OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [sem_util.adb] - Blame information for rev 300

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             S E M _ U T I L                              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Casing;   use Casing;
28
with Checks;   use Checks;
29
with Debug;    use Debug;
30
with Errout;   use Errout;
31
with Elists;   use Elists;
32
with Exp_Ch11; use Exp_Ch11;
33
with Exp_Disp; use Exp_Disp;
34
with Exp_Tss;  use Exp_Tss;
35
with Exp_Util; use Exp_Util;
36
with Fname;    use Fname;
37
with Freeze;   use Freeze;
38
with Lib;      use Lib;
39
with Lib.Xref; use Lib.Xref;
40
with Nlists;   use Nlists;
41
with Output;   use Output;
42
with Opt;      use Opt;
43
with Rtsfind;  use Rtsfind;
44
with Scans;    use Scans;
45
with Scn;      use Scn;
46
with Sem;      use Sem;
47
with Sem_Aux;  use Sem_Aux;
48
with Sem_Attr; use Sem_Attr;
49
with Sem_Ch8;  use Sem_Ch8;
50
with Sem_Disp; use Sem_Disp;
51
with Sem_Eval; use Sem_Eval;
52
with Sem_Res;  use Sem_Res;
53
with Sem_SCIL; use Sem_SCIL;
54
with Sem_Type; use Sem_Type;
55
with Sinfo;    use Sinfo;
56
with Sinput;   use Sinput;
57
with Stand;    use Stand;
58
with Style;
59
with Stringt;  use Stringt;
60
with Targparm; use Targparm;
61
with Tbuild;   use Tbuild;
62
with Ttypes;   use Ttypes;
63
with Uname;    use Uname;
64
 
65
with GNAT.HTable; use GNAT.HTable;
66
package body Sem_Util is
67
 
68
   ----------------------------------------
69
   -- Global_Variables for New_Copy_Tree --
70
   ----------------------------------------
71
 
72
   --  These global variables are used by New_Copy_Tree. See description
73
   --  of the body of this subprogram for details. Global variables can be
74
   --  safely used by New_Copy_Tree, since there is no case of a recursive
75
   --  call from the processing inside New_Copy_Tree.
76
 
77
   NCT_Hash_Threshhold : constant := 20;
78
   --  If there are more than this number of pairs of entries in the
79
   --  map, then Hash_Tables_Used will be set, and the hash tables will
80
   --  be initialized and used for the searches.
81
 
82
   NCT_Hash_Tables_Used : Boolean := False;
83
   --  Set to True if hash tables are in use
84
 
85
   NCT_Table_Entries : Nat;
86
   --  Count entries in table to see if threshhold is reached
87
 
88
   NCT_Hash_Table_Setup : Boolean := False;
89
   --  Set to True if hash table contains data. We set this True if we
90
   --  setup the hash table with data, and leave it set permanently
91
   --  from then on, this is a signal that second and subsequent users
92
   --  of the hash table must clear the old entries before reuse.
93
 
94
   subtype NCT_Header_Num is Int range 0 .. 511;
95
   --  Defines range of headers in hash tables (512 headers)
96
 
97
   -----------------------
98
   -- Local Subprograms --
99
   -----------------------
100
 
101
   function Build_Component_Subtype
102
     (C   : List_Id;
103
      Loc : Source_Ptr;
104
      T   : Entity_Id) return Node_Id;
105
   --  This function builds the subtype for Build_Actual_Subtype_Of_Component
106
   --  and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
107
   --  Loc is the source location, T is the original subtype.
108
 
109
   function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
110
   --  Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
111
   --  with discriminants whose default values are static, examine only the
112
   --  components in the selected variant to determine whether all of them
113
   --  have a default.
114
 
115
   function Has_Null_Extension (T : Entity_Id) return Boolean;
116
   --  T is a derived tagged type. Check whether the type extension is null.
117
   --  If the parent type is fully initialized, T can be treated as such.
118
 
119
   ------------------------------
120
   --  Abstract_Interface_List --
121
   ------------------------------
122
 
123
   function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
124
      Nod : Node_Id;
125
 
126
   begin
127
      if Is_Concurrent_Type (Typ) then
128
 
129
         --  If we are dealing with a synchronized subtype, go to the base
130
         --  type, whose declaration has the interface list.
131
 
132
         --  Shouldn't this be Declaration_Node???
133
 
134
         Nod := Parent (Base_Type (Typ));
135
 
136
         if Nkind (Nod) = N_Full_Type_Declaration then
137
            return Empty_List;
138
         end if;
139
 
140
      elsif Ekind (Typ) = E_Record_Type_With_Private then
141
         if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
142
            Nod := Type_Definition (Parent (Typ));
143
 
144
         elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
145
            if Present (Full_View (Typ)) then
146
               Nod := Type_Definition (Parent (Full_View (Typ)));
147
 
148
            --  If the full-view is not available we cannot do anything else
149
            --  here (the source has errors).
150
 
151
            else
152
               return Empty_List;
153
            end if;
154
 
155
         --  Support for generic formals with interfaces is still missing ???
156
 
157
         elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
158
            return Empty_List;
159
 
160
         else
161
            pragma Assert
162
              (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
163
            Nod := Parent (Typ);
164
         end if;
165
 
166
      elsif Ekind (Typ) = E_Record_Subtype then
167
         Nod := Type_Definition (Parent (Etype (Typ)));
168
 
169
      elsif Ekind (Typ) = E_Record_Subtype_With_Private then
170
 
171
         --  Recurse, because parent may still be a private extension. Also
172
         --  note that the full view of the subtype or the full view of its
173
         --  base type may (both) be unavailable.
174
 
175
         return Abstract_Interface_List (Etype (Typ));
176
 
177
      else pragma Assert ((Ekind (Typ)) = E_Record_Type);
178
         if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
179
            Nod := Formal_Type_Definition (Parent (Typ));
180
         else
181
            Nod := Type_Definition (Parent (Typ));
182
         end if;
183
      end if;
184
 
185
      return Interface_List (Nod);
186
   end Abstract_Interface_List;
187
 
188
   --------------------------------
189
   -- Add_Access_Type_To_Process --
190
   --------------------------------
191
 
192
   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
193
      L : Elist_Id;
194
 
195
   begin
196
      Ensure_Freeze_Node (E);
197
      L := Access_Types_To_Process (Freeze_Node (E));
198
 
199
      if No (L) then
200
         L := New_Elmt_List;
201
         Set_Access_Types_To_Process (Freeze_Node (E), L);
202
      end if;
203
 
204
      Append_Elmt (A, L);
205
   end Add_Access_Type_To_Process;
206
 
207
   ----------------------------
208
   -- Add_Global_Declaration --
209
   ----------------------------
210
 
211
   procedure Add_Global_Declaration (N : Node_Id) is
212
      Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
213
 
214
   begin
215
      if No (Declarations (Aux_Node)) then
216
         Set_Declarations (Aux_Node, New_List);
217
      end if;
218
 
219
      Append_To (Declarations (Aux_Node), N);
220
      Analyze (N);
221
   end Add_Global_Declaration;
222
 
223
   -----------------------
224
   -- Alignment_In_Bits --
225
   -----------------------
226
 
227
   function Alignment_In_Bits (E : Entity_Id) return Uint is
228
   begin
229
      return Alignment (E) * System_Storage_Unit;
230
   end Alignment_In_Bits;
231
 
232
   -----------------------------------------
233
   -- Apply_Compile_Time_Constraint_Error --
234
   -----------------------------------------
235
 
236
   procedure Apply_Compile_Time_Constraint_Error
237
     (N      : Node_Id;
238
      Msg    : String;
239
      Reason : RT_Exception_Code;
240
      Ent    : Entity_Id  := Empty;
241
      Typ    : Entity_Id  := Empty;
242
      Loc    : Source_Ptr := No_Location;
243
      Rep    : Boolean    := True;
244
      Warn   : Boolean    := False)
245
   is
246
      Stat   : constant Boolean := Is_Static_Expression (N);
247
      R_Stat : constant Node_Id :=
248
                 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
249
      Rtyp   : Entity_Id;
250
 
251
   begin
252
      if No (Typ) then
253
         Rtyp := Etype (N);
254
      else
255
         Rtyp := Typ;
256
      end if;
257
 
258
      Discard_Node
259
        (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
260
 
261
      if not Rep then
262
         return;
263
      end if;
264
 
265
      --  Now we replace the node by an N_Raise_Constraint_Error node
266
      --  This does not need reanalyzing, so set it as analyzed now.
267
 
268
      Rewrite (N, R_Stat);
269
      Set_Analyzed (N, True);
270
 
271
      Set_Etype (N, Rtyp);
272
      Set_Raises_Constraint_Error (N);
273
 
274
      --  Now deal with possible local raise handling
275
 
276
      Possible_Local_Raise (N, Standard_Constraint_Error);
277
 
278
      --  If the original expression was marked as static, the result is
279
      --  still marked as static, but the Raises_Constraint_Error flag is
280
      --  always set so that further static evaluation is not attempted.
281
 
282
      if Stat then
283
         Set_Is_Static_Expression (N);
284
      end if;
285
   end Apply_Compile_Time_Constraint_Error;
286
 
287
   --------------------------
288
   -- Build_Actual_Subtype --
289
   --------------------------
290
 
291
   function Build_Actual_Subtype
292
     (T : Entity_Id;
293
      N : Node_Or_Entity_Id) return Node_Id
294
   is
295
      Loc : Source_Ptr;
296
      --  Normally Sloc (N), but may point to corresponding body in some cases
297
 
298
      Constraints : List_Id;
299
      Decl        : Node_Id;
300
      Discr       : Entity_Id;
301
      Hi          : Node_Id;
302
      Lo          : Node_Id;
303
      Subt        : Entity_Id;
304
      Disc_Type   : Entity_Id;
305
      Obj         : Node_Id;
306
 
307
   begin
308
      Loc := Sloc (N);
309
 
310
      if Nkind (N) = N_Defining_Identifier then
311
         Obj := New_Reference_To (N, Loc);
312
 
313
         --  If this is a formal parameter of a subprogram declaration, and
314
         --  we are compiling the body, we want the declaration for the
315
         --  actual subtype to carry the source position of the body, to
316
         --  prevent anomalies in gdb when stepping through the code.
317
 
318
         if Is_Formal (N) then
319
            declare
320
               Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
321
            begin
322
               if Nkind (Decl) = N_Subprogram_Declaration
323
                 and then Present (Corresponding_Body (Decl))
324
               then
325
                  Loc := Sloc (Corresponding_Body (Decl));
326
               end if;
327
            end;
328
         end if;
329
 
330
      else
331
         Obj := N;
332
      end if;
333
 
334
      if Is_Array_Type (T) then
335
         Constraints := New_List;
336
         for J in 1 .. Number_Dimensions (T) loop
337
 
338
            --  Build an array subtype declaration with the nominal subtype and
339
            --  the bounds of the actual. Add the declaration in front of the
340
            --  local declarations for the subprogram, for analysis before any
341
            --  reference to the formal in the body.
342
 
343
            Lo :=
344
              Make_Attribute_Reference (Loc,
345
                Prefix         =>
346
                  Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
347
                Attribute_Name => Name_First,
348
                Expressions    => New_List (
349
                  Make_Integer_Literal (Loc, J)));
350
 
351
            Hi :=
352
              Make_Attribute_Reference (Loc,
353
                Prefix         =>
354
                  Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
355
                Attribute_Name => Name_Last,
356
                Expressions    => New_List (
357
                  Make_Integer_Literal (Loc, J)));
358
 
359
            Append (Make_Range (Loc, Lo, Hi), Constraints);
360
         end loop;
361
 
362
      --  If the type has unknown discriminants there is no constrained
363
      --  subtype to build. This is never called for a formal or for a
364
      --  lhs, so returning the type is ok ???
365
 
366
      elsif Has_Unknown_Discriminants (T) then
367
         return T;
368
 
369
      else
370
         Constraints := New_List;
371
 
372
         --  Type T is a generic derived type, inherit the discriminants from
373
         --  the parent type.
374
 
375
         if Is_Private_Type (T)
376
           and then No (Full_View (T))
377
 
378
            --  T was flagged as an error if it was declared as a formal
379
            --  derived type with known discriminants. In this case there
380
            --  is no need to look at the parent type since T already carries
381
            --  its own discriminants.
382
 
383
           and then not Error_Posted (T)
384
         then
385
            Disc_Type := Etype (Base_Type (T));
386
         else
387
            Disc_Type := T;
388
         end if;
389
 
390
         Discr := First_Discriminant (Disc_Type);
391
         while Present (Discr) loop
392
            Append_To (Constraints,
393
              Make_Selected_Component (Loc,
394
                Prefix =>
395
                  Duplicate_Subexpr_No_Checks (Obj),
396
                Selector_Name => New_Occurrence_Of (Discr, Loc)));
397
            Next_Discriminant (Discr);
398
         end loop;
399
      end if;
400
 
401
      Subt :=
402
        Make_Defining_Identifier (Loc,
403
          Chars => New_Internal_Name ('S'));
404
      Set_Is_Internal (Subt);
405
 
406
      Decl :=
407
        Make_Subtype_Declaration (Loc,
408
          Defining_Identifier => Subt,
409
          Subtype_Indication =>
410
            Make_Subtype_Indication (Loc,
411
              Subtype_Mark => New_Reference_To (T,  Loc),
412
              Constraint  =>
413
                Make_Index_Or_Discriminant_Constraint (Loc,
414
                  Constraints => Constraints)));
415
 
416
      Mark_Rewrite_Insertion (Decl);
417
      return Decl;
418
   end Build_Actual_Subtype;
419
 
420
   ---------------------------------------
421
   -- Build_Actual_Subtype_Of_Component --
422
   ---------------------------------------
423
 
424
   function Build_Actual_Subtype_Of_Component
425
     (T : Entity_Id;
426
      N : Node_Id) return Node_Id
427
   is
428
      Loc       : constant Source_Ptr := Sloc (N);
429
      P         : constant Node_Id    := Prefix (N);
430
      D         : Elmt_Id;
431
      Id        : Node_Id;
432
      Indx_Type : Entity_Id;
433
 
434
      Deaccessed_T : Entity_Id;
435
      --  This is either a copy of T, or if T is an access type, then it is
436
      --  the directly designated type of this access type.
437
 
438
      function Build_Actual_Array_Constraint return List_Id;
439
      --  If one or more of the bounds of the component depends on
440
      --  discriminants, build  actual constraint using the discriminants
441
      --  of the prefix.
442
 
443
      function Build_Actual_Record_Constraint return List_Id;
444
      --  Similar to previous one, for discriminated components constrained
445
      --  by the discriminant of the enclosing object.
446
 
447
      -----------------------------------
448
      -- Build_Actual_Array_Constraint --
449
      -----------------------------------
450
 
451
      function Build_Actual_Array_Constraint return List_Id is
452
         Constraints : constant List_Id := New_List;
453
         Indx        : Node_Id;
454
         Hi          : Node_Id;
455
         Lo          : Node_Id;
456
         Old_Hi      : Node_Id;
457
         Old_Lo      : Node_Id;
458
 
459
      begin
460
         Indx := First_Index (Deaccessed_T);
461
         while Present (Indx) loop
462
            Old_Lo := Type_Low_Bound  (Etype (Indx));
463
            Old_Hi := Type_High_Bound (Etype (Indx));
464
 
465
            if Denotes_Discriminant (Old_Lo) then
466
               Lo :=
467
                 Make_Selected_Component (Loc,
468
                   Prefix => New_Copy_Tree (P),
469
                   Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
470
 
471
            else
472
               Lo := New_Copy_Tree (Old_Lo);
473
 
474
               --  The new bound will be reanalyzed in the enclosing
475
               --  declaration. For literal bounds that come from a type
476
               --  declaration, the type of the context must be imposed, so
477
               --  insure that analysis will take place. For non-universal
478
               --  types this is not strictly necessary.
479
 
480
               Set_Analyzed (Lo, False);
481
            end if;
482
 
483
            if Denotes_Discriminant (Old_Hi) then
484
               Hi :=
485
                 Make_Selected_Component (Loc,
486
                   Prefix => New_Copy_Tree (P),
487
                   Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
488
 
489
            else
490
               Hi := New_Copy_Tree (Old_Hi);
491
               Set_Analyzed (Hi, False);
492
            end if;
493
 
494
            Append (Make_Range (Loc, Lo, Hi), Constraints);
495
            Next_Index (Indx);
496
         end loop;
497
 
498
         return Constraints;
499
      end Build_Actual_Array_Constraint;
500
 
501
      ------------------------------------
502
      -- Build_Actual_Record_Constraint --
503
      ------------------------------------
504
 
505
      function Build_Actual_Record_Constraint return List_Id is
506
         Constraints : constant List_Id := New_List;
507
         D           : Elmt_Id;
508
         D_Val       : Node_Id;
509
 
510
      begin
511
         D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
512
         while Present (D) loop
513
            if Denotes_Discriminant (Node (D)) then
514
               D_Val :=  Make_Selected_Component (Loc,
515
                 Prefix => New_Copy_Tree (P),
516
                Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
517
 
518
            else
519
               D_Val := New_Copy_Tree (Node (D));
520
            end if;
521
 
522
            Append (D_Val, Constraints);
523
            Next_Elmt (D);
524
         end loop;
525
 
526
         return Constraints;
527
      end Build_Actual_Record_Constraint;
528
 
529
   --  Start of processing for Build_Actual_Subtype_Of_Component
530
 
531
   begin
532
      --  Why the test for Spec_Expression mode here???
533
 
534
      if In_Spec_Expression then
535
         return Empty;
536
 
537
      --  More comments for the rest of this body would be good ???
538
 
539
      elsif Nkind (N) = N_Explicit_Dereference then
540
         if Is_Composite_Type (T)
541
           and then not Is_Constrained (T)
542
           and then not (Is_Class_Wide_Type (T)
543
                          and then Is_Constrained (Root_Type (T)))
544
           and then not Has_Unknown_Discriminants (T)
545
         then
546
            --  If the type of the dereference is already constrained, it
547
            --  is an actual subtype.
548
 
549
            if Is_Array_Type (Etype (N))
550
              and then Is_Constrained (Etype (N))
551
            then
552
               return Empty;
553
            else
554
               Remove_Side_Effects (P);
555
               return Build_Actual_Subtype (T, N);
556
            end if;
557
         else
558
            return Empty;
559
         end if;
560
      end if;
561
 
562
      if Ekind (T) = E_Access_Subtype then
563
         Deaccessed_T := Designated_Type (T);
564
      else
565
         Deaccessed_T := T;
566
      end if;
567
 
568
      if Ekind (Deaccessed_T) = E_Array_Subtype then
569
         Id := First_Index (Deaccessed_T);
570
         while Present (Id) loop
571
            Indx_Type := Underlying_Type (Etype (Id));
572
 
573
            if Denotes_Discriminant (Type_Low_Bound  (Indx_Type))
574
                 or else
575
               Denotes_Discriminant (Type_High_Bound (Indx_Type))
576
            then
577
               Remove_Side_Effects (P);
578
               return
579
                 Build_Component_Subtype
580
                   (Build_Actual_Array_Constraint, Loc, Base_Type (T));
581
            end if;
582
 
583
            Next_Index (Id);
584
         end loop;
585
 
586
      elsif Is_Composite_Type (Deaccessed_T)
587
        and then Has_Discriminants (Deaccessed_T)
588
        and then not Has_Unknown_Discriminants (Deaccessed_T)
589
      then
590
         D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
591
         while Present (D) loop
592
            if Denotes_Discriminant (Node (D)) then
593
               Remove_Side_Effects (P);
594
               return
595
                 Build_Component_Subtype (
596
                   Build_Actual_Record_Constraint, Loc, Base_Type (T));
597
            end if;
598
 
599
            Next_Elmt (D);
600
         end loop;
601
      end if;
602
 
603
      --  If none of the above, the actual and nominal subtypes are the same
604
 
605
      return Empty;
606
   end Build_Actual_Subtype_Of_Component;
607
 
608
   -----------------------------
609
   -- Build_Component_Subtype --
610
   -----------------------------
611
 
612
   function Build_Component_Subtype
613
     (C   : List_Id;
614
      Loc : Source_Ptr;
615
      T   : Entity_Id) return Node_Id
616
   is
617
      Subt : Entity_Id;
618
      Decl : Node_Id;
619
 
620
   begin
621
      --  Unchecked_Union components do not require component subtypes
622
 
623
      if Is_Unchecked_Union (T) then
624
         return Empty;
625
      end if;
626
 
627
      Subt :=
628
        Make_Defining_Identifier (Loc,
629
          Chars => New_Internal_Name ('S'));
630
      Set_Is_Internal (Subt);
631
 
632
      Decl :=
633
        Make_Subtype_Declaration (Loc,
634
          Defining_Identifier => Subt,
635
          Subtype_Indication =>
636
            Make_Subtype_Indication (Loc,
637
              Subtype_Mark => New_Reference_To (Base_Type (T),  Loc),
638
              Constraint  =>
639
                Make_Index_Or_Discriminant_Constraint (Loc,
640
                  Constraints => C)));
641
 
642
      Mark_Rewrite_Insertion (Decl);
643
      return Decl;
644
   end Build_Component_Subtype;
645
 
646
   ---------------------------
647
   -- Build_Default_Subtype --
648
   ---------------------------
649
 
650
   function Build_Default_Subtype
651
     (T : Entity_Id;
652
      N : Node_Id) return Entity_Id
653
   is
654
      Loc  : constant Source_Ptr := Sloc (N);
655
      Disc : Entity_Id;
656
 
657
   begin
658
      if not Has_Discriminants (T) or else Is_Constrained (T) then
659
         return T;
660
      end if;
661
 
662
      Disc := First_Discriminant (T);
663
 
664
      if No (Discriminant_Default_Value (Disc)) then
665
         return T;
666
      end if;
667
 
668
      declare
669
         Act : constant Entity_Id :=
670
                 Make_Defining_Identifier (Loc,
671
                   Chars => New_Internal_Name ('S'));
672
 
673
         Constraints : constant List_Id := New_List;
674
         Decl        : Node_Id;
675
 
676
      begin
677
         while Present (Disc) loop
678
            Append_To (Constraints,
679
              New_Copy_Tree (Discriminant_Default_Value (Disc)));
680
            Next_Discriminant (Disc);
681
         end loop;
682
 
683
         Decl :=
684
           Make_Subtype_Declaration (Loc,
685
             Defining_Identifier => Act,
686
             Subtype_Indication =>
687
               Make_Subtype_Indication (Loc,
688
                 Subtype_Mark => New_Occurrence_Of (T, Loc),
689
                 Constraint =>
690
                   Make_Index_Or_Discriminant_Constraint (Loc,
691
                     Constraints => Constraints)));
692
 
693
         Insert_Action (N, Decl);
694
         Analyze (Decl);
695
         return Act;
696
      end;
697
   end Build_Default_Subtype;
698
 
699
   --------------------------------------------
700
   -- Build_Discriminal_Subtype_Of_Component --
701
   --------------------------------------------
702
 
703
   function Build_Discriminal_Subtype_Of_Component
704
     (T : Entity_Id) return Node_Id
705
   is
706
      Loc : constant Source_Ptr := Sloc (T);
707
      D   : Elmt_Id;
708
      Id  : Node_Id;
709
 
710
      function Build_Discriminal_Array_Constraint return List_Id;
711
      --  If one or more of the bounds of the component depends on
712
      --  discriminants, build  actual constraint using the discriminants
713
      --  of the prefix.
714
 
715
      function Build_Discriminal_Record_Constraint return List_Id;
716
      --  Similar to previous one, for discriminated components constrained
717
      --  by the discriminant of the enclosing object.
718
 
719
      ----------------------------------------
720
      -- Build_Discriminal_Array_Constraint --
721
      ----------------------------------------
722
 
723
      function Build_Discriminal_Array_Constraint return List_Id is
724
         Constraints : constant List_Id := New_List;
725
         Indx        : Node_Id;
726
         Hi          : Node_Id;
727
         Lo          : Node_Id;
728
         Old_Hi      : Node_Id;
729
         Old_Lo      : Node_Id;
730
 
731
      begin
732
         Indx := First_Index (T);
733
         while Present (Indx) loop
734
            Old_Lo := Type_Low_Bound  (Etype (Indx));
735
            Old_Hi := Type_High_Bound (Etype (Indx));
736
 
737
            if Denotes_Discriminant (Old_Lo) then
738
               Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
739
 
740
            else
741
               Lo := New_Copy_Tree (Old_Lo);
742
            end if;
743
 
744
            if Denotes_Discriminant (Old_Hi) then
745
               Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
746
 
747
            else
748
               Hi := New_Copy_Tree (Old_Hi);
749
            end if;
750
 
751
            Append (Make_Range (Loc, Lo, Hi), Constraints);
752
            Next_Index (Indx);
753
         end loop;
754
 
755
         return Constraints;
756
      end Build_Discriminal_Array_Constraint;
757
 
758
      -----------------------------------------
759
      -- Build_Discriminal_Record_Constraint --
760
      -----------------------------------------
761
 
762
      function Build_Discriminal_Record_Constraint return List_Id is
763
         Constraints : constant List_Id := New_List;
764
         D           : Elmt_Id;
765
         D_Val       : Node_Id;
766
 
767
      begin
768
         D := First_Elmt (Discriminant_Constraint (T));
769
         while Present (D) loop
770
            if Denotes_Discriminant (Node (D)) then
771
               D_Val :=
772
                 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
773
 
774
            else
775
               D_Val := New_Copy_Tree (Node (D));
776
            end if;
777
 
778
            Append (D_Val, Constraints);
779
            Next_Elmt (D);
780
         end loop;
781
 
782
         return Constraints;
783
      end Build_Discriminal_Record_Constraint;
784
 
785
   --  Start of processing for Build_Discriminal_Subtype_Of_Component
786
 
787
   begin
788
      if Ekind (T) = E_Array_Subtype then
789
         Id := First_Index (T);
790
         while Present (Id) loop
791
            if Denotes_Discriminant (Type_Low_Bound  (Etype (Id))) or else
792
               Denotes_Discriminant (Type_High_Bound (Etype (Id)))
793
            then
794
               return Build_Component_Subtype
795
                 (Build_Discriminal_Array_Constraint, Loc, T);
796
            end if;
797
 
798
            Next_Index (Id);
799
         end loop;
800
 
801
      elsif Ekind (T) = E_Record_Subtype
802
        and then Has_Discriminants (T)
803
        and then not Has_Unknown_Discriminants (T)
804
      then
805
         D := First_Elmt (Discriminant_Constraint (T));
806
         while Present (D) loop
807
            if Denotes_Discriminant (Node (D)) then
808
               return Build_Component_Subtype
809
                 (Build_Discriminal_Record_Constraint, Loc, T);
810
            end if;
811
 
812
            Next_Elmt (D);
813
         end loop;
814
      end if;
815
 
816
      --  If none of the above, the actual and nominal subtypes are the same
817
 
818
      return Empty;
819
   end Build_Discriminal_Subtype_Of_Component;
820
 
821
   ------------------------------
822
   -- Build_Elaboration_Entity --
823
   ------------------------------
824
 
825
   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
826
      Loc      : constant Source_Ptr := Sloc (N);
827
      Decl     : Node_Id;
828
      Elab_Ent : Entity_Id;
829
 
830
      procedure Set_Package_Name (Ent : Entity_Id);
831
      --  Given an entity, sets the fully qualified name of the entity in
832
      --  Name_Buffer, with components separated by double underscores. This
833
      --  is a recursive routine that climbs the scope chain to Standard.
834
 
835
      ----------------------
836
      -- Set_Package_Name --
837
      ----------------------
838
 
839
      procedure Set_Package_Name (Ent : Entity_Id) is
840
      begin
841
         if Scope (Ent) /= Standard_Standard then
842
            Set_Package_Name (Scope (Ent));
843
 
844
            declare
845
               Nam : constant String := Get_Name_String (Chars (Ent));
846
            begin
847
               Name_Buffer (Name_Len + 1) := '_';
848
               Name_Buffer (Name_Len + 2) := '_';
849
               Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
850
               Name_Len := Name_Len + Nam'Length + 2;
851
            end;
852
 
853
         else
854
            Get_Name_String (Chars (Ent));
855
         end if;
856
      end Set_Package_Name;
857
 
858
   --  Start of processing for Build_Elaboration_Entity
859
 
860
   begin
861
      --  Ignore if already constructed
862
 
863
      if Present (Elaboration_Entity (Spec_Id)) then
864
         return;
865
      end if;
866
 
867
      --  Construct name of elaboration entity as xxx_E, where xxx is the unit
868
      --  name with dots replaced by double underscore. We have to manually
869
      --  construct this name, since it will be elaborated in the outer scope,
870
      --  and thus will not have the unit name automatically prepended.
871
 
872
      Set_Package_Name (Spec_Id);
873
 
874
      --  Append _E
875
 
876
      Name_Buffer (Name_Len + 1) := '_';
877
      Name_Buffer (Name_Len + 2) := 'E';
878
      Name_Len := Name_Len + 2;
879
 
880
      --  Create elaboration flag
881
 
882
      Elab_Ent :=
883
        Make_Defining_Identifier (Loc, Chars => Name_Find);
884
      Set_Elaboration_Entity (Spec_Id, Elab_Ent);
885
 
886
      Decl :=
887
         Make_Object_Declaration (Loc,
888
           Defining_Identifier => Elab_Ent,
889
           Object_Definition   =>
890
             New_Occurrence_Of (Standard_Boolean, Loc),
891
           Expression          =>
892
             New_Occurrence_Of (Standard_False, Loc));
893
 
894
      Push_Scope (Standard_Standard);
895
      Add_Global_Declaration (Decl);
896
      Pop_Scope;
897
 
898
      --  Reset True_Constant indication, since we will indeed assign a value
899
      --  to the variable in the binder main. We also kill the Current_Value
900
      --  and Last_Assignment fields for the same reason.
901
 
902
      Set_Is_True_Constant (Elab_Ent, False);
903
      Set_Current_Value    (Elab_Ent, Empty);
904
      Set_Last_Assignment  (Elab_Ent, Empty);
905
 
906
      --  We do not want any further qualification of the name (if we did
907
      --  not do this, we would pick up the name of the generic package
908
      --  in the case of a library level generic instantiation).
909
 
910
      Set_Has_Qualified_Name       (Elab_Ent);
911
      Set_Has_Fully_Qualified_Name (Elab_Ent);
912
   end Build_Elaboration_Entity;
913
 
914
   -----------------------------------
915
   -- Cannot_Raise_Constraint_Error --
916
   -----------------------------------
917
 
918
   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
919
   begin
920
      if Compile_Time_Known_Value (Expr) then
921
         return True;
922
 
923
      elsif Do_Range_Check (Expr) then
924
         return False;
925
 
926
      elsif Raises_Constraint_Error (Expr) then
927
         return False;
928
 
929
      else
930
         case Nkind (Expr) is
931
            when N_Identifier =>
932
               return True;
933
 
934
            when N_Expanded_Name =>
935
               return True;
936
 
937
            when N_Selected_Component =>
938
               return not Do_Discriminant_Check (Expr);
939
 
940
            when N_Attribute_Reference =>
941
               if Do_Overflow_Check (Expr) then
942
                  return False;
943
 
944
               elsif No (Expressions (Expr)) then
945
                  return True;
946
 
947
               else
948
                  declare
949
                     N : Node_Id;
950
 
951
                  begin
952
                     N := First (Expressions (Expr));
953
                     while Present (N) loop
954
                        if Cannot_Raise_Constraint_Error (N) then
955
                           Next (N);
956
                        else
957
                           return False;
958
                        end if;
959
                     end loop;
960
 
961
                     return True;
962
                  end;
963
               end if;
964
 
965
            when N_Type_Conversion =>
966
               if Do_Overflow_Check (Expr)
967
                 or else Do_Length_Check (Expr)
968
                 or else Do_Tag_Check (Expr)
969
               then
970
                  return False;
971
               else
972
                  return
973
                    Cannot_Raise_Constraint_Error (Expression (Expr));
974
               end if;
975
 
976
            when N_Unchecked_Type_Conversion =>
977
               return Cannot_Raise_Constraint_Error (Expression (Expr));
978
 
979
            when N_Unary_Op =>
980
               if Do_Overflow_Check (Expr) then
981
                  return False;
982
               else
983
                  return
984
                    Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
985
               end if;
986
 
987
            when N_Op_Divide |
988
                 N_Op_Mod    |
989
                 N_Op_Rem
990
            =>
991
               if Do_Division_Check (Expr)
992
                 or else Do_Overflow_Check (Expr)
993
               then
994
                  return False;
995
               else
996
                  return
997
                    Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
998
                      and then
999
                    Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1000
               end if;
1001
 
1002
            when N_Op_Add                    |
1003
                 N_Op_And                    |
1004
                 N_Op_Concat                 |
1005
                 N_Op_Eq                     |
1006
                 N_Op_Expon                  |
1007
                 N_Op_Ge                     |
1008
                 N_Op_Gt                     |
1009
                 N_Op_Le                     |
1010
                 N_Op_Lt                     |
1011
                 N_Op_Multiply               |
1012
                 N_Op_Ne                     |
1013
                 N_Op_Or                     |
1014
                 N_Op_Rotate_Left            |
1015
                 N_Op_Rotate_Right           |
1016
                 N_Op_Shift_Left             |
1017
                 N_Op_Shift_Right            |
1018
                 N_Op_Shift_Right_Arithmetic |
1019
                 N_Op_Subtract               |
1020
                 N_Op_Xor
1021
            =>
1022
               if Do_Overflow_Check (Expr) then
1023
                  return False;
1024
               else
1025
                  return
1026
                    Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1027
                      and then
1028
                    Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1029
               end if;
1030
 
1031
            when others =>
1032
               return False;
1033
         end case;
1034
      end if;
1035
   end Cannot_Raise_Constraint_Error;
1036
 
1037
   -----------------------------------------
1038
   -- Check_Dynamically_Tagged_Expression --
1039
   -----------------------------------------
1040
 
1041
   procedure Check_Dynamically_Tagged_Expression
1042
     (Expr        : Node_Id;
1043
      Typ         : Entity_Id;
1044
      Related_Nod : Node_Id)
1045
   is
1046
   begin
1047
      pragma Assert (Is_Tagged_Type (Typ));
1048
 
1049
      --  In order to avoid spurious errors when analyzing the expanded code,
1050
      --  this check is done only for nodes that come from source and for
1051
      --  actuals of generic instantiations.
1052
 
1053
      if (Comes_From_Source (Related_Nod)
1054
           or else In_Generic_Actual (Expr))
1055
        and then (Is_Class_Wide_Type (Etype (Expr))
1056
                   or else Is_Dynamically_Tagged (Expr))
1057
        and then Is_Tagged_Type (Typ)
1058
        and then not Is_Class_Wide_Type (Typ)
1059
      then
1060
         Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1061
      end if;
1062
   end Check_Dynamically_Tagged_Expression;
1063
 
1064
   --------------------------
1065
   -- Check_Fully_Declared --
1066
   --------------------------
1067
 
1068
   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1069
   begin
1070
      if Ekind (T) = E_Incomplete_Type then
1071
 
1072
         --  Ada 2005 (AI-50217): If the type is available through a limited
1073
         --  with_clause, verify that its full view has been analyzed.
1074
 
1075
         if From_With_Type (T)
1076
           and then Present (Non_Limited_View (T))
1077
           and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1078
         then
1079
            --  The non-limited view is fully declared
1080
            null;
1081
 
1082
         else
1083
            Error_Msg_NE
1084
              ("premature usage of incomplete}", N, First_Subtype (T));
1085
         end if;
1086
 
1087
      --  Need comments for these tests ???
1088
 
1089
      elsif Has_Private_Component (T)
1090
        and then not Is_Generic_Type (Root_Type (T))
1091
        and then not In_Spec_Expression
1092
      then
1093
         --  Special case: if T is the anonymous type created for a single
1094
         --  task or protected object, use the name of the source object.
1095
 
1096
         if Is_Concurrent_Type (T)
1097
           and then not Comes_From_Source (T)
1098
           and then Nkind (N) = N_Object_Declaration
1099
         then
1100
            Error_Msg_NE ("type of& has incomplete component", N,
1101
              Defining_Identifier (N));
1102
 
1103
         else
1104
            Error_Msg_NE
1105
              ("premature usage of incomplete}", N, First_Subtype (T));
1106
         end if;
1107
      end if;
1108
   end Check_Fully_Declared;
1109
 
1110
   -------------------------
1111
   -- Check_Nested_Access --
1112
   -------------------------
1113
 
1114
   procedure Check_Nested_Access (Ent : Entity_Id) is
1115
      Scop         : constant Entity_Id := Current_Scope;
1116
      Current_Subp : Entity_Id;
1117
      Enclosing    : Entity_Id;
1118
 
1119
   begin
1120
      --  Currently only enabled for VM back-ends for efficiency, should we
1121
      --  enable it more systematically ???
1122
 
1123
      --  Check for Is_Imported needs commenting below ???
1124
 
1125
      if VM_Target /= No_VM
1126
        and then (Ekind (Ent) = E_Variable
1127
                    or else
1128
                  Ekind (Ent) = E_Constant
1129
                    or else
1130
                  Ekind (Ent) = E_Loop_Parameter)
1131
        and then Scope (Ent) /= Empty
1132
        and then not Is_Library_Level_Entity (Ent)
1133
        and then not Is_Imported (Ent)
1134
      then
1135
         if Is_Subprogram (Scop)
1136
           or else Is_Generic_Subprogram (Scop)
1137
           or else Is_Entry (Scop)
1138
         then
1139
            Current_Subp := Scop;
1140
         else
1141
            Current_Subp := Current_Subprogram;
1142
         end if;
1143
 
1144
         Enclosing := Enclosing_Subprogram (Ent);
1145
 
1146
         if Enclosing /= Empty
1147
           and then Enclosing /= Current_Subp
1148
         then
1149
            Set_Has_Up_Level_Access (Ent, True);
1150
         end if;
1151
      end if;
1152
   end Check_Nested_Access;
1153
 
1154
   ------------------------------------------
1155
   -- Check_Potentially_Blocking_Operation --
1156
   ------------------------------------------
1157
 
1158
   procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
1159
      S : Entity_Id;
1160
   begin
1161
      --  N is one of the potentially blocking operations listed in 9.5.1(8).
1162
      --  When pragma Detect_Blocking is active, the run time will raise
1163
      --  Program_Error. Here we only issue a warning, since we generally
1164
      --  support the use of potentially blocking operations in the absence
1165
      --  of the pragma.
1166
 
1167
      --  Indirect blocking through a subprogram call cannot be diagnosed
1168
      --  statically without interprocedural analysis, so we do not attempt
1169
      --  to do it here.
1170
 
1171
      S := Scope (Current_Scope);
1172
      while Present (S) and then S /= Standard_Standard loop
1173
         if Is_Protected_Type (S) then
1174
            Error_Msg_N
1175
              ("potentially blocking operation in protected operation?", N);
1176
 
1177
            return;
1178
         end if;
1179
 
1180
         S := Scope (S);
1181
      end loop;
1182
   end Check_Potentially_Blocking_Operation;
1183
 
1184
   ------------------------------
1185
   -- Check_Unprotected_Access --
1186
   ------------------------------
1187
 
1188
   procedure Check_Unprotected_Access
1189
     (Context : Node_Id;
1190
      Expr    : Node_Id)
1191
   is
1192
      Cont_Encl_Typ : Entity_Id;
1193
      Pref_Encl_Typ : Entity_Id;
1194
 
1195
      function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
1196
      --  Check whether Obj is a private component of a protected object.
1197
      --  Return the protected type where the component resides, Empty
1198
      --  otherwise.
1199
 
1200
      function Is_Public_Operation return Boolean;
1201
      --  Verify that the enclosing operation is callable from outside the
1202
      --  protected object, to minimize false positives.
1203
 
1204
      ------------------------------
1205
      -- Enclosing_Protected_Type --
1206
      ------------------------------
1207
 
1208
      function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
1209
      begin
1210
         if Is_Entity_Name (Obj) then
1211
            declare
1212
               Ent : Entity_Id := Entity (Obj);
1213
 
1214
            begin
1215
               --  The object can be a renaming of a private component, use
1216
               --  the original record component.
1217
 
1218
               if Is_Prival (Ent) then
1219
                  Ent := Prival_Link (Ent);
1220
               end if;
1221
 
1222
               if Is_Protected_Type (Scope (Ent)) then
1223
                  return Scope (Ent);
1224
               end if;
1225
            end;
1226
         end if;
1227
 
1228
         --  For indexed and selected components, recursively check the prefix
1229
 
1230
         if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
1231
            return Enclosing_Protected_Type (Prefix (Obj));
1232
 
1233
         --  The object does not denote a protected component
1234
 
1235
         else
1236
            return Empty;
1237
         end if;
1238
      end Enclosing_Protected_Type;
1239
 
1240
      -------------------------
1241
      -- Is_Public_Operation --
1242
      -------------------------
1243
 
1244
      function Is_Public_Operation return Boolean is
1245
         S : Entity_Id;
1246
         E : Entity_Id;
1247
 
1248
      begin
1249
         S := Current_Scope;
1250
         while Present (S)
1251
           and then S /= Pref_Encl_Typ
1252
         loop
1253
            if Scope (S) = Pref_Encl_Typ then
1254
               E := First_Entity (Pref_Encl_Typ);
1255
               while Present (E)
1256
                 and then E /= First_Private_Entity (Pref_Encl_Typ)
1257
               loop
1258
                  if E = S then
1259
                     return True;
1260
                  end if;
1261
                  Next_Entity (E);
1262
               end loop;
1263
            end if;
1264
 
1265
            S := Scope (S);
1266
         end loop;
1267
 
1268
         return False;
1269
      end Is_Public_Operation;
1270
 
1271
   --  Start of processing for Check_Unprotected_Access
1272
 
1273
   begin
1274
      if Nkind (Expr) = N_Attribute_Reference
1275
        and then Attribute_Name (Expr) = Name_Unchecked_Access
1276
      then
1277
         Cont_Encl_Typ := Enclosing_Protected_Type (Context);
1278
         Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
1279
 
1280
         --  Check whether we are trying to export a protected component to a
1281
         --  context with an equal or lower access level.
1282
 
1283
         if Present (Pref_Encl_Typ)
1284
           and then No (Cont_Encl_Typ)
1285
           and then Is_Public_Operation
1286
           and then Scope_Depth (Pref_Encl_Typ) >=
1287
                      Object_Access_Level (Context)
1288
         then
1289
            Error_Msg_N
1290
              ("?possible unprotected access to protected data", Expr);
1291
         end if;
1292
      end if;
1293
   end Check_Unprotected_Access;
1294
 
1295
   ---------------
1296
   -- Check_VMS --
1297
   ---------------
1298
 
1299
   procedure Check_VMS (Construct : Node_Id) is
1300
   begin
1301
      if not OpenVMS_On_Target then
1302
         Error_Msg_N
1303
           ("this construct is allowed only in Open'V'M'S", Construct);
1304
      end if;
1305
   end Check_VMS;
1306
 
