
-- Used for setting Is_Only_Out_Parameter
|
7835 |
|
|
|
7836 |
|
|
function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
|
7837 |
|
|
-- Determine whether an access type designates a type coming from a
|
7838 |
|
|
-- limited view.
|
7839 |
|
|
|
7840 |
|
|
function Is_Class_Wide_Default (D : Node_Id) return Boolean;
|
7841 |
|
|
-- Check whether the default has a class-wide type. After analysis the
|
7842 |
|
|
-- default has the type of the formal, so we must also check explicitly
|
7843 |
|
|
-- for an access attribute.
|
7844 |
|
|
|
7845 |
|
|
-------------------------------
|
7846 |
|
|
-- Designates_From_With_Type --
|
7847 |
|
|
-------------------------------
|
7848 |
|
|
|
7849 |
|
|
function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
|
7850 |
|
|
Desig : Entity_Id := Typ;
|
7851 |
|
|
|
7852 |
|
|
begin
|
7853 |
|
|
if Is_Access_Type (Desig) then
|
7854 |
|
|
Desig := Directly_Designated_Type (Desig);
|
7855 |
|
|
end if;
|
7856 |
|
|
|
7857 |
|
|
if Is_Class_Wide_Type (Desig) then
|
7858 |
|
|
Desig := Root_Type (Desig);
|
7859 |
|
|
end if;
|
7860 |
|
|
|
7861 |
|
|
return
|
7862 |
|
|
Ekind (Desig) = E_Incomplete_Type
|
7863 |
|
|
and then From_With_Type (Desig);
|
7864 |
|
|
end Designates_From_With_Type;
|
7865 |
|
|
|
7866 |
|
|
---------------------------
|
7867 |
|
|
-- Is_Class_Wide_Default --
|
7868 |
|
|
---------------------------
|
7869 |
|
|
|
7870 |
|
|
function Is_Class_Wide_Default (D : Node_Id) return Boolean is
|
7871 |
|
|
begin
|
7872 |
|
|
return Is_Class_Wide_Type (Designated_Type (Etype (D)))
|
7873 |
|
|
or else (Nkind (D) = N_Attribute_Reference
|
7874 |
|
|
and then Attribute_Name (D) = Name_Access
|
7875 |
|
|
and then Is_Class_Wide_Type (Etype (Prefix (D))));
|
7876 |
|
|
end Is_Class_Wide_Default;
|
7877 |
|
|
|
7878 |
|
|
-- Start of processing for Process_Formals
|
7879 |
|
|
|
7880 |
|
|
begin
|
7881 |
|
|
-- In order to prevent premature use of the formals in the same formal
|
7882 |
|
|
-- part, the Ekind is left undefined until all default expressions are
|
7883 |
|
|
-- analyzed. The Ekind is established in a separate loop at the end.
|
7884 |
|
|
|
7885 |
|
|
Param_Spec := First (T);
|
7886 |
|
|
while Present (Param_Spec) loop
|
7887 |
|
|
Formal := Defining_Identifier (Param_Spec);
|
7888 |
|
|
Set_Never_Set_In_Source (Formal, True);
|
7889 |
|
|
Enter_Name (Formal);
|
7890 |
|
|
|
7891 |
|
|
-- Case of ordinary parameters
|
7892 |
|
|
|
7893 |
|
|
if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
|
7894 |
|
|
Find_Type (Parameter_Type (Param_Spec));
|
7895 |
|
|
Ptype := Parameter_Type (Param_Spec);
|
7896 |
|
|
|
7897 |
|
|
if Ptype = Error then
|
7898 |
|
|
goto Continue;
|
7899 |
|
|
end if;
|
7900 |
|
|
|
7901 |
|
|
Formal_Type := Entity (Ptype);
|
7902 |
|
|
|
7903 |
|
|
if Is_Incomplete_Type (Formal_Type)
|
7904 |
|
|
or else
|
7905 |
|
|
(Is_Class_Wide_Type (Formal_Type)
|
7906 |
|
|
and then Is_Incomplete_Type (Root_Type (Formal_Type)))
|
7907 |
|
|
then
|
7908 |
|
|
-- Ada 2005 (AI-326): Tagged incomplete types allowed in
|
7909 |
|
|
-- primitive operations, as long as their completion is
|
7910 |
|
|
-- in the same declarative part. If in the private part
|
7911 |
|
|
-- this means that the type cannot be a Taft-amendment type.
|
7912 |
|
|
-- Check is done on package exit. For access to subprograms,
|
7913 |
|
|
-- the use is legal for Taft-amendment types.
|
7914 |
|
|
|
7915 |
|
|
if Is_Tagged_Type (Formal_Type) then
|
7916 |
|
|
if Ekind (Scope (Current_Scope)) = E_Package
|
7917 |
|
|
and then In_Private_Part (Scope (Current_Scope))
|
7918 |
|
|
and then not From_With_Type (Formal_Type)
|
7919 |
|
|
and then not Is_Class_Wide_Type (Formal_Type)
|
7920 |
|
|
then
|
7921 |
|
|
if not Nkind_In
|
7922 |
|
|
(Parent (T), N_Access_Function_Definition,
|
7923 |
|
|
N_Access_Procedure_Definition)
|
7924 |
|
|
then
|
7925 |
|
|
Append_Elmt
|
7926 |
|
|
(Current_Scope,
|
7927 |
|
|
Private_Dependents (Base_Type (Formal_Type)));
|
7928 |
|
|
end if;
|
7929 |
|
|
end if;
|
7930 |
|
|
|
7931 |
|
|
-- Special handling of Value_Type for CIL case
|
7932 |
|
|
|
7933 |
|
|
elsif Is_Value_Type (Formal_Type) then
|
7934 |
|
|
null;
|
7935 |
|
|
|
7936 |
|
|
elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
|
7937 |
|
|
N_Access_Procedure_Definition)
|
7938 |
|
|
then
|
7939 |
|
|
Error_Msg_NE
|
7940 |
|
|
("invalid use of incomplete type&",
|
7941 |
|
|
Param_Spec, Formal_Type);
|
7942 |
|
|
|
7943 |
|
|
-- Further checks on the legality of incomplete types
|
7944 |
|
|
-- in formal parts must be delayed until the freeze point
|
7945 |
|
|
-- of the enclosing subprogram or access to subprogram.
|
7946 |
|
|
end if;
|
7947 |
|
|
|
7948 |
|
|
elsif Ekind (Formal_Type) = E_Void then
|
7949 |
|
|
Error_Msg_NE ("premature use of&",
|
7950 |
|
|
Parameter_Type (Param_Spec), Formal_Type);
|
7951 |
|
|
end if;
|
7952 |
|
|
|
7953 |
|
|
-- Ada 2005 (AI-231): Create and decorate an internal subtype
|
7954 |
|
|
-- declaration corresponding to the null-excluding type of the
|
7955 |
|
|
-- formal in the enclosing scope. Finally, replace the parameter
|
7956 |
|
|
-- type of the formal with the internal subtype.
|
7957 |
|
|
|
7958 |
|
|
if Ada_Version >= Ada_05
|
7959 |
|
|
and then Null_Exclusion_Present (Param_Spec)
|
7960 |
|
|
then
|
7961 |
|
|
if not Is_Access_Type (Formal_Type) then
|
7962 |
|
|
Error_Msg_N
|
7963 |
|
|
("`NOT NULL` allowed only for an access type", Param_Spec);
|
7964 |
|
|
|
7965 |
|
|
else
|
7966 |
|
|
if Can_Never_Be_Null (Formal_Type)
|
7967 |
|
|
and then Comes_From_Source (Related_Nod)
|
7968 |
|
|
then
|
7969 |
|
|
Error_Msg_NE
|
7970 |
|
|
("`NOT NULL` not allowed (& already excludes null)",
|
7971 |
|
|
Param_Spec,
|
7972 |
|
|
Formal_Type);
|
7973 |
|
|
end if;
|
7974 |
|
|
|
7975 |
|
|
Formal_Type :=
|
7976 |
|
|
Create_Null_Excluding_Itype
|
7977 |
|
|
(T => Formal_Type,
|
7978 |
|
|
Related_Nod => Related_Nod,
|
7979 |
|
|
Scope_Id => Scope (Current_Scope));
|
7980 |
|
|
|
7981 |
|
|
-- If the designated type of the itype is an itype we
|
7982 |
|
|
-- decorate it with the Has_Delayed_Freeze attribute to
|
7983 |
|
|
-- avoid problems with the backend.
|
7984 |
|
|
|
7985 |
|
|
-- Example:
|
7986 |
|
|
-- type T is access procedure;
|
7987 |
|
|
-- procedure Op (O : not null T);
|
7988 |
|
|
|
7989 |
|
|
if Is_Itype (Directly_Designated_Type (Formal_Type)) then
|
7990 |
|
|
Set_Has_Delayed_Freeze (Formal_Type);
|
7991 |
|
|
end if;
|
7992 |
|
|
end if;
|
7993 |
|
|
end if;
|
7994 |
|
|
|
7995 |
|
|
-- An access formal type
|
7996 |
|
|
|
7997 |
|
|
else
|
7998 |
|
|
Formal_Type :=
|
7999 |
|
|
Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
|
8000 |
|
|
|
8001 |
|
|
-- No need to continue if we already notified errors
|
8002 |
|
|
|
8003 |
|
|
if not Present (Formal_Type) then
|
8004 |
|
|
return;
|
8005 |
|
|
end if;
|
8006 |
|
|
|
8007 |
|
|
-- Ada 2005 (AI-254)
|
8008 |
|
|
|
8009 |
|
|
declare
|
8010 |
|
|
AD : constant Node_Id :=
|
8011 |
|
|
Access_To_Subprogram_Definition
|
8012 |
|
|
(Parameter_Type (Param_Spec));
|
8013 |
|
|
begin
|
8014 |
|
|
if Present (AD) and then Protected_Present (AD) then
|
8015 |
|
|
Formal_Type :=
|
8016 |
|
|
Replace_Anonymous_Access_To_Protected_Subprogram
|
8017 |
|
|
(Param_Spec);
|
8018 |
|
|
end if;
|
8019 |
|
|
end;
|
8020 |
|
|
end if;
|
8021 |
|
|
|
8022 |
|
|
Set_Etype (Formal, Formal_Type);
|
8023 |
|
|
Default := Expression (Param_Spec);
|
8024 |
|
|
|
8025 |
|
|
if Present (Default) then
|
8026 |
|
|
if Out_Present (Param_Spec) then
|
8027 |
|
|
Error_Msg_N
|
8028 |
|
|
("default initialization only allowed for IN parameters",
|
8029 |
|
|
Param_Spec);
|
8030 |
|
|
end if;
|
8031 |
|
|
|
8032 |
|
|
-- Do the special preanalysis of the expression (see section on
|
8033 |
|
|
-- "Handling of Default Expressions" in the spec of package Sem).
|
8034 |
|
|
|
8035 |
|
|
Preanalyze_Spec_Expression (Default, Formal_Type);
|
8036 |
|
|
|
8037 |
|
|
-- An access to constant cannot be the default for
|
8038 |
|
|
-- an access parameter that is an access to variable.
|
8039 |
|
|
|
8040 |
|
|
if Ekind (Formal_Type) = E_Anonymous_Access_Type
|
8041 |
|
|
and then not Is_Access_Constant (Formal_Type)
|
8042 |
|
|
and then Is_Access_Type (Etype (Default))
|
8043 |
|
|
and then Is_Access_Constant (Etype (Default))
|
8044 |
|
|
then
|
8045 |
|
|
Error_Msg_N
|
8046 |
|
|
("formal that is access to variable cannot be initialized " &
|
8047 |
|
|
"with an access-to-constant expression", Default);
|
8048 |
|
|
end if;
|
8049 |
|
|
|
8050 |
|
|
-- Check that the designated type of an access parameter's default
|
8051 |
|
|
-- is not a class-wide type unless the parameter's designated type
|
8052 |
|
|
-- is also class-wide.