1307
   ------------------------
1308
   -- Collect_Interfaces --
1309
   ------------------------
1310
 
1311
   procedure Collect_Interfaces
1312
     (T               : Entity_Id;
1313
      Ifaces_List     : out Elist_Id;
1314
      Exclude_Parents : Boolean := False;
1315
      Use_Full_View   : Boolean := True)
1316
   is
1317
      procedure Collect (Typ : Entity_Id);
1318
      --  Subsidiary subprogram used to traverse the whole list
1319
      --  of directly and indirectly implemented interfaces
1320
 
1321
      -------------
1322
      -- Collect --
1323
      -------------
1324
 
1325
      procedure Collect (Typ : Entity_Id) is
1326
         Ancestor   : Entity_Id;
1327
         Full_T     : Entity_Id;
1328
         Id         : Node_Id;
1329
         Iface      : Entity_Id;
1330
 
1331
      begin
1332
         Full_T := Typ;
1333
 
1334
         --  Handle private types
1335
 
1336
         if Use_Full_View
1337
           and then Is_Private_Type (Typ)
1338
           and then Present (Full_View (Typ))
1339
         then
1340
            Full_T := Full_View (Typ);
1341
         end if;
1342
 
1343
         --  Include the ancestor if we are generating the whole list of
1344
         --  abstract interfaces.
1345
 
1346
         if Etype (Full_T) /= Typ
1347
 
1348
            --  Protect the frontend against wrong sources. For example:
1349
 
1350
            --    package P is
1351
            --      type A is tagged null record;
1352
            --      type B is new A with private;
1353
            --      type C is new A with private;
1354
            --    private
1355
            --      type B is new C with null record;
1356
            --      type C is new B with null record;
1357
            --    end P;
1358
 
1359
           and then Etype (Full_T) /= T
1360
         then
1361
            Ancestor := Etype (Full_T);
1362
            Collect (Ancestor);
1363
 
1364
            if Is_Interface (Ancestor)
1365
              and then not Exclude_Parents
1366
            then
1367
               Append_Unique_Elmt (Ancestor, Ifaces_List);
1368
            end if;
1369
         end if;
1370
 
1371
         --  Traverse the graph of ancestor interfaces
1372
 
1373
         if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
1374
            Id := First (Abstract_Interface_List (Full_T));
1375
            while Present (Id) loop
1376
               Iface := Etype (Id);
1377
 
1378
               --  Protect against wrong uses. For example:
1379
               --    type I is interface;
1380
               --    type O is tagged null record;
1381
               --    type Wrong is new I and O with null record; -- ERROR
1382
 
1383
               if Is_Interface (Iface) then
1384
                  if Exclude_Parents
1385
                    and then Etype (T) /= T
1386
                    and then Interface_Present_In_Ancestor (Etype (T), Iface)
1387
                  then
1388
                     null;
1389
                  else
1390
                     Collect (Iface);
1391
                     Append_Unique_Elmt (Iface, Ifaces_List);
1392
                  end if;
1393
               end if;
1394
 
1395
               Next (Id);
1396
            end loop;
1397
         end if;
1398
      end Collect;
1399
 
1400
   --  Start of processing for Collect_Interfaces
1401
 
1402
   begin
1403
      pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
1404
      Ifaces_List := New_Elmt_List;
1405
      Collect (T);
1406
   end Collect_Interfaces;
1407
 
1408
   ----------------------------------
1409
   -- Collect_Interface_Components --
1410
   ----------------------------------
1411
 
1412
   procedure Collect_Interface_Components
1413
     (Tagged_Type     : Entity_Id;
1414
      Components_List : out Elist_Id)
1415
   is
1416
      procedure Collect (Typ : Entity_Id);
1417
      --  Subsidiary subprogram used to climb to the parents
1418
 
1419
      -------------
1420
      -- Collect --
1421
      -------------
1422
 
1423
      procedure Collect (Typ : Entity_Id) is
1424
         Tag_Comp   : Entity_Id;
1425
         Parent_Typ : Entity_Id;
1426
 
1427
      begin
1428
         --  Handle private types
1429
 
1430
         if Present (Full_View (Etype (Typ))) then
1431
            Parent_Typ := Full_View (Etype (Typ));
1432
         else
1433
            Parent_Typ := Etype (Typ);
1434
         end if;
1435
 
1436
         if Parent_Typ /= Typ
1437
 
1438
            --  Protect the frontend against wrong sources. For example:
1439
 
1440
            --    package P is
1441
            --      type A is tagged null record;
1442
            --      type B is new A with private;
1443
            --      type C is new A with private;
1444
            --    private
1445
            --      type B is new C with null record;
1446
            --      type C is new B with null record;
1447
            --    end P;
1448
 
1449
           and then Parent_Typ /= Tagged_Type
1450
         then
1451
            Collect (Parent_Typ);
1452
         end if;
1453
 
1454
         --  Collect the components containing tags of secondary dispatch
1455
         --  tables.
1456
 
1457
         Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
1458
         while Present (Tag_Comp) loop
1459
            pragma Assert (Present (Related_Type (Tag_Comp)));
1460
            Append_Elmt (Tag_Comp, Components_List);
1461
 
1462
            Tag_Comp := Next_Tag_Component (Tag_Comp);
1463
         end loop;
1464
      end Collect;
1465
 
1466
   --  Start of processing for Collect_Interface_Components
1467
 
1468
   begin
1469
      pragma Assert (Ekind (Tagged_Type) = E_Record_Type
1470
        and then Is_Tagged_Type (Tagged_Type));
1471
 
1472
      Components_List := New_Elmt_List;
1473
      Collect (Tagged_Type);
1474
   end Collect_Interface_Components;
1475
 
1476
   -----------------------------
1477
   -- Collect_Interfaces_Info --
1478
   -----------------------------
1479
 
1480
   procedure Collect_Interfaces_Info
1481
     (T               : Entity_Id;
1482
      Ifaces_List     : out Elist_Id;
1483
      Components_List : out Elist_Id;
1484
      Tags_List       : out Elist_Id)
1485
   is
1486
      Comps_List : Elist_Id;
1487
      Comp_Elmt  : Elmt_Id;
1488
      Comp_Iface : Entity_Id;
1489
      Iface_Elmt : Elmt_Id;
1490
      Iface      : Entity_Id;
1491
 
1492
      function Search_Tag (Iface : Entity_Id) return Entity_Id;
1493
      --  Search for the secondary tag associated with the interface type
1494
      --  Iface that is implemented by T.
1495
 
1496
      ----------------
1497
      -- Search_Tag --
1498
      ----------------
1499
 
1500
      function Search_Tag (Iface : Entity_Id) return Entity_Id is
1501
         ADT : Elmt_Id;
1502
 
1503
      begin
1504
         ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
1505
         while Present (ADT)
1506
            and then Ekind (Node (ADT)) = E_Constant
1507
            and then Related_Type (Node (ADT)) /= Iface
1508
         loop
1509
            --  Skip the secondary dispatch tables of Iface
1510
 
1511
            Next_Elmt (ADT);
1512
            Next_Elmt (ADT);
1513
            Next_Elmt (ADT);
1514
            Next_Elmt (ADT);
1515
         end loop;
1516
 
1517
         pragma Assert (Ekind (Node (ADT)) = E_Constant);
1518
         return Node (ADT);
1519
      end Search_Tag;
1520
 
1521
   --  Start of processing for Collect_Interfaces_Info
1522
 
1523
   begin
1524
      Collect_Interfaces (T, Ifaces_List);
1525
      Collect_Interface_Components (T, Comps_List);
1526
 
1527
      --  Search for the record component and tag associated with each
1528
      --  interface type of T.
1529
 
1530
      Components_List := New_Elmt_List;
1531
      Tags_List       := New_Elmt_List;
1532
 
1533
      Iface_Elmt := First_Elmt (Ifaces_List);
1534
      while Present (Iface_Elmt) loop
1535
         Iface := Node (Iface_Elmt);
1536
 
1537
         --  Associate the primary tag component and the primary dispatch table
1538
         --  with all the interfaces that are parents of T
1539
 
1540
         if Is_Ancestor (Iface, T) then
1541
            Append_Elmt (First_Tag_Component (T), Components_List);
1542
            Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
1543
 
1544
         --  Otherwise search for the tag component and secondary dispatch
1545
         --  table of Iface
1546
 
1547
         else
1548
            Comp_Elmt := First_Elmt (Comps_List);
1549
            while Present (Comp_Elmt) loop
1550
               Comp_Iface := Related_Type (Node (Comp_Elmt));
1551
 
1552
               if Comp_Iface = Iface
1553
                 or else Is_Ancestor (Iface, Comp_Iface)
1554
               then
1555
                  Append_Elmt (Node (Comp_Elmt), Components_List);
1556
                  Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
1557
                  exit;
1558
               end if;
1559
 
1560
               Next_Elmt (Comp_Elmt);
1561
            end loop;
1562
            pragma Assert (Present (Comp_Elmt));
1563
         end if;
1564
 
1565
         Next_Elmt (Iface_Elmt);
1566
      end loop;
1567
   end Collect_Interfaces_Info;
1568
 
1569
   ----------------------------------
1570
   -- Collect_Primitive_Operations --
1571
   ----------------------------------
1572
 
1573
   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
1574
      B_Type         : constant Entity_Id := Base_Type (T);
1575
      B_Decl         : constant Node_Id   := Original_Node (Parent (B_Type));
1576
      B_Scope        : Entity_Id          := Scope (B_Type);
1577
      Op_List        : Elist_Id;
1578
      Formal         : Entity_Id;
1579
      Is_Prim        : Boolean;
1580
      Formal_Derived : Boolean := False;
1581
      Id             : Entity_Id;
1582
 
1583
   begin
1584
      --  For tagged types, the primitive operations are collected as they
1585
      --  are declared, and held in an explicit list which is simply returned.
1586
 
1587
      if Is_Tagged_Type (B_Type) then
1588
         return Primitive_Operations (B_Type);
1589
 
1590
      --  An untagged generic type that is a derived type inherits the
1591
      --  primitive operations of its parent type. Other formal types only
1592
      --  have predefined operators, which are not explicitly represented.
1593
 
1594
      elsif Is_Generic_Type (B_Type) then
1595
         if Nkind (B_Decl) = N_Formal_Type_Declaration
1596
           and then Nkind (Formal_Type_Definition (B_Decl))
1597
             = N_Formal_Derived_Type_Definition
1598
         then
1599
            Formal_Derived := True;
1600
         else
1601
            return New_Elmt_List;
1602
         end if;
1603
      end if;
1604
 
1605
      Op_List := New_Elmt_List;
1606
 
1607
      if B_Scope = Standard_Standard then
1608
         if B_Type = Standard_String then
1609
            Append_Elmt (Standard_Op_Concat, Op_List);
1610
 
1611
         elsif B_Type = Standard_Wide_String then
1612
            Append_Elmt (Standard_Op_Concatw, Op_List);
1613
 
1614
         else
1615
            null;
1616
         end if;
1617
 
1618
      elsif (Is_Package_Or_Generic_Package (B_Scope)
1619
              and then
1620
                Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
1621
                                                            N_Package_Body)
1622
        or else Is_Derived_Type (B_Type)
1623
      then
1624
         --  The primitive operations appear after the base type, except
1625
         --  if the derivation happens within the private part of B_Scope
1626
         --  and the type is a private type, in which case both the type
1627
         --  and some primitive operations may appear before the base
1628
         --  type, and the list of candidates starts after the type.
1629
 
1630
         if In_Open_Scopes (B_Scope)
1631
           and then Scope (T) = B_Scope
1632
           and then In_Private_Part (B_Scope)
1633
         then
1634
            Id := Next_Entity (T);
1635
         else
1636
            Id := Next_Entity (B_Type);
1637
         end if;
1638
 
1639
         while Present (Id) loop
1640
 
1641
            --  Note that generic formal subprograms are not
1642
            --  considered to be primitive operations and thus
1643
            --  are never inherited.
1644
 
1645
            if Is_Overloadable (Id)
1646
              and then Nkind (Parent (Parent (Id)))
1647
                         not in N_Formal_Subprogram_Declaration
1648
            then
1649
               Is_Prim := False;
1650
 
1651
               if Base_Type (Etype (Id)) = B_Type then
1652
                  Is_Prim := True;
1653
               else
1654
                  Formal := First_Formal (Id);
1655
                  while Present (Formal) loop
1656
                     if Base_Type (Etype (Formal)) = B_Type then
1657
                        Is_Prim := True;
1658
                        exit;
1659
 
1660
                     elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1661
                       and then Base_Type
1662
                         (Designated_Type (Etype (Formal))) = B_Type
1663
                     then
1664
                        Is_Prim := True;
1665
                        exit;
1666
                     end if;
1667
 
1668
                     Next_Formal (Formal);
1669
                  end loop;
1670
               end if;
1671
 
1672
               --  For a formal derived type, the only primitives are the
1673
               --  ones inherited from the parent type. Operations appearing
1674
               --  in the package declaration are not primitive for it.
1675
 
1676
               if Is_Prim
1677
                 and then (not Formal_Derived
1678
                            or else Present (Alias (Id)))
1679
               then
1680
                  Append_Elmt (Id, Op_List);
1681
               end if;
1682
            end if;
1683
 
1684
            Next_Entity (Id);
1685
 
1686
            --  For a type declared in System, some of its operations
1687
            --  may appear in  the target-specific extension to System.
1688
 
1689
            if No (Id)
1690
              and then Chars (B_Scope) = Name_System
1691
              and then Scope (B_Scope) = Standard_Standard
1692
              and then Present_System_Aux
1693
            then
1694
               B_Scope := System_Aux_Id;
1695
               Id := First_Entity (System_Aux_Id);
1696
            end if;
1697
         end loop;
1698
      end if;
1699
 
1700
      return Op_List;
1701
   end Collect_Primitive_Operations;
1702
 
1703
   -----------------------------------
1704
   -- Compile_Time_Constraint_Error --
1705
   -----------------------------------
1706
 
1707
   function Compile_Time_Constraint_Error
1708
     (N    : Node_Id;
1709
      Msg  : String;
1710
      Ent  : Entity_Id  := Empty;
1711
      Loc  : Source_Ptr := No_Location;
1712
      Warn : Boolean    := False) return Node_Id
1713
   is
1714
      Msgc : String (1 .. Msg'Length + 2);
1715
      --  Copy of message, with room for possible ? and ! at end
1716
 
1717
      Msgl : Natural;
1718
      Wmsg : Boolean;
1719
      P    : Node_Id;
1720
      OldP : Node_Id;
1721
      Msgs : Boolean;
1722
      Eloc : Source_Ptr;
1723
 
1724
   begin
1725
      --  A static constraint error in an instance body is not a fatal error.
1726
      --  we choose to inhibit the message altogether, because there is no
1727
      --  obvious node (for now) on which to post it. On the other hand the
1728
      --  offending node must be replaced with a constraint_error in any case.
1729
 
1730
      --  No messages are generated if we already posted an error on this node
1731
 
1732
      if not Error_Posted (N) then
1733
         if Loc /= No_Location then
1734
            Eloc := Loc;
1735
         else
1736
            Eloc := Sloc (N);
1737
         end if;
1738
 
1739
         Msgc (1 .. Msg'Length) := Msg;
1740
         Msgl := Msg'Length;
1741
 
1742
         --  Message is a warning, even in Ada 95 case
1743
 
1744
         if Msg (Msg'Last) = '?' then
1745
            Wmsg := True;
1746
 
1747
         --  In Ada 83, all messages are warnings. In the private part and
1748
         --  the body of an instance, constraint_checks are only warnings.
1749
         --  We also make this a warning if the Warn parameter is set.
1750
 
1751
         elsif Warn
1752
           or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1753
         then
1754
            Msgl := Msgl + 1;
1755
            Msgc (Msgl) := '?';
1756
            Wmsg := True;
1757
 
1758
         elsif In_Instance_Not_Visible then
1759
            Msgl := Msgl + 1;
1760
            Msgc (Msgl) := '?';
1761
            Wmsg := True;
1762
 
1763
         --  Otherwise we have a real error message (Ada 95 static case)
1764
         --  and we make this an unconditional message. Note that in the
1765
         --  warning case we do not make the message unconditional, it seems
1766
         --  quite reasonable to delete messages like this (about exceptions
1767
         --  that will be raised) in dead code.
1768
 
1769
         else
1770
            Wmsg := False;
1771
            Msgl := Msgl + 1;
1772
            Msgc (Msgl) := '!';
1773
         end if;
1774
 
1775
         --  Should we generate a warning? The answer is not quite yes. The
1776
         --  very annoying exception occurs in the case of a short circuit
1777
         --  operator where the left operand is static and decisive. Climb
1778
         --  parents to see if that is the case we have here. Conditional
1779
         --  expressions with decisive conditions are a similar situation.
1780
 
1781
         Msgs := True;
1782
         P := N;
1783
         loop
1784
            OldP := P;
1785
            P := Parent (P);
1786
 
1787
            --  And then with False as left operand
1788
 
1789
            if Nkind (P) = N_And_Then
1790
              and then Compile_Time_Known_Value (Left_Opnd (P))
1791
              and then Is_False (Expr_Value (Left_Opnd (P)))
1792
            then
1793
               Msgs := False;
1794
               exit;
1795
 
1796
            --  OR ELSE with True as left operand
1797
 
1798
            elsif Nkind (P) = N_Or_Else
1799
              and then Compile_Time_Known_Value (Left_Opnd (P))
1800
              and then Is_True (Expr_Value (Left_Opnd (P)))
1801
            then
1802
               Msgs := False;
1803
               exit;
1804
 
1805
            --  Conditional expression
1806
 
1807
            elsif Nkind (P) = N_Conditional_Expression then
1808
               declare
1809
                  Cond : constant Node_Id := First (Expressions (P));
1810
                  Texp : constant Node_Id := Next (Cond);
1811
                  Fexp : constant Node_Id := Next (Texp);
1812
 
1813
               begin
1814
                  if Compile_Time_Known_Value (Cond) then
1815
 
1816
                     --  Condition is True and we are in the right operand
1817
 
1818
                     if Is_True (Expr_Value (Cond))
1819
                       and then OldP = Fexp
1820
                     then
1821
                        Msgs := False;
1822
                        exit;
1823
 
1824
                     --  Condition is False and we are in the left operand
1825
 
1826
                     elsif Is_False (Expr_Value (Cond))
1827
                       and then OldP = Texp
1828
                     then
1829
                        Msgs := False;
1830
                        exit;
1831
                     end if;
1832
                  end if;
1833
               end;
1834
 
1835
            --  Special case for component association in aggregates, where
1836
            --  we want to keep climbing up to the parent aggregate.
1837
 
1838
            elsif Nkind (P) = N_Component_Association
1839
              and then Nkind (Parent (P)) = N_Aggregate
1840
            then
1841
               null;
1842
 
1843
            --  Keep going if within subexpression
1844
 
1845
            else
1846
               exit when Nkind (P) not in N_Subexpr;
1847
            end if;
1848
         end loop;
1849
 
1850
         if Msgs then
1851
            if Present (Ent) then
1852
               Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
1853
            else
1854
               Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
1855
            end if;
1856
 
1857
            if Wmsg then
1858
               if Inside_Init_Proc then
1859
                  Error_Msg_NEL
1860
                    ("\?& will be raised for objects of this type",
1861
                     N, Standard_Constraint_Error, Eloc);
1862
               else
1863
                  Error_Msg_NEL
1864
                    ("\?& will be raised at run time",
1865
                     N, Standard_Constraint_Error, Eloc);
1866
               end if;
1867
 
1868
            else
1869
               Error_Msg
1870
                 ("\static expression fails Constraint_Check", Eloc);
1871
               Set_Error_Posted (N);
1872
            end if;
1873
         end if;
1874
      end if;
1875
 
1876
      return N;
1877
   end Compile_Time_Constraint_Error;
1878
 
1879
   -----------------------
1880
   -- Conditional_Delay --
1881
   -----------------------
1882
 
1883
   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
1884
   begin
1885
      if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
1886
         Set_Has_Delayed_Freeze (New_Ent);
1887
      end if;
1888
   end Conditional_Delay;
1889
 
1890
   -------------------------
1891
   -- Copy_Parameter_List --
1892
   -------------------------
1893
 
1894
   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
1895
      Loc    : constant Source_Ptr := Sloc (Subp_Id);
1896
      Plist  : List_Id;
1897
      Formal : Entity_Id;
1898
 
1899
   begin
1900
      if No (First_Formal (Subp_Id)) then
1901
         return No_List;
1902
      else
1903
         Plist := New_List;
1904
         Formal := First_Formal (Subp_Id);
1905
         while Present (Formal) loop
1906
            Append
1907
              (Make_Parameter_Specification (Loc,
1908
                Defining_Identifier =>
1909
                  Make_Defining_Identifier (Sloc (Formal),
1910
                    Chars => Chars (Formal)),
1911
                In_Present  => In_Present (Parent (Formal)),
1912
                Out_Present => Out_Present (Parent (Formal)),
1913
             Parameter_Type =>
1914
                  New_Reference_To (Etype (Formal), Loc),
1915
                Expression =>
1916
                  New_Copy_Tree (Expression (Parent (Formal)))),
1917
              Plist);
1918
 
1919
            Next_Formal (Formal);
1920
         end loop;
1921
      end if;
1922
 
1923
      return Plist;
1924
   end Copy_Parameter_List;
1925
 
1926
   --------------------
1927
   -- Current_Entity --
1928
   --------------------
1929
 
1930
   --  The currently visible definition for a given identifier is the
1931
   --  one most chained at the start of the visibility chain, i.e. the
1932
   --  one that is referenced by the Node_Id value of the name of the
1933
   --  given identifier.
1934
 
1935
   function Current_Entity (N : Node_Id) return Entity_Id is
1936
   begin
1937
      return Get_Name_Entity_Id (Chars (N));
1938
   end Current_Entity;
1939
 
1940
   -----------------------------
1941
   -- Current_Entity_In_Scope --
1942
   -----------------------------
1943
 
1944
   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
1945
      E  : Entity_Id;
1946
      CS : constant Entity_Id := Current_Scope;
1947
 
1948
      Transient_Case : constant Boolean := Scope_Is_Transient;
1949
 
1950
   begin
1951
      E := Get_Name_Entity_Id (Chars (N));
1952
      while Present (E)
1953
        and then Scope (E) /= CS
1954
        and then (not Transient_Case or else Scope (E) /= Scope (CS))
1955
      loop
1956
         E := Homonym (E);
1957
      end loop;
1958
 
1959
      return E;
1960
   end Current_Entity_In_Scope;
1961
 
1962
   -------------------
1963
   -- Current_Scope --
1964
   -------------------
1965
 
1966
   function Current_Scope return Entity_Id is
1967
   begin
1968
      if Scope_Stack.Last = -1 then
1969
         return Standard_Standard;
1970
      else
1971
         declare
1972
            C : constant Entity_Id :=
1973
                  Scope_Stack.Table (Scope_Stack.Last).Entity;
1974
         begin
1975
            if Present (C) then
1976
               return C;
1977
            else
1978
               return Standard_Standard;
1979
            end if;
1980
         end;
1981
      end if;
1982
   end Current_Scope;
1983
 
1984
   ------------------------
1985
   -- Current_Subprogram --
1986
   ------------------------
1987
 
1988
   function Current_Subprogram return Entity_Id is
1989
      Scop : constant Entity_Id := Current_Scope;
1990
   begin
1991
      if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
1992
         return Scop;
1993
      else
1994
         return Enclosing_Subprogram (Scop);
1995
      end if;
1996
   end Current_Subprogram;
1997
 
1998
   ---------------------
1999
   -- Defining_Entity --
2000
   ---------------------
2001
 
2002
   function Defining_Entity (N : Node_Id) return Entity_Id is
2003
      K   : constant Node_Kind := Nkind (N);
2004
      Err : Entity_Id := Empty;
2005
 
2006
   begin
2007
      case K is
2008
         when
2009
           N_Subprogram_Declaration                 |
2010
           N_Abstract_Subprogram_Declaration        |
2011
           N_Subprogram_Body                        |
2012
           N_Package_Declaration                    |
2013
           N_Subprogram_Renaming_Declaration        |
2014
           N_Subprogram_Body_Stub                   |
2015
           N_Generic_Subprogram_Declaration         |
2016
           N_Generic_Package_Declaration            |
2017
           N_Formal_Subprogram_Declaration
2018
         =>
2019
            return Defining_Entity (Specification (N));
2020
 
2021
         when
2022
           N_Component_Declaration                  |
2023
           N_Defining_Program_Unit_Name             |
2024
           N_Discriminant_Specification             |
2025
           N_Entry_Body                             |
2026
           N_Entry_Declaration                      |
2027
           N_Entry_Index_Specification              |
2028
           N_Exception_Declaration                  |
2029
           N_Exception_Renaming_Declaration         |
2030
           N_Formal_Object_Declaration              |
2031
           N_Formal_Package_Declaration             |
2032
           N_Formal_Type_Declaration                |
2033
           N_Full_Type_Declaration                  |
2034
           N_Implicit_Label_Declaration             |
2035
           N_Incomplete_Type_Declaration            |
2036
           N_Loop_Parameter_Specification           |
2037
           N_Number_Declaration                     |
2038
           N_Object_Declaration                     |
2039
           N_Object_Renaming_Declaration            |
2040
           N_Package_Body_Stub                      |
2041
           N_Parameter_Specification                |
2042
           N_Private_Extension_Declaration          |
2043
           N_Private_Type_Declaration               |
2044
           N_Protected_Body                         |
2045
           N_Protected_Body_Stub                    |
2046
           N_Protected_Type_Declaration             |
2047
           N_Single_Protected_Declaration           |
2048
           N_Single_Task_Declaration                |
2049
           N_Subtype_Declaration                    |
2050
           N_Task_Body                              |
2051
           N_Task_Body_Stub                         |
2052
           N_Task_Type_Declaration
2053
         =>
2054
            return Defining_Identifier (N);
2055
 
2056
         when N_Subunit =>
2057
            return Defining_Entity (Proper_Body (N));
2058
 
2059
         when
2060
           N_Function_Instantiation                 |
2061
           N_Function_Specification                 |
2062
           N_Generic_Function_Renaming_Declaration  |
2063
           N_Generic_Package_Renaming_Declaration   |
2064
           N_Generic_Procedure_Renaming_Declaration |
2065
           N_Package_Body                           |
2066
           N_Package_Instantiation                  |
2067
           N_Package_Renaming_Declaration           |
2068
           N_Package_Specification                  |
2069
           N_Procedure_Instantiation                |
2070
           N_Procedure_Specification
2071
         =>
2072
            declare
2073
               Nam : constant Node_Id := Defining_Unit_Name (N);
2074
 
2075
            begin
2076
               if Nkind (Nam) in N_Entity then
2077
                  return Nam;
2078
 
2079
               --  For Error, make up a name and attach to declaration
2080
               --  so we can continue semantic analysis
2081
 
2082
               elsif Nam = Error then
2083
                  Err :=
2084
                    Make_Defining_Identifier (Sloc (N),
2085
                      Chars => New_Internal_Name ('T'));
2086
                  Set_Defining_Unit_Name (N, Err);
2087
 
2088
                  return Err;
2089
               --  If not an entity, get defining identifier
2090
 
2091
               else
2092
                  return Defining_Identifier (Nam);
2093
               end if;
2094
            end;
2095
 
2096
         when N_Block_Statement =>
2097
            return Entity (Identifier (N));
2098
 
2099
         when others =>
2100
            raise Program_Error;
2101
 
2102
      end case;
2103
   end Defining_Entity;
2104
 
2105
   --------------------------
2106
   -- Denotes_Discriminant --
2107
   --------------------------
2108
 
2109
   function Denotes_Discriminant
2110
     (N                : Node_Id;
2111
      Check_Concurrent : Boolean := False) return Boolean
2112
   is
2113
      E : Entity_Id;
2114
   begin
2115
      if not Is_Entity_Name (N)
2116
        or else No (Entity (N))
2117
      then
2118
         return False;
2119
      else
2120
         E := Entity (N);
2121
      end if;
2122
 
2123
      --  If we are checking for a protected type, the discriminant may have
2124
      --  been rewritten as the corresponding discriminal of the original type
2125
      --  or of the corresponding concurrent record, depending on whether we
2126
      --  are in the spec or body of the protected type.
2127
 
2128
      return Ekind (E) = E_Discriminant
2129
        or else
2130
          (Check_Concurrent
2131
            and then Ekind (E) = E_In_Parameter
2132
            and then Present (Discriminal_Link (E))
2133
            and then
2134
              (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
2135
                or else
2136
                  Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
2137
 
2138
   end Denotes_Discriminant;
2139
 
2140
   -------------------------
2141
   -- Denotes_Same_Object --
2142
   -------------------------
2143
 
2144
   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
2145
   begin
2146
      --  If we have entity names, then must be same entity
2147
 
2148
      if Is_Entity_Name (A1) then
2149
         if Is_Entity_Name (A2) then
2150
            return Entity (A1) = Entity (A2);
2151
         else
2152
            return False;
2153
         end if;
2154
 
2155
      --  No match if not same node kind
2156
 
2157
      elsif Nkind (A1) /= Nkind (A2) then
2158
         return False;
2159
 
2160
      --  For selected components, must have same prefix and selector
2161
 
2162
      elsif Nkind (A1) = N_Selected_Component then
2163
         return Denotes_Same_Object (Prefix (A1), Prefix (A2))
2164
           and then
2165
         Entity (Selector_Name (A1)) = Entity (Selector_Name (A2));
2166
 
2167
      --  For explicit dereferences, prefixes must be same
2168
 
2169
      elsif Nkind (A1) = N_Explicit_Dereference then
2170
         return Denotes_Same_Object (Prefix (A1), Prefix (A2));
2171
 
2172
      --  For indexed components, prefixes and all subscripts must be the same
2173
 
2174
      elsif Nkind (A1) = N_Indexed_Component then
2175
         if Denotes_Same_Object (Prefix (A1), Prefix (A2)) then
2176
            declare
2177
               Indx1 : Node_Id;
2178
               Indx2 : Node_Id;
2179
 
2180
            begin
2181
               Indx1 := First (Expressions (A1));
2182
               Indx2 := First (Expressions (A2));
2183
               while Present (Indx1) loop
2184
 
2185
                  --  Shouldn't we be checking that values are the same???
2186
 
2187
                  if not Denotes_Same_Object (Indx1, Indx2) then
2188
                     return False;
2189
                  end if;
2190
 
2191
                  Next (Indx1);
2192
                  Next (Indx2);
2193
               end loop;
2194
 
2195
               return True;
2196
            end;
2197
         else
2198
            return False;
2199
         end if;
2200
 
2201
      --  For slices, prefixes must match and bounds must match
2202
 
2203
      elsif Nkind (A1) = N_Slice
2204
        and then Denotes_Same_Object (Prefix (A1), Prefix (A2))
2205
      then
2206
         declare
2207
            Lo1, Lo2, Hi1, Hi2 : Node_Id;
2208
 
2209
         begin
2210
            Get_Index_Bounds (Etype (A1), Lo1, Hi1);
2211
            Get_Index_Bounds (Etype (A2), Lo2, Hi2);
2212
 
2213
            --  Check whether bounds are statically identical. There is no
2214
            --  attempt to detect partial overlap of slices.
2215
 
2216
            --  What about an array and a slice of an array???
2217
 
2218
            return Denotes_Same_Object (Lo1, Lo2)
2219
              and then Denotes_Same_Object (Hi1, Hi2);
2220
         end;
2221
 
2222
         --  Literals will appear as indices. Isn't this where we should check
2223
         --  Known_At_Compile_Time at least if we are generating warnings ???
2224
 
2225
      elsif Nkind (A1) = N_Integer_Literal then
2226
         return Intval (A1) = Intval (A2);
2227
 
2228
      else
2229
         return False;
2230
      end if;
2231
   end Denotes_Same_Object;
2232
 
2233
   -------------------------
2234
   -- Denotes_Same_Prefix --
2235
   -------------------------
2236
 
2237
   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
2238
 
2239
   begin
2240
      if Is_Entity_Name (A1) then
2241
         if Nkind_In (A2, N_Selected_Component, N_Indexed_Component) then
2242
            return Denotes_Same_Object (A1, Prefix (A2))
2243
              or else Denotes_Same_Prefix (A1, Prefix (A2));
2244
         else
2245
            return False;
2246
         end if;
2247
 
2248
      elsif Is_Entity_Name (A2) then
2249
         return Denotes_Same_Prefix (A2, A1);
2250
 
2251
      elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
2252
              and then
2253
            Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
2254
      then
2255
         declare
2256
            Root1, Root2 : Node_Id;
2257
            Depth1, Depth2 : Int := 0;
2258
 
2259
         begin
2260
            Root1 := Prefix (A1);
2261
            while not Is_Entity_Name (Root1) loop
2262
               if not Nkind_In
2263
                 (Root1, N_Selected_Component, N_Indexed_Component)
2264
               then
2265
                  return False;
2266
               else
2267
                  Root1 := Prefix (Root1);
2268
               end if;
2269
 
2270
               Depth1 := Depth1 + 1;
2271
            end loop;
2272
 
2273
            Root2 := Prefix (A2);
2274
            while not Is_Entity_Name (Root2) loop
2275
               if not Nkind_In
2276
                 (Root2, N_Selected_Component, N_Indexed_Component)
2277
               then
2278
                  return False;
2279
               else
2280
                  Root2 := Prefix (Root2);
2281
               end if;
2282
 
2283
               Depth2 := Depth2 + 1;
2284
            end loop;
2285
 
2286
            --  If both have the same depth and they do not denote the same
2287
            --  object, they are disjoint and not warning is needed.
2288
 
2289
            if Depth1 = Depth2 then
2290
               return False;
2291
 
2292
            elsif Depth1 > Depth2 then
2293
               Root1 := Prefix (A1);
2294
               for I in 1 .. Depth1 - Depth2 - 1 loop
2295
                  Root1 := Prefix (Root1);
2296
               end loop;
2297
 
2298
               return Denotes_Same_Object (Root1, A2);
2299
 
2300
            else
2301
               Root2 := Prefix (A2);
2302
               for I in 1 .. Depth2 - Depth1 - 1 loop
2303
                  Root2 := Prefix (Root2);
2304
               end loop;
2305
 
2306
               return Denotes_Same_Object (A1, Root2);
2307
            end if;
2308
         end;
2309
 
2310
      else
2311
         return False;
2312
      end if;
2313
   end Denotes_Same_Prefix;
2314
 
2315
   ----------------------
2316
   -- Denotes_Variable --
2317
   ----------------------
2318
 
2319
   function Denotes_Variable (N : Node_Id) return Boolean is
2320
   begin
2321
      return Is_Variable (N) and then Paren_Count (N) = 0;
2322
   end Denotes_Variable;
2323
 
2324
   -----------------------------
2325
   -- Depends_On_Discriminant --
2326
   -----------------------------
2327
 
2328
   function Depends_On_Discriminant (N : Node_Id) return Boolean is
2329
      L : Node_Id;
2330
      H : Node_Id;
2331
 
2332
   begin
2333
      Get_Index_Bounds (N, L, H);
2334
      return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
2335
   end Depends_On_Discriminant;
2336
 
2337
   -------------------------
2338
   -- Designate_Same_Unit --
2339
   -------------------------
2340
 
2341
   function Designate_Same_Unit
2342
     (Name1 : Node_Id;
2343
      Name2 : Node_Id) return Boolean
2344
   is
2345
      K1 : constant Node_Kind := Nkind (Name1);
2346
      K2 : constant Node_Kind := Nkind (Name2);
2347
 
2348
      function Prefix_Node (N : Node_Id) return Node_Id;
2349
      --  Returns the parent unit name node of a defining program unit name
2350
      --  or the prefix if N is a selected component or an expanded name.
2351
 
2352
      function Select_Node (N : Node_Id) return Node_Id;
2353
      --  Returns the defining identifier node of a defining program unit
2354
      --  name or  the selector node if N is a selected component or an
2355
      --  expanded name.
2356
 
2357
      -----------------
2358
      -- Prefix_Node --
2359
      -----------------
2360
 
2361
      function Prefix_Node (N : Node_Id) return Node_Id is
2362
      begin
2363
         if Nkind (N) = N_Defining_Program_Unit_Name then
2364
            return Name (N);
2365
 
2366
         else
2367
            return Prefix (N);
2368
         end if;
2369
      end Prefix_Node;
2370
 
2371
      -----------------
2372
      -- Select_Node --
2373
      -----------------
2374
 
2375
      function Select_Node (N : Node_Id) return Node_Id is
2376
      begin
2377
         if Nkind (N) = N_Defining_Program_Unit_Name then
2378
            return Defining_Identifier (N);
2379
 
2380
         else
2381
            return Selector_Name (N);
2382
         end if;
2383
      end Select_Node;
2384
 
2385
   --  Start of processing for Designate_Next_Unit
2386
 
2387
   begin
2388
      if (K1 = N_Identifier or else
2389
          K1 = N_Defining_Identifier)
2390
        and then
2391
         (K2 = N_Identifier or else
2392
          K2 = N_Defining_Identifier)
2393
      then
2394
         return Chars (Name1) = Chars (Name2);
2395
 
2396
      elsif
2397
         (K1 = N_Expanded_Name      or else
2398
          K1 = N_Selected_Component or else
2399
          K1 = N_Defining_Program_Unit_Name)
2400
        and then
2401
         (K2 = N_Expanded_Name      or else
2402
          K2 = N_Selected_Component or else
2403
          K2 = N_Defining_Program_Unit_Name)
2404
      then
2405
         return
2406
           (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
2407
             and then
2408
               Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
2409
 
2410
      else
2411
         return False;
2412
      end if;
2413
   end Designate_Same_Unit;
2414
 
2415
   ----------------------------
2416
   -- Enclosing_Generic_Body --
2417
   ----------------------------
2418
 
2419
   function Enclosing_Generic_Body
2420
     (N : Node_Id) return Node_Id
2421
   is
2422
      P    : Node_Id;
2423
      Decl : Node_Id;
2424
      Spec : Node_Id;
2425
 
2426
   begin
2427
      P := Parent (N);
2428
      while Present (P) loop
2429
         if Nkind (P) = N_Package_Body
2430
           or else Nkind (P) = N_Subprogram_Body
2431
         then
2432
            Spec := Corresponding_Spec (P);
2433
 
2434
            if Present (Spec) then
2435
               Decl := Unit_Declaration_Node (Spec);
2436
 
2437
               if Nkind (Decl) = N_Generic_Package_Declaration
2438
                 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2439
               then
2440
                  return P;
2441
               end if;
2442
            end if;
2443
         end if;
2444
 
2445
         P := Parent (P);
2446
      end loop;
2447
 
2448
      return Empty;
2449
   end Enclosing_Generic_Body;
2450
 
2451
   ----------------------------
2452
   -- Enclosing_Generic_Unit --
2453
   ----------------------------
2454
 
2455
   function Enclosing_Generic_Unit
2456
     (N : Node_Id) return Node_Id
2457
   is
2458
      P    : Node_Id;
2459
      Decl : Node_Id;
2460
      Spec : Node_Id;
2461
 
2462
   begin
2463
      P := Parent (N);
2464
      while Present (P) loop
2465
         if Nkind (P) = N_Generic_Package_Declaration
2466
           or else Nkind (P) = N_Generic_Subprogram_Declaration
2467
         then
2468
            return P;
2469
 
2470
         elsif Nkind (P) = N_Package_Body
2471
           or else Nkind (P) = N_Subprogram_Body
2472
         then
2473
            Spec := Corresponding_Spec (P);
2474
 
2475
            if Present (Spec) then
2476
               Decl := Unit_Declaration_Node (Spec);
2477
 
2478
               if Nkind (Decl) = N_Generic_Package_Declaration
2479
                 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2480
               then
2481
                  return Decl;
2482
               end if;
2483
            end if;
2484
         end if;
2485
 
2486
         P := Parent (P);
2487
      end loop;
2488
 
2489
      return Empty;
2490
   end Enclosing_Generic_Unit;
2491
 
2492
   -------------------------------
2493
   -- Enclosing_Lib_Unit_Entity --
2494
   -------------------------------
2495
 
2496
   function Enclosing_Lib_Unit_Entity return Entity_Id is
2497
      Unit_Entity : Entity_Id;
2498
 
2499
   begin
2500
      --  Look for enclosing library unit entity by following scope links.
2501
      --  Equivalent to, but faster than indexing through the scope stack.
2502
 
2503
      Unit_Entity := Current_Scope;
2504
      while (Present (Scope (Unit_Entity))
2505
        and then Scope (Unit_Entity) /= Standard_Standard)
2506
        and not Is_Child_Unit (Unit_Entity)
2507
      loop
2508
         Unit_Entity := Scope (Unit_Entity);
2509
      end loop;
2510
 
2511
      return Unit_Entity;
2512
   end Enclosing_Lib_Unit_Entity;
2513
 
2514
   -----------------------------
2515
   -- Enclosing_Lib_Unit_Node --
2516
   -----------------------------
2517
 
2518
   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
2519
      Current_Node : Node_Id;
2520
 
2521
   begin
2522
      Current_Node := N;
2523
      while Present (Current_Node)
2524
        and then Nkind (Current_Node) /= N_Compilation_Unit
2525
      loop
2526
         Current_Node := Parent (Current_Node);
2527
      end loop;
2528
 
2529
      if Nkind (Current_Node) /= N_Compilation_Unit then
2530
         return Empty;
2531
      end if;
2532
 
2533
      return Current_Node;
2534
   end Enclosing_Lib_Unit_Node;
2535
 
2536
   --------------------------
2537
   -- Enclosing_Subprogram --
2538
   --------------------------
2539
 
2540
   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
2541
      Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
2542
 
2543
   begin
2544
      if Dynamic_Scope = Standard_Standard then
2545
         return Empty;
2546
 
2547
      elsif Dynamic_Scope = Empty then
2548
         return Empty;
2549
 
2550
      elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
2551
         return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
2552
 
2553
      elsif Ekind (Dynamic_Scope) = E_Block
2554
        or else Ekind (Dynamic_Scope) = E_Return_Statement
2555
      then
2556
         return Enclosing_Subprogram (Dynamic_Scope);
2557
 
2558
      elsif Ekind (Dynamic_Scope) = E_Task_Type then
2559
         return Get_Task_Body_Procedure (Dynamic_Scope);
2560
 
2561
      elsif Convention (Dynamic_Scope) = Convention_Protected then
2562
         return Protected_Body_Subprogram (Dynamic_Scope);
2563
 
2564
      else
2565
         return Dynamic_Scope;
2566
      end if;
2567
   end Enclosing_Subprogram;
2568
 
2569
   ------------------------
2570
   -- Ensure_Freeze_Node --
2571
   ------------------------
2572
 
2573
   procedure Ensure_Freeze_Node (E : Entity_Id) is
2574
      FN : Node_Id;
2575
 