|
8053 |
|
|
|
8054 |
|
|
if Ekind (Formal_Type) = E_Anonymous_Access_Type
|
8055 |
|
|
and then not Designates_From_With_Type (Formal_Type)
|
8056 |
|
|
and then Is_Class_Wide_Default (Default)
|
8057 |
|
|
and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
|
8058 |
|
|
then
|
8059 |
|
|
Error_Msg_N
|
8060 |
|
|
("access to class-wide expression not allowed here", Default);
|
8061 |
|
|
end if;
|
8062 |
|
|
|
8063 |
|
|
-- Check incorrect use of dynamically tagged expressions
|
8064 |
|
|
|
8065 |
|
|
if Is_Tagged_Type (Formal_Type) then
|
8066 |
|
|
Check_Dynamically_Tagged_Expression
|
8067 |
|
|
(Expr => Default,
|
8068 |
|
|
Typ => Formal_Type,
|
8069 |
|
|
Related_Nod => Default);
|
8070 |
|
|
end if;
|
8071 |
|
|
end if;
|
8072 |
|
|
|
8073 |
|
|
-- Ada 2005 (AI-231): Static checks
|
8074 |
|
|
|
8075 |
|
|
if Ada_Version >= Ada_05
|
8076 |
|
|
and then Is_Access_Type (Etype (Formal))
|
8077 |
|
|
and then Can_Never_Be_Null (Etype (Formal))
|
8078 |
|
|
then
|
8079 |
|
|
Null_Exclusion_Static_Checks (Param_Spec);
|
8080 |
|
|
end if;
|
8081 |
|
|
|
8082 |
|
|
<<Continue>>
|
8083 |
|
|
Next (Param_Spec);
|
8084 |
|
|
end loop;
|
8085 |
|
|
|
8086 |
|
|
-- If this is the formal part of a function specification, analyze the
|
8087 |
|
|
-- subtype mark in the context where the formals are visible but not
|
8088 |
|
|
-- yet usable, and may hide outer homographs.
|
8089 |
|
|
|
8090 |
|
|
if Nkind (Related_Nod) = N_Function_Specification then
|
8091 |
|
|
Analyze_Return_Type (Related_Nod);
|
8092 |
|
|
end if;
|
8093 |
|
|
|
8094 |
|
|
-- Now set the kind (mode) of each formal
|
8095 |
|
|
|
8096 |
|
|
Param_Spec := First (T);
|
8097 |
|
|
|
8098 |
|
|
while Present (Param_Spec) loop
|
8099 |
|
|
Formal := Defining_Identifier (Param_Spec);
|
8100 |
|
|
Set_Formal_Mode (Formal);
|
8101 |
|
|
|
8102 |
|
|
if Ekind (Formal) = E_In_Parameter then
|
8103 |
|
|
Set_Default_Value (Formal, Expression (Param_Spec));
|
8104 |
|
|
|
8105 |
|
|
if Present (Expression (Param_Spec)) then
|
8106 |
|
|
Default := Expression (Param_Spec);
|
8107 |
|
|
|
8108 |
|
|
if Is_Scalar_Type (Etype (Default)) then
|
8109 |
|
|
if Nkind
|
8110 |
|
|
(Parameter_Type (Param_Spec)) /= N_Access_Definition
|
8111 |
|
|
then
|
8112 |
|
|
Formal_Type := Entity (Parameter_Type (Param_Spec));
|
8113 |
|
|
|
8114 |
|
|
else
|
8115 |
|
|
Formal_Type := Access_Definition
|
8116 |
|
|
(Related_Nod, Parameter_Type (Param_Spec));
|
8117 |
|
|
end if;
|
8118 |
|
|
|
8119 |
|
|
Apply_Scalar_Range_Check (Default, Formal_Type);
|
8120 |
|
|
end if;
|
8121 |
|
|
end if;
|
8122 |
|
|
|
8123 |
|
|
elsif Ekind (Formal) = E_Out_Parameter then
|
8124 |
|
|
Num_Out_Params := Num_Out_Params + 1;
|
8125 |
|
|
|
8126 |
|
|
if Num_Out_Params = 1 then
|
8127 |
|
|
First_Out_Param := Formal;
|
8128 |
|
|
end if;
|
8129 |
|
|
|
8130 |
|
|
elsif Ekind (Formal) = E_In_Out_Parameter then
|
8131 |
|
|
Num_Out_Params := Num_Out_Params + 1;
|
8132 |
|
|
end if;
|
8133 |
|
|
|
8134 |
|
|
Next (Param_Spec);
|
8135 |
|
|
end loop;
|
8136 |
|
|
|
8137 |
|
|
if Present (First_Out_Param) and then Num_Out_Params = 1 then
|
8138 |
|
|
Set_Is_Only_Out_Parameter (First_Out_Param);
|
8139 |
|
|
end if;
|
8140 |
|
|
end Process_Formals;
|
8141 |
|
|
|
8142 |
|
|
------------------
|
8143 |
|
|
-- Process_PPCs --
|
8144 |
|
|
------------------
|
8145 |
|
|
|
8146 |
|
|
procedure Process_PPCs
|
8147 |
|
|
(N : Node_Id;
|
8148 |
|
|
Spec_Id : Entity_Id;
|
8149 |
|
|
Body_Id : Entity_Id)
|
8150 |
|
|
is
|
8151 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
8152 |
|
|
Prag : Node_Id;
|
8153 |
|
|
Plist : List_Id := No_List;
|
8154 |
|
|
Subp : Entity_Id;
|
8155 |
|
|
Parms : List_Id;
|
8156 |
|
|
|
8157 |
|
|
function Grab_PPC (Nam : Name_Id) return Node_Id;
|
8158 |
|
|
-- Prag contains an analyzed precondition or postcondition pragma.
|
8159 |
|
|
-- This function copies the pragma, changes it to the corresponding
|
8160 |
|
|
-- Check pragma and returns the Check pragma as the result. The
|
8161 |
|
|
-- argument Nam is either Name_Precondition or Name_Postcondition.