2576
   begin
2577
      if No (Freeze_Node (E)) then
2578
         FN := Make_Freeze_Entity (Sloc (E));
2579
         Set_Has_Delayed_Freeze (E);
2580
         Set_Freeze_Node (E, FN);
2581
         Set_Access_Types_To_Process (FN, No_Elist);
2582
         Set_TSS_Elist (FN, No_Elist);
2583
         Set_Entity (FN, E);
2584
      end if;
2585
   end Ensure_Freeze_Node;
2586
 
2587
   ----------------
2588
   -- Enter_Name --
2589
   ----------------
2590
 
2591
   procedure Enter_Name (Def_Id : Entity_Id) is
2592
      C : constant Entity_Id := Current_Entity (Def_Id);
2593
      E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
2594
      S : constant Entity_Id := Current_Scope;
2595
 
2596
   begin
2597
      Generate_Definition (Def_Id);
2598
 
2599
      --  Add new name to current scope declarations. Check for duplicate
2600
      --  declaration, which may or may not be a genuine error.
2601
 
2602
      if Present (E) then
2603
 
2604
         --  Case of previous entity entered because of a missing declaration
2605
         --  or else a bad subtype indication. Best is to use the new entity,
2606
         --  and make the previous one invisible.
2607
 
2608
         if Etype (E) = Any_Type then
2609
            Set_Is_Immediately_Visible (E, False);
2610
 
2611
         --  Case of renaming declaration constructed for package instances.
2612
         --  if there is an explicit declaration with the same identifier,
2613
         --  the renaming is not immediately visible any longer, but remains
2614
         --  visible through selected component notation.
2615
 
2616
         elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
2617
           and then not Comes_From_Source (E)
2618
         then
2619
            Set_Is_Immediately_Visible (E, False);
2620
 
2621
         --  The new entity may be the package renaming, which has the same
2622
         --  same name as a generic formal which has been seen already.
2623
 
2624
         elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
2625
            and then not Comes_From_Source (Def_Id)
2626
         then
2627
            Set_Is_Immediately_Visible (E, False);
2628
 
2629
         --  For a fat pointer corresponding to a remote access to subprogram,
2630
         --  we use the same identifier as the RAS type, so that the proper
2631
         --  name appears in the stub. This type is only retrieved through
2632
         --  the RAS type and never by visibility, and is not added to the
2633
         --  visibility list (see below).
2634
 
2635
         elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
2636
           and then Present (Corresponding_Remote_Type (Def_Id))
2637
         then
2638
            null;
2639
 
2640
         --  A controller component for a type extension overrides the
2641
         --  inherited component.
2642
 
2643
         elsif Chars (E) = Name_uController then
2644
            null;
2645
 
2646
         --  Case of an implicit operation or derived literal. The new entity
2647
         --  hides the implicit one,  which is removed from all visibility,
2648
         --  i.e. the entity list of its scope, and homonym chain of its name.
2649
 
2650
         elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
2651
           or else Is_Internal (E)
2652
         then
2653
            declare
2654
               Prev     : Entity_Id;
2655
               Prev_Vis : Entity_Id;
2656
               Decl     : constant Node_Id := Parent (E);
2657
 
2658
            begin
2659
               --  If E is an implicit declaration, it cannot be the first
2660
               --  entity in the scope.
2661
 
2662
               Prev := First_Entity (Current_Scope);
2663
               while Present (Prev)
2664
                 and then Next_Entity (Prev) /= E
2665
               loop
2666
                  Next_Entity (Prev);
2667
               end loop;
2668
 
2669
               if No (Prev) then
2670
 
2671
                  --  If E is not on the entity chain of the current scope,
2672
                  --  it is an implicit declaration in the generic formal
2673
                  --  part of a generic subprogram. When analyzing the body,
2674
                  --  the generic formals are visible but not on the entity
2675
                  --  chain of the subprogram. The new entity will become
2676
                  --  the visible one in the body.
2677
 
2678
                  pragma Assert
2679
                    (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
2680
                  null;
2681
 
2682
               else
2683
                  Set_Next_Entity (Prev, Next_Entity (E));
2684
 
2685
                  if No (Next_Entity (Prev)) then
2686
                     Set_Last_Entity (Current_Scope, Prev);
2687
                  end if;
2688
 
2689
                  if E = Current_Entity (E) then
2690
                     Prev_Vis := Empty;
2691
 
2692
                  else
2693
                     Prev_Vis := Current_Entity (E);
2694
                     while Homonym (Prev_Vis) /= E loop
2695
                        Prev_Vis := Homonym (Prev_Vis);
2696
                     end loop;
2697
                  end if;
2698
 
2699
                  if Present (Prev_Vis)  then
2700
 
2701
                     --  Skip E in the visibility chain
2702
 
2703
                     Set_Homonym (Prev_Vis, Homonym (E));
2704
 
2705
                  else
2706
                     Set_Name_Entity_Id (Chars (E), Homonym (E));
2707
                  end if;
2708
               end if;
2709
            end;
2710
 
2711
         --  This section of code could use a comment ???
2712
 
2713
         elsif Present (Etype (E))
2714
           and then Is_Concurrent_Type (Etype (E))
2715
           and then E = Def_Id
2716
         then
2717
            return;
2718
 
2719
         --  If the homograph is a protected component renaming, it should not
2720
         --  be hiding the current entity. Such renamings are treated as weak
2721
         --  declarations.
2722
 
2723
         elsif Is_Prival (E) then
2724
            Set_Is_Immediately_Visible (E, False);
2725
 
2726
         --  In this case the current entity is a protected component renaming.
2727
         --  Perform minimal decoration by setting the scope and return since
2728
         --  the prival should not be hiding other visible entities.
2729
 
2730
         elsif Is_Prival (Def_Id) then
2731
            Set_Scope (Def_Id, Current_Scope);
2732
            return;
2733
 
2734
         --  Analogous to privals, the discriminal generated for an entry
2735
         --  index parameter acts as a weak declaration. Perform minimal
2736
         --  decoration to avoid bogus errors.
2737
 
2738
         elsif Is_Discriminal (Def_Id)
2739
           and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
2740
         then
2741
            Set_Scope (Def_Id, Current_Scope);
2742
            return;
2743
 
2744
         --  In the body or private part of an instance, a type extension
2745
         --  may introduce a component with the same name as that of an
2746
         --  actual. The legality rule is not enforced, but the semantics
2747
         --  of the full type with two components of the same name are not
2748
         --  clear at this point ???
2749
 
2750
         elsif In_Instance_Not_Visible then
2751
            null;
2752
 
2753
         --  When compiling a package body, some child units may have become
2754
         --  visible. They cannot conflict with local entities that hide them.
2755
 
2756
         elsif Is_Child_Unit (E)
2757
           and then In_Open_Scopes (Scope (E))
2758
           and then not Is_Immediately_Visible (E)
2759
         then
2760
            null;
2761
 
2762
         --  Conversely, with front-end inlining we may compile the parent
2763
         --  body first, and a child unit subsequently. The context is now
2764
         --  the parent spec, and body entities are not visible.
2765
 
2766
         elsif Is_Child_Unit (Def_Id)
2767
           and then Is_Package_Body_Entity (E)
2768
           and then not In_Package_Body (Current_Scope)
2769
         then
2770
            null;
2771
 
2772
         --  Case of genuine duplicate declaration
2773
 
2774
         else
2775
            Error_Msg_Sloc := Sloc (E);
2776
 
2777
            --  If the previous declaration is an incomplete type declaration
2778
            --  this may be an attempt to complete it with a private type.
2779
            --  The following avoids confusing cascaded errors.
2780
 
2781
            if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
2782
              and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
2783
            then
2784
               Error_Msg_N
2785
                 ("incomplete type cannot be completed with a private " &
2786
                  "declaration", Parent (Def_Id));
2787
               Set_Is_Immediately_Visible (E, False);
2788
               Set_Full_View (E, Def_Id);
2789
 
2790
            --  An inherited component of a record conflicts with a new
2791
            --  discriminant. The discriminant is inserted first in the scope,
2792
            --  but the error should be posted on it, not on the component.
2793
 
2794
            elsif Ekind (E) = E_Discriminant
2795
              and then Present (Scope (Def_Id))
2796
              and then Scope (Def_Id) /= Current_Scope
2797
            then
2798
               Error_Msg_Sloc := Sloc (Def_Id);
2799
               Error_Msg_N ("& conflicts with declaration#", E);
2800
               return;
2801
 
2802
            --  If the name of the unit appears in its own context clause,
2803
            --  a dummy package with the name has already been created, and
2804
            --  the error emitted. Try to continue quietly.
2805
 
2806
            elsif Error_Posted (E)
2807
              and then Sloc (E) = No_Location
2808
              and then Nkind (Parent (E)) = N_Package_Specification
2809
              and then Current_Scope = Standard_Standard
2810
            then
2811
               Set_Scope (Def_Id, Current_Scope);
2812
               return;
2813
 
2814
            else
2815
               Error_Msg_N ("& conflicts with declaration#", Def_Id);
2816
 
2817
               --  Avoid cascaded messages with duplicate components in
2818
               --  derived types.
2819
 
2820
               if Ekind (E) = E_Component
2821
                 or else Ekind (E) = E_Discriminant
2822
               then
2823
                  return;
2824
               end if;
2825
            end if;
2826
 
2827
            if Nkind (Parent (Parent (Def_Id))) =
2828
                N_Generic_Subprogram_Declaration
2829
              and then Def_Id =
2830
                Defining_Entity (Specification (Parent (Parent (Def_Id))))
2831
            then
2832
               Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
2833
            end if;
2834
 
2835
            --  If entity is in standard, then we are in trouble, because
2836
            --  it means that we have a library package with a duplicated
2837
            --  name. That's hard to recover from, so abort!
2838
 
2839
            if S = Standard_Standard then
2840
               raise Unrecoverable_Error;
2841
 
2842
            --  Otherwise we continue with the declaration. Having two
2843
            --  identical declarations should not cause us too much trouble!
2844
 
2845
            else
2846
               null;
2847
            end if;
2848
         end if;
2849
      end if;
2850
 
2851
      --  If we fall through, declaration is OK , or OK enough to continue
2852
 
2853
      --  If Def_Id is a discriminant or a record component we are in the
2854
      --  midst of inheriting components in a derived record definition.
2855
      --  Preserve their Ekind and Etype.
2856
 
2857
      if Ekind (Def_Id) = E_Discriminant
2858
        or else Ekind (Def_Id) = E_Component
2859
      then
2860
         null;
2861
 
2862
      --  If a type is already set, leave it alone (happens whey a type
2863
      --  declaration is reanalyzed following a call to the optimizer)
2864
 
2865
      elsif Present (Etype (Def_Id)) then
2866
         null;
2867
 
2868
      --  Otherwise, the kind E_Void insures that premature uses of the entity
2869
      --  will be detected. Any_Type insures that no cascaded errors will occur
2870
 
2871
      else
2872
         Set_Ekind (Def_Id, E_Void);
2873
         Set_Etype (Def_Id, Any_Type);
2874
      end if;
2875
 
2876
      --  Inherited discriminants and components in derived record types are
2877
      --  immediately visible. Itypes are not.
2878
 
2879
      if Ekind (Def_Id) = E_Discriminant
2880
        or else Ekind (Def_Id) = E_Component
2881
        or else (No (Corresponding_Remote_Type (Def_Id))
2882
                 and then not Is_Itype (Def_Id))
2883
      then
2884
         Set_Is_Immediately_Visible (Def_Id);
2885
         Set_Current_Entity         (Def_Id);
2886
      end if;
2887
 
2888
      Set_Homonym       (Def_Id, C);
2889
      Append_Entity     (Def_Id, S);
2890
      Set_Public_Status (Def_Id);
2891
 
2892
      --  Warn if new entity hides an old one
2893
 
2894
      if Warn_On_Hiding and then Present (C)
2895
 
2896
         --  Don't warn for record components since they always have a well
2897
         --  defined scope which does not confuse other uses. Note that in
2898
         --  some cases, Ekind has not been set yet.
2899
 
2900
         and then Ekind (C) /= E_Component
2901
         and then Ekind (C) /= E_Discriminant
2902
         and then Nkind (Parent (C)) /= N_Component_Declaration
2903
         and then Ekind (Def_Id) /= E_Component
2904
         and then Ekind (Def_Id) /= E_Discriminant
2905
         and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
2906
 
2907
         --  Don't warn for one character variables. It is too common to use
2908
         --  such variables as locals and will just cause too many false hits.
2909
 
2910
         and then Length_Of_Name (Chars (C)) /= 1
2911
 
2912
         --  Don't warn for non-source entities
2913
 
2914
         and then Comes_From_Source (C)
2915
         and then Comes_From_Source (Def_Id)
2916
 
2917
         --  Don't warn unless entity in question is in extended main source
2918
 
2919
         and then In_Extended_Main_Source_Unit (Def_Id)
2920
 
2921
         --  Finally, the hidden entity must be either immediately visible
2922
         --  or use visible (from a used package)
2923
 
2924
         and then
2925
           (Is_Immediately_Visible (C)
2926
              or else
2927
            Is_Potentially_Use_Visible (C))
2928
      then
2929
         Error_Msg_Sloc := Sloc (C);
2930
         Error_Msg_N ("declaration hides &#?", Def_Id);
2931
      end if;
2932
   end Enter_Name;
2933
 
2934
   --------------------------
2935
   -- Explain_Limited_Type --
2936
   --------------------------
2937
 
2938
   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
2939
      C : Entity_Id;
2940
 
2941
   begin
2942
      --  For array, component type must be limited
2943
 
2944
      if Is_Array_Type (T) then
2945
         Error_Msg_Node_2 := T;
2946
         Error_Msg_NE
2947
           ("\component type& of type& is limited", N, Component_Type (T));
2948
         Explain_Limited_Type (Component_Type (T), N);
2949
 
2950
      elsif Is_Record_Type (T) then
2951
 
2952
         --  No need for extra messages if explicit limited record
2953
 
2954
         if Is_Limited_Record (Base_Type (T)) then
2955
            return;
2956
         end if;
2957
 
2958
         --  Otherwise find a limited component. Check only components that
2959
         --  come from source, or inherited components that appear in the
2960
         --  source of the ancestor.
2961
 
2962
         C := First_Component (T);
2963
         while Present (C) loop
2964
            if Is_Limited_Type (Etype (C))
2965
              and then
2966
                (Comes_From_Source (C)
2967
                   or else
2968
                     (Present (Original_Record_Component (C))
2969
                       and then
2970
                         Comes_From_Source (Original_Record_Component (C))))
2971
            then
2972
               Error_Msg_Node_2 := T;
2973
               Error_Msg_NE ("\component& of type& has limited type", N, C);
2974
               Explain_Limited_Type (Etype (C), N);
2975
               return;
2976
            end if;
2977
 
2978
            Next_Component (C);
2979
         end loop;
2980
 
2981
         --  The type may be declared explicitly limited, even if no component
2982
         --  of it is limited, in which case we fall out of the loop.
2983
         return;
2984
      end if;
2985
   end Explain_Limited_Type;
2986
 
2987
   -----------------
2988
   -- Find_Actual --
2989
   -----------------
2990
 
2991
   procedure Find_Actual
2992
     (N        : Node_Id;
2993
      Formal   : out Entity_Id;
2994
      Call     : out Node_Id)
2995
   is
2996
      Parnt  : constant Node_Id := Parent (N);
2997
      Actual : Node_Id;
2998
 
2999
   begin
3000
      if (Nkind (Parnt) = N_Indexed_Component
3001
            or else
3002
          Nkind (Parnt) = N_Selected_Component)
3003
        and then N = Prefix (Parnt)
3004
      then
3005
         Find_Actual (Parnt, Formal, Call);
3006
         return;
3007
 
3008
      elsif Nkind (Parnt) = N_Parameter_Association
3009
        and then N = Explicit_Actual_Parameter (Parnt)
3010
      then
3011
         Call := Parent (Parnt);
3012
 
3013
      elsif Nkind (Parnt) = N_Procedure_Call_Statement then
3014
         Call := Parnt;
3015
 
3016
      else
3017
         Formal := Empty;
3018
         Call   := Empty;
3019
         return;
3020
      end if;
3021
 
3022
      --  If we have a call to a subprogram look for the parameter. Note that
3023
      --  we exclude overloaded calls, since we don't know enough to be sure
3024
      --  of giving the right answer in this case.
3025
 
3026
      if Is_Entity_Name (Name (Call))
3027
        and then Present (Entity (Name (Call)))
3028
        and then Is_Overloadable (Entity (Name (Call)))
3029
        and then not Is_Overloaded (Name (Call))
3030
      then
3031
         --  Fall here if we are definitely a parameter
3032
 
3033
         Actual := First_Actual (Call);
3034
         Formal := First_Formal (Entity (Name (Call)));
3035
         while Present (Formal) and then Present (Actual) loop
3036
            if Actual = N then
3037
               return;
3038
            else
3039
               Actual := Next_Actual (Actual);
3040
               Formal := Next_Formal (Formal);
3041
            end if;
3042
         end loop;
3043
      end if;
3044
 
3045
      --  Fall through here if we did not find matching actual
3046
 
3047
      Formal := Empty;
3048
      Call   := Empty;
3049
   end Find_Actual;
3050
 
3051
   -------------------------------------
3052
   -- Find_Corresponding_Discriminant --
3053
   -------------------------------------
3054
 
3055
   function Find_Corresponding_Discriminant
3056
     (Id  : Node_Id;
3057
      Typ : Entity_Id) return Entity_Id
3058
   is
3059
      Par_Disc : Entity_Id;
3060
      Old_Disc : Entity_Id;
3061
      New_Disc : Entity_Id;
3062
 
3063
   begin
3064
      Par_Disc := Original_Record_Component (Original_Discriminant (Id));
3065
 
3066
      --  The original type may currently be private, and the discriminant
3067
      --  only appear on its full view.
3068
 
3069
      if Is_Private_Type (Scope (Par_Disc))
3070
        and then not Has_Discriminants (Scope (Par_Disc))
3071
        and then Present (Full_View (Scope (Par_Disc)))
3072
      then
3073
         Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
3074
      else
3075
         Old_Disc := First_Discriminant (Scope (Par_Disc));
3076
      end if;
3077
 
3078
      if Is_Class_Wide_Type (Typ) then
3079
         New_Disc := First_Discriminant (Root_Type (Typ));
3080
      else
3081
         New_Disc := First_Discriminant (Typ);
3082
      end if;
3083
 
3084
      while Present (Old_Disc) and then Present (New_Disc) loop
3085
         if Old_Disc = Par_Disc  then
3086
            return New_Disc;
3087
         else
3088
            Next_Discriminant (Old_Disc);
3089
            Next_Discriminant (New_Disc);
3090
         end if;
3091
      end loop;
3092
 
3093
      --  Should always find it
3094
 
3095
      raise Program_Error;
3096
   end Find_Corresponding_Discriminant;
3097
 
3098
   --------------------------
3099
   -- Find_Overlaid_Entity --
3100
   --------------------------
3101
 
3102
   procedure Find_Overlaid_Entity
3103
     (N   : Node_Id;
3104
      Ent : out Entity_Id;
3105
      Off : out Boolean)
3106
   is
3107
      Expr : Node_Id;
3108
 
3109
   begin
3110
      --  We are looking for one of the two following forms:
3111
 
3112
      --    for X'Address use Y'Address
3113
 
3114
      --  or
3115
 
3116
      --    Const : constant Address := expr;
3117
      --    ...
3118
      --    for X'Address use Const;
3119
 
3120
      --  In the second case, the expr is either Y'Address, or recursively a
3121
      --  constant that eventually references Y'Address.
3122
 
3123
      Ent := Empty;
3124
      Off := False;
3125
 
3126
      if Nkind (N) = N_Attribute_Definition_Clause
3127
        and then Chars (N) = Name_Address
3128
      then
3129
         Expr := Expression (N);
3130
 
3131
         --  This loop checks the form of the expression for Y'Address,
3132
         --  using recursion to deal with intermediate constants.
3133
 
3134
         loop
3135
            --  Check for Y'Address
3136
 
3137
            if Nkind (Expr) = N_Attribute_Reference
3138
              and then Attribute_Name (Expr) = Name_Address
3139
            then
3140
               Expr := Prefix (Expr);
3141
               exit;
3142
 
3143
               --  Check for Const where Const is a constant entity
3144
 
3145
            elsif Is_Entity_Name (Expr)
3146
              and then Ekind (Entity (Expr)) = E_Constant
3147
            then
3148
               Expr := Constant_Value (Entity (Expr));
3149
 
3150
            --  Anything else does not need checking
3151
 
3152
            else
3153
               return;
3154
            end if;
3155
         end loop;
3156
 
3157
         --  This loop checks the form of the prefix for an entity,
3158
         --  using recursion to deal with intermediate components.
3159
 
3160
         loop
3161
            --  Check for Y where Y is an entity
3162
 
3163
            if Is_Entity_Name (Expr) then
3164
               Ent := Entity (Expr);
3165
               return;
3166
 
3167
            --  Check for components
3168
 
3169
            elsif
3170
               Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then
3171
 
3172
               Expr := Prefix (Expr);
3173
               Off := True;
3174
 
3175
            --  Anything else does not need checking
3176
 
3177
            else
3178
               return;
3179
            end if;
3180
         end loop;
3181
      end if;
3182
   end Find_Overlaid_Entity;
3183
 
3184
   -------------------------
3185
   -- Find_Parameter_Type --
3186
   -------------------------
3187
 
3188
   function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
3189
   begin
3190
      if Nkind (Param) /= N_Parameter_Specification then
3191
         return Empty;
3192
 
3193
      --  For an access parameter, obtain the type from the formal entity
3194
      --  itself, because access to subprogram nodes do not carry a type.
3195
      --  Shouldn't we always use the formal entity ???
3196
 
3197
      elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
3198
         return Etype (Defining_Identifier (Param));
3199
 
3200
      else
3201
         return Etype (Parameter_Type (Param));
3202
      end if;
3203
   end Find_Parameter_Type;
3204
 
3205
   -----------------------------
3206
   -- Find_Static_Alternative --
3207
   -----------------------------
3208
 
3209
   function Find_Static_Alternative (N : Node_Id) return Node_Id is
3210
      Expr   : constant Node_Id := Expression (N);
3211
      Val    : constant Uint    := Expr_Value (Expr);
3212
      Alt    : Node_Id;
3213
      Choice : Node_Id;
3214
 
3215
   begin
3216
      Alt := First (Alternatives (N));
3217
 
3218
      Search : loop
3219
         if Nkind (Alt) /= N_Pragma then
3220
            Choice := First (Discrete_Choices (Alt));
3221
            while Present (Choice) loop
3222
 
3223
               --  Others choice, always matches
3224
 
3225
               if Nkind (Choice) = N_Others_Choice then
3226
                  exit Search;
3227
 
3228
               --  Range, check if value is in the range
3229
 
3230
               elsif Nkind (Choice) = N_Range then
3231
                  exit Search when
3232
                    Val >= Expr_Value (Low_Bound (Choice))
3233
                      and then
3234
                    Val <= Expr_Value (High_Bound (Choice));
3235
 
3236
               --  Choice is a subtype name. Note that we know it must
3237
               --  be a static subtype, since otherwise it would have
3238
               --  been diagnosed as illegal.
3239
 
3240
               elsif Is_Entity_Name (Choice)
3241
                 and then Is_Type (Entity (Choice))
3242
               then
3243
                  exit Search when Is_In_Range (Expr, Etype (Choice),
3244
                                                Assume_Valid => False);
3245
 
3246
               --  Choice is a subtype indication
3247
 
3248
               elsif Nkind (Choice) = N_Subtype_Indication then
3249
                  declare
3250
                     C : constant Node_Id := Constraint (Choice);
3251
                     R : constant Node_Id := Range_Expression (C);
3252
 
3253
                  begin
3254
                     exit Search when
3255
                       Val >= Expr_Value (Low_Bound (R))
3256
                         and then
3257
                       Val <= Expr_Value (High_Bound (R));
3258
                  end;
3259
 
3260
               --  Choice is a simple expression
3261
 
3262
               else
3263
                  exit Search when Val = Expr_Value (Choice);
3264
               end if;
3265
 
3266
               Next (Choice);
3267
            end loop;
3268
         end if;
3269
 
3270
         Next (Alt);
3271
         pragma Assert (Present (Alt));
3272
      end loop Search;
3273
 
3274
      --  The above loop *must* terminate by finding a match, since
3275
      --  we know the case statement is valid, and the value of the
3276
      --  expression is known at compile time. When we fall out of
3277
      --  the loop, Alt points to the alternative that we know will
3278
      --  be selected at run time.
3279
 
3280
      return Alt;
3281
   end Find_Static_Alternative;
3282
 
3283
   ------------------
3284
   -- First_Actual --
3285
   ------------------
3286
 
3287
   function First_Actual (Node : Node_Id) return Node_Id is
3288
      N : Node_Id;
3289
 
3290
   begin
3291
      if No (Parameter_Associations (Node)) then
3292
         return Empty;
3293
      end if;
3294
 
3295
      N := First (Parameter_Associations (Node));
3296
 
3297
      if Nkind (N) = N_Parameter_Association then
3298
         return First_Named_Actual (Node);
3299
      else
3300
         return N;
3301
      end if;
3302
   end First_Actual;
3303
 
3304
   -------------------------
3305
   -- Full_Qualified_Name --
3306
   -------------------------
3307
 
3308
   function Full_Qualified_Name (E : Entity_Id) return String_Id is
3309
      Res : String_Id;
3310
      pragma Warnings (Off, Res);
3311
 
3312
      function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
3313
      --  Compute recursively the qualified name without NUL at the end
3314
 
3315
      ----------------------------------
3316
      -- Internal_Full_Qualified_Name --
3317
      ----------------------------------
3318
 
3319
      function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
3320
         Ent         : Entity_Id := E;
3321
         Parent_Name : String_Id := No_String;
3322
 
3323
      begin
3324
         --  Deals properly with child units
3325
 
3326
         if Nkind (Ent) = N_Defining_Program_Unit_Name then
3327
            Ent := Defining_Identifier (Ent);
3328
         end if;
3329
 
3330
         --  Compute qualification recursively (only "Standard" has no scope)
3331
 
3332
         if Present (Scope (Scope (Ent))) then
3333
            Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
3334
         end if;
3335
 
3336
         --  Every entity should have a name except some expanded blocks
3337
         --  don't bother about those.
3338
 
3339
         if Chars (Ent) = No_Name then
3340
            return Parent_Name;
3341
         end if;
3342
 
3343
         --  Add a period between Name and qualification
3344
 
3345
         if Parent_Name /= No_String then
3346
            Start_String (Parent_Name);
3347
            Store_String_Char (Get_Char_Code ('.'));
3348
 
3349
         else
3350
            Start_String;
3351
         end if;
3352
 
3353
         --  Generates the entity name in upper case
3354
 
3355
         Get_Decoded_Name_String (Chars (Ent));
3356
         Set_All_Upper_Case;
3357
         Store_String_Chars (Name_Buffer (1 .. Name_Len));
3358
         return End_String;
3359
      end Internal_Full_Qualified_Name;
3360
 
3361
   --  Start of processing for Full_Qualified_Name
3362
 
3363
   begin
3364
      Res := Internal_Full_Qualified_Name (E);
3365
      Store_String_Char (Get_Char_Code (ASCII.NUL));
3366
      return End_String;
3367
   end Full_Qualified_Name;
3368
 
3369
   -----------------------
3370
   -- Gather_Components --
3371
   -----------------------
3372
 
3373
   procedure Gather_Components
3374
     (Typ           : Entity_Id;
3375
      Comp_List     : Node_Id;
3376
      Governed_By   : List_Id;
3377
      Into          : Elist_Id;
3378
      Report_Errors : out Boolean)
3379
   is
3380
      Assoc           : Node_Id;
3381
      Variant         : Node_Id;
3382
      Discrete_Choice : Node_Id;
3383
      Comp_Item       : Node_Id;
3384
 
3385
      Discrim       : Entity_Id;
3386
      Discrim_Name  : Node_Id;
3387
      Discrim_Value : Node_Id;
3388
 
3389
   begin
3390
      Report_Errors := False;
3391
 
3392
      if No (Comp_List) or else Null_Present (Comp_List) then
3393
         return;
3394
 
3395
      elsif Present (Component_Items (Comp_List)) then
3396
         Comp_Item := First (Component_Items (Comp_List));
3397
 
3398
      else
3399
         Comp_Item := Empty;
3400
      end if;
3401
 
3402
      while Present (Comp_Item) loop
3403
 
3404
         --  Skip the tag of a tagged record, the interface tags, as well
3405
         --  as all items that are not user components (anonymous types,
3406
         --  rep clauses, Parent field, controller field).
3407
 
3408
         if Nkind (Comp_Item) = N_Component_Declaration then
3409
            declare
3410
               Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
3411
            begin
3412
               if not Is_Tag (Comp)
3413
                 and then Chars (Comp) /= Name_uParent
3414
                 and then Chars (Comp) /= Name_uController
3415
               then
3416
                  Append_Elmt (Comp, Into);
3417
               end if;
3418
            end;
3419
         end if;
3420
 
3421
         Next (Comp_Item);
3422
      end loop;
3423
 
3424
      if No (Variant_Part (Comp_List)) then
3425
         return;
3426
      else
3427
         Discrim_Name := Name (Variant_Part (Comp_List));
3428
         Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3429
      end if;
3430
 
3431
      --  Look for the discriminant that governs this variant part.
3432
      --  The discriminant *must* be in the Governed_By List
3433
 
3434
      Assoc := First (Governed_By);
3435
      Find_Constraint : loop
3436
         Discrim := First (Choices (Assoc));
3437
         exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
3438
           or else (Present (Corresponding_Discriminant (Entity (Discrim)))
3439
                      and then
3440
                    Chars (Corresponding_Discriminant (Entity (Discrim)))
3441
                         = Chars  (Discrim_Name))
3442
           or else Chars (Original_Record_Component (Entity (Discrim)))
3443
                         = Chars (Discrim_Name);
3444
 
3445
         if No (Next (Assoc)) then
3446
            if not Is_Constrained (Typ)
3447
              and then Is_Derived_Type (Typ)
3448
              and then Present (Stored_Constraint (Typ))
3449
            then
3450
               --  If the type is a tagged type with inherited discriminants,
3451
               --  use the stored constraint on the parent in order to find
3452
               --  the values of discriminants that are otherwise hidden by an
3453
               --  explicit constraint. Renamed discriminants are handled in
3454
               --  the code above.
3455
 
3456
               --  If several parent discriminants are renamed by a single
3457
               --  discriminant of the derived type, the call to obtain the
3458
               --  Corresponding_Discriminant field only retrieves the last
3459
               --  of them. We recover the constraint on the others from the
3460
               --  Stored_Constraint as well.
3461
 
3462
               declare
3463
                  D : Entity_Id;
3464
                  C : Elmt_Id;
3465
 
3466
               begin
3467
                  D := First_Discriminant (Etype (Typ));
3468
                  C := First_Elmt (Stored_Constraint (Typ));
3469
                  while Present (D) and then Present (C) loop
3470
                     if Chars (Discrim_Name) = Chars (D) then
3471
                        if Is_Entity_Name (Node (C))
3472
                          and then Entity (Node (C)) = Entity (Discrim)
3473
                        then
3474
                           --  D is renamed by Discrim, whose value is given in
3475
                           --  Assoc.
3476
 
3477
                           null;
3478
 
3479
                        else
3480
                           Assoc :=
3481
                             Make_Component_Association (Sloc (Typ),
3482
                               New_List
3483
                                 (New_Occurrence_Of (D, Sloc (Typ))),
3484
                                  Duplicate_Subexpr_No_Checks (Node (C)));
3485
                        end if;
3486
                        exit Find_Constraint;
3487
                     end if;
3488
 
3489
                     Next_Discriminant (D);
3490
                     Next_Elmt (C);
3491
                  end loop;
3492
               end;
3493
            end if;
3494
         end if;
3495
 
3496
         if No (Next (Assoc)) then
3497
            Error_Msg_NE (" missing value for discriminant&",
3498
              First (Governed_By), Discrim_Name);
3499
            Report_Errors := True;
3500
            return;
3501
         end if;
3502
 
3503
         Next (Assoc);
3504
      end loop Find_Constraint;
3505
 
3506
      Discrim_Value := Expression (Assoc);
3507
 
3508
      if not Is_OK_Static_Expression (Discrim_Value) then
3509
         Error_Msg_FE
3510
           ("value for discriminant & must be static!",
3511
            Discrim_Value, Discrim);
3512
         Why_Not_Static (Discrim_Value);
3513
         Report_Errors := True;
3514
         return;
3515
      end if;
3516
 
3517
      Search_For_Discriminant_Value : declare
3518
         Low  : Node_Id;
3519
         High : Node_Id;
3520
 
3521
         UI_High          : Uint;
3522
         UI_Low           : Uint;
3523
         UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
3524
 
3525
      begin
3526
         Find_Discrete_Value : while Present (Variant) loop
3527
            Discrete_Choice := First (Discrete_Choices (Variant));
3528
            while Present (Discrete_Choice) loop
3529
 
3530
               exit Find_Discrete_Value when
3531
                 Nkind (Discrete_Choice) = N_Others_Choice;
3532
 
3533
               Get_Index_Bounds (Discrete_Choice, Low, High);
3534
 
3535
               UI_Low  := Expr_Value (Low);
3536
               UI_High := Expr_Value (High);
3537
 
3538
               exit Find_Discrete_Value when
3539
                 UI_Low <= UI_Discrim_Value
3540
                   and then
3541
                 UI_High >= UI_Discrim_Value;
3542
 
3543
               Next (Discrete_Choice);
3544
            end loop;
3545
 
3546
            Next_Non_Pragma (Variant);
3547
         end loop Find_Discrete_Value;
3548
      end Search_For_Discriminant_Value;
3549
 
3550
      if No (Variant) then
3551
         Error_Msg_NE
3552
           ("value of discriminant & is out of range", Discrim_Value, Discrim);
3553
         Report_Errors := True;
3554
         return;
3555
      end  if;
3556
 
3557
      --  If we have found the corresponding choice, recursively add its
3558
      --  components to the Into list.
3559
 
3560
      Gather_Components (Empty,
3561
        Component_List (Variant), Governed_By, Into, Report_Errors);
3562
   end Gather_Components;
3563
 
3564
   ------------------------
3565
   -- Get_Actual_Subtype --
3566
   ------------------------
3567
 
3568
   function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
3569
      Typ  : constant Entity_Id := Etype (N);
3570
      Utyp : Entity_Id := Underlying_Type (Typ);
3571
      Decl : Node_Id;
3572
      Atyp : Entity_Id;
3573
 
3574
   begin
3575
      if No (Utyp) then
3576
         Utyp := Typ;
3577
      end if;
3578
 
3579
      --  If what we have is an identifier that references a subprogram
3580
      --  formal, or a variable or constant object, then we get the actual
3581
      --  subtype from the referenced entity if one has been built.
3582
 
3583
      if Nkind (N) = N_Identifier
3584
        and then
3585
          (Is_Formal (Entity (N))
3586
            or else Ekind (Entity (N)) = E_Constant
3587
            or else Ekind (Entity (N)) = E_Variable)
3588
        and then Present (Actual_Subtype (Entity (N)))
3589
      then
3590
         return Actual_Subtype (Entity (N));
3591
 
3592
      --  Actual subtype of unchecked union is always itself. We never need
3593
      --  the "real" actual subtype. If we did, we couldn't get it anyway
3594
      --  because the discriminant is not available. The restrictions on
3595
      --  Unchecked_Union are designed to make sure that this is OK.
3596
 
3597
      elsif Is_Unchecked_Union (Base_Type (Utyp)) then
3598
         return Typ;
3599
 
3600
      --  Here for the unconstrained case, we must find actual subtype
3601
      --  No actual subtype is available, so we must build it on the fly.
3602
 
3603
      --  Checking the type, not the underlying type, for constrainedness
3604
      --  seems to be necessary. Maybe all the tests should be on the type???
3605
 
3606
      elsif (not Is_Constrained (Typ))
3607
           and then (Is_Array_Type (Utyp)
3608
                      or else (Is_Record_Type (Utyp)
3609
                                and then Has_Discriminants (Utyp)))
3610
           and then not Has_Unknown_Discriminants (Utyp)
3611
           and then not (Ekind (Utyp) = E_String_Literal_Subtype)
3612
      then
3613
         --  Nothing to do if in spec expression (why not???)
3614
 
3615
         if In_Spec_Expression then
3616
            return Typ;
3617
 
3618
         elsif Is_Private_Type (Typ)
3619
           and then not Has_Discriminants (Typ)
3620
         then
3621
            --  If the type has no discriminants, there is no subtype to
3622
            --  build, even if the underlying type is discriminated.
3623
 
3624
            return Typ;
3625
 
3626
         --  Else build the actual subtype
3627
 
3628
         else
3629
            Decl := Build_Actual_Subtype (Typ, N);
3630
            Atyp := Defining_Identifier (Decl);
3631
 
3632
            --  If Build_Actual_Subtype generated a new declaration then use it
3633
 
3634
            if Atyp /= Typ then
3635
 
3636
               --  The actual subtype is an Itype, so analyze the declaration,
3637
               --  but do not attach it to the tree, to get the type defined.
3638
 
3639
               Set_Parent (Decl, N);
3640
               Set_Is_Itype (Atyp);
3641
               Analyze (Decl, Suppress => All_Checks);
3642
               Set_Associated_Node_For_Itype (Atyp, N);
3643
               Set_Has_Delayed_Freeze (Atyp, False);
3644
 
3645
               --  We need to freeze the actual subtype immediately. This is
3646
               --  needed, because otherwise this Itype will not get frozen
3647
               --  at all, and it is always safe to freeze on creation because
3648
               --  any associated types must be frozen at this point.
3649
 
3650
               Freeze_Itype (Atyp, N);
3651
               return Atyp;
3652
 
3653
            --  Otherwise we did not build a declaration, so return original
3654
 
3655
            else
3656
               return Typ;
3657
            end if;
3658
         end if;
3659
 
3660
      --  For all remaining cases, the actual subtype is the same as
3661
      --  the nominal type.
3662
 
3663
      else
3664
         return Typ;
3665
      end if;
3666
   end Get_Actual_Subtype;
3667
 
3668
   -------------------------------------
3669
   -- Get_Actual_Subtype_If_Available --
3670
   -------------------------------------
3671
 
3672
   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
3673
      Typ  : constant Entity_Id := Etype (N);
3674
 
3675
   begin
3676
      --  If what we have is an identifier that references a subprogram
3677
      --  formal, or a variable or constant object, then we get the actual
3678
      --  subtype from the referenced entity if one has been built.
3679
 
3680
      if Nkind (N) = N_Identifier
3681
        and then
3682
          (Is_Formal (Entity (N))
3683
            or else Ekind (Entity (N)) = E_Constant
3684
            or else Ekind (Entity (N)) = E_Variable)
3685
        and then Present (Actual_Subtype (Entity (N)))
3686
      then
3687
         return Actual_Subtype (Entity (N));
3688
 
3689
      --  Otherwise the Etype of N is returned unchanged
3690
 
3691
      else
3692
         return Typ;
3693
      end if;
3694
   end Get_Actual_Subtype_If_Available;
3695
 
3696
   -------------------------------
3697
   -- Get_Default_External_Name --
3698
   -------------------------------
3699
 
3700
   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
3701
   begin
3702
      Get_Decoded_Name_String (Chars (E));
3703
 
3704
      if Opt.External_Name_Imp_Casing = Uppercase then
3705
         Set_Casing (All_Upper_Case);
3706
      else
3707
         Set_Casing (All_Lower_Case);
3708
      end if;
3709
 
3710
      return
3711
        Make_String_Literal (Sloc (E),
3712
          Strval => String_From_Name_Buffer);
3713
   end Get_Default_External_Name;
3714
 
3715
   ---------------------------
3716
   -- Get_Enum_Lit_From_Pos --
3717
   ---------------------------
3718
 
3719
   function Get_Enum_Lit_From_Pos
3720
     (T   : Entity_Id;
3721
      Pos : Uint;
3722
      Loc : Source_Ptr) return Node_Id
3723
   is
3724
      Lit : Node_Id;
3725
 
3726
   begin
3727
      --  In the case where the literal is of type Character, Wide_Character
3728
      --  or Wide_Wide_Character or of a type derived from them, there needs
3729
      --  to be some special handling since there is no explicit chain of
3730
      --  literals to search. Instead, an N_Character_Literal node is created
3731
      --  with the appropriate Char_Code and Chars fields.
3732
 
3733
      if Is_Standard_Character_Type (T) then
3734
         Set_Character_Literal_Name (UI_To_CC (Pos));
3735
         return
3736
           Make_Character_Literal (Loc,
3737
             Chars              => Name_Find,
3738
             Char_Literal_Value => Pos);
3739
 
3740
      --  For all other cases, we have a complete table of literals, and
3741
      --  we simply iterate through the chain of literal until the one
3742
      --  with the desired position value is found.
3743
      --
3744
 
3745
      else
3746
         Lit := First_Literal (Base_Type (T));
3747
         for J in 1 .. UI_To_Int (Pos) loop
3748
            Next_Literal (Lit);
3749
         end loop;
3750
 
3751
         return New_Occurrence_Of (Lit, Loc);
3752
      end if;
3753
   end Get_Enum_Lit_From_Pos;
3754
 
3755
   ------------------------
3756
   -- Get_Generic_Entity --
3757
   ------------------------
3758
 
3759
   function Get_Generic_Entity (N : Node_Id) return Entity_Id is
3760
      Ent : constant Entity_Id := Entity (Name (N));
3761
   begin
3762
      if Present (Renamed_Object (Ent)) then
3763
         return Renamed_Object (Ent);
3764
      else
3765
         return Ent;
3766
      end if;
3767
   end Get_Generic_Entity;
3768
 
3769
   ----------------------
3770
   -- Get_Index_Bounds --
3771
   ----------------------
3772
 
3773
   procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
3774
      Kind : constant Node_Kind := Nkind (N);
3775
      R    : Node_Id;
3776
 
3777
   begin
3778
      if Kind = N_Range then
3779
         L := Low_Bound (N);
3780
         H := High_Bound (N);
3781
 
3782
      elsif Kind = N_Subtype_Indication then
3783
         R := Range_Expression (Constraint (N));
3784
 
3785
         if R = Error then
3786
            L := Error;
3787
            H := Error;
3788
            return;
3789
 
3790
         else
3791
            L := Low_Bound  (Range_Expression (Constraint (N)));
3792
            H := High_Bound (Range_Expression (Constraint (N)));
3793
         end if;
3794
 
3795
      elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
3796
         if Error_Posted (Scalar_Range (Entity (N))) then
3797
            L := Error;
3798
            H := Error;
3799
 
3800
         elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
3801
            Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
3802
 
3803
         else
3804
            L := Low_Bound  (Scalar_Range (Entity (N)));
3805
            H := High_Bound (Scalar_Range (Entity (N)));
3806
         end if;
3807
 
3808
      else
3809
         --  N is an expression, indicating a range with one value
3810
 
3811
         L := N;
3812
         H := N;
3813
      end if;
3814
   end Get_Index_Bounds;
3815
 
3816
   ----------------------------------
3817
   -- Get_Library_Unit_Name_string --
3818
   ----------------------------------
3819
 
3820
   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
3821
      Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
3822
 
3823
   begin
3824
      Get_Unit_Name_String (Unit_Name_Id);
3825
 
3826
      --  Remove seven last character (" (spec)" or " (body)")
3827
 
3828
      Name_Len := Name_Len - 7;
3829
      pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
3830
   end Get_Library_Unit_Name_String;
3831
 
3832
   ------------------------
3833
   -- Get_Name_Entity_Id --
3834
   ------------------------
3835
 
3836
   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
3837
   begin
3838
      return Entity_Id (Get_Name_Table_Info (Id));
3839
   end Get_Name_Entity_Id;
3840
 
3841
   -------------------
3842
   -- Get_Pragma_Id --
3843
   -------------------
3844
 
3845
   function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
3846
   begin
3847
      return Get_Pragma_Id (Pragma_Name (N));
3848
   end Get_Pragma_Id;
3849
 
3850
   ---------------------------
3851
   -- Get_Referenced_Object --
3852
   ---------------------------
3853
 
3854
   function Get_Referenced_Object (N : Node_Id) return Node_Id is
3855
      R : Node_Id;
3856
 
3857
   begin
3858
      R := N;
3859
      while Is_Entity_Name (R)
3860
        and then Present (Renamed_Object (Entity (R)))
3861
      loop
3862
         R := Renamed_Object (Entity (R));
3863
      end loop;
3864
 
3865
      return R;
3866
   end Get_Referenced_Object;
3867
 
3868
   ------------------------
3869
   -- Get_Renamed_Entity --
3870
   ------------------------
3871
 
3872
   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
3873
      R : Entity_Id;
3874
 
3875
   begin
3876
      R := E;
3877
      while Present (Renamed_Entity (R)) loop
3878
         R := Renamed_Entity (R);
3879
      end loop;
3880
 
3881
      return R;
3882
   end Get_Renamed_Entity;
3883
 
3884
   -------------------------
3885
   -- Get_Subprogram_Body --
3886
   -------------------------
3887
 
3888
   function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
3889
      Decl : Node_Id;
3890
 
3891
   begin
3892
      Decl := Unit_Declaration_Node (E);
3893
 
3894
      if Nkind (Decl) = N_Subprogram_Body then
3895
         return Decl;
3896
 
3897
      --  The below comment is bad, because it is possible for
3898
      --  Nkind (Decl) to be an N_Subprogram_Body_Stub ???
3899
 
3900
      else           --  Nkind (Decl) = N_Subprogram_Declaration
3901
 
3902
         if Present (Corresponding_Body (Decl)) then
3903
            return Unit_Declaration_Node (Corresponding_Body (Decl));
3904
 
3905
         --  Imported subprogram case
3906
 
3907
         else
3908
            return Empty;
3909
         end if;
3910
      end if;
3911
   end Get_Subprogram_Body;
3912
 
3913
   ---------------------------
3914
   -- Get_Subprogram_Entity --
3915
   ---------------------------
3916
 
3917
   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
3918
      Nam  : Node_Id;
3919
      Proc : Entity_Id;
3920
 
3921
   begin
3922
      if Nkind (Nod) = N_Accept_Statement then
3923
         Nam := Entry_Direct_Name (Nod);
3924
 
3925
      --  For an entry call, the prefix of the call is a selected component.
3926
      --  Need additional code for internal calls ???
3927
 
3928
      elsif Nkind (Nod) = N_Entry_Call_Statement then
3929
         if Nkind (Name (Nod)) = N_Selected_Component then
3930
            Nam := Entity (Selector_Name (Name (Nod)));
3931
         else
3932
            Nam := Empty;
3933
         end if;
3934
 
3935
      else
3936
         Nam := Name (Nod);
3937
      end if;
3938
 
3939
      if Nkind (Nam) = N_Explicit_Dereference then
3940
         Proc := Etype (Prefix (Nam));
3941
      elsif Is_Entity_Name (Nam) then
3942
         Proc := Entity (Nam);
3943
      else
3944
         return Empty;
3945
      end if;
3946
 
3947
      if Is_Object (Proc) then
3948
         Proc := Etype (Proc);
3949
      end if;
3950
 
3951
      if Ekind (Proc) = E_Access_Subprogram_Type then
3952
         Proc := Directly_Designated_Type (Proc);
3953
      end if;
3954
 
3955
      if not Is_Subprogram (Proc)
3956
        and then Ekind (Proc) /= E_Subprogram_Type
3957
      then
3958
         return Empty;
3959
      else
3960
         return Proc;
3961
      end if;
3962
   end Get_Subprogram_Entity;
3963
 
3964
   -----------------------------
3965
   -- Get_Task_Body_Procedure --
3966
   -----------------------------
3967
 
3968
   function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
3969
   begin
3970
      --  Note: A task type may be the completion of a private type with
3971
      --  discriminants. When performing elaboration checks on a task
3972
      --  declaration, the current view of the type may be the private one,
3973
      --  and the procedure that holds the body of the task is held in its
3974
      --  underlying type.
3975
 
3976
      --  This is an odd function, why not have Task_Body_Procedure do
3977
      --  the following digging???
3978
 
3979
      return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
3980
   end Get_Task_Body_Procedure;
3981
 
3982
   -----------------------
3983
   -- Has_Access_Values --
3984
   -----------------------
3985
 
3986
   function Has_Access_Values (T : Entity_Id) return Boolean is
3987
      Typ : constant Entity_Id := Underlying_Type (T);
3988
 
3989
   begin
3990
      --  Case of a private type which is not completed yet. This can only
3991
      --  happen in the case of a generic format type appearing directly, or
3992
      --  as a component of the type to which this function is being applied
3993
      --  at the top level. Return False in this case, since we certainly do
3994
      --  not know that the type contains access types.
3995
 
3996
      if No (Typ) then
3997
         return False;
3998
 
3999
      elsif Is_Access_Type (Typ) then
4000
         return True;
4001
 
4002
      elsif Is_Array_Type (Typ) then
4003
         return Has_Access_Values (Component_Type (Typ));
4004
 
4005
      elsif Is_Record_Type (Typ) then
4006
         declare
4007
            Comp : Entity_Id;
4008
 
4009
         begin
4010
            --  Loop to Check components
4011
 
4012
            Comp := First_Component_Or_Discriminant (Typ);
4013
            while Present (Comp) loop
4014
 
4015
               --  Check for access component, tag field does not count, even
4016
               --  though it is implemented internally using an access type.
4017
 
4018
               if Has_Access_Values (Etype (Comp))
4019
                 and then Chars (Comp) /= Name_uTag
4020
               then
4021
                  return True;
4022
               end if;
4023
 
4024
               Next_Component_Or_Discriminant (Comp);
4025
            end loop;
4026
         end;
4027
 
4028
         return False;
4029
 
4030
      else
4031
         return False;
4032
      end if;
4033
   end Has_Access_Values;
4034
 
4035
   ------------------------------
4036
   -- Has_Compatible_Alignment --
4037
   ------------------------------
4038
 
4039
   function Has_Compatible_Alignment
4040
     (Obj  : Entity_Id;
4041
      Expr : Node_Id) return Alignment_Result
4042
   is
4043
      function Has_Compatible_Alignment_Internal
4044
        (Obj     : Entity_Id;
4045
         Expr    : Node_Id;
4046
         Default : Alignment_Result) return Alignment_Result;
4047
      --  This is the internal recursive function that actually does the work.
4048
      --  There is one additional parameter, which says what the result should
4049
      --  be if no alignment information is found, and there is no definite
4050
      --  indication of compatible alignments. At the outer level, this is set
4051
      --  to Unknown, but for internal recursive calls in the case where types
4052
      --  are known to be correct, it is set to Known_Compatible.
4053
 
4054
      ---------------------------------------
4055
      -- Has_Compatible_Alignment_Internal --
4056
      ---------------------------------------
4057
 
4058
      function Has_Compatible_Alignment_Internal
4059
        (Obj     : Entity_Id;
4060
         Expr    : Node_Id;
4061
         Default : Alignment_Result) return Alignment_Result
4062
      is
4063
         Result : Alignment_Result := Known_Compatible;
4064
         --  Holds the current status of the result. Note that once a value of
4065
         --  Known_Incompatible is set, it is sticky and does not get changed
4066
         --  to Unknown (the value in Result only gets worse as we go along,
4067
         --  never better).
4068
 
4069
         Offs : Uint := No_Uint;
4070
         --  Set to a factor of the offset from the base object when Expr is a
4071
         --  selected or indexed component, based on Component_Bit_Offset and
4072
         --  Component_Size respectively. A negative value is used to represent
4073
         --  a value which is not known at compile time.
4074
 
4075
         procedure Check_Prefix;
4076
         --  Checks the prefix recursively in the case where the expression
4077
         --  is an indexed or selected component.
4078
 
4079
         procedure Set_Result (R : Alignment_Result);
4080
         --  If R represents a worse outcome (unknown instead of known
4081
         --  compatible, or known incompatible), then set Result to R.
4082
 
4083
         ------------------
4084
         -- Check_Prefix --
4085
         ------------------
4086
 
4087
         procedure Check_Prefix is
4088
         begin
4089
            --  The subtlety here is that in doing a recursive call to check
4090
            --  the prefix, we have to decide what to do in the case where we
4091
            --  don't find any specific indication of an alignment problem.
4092
 
4093
            --  At the outer level, we normally set Unknown as the result in
4094
            --  this case, since we can only set Known_Compatible if we really
4095
            --  know that the alignment value is OK, but for the recursive
4096
            --  call, in the case where the types match, and we have not
4097
            --  specified a peculiar alignment for the object, we are only
4098
            --  concerned about suspicious rep clauses, the default case does
4099
            --  not affect us, since the compiler will, in the absence of such
4100
            --  rep clauses, ensure that the alignment is correct.
4101
 
4102
            if Default = Known_Compatible
4103
              or else
4104
                (Etype (Obj) = Etype (Expr)
4105
                  and then (Unknown_Alignment (Obj)
4106
                             or else
4107
                               Alignment (Obj) = Alignment (Etype (Obj))))
4108
            then
4109
               Set_Result
4110
                 (Has_Compatible_Alignment_Internal
4111
                    (Obj, Prefix (Expr), Known_Compatible));
4112
 
4113
            --  In all other cases, we need a full check on the prefix
4114
 
4115
            else
4116
               Set_Result
4117
                 (Has_Compatible_Alignment_Internal
4118
                    (Obj, Prefix (Expr), Unknown));
4119
            end if;
4120
         end Check_Prefix;
4121
 
4122
         ----------------
4123
         -- Set_Result --
4124
         ----------------
4125
 
4126
         procedure Set_Result (R : Alignment_Result) is
4127
         begin
4128
            if R > Result then
4129
               Result := R;
4130
            end if;
4131
         end Set_Result;
4132
 
4133
      --  Start of processing for Has_Compatible_Alignment_Internal
4134
 
4135
      begin
4136
         --  If Expr is a selected component, we must make sure there is no
4137
         --  potentially troublesome component clause, and that the record is
4138
         --  not packed.
4139
 
4140
         if Nkind (Expr) = N_Selected_Component then
4141
 
4142
            --  Packed record always generate unknown alignment
4143
 
4144
            if Is_Packed (Etype (Prefix (Expr))) then
4145
               Set_Result (Unknown);
4146
            end if;
4147
 
4148
            --  Check prefix and component offset
4149
 
4150
            Check_Prefix;
4151
            Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
4152
 
4153
         --  If Expr is an indexed component, we must make sure there is no
4154
         --  potentially troublesome Component_Size clause and that the array
4155
         --  is not bit-packed.
4156
 
4157
         elsif Nkind (Expr) = N_Indexed_Component then
4158
            declare
4159
               Typ : constant Entity_Id := Etype (Prefix (Expr));
4160
               Ind : constant Node_Id   := First_Index (Typ);
4161
 
4162
            begin
4163
               --  Bit packed array always generates unknown alignment
4164
 
4165
               if Is_Bit_Packed_Array (Typ) then
4166
                  Set_Result (Unknown);
4167
               end if;
4168
 
4169
               --  Check prefix and component offset
4170
 
4171
               Check_Prefix;
4172
               Offs := Component_Size (Typ);
4173
 
4174
               --  Small optimization: compute the full offset when possible
4175
 
4176
               if Offs /= No_Uint
4177
                 and then Offs > Uint_0
4178
                 and then Present (Ind)
4179
                 and then Nkind (Ind) = N_Range
4180
                 and then Compile_Time_Known_Value (Low_Bound (Ind))
4181
                 and then Compile_Time_Known_Value (First (Expressions (Expr)))
4182
               then
4183
                  Offs := Offs * (Expr_Value (First (Expressions (Expr)))
4184
                                    - Expr_Value (Low_Bound ((Ind))));
4185
               end if;
4186
            end;
4187
         end if;
4188
 
4189
         --  If we have a null offset, the result is entirely determined by
4190
         --  the base object and has already been computed recursively.
4191
 
4192
         if Offs = Uint_0 then
4193
            null;
4194
 
4195
         --  Case where we know the alignment of the object
4196
 
4197
         elsif Known_Alignment (Obj) then
4198
            declare
4199
               ObjA : constant Uint := Alignment (Obj);
4200
               ExpA : Uint          := No_Uint;
4201
               SizA : Uint          := No_Uint;
4202
 
4203
            begin
4204
               --  If alignment of Obj is 1, then we are always OK
4205
 
4206
               if ObjA = 1 then
4207
                  Set_Result (Known_Compatible);
4208
 
4209
               --  Alignment of Obj is greater than 1, so we need to check
4210
 
4211
               else
4212
                  --  If we have an offset, see if it is compatible
4213
 
4214
                  if Offs /= No_Uint and Offs > Uint_0 then
4215
                     if Offs mod (System_Storage_Unit * ObjA) /= 0 then
4216
                        Set_Result (Known_Incompatible);
4217
                     end if;
4218
 
4219
                     --  See if Expr is an object with known alignment
4220
 
4221
                  elsif Is_Entity_Name (Expr)
4222
                    and then Known_Alignment (Entity (Expr))
4223
                  then
4224
                     ExpA := Alignment (Entity (Expr));
4225
 
4226
                     --  Otherwise, we can use the alignment of the type of
4227
                     --  Expr given that we already checked for
4228
                     --  discombobulating rep clauses for the cases of indexed
4229
                     --  and selected components above.
4230
 
4231
                  elsif Known_Alignment (Etype (Expr)) then
4232
                     ExpA := Alignment (Etype (Expr));
4233
 
4234
                     --  Otherwise the alignment is unknown
4235
 
4236
                  else
4237
                     Set_Result (Default);
4238
                  end if;
4239
 
4240
                  --  If we got an alignment, see if it is acceptable
4241
 
4242
                  if ExpA /= No_Uint and then ExpA < ObjA then
4243
                     Set_Result (Known_Incompatible);
4244
                  end if;
4245
 
4246
                  --  If Expr is not a piece of a larger object, see if size
4247
                  --  is given. If so, check that it is not too small for the
4248
                  --  required alignment.
4249
 
4250
                  if Offs /= No_Uint then
4251
                     null;
4252
 
4253
                     --  See if Expr is an object with known size
4254
 
4255
                  elsif Is_Entity_Name (Expr)
4256
                    and then Known_Static_Esize (Entity (Expr))
4257
                  then
4258
                     SizA := Esize (Entity (Expr));
4259
 
4260
                     --  Otherwise, we check the object size of the Expr type
4261
 
4262
                  elsif Known_Static_Esize (Etype (Expr)) then
4263
                     SizA := Esize (Etype (Expr));
4264
                  end if;
4265
 
4266
                  --  If we got a size, see if it is a multiple of the Obj
4267
                  --  alignment, if not, then the alignment cannot be
4268
                  --  acceptable, since the size is always a multiple of the
4269
                  --  alignment.
4270
 
4271
                  if SizA /= No_Uint then
4272
                     if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
4273
                        Set_Result (Known_Incompatible);
4274
                     end if;
4275
                  end if;
4276
               end if;
4277
            end;
4278
 
4279
         --  If we do not know required alignment, any non-zero offset is a
4280
         --  potential problem (but certainly may be OK, so result is unknown).
4281
 
4282
         elsif Offs /= No_Uint then
4283
            Set_Result (Unknown);
4284
 
4285
         --  If we can't find the result by direct comparison of alignment
4286
         --  values, then there is still one case that we can determine known
4287
         --  result, and that is when we can determine that the types are the
4288
         --  same, and no alignments are specified. Then we known that the
4289
         --  alignments are compatible, even if we don't know the alignment
4290
         --  value in the front end.
4291
 
4292
         elsif Etype (Obj) = Etype (Expr) then
4293
 
4294
            --  Types are the same, but we have to check for possible size
4295
            --  and alignments on the Expr object that may make the alignment
4296
            --  different, even though the types are the same.
4297
 
4298
            if Is_Entity_Name (Expr) then
4299
 
4300
               --  First check alignment of the Expr object. Any alignment less
4301
               --  than Maximum_Alignment is worrisome since this is the case
4302
               --  where we do not know the alignment of Obj.
4303
 
4304
               if Known_Alignment (Entity (Expr))
4305
                 and then
4306
                   UI_To_Int (Alignment (Entity (Expr))) <
4307
                                                    Ttypes.Maximum_Alignment
4308
               then
4309
                  Set_Result (Unknown);
4310
 
4311
                  --  Now check size of Expr object. Any size that is not an
4312
                  --  even multiple of Maximum_Alignment is also worrisome
4313
                  --  since it may cause the alignment of the object to be less
4314
                  --  than the alignment of the type.
4315
 
4316
               elsif Known_Static_Esize (Entity (Expr))
4317
                 and then
4318
                   (UI_To_Int (Esize (Entity (Expr))) mod
4319
                     (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
4320
                                                                        /= 0
4321
               then
4322
                  Set_Result (Unknown);
4323
 
4324
                  --  Otherwise same type is decisive
4325
 
4326
               else
4327
                  Set_Result (Known_Compatible);
4328
               end if;
4329
            end if;
4330
 
4331
         --  Another case to deal with is when there is an explicit size or
4332
         --  alignment clause when the types are not the same. If so, then the
4333
         --  result is Unknown. We don't need to do this test if the Default is
4334
         --  Unknown, since that result will be set in any case.
4335
 
4336
         elsif Default /= Unknown
4337
           and then (Has_Size_Clause      (Etype (Expr))
4338
                      or else
4339
                     Has_Alignment_Clause (Etype (Expr)))
4340
         then
4341
            Set_Result (Unknown);
4342
 
4343
         --  If no indication found, set default
4344
 
4345
         else
4346
            Set_Result (Default);
4347
         end if;
4348
 
4349
         --  Return worst result found
4350
 
4351
         return Result;
4352
      end Has_Compatible_Alignment_Internal;
4353
 
4354
   --  Start of processing for Has_Compatible_Alignment
4355
 
4356
   begin
4357
      --  If Obj has no specified alignment, then set alignment from the type
4358
      --  alignment. Perhaps we should always do this, but for sure we should
4359
      --  do it when there is an address clause since we can do more if the
4360
      --  alignment is known.
4361
 
4362
      if Unknown_Alignment (Obj) then
4363
         Set_Alignment (Obj, Alignment (Etype (Obj)));
4364
      end if;
4365
 
4366
      --  Now do the internal call that does all the work
4367
 
4368
      return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
4369
   end Has_Compatible_Alignment;
4370
 
4371
   ----------------------
4372
   -- Has_Declarations --
4373
   ----------------------
4374
 
4375
   function Has_Declarations (N : Node_Id) return Boolean is
4376
   begin
4377
      return Nkind_In (Nkind (N), N_Accept_Statement,
4378
                                  N_Block_Statement,
4379
                                  N_Compilation_Unit_Aux,
4380
                                  N_Entry_Body,
4381
                                  N_Package_Body,
4382
                                  N_Protected_Body,
4383
                                  N_Subprogram_Body,
4384
                                  N_Task_Body,
4385
                                  N_Package_Specification);
4386
   end Has_Declarations;
4387
 
4388
   -------------------------------------------
4389
   -- Has_Discriminant_Dependent_Constraint --
4390
   -------------------------------------------
4391
 
4392
   function Has_Discriminant_Dependent_Constraint
4393
     (Comp : Entity_Id) return Boolean
4394
   is
4395
      Comp_Decl  : constant Node_Id := Parent (Comp);
4396
      Subt_Indic : constant Node_Id :=
4397
                     Subtype_Indication (Component_Definition (Comp_Decl));
4398
      Constr     : Node_Id;
4399
      Assn       : Node_Id;
4400
 
4401
   begin
4402
      if Nkind (Subt_Indic) = N_Subtype_Indication then
4403
         Constr := Constraint (Subt_Indic);
4404
 
4405
         if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
4406
            Assn := First (Constraints (Constr));
4407
            while Present (Assn) loop
4408
               case Nkind (Assn) is
4409
                  when N_Subtype_Indication |
4410
                       N_Range              |
4411
                       N_Identifier
4412
                  =>
4413
                     if Depends_On_Discriminant (Assn) then
4414
                        return True;
4415
                     end if;
4416
 
4417
                  when N_Discriminant_Association =>
4418
                     if Depends_On_Discriminant (Expression (Assn)) then
4419
                        return True;
4420
                     end if;
4421
 
4422
                  when others =>
4423
                     null;
4424
 
4425
               end case;
4426
 
4427
               Next (Assn);
4428
            end loop;
4429
         end if;
4430
      end if;
4431
 
4432
      return False;
4433
   end Has_Discriminant_Dependent_Constraint;
4434
 
4435
   --------------------
4436
   -- Has_Infinities --
4437
   --------------------
4438
 
4439
   function Has_Infinities (E : Entity_Id) return Boolean is
4440
   begin
4441
      return
4442
        Is_Floating_Point_Type (E)
4443
          and then Nkind (Scalar_Range (E)) = N_Range
4444
          and then Includes_Infinities (Scalar_Range (E));
4445
   end Has_Infinities;
4446
 
4447
   --------------------
4448
   -- Has_Interfaces --
4449
   --------------------
4450
 
4451
   function Has_Interfaces
4452
     (T             : Entity_Id;
4453
      Use_Full_View : Boolean := True) return Boolean
4454
   is
4455
      Typ : Entity_Id;
4456
 
4457
   begin
4458
      --  Handle concurrent types
4459
 
4460
      if Is_Concurrent_Type (T) then
4461
         Typ := Corresponding_Record_Type (T);
4462
      else
4463
         Typ := T;
4464
      end if;
4465
 
4466
      if not Present (Typ)
4467
        or else not Is_Record_Type (Typ)
4468
        or else not Is_Tagged_Type (Typ)
4469
      then
4470
         return False;
4471
      end if;
4472
 
4473
      --  Handle private types
4474
 
4475
      if Use_Full_View
4476
        and then Present (Full_View (Typ))
4477
      then
4478
         Typ := Full_View (Typ);
4479
      end if;
4480
 
4481
      --  Handle concurrent record types
4482
 
4483
      if Is_Concurrent_Record_Type (Typ)
4484
        and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
4485
      then
4486
         return True;
4487
      end if;
4488
 
4489
      loop
4490
         if Is_Interface (Typ)
4491
           or else
4492
             (Is_Record_Type (Typ)
4493
               and then Present (Interfaces (Typ))
4494
               and then not Is_Empty_Elmt_List (Interfaces (Typ)))
4495
         then
4496
            return True;
4497
         end if;
4498
 
4499
         exit when Etype (Typ) = Typ
4500
 
4501
            --  Handle private types
4502
 
4503
            or else (Present (Full_View (Etype (Typ)))
4504
                       and then Full_View (Etype (Typ)) = Typ)
4505
 
4506
            --  Protect the frontend against wrong source with cyclic
4507
            --  derivations
4508
 
4509
            or else Etype (Typ) = T;
4510
 
4511
         --  Climb to the ancestor type handling private types
4512
 
4513
         if Present (Full_View (Etype (Typ))) then
4514
            Typ := Full_View (Etype (Typ));
4515
         else
4516
            Typ := Etype (Typ);
4517
         end if;
4518
      end loop;
4519
 
4520
      return False;
4521
   end Has_Interfaces;
4522
 
4523
   ------------------------
4524
   -- Has_Null_Exclusion --
4525
   ------------------------
4526
 
4527
   function Has_Null_Exclusion (N : Node_Id) return Boolean is
4528
   begin
4529
      case Nkind (N) is
4530
         when N_Access_Definition               |
4531
              N_Access_Function_Definition      |
4532
              N_Access_Procedure_Definition     |
4533
              N_Access_To_Object_Definition     |
4534
              N_Allocator                       |
4535
              N_Derived_Type_Definition         |
4536
              N_Function_Specification          |
4537
              N_Subtype_Declaration             =>
4538
            return Null_Exclusion_Present (N);
4539
 
4540
         when N_Component_Definition            |
4541
              N_Formal_Object_Declaration       |
4542
              N_Object_Renaming_Declaration     =>
4543
            if Present (Subtype_Mark (N)) then
4544
               return Null_Exclusion_Present (N);
4545
            else pragma Assert (Present (Access_Definition (N)));
4546
               return Null_Exclusion_Present (Access_Definition (N));
4547
            end if;
4548
 
4549
         when N_Discriminant_Specification =>
4550
            if Nkind (Discriminant_Type (N)) = N_Access_Definition then
4551
               return Null_Exclusion_Present (Discriminant_Type (N));
4552
            else
4553
               return Null_Exclusion_Present (N);
4554
            end if;
4555
 
4556
         when N_Object_Declaration =>
4557
            if Nkind (Object_Definition (N)) = N_Access_Definition then
4558
               return Null_Exclusion_Present (Object_Definition (N));
4559
            else
4560
               return Null_Exclusion_Present (N);
4561
            end if;
4562
 
4563
         when N_Parameter_Specification =>
4564
            if Nkind (Parameter_Type (N)) = N_Access_Definition then
4565
               return Null_Exclusion_Present (Parameter_Type (N));
4566
            else
4567
               return Null_Exclusion_Present (N);
4568
            end if;
4569
 
4570
         when others =>
4571
            return False;
4572
 
4573
      end case;
4574
   end Has_Null_Exclusion;
4575
 
4576
   ------------------------
4577
   -- Has_Null_Extension --
4578
   ------------------------
4579
 
4580
   function Has_Null_Extension (T : Entity_Id) return Boolean is
4581
      B     : constant Entity_Id := Base_Type (T);
4582
      Comps : Node_Id;
4583
      Ext   : Node_Id;
4584
 
4585
   begin
4586
      if Nkind (Parent (B)) = N_Full_Type_Declaration
4587
        and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
4588
      then
4589
         Ext := Record_Extension_Part (Type_Definition (Parent (B)));
4590
 
4591
         if Present (Ext) then
4592
            if Null_Present (Ext) then
4593
               return True;
4594
            else
4595
               Comps := Component_List (Ext);
4596
 
4597
               --  The null component list is rewritten during analysis to
4598
               --  include the parent component. Any other component indicates
4599
               --  that the extension was not originally null.
4600
 
4601
               return Null_Present (Comps)
4602
                 or else No (Next (First (Component_Items (Comps))));
4603
            end if;
4604
         else
4605
            return False;
4606
         end if;
4607
 
4608
      else
4609
         return False;
4610
      end if;
4611
   end Has_Null_Extension;
4612
 
4613
   -------------------------------
4614
   -- Has_Overriding_Initialize --
4615
   -------------------------------
4616
 
4617
   function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
4618
      BT   : constant Entity_Id := Base_Type (T);
4619
      Comp : Entity_Id;
4620
      P    : Elmt_Id;
4621
 
4622
   begin
4623
      if Is_Controlled (BT) then
4624
 
4625
         --  For derived types, check immediate ancestor, excluding
4626
         --  Controlled itself.
4627
 
4628
         if Is_Derived_Type (BT)
4629
           and then not In_Predefined_Unit (Etype (BT))
4630
           and then Has_Overriding_Initialize (Etype (BT))
4631
         then
4632
            return True;
4633
 
4634
         elsif Present (Primitive_Operations (BT)) then
4635
            P := First_Elmt (Primitive_Operations (BT));
4636
            while Present (P) loop
4637
               if Chars (Node (P)) = Name_Initialize
4638
                 and then Comes_From_Source (Node (P))
4639
               then
4640
                  return True;
4641
               end if;
4642
 
4643
               Next_Elmt (P);
4644
            end loop;
4645
         end if;
4646
 
4647
         return False;
4648
 
4649
      elsif Has_Controlled_Component (BT) then
4650
         Comp := First_Component (BT);
4651
         while Present (Comp) loop
4652
            if Has_Overriding_Initialize (Etype (Comp)) then
4653
               return True;
4654
            end if;
4655
 
4656
            Next_Component (Comp);
4657
         end loop;
4658
 
4659
         return False;
4660
 
4661
      else
4662
         return False;
4663
      end if;
4664
   end Has_Overriding_Initialize;
4665
 
4666
   --------------------------------------
4667
   -- Has_Preelaborable_Initialization --
4668
   --------------------------------------
4669
 
4670
   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
4671
      Has_PE : Boolean;
4672
 
4673
      procedure Check_Components (E : Entity_Id);
4674
      --  Check component/discriminant chain, sets Has_PE False if a component
4675
      --  or discriminant does not meet the preelaborable initialization rules.
4676
 
4677
      ----------------------
4678
      -- Check_Components --
4679
      ----------------------
4680
 
4681
      procedure Check_Components (E : Entity_Id) is
4682
         Ent : Entity_Id;
4683
         Exp : Node_Id;
4684
 
4685
         function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
4686
         --  Returns True if and only if the expression denoted by N does not
4687
         --  violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
4688
 
4689
         ---------------------------------
4690
         -- Is_Preelaborable_Expression --
4691
         ---------------------------------
4692
 
4693
         function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
4694
            Exp           : Node_Id;
4695
            Assn          : Node_Id;
4696
            Choice        : Node_Id;
4697
            Comp_Type     : Entity_Id;
4698
            Is_Array_Aggr : Boolean;
4699
 
4700
         begin
4701
            if Is_Static_Expression (N) then
4702
               return True;
4703
 
4704
            elsif Nkind (N) = N_Null then
4705
               return True;
4706
 
4707
            --  Attributes are allowed in general, even if their prefix is a
4708
            --  formal type. (It seems that certain attributes known not to be
4709
            --  static might not be allowed, but there are no rules to prevent
4710
            --  them.)
4711
 
4712
            elsif Nkind (N) = N_Attribute_Reference then
4713
               return True;
4714
 
4715
            --  The name of a discriminant evaluated within its parent type is
4716
            --  defined to be preelaborable (10.2.1(8)). Note that we test for
4717
            --  names that denote discriminals as well as discriminants to
4718
            --  catch references occurring within init procs.
4719
 
4720
            elsif Is_Entity_Name (N)
4721
              and then
4722
                (Ekind (Entity (N)) = E_Discriminant
4723
                  or else
4724
                    ((Ekind (Entity (N)) = E_Constant
4725
                       or else Ekind (Entity (N)) = E_In_Parameter)
4726
                     and then Present (Discriminal_Link (Entity (N)))))
4727
            then
4728
               return True;
4729
 
4730
            elsif Nkind (N) = N_Qualified_Expression then
4731
               return Is_Preelaborable_Expression (Expression (N));
4732
 
4733
            --  For aggregates we have to check that each of the associations
4734
            --  is preelaborable.
4735
 
4736
            elsif Nkind (N) = N_Aggregate
4737
              or else Nkind (N) = N_Extension_Aggregate
4738
            then
4739
               Is_Array_Aggr := Is_Array_Type (Etype (N));
4740
 
4741
               if Is_Array_Aggr then
4742
                  Comp_Type := Component_Type (Etype (N));
4743
               end if;
4744
 
4745
               --  Check the ancestor part of extension aggregates, which must
4746
               --  be either the name of a type that has preelaborable init or
4747
               --  an expression that is preelaborable.
4748
 
4749
               if Nkind (N) = N_Extension_Aggregate then
4750
                  declare
4751
                     Anc_Part : constant Node_Id := Ancestor_Part (N);
4752
 
4753
                  begin
4754
                     if Is_Entity_Name (Anc_Part)
4755
                       and then Is_Type (Entity (Anc_Part))
4756
                     then
4757
                        if not Has_Preelaborable_Initialization
4758
                                 (Entity (Anc_Part))
4759
                        then
4760
                           return False;
4761
                        end if;
4762
 
4763
                     elsif not Is_Preelaborable_Expression (Anc_Part) then
4764
                        return False;
4765
                     end if;
4766
                  end;
4767
               end if;
4768
 
4769
               --  Check positional associations
4770
 
4771
               Exp := First (Expressions (N));
4772
               while Present (Exp) loop
4773
                  if not Is_Preelaborable_Expression (Exp) then
4774
                     return False;
4775
                  end if;
4776
 
4777
                  Next (Exp);
4778
               end loop;
4779
 
4780
               --  Check named associations
4781
 
4782
               Assn := First (Component_Associations (N));
4783
               while Present (Assn) loop
4784
                  Choice := First (Choices (Assn));
4785
                  while Present (Choice) loop
4786
                     if Is_Array_Aggr then
4787
                        if Nkind (Choice) = N_Others_Choice then
4788
                           null;
4789
 
4790
                        elsif Nkind (Choice) = N_Range then
4791
                           if not Is_Static_Range (Choice) then
4792
                              return False;
4793
                           end if;
4794
 
4795
                        elsif not Is_Static_Expression (Choice) then
4796
                           return False;
4797
                        end if;
4798
 
4799
                     else
4800
                        Comp_Type := Etype (Choice);
4801
                     end if;
4802
 
4803
                     Next (Choice);
4804
                  end loop;
4805
 
4806
                  --  If the association has a <> at this point, then we have
4807
                  --  to check whether the component's type has preelaborable
4808
                  --  initialization. Note that this only occurs when the
4809
                  --  association's corresponding component does not have a
4810
                  --  default expression, the latter case having already been
4811
                  --  expanded as an expression for the association.
4812
 
4813
                  if Box_Present (Assn) then
4814
                     if not Has_Preelaborable_Initialization (Comp_Type) then
4815
                        return False;
4816
                     end if;
4817
 
4818
                  --  In the expression case we check whether the expression
4819
                  --  is preelaborable.
4820
 
4821
                  elsif
4822
                    not Is_Preelaborable_Expression (Expression (Assn))
4823
                  then
4824
                     return False;
4825
                  end if;
4826
 
4827
                  Next (Assn);
4828
               end loop;
4829
 
4830
               --  If we get here then aggregate as a whole is preelaborable
4831
 
4832
               return True;
4833
 
4834
            --  All other cases are not preelaborable
4835
 
4836
            else
4837
               return False;
4838
            end if;
4839
         end Is_Preelaborable_Expression;
4840
 
4841
      --  Start of processing for Check_Components
4842
 
4843
      begin
4844
         --  Loop through entities of record or protected type
4845
 
4846
         Ent := E;
4847
         while Present (Ent) loop
4848
 
4849
            --  We are interested only in components and discriminants
4850
 
4851
            if Ekind (Ent) = E_Component
4852
                or else
4853
               Ekind (Ent) = E_Discriminant
4854
            then
4855
               --  Get default expression if any. If there is no declaration
4856
               --  node, it means we have an internal entity. The parent and
4857
               --  tag fields are examples of such entities. For these cases,
4858
               --  we just test the type of the entity.
4859
 
4860
               if Present (Declaration_Node (Ent)) then
4861
                  Exp := Expression (Declaration_Node (Ent));
4862
               else
4863
                  Exp := Empty;
4864
               end if;
4865
 
4866
               --  A component has PI if it has no default expression and the
4867
               --  component type has PI.
4868
 
4869
               if No (Exp) then
4870
                  if not Has_Preelaborable_Initialization (Etype (Ent)) then
4871
                     Has_PE := False;
4872
                     exit;
4873
                  end if;
4874
 
4875
               --  Require the default expression to be preelaborable
4876
 
4877
               elsif not Is_Preelaborable_Expression (Exp) then
4878
                  Has_PE := False;
4879
                  exit;
4880
               end if;
4881
            end if;
4882
 
4883
            Next_Entity (Ent);
4884
         end loop;
4885
      end Check_Components;
4886
 
4887
   --  Start of processing for Has_Preelaborable_Initialization
4888
 
4889
   begin
4890
      --  Immediate return if already marked as known preelaborable init. This
4891
      --  covers types for which this function has already been called once
4892
      --  and returned True (in which case the result is cached), and also
4893
      --  types to which a pragma Preelaborable_Initialization applies.
4894
 
4895
      if Known_To_Have_Preelab_Init (E) then
4896
         return True;
4897
      end if;
4898
 
4899
      --  If the type is a subtype representing a generic actual type, then
4900
      --  test whether its base type has preelaborable initialization since
4901
      --  the subtype representing the actual does not inherit this attribute
4902
      --  from the actual or formal. (but maybe it should???)
4903
 
4904
      if Is_Generic_Actual_Type (E) then
4905
         return Has_Preelaborable_Initialization (Base_Type (E));
4906
      end if;
4907
 
4908
      --  All elementary types have preelaborable initialization
4909
 
4910
      if Is_Elementary_Type (E) then
4911
         Has_PE := True;
4912
 
4913
      --  Array types have PI if the component type has PI
4914
 
4915
      elsif Is_Array_Type (E) then
4916
         Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
4917
 
4918
      --  A derived type has preelaborable initialization if its parent type
4919
      --  has preelaborable initialization and (in the case of a derived record
4920
      --  extension) if the non-inherited components all have preelaborable
4921
      --  initialization. However, a user-defined controlled type with an
4922
      --  overriding Initialize procedure does not have preelaborable
4923
      --  initialization.
4924
 
4925
      elsif Is_Derived_Type (E) then
4926
 
4927
         --  If the derived type is a private extension then it doesn't have
4928
         --  preelaborable initialization.
4929
 
4930
         if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
4931
            return False;
4932
         end if;
4933
 
4934
         --  First check whether ancestor type has preelaborable initialization
4935
 
4936
         Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
4937
 
4938
         --  If OK, check extension components (if any)
4939
 
4940
         if Has_PE and then Is_Record_Type (E) then
4941
            Check_Components (First_Entity (E));
4942
         end if;
4943
 
4944
         --  Check specifically for 10.2.1(11.4/2) exception: a controlled type
4945
         --  with a user defined Initialize procedure does not have PI.
4946
 
4947
         if Has_PE
4948
           and then Is_Controlled (E)
4949
           and then Has_Overriding_Initialize (E)
4950
         then
4951
            Has_PE := False;
4952
         end if;
4953
 
4954
      --  Private types not derived from a type having preelaborable init and
4955
      --  that are not marked with pragma Preelaborable_Initialization do not
4956
      --  have preelaborable initialization.
4957
 
4958
      elsif Is_Private_Type (E) then
4959
         return False;
4960
 
4961
      --  Record type has PI if it is non private and all components have PI
4962
 
4963
      elsif Is_Record_Type (E) then
4964
         Has_PE := True;
4965
         Check_Components (First_Entity (E));
4966
 
4967
      --  Protected types must not have entries, and components must meet
4968
      --  same set of rules as for record components.
4969
 
4970
      elsif Is_Protected_Type (E) then
4971
         if Has_Entries (E) then
4972
            Has_PE := False;
4973
         else
4974
            Has_PE := True;
4975
            Check_Components (First_Entity (E));
4976
            Check_Components (First_Private_Entity (E));
4977
         end if;
4978
 
4979
      --  Type System.Address always has preelaborable initialization
4980
 
4981
      elsif Is_RTE (E, RE_Address) then
4982
         Has_PE := True;
4983
 
4984
      --  In all other cases, type does not have preelaborable initialization
4985
 
4986
      else
4987
         return False;
4988
      end if;
4989
 
4990
      --  If type has preelaborable initialization, cache result
4991
 
4992
      if Has_PE then
4993
         Set_Known_To_Have_Preelab_Init (E);
4994
      end if;
4995
 
4996
      return Has_PE;
4997
   end Has_Preelaborable_Initialization;
4998
 
4999
   ---------------------------
5000
   -- Has_Private_Component --
5001
   ---------------------------
5002
 
5003
   function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
5004
      Btype     : Entity_Id := Base_Type (Type_Id);
5005
      Component : Entity_Id;
5006
 
5007
   begin
5008
      if Error_Posted (Type_Id)
5009
        or else Error_Posted (Btype)
5010
      then
5011
         return False;
5012
      end if;
5013
 
5014
      if Is_Class_Wide_Type (Btype) then
5015
         Btype := Root_Type (Btype);
5016
      end if;
5017
 
5018
      if Is_Private_Type (Btype) then
5019
         declare
5020
            UT : constant Entity_Id := Underlying_Type (Btype);
5021
         begin
5022
            if No (UT) then
5023
               if No (Full_View (Btype)) then
5024
                  return not Is_Generic_Type (Btype)
5025
                    and then not Is_Generic_Type (Root_Type (Btype));
5026
               else
5027
                  return not Is_Generic_Type (Root_Type (Full_View (Btype)));
5028
               end if;
5029
            else
5030
               return not Is_Frozen (UT) and then Has_Private_Component (UT);
5031
            end if;
5032
         end;
5033
 
5034
      elsif Is_Array_Type (Btype) then
5035
         return Has_Private_Component (Component_Type (Btype));
5036
 
5037
      elsif Is_Record_Type (Btype) then
5038
         Component := First_Component (Btype);
5039
         while Present (Component) loop
5040
            if Has_Private_Component (Etype (Component)) then
5041
               return True;
5042
            end if;
5043
 
5044
            Next_Component (Component);
5045
         end loop;
5046
 
5047
         return False;
5048
 
5049
      elsif Is_Protected_Type (Btype)
5050
        and then Present (Corresponding_Record_Type (Btype))
5051
      then
5052
         return Has_Private_Component (Corresponding_Record_Type (Btype));
5053
 
5054
      else
5055
         return False;
5056
      end if;
5057
   end Has_Private_Component;
5058
 
5059
   ----------------
5060
   -- Has_Stream --
5061
   ----------------
5062
 
5063
   function Has_Stream (T : Entity_Id) return Boolean is
5064
      E : Entity_Id;
5065
 
5066
   begin
5067
      if No (T) then
5068
         return False;
5069
 
5070
      elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
5071
         return True;
5072
 
5073
      elsif Is_Array_Type (T) then
5074
         return Has_Stream (Component_Type (T));
5075
 
5076
      elsif Is_Record_Type (T) then
5077
         E := First_Component (T);
5078
         while Present (E) loop
5079
            if Has_Stream (Etype (E)) then
5080
               return True;
5081
            else
5082
               Next_Component (E);
5083
            end if;
5084
         end loop;
5085
 