|
8162 |
|
|
|
8163 |
|
|
--------------
|
8164 |
|
|
-- Grab_PPC --
|
8165 |
|
|
--------------
|
8166 |
|
|
|
8167 |
|
|
function Grab_PPC (Nam : Name_Id) return Node_Id is
|
8168 |
|
|
CP : constant Node_Id := New_Copy_Tree (Prag);
|
8169 |
|
|
|
8170 |
|
|
begin
|
8171 |
|
|
-- Set Analyzed to false, since we want to reanalyze the check
|
8172 |
|
|
-- procedure. Note that it is only at the outer level that we
|
8173 |
|
|
-- do this fiddling, for the spec cases, the already preanalyzed
|
8174 |
|
|
-- parameters are not affected.
|
8175 |
|
|
|
8176 |
|
|
-- For a postcondition pragma within a generic, preserve the pragma
|
8177 |
|
|
-- for later expansion.
|
8178 |
|
|
|
8179 |
|
|
Set_Analyzed (CP, False);
|
8180 |
|
|
|
8181 |
|
|
if Nam = Name_Postcondition
|
8182 |
|
|
and then not Expander_Active
|
8183 |
|
|
then
|
8184 |
|
|
return CP;
|
8185 |
|
|
end if;
|
8186 |
|
|
|
8187 |
|
|
-- Change pragma into corresponding pragma Check
|
8188 |
|
|
|
8189 |
|
|
Prepend_To (Pragma_Argument_Associations (CP),
|
8190 |
|
|
Make_Pragma_Argument_Association (Sloc (Prag),
|
8191 |
|
|
Expression =>
|
8192 |
|
|
Make_Identifier (Loc,
|
8193 |
|
|
Chars => Nam)));
|
8194 |
|
|
Set_Pragma_Identifier (CP,
|
8195 |
|
|
Make_Identifier (Sloc (Prag),
|
8196 |
|
|
Chars => Name_Check));
|
8197 |
|
|
|
8198 |
|
|
return CP;
|
8199 |
|
|
end Grab_PPC;
|
8200 |
|
|
|
8201 |
|
|
-- Start of processing for Process_PPCs
|
8202 |
|
|
|
8203 |
|
|
begin
|
8204 |
|
|
-- Nothing to do if we are not generating code
|
8205 |
|
|
|
8206 |
|
|
if Operating_Mode /= Generate_Code then
|
8207 |
|
|
return;
|
8208 |
|
|
end if;
|
8209 |
|
|
|
8210 |
|
|
-- Grab preconditions from spec
|
8211 |
|
|
|
8212 |
|
|
if Present (Spec_Id) then
|
8213 |
|
|
|
8214 |
|
|
-- Loop through PPC pragmas from spec. Note that preconditions from
|
8215 |
|
|
-- the body will be analyzed and converted when we scan the body
|
8216 |
|
|
-- declarations below.
|
8217 |
|
|
|
8218 |
|
|
Prag := Spec_PPC_List (Spec_Id);
|
8219 |
|
|
while Present (Prag) loop
|
8220 |
|
|
if Pragma_Name (Prag) = Name_Precondition
|
8221 |
|
|
and then Pragma_Enabled (Prag)
|
8222 |
|
|
then
|
8223 |
|
|
-- Add pragma Check at the start of the declarations of N.
|
8224 |
|
|
-- Note that this processing reverses the order of the list,
|
8225 |
|
|
-- which is what we want since new entries were chained to
|
8226 |
|
|
-- the head of the list.
|
8227 |
|
|
|
8228 |
|
|
Prepend (Grab_PPC (Name_Precondition), Declarations (N));
|
8229 |
|
|
end if;
|
8230 |
|
|
|
8231 |
|
|
Prag := Next_Pragma (Prag);
|
8232 |
|
|
end loop;
|
8233 |
|
|
end if;
|
8234 |
|
|
|
8235 |
|
|
-- Build postconditions procedure if needed and prepend the following
|
8236 |
|
|
-- declaration to the start of the declarations for the subprogram.
|
8237 |
|
|
|
8238 |
|
|
-- procedure _postconditions [(_Result : resulttype)] is
|
8239 |
|
|
-- begin
|
8240 |
|
|
-- pragma Check (Postcondition, condition [,message]);
|
8241 |
|
|
-- pragma Check (Postcondition, condition [,message]);
|
8242 |
|
|
-- ...
|
8243 |
|
|
-- end;
|
8244 |
|
|
|
8245 |
|
|
-- First we deal with the postconditions in the body
|
8246 |
|
|
|
8247 |
|
|
if Is_Non_Empty_List (Declarations (N)) then
|
8248 |
|
|
|
8249 |
|
|
-- Loop through declarations
|
8250 |
|
|
|
8251 |
|
|
Prag := First (Declarations (N));
|
8252 |
|
|
while Present (Prag) loop
|
8253 |
|
|
if Nkind (Prag) = N_Pragma then
|
8254 |
|
|
|
8255 |
|
|
-- If pragma, capture if enabled postcondition, else ignore
|
8256 |
|
|
|
8257 |
|
|
if Pragma_Name (Prag) = Name_Postcondition
|
8258 |
|
|
and then Check_Enabled (Name_Postcondition)
|
8259 |
|
|
then
|
8260 |
|
|
if Plist = No_List then
|
8261 |
|
|
Plist := Empty_List;
|
8262 |
|
|
end if;
|
8263 |
|
|
|
8264 |
|
|
Analyze (Prag);
|
8265 |
|
|
|
8266 |
|
|
-- If expansion is disabled, as in a generic unit,
|
8267 |
|
|
-- save pragma for later expansion.
|
8268 |
|
|
|
8269 |
|
|
if not Expander_Active then
|
8270 |
|
|
Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
|
8271 |
|
|
else
|
8272 |
|
|
Append (Grab_PPC (Name_Postcondition), Plist);
|
8273 |
|
|
end if;
|
8274 |
|
|
end if;
|
8275 |
|
|
|
8276 |
|
|
Next (Prag);
|
8277 |
|
|
|
8278 |
|
|
-- Not a pragma, if comes from source, then end scan
|
8279 |
|
|
|
8280 |
|
|
elsif Comes_From_Source (Prag) then
|
8281 |
|
|
exit;
|
8282 |
|
|
|
8283 |
|
|
-- Skip stuff not coming from source
|
8284 |
|
|
|
8285 |
|
|
else
|
8286 |
|
|
Next (Prag);
|
8287 |
|
|
end if;
|
8288 |
|
|
end loop;
|
8289 |
|
|
end if;
|
8290 |
|
|
|
8291 |
|
|
-- Now deal with any postconditions from the spec
|
8292 |
|
|
|
8293 |
|
|
if Present (Spec_Id) then
|
8294 |
|
|
|
8295 |
|
|
-- Loop through PPC pragmas from spec
|
8296 |
|
|
|
8297 |
|
|
Prag := Spec_PPC_List (Spec_Id);
|
8298 |
|
|
while Present (Prag) loop
|
8299 |
|
|
if Pragma_Name (Prag) = Name_Postcondition
|
8300 |
|
|
and then Pragma_Enabled (Prag)
|
8301 |
|
|
then
|
8302 |
|
|
if Plist = No_List then
|
8303 |
|
|
Plist := Empty_List;
|
8304 |
|
|
end if;
|
8305 |
|
|
|
8306 |
|
|
if not Expander_Active then
|
8307 |
|
|
Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
|
8308 |
|
|
else
|
8309 |
|
|
Append (Grab_PPC (Name_Postcondition), Plist);
|
8310 |
|
|
end if;
|
8311 |
|
|
end if;
|
8312 |
|
|
|
8313 |
|
|
Prag := Next_Pragma (Prag);
|
8314 |
|
|
end loop;
|
8315 |
|
|
end if;
|
8316 |
|
|
|
8317 |
|
|
-- If we had any postconditions and expansion is enabled, build
|
8318 |
|
|
-- the _Postconditions procedure.
|
8319 |
|
|
|
8320 |
|
|
if Present (Plist)
|
8321 |
|
|
and then Expander_Active
|
8322 |
|
|
then
|
8323 |
|
|
Subp := Defining_Entity (N);
|
8324 |
|
|
|
8325 |
|
|
if Etype (Subp) /= Standard_Void_Type then
|
8326 |
|
|
Parms := New_List (
|
8327 |
|
|
Make_Parameter_Specification (Loc,
|
8328 |
|
|
Defining_Identifier =>
|
8329 |
|
|
Make_Defining_Identifier (Loc,
|
8330 |
|
|
Chars => Name_uResult),
|
8331 |
|
|
Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
|
8332 |
|
|
else
|
8333 |
|
|
Parms := No_List;
|
8334 |
|
|
end if;
|
8335 |
|
|
|
8336 |
|
|
declare
|
8337 |
|
|
Post_Proc : constant Entity_Id :=
|
8338 |
|
|
Make_Defining_Identifier (Loc,
|
8339 |
|
|
Chars => Name_uPostconditions);
|
8340 |
|
|
-- The entity for the _Postconditions procedure
|
8341 |
|
|
begin
|
8342 |
|
|
Prepend_To (Declarations (N),
|
8343 |
|
|
Make_Subprogram_Body (Loc,
|
8344 |
|
|
Specification =>
|
8345 |
|
|
Make_Procedure_Specification (Loc,
|
8346 |
|
|
Defining_Unit_Name => Post_Proc,
|
8347 |
|
|
Parameter_Specifications => Parms),
|
8348 |
|
|
|
8349 |
|
|
Declarations => Empty_List,
|
8350 |
|
|
|
8351 |
|
|
Handled_Statement_Sequence =>
|
8352 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
8353 |
|
|
Statements => Plist)));
|
8354 |
|
|
|
8355 |
|
|
-- If this is a procedure, set the Postcondition_Proc attribute on
|
8356 |
|
|
-- the proper defining entity for the subprogram.
|
8357 |
|
|
|
8358 |
|
|
if Etype (Subp) = Standard_Void_Type then
|
8359 |
|
|
if Present (Spec_Id) then
|
8360 |
|
|
Set_Postcondition_Proc (Spec_Id, Post_Proc);
|
8361 |
|
|
else
|
8362 |
|
|
Set_Postcondition_Proc (Body_Id, Post_Proc);
|
8363 |
|
|
end if;
|
8364 |
|
|
end if;
|
8365 |
|
|
end;
|
8366 |
|
|
|
8367 |
|
|
if Present (Spec_Id) then
|
8368 |
|
|
Set_Has_Postconditions (Spec_Id);
|
8369 |
|
|
else
|
8370 |
|
|
Set_Has_Postconditions (Body_Id);
|
8371 |
|
|
end if;
|
8372 |
|
|
end if;
|
8373 |
|
|
end Process_PPCs;
|
8374 |
|
|
|
8375 |
|
|
----------------------------
|
8376 |
|
|
-- Reference_Body_Formals --
|
8377 |
|
|
----------------------------
|
8378 |
|
|
|
8379 |
|
|
procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
|
8380 |
|
|
Fs : Entity_Id;
|
8381 |
|
|
Fb : Entity_Id;
|
8382 |
|
|
|
8383 |
|
|
begin
|
8384 |
|
|
if Error_Posted (Spec) then
|
8385 |
|
|
return;
|
8386 |
|
|
end if;
|
8387 |
|
|
|
8388 |
|
|
-- Iterate over both lists. They may be of different lengths if the two
|
8389 |
|
|
-- specs are not conformant.