5086
         return False;
5087
 
5088
      elsif Is_Private_Type (T) then
5089
         return Has_Stream (Underlying_Type (T));
5090
 
5091
      else
5092
         return False;
5093
      end if;
5094
   end Has_Stream;
5095
 
5096
   --------------------------
5097
   -- Has_Tagged_Component --
5098
   --------------------------
5099
 
5100
   function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
5101
      Comp : Entity_Id;
5102
 
5103
   begin
5104
      if Is_Private_Type (Typ)
5105
        and then Present (Underlying_Type (Typ))
5106
      then
5107
         return Has_Tagged_Component (Underlying_Type (Typ));
5108
 
5109
      elsif Is_Array_Type (Typ) then
5110
         return Has_Tagged_Component (Component_Type (Typ));
5111
 
5112
      elsif Is_Tagged_Type (Typ) then
5113
         return True;
5114
 
5115
      elsif Is_Record_Type (Typ) then
5116
         Comp := First_Component (Typ);
5117
         while Present (Comp) loop
5118
            if Has_Tagged_Component (Etype (Comp)) then
5119
               return True;
5120
            end if;
5121
 
5122
            Next_Component (Comp);
5123
         end loop;
5124
 
5125
         return False;
5126
 
5127
      else
5128
         return False;
5129
      end if;
5130
   end Has_Tagged_Component;
5131
 
5132
   --------------------------
5133
   -- Implements_Interface --
5134
   --------------------------
5135
 
5136
   function Implements_Interface
5137
     (Typ_Ent         : Entity_Id;
5138
      Iface_Ent       : Entity_Id;
5139
      Exclude_Parents : Boolean := False) return Boolean
5140
   is
5141
      Ifaces_List : Elist_Id;
5142
      Elmt        : Elmt_Id;
5143
      Iface       : Entity_Id := Base_Type (Iface_Ent);
5144
      Typ         : Entity_Id := Base_Type (Typ_Ent);
5145
 
5146
   begin
5147
      if Is_Class_Wide_Type (Typ) then
5148
         Typ := Root_Type (Typ);
5149
      end if;
5150
 
5151
      if not Has_Interfaces (Typ) then
5152
         return False;
5153
      end if;
5154
 
5155
      if Is_Class_Wide_Type (Iface) then
5156
         Iface := Root_Type (Iface);
5157
      end if;
5158
 
5159
      Collect_Interfaces (Typ, Ifaces_List);
5160
 
5161
      Elmt := First_Elmt (Ifaces_List);
5162
      while Present (Elmt) loop
5163
         if Is_Ancestor (Node (Elmt), Typ)
5164
           and then Exclude_Parents
5165
         then
5166
            null;
5167
 
5168
         elsif Node (Elmt) = Iface then
5169
            return True;
5170
         end if;
5171
 
5172
         Next_Elmt (Elmt);
5173
      end loop;
5174
 
5175
      return False;
5176
   end Implements_Interface;
5177
 
5178
   -----------------
5179
   -- In_Instance --
5180
   -----------------
5181
 
5182
   function In_Instance return Boolean is
5183
      Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
5184
      S         : Entity_Id;
5185
 
5186
   begin
5187
      S := Current_Scope;
5188
      while Present (S)
5189
        and then S /= Standard_Standard
5190
      loop
5191
         if (Ekind (S) = E_Function
5192
              or else Ekind (S) = E_Package
5193
              or else Ekind (S) = E_Procedure)
5194
           and then Is_Generic_Instance (S)
5195
         then
5196
            --  A child instance is always compiled in the context of a parent
5197
            --  instance. Nevertheless, the actuals are not analyzed in an
5198
            --  instance context. We detect this case by examining the current
5199
            --  compilation unit, which must be a child instance, and checking
5200
            --  that it is not currently on the scope stack.
5201
 
5202
            if Is_Child_Unit (Curr_Unit)
5203
              and then
5204
                Nkind (Unit (Cunit (Current_Sem_Unit)))
5205
                  = N_Package_Instantiation
5206
              and then not In_Open_Scopes (Curr_Unit)
5207
            then
5208
               return False;
5209
            else
5210
               return True;
5211
            end if;
5212
         end if;
5213
 
5214
         S := Scope (S);
5215
      end loop;
5216
 
5217
      return False;
5218
   end In_Instance;
5219
 
5220
   ----------------------
5221
   -- In_Instance_Body --
5222
   ----------------------
5223
 
5224
   function In_Instance_Body return Boolean is
5225
      S : Entity_Id;
5226
 
5227
   begin
5228
      S := Current_Scope;
5229
      while Present (S)
5230
        and then S /= Standard_Standard
5231
      loop
5232
         if (Ekind (S) = E_Function
5233
              or else Ekind (S) = E_Procedure)
5234
           and then Is_Generic_Instance (S)
5235
         then
5236
            return True;
5237
 
5238
         elsif Ekind (S) = E_Package
5239
           and then In_Package_Body (S)
5240
           and then Is_Generic_Instance (S)
5241
         then
5242
            return True;
5243
         end if;
5244
 
5245
         S := Scope (S);
5246
      end loop;
5247
 
5248
      return False;
5249
   end In_Instance_Body;
5250
 
5251
   -----------------------------
5252
   -- In_Instance_Not_Visible --
5253
   -----------------------------
5254
 
5255
   function In_Instance_Not_Visible return Boolean is
5256
      S : Entity_Id;
5257
 
5258
   begin
5259
      S := Current_Scope;
5260
      while Present (S)
5261
        and then S /= Standard_Standard
5262
      loop
5263
         if (Ekind (S) = E_Function
5264
              or else Ekind (S) = E_Procedure)
5265
           and then Is_Generic_Instance (S)
5266
         then
5267
            return True;
5268
 
5269
         elsif Ekind (S) = E_Package
5270
           and then (In_Package_Body (S) or else In_Private_Part (S))
5271
           and then Is_Generic_Instance (S)
5272
         then
5273
            return True;
5274
         end if;
5275
 
5276
         S := Scope (S);
5277
      end loop;
5278
 
5279
      return False;
5280
   end In_Instance_Not_Visible;
5281
 
5282
   ------------------------------
5283
   -- In_Instance_Visible_Part --
5284
   ------------------------------
5285
 
5286
   function In_Instance_Visible_Part return Boolean is
5287
      S : Entity_Id;
5288
 
5289
   begin
5290
      S := Current_Scope;
5291
      while Present (S)
5292
        and then S /= Standard_Standard
5293
      loop
5294
         if Ekind (S) = E_Package
5295
           and then Is_Generic_Instance (S)
5296
           and then not In_Package_Body (S)
5297
           and then not In_Private_Part (S)
5298
         then
5299
            return True;
5300
         end if;
5301
 
5302
         S := Scope (S);
5303
      end loop;
5304
 
5305
      return False;
5306
   end In_Instance_Visible_Part;
5307
 
5308
   ---------------------
5309
   -- In_Package_Body --
5310
   ---------------------
5311
 
5312
   function In_Package_Body return Boolean is
5313
      S : Entity_Id;
5314
 
5315
   begin
5316
      S := Current_Scope;
5317
      while Present (S)
5318
        and then S /= Standard_Standard
5319
      loop
5320
         if Ekind (S) = E_Package
5321
           and then In_Package_Body (S)
5322
         then
5323
            return True;
5324
         else
5325
            S := Scope (S);
5326
         end if;
5327
      end loop;
5328
 
5329
      return False;
5330
   end In_Package_Body;
5331
 
5332
   --------------------------------
5333
   -- In_Parameter_Specification --
5334
   --------------------------------
5335
 
5336
   function In_Parameter_Specification (N : Node_Id) return Boolean is
5337
      PN : Node_Id;
5338
 
5339
   begin
5340
      PN := Parent (N);
5341
      while Present (PN) loop
5342
         if Nkind (PN) = N_Parameter_Specification then
5343
            return True;
5344
         end if;
5345
 
5346
         PN := Parent (PN);
5347
      end loop;
5348
 
5349
      return False;
5350
   end In_Parameter_Specification;
5351
 
5352
   --------------------------------------
5353
   -- In_Subprogram_Or_Concurrent_Unit --
5354
   --------------------------------------
5355
 
5356
   function In_Subprogram_Or_Concurrent_Unit return Boolean is
5357
      E : Entity_Id;
5358
      K : Entity_Kind;
5359
 
5360
   begin
5361
      --  Use scope chain to check successively outer scopes
5362
 
5363
      E := Current_Scope;
5364
      loop
5365
         K := Ekind (E);
5366
 
5367
         if K in Subprogram_Kind
5368
           or else K in Concurrent_Kind
5369
           or else K in Generic_Subprogram_Kind
5370
         then
5371
            return True;
5372
 
5373
         elsif E = Standard_Standard then
5374
            return False;
5375
         end if;
5376
 
5377
         E := Scope (E);
5378
      end loop;
5379
   end In_Subprogram_Or_Concurrent_Unit;
5380
 
5381
   ---------------------
5382
   -- In_Visible_Part --
5383
   ---------------------
5384
 
5385
   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
5386
   begin
5387
      return
5388
        Is_Package_Or_Generic_Package (Scope_Id)
5389
          and then In_Open_Scopes (Scope_Id)
5390
          and then not In_Package_Body (Scope_Id)
5391
          and then not In_Private_Part (Scope_Id);
5392
   end In_Visible_Part;
5393
 
5394
   ---------------------------------
5395
   -- Insert_Explicit_Dereference --
5396
   ---------------------------------
5397
 
5398
   procedure Insert_Explicit_Dereference (N : Node_Id) is
5399
      New_Prefix : constant Node_Id := Relocate_Node (N);
5400
      Ent        : Entity_Id := Empty;
5401
      Pref       : Node_Id;
5402
      I          : Interp_Index;
5403
      It         : Interp;
5404
      T          : Entity_Id;
5405
 
5406
   begin
5407
      Save_Interps (N, New_Prefix);
5408
 
5409
      --  Check if the node relocation requires readjustment of some SCIL
5410
      --  dispatching node.
5411
 
5412
      if Generate_SCIL
5413
        and then Nkind (N) = N_Function_Call
5414
      then
5415
         Adjust_SCIL_Node (N, New_Prefix);
5416
      end if;
5417
 
5418
      Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
5419
 
5420
      Set_Etype (N, Designated_Type (Etype (New_Prefix)));
5421
 
5422
      if Is_Overloaded (New_Prefix) then
5423
 
5424
         --  The dereference is also overloaded, and its interpretations are
5425
         --  the designated types of the interpretations of the original node.
5426
 
5427
         Set_Etype (N, Any_Type);
5428
 
5429
         Get_First_Interp (New_Prefix, I, It);
5430
         while Present (It.Nam) loop
5431
            T := It.Typ;
5432
 
5433
            if Is_Access_Type (T) then
5434
               Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
5435
            end if;
5436
 
5437
            Get_Next_Interp (I, It);
5438
         end loop;
5439
 
5440
         End_Interp_List;
5441
 
5442
      else
5443
         --  Prefix is unambiguous: mark the original prefix (which might
5444
         --  Come_From_Source) as a reference, since the new (relocated) one
5445
         --  won't be taken into account.
5446
 
5447
         if Is_Entity_Name (New_Prefix) then
5448
            Ent := Entity (New_Prefix);
5449
 
5450
         --  For a retrieval of a subcomponent of some composite object,
5451
         --  retrieve the ultimate entity if there is one.
5452
 
5453
         elsif Nkind (New_Prefix) = N_Selected_Component
5454
           or else Nkind (New_Prefix) = N_Indexed_Component
5455
         then
5456
            Pref := Prefix (New_Prefix);
5457
            while Present (Pref)
5458
              and then
5459
                (Nkind (Pref) = N_Selected_Component
5460
                  or else Nkind (Pref) = N_Indexed_Component)
5461
            loop
5462
               Pref := Prefix (Pref);
5463
            end loop;
5464
 
5465
            if Present (Pref) and then Is_Entity_Name (Pref) then
5466
               Ent := Entity (Pref);
5467
            end if;
5468
         end if;
5469
 
5470
         if Present (Ent) then
5471
            Generate_Reference (Ent, New_Prefix);
5472
         end if;
5473
      end if;
5474
   end Insert_Explicit_Dereference;
5475
 
5476
   ------------------------------------------
5477
   -- Inspect_Deferred_Constant_Completion --
5478
   ------------------------------------------
5479
 
5480
   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
5481
      Decl   : Node_Id;
5482
 
5483
   begin
5484
      Decl := First (Decls);
5485
      while Present (Decl) loop
5486
 
5487
         --  Deferred constant signature
5488
 
5489
         if Nkind (Decl) = N_Object_Declaration
5490
           and then Constant_Present (Decl)
5491
           and then No (Expression (Decl))
5492
 
5493
            --  No need to check internally generated constants
5494
 
5495
           and then Comes_From_Source (Decl)
5496
 
5497
            --  The constant is not completed. A full object declaration
5498
            --  or a pragma Import complete a deferred constant.
5499
 
5500
           and then not Has_Completion (Defining_Identifier (Decl))
5501
         then
5502
            Error_Msg_N
5503
              ("constant declaration requires initialization expression",
5504
              Defining_Identifier (Decl));
5505
         end if;
5506
 
5507
         Decl := Next (Decl);
5508
      end loop;
5509
   end Inspect_Deferred_Constant_Completion;
5510
 
5511
   -------------------
5512
   -- Is_AAMP_Float --
5513
   -------------------
5514
 
5515
   function Is_AAMP_Float (E : Entity_Id) return Boolean is
5516
      pragma Assert (Is_Type (E));
5517
   begin
5518
      return AAMP_On_Target
5519
         and then Is_Floating_Point_Type (E)
5520
         and then E = Base_Type (E);
5521
   end Is_AAMP_Float;
5522
 
5523
   -----------------------------
5524
   -- Is_Actual_Out_Parameter --
5525
   -----------------------------
5526
 
5527
   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
5528
      Formal : Entity_Id;
5529
      Call   : Node_Id;
5530
   begin
5531
      Find_Actual (N, Formal, Call);
5532
      return Present (Formal)
5533
        and then Ekind (Formal) = E_Out_Parameter;
5534
   end Is_Actual_Out_Parameter;
5535
 
5536
   -------------------------
5537
   -- Is_Actual_Parameter --
5538
   -------------------------
5539
 
5540
   function Is_Actual_Parameter (N : Node_Id) return Boolean is
5541
      PK : constant Node_Kind := Nkind (Parent (N));
5542
 
5543
   begin
5544
      case PK is
5545
         when N_Parameter_Association =>
5546
            return N = Explicit_Actual_Parameter (Parent (N));
5547
 
5548
         when N_Function_Call | N_Procedure_Call_Statement =>
5549
            return Is_List_Member (N)
5550
              and then
5551
                List_Containing (N) = Parameter_Associations (Parent (N));
5552
 
5553
         when others =>
5554
            return False;
5555
      end case;
5556
   end Is_Actual_Parameter;
5557
 
5558
   ---------------------
5559
   -- Is_Aliased_View --
5560
   ---------------------
5561
 
5562
   function Is_Aliased_View (Obj : Node_Id) return Boolean is
5563
      E : Entity_Id;
5564
 
5565
   begin
5566
      if Is_Entity_Name (Obj) then
5567
 
5568
         E := Entity (Obj);
5569
 
5570
         return
5571
           (Is_Object (E)
5572
             and then
5573
               (Is_Aliased (E)
5574
                  or else (Present (Renamed_Object (E))
5575
                             and then Is_Aliased_View (Renamed_Object (E)))))
5576
 
5577
           or else ((Is_Formal (E)
5578
                      or else Ekind (E) = E_Generic_In_Out_Parameter
5579
                      or else Ekind (E) = E_Generic_In_Parameter)
5580
                    and then Is_Tagged_Type (Etype (E)))
5581
 
5582
           or else (Is_Concurrent_Type (E)
5583
                     and then In_Open_Scopes (E))
5584
 
5585
            --  Current instance of type, either directly or as rewritten
5586
            --  reference to the current object.
5587
 
5588
           or else (Is_Entity_Name (Original_Node (Obj))
5589
                     and then Present (Entity (Original_Node (Obj)))
5590
                     and then Is_Type (Entity (Original_Node (Obj))))
5591
 
5592
           or else (Is_Type (E) and then E = Current_Scope)
5593
 
5594
           or else (Is_Incomplete_Or_Private_Type (E)
5595
                     and then Full_View (E) = Current_Scope);
5596
 
5597
      elsif Nkind (Obj) = N_Selected_Component then
5598
         return Is_Aliased (Entity (Selector_Name (Obj)));
5599
 
5600
      elsif Nkind (Obj) = N_Indexed_Component then
5601
         return Has_Aliased_Components (Etype (Prefix (Obj)))
5602
           or else
5603
             (Is_Access_Type (Etype (Prefix (Obj)))
5604
               and then
5605
              Has_Aliased_Components
5606
                (Designated_Type (Etype (Prefix (Obj)))));
5607
 
5608
      elsif Nkind (Obj) = N_Unchecked_Type_Conversion
5609
        or else Nkind (Obj) = N_Type_Conversion
5610
      then
5611
         return Is_Tagged_Type (Etype (Obj))
5612
           and then Is_Aliased_View (Expression (Obj));
5613
 
5614
      elsif Nkind (Obj) = N_Explicit_Dereference then
5615
         return Nkind (Original_Node (Obj)) /= N_Function_Call;
5616
 
5617
      else
5618
         return False;
5619
      end if;
5620
   end Is_Aliased_View;
5621
 
5622
   -------------------------
5623
   -- Is_Ancestor_Package --
5624
   -------------------------
5625
 
5626
   function Is_Ancestor_Package
5627
     (E1 : Entity_Id;
5628
      E2 : Entity_Id) return Boolean
5629
   is
5630
      Par : Entity_Id;
5631
 
5632
   begin
5633
      Par := E2;
5634
      while Present (Par)
5635
        and then Par /= Standard_Standard
5636
      loop
5637
         if Par = E1 then
5638
            return True;
5639
         end if;
5640
 
5641
         Par := Scope (Par);
5642
      end loop;
5643
 
5644
      return False;
5645
   end Is_Ancestor_Package;
5646
 
5647
   ----------------------
5648
   -- Is_Atomic_Object --
5649
   ----------------------
5650
 
5651
   function Is_Atomic_Object (N : Node_Id) return Boolean is
5652
 
5653
      function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
5654
      --  Determines if given object has atomic components
5655
 
5656
      function Is_Atomic_Prefix (N : Node_Id) return Boolean;
5657
      --  If prefix is an implicit dereference, examine designated type
5658
 
5659
      ----------------------
5660
      -- Is_Atomic_Prefix --
5661
      ----------------------
5662
 
5663
      function Is_Atomic_Prefix (N : Node_Id) return Boolean is
5664
      begin
5665
         if Is_Access_Type (Etype (N)) then
5666
            return
5667
              Has_Atomic_Components (Designated_Type (Etype (N)));
5668
         else
5669
            return Object_Has_Atomic_Components (N);
5670
         end if;
5671
      end Is_Atomic_Prefix;
5672
 
5673
      ----------------------------------
5674
      -- Object_Has_Atomic_Components --
5675
      ----------------------------------
5676
 
5677
      function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
5678
      begin
5679
         if Has_Atomic_Components (Etype (N))
5680
           or else Is_Atomic (Etype (N))
5681
         then
5682
            return True;
5683
 
5684
         elsif Is_Entity_Name (N)
5685
           and then (Has_Atomic_Components (Entity (N))
5686
                      or else Is_Atomic (Entity (N)))
5687
         then
5688
            return True;
5689
 
5690
         elsif Nkind (N) = N_Indexed_Component
5691
           or else Nkind (N) = N_Selected_Component
5692
         then
5693
            return Is_Atomic_Prefix (Prefix (N));
5694
 
5695
         else
5696
            return False;
5697
         end if;
5698
      end Object_Has_Atomic_Components;
5699
 
5700
   --  Start of processing for Is_Atomic_Object
5701
 
5702
   begin
5703
      if Is_Atomic (Etype (N))
5704
        or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
5705
      then
5706
         return True;
5707
 
5708
      elsif Nkind (N) = N_Indexed_Component
5709
        or else Nkind (N) = N_Selected_Component
5710
      then
5711
         return Is_Atomic_Prefix (Prefix (N));
5712
 
5713
      else
5714
         return False;
5715
      end if;
5716
   end Is_Atomic_Object;
5717
 
5718
   -------------------------
5719
   -- Is_Coextension_Root --
5720
   -------------------------
5721
 
5722
   function Is_Coextension_Root (N : Node_Id) return Boolean is
5723
   begin
5724
      return
5725
        Nkind (N) = N_Allocator
5726
          and then Present (Coextensions (N))
5727
 
5728
         --  Anonymous access discriminants carry a list of all nested
5729
         --  controlled coextensions.
5730
 
5731
          and then not Is_Dynamic_Coextension (N)
5732
          and then not Is_Static_Coextension (N);
5733
   end Is_Coextension_Root;
5734
 
5735
   -----------------------------
5736
   -- Is_Concurrent_Interface --
5737
   -----------------------------
5738
 
5739
   function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
5740
   begin
5741
      return
5742
        Is_Interface (T)
5743
          and then
5744
            (Is_Protected_Interface (T)
5745
               or else Is_Synchronized_Interface (T)
5746
               or else Is_Task_Interface (T));
5747
   end Is_Concurrent_Interface;
5748
 
5749
   --------------------------------------
5750
   -- Is_Controlling_Limited_Procedure --
5751
   --------------------------------------
5752
 
5753
   function Is_Controlling_Limited_Procedure
5754
     (Proc_Nam : Entity_Id) return Boolean
5755
   is
5756
      Param_Typ : Entity_Id := Empty;
5757
 
5758
   begin
5759
      if Ekind (Proc_Nam) = E_Procedure
5760
        and then Present (Parameter_Specifications (Parent (Proc_Nam)))
5761
      then
5762
         Param_Typ := Etype (Parameter_Type (First (
5763
                        Parameter_Specifications (Parent (Proc_Nam)))));
5764
 
5765
      --  In this case where an Itype was created, the procedure call has been
5766
      --  rewritten.
5767
 
5768
      elsif Present (Associated_Node_For_Itype (Proc_Nam))
5769
        and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
5770
        and then
5771
          Present (Parameter_Associations
5772
                     (Associated_Node_For_Itype (Proc_Nam)))
5773
      then
5774
         Param_Typ :=
5775
           Etype (First (Parameter_Associations
5776
                          (Associated_Node_For_Itype (Proc_Nam))));
5777
      end if;
5778
 
5779
      if Present (Param_Typ) then
5780
         return
5781
           Is_Interface (Param_Typ)
5782
             and then Is_Limited_Record (Param_Typ);
5783
      end if;
5784
 
5785
      return False;
5786
   end Is_Controlling_Limited_Procedure;
5787
 
5788
   -----------------------------
5789
   -- Is_CPP_Constructor_Call --
5790
   -----------------------------
5791
 
5792
   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
5793
   begin
5794
      return Nkind (N) = N_Function_Call
5795
        and then Is_CPP_Class (Etype (Etype (N)))
5796
        and then Is_Constructor (Entity (Name (N)))
5797
        and then Is_Imported (Entity (Name (N)));
5798
   end Is_CPP_Constructor_Call;
5799
 
5800
   ----------------------------------------------
5801
   -- Is_Dependent_Component_Of_Mutable_Object --
5802
   ----------------------------------------------
5803
 
5804
   function Is_Dependent_Component_Of_Mutable_Object
5805
     (Object : Node_Id) return   Boolean
5806
   is
5807
      P           : Node_Id;
5808
      Prefix_Type : Entity_Id;
5809
      P_Aliased   : Boolean := False;
5810
      Comp        : Entity_Id;
5811
 
5812
      function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
5813
      --  Returns True if and only if Comp is declared within a variant part
5814
 
5815
      --------------------------------
5816
      -- Is_Declared_Within_Variant --
5817
      --------------------------------
5818
 
5819
      function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
5820
         Comp_Decl : constant Node_Id   := Parent (Comp);
5821
         Comp_List : constant Node_Id   := Parent (Comp_Decl);
5822
      begin
5823
         return Nkind (Parent (Comp_List)) = N_Variant;
5824
      end Is_Declared_Within_Variant;
5825
 
5826
   --  Start of processing for Is_Dependent_Component_Of_Mutable_Object
5827
 
5828
   begin
5829
      if Is_Variable (Object) then
5830
 
5831
         if Nkind (Object) = N_Selected_Component then
5832
            P := Prefix (Object);
5833
            Prefix_Type := Etype (P);
5834
 
5835
            if Is_Entity_Name (P) then
5836
 
5837
               if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
5838
                  Prefix_Type := Base_Type (Prefix_Type);
5839
               end if;
5840
 
5841
               if Is_Aliased (Entity (P)) then
5842
                  P_Aliased := True;
5843
               end if;
5844
 
5845
            --  A discriminant check on a selected component may be
5846
            --  expanded into a dereference when removing side-effects.
5847
            --  Recover the original node and its type, which may be
5848
            --  unconstrained.
5849
 
5850
            elsif Nkind (P) = N_Explicit_Dereference
5851
              and then not (Comes_From_Source (P))
5852
            then
5853
               P := Original_Node (P);
5854
               Prefix_Type := Etype (P);
5855
 
5856
            else
5857
               --  Check for prefix being an aliased component ???
5858
               null;
5859
 
5860
            end if;
5861
 
5862
            --  A heap object is constrained by its initial value
5863
 
5864
            --  Ada 2005 (AI-363): Always assume the object could be mutable in
5865
            --  the dereferenced case, since the access value might denote an
5866
            --  unconstrained aliased object, whereas in Ada 95 the designated
5867
            --  object is guaranteed to be constrained. A worst-case assumption
5868
            --  has to apply in Ada 2005 because we can't tell at compile time
5869
            --  whether the object is "constrained by its initial value"
5870
            --  (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
5871
            --  semantic rules -- these rules are acknowledged to need fixing).
5872
 
5873
            if Ada_Version < Ada_05 then
5874
               if Is_Access_Type (Prefix_Type)
5875
                 or else Nkind (P) = N_Explicit_Dereference
5876
               then
5877
                  return False;
5878
               end if;
5879
 
5880
            elsif Ada_Version >= Ada_05 then
5881
               if Is_Access_Type (Prefix_Type) then
5882
 
5883
                  --  If the access type is pool-specific, and there is no
5884
                  --  constrained partial view of the designated type, then the
5885
                  --  designated object is known to be constrained.
5886
 
5887
                  if Ekind (Prefix_Type) = E_Access_Type
5888
                    and then not Has_Constrained_Partial_View
5889
                                   (Designated_Type (Prefix_Type))
5890
                  then
5891
                     return False;
5892
 
5893
                  --  Otherwise (general access type, or there is a constrained
5894
                  --  partial view of the designated type), we need to check
5895
                  --  based on the designated type.
5896
 
5897
                  else
5898
                     Prefix_Type := Designated_Type (Prefix_Type);
5899
                  end if;
5900
               end if;
5901
            end if;
5902
 
5903
            Comp :=
5904
              Original_Record_Component (Entity (Selector_Name (Object)));
5905
 
5906
            --  As per AI-0017, the renaming is illegal in a generic body,
5907
            --  even if the subtype is indefinite.
5908
 
5909
            --  Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
5910
 
5911
            if not Is_Constrained (Prefix_Type)
5912
              and then (not Is_Indefinite_Subtype (Prefix_Type)
5913
                         or else
5914
                          (Is_Generic_Type (Prefix_Type)
5915
                            and then Ekind (Current_Scope) = E_Generic_Package
5916
                            and then In_Package_Body (Current_Scope)))
5917
 
5918
              and then (Is_Declared_Within_Variant (Comp)
5919
                          or else Has_Discriminant_Dependent_Constraint (Comp))
5920
              and then (not P_Aliased or else Ada_Version >= Ada_05)
5921
            then
5922
               return True;
5923
 
5924
            else
5925
               return
5926
                 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5927
 
5928
            end if;
5929
 
5930
         elsif Nkind (Object) = N_Indexed_Component
5931
           or else Nkind (Object) = N_Slice
5932
         then
5933
            return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5934
 
5935
         --  A type conversion that Is_Variable is a view conversion:
5936
         --  go back to the denoted object.
5937
 
5938
         elsif Nkind (Object) = N_Type_Conversion then
5939
            return
5940
              Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
5941
         end if;
5942
      end if;
5943
 
5944
      return False;
5945
   end Is_Dependent_Component_Of_Mutable_Object;
5946
 
5947
   ---------------------
5948
   -- Is_Dereferenced --
5949
   ---------------------
5950
 
5951
   function Is_Dereferenced (N : Node_Id) return Boolean is
5952
      P : constant Node_Id := Parent (N);
5953
   begin
5954
      return
5955
         (Nkind (P) = N_Selected_Component
5956
            or else
5957
          Nkind (P) = N_Explicit_Dereference
5958
            or else
5959
          Nkind (P) = N_Indexed_Component
5960
            or else
5961
          Nkind (P) = N_Slice)
5962
        and then Prefix (P) = N;
5963
   end Is_Dereferenced;
5964
 
5965
   ----------------------
5966
   -- Is_Descendent_Of --
5967
   ----------------------
5968
 
5969
   function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
5970
      T    : Entity_Id;
5971
      Etyp : Entity_Id;
5972
 
5973
   begin
5974
      pragma Assert (Nkind (T1) in N_Entity);
5975
      pragma Assert (Nkind (T2) in N_Entity);
5976
 
5977
      T := Base_Type (T1);
5978
 
5979
      --  Immediate return if the types match
5980
 
5981
      if T = T2 then
5982
         return True;
5983
 
5984
      --  Comment needed here ???
5985
 
5986
      elsif Ekind (T) = E_Class_Wide_Type then
5987
         return Etype (T) = T2;
5988
 
5989
      --  All other cases
5990
 
5991
      else
5992
         loop
5993
            Etyp := Etype (T);
5994
 
5995
            --  Done if we found the type we are looking for
5996
 
5997
            if Etyp = T2 then
5998
               return True;
5999
 
6000
            --  Done if no more derivations to check
6001
 
6002
            elsif T = T1
6003
              or else T = Etyp
6004
            then
6005
               return False;
6006
 
6007
            --  Following test catches error cases resulting from prev errors
6008
 
6009
            elsif No (Etyp) then
6010
               return False;
6011
 
6012
            elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
6013
               return False;
6014
 
6015
            elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
6016
               return False;
6017
            end if;
6018
 
6019
            T := Base_Type (Etyp);
6020
         end loop;
6021
      end if;
6022
   end Is_Descendent_Of;
6023
 
6024
   --------------
6025
   -- Is_False --
6026
   --------------
6027
 
6028
   function Is_False (U : Uint) return Boolean is
6029
   begin
6030
      return (U = 0);
6031
   end Is_False;
6032
 
6033
   ---------------------------
6034
   -- Is_Fixed_Model_Number --
6035
   ---------------------------
6036
 
6037
   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
6038
      S : constant Ureal := Small_Value (T);
6039
      M : Urealp.Save_Mark;
6040
      R : Boolean;
6041
   begin
6042
      M := Urealp.Mark;
6043
      R := (U = UR_Trunc (U / S) * S);
6044
      Urealp.Release (M);
6045
      return R;
6046
   end Is_Fixed_Model_Number;
6047
 
6048
   -------------------------------
6049
   -- Is_Fully_Initialized_Type --
6050
   -------------------------------
6051
 
6052
   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
6053
   begin
6054
      if Is_Scalar_Type (Typ) then
6055
         return False;
6056
 
6057
      elsif Is_Access_Type (Typ) then
6058
         return True;
6059
 
6060
      elsif Is_Array_Type (Typ) then
6061
         if Is_Fully_Initialized_Type (Component_Type (Typ)) then
6062
            return True;
6063
         end if;
6064
 
6065
         --  An interesting case, if we have a constrained type one of whose
6066
         --  bounds is known to be null, then there are no elements to be
6067
         --  initialized, so all the elements are initialized!
6068
 
6069
         if Is_Constrained (Typ) then
6070
            declare
6071
               Indx     : Node_Id;
6072
               Indx_Typ : Entity_Id;
6073
               Lbd, Hbd : Node_Id;
6074
 
6075
            begin
6076
               Indx := First_Index (Typ);
6077
               while Present (Indx) loop
6078
                  if Etype (Indx) = Any_Type then
6079
                     return False;
6080
 
6081
                  --  If index is a range, use directly
6082
 
6083
                  elsif Nkind (Indx) = N_Range then
6084
                     Lbd := Low_Bound  (Indx);
6085
                     Hbd := High_Bound (Indx);
6086
 
6087
                  else
6088
                     Indx_Typ := Etype (Indx);
6089
 
6090
                     if Is_Private_Type (Indx_Typ)  then
6091
                        Indx_Typ := Full_View (Indx_Typ);
6092
                     end if;
6093
 
6094
                     if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
6095
                        return False;
6096
                     else
6097
                        Lbd := Type_Low_Bound  (Indx_Typ);
6098
                        Hbd := Type_High_Bound (Indx_Typ);
6099
                     end if;
6100
                  end if;
6101
 
6102
                  if Compile_Time_Known_Value (Lbd)
6103
                    and then Compile_Time_Known_Value (Hbd)
6104
                  then
6105
                     if Expr_Value (Hbd) < Expr_Value (Lbd) then
6106
                        return True;
6107
                     end if;
6108
                  end if;
6109
 
6110
                  Next_Index (Indx);
6111
               end loop;
6112
            end;
6113
         end if;
6114
 
6115
         --  If no null indexes, then type is not fully initialized
6116
 
6117
         return False;
6118
 
6119
      --  Record types
6120
 
6121
      elsif Is_Record_Type (Typ) then
6122
         if Has_Discriminants (Typ)
6123
           and then
6124
             Present (Discriminant_Default_Value (First_Discriminant (Typ)))
6125
           and then Is_Fully_Initialized_Variant (Typ)
6126
         then
6127
            return True;
6128
         end if;
6129
 
6130
         --  Controlled records are considered to be fully initialized if
6131
         --  there is a user defined Initialize routine. This may not be
6132
         --  entirely correct, but as the spec notes, we are guessing here
6133
         --  what is best from the point of view of issuing warnings.
6134
 
6135
         if Is_Controlled (Typ) then
6136
            declare
6137
               Utyp : constant Entity_Id := Underlying_Type (Typ);
6138
 
6139
            begin
6140
               if Present (Utyp) then
6141
                  declare
6142
                     Init : constant Entity_Id :=
6143
                              (Find_Prim_Op
6144
                                 (Underlying_Type (Typ), Name_Initialize));
6145
 
6146
                  begin
6147
                     if Present (Init)
6148
                       and then Comes_From_Source (Init)
6149
                       and then not
6150
                         Is_Predefined_File_Name
6151
                           (File_Name (Get_Source_File_Index (Sloc (Init))))
6152
                     then
6153
                        return True;
6154
 
6155
                     elsif Has_Null_Extension (Typ)
6156
                        and then
6157
                          Is_Fully_Initialized_Type
6158
                            (Etype (Base_Type (Typ)))
6159
                     then
6160
                        return True;
6161
                     end if;
6162
                  end;
6163
               end if;
6164
            end;
6165
         end if;
6166
 
6167
         --  Otherwise see if all record components are initialized
6168
 
6169
         declare
6170
            Ent : Entity_Id;
6171
 
6172
         begin
6173
            Ent := First_Entity (Typ);
6174
            while Present (Ent) loop
6175
               if Chars (Ent) = Name_uController then
6176
                  null;
6177
 
6178
               elsif Ekind (Ent) = E_Component
6179
                 and then (No (Parent (Ent))
6180
                             or else No (Expression (Parent (Ent))))
6181
                 and then not Is_Fully_Initialized_Type (Etype (Ent))
6182
 
6183
                  --  Special VM case for tag components, which need to be
6184
                  --  defined in this case, but are never initialized as VMs
6185
                  --  are using other dispatching mechanisms. Ignore this
6186
                  --  uninitialized case. Note that this applies both to the
6187
                  --  uTag entry and the main vtable pointer (CPP_Class case).
6188
 
6189
                 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
6190
               then
6191
                  return False;
6192
               end if;
6193
 
6194
               Next_Entity (Ent);
6195
            end loop;
6196
         end;
6197
 
6198
         --  No uninitialized components, so type is fully initialized.
6199
         --  Note that this catches the case of no components as well.
6200
 
6201
         return True;
6202
 
6203
      elsif Is_Concurrent_Type (Typ) then
6204
         return True;
6205
 
6206
      elsif Is_Private_Type (Typ) then
6207
         declare
6208
            U : constant Entity_Id := Underlying_Type (Typ);
6209
 
6210
         begin
6211
            if No (U) then
6212
               return False;
6213
            else
6214
               return Is_Fully_Initialized_Type (U);
6215
            end if;
6216
         end;
6217
 
6218
      else
6219
         return False;
6220
      end if;
6221
   end Is_Fully_Initialized_Type;
6222
 
6223
   ----------------------------------
6224
   -- Is_Fully_Initialized_Variant --
6225
   ----------------------------------
6226
 
6227
   function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
6228
      Loc           : constant Source_Ptr := Sloc (Typ);
6229
      Constraints   : constant List_Id    := New_List;
6230
      Components    : constant Elist_Id   := New_Elmt_List;
6231
      Comp_Elmt     : Elmt_Id;
6232
      Comp_Id       : Node_Id;
6233
      Comp_List     : Node_Id;
6234
      Discr         : Entity_Id;
6235
      Discr_Val     : Node_Id;
6236
 
6237
      Report_Errors : Boolean;
6238
      pragma Warnings (Off, Report_Errors);
6239
 
6240
   begin
6241
      if Serious_Errors_Detected > 0 then
6242
         return False;
6243
      end if;
6244
 
6245
      if Is_Record_Type (Typ)
6246
        and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
6247
        and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
6248
      then
6249
         Comp_List := Component_List (Type_Definition (Parent (Typ)));
6250
 
6251
         Discr := First_Discriminant (Typ);
6252
         while Present (Discr) loop
6253
            if Nkind (Parent (Discr)) = N_Discriminant_Specification then
6254
               Discr_Val := Expression (Parent (Discr));
6255
 
6256
               if Present (Discr_Val)
6257
                 and then Is_OK_Static_Expression (Discr_Val)
6258
               then
6259
                  Append_To (Constraints,
6260
                    Make_Component_Association (Loc,
6261
                      Choices    => New_List (New_Occurrence_Of (Discr, Loc)),
6262
                      Expression => New_Copy (Discr_Val)));
6263
               else
6264
                  return False;
6265
               end if;
6266
            else
6267
               return False;
6268
            end if;
6269
 
6270
            Next_Discriminant (Discr);
6271
         end loop;
6272
 
6273
         Gather_Components
6274
           (Typ           => Typ,
6275
            Comp_List     => Comp_List,
6276
            Governed_By   => Constraints,
6277
            Into          => Components,
6278
            Report_Errors => Report_Errors);
6279
 
6280
         --  Check that each component present is fully initialized
6281
 
6282
         Comp_Elmt := First_Elmt (Components);
6283
         while Present (Comp_Elmt) loop
6284
            Comp_Id := Node (Comp_Elmt);
6285
 
6286
            if Ekind (Comp_Id) = E_Component
6287
              and then (No (Parent (Comp_Id))
6288
                         or else No (Expression (Parent (Comp_Id))))
6289
              and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
6290
            then
6291
               return False;
6292
            end if;
6293
 
6294
            Next_Elmt (Comp_Elmt);
6295
         end loop;
6296
 
6297
         return True;
6298
 
6299
      elsif Is_Private_Type (Typ) then
6300
         declare
6301
            U : constant Entity_Id := Underlying_Type (Typ);
6302
 
6303
         begin
6304
            if No (U) then
6305
               return False;
6306
            else
6307
               return Is_Fully_Initialized_Variant (U);
6308
            end if;
6309
         end;
6310
      else
6311
         return False;
6312
      end if;
6313
   end Is_Fully_Initialized_Variant;
6314
 
6315
   ------------
6316
   -- Is_LHS --
6317
   ------------
6318
 
6319
   --  We seem to have a lot of overlapping functions that do similar things
6320
   --  (testing for left hand sides or lvalues???). Anyway, since this one is
6321
   --  purely syntactic, it should be in Sem_Aux I would think???
6322
 
6323
   function Is_LHS (N : Node_Id) return Boolean is
6324
      P : constant Node_Id := Parent (N);
6325
   begin
6326
      return Nkind (P) = N_Assignment_Statement
6327
        and then Name (P) = N;
6328
   end Is_LHS;
6329
 
6330
   ----------------------------
6331
   -- Is_Inherited_Operation --
6332
   ----------------------------
6333
 
6334
   function Is_Inherited_Operation (E : Entity_Id) return Boolean is
6335
      Kind : constant Node_Kind := Nkind (Parent (E));
6336
   begin
6337
      pragma Assert (Is_Overloadable (E));
6338
      return Kind = N_Full_Type_Declaration
6339
        or else Kind = N_Private_Extension_Declaration
6340
        or else Kind = N_Subtype_Declaration
6341
        or else (Ekind (E) = E_Enumeration_Literal
6342
                  and then Is_Derived_Type (Etype (E)));
6343
   end Is_Inherited_Operation;
6344
 
6345
   -----------------------------
6346
   -- Is_Library_Level_Entity --
6347
   -----------------------------
6348
 
6349
   function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
6350
   begin
6351
      --  The following is a small optimization, and it also properly handles
6352
      --  discriminals, which in task bodies might appear in expressions before
6353
      --  the corresponding procedure has been created, and which therefore do
6354
      --  not have an assigned scope.
6355
 
6356
      if Ekind (E) in Formal_Kind then
6357
         return False;
6358
      end if;
6359
 
6360
      --  Normal test is simply that the enclosing dynamic scope is Standard
6361
 
6362
      return Enclosing_Dynamic_Scope (E) = Standard_Standard;
6363
   end Is_Library_Level_Entity;
6364
 
6365
   ---------------------------------
6366
   -- Is_Local_Variable_Reference --
6367
   ---------------------------------
6368
 
6369
   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
6370
   begin
6371
      if not Is_Entity_Name (Expr) then
6372
         return False;
6373
 
6374
      else
6375
         declare
6376
            Ent : constant Entity_Id := Entity (Expr);
6377
            Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
6378
         begin
6379
            if Ekind (Ent) /= E_Variable
6380
                 and then
6381
               Ekind (Ent) /= E_In_Out_Parameter
6382
            then
6383
               return False;
6384
            else
6385
               return Present (Sub) and then Sub = Current_Subprogram;
6386
            end if;
6387
         end;
6388
      end if;
6389
   end Is_Local_Variable_Reference;
6390
 
6391
   -------------------------
6392
   -- Is_Object_Reference --
6393
   -------------------------
6394
 
6395
   function Is_Object_Reference (N : Node_Id) return Boolean is
6396
   begin
6397
      if Is_Entity_Name (N) then
6398
         return Present (Entity (N)) and then Is_Object (Entity (N));
6399
 