|
8390 |
|
|
|
8391 |
|
|
Fs := First_Formal (Spec);
|
8392 |
|
|
Fb := First_Formal (Bod);
|
8393 |
|
|
while Present (Fs) and then Present (Fb) loop
|
8394 |
|
|
Generate_Reference (Fs, Fb, 'b');
|
8395 |
|
|
|
8396 |
|
|
if Style_Check then
|
8397 |
|
|
Style.Check_Identifier (Fb, Fs);
|
8398 |
|
|
end if;
|
8399 |
|
|
|
8400 |
|
|
Set_Spec_Entity (Fb, Fs);
|
8401 |
|
|
Set_Referenced (Fs, False);
|
8402 |
|
|
Next_Formal (Fs);
|
8403 |
|
|
Next_Formal (Fb);
|
8404 |
|
|
end loop;
|
8405 |
|
|
end Reference_Body_Formals;
|
8406 |
|
|
|
8407 |
|
|
-------------------------
|
8408 |
|
|
-- Set_Actual_Subtypes --
|
8409 |
|
|
-------------------------
|
8410 |
|
|
|
8411 |
|
|
procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
|
8412 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
8413 |
|
|
Decl : Node_Id;
|
8414 |
|
|
Formal : Entity_Id;
|
8415 |
|
|
T : Entity_Id;
|
8416 |
|
|
First_Stmt : Node_Id := Empty;
|
8417 |
|
|
AS_Needed : Boolean;
|
8418 |
|
|
|
8419 |
|
|
begin
|
8420 |
|
|
-- If this is an empty initialization procedure, no need to create
|
8421 |
|
|
-- actual subtypes (small optimization).
|
8422 |
|
|
|
8423 |
|
|
if Ekind (Subp) = E_Procedure
|
8424 |
|
|
and then Is_Null_Init_Proc (Subp)
|
8425 |
|
|
then
|
8426 |
|
|
return;
|
8427 |
|
|
end if;
|
8428 |
|
|
|
8429 |
|
|
Formal := First_Formal (Subp);
|
8430 |
|
|
while Present (Formal) loop
|
8431 |
|
|
T := Etype (Formal);
|
8432 |
|
|
|
8433 |
|
|
-- We never need an actual subtype for a constrained formal
|
8434 |
|
|
|
8435 |
|
|
if Is_Constrained (T) then
|
8436 |
|
|
AS_Needed := False;
|
8437 |
|
|
|
8438 |
|
|
-- If we have unknown discriminants, then we do not need an actual
|
8439 |
|
|
-- subtype, or more accurately we cannot figure it out! Note that
|
8440 |
|
|
-- all class-wide types have unknown discriminants.
|
8441 |
|
|
|
8442 |
|
|
elsif Has_Unknown_Discriminants (T) then
|
8443 |
|
|
AS_Needed := False;
|
8444 |
|
|
|
8445 |
|
|
-- At this stage we have an unconstrained type that may need an
|
8446 |
|
|
-- actual subtype. For sure the actual subtype is needed if we have
|
8447 |
|
|
-- an unconstrained array type.
|
8448 |
|
|
|
8449 |
|
|
elsif Is_Array_Type (T) then
|
8450 |
|
|
AS_Needed := True;
|
8451 |
|
|
|
8452 |
|
|
-- The only other case needing an actual subtype is an unconstrained
|
8453 |
|
|
-- record type which is an IN parameter (we cannot generate actual
|
8454 |
|
|
-- subtypes for the OUT or IN OUT case, since an assignment can
|
8455 |
|
|
-- change the discriminant values. However we exclude the case of
|
8456 |
|
|
-- initialization procedures, since discriminants are handled very
|
8457 |
|
|
-- specially in this context, see the section entitled "Handling of
|
8458 |
|
|
-- Discriminants" in Einfo.
|
8459 |
|
|
|
8460 |
|
|
-- We also exclude the case of Discrim_SO_Functions (functions used
|
8461 |
|
|
-- in front end layout mode for size/offset values), since in such
|
8462 |
|
|
-- functions only discriminants are referenced, and not only are such
|
8463 |
|
|
-- subtypes not needed, but they cannot always be generated, because
|
8464 |
|
|
-- of order of elaboration issues.
|
8465 |
|
|
|
8466 |
|
|
elsif Is_Record_Type (T)
|
8467 |
|
|
and then Ekind (Formal) = E_In_Parameter
|
8468 |
|
|
and then Chars (Formal) /= Name_uInit
|
8469 |
|
|
and then not Is_Unchecked_Union (T)
|
8470 |
|
|
and then not Is_Discrim_SO_Function (Subp)
|
8471 |
|
|
then
|
8472 |
|
|
AS_Needed := True;
|
8473 |
|
|
|
8474 |
|
|
-- All other cases do not need an actual subtype
|
8475 |
|
|
|
8476 |
|
|
else
|
8477 |
|
|
AS_Needed := False;
|
8478 |
|
|
end if;
|
8479 |
|
|
|
8480 |
|
|
-- Generate actual subtypes for unconstrained arrays and
|
8481 |
|
|
-- unconstrained discriminated records.
|
8482 |
|
|
|
8483 |
|
|
if AS_Needed then
|
8484 |
|
|
if Nkind (N) = N_Accept_Statement then
|
8485 |
|
|
|
8486 |
|
|
-- If expansion is active, The formal is replaced by a local
|
8487 |
|
|
-- variable that renames the corresponding entry of the
|
8488 |
|
|
-- parameter block, and it is this local variable that may
|
8489 |
|
|
-- require an actual subtype.
|
8490 |
|
|
|
8491 |
|
|
if Expander_Active then
|
8492 |
|
|
Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
|
8493 |
|
|
else
|
8494 |
|
|
Decl := Build_Actual_Subtype (T, Formal);
|
8495 |
|
|
end if;
|
8496 |
|
|
|
8497 |
|
|
if Present (Handled_Statement_Sequence (N)) then
|
8498 |
|
|
First_Stmt :=
|
8499 |
|
|
First (Statements (Handled_Statement_Sequence (N)));
|
8500 |
|
|
Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
|
8501 |
|
|
Mark_Rewrite_Insertion (Decl);
|
8502 |
|
|
else
|
8503 |
|
|
-- If the accept statement has no body, there will be no
|
8504 |
|
|
-- reference to the actuals, so no need to compute actual
|
8505 |
|
|
-- subtypes.
|
8506 |
|
|
|
8507 |
|
|
return;
|
8508 |
|
|
end if;
|
8509 |
|
|
|
8510 |
|
|
else
|
8511 |
|
|
Decl := Build_Actual_Subtype (T, Formal);
|
8512 |
|
|
Prepend (Decl, Declarations (N));
|
8513 |
|
|
Mark_Rewrite_Insertion (Decl);
|
8514 |
|
|
end if;
|
8515 |
|
|
|
8516 |
|
|
-- The declaration uses the bounds of an existing object, and
|
8517 |
|
|
-- therefore needs no constraint checks.
|
8518 |
|
|
|
8519 |
|
|
Analyze (Decl, Suppress => All_Checks);
|
8520 |
|
|
|
8521 |
|
|
-- We need to freeze manually the generated type when it is
|
8522 |
|
|
-- inserted anywhere else than in a declarative part.
|
8523 |
|
|
|
8524 |
|
|
if Present (First_Stmt) then
|
8525 |
|
|
Insert_List_Before_And_Analyze (First_Stmt,
|
8526 |
|
|
Freeze_Entity (Defining_Identifier (Decl), Loc));
|
8527 |
|
|
end if;
|
8528 |
|
|
|
8529 |
|
|
if Nkind (N) = N_Accept_Statement
|
8530 |
|
|
and then Expander_Active
|
8531 |
|
|
then
|
8532 |
|
|
Set_Actual_Subtype (Renamed_Object (Formal),
|
8533 |
|
|
Defining_Identifier (Decl));
|
8534 |
|
|
else
|
8535 |
|
|
Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
|
8536 |
|
|
end if;
|
8537 |
|
|
end if;
|
8538 |
|
|
|
8539 |
|
|
Next_Formal (Formal);
|
8540 |
|
|
end loop;
|
8541 |
|
|
end Set_Actual_Subtypes;
|
8542 |
|
|
|
8543 |
|
|
---------------------
|
8544 |
|
|
-- Set_Formal_Mode --
|
8545 |
|
|
---------------------
|
8546 |
|
|
|
8547 |
|
|
procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
|
8548 |
|
|
Spec : constant Node_Id := Parent (Formal_Id);
|
8549 |
|
|
|
8550 |
|
|
begin
|
8551 |
|
|
-- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
|
8552 |
|
|
-- since we ensure that corresponding actuals are always valid at the
|
8553 |
|
|
-- point of the call.
|
8554 |
|
|
|
8555 |
|
|
if Out_Present (Spec) then
|
8556 |
|
|
if Ekind (Scope (Formal_Id)) = E_Function
|
8557 |
|
|
or else Ekind (Scope (Formal_Id)) = E_Generic_Function
|
8558 |
|
|
then
|
8559 |
|
|
Error_Msg_N ("functions can only have IN parameters", Spec);
|
8560 |
|
|
Set_Ekind (Formal_Id, E_In_Parameter);
|
8561 |
|
|
|
8562 |
|
|
elsif In_Present (Spec) then
|
8563 |
|
|
Set_Ekind (Formal_Id, E_In_Out_Parameter);
|
8564 |
|
|
|
8565 |
|
|
else
|
8566 |
|
|
Set_Ekind (Formal_Id, E_Out_Parameter);
|
8567 |
|
|
Set_Never_Set_In_Source (Formal_Id, True);
|
8568 |
|
|
Set_Is_True_Constant (Formal_Id, False);
|
8569 |
|
|
Set_Current_Value (Formal_Id, Empty);
|
8570 |
|
|
end if;
|
8571 |
|
|
|
8572 |
|
|
else
|
8573 |
|
|
Set_Ekind (Formal_Id, E_In_Parameter);
|
8574 |
|
|
end if;
|
8575 |
|
|
|
8576 |
|
|
-- Set Is_Known_Non_Null for access parameters since the language
|
8577 |
|
|
-- guarantees that access parameters are always non-null. We also set
|
8578 |
|
|
-- Can_Never_Be_Null, since there is no way to change the value.
|
8579 |
|
|
|
8580 |
|
|
if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
|
8581 |
|
|
|
8582 |
|
|
-- Ada 2005 (AI-231): In Ada95, access parameters are always non-
|
8583 |
|
|
-- null; In Ada 2005, only if then null_exclusion is explicit.
|
8584 |
|
|
|
8585 |
|
|
if Ada_Version < Ada_05
|
8586 |
|
|
or else Can_Never_Be_Null (Etype (Formal_Id))
|
8587 |
|
|
then
|
8588 |
|
|
Set_Is_Known_Non_Null (Formal_Id);
|
8589 |
|
|
Set_Can_Never_Be_Null (Formal_Id);
|
8590 |
|
|
end if;
|
8591 |
|
|
|
8592 |
|
|
-- Ada 2005 (AI-231): Null-exclusion access subtype
|
8593 |
|
|
|
8594 |
|
|
elsif Is_Access_Type (Etype (Formal_Id))
|
8595 |
|
|
and then Can_Never_Be_Null (Etype (Formal_Id))
|
8596 |
|
|
then
|
8597 |
|
|
Set_Is_Known_Non_Null (Formal_Id);
|
8598 |
|
|
end if;
|
8599 |
|
|
|
8600 |
|
|
Set_Mechanism (Formal_Id, Default_Mechanism);
|
8601 |
|
|
Set_Formal_Validity (Formal_Id);
|
8602 |
|
|
end Set_Formal_Mode;
|
8603 |
|
|
|
8604 |
|
|
-------------------------
|
8605 |
|
|
-- Set_Formal_Validity --
|
8606 |
|
|
-------------------------
|
8607 |
|
|
|
8608 |
|
|
procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
|
8609 |
|
|
begin
|
8610 |
|
|
-- If no validity checking, then we cannot assume anything about the
|
8611 |
|
|
-- validity of parameters, since we do not know there is any checking
|
8612 |
|
|
-- of the validity on the call side.
|
8613 |
|
|
|
8614 |
|
|
if not Validity_Checks_On then
|
8615 |
|
|
return;
|
8616 |
|
|
|
8617 |
|
|
-- If validity checking for parameters is enabled, this means we are
|
8618 |
|
|
-- not supposed to make any assumptions about argument values.