6400
      else
6401
         case Nkind (N) is
6402
            when N_Indexed_Component | N_Slice =>
6403
               return
6404
                 Is_Object_Reference (Prefix (N))
6405
                   or else Is_Access_Type (Etype (Prefix (N)));
6406
 
6407
            --  In Ada95, a function call is a constant object; a procedure
6408
            --  call is not.
6409
 
6410
            when N_Function_Call =>
6411
               return Etype (N) /= Standard_Void_Type;
6412
 
6413
            --  A reference to the stream attribute Input is a function call
6414
 
6415
            when N_Attribute_Reference =>
6416
               return Attribute_Name (N) = Name_Input;
6417
 
6418
            when N_Selected_Component =>
6419
               return
6420
                 Is_Object_Reference (Selector_Name (N))
6421
                   and then
6422
                     (Is_Object_Reference (Prefix (N))
6423
                        or else Is_Access_Type (Etype (Prefix (N))));
6424
 
6425
            when N_Explicit_Dereference =>
6426
               return True;
6427
 
6428
            --  A view conversion of a tagged object is an object reference
6429
 
6430
            when N_Type_Conversion =>
6431
               return Is_Tagged_Type (Etype (Subtype_Mark (N)))
6432
                 and then Is_Tagged_Type (Etype (Expression (N)))
6433
                 and then Is_Object_Reference (Expression (N));
6434
 
6435
            --  An unchecked type conversion is considered to be an object if
6436
            --  the operand is an object (this construction arises only as a
6437
            --  result of expansion activities).
6438
 
6439
            when N_Unchecked_Type_Conversion =>
6440
               return True;
6441
 
6442
            when others =>
6443
               return False;
6444
         end case;
6445
      end if;
6446
   end Is_Object_Reference;
6447
 
6448
   -----------------------------------
6449
   -- Is_OK_Variable_For_Out_Formal --
6450
   -----------------------------------
6451
 
6452
   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
6453
   begin
6454
      Note_Possible_Modification (AV, Sure => True);
6455
 
6456
      --  We must reject parenthesized variable names. The check for
6457
      --  Comes_From_Source is present because there are currently
6458
      --  cases where the compiler violates this rule (e.g. passing
6459
      --  a task object to its controlled Initialize routine).
6460
 
6461
      if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
6462
         return False;
6463
 
6464
      --  A variable is always allowed
6465
 
6466
      elsif Is_Variable (AV) then
6467
         return True;
6468
 
6469
      --  Unchecked conversions are allowed only if they come from the
6470
      --  generated code, which sometimes uses unchecked conversions for out
6471
      --  parameters in cases where code generation is unaffected. We tell
6472
      --  source unchecked conversions by seeing if they are rewrites of an
6473
      --  original Unchecked_Conversion function call, or of an explicit
6474
      --  conversion of a function call.
6475
 
6476
      elsif Nkind (AV) = N_Unchecked_Type_Conversion then
6477
         if Nkind (Original_Node (AV)) = N_Function_Call then
6478
            return False;
6479
 
6480
         elsif Comes_From_Source (AV)
6481
           and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
6482
         then
6483
            return False;
6484
 
6485
         elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
6486
            return Is_OK_Variable_For_Out_Formal (Expression (AV));
6487
 
6488
         else
6489
            return True;
6490
         end if;
6491
 
6492
      --  Normal type conversions are allowed if argument is a variable
6493
 
6494
      elsif Nkind (AV) = N_Type_Conversion then
6495
         if Is_Variable (Expression (AV))
6496
           and then Paren_Count (Expression (AV)) = 0
6497
         then
6498
            Note_Possible_Modification (Expression (AV), Sure => True);
6499
            return True;
6500
 
6501
         --  We also allow a non-parenthesized expression that raises
6502
         --  constraint error if it rewrites what used to be a variable
6503
 
6504
         elsif Raises_Constraint_Error (Expression (AV))
6505
            and then Paren_Count (Expression (AV)) = 0
6506
            and then Is_Variable (Original_Node (Expression (AV)))
6507
         then
6508
            return True;
6509
 
6510
         --  Type conversion of something other than a variable
6511
 
6512
         else
6513
            return False;
6514
         end if;
6515
 
6516
      --  If this node is rewritten, then test the original form, if that is
6517
      --  OK, then we consider the rewritten node OK (for example, if the
6518
      --  original node is a conversion, then Is_Variable will not be true
6519
      --  but we still want to allow the conversion if it converts a variable).
6520
 
6521
      elsif Original_Node (AV) /= AV then
6522
         return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
6523
 
6524
      --  All other non-variables are rejected
6525
 
6526
      else
6527
         return False;
6528
      end if;
6529
   end Is_OK_Variable_For_Out_Formal;
6530
 
6531
   -----------------------------------
6532
   -- Is_Partially_Initialized_Type --
6533
   -----------------------------------
6534
 
6535
   function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
6536
   begin
6537
      if Is_Scalar_Type (Typ) then
6538
         return False;
6539
 
6540
      elsif Is_Access_Type (Typ) then
6541
         return True;
6542
 
6543
      elsif Is_Array_Type (Typ) then
6544
 
6545
         --  If component type is partially initialized, so is array type
6546
 
6547
         if Is_Partially_Initialized_Type (Component_Type (Typ)) then
6548
            return True;
6549
 
6550
         --  Otherwise we are only partially initialized if we are fully
6551
         --  initialized (this is the empty array case, no point in us
6552
         --  duplicating that code here).
6553
 
6554
         else
6555
            return Is_Fully_Initialized_Type (Typ);
6556
         end if;
6557
 
6558
      elsif Is_Record_Type (Typ) then
6559
 
6560
         --  A discriminated type is always partially initialized
6561
 
6562
         if Has_Discriminants (Typ) then
6563
            return True;
6564
 
6565
         --  A tagged type is always partially initialized
6566
 
6567
         elsif Is_Tagged_Type (Typ) then
6568
            return True;
6569
 
6570
         --  Case of non-discriminated record
6571
 
6572
         else
6573
            declare
6574
               Ent : Entity_Id;
6575
 
6576
               Component_Present : Boolean := False;
6577
               --  Set True if at least one component is present. If no
6578
               --  components are present, then record type is fully
6579
               --  initialized (another odd case, like the null array).
6580
 
6581
            begin
6582
               --  Loop through components
6583
 
6584
               Ent := First_Entity (Typ);
6585
               while Present (Ent) loop
6586
                  if Ekind (Ent) = E_Component then
6587
                     Component_Present := True;
6588
 
6589
                     --  If a component has an initialization expression then
6590
                     --  the enclosing record type is partially initialized
6591
 
6592
                     if Present (Parent (Ent))
6593
                       and then Present (Expression (Parent (Ent)))
6594
                     then
6595
                        return True;
6596
 
6597
                     --  If a component is of a type which is itself partially
6598
                     --  initialized, then the enclosing record type is also.
6599
 
6600
                     elsif Is_Partially_Initialized_Type (Etype (Ent)) then
6601
                        return True;
6602
                     end if;
6603
                  end if;
6604
 
6605
                  Next_Entity (Ent);
6606
               end loop;
6607
 
6608
               --  No initialized components found. If we found any components
6609
               --  they were all uninitialized so the result is false.
6610
 
6611
               if Component_Present then
6612
                  return False;
6613
 
6614
               --  But if we found no components, then all the components are
6615
               --  initialized so we consider the type to be initialized.
6616
 
6617
               else
6618
                  return True;
6619
               end if;
6620
            end;
6621
         end if;
6622
 
6623
      --  Concurrent types are always fully initialized
6624
 
6625
      elsif Is_Concurrent_Type (Typ) then
6626
         return True;
6627
 
6628
      --  For a private type, go to underlying type. If there is no underlying
6629
      --  type then just assume this partially initialized. Not clear if this
6630
      --  can happen in a non-error case, but no harm in testing for this.
6631
 
6632
      elsif Is_Private_Type (Typ) then
6633
         declare
6634
            U : constant Entity_Id := Underlying_Type (Typ);
6635
         begin
6636
            if No (U) then
6637
               return True;
6638
            else
6639
               return Is_Partially_Initialized_Type (U);
6640
            end if;
6641
         end;
6642
 
6643
      --  For any other type (are there any?) assume partially initialized
6644
 
6645
      else
6646
         return True;
6647
      end if;
6648
   end Is_Partially_Initialized_Type;
6649
 
6650
   ------------------------------------
6651
   -- Is_Potentially_Persistent_Type --
6652
   ------------------------------------
6653
 
6654
   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
6655
      Comp : Entity_Id;
6656
      Indx : Node_Id;
6657
 
6658
   begin
6659
      --  For private type, test corresponding full type
6660
 
6661
      if Is_Private_Type (T) then
6662
         return Is_Potentially_Persistent_Type (Full_View (T));
6663
 
6664
      --  Scalar types are potentially persistent
6665
 
6666
      elsif Is_Scalar_Type (T) then
6667
         return True;
6668
 
6669
      --  Record type is potentially persistent if not tagged and the types of
6670
      --  all it components are potentially persistent, and no component has
6671
      --  an initialization expression.
6672
 
6673
      elsif Is_Record_Type (T)
6674
        and then not Is_Tagged_Type (T)
6675
        and then not Is_Partially_Initialized_Type (T)
6676
      then
6677
         Comp := First_Component (T);
6678
         while Present (Comp) loop
6679
            if not Is_Potentially_Persistent_Type (Etype (Comp)) then
6680
               return False;
6681
            else
6682
               Next_Entity (Comp);
6683
            end if;
6684
         end loop;
6685
 
6686
         return True;
6687
 
6688
      --  Array type is potentially persistent if its component type is
6689
      --  potentially persistent and if all its constraints are static.
6690
 
6691
      elsif Is_Array_Type (T) then
6692
         if not Is_Potentially_Persistent_Type (Component_Type (T)) then
6693
            return False;
6694
         end if;
6695
 
6696
         Indx := First_Index (T);
6697
         while Present (Indx) loop
6698
            if not Is_OK_Static_Subtype (Etype (Indx)) then
6699
               return False;
6700
            else
6701
               Next_Index (Indx);
6702
            end if;
6703
         end loop;
6704
 
6705
         return True;
6706
 
6707
      --  All other types are not potentially persistent
6708
 
6709
      else
6710
         return False;
6711
      end if;
6712
   end Is_Potentially_Persistent_Type;
6713
 
6714
   ---------------------------------
6715
   -- Is_Protected_Self_Reference --
6716
   ---------------------------------
6717
 
6718
   function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
6719
 
6720
      function In_Access_Definition (N : Node_Id) return Boolean;
6721
      --  Returns true if N belongs to an access definition
6722
 
6723
      --------------------------
6724
      -- In_Access_Definition --
6725
      --------------------------
6726
 
6727
      function In_Access_Definition (N : Node_Id) return Boolean is
6728
         P : Node_Id;
6729
 
6730
      begin
6731
         P := Parent (N);
6732
         while Present (P) loop
6733
            if Nkind (P) = N_Access_Definition then
6734
               return True;
6735
            end if;
6736
 
6737
            P := Parent (P);
6738
         end loop;
6739
 
6740
         return False;
6741
      end In_Access_Definition;
6742
 
6743
   --  Start of processing for Is_Protected_Self_Reference
6744
 
6745
   begin
6746
      --  Verify that prefix is analyzed and has the proper form. Note that
6747
      --  the attributes Elab_Spec, Elab_Body, and UET_Address, which also
6748
      --  produce the address of an entity, do not analyze their prefix
6749
      --  because they denote entities that are not necessarily visible.
6750
      --  Neither of them can apply to a protected type.
6751
 
6752
      return Ada_Version >= Ada_05
6753
        and then Is_Entity_Name (N)
6754
        and then Present (Entity (N))
6755
        and then Is_Protected_Type (Entity (N))
6756
        and then In_Open_Scopes (Entity (N))
6757
        and then not In_Access_Definition (N);
6758
   end Is_Protected_Self_Reference;
6759
 
6760
   -----------------------------
6761
   -- Is_RCI_Pkg_Spec_Or_Body --
6762
   -----------------------------
6763
 
6764
   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
6765
 
6766
      function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
6767
      --  Return True if the unit of Cunit is an RCI package declaration
6768
 
6769
      ---------------------------
6770
      -- Is_RCI_Pkg_Decl_Cunit --
6771
      ---------------------------
6772
 
6773
      function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
6774
         The_Unit : constant Node_Id := Unit (Cunit);
6775
 
6776
      begin
6777
         if Nkind (The_Unit) /= N_Package_Declaration then
6778
            return False;
6779
         end if;
6780
 
6781
         return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
6782
      end Is_RCI_Pkg_Decl_Cunit;
6783
 
6784
   --  Start of processing for Is_RCI_Pkg_Spec_Or_Body
6785
 
6786
   begin
6787
      return Is_RCI_Pkg_Decl_Cunit (Cunit)
6788
        or else
6789
         (Nkind (Unit (Cunit)) = N_Package_Body
6790
           and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
6791
   end Is_RCI_Pkg_Spec_Or_Body;
6792
 
6793
   -----------------------------------------
6794
   -- Is_Remote_Access_To_Class_Wide_Type --
6795
   -----------------------------------------
6796
 
6797
   function Is_Remote_Access_To_Class_Wide_Type
6798
     (E : Entity_Id) return Boolean
6799
   is
6800
   begin
6801
      --  A remote access to class-wide type is a general access to object type
6802
      --  declared in the visible part of a Remote_Types or Remote_Call_
6803
      --  Interface unit.
6804
 
6805
      return Ekind (E) = E_General_Access_Type
6806
        and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6807
   end Is_Remote_Access_To_Class_Wide_Type;
6808
 
6809
   -----------------------------------------
6810
   -- Is_Remote_Access_To_Subprogram_Type --
6811
   -----------------------------------------
6812
 
6813
   function Is_Remote_Access_To_Subprogram_Type
6814
     (E : Entity_Id) return Boolean
6815
   is
6816
   begin
6817
      return (Ekind (E) = E_Access_Subprogram_Type
6818
                or else (Ekind (E) = E_Record_Type
6819
                           and then Present (Corresponding_Remote_Type (E))))
6820
        and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6821
   end Is_Remote_Access_To_Subprogram_Type;
6822
 
6823
   --------------------
6824
   -- Is_Remote_Call --
6825
   --------------------
6826
 
6827
   function Is_Remote_Call (N : Node_Id) return Boolean is
6828
   begin
6829
      if Nkind (N) /= N_Procedure_Call_Statement
6830
        and then Nkind (N) /= N_Function_Call
6831
      then
6832
         --  An entry call cannot be remote
6833
 
6834
         return False;
6835
 
6836
      elsif Nkind (Name (N)) in N_Has_Entity
6837
        and then Is_Remote_Call_Interface (Entity (Name (N)))
6838
      then
6839
         --  A subprogram declared in the spec of a RCI package is remote
6840
 
6841
         return True;
6842
 
6843
      elsif Nkind (Name (N)) = N_Explicit_Dereference
6844
        and then Is_Remote_Access_To_Subprogram_Type
6845
                   (Etype (Prefix (Name (N))))
6846
      then
6847
         --  The dereference of a RAS is a remote call
6848
 
6849
         return True;
6850
 
6851
      elsif Present (Controlling_Argument (N))
6852
        and then Is_Remote_Access_To_Class_Wide_Type
6853
          (Etype (Controlling_Argument (N)))
6854
      then
6855
         --  Any primitive operation call with a controlling argument of
6856
         --  a RACW type is a remote call.
6857
 
6858
         return True;
6859
      end if;
6860
 
6861
      --  All other calls are local calls
6862
 
6863
      return False;
6864
   end Is_Remote_Call;
6865
 
6866
   ----------------------
6867
   -- Is_Renamed_Entry --
6868
   ----------------------
6869
 
6870
   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
6871
      Orig_Node : Node_Id := Empty;
6872
      Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
6873
 
6874
      function Is_Entry (Nam : Node_Id) return Boolean;
6875
      --  Determine whether Nam is an entry. Traverse selectors if there are
6876
      --  nested selected components.
6877
 
6878
      --------------
6879
      -- Is_Entry --
6880
      --------------
6881
 
6882
      function Is_Entry (Nam : Node_Id) return Boolean is
6883
      begin
6884
         if Nkind (Nam) = N_Selected_Component then
6885
            return Is_Entry (Selector_Name (Nam));
6886
         end if;
6887
 
6888
         return Ekind (Entity (Nam)) = E_Entry;
6889
      end Is_Entry;
6890
 
6891
   --  Start of processing for Is_Renamed_Entry
6892
 
6893
   begin
6894
      if Present (Alias (Proc_Nam)) then
6895
         Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
6896
      end if;
6897
 
6898
      --  Look for a rewritten subprogram renaming declaration
6899
 
6900
      if Nkind (Subp_Decl) = N_Subprogram_Declaration
6901
        and then Present (Original_Node (Subp_Decl))
6902
      then
6903
         Orig_Node := Original_Node (Subp_Decl);
6904
      end if;
6905
 
6906
      --  The rewritten subprogram is actually an entry
6907
 
6908
      if Present (Orig_Node)
6909
        and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
6910
        and then Is_Entry (Name (Orig_Node))
6911
      then
6912
         return True;
6913
      end if;
6914
 
6915
      return False;
6916
   end Is_Renamed_Entry;
6917
 
6918
   ----------------------
6919
   -- Is_Selector_Name --
6920
   ----------------------
6921
 
6922
   function Is_Selector_Name (N : Node_Id) return Boolean is
6923
   begin
6924
      if not Is_List_Member (N) then
6925
         declare
6926
            P : constant Node_Id   := Parent (N);
6927
            K : constant Node_Kind := Nkind (P);
6928
         begin
6929
            return
6930
              (K = N_Expanded_Name          or else
6931
               K = N_Generic_Association    or else
6932
               K = N_Parameter_Association  or else
6933
               K = N_Selected_Component)
6934
              and then Selector_Name (P) = N;
6935
         end;
6936
 
6937
      else
6938
         declare
6939
            L : constant List_Id := List_Containing (N);
6940
            P : constant Node_Id := Parent (L);
6941
         begin
6942
            return (Nkind (P) = N_Discriminant_Association
6943
                     and then Selector_Names (P) = L)
6944
              or else
6945
                   (Nkind (P) = N_Component_Association
6946
                     and then Choices (P) = L);
6947
         end;
6948
      end if;
6949
   end Is_Selector_Name;
6950
 
6951
   ------------------
6952
   -- Is_Statement --
6953
   ------------------
6954
 
6955
   function Is_Statement (N : Node_Id) return Boolean is
6956
   begin
6957
      return
6958
        Nkind (N) in N_Statement_Other_Than_Procedure_Call
6959
          or else Nkind (N) = N_Procedure_Call_Statement;
6960
   end Is_Statement;
6961
 
6962
   ---------------------------------
6963
   -- Is_Synchronized_Tagged_Type --
6964
   ---------------------------------
6965
 
6966
   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
6967
      Kind : constant Entity_Kind := Ekind (Base_Type (E));
6968
 
6969
   begin
6970
      --  A task or protected type derived from an interface is a tagged type.
6971
      --  Such a tagged type is called a synchronized tagged type, as are
6972
      --  synchronized interfaces and private extensions whose declaration
6973
      --  includes the reserved word synchronized.
6974
 
6975
      return (Is_Tagged_Type (E)
6976
                and then (Kind = E_Task_Type
6977
                           or else Kind = E_Protected_Type))
6978
            or else
6979
             (Is_Interface (E)
6980
                and then Is_Synchronized_Interface (E))
6981
            or else
6982
             (Ekind (E) = E_Record_Type_With_Private
6983
                and then (Synchronized_Present (Parent (E))
6984
                           or else Is_Synchronized_Interface (Etype (E))));
6985
   end Is_Synchronized_Tagged_Type;
6986
 
6987
   -----------------
6988
   -- Is_Transfer --
6989
   -----------------
6990
 
6991
   function Is_Transfer (N : Node_Id) return Boolean is
6992
      Kind : constant Node_Kind := Nkind (N);
6993
 
6994
   begin
6995
      if Kind = N_Simple_Return_Statement
6996
           or else
6997
         Kind = N_Extended_Return_Statement
6998
           or else
6999
         Kind = N_Goto_Statement
7000
           or else
7001
         Kind = N_Raise_Statement
7002
           or else
7003
         Kind = N_Requeue_Statement
7004
      then
7005
         return True;
7006
 
7007
      elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
7008
        and then No (Condition (N))
7009
      then
7010
         return True;
7011
 
7012
      elsif Kind = N_Procedure_Call_Statement
7013
        and then Is_Entity_Name (Name (N))
7014
        and then Present (Entity (Name (N)))
7015
        and then No_Return (Entity (Name (N)))
7016
      then
7017
         return True;
7018
 
7019
      elsif Nkind (Original_Node (N)) = N_Raise_Statement then
7020
         return True;
7021
 
7022
      else
7023
         return False;
7024
      end if;
7025
   end Is_Transfer;
7026
 
7027
   -------------
7028
   -- Is_True --
7029
   -------------
7030
 
7031
   function Is_True (U : Uint) return Boolean is
7032
   begin
7033
      return (U /= 0);
7034
   end Is_True;
7035
 
7036
   -------------------
7037
   -- Is_Value_Type --
7038
   -------------------
7039
 
7040
   function Is_Value_Type (T : Entity_Id) return Boolean is
7041
   begin
7042
      return VM_Target = CLI_Target
7043
        and then Nkind (T) in N_Has_Chars
7044
        and then Chars (T) /= No_Name
7045
        and then Get_Name_String (Chars (T)) = "valuetype";
7046
   end Is_Value_Type;
7047
 
7048
   -----------------
7049
   -- Is_Delegate --
7050
   -----------------
7051
 
7052
   function Is_Delegate (T : Entity_Id) return Boolean is
7053
      Desig_Type : Entity_Id;
7054
 
7055
   begin
7056
      if VM_Target /= CLI_Target then
7057
         return False;
7058
      end if;
7059
 
7060
      --  Access-to-subprograms are delegates in CIL
7061
 
7062
      if Ekind (T) = E_Access_Subprogram_Type then
7063
         return True;
7064
      end if;
7065
 
7066
      if Ekind (T) not in Access_Kind then
7067
 
7068
         --  A delegate is a managed pointer. If no designated type is defined
7069
         --  it means that it's not a delegate.
7070
 
7071
         return False;
7072
      end if;
7073
 
7074
      Desig_Type := Etype (Directly_Designated_Type (T));
7075
 
7076
      if not Is_Tagged_Type (Desig_Type) then
7077
         return False;
7078
      end if;
7079
 
7080
      --  Test if the type is inherited from [mscorlib]System.Delegate
7081
 
7082
      while Etype (Desig_Type) /= Desig_Type loop
7083
         if Chars (Scope (Desig_Type)) /= No_Name
7084
           and then Is_Imported (Scope (Desig_Type))
7085
           and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
7086
         then
7087
            return True;
7088
         end if;
7089
 
7090
         Desig_Type := Etype (Desig_Type);
7091
      end loop;
7092
 
7093
      return False;
7094
   end Is_Delegate;
7095
 
7096
   -----------------
7097
   -- Is_Variable --
7098
   -----------------
7099
 
7100
   function Is_Variable (N : Node_Id) return Boolean is
7101
 
7102
      Orig_Node : constant Node_Id := Original_Node (N);
7103
      --  We do the test on the original node, since this is basically a test
7104
      --  of syntactic categories, so it must not be disturbed by whatever
7105
      --  rewriting might have occurred. For example, an aggregate, which is
7106
      --  certainly NOT a variable, could be turned into a variable by
7107
      --  expansion.
7108
 
7109
      function In_Protected_Function (E : Entity_Id) return Boolean;
7110
      --  Within a protected function, the private components of the
7111
      --  enclosing protected type are constants. A function nested within
7112
      --  a (protected) procedure is not itself protected.
7113
 
7114
      function Is_Variable_Prefix (P : Node_Id) return Boolean;
7115
      --  Prefixes can involve implicit dereferences, in which case we
7116
      --  must test for the case of a reference of a constant access
7117
      --  type, which can never be a variable.
7118
 
7119
      ---------------------------
7120
      -- In_Protected_Function --
7121
      ---------------------------
7122
 
7123
      function In_Protected_Function (E : Entity_Id) return Boolean is
7124
         Prot : constant Entity_Id := Scope (E);
7125
         S    : Entity_Id;
7126
 
7127
      begin
7128
         if not Is_Protected_Type (Prot) then
7129
            return False;
7130
         else
7131
            S := Current_Scope;
7132
            while Present (S) and then S /= Prot loop
7133
               if Ekind (S) = E_Function
7134
                 and then Scope (S) = Prot
7135
               then
7136
                  return True;
7137
               end if;
7138
 
7139
               S := Scope (S);
7140
            end loop;
7141
 
7142
            return False;
7143
         end if;
7144
      end In_Protected_Function;
7145
 
7146
      ------------------------
7147
      -- Is_Variable_Prefix --
7148
      ------------------------
7149
 
7150
      function Is_Variable_Prefix (P : Node_Id) return Boolean is
7151
      begin
7152
         if Is_Access_Type (Etype (P)) then
7153
            return not Is_Access_Constant (Root_Type (Etype (P)));
7154
 
7155
         --  For the case of an indexed component whose prefix has a packed
7156
         --  array type, the prefix has been rewritten into a type conversion.
7157
         --  Determine variable-ness from the converted expression.
7158
 
7159
         elsif Nkind (P) = N_Type_Conversion
7160
           and then not Comes_From_Source (P)
7161
           and then Is_Array_Type (Etype (P))
7162
           and then Is_Packed (Etype (P))
7163
         then
7164
            return Is_Variable (Expression (P));
7165
 
7166
         else
7167
            return Is_Variable (P);
7168
         end if;
7169
      end Is_Variable_Prefix;
7170
 
7171
   --  Start of processing for Is_Variable
7172
 
7173
   begin
7174
      --  Definitely OK if Assignment_OK is set. Since this is something that
7175
      --  only gets set for expanded nodes, the test is on N, not Orig_Node.
7176
 
7177
      if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
7178
         return True;
7179
 
7180
      --  Normally we go to the original node, but there is one exception
7181
      --  where we use the rewritten node, namely when it is an explicit
7182
      --  dereference. The generated code may rewrite a prefix which is an
7183
      --  access type with an explicit dereference. The dereference is a
7184
      --  variable, even though the original node may not be (since it could
7185
      --  be a constant of the access type).
7186
 
7187
      --  In Ada 2005 we have a further case to consider: the prefix may be
7188
      --  a function call given in prefix notation. The original node appears
7189
      --  to be a selected component, but we need to examine the call.
7190
 
7191
      elsif Nkind (N) = N_Explicit_Dereference
7192
        and then Nkind (Orig_Node) /= N_Explicit_Dereference
7193
        and then Present (Etype (Orig_Node))
7194
        and then Is_Access_Type (Etype (Orig_Node))
7195
      then
7196
         --  Note that if the prefix is an explicit dereference that does not
7197
         --  come from source, we must check for a rewritten function call in
7198
         --  prefixed notation before other forms of rewriting, to prevent a
7199
         --  compiler crash.
7200
 
7201
         return
7202
           (Nkind (Orig_Node) = N_Function_Call
7203
             and then not Is_Access_Constant (Etype (Prefix (N))))
7204
           or else
7205
             Is_Variable_Prefix (Original_Node (Prefix (N)));
7206
 
7207
      --  A function call is never a variable
7208
 
7209
      elsif Nkind (N) = N_Function_Call then
7210
         return False;
7211
 
7212
      --  All remaining checks use the original node
7213
 
7214
      elsif Is_Entity_Name (Orig_Node)
7215
        and then Present (Entity (Orig_Node))
7216
      then
7217
         declare
7218
            E : constant Entity_Id := Entity (Orig_Node);
7219
            K : constant Entity_Kind := Ekind (E);
7220
 
7221
         begin
7222
            return (K = E_Variable
7223
                      and then Nkind (Parent (E)) /= N_Exception_Handler)
7224
              or else  (K = E_Component
7225
                          and then not In_Protected_Function (E))
7226
              or else  K = E_Out_Parameter
7227
              or else  K = E_In_Out_Parameter
7228
              or else  K = E_Generic_In_Out_Parameter
7229
 
7230
               --  Current instance of type:
7231
 
7232
              or else (Is_Type (E) and then In_Open_Scopes (E))
7233
              or else (Is_Incomplete_Or_Private_Type (E)
7234
                        and then In_Open_Scopes (Full_View (E)));
7235
         end;
7236
 
7237
      else
7238
         case Nkind (Orig_Node) is
7239
            when N_Indexed_Component | N_Slice =>
7240
               return Is_Variable_Prefix (Prefix (Orig_Node));
7241
 
7242
            when N_Selected_Component =>
7243
               return Is_Variable_Prefix (Prefix (Orig_Node))
7244
                 and then Is_Variable (Selector_Name (Orig_Node));
7245
 
7246
            --  For an explicit dereference, the type of the prefix cannot
7247
            --  be an access to constant or an access to subprogram.
7248
 
7249
            when N_Explicit_Dereference =>
7250
               declare
7251
                  Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
7252
               begin
7253
                  return Is_Access_Type (Typ)
7254
                    and then not Is_Access_Constant (Root_Type (Typ))
7255
                    and then Ekind (Typ) /= E_Access_Subprogram_Type;
7256
               end;
7257
 
7258
            --  The type conversion is the case where we do not deal with the
7259
            --  context dependent special case of an actual parameter. Thus
7260
            --  the type conversion is only considered a variable for the
7261
            --  purposes of this routine if the target type is tagged. However,
7262
            --  a type conversion is considered to be a variable if it does not
7263
            --  come from source (this deals for example with the conversions
7264
            --  of expressions to their actual subtypes).
7265
 
7266
            when N_Type_Conversion =>
7267
               return Is_Variable (Expression (Orig_Node))
7268
                 and then
7269
                   (not Comes_From_Source (Orig_Node)
7270
                      or else
7271
                        (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
7272
                          and then
7273
                         Is_Tagged_Type (Etype (Expression (Orig_Node)))));
7274
 
7275
            --  GNAT allows an unchecked type conversion as a variable. This
7276
            --  only affects the generation of internal expanded code, since
7277
            --  calls to instantiations of Unchecked_Conversion are never
7278
            --  considered variables (since they are function calls).
7279
            --  This is also true for expression actions.
7280
 
7281
            when N_Unchecked_Type_Conversion =>
7282
               return Is_Variable (Expression (Orig_Node));
7283
 
7284
            when others =>
7285
               return False;
7286
         end case;
7287
      end if;
7288
   end Is_Variable;
7289
 
7290
   ---------------------------
7291
   -- Is_Visibly_Controlled --
7292
   ---------------------------
7293
 
7294
   function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
7295
      Root : constant Entity_Id := Root_Type (T);
7296
   begin
7297
      return Chars (Scope (Root)) = Name_Finalization
7298
        and then Chars (Scope (Scope (Root))) = Name_Ada
7299
        and then Scope (Scope (Scope (Root))) = Standard_Standard;
7300
   end Is_Visibly_Controlled;
7301
 
7302
   ------------------------
7303
   -- Is_Volatile_Object --
7304
   ------------------------
7305
 
7306
   function Is_Volatile_Object (N : Node_Id) return Boolean is
7307
 
7308
      function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
7309
      --  Determines if given object has volatile components
7310
 
7311
      function Is_Volatile_Prefix (N : Node_Id) return Boolean;
7312
      --  If prefix is an implicit dereference, examine designated type
7313
 
7314
      ------------------------
7315
      -- Is_Volatile_Prefix --
7316
      ------------------------
7317
 
7318
      function Is_Volatile_Prefix (N : Node_Id) return Boolean is
7319
         Typ  : constant Entity_Id := Etype (N);
7320
 
7321
      begin
7322
         if Is_Access_Type (Typ) then
7323
            declare
7324
               Dtyp : constant Entity_Id := Designated_Type (Typ);
7325
 
7326
            begin
7327
               return Is_Volatile (Dtyp)
7328
                 or else Has_Volatile_Components (Dtyp);
7329
            end;
7330
 
7331
         else
7332
            return Object_Has_Volatile_Components (N);
7333
         end if;
7334
      end Is_Volatile_Prefix;
7335
 
7336
      ------------------------------------
7337
      -- Object_Has_Volatile_Components --
7338
      ------------------------------------
7339
 
7340
      function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
7341
         Typ : constant Entity_Id := Etype (N);
7342
 
7343
      begin
7344
         if Is_Volatile (Typ)
7345
           or else Has_Volatile_Components (Typ)
7346
         then
7347
            return True;
7348
 
7349
         elsif Is_Entity_Name (N)
7350
           and then (Has_Volatile_Components (Entity (N))
7351
                      or else Is_Volatile (Entity (N)))
7352
         then
7353
            return True;
7354
 
7355
         elsif Nkind (N) = N_Indexed_Component
7356
           or else Nkind (N) = N_Selected_Component
7357
         then
7358
            return Is_Volatile_Prefix (Prefix (N));
7359
 
7360
         else
7361
            return False;
7362
         end if;
7363
      end Object_Has_Volatile_Components;
7364
 
7365
   --  Start of processing for Is_Volatile_Object
7366
 
7367
   begin
7368
      if Is_Volatile (Etype (N))
7369
        or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
7370
      then
7371
         return True;
7372
 
7373
      elsif Nkind (N) = N_Indexed_Component
7374
        or else Nkind (N) = N_Selected_Component
7375
      then
7376
         return Is_Volatile_Prefix (Prefix (N));
7377
 
7378
      else
7379
         return False;
7380
      end if;
7381
   end Is_Volatile_Object;
7382
 
7383
   -------------------------
7384
   -- Kill_Current_Values --
7385
   -------------------------
7386
 
7387
   procedure Kill_Current_Values
7388
     (Ent                  : Entity_Id;
7389
      Last_Assignment_Only : Boolean := False)
7390
   is
7391
   begin
7392
      --  ??? do we have to worry about clearing cached checks?
7393
 
7394
      if Is_Assignable (Ent) then
7395
         Set_Last_Assignment (Ent, Empty);
7396
      end if;
7397
 
7398
      if Is_Object (Ent) then
7399
         if not Last_Assignment_Only then
7400
            Kill_Checks (Ent);
7401
            Set_Current_Value (Ent, Empty);
7402
 
7403
            if not Can_Never_Be_Null (Ent) then
7404
               Set_Is_Known_Non_Null (Ent, False);
7405
            end if;
7406
 
7407
            Set_Is_Known_Null (Ent, False);
7408
 
7409
            --  Reset Is_Known_Valid unless type is always valid, or if we have
7410
            --  a loop parameter (loop parameters are always valid, since their
7411
            --  bounds are defined by the bounds given in the loop header).
7412
 
7413
            if not Is_Known_Valid (Etype (Ent))
7414
              and then Ekind (Ent) /= E_Loop_Parameter
7415
            then
7416
               Set_Is_Known_Valid (Ent, False);
7417
            end if;
7418
         end if;
7419
      end if;
7420
   end Kill_Current_Values;
7421
 
7422
   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
7423
      S : Entity_Id;
7424
 
7425
      procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
7426
      --  Clear current value for entity E and all entities chained to E
7427
 
7428
      ------------------------------------------
7429
      -- Kill_Current_Values_For_Entity_Chain --
7430
      ------------------------------------------
7431
 
7432
      procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
7433
         Ent : Entity_Id;
7434
      begin
7435
         Ent := E;
7436
         while Present (Ent) loop
7437
            Kill_Current_Values (Ent, Last_Assignment_Only);
7438
            Next_Entity (Ent);
7439
         end loop;
7440
      end Kill_Current_Values_For_Entity_Chain;
7441
 
7442
   --  Start of processing for Kill_Current_Values
7443
 
7444
   begin
7445
      --  Kill all saved checks, a special case of killing saved values
7446
 
7447
      if not Last_Assignment_Only then
7448
         Kill_All_Checks;
7449
      end if;
7450
 
7451
      --  Loop through relevant scopes, which includes the current scope and
7452
      --  any parent scopes if the current scope is a block or a package.
7453
 
7454
      S := Current_Scope;
7455
      Scope_Loop : loop
7456
 
7457
         --  Clear current values of all entities in current scope
7458
 
7459
         Kill_Current_Values_For_Entity_Chain (First_Entity (S));
7460
 
7461
         --  If scope is a package, also clear current values of all
7462
         --  private entities in the scope.
7463
 
7464
         if Is_Package_Or_Generic_Package (S)
7465
           or else Is_Concurrent_Type (S)
7466
         then
7467
            Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
7468
         end if;
7469
 
7470
         --  If this is a not a subprogram, deal with parents
7471
 
7472
         if not Is_Subprogram (S) then
7473
            S := Scope (S);
7474
            exit Scope_Loop when S = Standard_Standard;
7475
         else
7476
            exit Scope_Loop;
7477
         end if;
7478
      end loop Scope_Loop;
7479
   end Kill_Current_Values;
7480
 
7481
   --------------------------
7482
   -- Kill_Size_Check_Code --
7483
   --------------------------
7484
 
7485
   procedure Kill_Size_Check_Code (E : Entity_Id) is
7486
   begin
7487
      if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
7488
        and then Present (Size_Check_Code (E))
7489
      then
7490
         Remove (Size_Check_Code (E));
7491
         Set_Size_Check_Code (E, Empty);
7492
      end if;
7493
   end Kill_Size_Check_Code;
7494
 
7495
   --------------------------
7496
   -- Known_To_Be_Assigned --
7497
   --------------------------
7498
 
7499
   function Known_To_Be_Assigned (N : Node_Id) return Boolean is
7500
      P : constant Node_Id := Parent (N);
7501
 
7502
   begin
7503
      case Nkind (P) is
7504
 
7505
         --  Test left side of assignment
7506
 
7507
         when N_Assignment_Statement =>
7508
            return N = Name (P);
7509
 
7510
            --  Function call arguments are never lvalues
7511
 
7512
         when N_Function_Call =>
7513
            return False;
7514
 
7515
         --  Positional parameter for procedure or accept call
7516
 
7517
         when N_Procedure_Call_Statement |
7518
              N_Accept_Statement
7519
          =>
7520
            declare
7521
               Proc : Entity_Id;
7522
               Form : Entity_Id;
7523
               Act  : Node_Id;
7524
 
7525
            begin
7526
               Proc := Get_Subprogram_Entity (P);
7527
 
7528
               if No (Proc) then
7529
                  return False;
7530
               end if;
7531
 
7532
               --  If we are not a list member, something is strange, so
7533
               --  be conservative and return False.
7534
 
7535
               if not Is_List_Member (N) then
7536
                  return False;
7537
               end if;
7538
 
7539
               --  We are going to find the right formal by stepping forward
7540
               --  through the formals, as we step backwards in the actuals.
7541
 
7542
               Form := First_Formal (Proc);
7543
               Act  := N;
7544
               loop
7545
                  --  If no formal, something is weird, so be conservative
7546
                  --  and return False.
7547
 
7548
                  if No (Form) then
7549
                     return False;
7550
                  end if;
7551
 
7552
                  Prev (Act);
7553
                  exit when No (Act);
7554
                  Next_Formal (Form);
7555
               end loop;
7556
 
7557
               return Ekind (Form) /= E_In_Parameter;
7558
            end;
7559
 
7560
         --  Named parameter for procedure or accept call
7561
 
7562
         when N_Parameter_Association =>
7563
            declare
7564
               Proc : Entity_Id;
7565
               Form : Entity_Id;
7566
 
7567
            begin
7568
               Proc := Get_Subprogram_Entity (Parent (P));
7569
 
7570
               if No (Proc) then
7571
                  return False;
7572
               end if;
7573
 
7574
               --  Loop through formals to find the one that matches
7575
 
7576
               Form := First_Formal (Proc);
7577
               loop
7578
                  --  If no matching formal, that's peculiar, some kind of
7579
                  --  previous error, so return False to be conservative.
7580
 
7581
                  if No (Form) then
7582
                     return False;
7583
                  end if;
7584
 
7585
                  --  Else test for match
7586
 
7587
                  if Chars (Form) = Chars (Selector_Name (P)) then
7588
                     return Ekind (Form) /= E_In_Parameter;
7589
                  end if;
7590
 
7591
                  Next_Formal (Form);
7592
               end loop;
7593
            end;
7594
 
7595
         --  Test for appearing in a conversion that itself appears
7596
         --  in an lvalue context, since this should be an lvalue.
7597
 
7598
         when N_Type_Conversion =>
7599
            return Known_To_Be_Assigned (P);
7600
 
7601
         --  All other references are definitely not known to be modifications
7602
 
7603
         when others =>
7604
            return False;
7605
 
7606
      end case;
7607
   end Known_To_Be_Assigned;
7608
 
7609
   -------------------
7610
   -- May_Be_Lvalue --
7611
   -------------------
7612
 
7613
   function May_Be_Lvalue (N : Node_Id) return Boolean is
7614
      P : constant Node_Id := Parent (N);
7615
 
7616
   begin
7617
      case Nkind (P) is
7618
 
7619
         --  Test left side of assignment
7620
 
7621
         when N_Assignment_Statement =>
7622
            return N = Name (P);
7623
 
7624
         --  Test prefix of component or attribute. Note that the prefix of an
7625
         --  explicit or implicit dereference cannot be an l-value.
7626
 
7627
         when N_Attribute_Reference =>
7628
            return N = Prefix (P)
7629
              and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
7630
 
7631
         --  For an expanded name, the name is an lvalue if the expanded name
7632
         --  is an lvalue, but the prefix is never an lvalue, since it is just
7633
         --  the scope where the name is found.
7634
 
7635
         when N_Expanded_Name        =>
7636
            if N = Prefix (P) then
7637
               return May_Be_Lvalue (P);
7638
            else
7639
               return False;
7640
            end if;
7641
 
7642
         --  For a selected component A.B, A is certainly an lvalue if A.B is.
7643
         --  B is a little interesting, if we have A.B := 3, there is some
7644
         --  discussion as to whether B is an lvalue or not, we choose to say
7645
         --  it is. Note however that A is not an lvalue if it is of an access
7646
         --  type since this is an implicit dereference.
7647
 
7648
         when N_Selected_Component   =>
7649
            if N = Prefix (P)
7650
              and then Present (Etype (N))
7651
              and then Is_Access_Type (Etype (N))
7652
            then
7653
               return False;
7654
            else
7655
               return May_Be_Lvalue (P);
7656
            end if;
7657
 
7658
         --  For an indexed component or slice, the index or slice bounds is
7659
         --  never an lvalue. The prefix is an lvalue if the indexed component
7660
         --  or slice is an lvalue, except if it is an access type, where we
7661
         --  have an implicit dereference.
7662
 
7663
         when N_Indexed_Component    =>
7664
            if N /= Prefix (P)
7665
              or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
7666
            then
7667
               return False;
7668
            else
7669
               return May_Be_Lvalue (P);
7670
            end if;
7671
 
7672
         --  Prefix of a reference is an lvalue if the reference is an lvalue
7673
 
7674
         when N_Reference            =>
7675
            return May_Be_Lvalue (P);
7676
 