|
8619 |
|
|
|
8620 |
|
|
elsif Validity_Check_Parameters then
|
8621 |
|
|
return;
|
8622 |
|
|
|
8623 |
|
|
-- If we are checking in parameters, we will assume that the caller is
|
8624 |
|
|
-- also checking parameters, so we can assume the parameter is valid.
|
8625 |
|
|
|
8626 |
|
|
elsif Ekind (Formal_Id) = E_In_Parameter
|
8627 |
|
|
and then Validity_Check_In_Params
|
8628 |
|
|
then
|
8629 |
|
|
Set_Is_Known_Valid (Formal_Id, True);
|
8630 |
|
|
|
8631 |
|
|
-- Similar treatment for IN OUT parameters
|
8632 |
|
|
|
8633 |
|
|
elsif Ekind (Formal_Id) = E_In_Out_Parameter
|
8634 |
|
|
and then Validity_Check_In_Out_Params
|
8635 |
|
|
then
|
8636 |
|
|
Set_Is_Known_Valid (Formal_Id, True);
|
8637 |
|
|
end if;
|
8638 |
|
|
end Set_Formal_Validity;
|
8639 |
|
|
|
8640 |
|
|
------------------------
|
8641 |
|
|
-- Subtype_Conformant --
|
8642 |
|
|
------------------------
|
8643 |
|
|
|
8644 |
|
|
function Subtype_Conformant
|
8645 |
|
|
(New_Id : Entity_Id;
|
8646 |
|
|
Old_Id : Entity_Id;
|
8647 |
|
|
Skip_Controlling_Formals : Boolean := False) return Boolean
|
8648 |
|
|
is
|
8649 |
|
|
Result : Boolean;
|
8650 |
|
|
begin
|
8651 |
|
|
Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
|
8652 |
|
|
Skip_Controlling_Formals => Skip_Controlling_Formals);
|
8653 |
|
|
return Result;
|
8654 |
|
|
end Subtype_Conformant;
|
8655 |
|
|
|
8656 |
|
|
---------------------
|
8657 |
|
|
-- Type_Conformant --
|
8658 |
|
|
---------------------
|
8659 |
|
|
|
8660 |
|
|
function Type_Conformant
|
8661 |
|
|
(New_Id : Entity_Id;
|
8662 |
|
|
Old_Id : Entity_Id;
|
8663 |
|
|
Skip_Controlling_Formals : Boolean := False) return Boolean
|
8664 |
|
|
is
|
8665 |
|
|
Result : Boolean;
|
8666 |
|
|
begin
|
8667 |
|
|
May_Hide_Profile := False;
|
8668 |
|
|
|
8669 |
|
|
Check_Conformance
|
8670 |
|
|
(New_Id, Old_Id, Type_Conformant, False, Result,
|
8671 |
|
|
Skip_Controlling_Formals => Skip_Controlling_Formals);
|
8672 |
|
|
return Result;
|
8673 |
|
|
end Type_Conformant;
|
8674 |
|
|
|
8675 |
|
|
-------------------------------
|
8676 |
|
|
-- Valid_Operator_Definition --
|
8677 |
|
|
-------------------------------
|
8678 |
|
|
|
8679 |
|
|
procedure Valid_Operator_Definition (Designator : Entity_Id) is
|
8680 |
|
|
N : Integer := 0;
|
8681 |
|
|
F : Entity_Id;
|
8682 |
|
|
Id : constant Name_Id := Chars (Designator);
|
8683 |
|
|
N_OK : Boolean;
|
8684 |
|
|
|
8685 |
|
|
begin
|
8686 |
|
|
F := First_Formal (Designator);
|
8687 |
|
|
while Present (F) loop
|
8688 |
|
|
N := N + 1;
|
8689 |
|
|
|
8690 |
|
|
if Present (Default_Value (F)) then
|
8691 |
|
|
Error_Msg_N
|
8692 |
|
|
("default values not allowed for operator parameters",
|
8693 |
|
|
Parent (F));
|
8694 |
|
|
end if;
|
8695 |
|
|
|
8696 |
|
|
Next_Formal (F);
|
8697 |
|
|
end loop;
|
8698 |
|
|
|
8699 |
|
|
-- Verify that user-defined operators have proper number of arguments
|
8700 |
|
|
-- First case of operators which can only be unary
|
8701 |
|
|
|
8702 |
|
|
if Id = Name_Op_Not
|
8703 |
|
|
or else Id = Name_Op_Abs
|
8704 |
|
|
then
|
8705 |
|
|
N_OK := (N = 1);
|
8706 |
|
|
|
8707 |
|
|
-- Case of operators which can be unary or binary
|
8708 |
|
|
|
8709 |
|
|
elsif Id = Name_Op_Add
|
8710 |
|
|
or Id = Name_Op_Subtract
|
8711 |
|
|
then
|
8712 |
|
|
N_OK := (N in 1 .. 2);
|
8713 |
|
|
|
8714 |
|
|
-- All other operators can only be binary
|
8715 |
|
|
|
8716 |
|
|
else
|
8717 |
|
|
N_OK := (N = 2);
|
8718 |
|
|
end if;
|
8719 |
|
|
|
8720 |
|
|
if not N_OK then
|
8721 |
|
|
Error_Msg_N
|
8722 |
|
|
("incorrect number of arguments for operator", Designator);
|
8723 |
|
|
end if;
|
8724 |
|
|
|
8725 |
|
|
if Id = Name_Op_Ne
|
8726 |
|
|
and then Base_Type (Etype (Designator)) = Standard_Boolean
|
8727 |
|
|
and then not Is_Intrinsic_Subprogram (Designator)
|
8728 |
|
|
then
|
8729 |
|
|
Error_Msg_N
|
8730 |
|
|
("explicit definition of inequality not allowed", Designator);
|
8731 |
|
|
end if;
|
8732 |
|
|
end Valid_Operator_Definition;
|
8733 |
|
|
|
8734 |
|
|
end Sem_Ch6;
|