7677
         --  Prefix of explicit dereference is never an lvalue
7678
 
7679
         when N_Explicit_Dereference =>
7680
            return False;
7681
 
7682
         --  Function call arguments are never lvalues
7683
 
7684
         when N_Function_Call =>
7685
            return False;
7686
 
7687
         --  Positional parameter for procedure, entry,  or accept call
7688
 
7689
         when N_Procedure_Call_Statement |
7690
              N_Entry_Call_Statement     |
7691
              N_Accept_Statement
7692
         =>
7693
            declare
7694
               Proc : Entity_Id;
7695
               Form : Entity_Id;
7696
               Act  : Node_Id;
7697
 
7698
            begin
7699
               Proc := Get_Subprogram_Entity (P);
7700
 
7701
               if No (Proc) then
7702
                  return True;
7703
               end if;
7704
 
7705
               --  If we are not a list member, something is strange, so
7706
               --  be conservative and return True.
7707
 
7708
               if not Is_List_Member (N) then
7709
                  return True;
7710
               end if;
7711
 
7712
               --  We are going to find the right formal by stepping forward
7713
               --  through the formals, as we step backwards in the actuals.
7714
 
7715
               Form := First_Formal (Proc);
7716
               Act  := N;
7717
               loop
7718
                  --  If no formal, something is weird, so be conservative
7719
                  --  and return True.
7720
 
7721
                  if No (Form) then
7722
                     return True;
7723
                  end if;
7724
 
7725
                  Prev (Act);
7726
                  exit when No (Act);
7727
                  Next_Formal (Form);
7728
               end loop;
7729
 
7730
               return Ekind (Form) /= E_In_Parameter;
7731
            end;
7732
 
7733
         --  Named parameter for procedure or accept call
7734
 
7735
         when N_Parameter_Association =>
7736
            declare
7737
               Proc : Entity_Id;
7738
               Form : Entity_Id;
7739
 
7740
            begin
7741
               Proc := Get_Subprogram_Entity (Parent (P));
7742
 
7743
               if No (Proc) then
7744
                  return True;
7745
               end if;
7746
 
7747
               --  Loop through formals to find the one that matches
7748
 
7749
               Form := First_Formal (Proc);
7750
               loop
7751
                  --  If no matching formal, that's peculiar, some kind of
7752
                  --  previous error, so return True to be conservative.
7753
 
7754
                  if No (Form) then
7755
                     return True;
7756
                  end if;
7757
 
7758
                  --  Else test for match
7759
 
7760
                  if Chars (Form) = Chars (Selector_Name (P)) then
7761
                     return Ekind (Form) /= E_In_Parameter;
7762
                  end if;
7763
 
7764
                  Next_Formal (Form);
7765
               end loop;
7766
            end;
7767
 
7768
         --  Test for appearing in a conversion that itself appears in an
7769
         --  lvalue context, since this should be an lvalue.
7770
 
7771
         when N_Type_Conversion =>
7772
            return May_Be_Lvalue (P);
7773
 
7774
         --  Test for appearance in object renaming declaration
7775
 
7776
         when N_Object_Renaming_Declaration =>
7777
            return True;
7778
 
7779
         --  All other references are definitely not lvalues
7780
 
7781
         when others =>
7782
            return False;
7783
 
7784
      end case;
7785
   end May_Be_Lvalue;
7786
 
7787
   -----------------------
7788
   -- Mark_Coextensions --
7789
   -----------------------
7790
 
7791
   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
7792
      Is_Dynamic : Boolean;
7793
      --  Indicates whether the context causes nested coextensions to be
7794
      --  dynamic or static
7795
 
7796
      function Mark_Allocator (N : Node_Id) return Traverse_Result;
7797
      --  Recognize an allocator node and label it as a dynamic coextension
7798
 
7799
      --------------------
7800
      -- Mark_Allocator --
7801
      --------------------
7802
 
7803
      function Mark_Allocator (N : Node_Id) return Traverse_Result is
7804
      begin
7805
         if Nkind (N) = N_Allocator then
7806
            if Is_Dynamic then
7807
               Set_Is_Dynamic_Coextension (N);
7808
            else
7809
               Set_Is_Static_Coextension (N);
7810
            end if;
7811
         end if;
7812
 
7813
         return OK;
7814
      end Mark_Allocator;
7815
 
7816
      procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
7817
 
7818
   --  Start of processing Mark_Coextensions
7819
 
7820
   begin
7821
      case Nkind (Context_Nod) is
7822
         when N_Assignment_Statement    |
7823
              N_Simple_Return_Statement =>
7824
            Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
7825
 
7826
         when N_Object_Declaration =>
7827
            Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
7828
 
7829
         --  This routine should not be called for constructs which may not
7830
         --  contain coextensions.
7831
 
7832
         when others =>
7833
            raise Program_Error;
7834
      end case;
7835
 
7836
      Mark_Allocators (Root_Nod);
7837
   end Mark_Coextensions;
7838
 
7839
   ----------------------
7840
   -- Needs_One_Actual --
7841
   ----------------------
7842
 
7843
   function Needs_One_Actual (E : Entity_Id) return Boolean is
7844
      Formal : Entity_Id;
7845
 
7846
   begin
7847
      if Ada_Version >= Ada_05
7848
        and then Present (First_Formal (E))
7849
      then
7850
         Formal := Next_Formal (First_Formal (E));
7851
         while Present (Formal) loop
7852
            if No (Default_Value (Formal)) then
7853
               return False;
7854
            end if;
7855
 
7856
            Next_Formal (Formal);
7857
         end loop;
7858
 
7859
         return True;
7860
 
7861
      else
7862
         return False;
7863
      end if;
7864
   end Needs_One_Actual;
7865
 
7866
   ------------------------
7867
   -- New_Copy_List_Tree --
7868
   ------------------------
7869
 
7870
   function New_Copy_List_Tree (List : List_Id) return List_Id is
7871
      NL : List_Id;
7872
      E  : Node_Id;
7873
 
7874
   begin
7875
      if List = No_List then
7876
         return No_List;
7877
 
7878
      else
7879
         NL := New_List;
7880
         E := First (List);
7881
 
7882
         while Present (E) loop
7883
            Append (New_Copy_Tree (E), NL);
7884
            E := Next (E);
7885
         end loop;
7886
 
7887
         return NL;
7888
      end if;
7889
   end New_Copy_List_Tree;
7890
 
7891
   -------------------
7892
   -- New_Copy_Tree --
7893
   -------------------
7894
 
7895
   use Atree.Unchecked_Access;
7896
   use Atree_Private_Part;
7897
 
7898
   --  Our approach here requires a two pass traversal of the tree. The
7899
   --  first pass visits all nodes that eventually will be copied looking
7900
   --  for defining Itypes. If any defining Itypes are found, then they are
7901
   --  copied, and an entry is added to the replacement map. In the second
7902
   --  phase, the tree is copied, using the replacement map to replace any
7903
   --  Itype references within the copied tree.
7904
 
7905
   --  The following hash tables are used if the Map supplied has more
7906
   --  than hash threshhold entries to speed up access to the map. If
7907
   --  there are fewer entries, then the map is searched sequentially
7908
   --  (because setting up a hash table for only a few entries takes
7909
   --  more time than it saves.
7910
 
7911
   function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
7912
   --  Hash function used for hash operations
7913
 
7914
   -------------------
7915
   -- New_Copy_Hash --
7916
   -------------------
7917
 
7918
   function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
7919
   begin
7920
      return Nat (E) mod (NCT_Header_Num'Last + 1);
7921
   end New_Copy_Hash;
7922
 
7923
   ---------------
7924
   -- NCT_Assoc --
7925
   ---------------
7926
 
7927
   --  The hash table NCT_Assoc associates old entities in the table
7928
   --  with their corresponding new entities (i.e. the pairs of entries
7929
   --  presented in the original Map argument are Key-Element pairs).
7930
 
7931
   package NCT_Assoc is new Simple_HTable (
7932
     Header_Num => NCT_Header_Num,
7933
     Element    => Entity_Id,
7934
     No_Element => Empty,
7935
     Key        => Entity_Id,
7936
     Hash       => New_Copy_Hash,
7937
     Equal      => Types."=");
7938
 
7939
   ---------------------
7940
   -- NCT_Itype_Assoc --
7941
   ---------------------
7942
 
7943
   --  The hash table NCT_Itype_Assoc contains entries only for those
7944
   --  old nodes which have a non-empty Associated_Node_For_Itype set.
7945
   --  The key is the associated node, and the element is the new node
7946
   --  itself (NOT the associated node for the new node).
7947
 
7948
   package NCT_Itype_Assoc is new Simple_HTable (
7949
     Header_Num => NCT_Header_Num,
7950
     Element    => Entity_Id,
7951
     No_Element => Empty,
7952
     Key        => Entity_Id,
7953
     Hash       => New_Copy_Hash,
7954
     Equal      => Types."=");
7955
 
7956
   --  Start of processing for New_Copy_Tree function
7957
 
7958
   function New_Copy_Tree
7959
     (Source    : Node_Id;
7960
      Map       : Elist_Id := No_Elist;
7961
      New_Sloc  : Source_Ptr := No_Location;
7962
      New_Scope : Entity_Id := Empty) return Node_Id
7963
   is
7964
      Actual_Map : Elist_Id := Map;
7965
      --  This is the actual map for the copy. It is initialized with the
7966
      --  given elements, and then enlarged as required for Itypes that are
7967
      --  copied during the first phase of the copy operation. The visit
7968
      --  procedures add elements to this map as Itypes are encountered.
7969
      --  The reason we cannot use Map directly, is that it may well be
7970
      --  (and normally is) initialized to No_Elist, and if we have mapped
7971
      --  entities, we have to reset it to point to a real Elist.
7972
 
7973
      function Assoc (N : Node_Or_Entity_Id) return Node_Id;
7974
      --  Called during second phase to map entities into their corresponding
7975
      --  copies using Actual_Map. If the argument is not an entity, or is not
7976
      --  in Actual_Map, then it is returned unchanged.
7977
 
7978
      procedure Build_NCT_Hash_Tables;
7979
      --  Builds hash tables (number of elements >= threshold value)
7980
 
7981
      function Copy_Elist_With_Replacement
7982
        (Old_Elist : Elist_Id) return Elist_Id;
7983
      --  Called during second phase to copy element list doing replacements
7984
 
7985
      procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
7986
      --  Called during the second phase to process a copied Itype. The actual
7987
      --  copy happened during the first phase (so that we could make the entry
7988
      --  in the mapping), but we still have to deal with the descendents of
7989
      --  the copied Itype and copy them where necessary.
7990
 
7991
      function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
7992
      --  Called during second phase to copy list doing replacements
7993
 
7994
      function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
7995
      --  Called during second phase to copy node doing replacements
7996
 
7997
      procedure Visit_Elist (E : Elist_Id);
7998
      --  Called during first phase to visit all elements of an Elist
7999
 
8000
      procedure Visit_Field (F : Union_Id; N : Node_Id);
8001
      --  Visit a single field, recursing to call Visit_Node or Visit_List
8002
      --  if the field is a syntactic descendent of the current node (i.e.
8003
      --  its parent is Node N).
8004
 
8005
      procedure Visit_Itype (Old_Itype : Entity_Id);
8006
      --  Called during first phase to visit subsidiary fields of a defining
8007
      --  Itype, and also create a copy and make an entry in the replacement
8008
      --  map for the new copy.
8009
 
8010
      procedure Visit_List (L : List_Id);
8011
      --  Called during first phase to visit all elements of a List
8012
 
8013
      procedure Visit_Node (N : Node_Or_Entity_Id);
8014
      --  Called during first phase to visit a node and all its subtrees
8015
 
8016
      -----------
8017
      -- Assoc --
8018
      -----------
8019
 
8020
      function Assoc (N : Node_Or_Entity_Id) return Node_Id is
8021
         E   : Elmt_Id;
8022
         Ent : Entity_Id;
8023
 
8024
      begin
8025
         if not Has_Extension (N) or else No (Actual_Map) then
8026
            return N;
8027
 
8028
         elsif NCT_Hash_Tables_Used then
8029
            Ent := NCT_Assoc.Get (Entity_Id (N));
8030
 
8031
            if Present (Ent) then
8032
               return Ent;
8033
            else
8034
               return N;
8035
            end if;
8036
 
8037
         --  No hash table used, do serial search
8038
 
8039
         else
8040
            E := First_Elmt (Actual_Map);
8041
            while Present (E) loop
8042
               if Node (E) = N then
8043
                  return Node (Next_Elmt (E));
8044
               else
8045
                  E := Next_Elmt (Next_Elmt (E));
8046
               end if;
8047
            end loop;
8048
         end if;
8049
 
8050
         return N;
8051
      end Assoc;
8052
 
8053
      ---------------------------
8054
      -- Build_NCT_Hash_Tables --
8055
      ---------------------------
8056
 
8057
      procedure Build_NCT_Hash_Tables is
8058
         Elmt : Elmt_Id;
8059
         Ent  : Entity_Id;
8060
      begin
8061
         if NCT_Hash_Table_Setup then
8062
            NCT_Assoc.Reset;
8063
            NCT_Itype_Assoc.Reset;
8064
         end if;
8065
 
8066
         Elmt := First_Elmt (Actual_Map);
8067
         while Present (Elmt) loop
8068
            Ent := Node (Elmt);
8069
 
8070
            --  Get new entity, and associate old and new
8071
 
8072
            Next_Elmt (Elmt);
8073
            NCT_Assoc.Set (Ent, Node (Elmt));
8074
 
8075
            if Is_Type (Ent) then
8076
               declare
8077
                  Anode : constant Entity_Id :=
8078
                            Associated_Node_For_Itype (Ent);
8079
 
8080
               begin
8081
                  if Present (Anode) then
8082
 
8083
                     --  Enter a link between the associated node of the
8084
                     --  old Itype and the new Itype, for updating later
8085
                     --  when node is copied.
8086
 
8087
                     NCT_Itype_Assoc.Set (Anode, Node (Elmt));
8088
                  end if;
8089
               end;
8090
            end if;
8091
 
8092
            Next_Elmt (Elmt);
8093
         end loop;
8094
 
8095
         NCT_Hash_Tables_Used := True;
8096
         NCT_Hash_Table_Setup := True;
8097
      end Build_NCT_Hash_Tables;
8098
 
8099
      ---------------------------------
8100
      -- Copy_Elist_With_Replacement --
8101
      ---------------------------------
8102
 
8103
      function Copy_Elist_With_Replacement
8104
        (Old_Elist : Elist_Id) return Elist_Id
8105
      is
8106
         M         : Elmt_Id;
8107
         New_Elist : Elist_Id;
8108
 
8109
      begin
8110
         if No (Old_Elist) then
8111
            return No_Elist;
8112
 
8113
         else
8114
            New_Elist := New_Elmt_List;
8115
 
8116
            M := First_Elmt (Old_Elist);
8117
            while Present (M) loop
8118
               Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
8119
               Next_Elmt (M);
8120
            end loop;
8121
         end if;
8122
 
8123
         return New_Elist;
8124
      end Copy_Elist_With_Replacement;
8125
 
8126
      ---------------------------------
8127
      -- Copy_Itype_With_Replacement --
8128
      ---------------------------------
8129
 
8130
      --  This routine exactly parallels its phase one analog Visit_Itype,
8131
 
8132
      procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
8133
      begin
8134
         --  Translate Next_Entity, Scope and Etype fields, in case they
8135
         --  reference entities that have been mapped into copies.
8136
 
8137
         Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
8138
         Set_Etype       (New_Itype, Assoc (Etype       (New_Itype)));
8139
 
8140
         if Present (New_Scope) then
8141
            Set_Scope    (New_Itype, New_Scope);
8142
         else
8143
            Set_Scope    (New_Itype, Assoc (Scope       (New_Itype)));
8144
         end if;
8145
 
8146
         --  Copy referenced fields
8147
 
8148
         if Is_Discrete_Type (New_Itype) then
8149
            Set_Scalar_Range (New_Itype,
8150
              Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
8151
 
8152
         elsif Has_Discriminants (Base_Type (New_Itype)) then
8153
            Set_Discriminant_Constraint (New_Itype,
8154
              Copy_Elist_With_Replacement
8155
                (Discriminant_Constraint (New_Itype)));
8156
 
8157
         elsif Is_Array_Type (New_Itype) then
8158
            if Present (First_Index (New_Itype)) then
8159
               Set_First_Index (New_Itype,
8160
                 First (Copy_List_With_Replacement
8161
                         (List_Containing (First_Index (New_Itype)))));
8162
            end if;
8163
 
8164
            if Is_Packed (New_Itype) then
8165
               Set_Packed_Array_Type (New_Itype,
8166
                 Copy_Node_With_Replacement
8167
                   (Packed_Array_Type (New_Itype)));
8168
            end if;
8169
         end if;
8170
      end Copy_Itype_With_Replacement;
8171
 
8172
      --------------------------------
8173
      -- Copy_List_With_Replacement --
8174
      --------------------------------
8175
 
8176
      function Copy_List_With_Replacement
8177
        (Old_List : List_Id) return List_Id
8178
      is
8179
         New_List : List_Id;
8180
         E        : Node_Id;
8181
 
8182
      begin
8183
         if Old_List = No_List then
8184
            return No_List;
8185
 
8186
         else
8187
            New_List := Empty_List;
8188
 
8189
            E := First (Old_List);
8190
            while Present (E) loop
8191
               Append (Copy_Node_With_Replacement (E), New_List);
8192
               Next (E);
8193
            end loop;
8194
 
8195
            return New_List;
8196
         end if;
8197
      end Copy_List_With_Replacement;
8198
 
8199
      --------------------------------
8200
      -- Copy_Node_With_Replacement --
8201
      --------------------------------
8202
 
8203
      function Copy_Node_With_Replacement
8204
        (Old_Node : Node_Id) return Node_Id
8205
      is
8206
         New_Node : Node_Id;
8207
 
8208
         procedure Adjust_Named_Associations
8209
           (Old_Node : Node_Id;
8210
            New_Node : Node_Id);
8211
         --  If a call node has named associations, these are chained through
8212
         --  the First_Named_Actual, Next_Named_Actual links. These must be
8213
         --  propagated separately to the new parameter list, because these
8214
         --  are not syntactic fields.
8215
 
8216
         function Copy_Field_With_Replacement
8217
           (Field : Union_Id) return Union_Id;
8218
         --  Given Field, which is a field of Old_Node, return a copy of it
8219
         --  if it is a syntactic field (i.e. its parent is Node), setting
8220
         --  the parent of the copy to poit to New_Node. Otherwise returns
8221
         --  the field (possibly mapped if it is an entity).
8222
 
8223
         -------------------------------
8224
         -- Adjust_Named_Associations --
8225
         -------------------------------
8226
 
8227
         procedure Adjust_Named_Associations
8228
           (Old_Node : Node_Id;
8229
            New_Node : Node_Id)
8230
         is
8231
            Old_E : Node_Id;
8232
            New_E : Node_Id;
8233
 
8234
            Old_Next : Node_Id;
8235
            New_Next : Node_Id;
8236
 
8237
         begin
8238
            Old_E := First (Parameter_Associations (Old_Node));
8239
            New_E := First (Parameter_Associations (New_Node));
8240
            while Present (Old_E) loop
8241
               if Nkind (Old_E) = N_Parameter_Association
8242
                 and then Present (Next_Named_Actual (Old_E))
8243
               then
8244
                  if First_Named_Actual (Old_Node)
8245
                    =  Explicit_Actual_Parameter (Old_E)
8246
                  then
8247
                     Set_First_Named_Actual
8248
                       (New_Node, Explicit_Actual_Parameter (New_E));
8249
                  end if;
8250
 
8251
                  --  Now scan parameter list from the beginning,to locate
8252
                  --  next named actual, which can be out of order.
8253
 
8254
                  Old_Next := First (Parameter_Associations (Old_Node));
8255
                  New_Next := First (Parameter_Associations (New_Node));
8256
 
8257
                  while Nkind (Old_Next) /= N_Parameter_Association
8258
                    or else  Explicit_Actual_Parameter (Old_Next)
8259
                      /= Next_Named_Actual (Old_E)
8260
                  loop
8261
                     Next (Old_Next);
8262
                     Next (New_Next);
8263
                  end loop;
8264
 
8265
                  Set_Next_Named_Actual
8266
                    (New_E, Explicit_Actual_Parameter (New_Next));
8267
               end if;
8268
 
8269
               Next (Old_E);
8270
               Next (New_E);
8271
            end loop;
8272
         end Adjust_Named_Associations;
8273
 
8274
         ---------------------------------
8275
         -- Copy_Field_With_Replacement --
8276
         ---------------------------------
8277
 
8278
         function Copy_Field_With_Replacement
8279
           (Field : Union_Id) return Union_Id
8280
         is
8281
         begin
8282
            if Field = Union_Id (Empty) then
8283
               return Field;
8284
 
8285
            elsif Field in Node_Range then
8286
               declare
8287
                  Old_N : constant Node_Id := Node_Id (Field);
8288
                  New_N : Node_Id;
8289
 
8290
               begin
8291
                  --  If syntactic field, as indicated by the parent pointer
8292
                  --  being set, then copy the referenced node recursively.
8293
 
8294
                  if Parent (Old_N) = Old_Node then
8295
                     New_N := Copy_Node_With_Replacement (Old_N);
8296
 
8297
                     if New_N /= Old_N then
8298
                        Set_Parent (New_N, New_Node);
8299
                     end if;
8300
 
8301
                  --  For semantic fields, update possible entity reference
8302
                  --  from the replacement map.
8303
 
8304
                  else
8305
                     New_N := Assoc (Old_N);
8306
                  end if;
8307
 
8308
                  return Union_Id (New_N);
8309
               end;
8310
 
8311
            elsif Field in List_Range then
8312
               declare
8313
                  Old_L : constant List_Id := List_Id (Field);
8314
                  New_L : List_Id;
8315
 
8316
               begin
8317
                  --  If syntactic field, as indicated by the parent pointer,
8318
                  --  then recursively copy the entire referenced list.
8319
 
8320
                  if Parent (Old_L) = Old_Node then
8321
                     New_L := Copy_List_With_Replacement (Old_L);
8322
                     Set_Parent (New_L, New_Node);
8323
 
8324
                  --  For semantic list, just returned unchanged
8325
 
8326
                  else
8327
                     New_L := Old_L;
8328
                  end if;
8329
 
8330
                  return Union_Id (New_L);
8331
               end;
8332
 
8333
            --  Anything other than a list or a node is returned unchanged
8334
 
8335
            else
8336
               return Field;
8337
            end if;
8338
         end Copy_Field_With_Replacement;
8339
 
8340
      --  Start of processing for Copy_Node_With_Replacement
8341
 
8342
      begin
8343
         if Old_Node <= Empty_Or_Error then
8344
            return Old_Node;
8345
 
8346
         elsif Has_Extension (Old_Node) then
8347
            return Assoc (Old_Node);
8348
 
8349
         else
8350
            New_Node := New_Copy (Old_Node);
8351
 
8352
            --  If the node we are copying is the associated node of a
8353
            --  previously copied Itype, then adjust the associated node
8354
            --  of the copy of that Itype accordingly.
8355
 
8356
            if Present (Actual_Map) then
8357
               declare
8358
                  E   : Elmt_Id;
8359
                  Ent : Entity_Id;
8360
 
8361
               begin
8362
                  --  Case of hash table used
8363
 
8364
                  if NCT_Hash_Tables_Used then
8365
                     Ent := NCT_Itype_Assoc.Get (Old_Node);
8366
 
8367
                     if Present (Ent) then
8368
                        Set_Associated_Node_For_Itype (Ent, New_Node);
8369
                     end if;
8370
 
8371
                  --  Case of no hash table used
8372
 
8373
                  else
8374
                     E := First_Elmt (Actual_Map);
8375
                     while Present (E) loop
8376
                        if Is_Itype (Node (E))
8377
                          and then
8378
                            Old_Node = Associated_Node_For_Itype (Node (E))
8379
                        then
8380
                           Set_Associated_Node_For_Itype
8381
                             (Node (Next_Elmt (E)), New_Node);
8382
                        end if;
8383
 
8384
                        E := Next_Elmt (Next_Elmt (E));
8385
                     end loop;
8386
                  end if;
8387
               end;
8388
            end if;
8389
 
8390
            --  Recursively copy descendents
8391
 
8392
            Set_Field1
8393
              (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
8394
            Set_Field2
8395
              (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
8396
            Set_Field3
8397
              (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
8398
            Set_Field4
8399
              (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
8400
            Set_Field5
8401
              (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
8402
 
8403
            --  Adjust Sloc of new node if necessary
8404
 
8405
            if New_Sloc /= No_Location then
8406
               Set_Sloc (New_Node, New_Sloc);
8407
 
8408
               --  If we adjust the Sloc, then we are essentially making
8409
               --  a completely new node, so the Comes_From_Source flag
8410
               --  should be reset to the proper default value.
8411
 
8412
               Nodes.Table (New_Node).Comes_From_Source :=
8413
                 Default_Node.Comes_From_Source;
8414
            end if;
8415
 
8416
            --  If the node is call and has named associations,
8417
            --  set the corresponding links in the copy.
8418
 
8419
            if (Nkind (Old_Node) = N_Function_Call
8420
                 or else Nkind (Old_Node) = N_Entry_Call_Statement
8421
                 or else
8422
                   Nkind (Old_Node) = N_Procedure_Call_Statement)
8423
              and then Present (First_Named_Actual (Old_Node))
8424
            then
8425
               Adjust_Named_Associations (Old_Node, New_Node);
8426
            end if;
8427
 
8428
            --  Reset First_Real_Statement for Handled_Sequence_Of_Statements.
8429
            --  The replacement mechanism applies to entities, and is not used
8430
            --  here. Eventually we may need a more general graph-copying
8431
            --  routine. For now, do a sequential search to find desired node.
8432
 
8433
            if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
8434
              and then Present (First_Real_Statement (Old_Node))
8435
            then
8436
               declare
8437
                  Old_F  : constant Node_Id := First_Real_Statement (Old_Node);
8438
                  N1, N2 : Node_Id;
8439
 
8440
               begin
8441
                  N1 := First (Statements (Old_Node));
8442
                  N2 := First (Statements (New_Node));
8443
 
8444
                  while N1 /= Old_F loop
8445
                     Next (N1);
8446
                     Next (N2);
8447
                  end loop;
8448
 
8449
                  Set_First_Real_Statement (New_Node, N2);
8450
               end;
8451
            end if;
8452
         end if;
8453
 
8454
         --  All done, return copied node
8455
 
8456
         return New_Node;
8457
      end Copy_Node_With_Replacement;
8458
 
8459
      -----------------
8460
      -- Visit_Elist --
8461
      -----------------
8462
 
8463
      procedure Visit_Elist (E : Elist_Id) is
8464
         Elmt : Elmt_Id;
8465
      begin
8466
         if Present (E) then
8467
            Elmt := First_Elmt (E);
8468
 
8469
            while Elmt /= No_Elmt loop
8470
               Visit_Node (Node (Elmt));
8471
               Next_Elmt (Elmt);
8472
            end loop;
8473
         end if;
8474
      end Visit_Elist;
8475
 
8476
      -----------------
8477
      -- Visit_Field --
8478
      -----------------
8479
 
8480
      procedure Visit_Field (F : Union_Id; N : Node_Id) is
8481
      begin
8482
         if F = Union_Id (Empty) then
8483
            return;
8484
 
8485
         elsif F in Node_Range then
8486
 
8487
            --  Copy node if it is syntactic, i.e. its parent pointer is
8488
            --  set to point to the field that referenced it (certain
8489
            --  Itypes will also meet this criterion, which is fine, since
8490
            --  these are clearly Itypes that do need to be copied, since
8491
            --  we are copying their parent.)
8492
 
8493
            if Parent (Node_Id (F)) = N then
8494
               Visit_Node (Node_Id (F));
8495
               return;
8496
 
8497
            --  Another case, if we are pointing to an Itype, then we want
8498
            --  to copy it if its associated node is somewhere in the tree
8499
            --  being copied.
8500
 
8501
            --  Note: the exclusion of self-referential copies is just an
8502
            --  optimization, since the search of the already copied list
8503
            --  would catch it, but it is a common case (Etype pointing
8504
            --  to itself for an Itype that is a base type).
8505
 
8506
            elsif Has_Extension (Node_Id (F))
8507
              and then Is_Itype (Entity_Id (F))
8508
              and then Node_Id (F) /= N
8509
            then
8510
               declare
8511
                  P : Node_Id;
8512
 
8513
               begin
8514
                  P := Associated_Node_For_Itype (Node_Id (F));
8515
                  while Present (P) loop
8516
                     if P = Source then
8517
                        Visit_Node (Node_Id (F));
8518
                        return;
8519
                     else
8520
                        P := Parent (P);
8521
                     end if;
8522
                  end loop;
8523
 
8524
                  --  An Itype whose parent is not being copied definitely
8525
                  --  should NOT be copied, since it does not belong in any
8526
                  --  sense to the copied subtree.
8527
 
8528
                  return;
8529
               end;
8530
            end if;
8531
 
8532
         elsif F in List_Range
8533
           and then Parent (List_Id (F)) = N
8534
         then
8535
            Visit_List (List_Id (F));
8536
            return;
8537
         end if;
8538
      end Visit_Field;
8539
 
8540
      -----------------
8541
      -- Visit_Itype --
8542
      -----------------
8543
 
8544
      procedure Visit_Itype (Old_Itype : Entity_Id) is
8545
         New_Itype : Entity_Id;
8546
         E         : Elmt_Id;
8547
         Ent       : Entity_Id;
8548
 
8549
      begin
8550
         --  Itypes that describe the designated type of access to subprograms
8551
         --  have the structure of subprogram declarations, with signatures,
8552
         --  etc. Either we duplicate the signatures completely, or choose to
8553
         --  share such itypes, which is fine because their elaboration will
8554
         --  have no side effects.
8555
 
8556
         if Ekind (Old_Itype) = E_Subprogram_Type then
8557
            return;
8558
         end if;
8559
 
8560
         New_Itype := New_Copy (Old_Itype);
8561
 
8562
         --  The new Itype has all the attributes of the old one, and
8563
         --  we just copy the contents of the entity. However, the back-end
8564
         --  needs different names for debugging purposes, so we create a
8565
         --  new internal name for it in all cases.
8566
 
8567
         Set_Chars (New_Itype, New_Internal_Name ('T'));
8568
 
8569
         --  If our associated node is an entity that has already been copied,
8570
         --  then set the associated node of the copy to point to the right
8571
         --  copy. If we have copied an Itype that is itself the associated
8572
         --  node of some previously copied Itype, then we set the right
8573
         --  pointer in the other direction.
8574
 
8575
         if Present (Actual_Map) then
8576
 
8577
            --  Case of hash tables used
8578
 
8579
            if NCT_Hash_Tables_Used then
8580
 
8581
               Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
8582
 
8583
               if Present (Ent) then
8584
                  Set_Associated_Node_For_Itype (New_Itype, Ent);
8585
               end if;
8586
 
8587
               Ent := NCT_Itype_Assoc.Get (Old_Itype);
8588
               if Present (Ent) then
8589
                  Set_Associated_Node_For_Itype (Ent, New_Itype);
8590
 
8591
               --  If the hash table has no association for this Itype and
8592
               --  its associated node, enter one now.
8593
 
8594
               else
8595
                  NCT_Itype_Assoc.Set
8596
                    (Associated_Node_For_Itype (Old_Itype), New_Itype);
8597
               end if;
8598
 
8599
            --  Case of hash tables not used
8600
 
8601
            else
8602
               E := First_Elmt (Actual_Map);
8603
               while Present (E) loop
8604
                  if Associated_Node_For_Itype (Old_Itype) = Node (E) then
8605
                     Set_Associated_Node_For_Itype
8606
                       (New_Itype, Node (Next_Elmt (E)));
8607
                  end if;
8608
 
8609
                  if Is_Type (Node (E))
8610
                    and then
8611
                      Old_Itype = Associated_Node_For_Itype (Node (E))
8612
                  then
8613
                     Set_Associated_Node_For_Itype
8614
                       (Node (Next_Elmt (E)), New_Itype);
8615
                  end if;
8616
 
8617
                  E := Next_Elmt (Next_Elmt (E));
8618
               end loop;
8619
            end if;
8620
         end if;
8621
 
8622
         if Present (Freeze_Node (New_Itype)) then
8623
            Set_Is_Frozen (New_Itype, False);
8624
            Set_Freeze_Node (New_Itype, Empty);
8625
         end if;
8626
 
8627
         --  Add new association to map
8628
 
8629
         if No (Actual_Map) then
8630
            Actual_Map := New_Elmt_List;
8631
         end if;
8632
 
8633
         Append_Elmt (Old_Itype, Actual_Map);
8634
         Append_Elmt (New_Itype, Actual_Map);
8635
 
8636
         if NCT_Hash_Tables_Used then
8637
            NCT_Assoc.Set (Old_Itype, New_Itype);
8638
 
8639
         else
8640
            NCT_Table_Entries := NCT_Table_Entries + 1;
8641
 
8642
            if NCT_Table_Entries > NCT_Hash_Threshhold then
8643
               Build_NCT_Hash_Tables;
8644
            end if;
8645
         end if;
8646
 
8647
         --  If a record subtype is simply copied, the entity list will be
8648
         --  shared. Thus cloned_Subtype must be set to indicate the sharing.
8649
 
8650
         if Ekind (Old_Itype) = E_Record_Subtype
8651
           or else Ekind (Old_Itype) = E_Class_Wide_Subtype
8652
         then
8653
            Set_Cloned_Subtype (New_Itype, Old_Itype);
8654
         end if;
8655
 
8656
         --  Visit descendents that eventually get copied
8657
 
8658
         Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
8659
 
8660
         if Is_Discrete_Type (Old_Itype) then
8661
            Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
8662
 
8663
         elsif Has_Discriminants (Base_Type (Old_Itype)) then
8664
            --  ??? This should involve call to Visit_Field
8665
            Visit_Elist (Discriminant_Constraint (Old_Itype));
8666
 
8667
         elsif Is_Array_Type (Old_Itype) then
8668
            if Present (First_Index (Old_Itype)) then
8669
               Visit_Field (Union_Id (List_Containing
8670
                                (First_Index (Old_Itype))),
8671
                            Old_Itype);
8672
            end if;
8673
 
8674
            if Is_Packed (Old_Itype) then
8675
               Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
8676
                            Old_Itype);
8677
            end if;
8678
         end if;
8679
      end Visit_Itype;
8680
 
8681
      ----------------
8682
      -- Visit_List --
8683
      ----------------
8684
 
8685
      procedure Visit_List (L : List_Id) is
8686
         N : Node_Id;
8687
      begin
8688
         if L /= No_List then
8689
            N := First (L);
8690
 
8691
            while Present (N) loop
8692
               Visit_Node (N);
8693
               Next (N);
8694
            end loop;
8695
         end if;
8696
      end Visit_List;
8697
 
8698
      ----------------
8699
      -- Visit_Node --
8700
      ----------------
8701
 
8702
      procedure Visit_Node (N : Node_Or_Entity_Id) is
8703
 
8704
      --  Start of processing for Visit_Node
8705
 
8706
      begin
8707
         --  Handle case of an Itype, which must be copied
8708
 
8709
         if Has_Extension (N)
8710
           and then Is_Itype (N)
8711
         then
8712
            --  Nothing to do if already in the list. This can happen with an
8713
            --  Itype entity that appears more than once in the tree.
8714
            --  Note that we do not want to visit descendents in this case.
8715
 
8716
            --  Test for already in list when hash table is used
8717
 
8718
            if NCT_Hash_Tables_Used then
8719
               if Present (NCT_Assoc.Get (Entity_Id (N))) then
8720
                  return;
8721
               end if;
8722
 
8723
            --  Test for already in list when hash table not used
8724
 
8725
            else
8726
               declare
8727
                  E : Elmt_Id;
8728
               begin
8729
                  if Present (Actual_Map) then
8730
                     E := First_Elmt (Actual_Map);
8731
                     while Present (E) loop
8732
                        if Node (E) = N then
8733
                           return;
8734
                        else
8735
                           E := Next_Elmt (Next_Elmt (E));
8736
                        end if;
8737
                     end loop;
8738
                  end if;
8739
               end;
8740
            end if;
8741
 
8742
            Visit_Itype (N);
8743
         end if;
8744
 
8745
         --  Visit descendents
8746
 
8747
         Visit_Field (Field1 (N), N);
8748
         Visit_Field (Field2 (N), N);
8749
         Visit_Field (Field3 (N), N);
8750
         Visit_Field (Field4 (N), N);
8751
         Visit_Field (Field5 (N), N);
8752
      end Visit_Node;
8753
 
8754
   --  Start of processing for New_Copy_Tree
8755
 
8756
   begin
8757
      Actual_Map := Map;
8758
 
8759
      --  See if we should use hash table
8760
 
8761
      if No (Actual_Map) then
8762
         NCT_Hash_Tables_Used := False;
8763
 
8764
      else
8765
         declare
8766
            Elmt : Elmt_Id;
8767
 
8768
         begin
8769
            NCT_Table_Entries := 0;
8770
 
8771
            Elmt := First_Elmt (Actual_Map);
8772
            while Present (Elmt) loop
8773
               NCT_Table_Entries := NCT_Table_Entries + 1;
8774
               Next_Elmt (Elmt);
8775
               Next_Elmt (Elmt);
8776
            end loop;
8777
 
8778
            if NCT_Table_Entries > NCT_Hash_Threshhold then
8779
               Build_NCT_Hash_Tables;
8780
            else
8781
               NCT_Hash_Tables_Used := False;
8782
            end if;
8783
         end;
8784
      end if;
8785
 
8786
      --  Hash table set up if required, now start phase one by visiting
8787
      --  top node (we will recursively visit the descendents).
8788
 
8789
      Visit_Node (Source);
8790
 
8791
      --  Now the second phase of the copy can start. First we process
8792
      --  all the mapped entities, copying their descendents.
8793
 
8794
      if Present (Actual_Map) then
8795
         declare
8796
            Elmt      : Elmt_Id;
8797
            New_Itype : Entity_Id;
8798
         begin
8799
            Elmt := First_Elmt (Actual_Map);
8800
            while Present (Elmt) loop
8801
               Next_Elmt (Elmt);
8802
               New_Itype := Node (Elmt);
8803
               Copy_Itype_With_Replacement (New_Itype);
8804
               Next_Elmt (Elmt);
8805
            end loop;
8806
         end;
8807
      end if;
8808
 
8809
      --  Now we can copy the actual tree
8810
 
8811
      return Copy_Node_With_Replacement (Source);
8812
   end New_Copy_Tree;
8813
 
8814
   -------------------------
8815
   -- New_External_Entity --
8816
   -------------------------
8817
 
8818
   function New_External_Entity
8819
     (Kind         : Entity_Kind;
8820
      Scope_Id     : Entity_Id;
8821
      Sloc_Value   : Source_Ptr;
8822
      Related_Id   : Entity_Id;
8823
      Suffix       : Character;
8824
      Suffix_Index : Nat := 0;
8825
      Prefix       : Character := ' ') return Entity_Id
8826
   is
8827
      N : constant Entity_Id :=
8828
            Make_Defining_Identifier (Sloc_Value,
8829
              New_External_Name
8830
                (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
8831
 
8832
   begin
8833
      Set_Ekind          (N, Kind);
8834
      Set_Is_Internal    (N, True);
8835
      Append_Entity      (N, Scope_Id);
8836
      Set_Public_Status  (N);
8837
 
8838
      if Kind in Type_Kind then
8839
         Init_Size_Align (N);
8840
      end if;
8841
 
8842
      return N;
8843
   end New_External_Entity;
8844
 
8845
   -------------------------
8846
   -- New_Internal_Entity --
8847
   -------------------------
8848
 
8849
   function New_Internal_Entity
8850
     (Kind       : Entity_Kind;
8851
      Scope_Id   : Entity_Id;
8852
      Sloc_Value : Source_Ptr;
8853
      Id_Char    : Character) return Entity_Id
8854
   is
8855
      N : constant Entity_Id :=
8856
            Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
8857
 
8858
   begin
8859
      Set_Ekind          (N, Kind);
8860
      Set_Is_Internal    (N, True);
8861
      Append_Entity      (N, Scope_Id);
8862
 
8863
      if Kind in Type_Kind then
8864
         Init_Size_Align (N);
8865
      end if;
8866
 
8867
      return N;
8868
   end New_Internal_Entity;
8869
 
8870
   -----------------
8871
   -- Next_Actual --
8872
   -----------------
8873
 
8874
   function Next_Actual (Actual_Id : Node_Id) return Node_Id is
8875
      N  : Node_Id;
8876
 
8877
   begin
8878
      --  If we are pointing at a positional parameter, it is a member of a
8879
      --  node list (the list of parameters), and the next parameter is the
8880
      --  next node on the list, unless we hit a parameter association, then
8881
      --  we shift to using the chain whose head is the First_Named_Actual in
8882
      --  the parent, and then is threaded using the Next_Named_Actual of the
8883
      --  Parameter_Association. All this fiddling is because the original node
8884
      --  list is in the textual call order, and what we need is the
8885
      --  declaration order.
8886
 
8887
      if Is_List_Member (Actual_Id) then
8888
         N := Next (Actual_Id);
8889
 
8890
         if Nkind (N) = N_Parameter_Association then
8891
            return First_Named_Actual (Parent (Actual_Id));
8892
         else
8893
            return N;
8894
         end if;
8895
 
8896
      else
8897
         return Next_Named_Actual (Parent (Actual_Id));
8898
      end if;
8899
   end Next_Actual;
8900
 
8901
   procedure Next_Actual (Actual_Id : in out Node_Id) is
8902
   begin
8903
      Actual_Id := Next_Actual (Actual_Id);
8904
   end Next_Actual;
8905
 
8906
   -----------------------
8907
   -- Normalize_Actuals --
8908
   -----------------------
8909
 
8910
   --  Chain actuals according to formals of subprogram. If there are no named
8911
   --  associations, the chain is simply the list of Parameter Associations,
8912
   --  since the order is the same as the declaration order. If there are named
8913
   --  associations, then the First_Named_Actual field in the N_Function_Call
8914
   --  or N_Procedure_Call_Statement node points to the Parameter_Association
8915
   --  node for the parameter that comes first in declaration order. The
8916
   --  remaining named parameters are then chained in declaration order using
8917
   --  Next_Named_Actual.
8918
 
8919
   --  This routine also verifies that the number of actuals is compatible with
8920
   --  the number and default values of formals, but performs no type checking
8921
   --  (type checking is done by the caller).
8922
 
8923
   --  If the matching succeeds, Success is set to True and the caller proceeds
8924
   --  with type-checking. If the match is unsuccessful, then Success is set to
8925
   --  False, and the caller attempts a different interpretation, if there is
8926
   --  one.
8927
 
8928
   --  If the flag Report is on, the call is not overloaded, and a failure to
8929
   --  match can be reported here, rather than in the caller.
8930
 
8931
   procedure Normalize_Actuals
8932
     (N       : Node_Id;
8933
      S       : Entity_Id;
8934
      Report  : Boolean;
8935
      Success : out Boolean)
8936
   is
8937
      Actuals     : constant List_Id := Parameter_Associations (N);
8938
      Actual      : Node_Id := Empty;
8939
      Formal      : Entity_Id;
8940
      Last        : Node_Id := Empty;
8941
      First_Named : Node_Id := Empty;
8942
      Found       : Boolean;
8943
 
8944
      Formals_To_Match : Integer := 0;
8945
      Actuals_To_Match : Integer := 0;
8946
 
8947
      procedure Chain (A : Node_Id);
8948
      --  Add named actual at the proper place in the list, using the
8949
      --  Next_Named_Actual link.
8950
 
8951
      function Reporting return Boolean;
8952
      --  Determines if an error is to be reported. To report an error, we
8953
      --  need Report to be True, and also we do not report errors caused
8954
      --  by calls to init procs that occur within other init procs. Such
8955
      --  errors must always be cascaded errors, since if all the types are
8956
      --  declared correctly, the compiler will certainly build decent calls!
8957
 
8958
      -----------
8959
      -- Chain --
8960
      -----------
8961
 
8962
      procedure Chain (A : Node_Id) is
8963
      begin
8964
         if No (Last) then
8965
 
8966
            --  Call node points to first actual in list
8967
 
8968
            Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
8969
 
8970
         else
8971
            Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
8972
         end if;
8973
 
8974
         Last := A;
8975
         Set_Next_Named_Actual (Last, Empty);
8976
      end Chain;
8977
 
8978
      ---------------
8979
      -- Reporting --
8980
      ---------------
8981
 
8982
      function Reporting return Boolean is
8983
      begin
8984
         if not Report then
8985
            return False;
8986
 
8987
         elsif not Within_Init_Proc then
8988
            return True;
8989
 
8990
         elsif Is_Init_Proc (Entity (Name (N))) then
8991
            return False;
8992
 
8993
         else
8994
            return True;
8995
         end if;
8996
      end Reporting;
8997
 
8998
   --  Start of processing for Normalize_Actuals
8999
 
9000
   begin
9001
      if Is_Access_Type (S) then
9002
 
9003
         --  The name in the call is a function call that returns an access
9004
         --  to subprogram. The designated type has the list of formals.
9005
 
9006
         Formal := First_Formal (Designated_Type (S));
9007
      else
9008
         Formal := First_Formal (S);
9009
      end if;
9010
 
9011
      while Present (Formal) loop
9012
         Formals_To_Match := Formals_To_Match + 1;
9013
         Next_Formal (Formal);
9014
      end loop;
9015
 
9016
      --  Find if there is a named association, and verify that no positional
9017
      --  associations appear after named ones.
9018
 
9019
      if Present (Actuals) then
9020
         Actual := First (Actuals);
9021
      end if;
9022
 
9023
      while Present (Actual)
9024
        and then Nkind (Actual) /= N_Parameter_Association
9025
      loop
9026
         Actuals_To_Match := Actuals_To_Match + 1;
9027
         Next (Actual);
9028
      end loop;
9029
 
9030
      if No (Actual) and Actuals_To_Match = Formals_To_Match then
9031
 
9032
         --  Most common case: positional notation, no defaults
9033
 
9034
         Success := True;
9035
         return;
9036
 
9037
      elsif Actuals_To_Match > Formals_To_Match then
9038
 
9039
         --  Too many actuals: will not work
9040
 
9041
         if Reporting then
9042
            if Is_Entity_Name (Name (N)) then
9043
               Error_Msg_N ("too many arguments in call to&", Name (N));
9044
            else
9045
               Error_Msg_N ("too many arguments in call", N);
9046
            end if;
9047
         end if;
9048
 
9049
         Success := False;
9050
         return;
9051
      end if;
9052
 
9053
      First_Named := Actual;
9054
 
9055
      while Present (Actual) loop
9056
         if Nkind (Actual) /= N_Parameter_Association then
9057
            Error_Msg_N
9058
              ("positional parameters not allowed after named ones", Actual);
9059
            Success := False;
9060
            return;
9061
 
9062
         else
9063
            Actuals_To_Match := Actuals_To_Match + 1;
9064
         end if;
9065
 
9066
         Next (Actual);
9067
      end loop;
9068
 
9069
      if Present (Actuals) then
9070
         Actual := First (Actuals);
9071
      end if;
9072
 
9073
      Formal := First_Formal (S);
9074
      while Present (Formal) loop
9075
 
9076
         --  Match the formals in order. If the corresponding actual is
9077
         --  positional, nothing to do. Else scan the list of named actuals
9078
         --  to find the one with the right name.
9079
 
9080
         if Present (Actual)
9081
           and then Nkind (Actual) /= N_Parameter_Association
9082
         then
9083
            Next (Actual);
9084
            Actuals_To_Match := Actuals_To_Match - 1;
9085
            Formals_To_Match := Formals_To_Match - 1;
9086
 
9087
         else
9088
            --  For named parameters, search the list of actuals to find
9089
            --  one that matches the next formal name.
9090
 
9091
            Actual := First_Named;
9092
            Found  := False;
9093
            while Present (Actual) loop
9094
               if Chars (Selector_Name (Actual)) = Chars (Formal) then
9095
                  Found := True;
9096
                  Chain (Actual);
9097
                  Actuals_To_Match := Actuals_To_Match - 1;
9098
                  Formals_To_Match := Formals_To_Match - 1;
9099
                  exit;
9100
               end if;
9101
 
9102
               Next (Actual);
9103
            end loop;
9104
 
9105
            if not Found then
9106
               if Ekind (Formal) /= E_In_Parameter
9107
                 or else No (Default_Value (Formal))
9108
               then
9109
                  if Reporting then
9110
                     if (Comes_From_Source (S)
9111
                          or else Sloc (S) = Standard_Location)
9112
                       and then Is_Overloadable (S)
9113
                     then
9114
                        if No (Actuals)
9115
                          and then
9116
                           (Nkind (Parent (N)) = N_Procedure_Call_Statement
9117
                             or else
9118
                           (Nkind (Parent (N)) = N_Function_Call
9119
                             or else
9120
                            Nkind (Parent (N)) = N_Parameter_Association))
9121
                          and then Ekind (S) /= E_Function
9122
                        then
9123
                           Set_Etype (N, Etype (S));
9124
                        else
9125
                           Error_Msg_Name_1 := Chars (S);
9126
                           Error_Msg_Sloc := Sloc (S);
9127
                           Error_Msg_NE
9128
                             ("missing argument for parameter & " &
9129
                                "in call to % declared #", N, Formal);
9130
                        end if;
9131
 
9132
                     elsif Is_Overloadable (S) then
9133
                        Error_Msg_Name_1 := Chars (S);
9134
 
9135
                        --  Point to type derivation that generated the
9136
                        --  operation.
9137
 
9138
                        Error_Msg_Sloc := Sloc (Parent (S));
9139
 
9140
                        Error_Msg_NE
9141
                          ("missing argument for parameter & " &
9142
                             "in call to % (inherited) #", N, Formal);
9143
 
9144
                     else
9145
                        Error_Msg_NE
9146
                          ("missing argument for parameter &", N, Formal);
9147
                     end if;
9148
                  end if;
9149
 
9150
                  Success := False;
9151
                  return;
9152
 
9153
               else
9154
                  Formals_To_Match := Formals_To_Match - 1;
9155
               end if;
9156
            end if;
9157
         end if;
9158
 
9159
         Next_Formal (Formal);
9160
      end loop;
9161
 
9162
      if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
9163
         Success := True;
9164
         return;
9165
 
9166
      else
9167
         if Reporting then
9168
 
9169
            --  Find some superfluous named actual that did not get
9170
            --  attached to the list of associations.
9171
 
9172
            Actual := First (Actuals);
9173
            while Present (Actual) loop
9174
               if Nkind (Actual) = N_Parameter_Association
9175
                 and then Actual /= Last
9176
                 and then No (Next_Named_Actual (Actual))
9177
               then
9178
                  Error_Msg_N ("unmatched actual & in call",
9179
                    Selector_Name (Actual));
9180
                  exit;
9181
               end if;
9182
 
9183
               Next (Actual);
9184
            end loop;
9185
         end if;
9186
 
9187
         Success := False;
9188
         return;
9189
      end if;
9190
   end Normalize_Actuals;
9191
 
9192
   --------------------------------
9193
   -- Note_Possible_Modification --
9194
   --------------------------------
9195
 
9196
   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
9197
      Modification_Comes_From_Source : constant Boolean :=
9198
                                         Comes_From_Source (Parent (N));
9199
 
9200
      Ent : Entity_Id;
9201
      Exp : Node_Id;
9202
 
9203
   begin
9204
      --  Loop to find referenced entity, if there is one
9205
 
9206
      Exp := N;
9207
      loop
9208
         <<Continue>>
9209
         Ent := Empty;
9210
 
9211
         if Is_Entity_Name (Exp) then
9212
            Ent := Entity (Exp);
9213
 
9214
            --  If the entity is missing, it is an undeclared identifier,
9215
            --  and there is nothing to annotate.
9216
 
9217
            if No (Ent) then
9218
               return;
9219
            end if;
9220
 
9221
         elsif Nkind (Exp) = N_Explicit_Dereference then
9222
            declare
9223
               P : constant Node_Id := Prefix (Exp);
9224
 
9225
            begin
9226
               if Nkind (P) = N_Selected_Component
9227
                 and then Present (
9228
                   Entry_Formal (Entity (Selector_Name (P))))
9229
               then
9230
                  --  Case of a reference to an entry formal
9231
 
9232
                  Ent := Entry_Formal (Entity (Selector_Name (P)));
9233
 
9234
               elsif Nkind (P) = N_Identifier
9235
                 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
9236
                 and then Present (Expression (Parent (Entity (P))))
9237
                 and then Nkind (Expression (Parent (Entity (P))))
9238
                   = N_Reference
9239
               then
9240
                  --  Case of a reference to a value on which side effects have
9241
                  --  been removed.
9242
 
9243
                  Exp := Prefix (Expression (Parent (Entity (P))));
9244
                  goto Continue;
9245
 
9246
               else
9247
                  return;
9248
 
9249
               end if;
9250
            end;
9251
 
9252
         elsif     Nkind (Exp) = N_Type_Conversion
9253
           or else Nkind (Exp) = N_Unchecked_Type_Conversion
9254
         then
9255
            Exp := Expression (Exp);
9256
            goto Continue;
9257
 
9258
         elsif     Nkind (Exp) = N_Slice
9259
           or else Nkind (Exp) = N_Indexed_Component
9260
           or else Nkind (Exp) = N_Selected_Component
9261
         then
9262
            Exp := Prefix (Exp);
9263
            goto Continue;
9264
 
9265
         else
9266
            return;
9267
         end if;
9268
 
9269
         --  Now look for entity being referenced
9270
 
9271
         if Present (Ent) then
9272
            if Is_Object (Ent) then
9273
               if Comes_From_Source (Exp)
9274
                 or else Modification_Comes_From_Source
9275
               then
9276
                  if Has_Pragma_Unmodified (Ent) then
9277
                     Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
9278
                  end if;
9279
 
9280
                  Set_Never_Set_In_Source (Ent, False);
9281
               end if;
9282
 
9283
               Set_Is_True_Constant (Ent, False);
9284
               Set_Current_Value    (Ent, Empty);
9285
               Set_Is_Known_Null    (Ent, False);
9286
 
9287
               if not Can_Never_Be_Null (Ent) then
9288
                  Set_Is_Known_Non_Null (Ent, False);
9289
               end if;
9290
 
9291
               --  Follow renaming chain
9292
 
9293
               if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
9294
                 and then Present (Renamed_Object (Ent))
9295
               then
9296
                  Exp := Renamed_Object (Ent);
9297
                  goto Continue;
9298
               end if;
9299
 
9300
               --  Generate a reference only if the assignment comes from
9301
               --  source. This excludes, for example, calls to a dispatching
9302
               --  assignment operation when the left-hand side is tagged.
9303
 
9304
               if Modification_Comes_From_Source then
9305
                  Generate_Reference (Ent, Exp, 'm');
9306
               end if;
9307
 
9308
               Check_Nested_Access (Ent);
9309
            end if;
9310
 
9311
            Kill_Checks (Ent);
9312
 
9313
            --  If we are sure this is a modification from source, and we know
9314
            --  this modifies a constant, then give an appropriate warning.
9315
 
9316
            if Overlays_Constant (Ent)
9317
              and then Modification_Comes_From_Source
9318
              and then Sure
9319
            then
9320
               declare
9321
                  A : constant Node_Id := Address_Clause (Ent);
9322
               begin
9323
                  if Present (A) then
9324
                     declare
9325
                        Exp : constant Node_Id := Expression (A);
9326
                     begin
9327
                        if Nkind (Exp) = N_Attribute_Reference
9328
                          and then Attribute_Name (Exp) = Name_Address
9329
                          and then Is_Entity_Name (Prefix (Exp))
9330
                        then
9331
                           Error_Msg_Sloc := Sloc (A);
9332
                           Error_Msg_NE
9333
                             ("constant& may be modified via address clause#?",
9334
                              N, Entity (Prefix (Exp)));
9335
                        end if;
9336
                     end;
9337
                  end if;
9338
               end;
9339
            end if;
9340
 
9341
            return;
9342
         end if;
9343
      end loop;
9344
   end Note_Possible_Modification;
9345
 
9346
   -------------------------
9347
   -- Object_Access_Level --
9348
   -------------------------
9349
 
9350
   function Object_Access_Level (Obj : Node_Id) return Uint is
9351
      E : Entity_Id;
9352
 
9353
   --  Returns the static accessibility level of the view denoted by Obj. Note
9354
   --  that the value returned is the result of a call to Scope_Depth. Only
9355
   --  scope depths associated with dynamic scopes can actually be returned.
9356
   --  Since only relative levels matter for accessibility checking, the fact
9357
   --  that the distance between successive levels of accessibility is not
9358
   --  always one is immaterial (invariant: if level(E2) is deeper than
9359
   --  level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
9360
 
9361
      function Reference_To (Obj : Node_Id) return Node_Id;
9362
      --  An explicit dereference is created when removing side-effects from
9363
      --  expressions for constraint checking purposes. In this case a local
9364
      --  access type is created for it. The correct access level is that of
9365
      --  the original source node. We detect this case by noting that the
9366
      --  prefix of the dereference is created by an object declaration whose
9367
      --  initial expression is a reference.
9368
 
9369
      ------------------
9370
      -- Reference_To --
9371
      ------------------
9372
 
9373
      function Reference_To (Obj : Node_Id) return Node_Id is
9374
         Pref : constant Node_Id := Prefix (Obj);
9375
      begin
9376
         if Is_Entity_Name (Pref)
9377
           and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
9378
           and then Present (Expression (Parent (Entity (Pref))))
9379
           and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
9380
         then
9381
            return (Prefix (Expression (Parent (Entity (Pref)))));
9382
         else
9383
            return Empty;
9384
         end if;
9385
      end Reference_To;
9386
 
9387
   --  Start of processing for Object_Access_Level
9388
 
9389
   begin
9390
      if Is_Entity_Name (Obj) then
9391
         E := Entity (Obj);
9392
 
9393
         if Is_Prival (E) then
9394
            E := Prival_Link (E);
9395
         end if;
9396
 
9397
         --  If E is a type then it denotes a current instance. For this case
9398
         --  we add one to the normal accessibility level of the type to ensure
9399
         --  that current instances are treated as always being deeper than
9400
         --  than the level of any visible named access type (see 3.10.2(21)).
9401
 
9402
         if Is_Type (E) then
9403
            return Type_Access_Level (E) +  1;
9404
 
9405
         elsif Present (Renamed_Object (E)) then
9406
            return Object_Access_Level (Renamed_Object (E));
9407
 
9408
         --  Similarly, if E is a component of the current instance of a
9409
         --  protected type, any instance of it is assumed to be at a deeper
9410
         --  level than the type. For a protected object (whose type is an
9411
         --  anonymous protected type) its components are at the same level
9412
         --  as the type itself.
9413
 
9414
         elsif not Is_Overloadable (E)
9415
           and then Ekind (Scope (E)) = E_Protected_Type
9416
           and then Comes_From_Source (Scope (E))
9417
         then
9418
            return Type_Access_Level (Scope (E)) + 1;
9419
 
9420
         else
9421
            return Scope_Depth (Enclosing_Dynamic_Scope (E));
9422
         end if;
9423
 
9424
      elsif Nkind (Obj) = N_Selected_Component then
9425
         if Is_Access_Type (Etype (Prefix (Obj))) then
9426
            return Type_Access_Level (Etype (Prefix (Obj)));
9427
         else
9428
            return Object_Access_Level (Prefix (Obj));
9429
         end if;
9430
 
9431
      elsif Nkind (Obj) = N_Indexed_Component then
9432
         if Is_Access_Type (Etype (Prefix (Obj))) then
9433
            return Type_Access_Level (Etype (Prefix (Obj)));
9434
         else
9435
            return Object_Access_Level (Prefix (Obj));
9436
         end if;
9437
 
9438
      elsif Nkind (Obj) = N_Explicit_Dereference then
9439
 
9440
         --  If the prefix is a selected access discriminant then we make a
9441
         --  recursive call on the prefix, which will in turn check the level
9442
         --  of the prefix object of the selected discriminant.
9443
 
9444
         if Nkind (Prefix (Obj)) = N_Selected_Component
9445
           and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
9446
           and then
9447
             Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
9448
         then
9449
            return Object_Access_Level (Prefix (Obj));
9450
 
9451
         elsif not (Comes_From_Source (Obj)) then
9452
            declare
9453
               Ref : constant Node_Id := Reference_To (Obj);
9454
            begin
9455
               if Present (Ref) then
9456
                  return Object_Access_Level (Ref);
9457
               else
9458
                  return Type_Access_Level (Etype (Prefix (Obj)));
9459
               end if;
9460
            end;
9461
 
9462
         else
9463
            return Type_Access_Level (Etype (Prefix (Obj)));
9464
         end if;
9465
 
9466
      elsif Nkind (Obj) = N_Type_Conversion
9467
        or else Nkind (Obj) = N_Unchecked_Type_Conversion
9468
      then
9469
         return Object_Access_Level (Expression (Obj));
9470
 
9471
      --  Function results are objects, so we get either the access level of
9472
      --  the function or, in the case of an indirect call, the level of the
9473
      --  access-to-subprogram type.
9474
 
9475
      elsif Nkind (Obj) = N_Function_Call then
9476
         if Is_Entity_Name (Name (Obj)) then
9477
            return Subprogram_Access_Level (Entity (Name (Obj)));
9478
         else
9479
            return Type_Access_Level (Etype (Prefix (Name (Obj))));
9480
         end if;
9481
 
9482
      --  For convenience we handle qualified expressions, even though
9483
      --  they aren't technically object names.
9484
 
9485
      elsif Nkind (Obj) = N_Qualified_Expression then
9486
         return Object_Access_Level (Expression (Obj));
9487
 
9488
      --  Otherwise return the scope level of Standard.
9489
      --  (If there are cases that fall through
9490
      --  to this point they will be treated as
9491
      --  having global accessibility for now. ???)
9492
 
9493
      else
9494
         return Scope_Depth (Standard_Standard);
9495
      end if;
9496
   end Object_Access_Level;
9497
 
9498
   -----------------------
9499
   -- Private_Component --
9500
   -----------------------
9501
 
9502
   function Private_Component (Type_Id : Entity_Id) return Entity_Id is
9503
      Ancestor  : constant Entity_Id := Base_Type (Type_Id);
9504
 
9505
      function Trace_Components
9506
        (T     : Entity_Id;
9507
         Check : Boolean) return Entity_Id;
9508
      --  Recursive function that does the work, and checks against circular
9509
      --  definition for each subcomponent type.
9510
 
9511
      ----------------------
9512
      -- Trace_Components --
9513
      ----------------------
9514
 
9515
      function Trace_Components
9516
         (T     : Entity_Id;
9517
          Check : Boolean) return Entity_Id
9518
       is
9519
         Btype     : constant Entity_Id := Base_Type (T);
9520
         Component : Entity_Id;
9521
         P         : Entity_Id;
9522
         Candidate : Entity_Id := Empty;
9523
 
9524
      begin
9525
         if Check and then Btype = Ancestor then
9526
            Error_Msg_N ("circular type definition", Type_Id);
9527
            return Any_Type;
9528
         end if;
9529
 
9530
         if Is_Private_Type (Btype)
9531
           and then not Is_Generic_Type (Btype)
9532
         then
9533
            if Present (Full_View (Btype))
9534
              and then Is_Record_Type (Full_View (Btype))
9535
              and then not Is_Frozen (Btype)
9536
            then
9537
               --  To indicate that the ancestor depends on a private type, the
9538
               --  current Btype is sufficient. However, to check for circular
9539
               --  definition we must recurse on the full view.
9540
 
9541
               Candidate := Trace_Components (Full_View (Btype), True);
9542
 
9543
               if Candidate = Any_Type then
9544
                  return Any_Type;
9545
               else
9546
                  return Btype;
9547
               end if;
9548
 
9549
            else
9550
               return Btype;
9551
            end if;
9552
 
9553
         elsif Is_Array_Type (Btype) then
9554
            return Trace_Components (Component_Type (Btype), True);
9555
 
9556
         elsif Is_Record_Type (Btype) then
9557
            Component := First_Entity (Btype);
9558
            while Present (Component) loop
9559
 
9560
               --  Skip anonymous types generated by constrained components
9561
 
9562
               if not Is_Type (Component) then
9563
                  P := Trace_Components (Etype (Component), True);
9564
 
9565
                  if Present (P) then
9566
                     if P = Any_Type then
9567
                        return P;
9568
                     else
9569
                        Candidate := P;
9570
                     end if;
9571
                  end if;
9572
               end if;
9573
 
9574
               Next_Entity (Component);
9575
            end loop;
9576
 
9577
            return Candidate;
9578
 
9579
         else
9580
            return Empty;
9581
         end if;
9582
      end Trace_Components;
9583
 
9584
   --  Start of processing for Private_Component
9585
 
9586
   begin
9587
      return Trace_Components (Type_Id, False);
9588
   end Private_Component;
9589
 
9590
   ---------------------------
9591
   -- Primitive_Names_Match --
9592
   ---------------------------
9593
 
9594
   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
9595
 
9596
      function Non_Internal_Name (E : Entity_Id) return Name_Id;
9597
      --  Given an internal name, returns the corresponding non-internal name
9598
 
9599
      ------------------------
9600
      --  Non_Internal_Name --
9601
      ------------------------
9602
 
9603
      function Non_Internal_Name (E : Entity_Id) return Name_Id is
9604
      begin
9605
         Get_Name_String (Chars (E));
9606
         Name_Len := Name_Len - 1;
9607
         return Name_Find;
9608
      end Non_Internal_Name;
9609
 
9610
   --  Start of processing for Primitive_Names_Match
9611
 
9612
   begin
9613
      pragma Assert (Present (E1) and then Present (E2));
9614
 
9615
      return Chars (E1) = Chars (E2)
9616
        or else
9617
           (not Is_Internal_Name (Chars (E1))
9618
              and then Is_Internal_Name (Chars (E2))
9619
              and then Non_Internal_Name (E2) = Chars (E1))
9620
        or else
9621
           (not Is_Internal_Name (Chars (E2))
9622
              and then Is_Internal_Name (Chars (E1))
9623
              and then Non_Internal_Name (E1) = Chars (E2))
9624
        or else
9625
           (Is_Predefined_Dispatching_Operation (E1)
9626
              and then Is_Predefined_Dispatching_Operation (E2)
9627
              and then Same_TSS (E1, E2))
9628
        or else
9629
           (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
9630
   end Primitive_Names_Match;
9631
 
9632
   -----------------------
9633
   -- Process_End_Label --
9634
   -----------------------
9635
 
9636
   procedure Process_End_Label
9637
     (N   : Node_Id;
9638
      Typ : Character;
9639
      Ent  : Entity_Id)
9640
   is
9641
      Loc  : Source_Ptr;
9642
      Nam  : Node_Id;
9643
      Scop : Entity_Id;
9644
 
9645
      Label_Ref : Boolean;
9646
      --  Set True if reference to end label itself is required
9647
 
9648
      Endl : Node_Id;
9649
      --  Gets set to the operator symbol or identifier that references the
9650
      --  entity Ent. For the child unit case, this is the identifier from the
9651
      --  designator. For other cases, this is simply Endl.
9652
 
9653
      procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
9654
      --  N is an identifier node that appears as a parent unit reference in
9655
      --  the case where Ent is a child unit. This procedure generates an
9656
      --  appropriate cross-reference entry. E is the corresponding entity.
9657
 
9658
      -------------------------
9659
      -- Generate_Parent_Ref --
9660
      -------------------------
9661
 
9662
      procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
9663
      begin
9664
         --  If names do not match, something weird, skip reference
9665
 
9666
         if Chars (E) = Chars (N) then
9667
 
9668
            --  Generate the reference. We do NOT consider this as a reference
9669
            --  for unreferenced symbol purposes.
9670
 
9671
            Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
9672
 
9673
            if Style_Check then
9674
               Style.Check_Identifier (N, E);
9675
            end if;
9676
         end if;
9677
      end Generate_Parent_Ref;
9678
 
9679
   --  Start of processing for Process_End_Label
9680
 
9681
   begin
9682
      --  If no node, ignore. This happens in some error situations, and
9683
      --  also for some internally generated structures where no end label
9684
      --  references are required in any case.
9685
 
9686
      if No (N) then
9687
         return;
9688
      end if;
9689
 
9690
      --  Nothing to do if no End_Label, happens for internally generated
9691
      --  constructs where we don't want an end label reference anyway. Also
9692
      --  nothing to do if Endl is a string literal, which means there was
9693
      --  some prior error (bad operator symbol)
9694
 
9695
      Endl := End_Label (N);
9696
 
9697
      if No (Endl) or else Nkind (Endl) = N_String_Literal then
9698
         return;
9699
      end if;
9700
 
9701
      --  Reference node is not in extended main source unit
9702
 
9703
      if not In_Extended_Main_Source_Unit (N) then
9704
 
9705
         --  Generally we do not collect references except for the extended
9706
         --  main source unit. The one exception is the 'e' entry for a
9707
         --  package spec, where it is useful for a client to have the
9708
         --  ending information to define scopes.
9709
 
9710
         if Typ /= 'e' then
9711
            return;
9712
 
9713
         else
9714
            Label_Ref := False;
9715
 
9716
            --  For this case, we can ignore any parent references, but we
9717
            --  need the package name itself for the 'e' entry.
9718
 
9719
            if Nkind (Endl) = N_Designator then
9720
               Endl := Identifier (Endl);
9721
            end if;
9722
         end if;
9723
 
9724
      --  Reference is in extended main source unit
9725
 
9726
      else
9727
         Label_Ref := True;
9728
 
9729
         --  For designator, generate references for the parent entries
9730
 
9731
         if Nkind (Endl) = N_Designator then
9732
 
9733
            --  Generate references for the prefix if the END line comes from
9734
            --  source (otherwise we do not need these references) We climb the
9735
            --  scope stack to find the expected entities.
9736
 
9737
            if Comes_From_Source (Endl) then
9738
               Nam  := Name (Endl);
9739
               Scop := Current_Scope;
9740
               while Nkind (Nam) = N_Selected_Component loop
9741
                  Scop := Scope (Scop);
9742
                  exit when No (Scop);
9743
                  Generate_Parent_Ref (Selector_Name (Nam), Scop);
9744
                  Nam := Prefix (Nam);
9745
               end loop;
9746
 
9747
               if Present (Scop) then
9748
                  Generate_Parent_Ref (Nam, Scope (Scop));
9749
               end if;
9750
            end if;
9751
 
9752
            Endl := Identifier (Endl);
9753
         end if;
9754
      end if;
9755
 
9756
      --  If the end label is not for the given entity, then either we have
9757
      --  some previous error, or this is a generic instantiation for which
9758
      --  we do not need to make a cross-reference in this case anyway. In
9759
      --  either case we simply ignore the call.
9760
 
9761
      if Chars (Ent) /= Chars (Endl) then
9762
         return;
9763
      end if;
9764
 
9765
      --  If label was really there, then generate a normal reference and then
9766
      --  adjust the location in the end label to point past the name (which
9767
      --  should almost always be the semicolon).
9768
 
9769
      Loc := Sloc (Endl);
9770
 
9771
      if Comes_From_Source (Endl) then
9772
 
9773
         --  If a label reference is required, then do the style check and
9774
         --  generate an l-type cross-reference entry for the label
9775
 
9776
         if Label_Ref then
9777
            if Style_Check then
9778
               Style.Check_Identifier (Endl, Ent);
9779
            end if;
9780
 
9781
            Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
9782
         end if;
9783
 
9784
         --  Set the location to point past the label (normally this will
9785
         --  mean the semicolon immediately following the label). This is
9786
         --  done for the sake of the 'e' or 't' entry generated below.
9787
 
9788
         Get_Decoded_Name_String (Chars (Endl));
9789
         Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
9790
      end if;
9791
 
9792
      --  Now generate the e/t reference
9793
 
9794
      Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
9795
 
9796
      --  Restore Sloc, in case modified above, since we have an identifier
9797
      --  and the normal Sloc should be left set in the tree.
9798
 
9799
      Set_Sloc (Endl, Loc);
9800
   end Process_End_Label;
9801
 
9802
   ------------------
9803
   -- Real_Convert --
9804
   ------------------
9805
 
9806
   --  We do the conversion to get the value of the real string by using
9807
   --  the scanner, see Sinput for details on use of the internal source
9808
   --  buffer for scanning internal strings.
9809
 
9810
   function Real_Convert (S : String) return Node_Id is
9811
      Save_Src : constant Source_Buffer_Ptr := Source;
9812
      Negative : Boolean;
9813
 
9814
   begin
9815
      Source := Internal_Source_Ptr;
9816
      Scan_Ptr := 1;
9817
 
9818
      for J in S'Range loop
9819
         Source (Source_Ptr (J)) := S (J);
9820
      end loop;
9821
 
9822
      Source (S'Length + 1) := EOF;
9823
 
9824
      if Source (Scan_Ptr) = '-' then
9825
         Negative := True;
9826
         Scan_Ptr := Scan_Ptr + 1;
9827
      else
9828
         Negative := False;
9829
      end if;
9830
 
9831
      Scan;
9832
 
9833
      if Negative then
9834
         Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
9835
      end if;
9836
 
9837
      Source := Save_Src;
9838
      return Token_Node;
9839
   end Real_Convert;
9840
 
9841
   ------------------------------------
9842
   -- References_Generic_Formal_Type --
9843
   ------------------------------------
9844
 
9845
   function References_Generic_Formal_Type (N : Node_Id) return Boolean is
9846
 
9847
      function Process (N : Node_Id) return Traverse_Result;
9848
      --  Process one node in search for generic formal type
9849
 
9850
      -------------
9851
      -- Process --
9852
      -------------
9853
 
9854
      function Process (N : Node_Id) return Traverse_Result is
9855
      begin
9856
         if Nkind (N) in N_Has_Entity then
9857
            declare
9858
               E : constant Entity_Id := Entity (N);
9859
            begin
9860
               if Present (E) then
9861
                  if Is_Generic_Type (E) then
9862
                     return Abandon;
9863
                  elsif Present (Etype (E))
9864
                    and then Is_Generic_Type (Etype (E))
9865
                  then
9866
                     return Abandon;
9867
                  end if;
9868
               end if;
9869
            end;
9870
         end if;
9871
 
9872
         return Atree.OK;
9873
      end Process;
9874
 
9875
      function Traverse is new Traverse_Func (Process);
9876
      --  Traverse tree to look for generic type
9877
 
9878
   begin
9879
      if Inside_A_Generic then
9880
         return Traverse (N) = Abandon;
9881
      else
9882
         return False;
9883
      end if;
9884
   end References_Generic_Formal_Type;
9885
 
9886
   --------------------
9887
   -- Remove_Homonym --
9888
   --------------------
9889
 
9890
   procedure Remove_Homonym (E : Entity_Id) is
9891
      Prev  : Entity_Id := Empty;
9892
      H     : Entity_Id;
9893
 
9894
   begin
9895
      if E = Current_Entity (E) then
9896
         if Present (Homonym (E)) then
9897
            Set_Current_Entity (Homonym (E));
9898
         else
9899
            Set_Name_Entity_Id (Chars (E), Empty);
9900
         end if;
9901
      else
9902
         H := Current_Entity (E);
9903
         while Present (H) and then H /= E loop
9904
            Prev := H;
9905
            H    := Homonym (H);
9906
         end loop;
9907
 
9908
         Set_Homonym (Prev, Homonym (E));
9909
      end if;
9910
   end Remove_Homonym;
9911
 
9912
   ---------------------
9913
   -- Rep_To_Pos_Flag --
9914
   ---------------------
9915
 
9916
   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
9917
   begin
9918
      return New_Occurrence_Of
9919
               (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
9920
   end Rep_To_Pos_Flag;
9921
 
9922
   --------------------
9923
   -- Require_Entity --
9924
   --------------------
9925
 
9926
   procedure Require_Entity (N : Node_Id) is
9927
   begin
9928
      if Is_Entity_Name (N) and then No (Entity (N)) then
9929
         if Total_Errors_Detected /= 0 then
9930
            Set_Entity (N, Any_Id);
9931
         else
9932
            raise Program_Error;
9933
         end if;
9934
      end if;
9935
   end Require_Entity;
9936
 
9937
   ------------------------------
9938
   -- Requires_Transient_Scope --
9939
   ------------------------------
9940
 
9941
   --  A transient scope is required when variable-sized temporaries are
9942
   --  allocated in the primary or secondary stack, or when finalization
9943
   --  actions must be generated before the next instruction.
9944
 
9945
   function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
9946
      Typ : constant Entity_Id := Underlying_Type (Id);
9947
 
9948
   --  Start of processing for Requires_Transient_Scope
9949
 
9950
   begin
9951
      --  This is a private type which is not completed yet. This can only
9952
      --  happen in a default expression (of a formal parameter or of a
9953
      --  record component). Do not expand transient scope in this case
9954
 
9955
      if No (Typ) then
9956
         return False;
9957
 
9958
      --  Do not expand transient scope for non-existent procedure return
9959
 
9960
      elsif Typ = Standard_Void_Type then
9961
         return False;
9962
 
9963
      --  Elementary types do not require a transient scope
9964
 
9965
      elsif Is_Elementary_Type (Typ) then
9966
         return False;
9967
 
9968
      --  Generally, indefinite subtypes require a transient scope, since the
9969
      --  back end cannot generate temporaries, since this is not a valid type
9970
      --  for declaring an object. It might be possible to relax this in the
9971
      --  future, e.g. by declaring the maximum possible space for the type.
9972
 
9973
      elsif Is_Indefinite_Subtype (Typ) then
9974
         return True;
9975
 
9976
      --  Functions returning tagged types may dispatch on result so their
9977
      --  returned value is allocated on the secondary stack. Controlled
9978
      --  type temporaries need finalization.
9979
 
9980
      elsif Is_Tagged_Type (Typ)
9981
        or else Has_Controlled_Component (Typ)
9982
      then
9983
         return not Is_Value_Type (Typ);
9984
 
9985
      --  Record type
9986
 
9987
      elsif Is_Record_Type (Typ) then
9988
         declare
9989
            Comp : Entity_Id;
9990
         begin
9991
            Comp := First_Entity (Typ);
9992
            while Present (Comp) loop
9993
               if Ekind (Comp) = E_Component
9994
                  and then Requires_Transient_Scope (Etype (Comp))
9995
               then
9996
                  return True;
9997
               else
9998
                  Next_Entity (Comp);
9999
               end if;
10000
            end loop;
10001
         end;
10002
 
10003
         return False;
10004
 
10005
      --  String literal types never require transient scope
10006
 
10007
      elsif Ekind (Typ) = E_String_Literal_Subtype then
10008
         return False;
10009
 
10010
      --  Array type. Note that we already know that this is a constrained
10011
      --  array, since unconstrained arrays will fail the indefinite test.
10012
 
10013
      elsif Is_Array_Type (Typ) then
10014
 
10015
         --  If component type requires a transient scope, the array does too
10016
 
10017
         if Requires_Transient_Scope (Component_Type (Typ)) then
10018
            return True;
10019
 
10020
         --  Otherwise, we only need a transient scope if the size is not
10021
         --  known at compile time.
10022
 
10023
         else
10024
            return not Size_Known_At_Compile_Time (Typ);
10025
         end if;
10026
 
10027
      --  All other cases do not require a transient scope
10028
 
10029
      else
10030
         return False;
10031
      end if;
10032
   end Requires_Transient_Scope;
10033
 
10034
   --------------------------
10035
   -- Reset_Analyzed_Flags --
10036
   --------------------------
10037
 
10038
   procedure Reset_Analyzed_Flags (N : Node_Id) is
10039
 
10040
      function Clear_Analyzed (N : Node_Id) return Traverse_Result;
10041
      --  Function used to reset Analyzed flags in tree. Note that we do
10042
      --  not reset Analyzed flags in entities, since there is no need to
10043
      --  reanalyze entities, and indeed, it is wrong to do so, since it
10044
      --  can result in generating auxiliary stuff more than once.
10045
 
10046
      --------------------
10047
      -- Clear_Analyzed --
10048
      --------------------
10049
 
10050
      function Clear_Analyzed (N : Node_Id) return Traverse_Result is
10051
      begin
10052
         if not Has_Extension (N) then
10053
            Set_Analyzed (N, False);
10054
         end if;
10055
 
10056
         return OK;
10057
      end Clear_Analyzed;
10058
 
10059
      procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
10060
 
10061
   --  Start of processing for Reset_Analyzed_Flags
10062
 
10063
   begin
10064
      Reset_Analyzed (N);
10065
   end Reset_Analyzed_Flags;
10066
 
10067
   ---------------------------
10068
   -- Safe_To_Capture_Value --
10069
   ---------------------------
10070
 
10071
   function Safe_To_Capture_Value
10072
     (N    : Node_Id;
10073
      Ent  : Entity_Id;
10074
      Cond : Boolean := False) return Boolean
10075
   is
10076
   begin
10077
      --  The only entities for which we track constant values are variables
10078
      --  which are not renamings, constants, out parameters, and in out
10079
      --  parameters, so check if we have this case.
10080
 
10081
      --  Note: it may seem odd to track constant values for constants, but in
10082
      --  fact this routine is used for other purposes than simply capturing
10083
      --  the value. In particular, the setting of Known[_Non]_Null.
10084
 
10085
      if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
10086
            or else
10087
          Ekind (Ent) = E_Constant
10088
            or else
10089
          Ekind (Ent) = E_Out_Parameter
10090
            or else
10091
          Ekind (Ent) = E_In_Out_Parameter
10092
      then
10093
         null;
10094
 
10095
      --  For conditionals, we also allow loop parameters and all formals,
10096
      --  including in parameters.
10097
 
10098
      elsif Cond
10099
        and then
10100
          (Ekind (Ent) = E_Loop_Parameter
10101
             or else
10102
           Ekind (Ent) = E_In_Parameter)
10103
      then
10104
         null;
10105
 
10106
      --  For all other cases, not just unsafe, but impossible to capture
10107
      --  Current_Value, since the above are the only entities which have
10108
      --  Current_Value fields.
10109
 
10110
      else
10111
         return False;
10112
      end if;
10113
 
10114
      --  Skip if volatile or aliased, since funny things might be going on in
10115
      --  these cases which we cannot necessarily track. Also skip any variable
10116
      --  for which an address clause is given, or whose address is taken. Also
10117
      --  never capture value of library level variables (an attempt to do so
10118
      --  can occur in the case of package elaboration code).
10119
 
10120
      if Treat_As_Volatile (Ent)
10121
        or else Is_Aliased (Ent)
10122
        or else Present (Address_Clause (Ent))
10123
        or else Address_Taken (Ent)
10124
        or else (Is_Library_Level_Entity (Ent)
10125
                   and then Ekind (Ent) = E_Variable)
10126
      then
10127
         return False;
10128
      end if;
10129
 
10130
      --  OK, all above conditions are met. We also require that the scope of
10131
      --  the reference be the same as the scope of the entity, not counting
10132
      --  packages and blocks and loops.
10133
 
10134
      declare
10135
         E_Scope : constant Entity_Id := Scope (Ent);
10136
         R_Scope : Entity_Id;
10137
 
10138
      begin
10139
         R_Scope := Current_Scope;
10140
         while R_Scope /= Standard_Standard loop
10141
            exit when R_Scope = E_Scope;
10142
 
10143
            if Ekind (R_Scope) /= E_Package
10144
                  and then
10145
                Ekind (R_Scope) /= E_Block
10146
                  and then
10147
                Ekind (R_Scope) /= E_Loop
10148
            then
10149
               return False;
10150
            else
10151
               R_Scope := Scope (R_Scope);
10152
            end if;
10153
         end loop;
10154
      end;
10155
 
10156
      --  We also require that the reference does not appear in a context
10157
      --  where it is not sure to be executed (i.e. a conditional context
10158
      --  or an exception handler). We skip this if Cond is True, since the
10159
      --  capturing of values from conditional tests handles this ok.
10160
 
10161
      if Cond then
10162
         return True;
10163
      end if;
10164
 
10165
      declare
10166
         Desc : Node_Id;
10167
         P    : Node_Id;
10168
 
10169
      begin
10170
         Desc := N;
10171
 
10172
         P := Parent (N);
10173
         while Present (P) loop
10174
            if         Nkind (P) = N_If_Statement
10175
              or else  Nkind (P) = N_Case_Statement
10176
              or else (Nkind (P) in N_Short_Circuit
10177
                         and then Desc = Right_Opnd (P))
10178
              or else (Nkind (P) = N_Conditional_Expression
10179
                         and then Desc /= First (Expressions (P)))
10180
              or else  Nkind (P) = N_Exception_Handler
10181
              or else  Nkind (P) = N_Selective_Accept
10182
              or else  Nkind (P) = N_Conditional_Entry_Call
10183
              or else  Nkind (P) = N_Timed_Entry_Call
10184
              or else  Nkind (P) = N_Asynchronous_Select
10185
            then
10186
               return False;
10187
            else
10188
               Desc := P;
10189
               P    := Parent (P);
10190
            end if;
10191
         end loop;
10192
      end;
10193
 
10194
      --  OK, looks safe to set value
10195
 
10196
      return True;
10197
   end Safe_To_Capture_Value;
10198
 
10199
   ---------------
10200
   -- Same_Name --
10201
   ---------------
10202
 
10203
   function Same_Name (N1, N2 : Node_Id) return Boolean is
10204
      K1 : constant Node_Kind := Nkind (N1);
10205
      K2 : constant Node_Kind := Nkind (N2);
10206
 
10207
   begin
10208
      if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
10209
        and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
10210
      then
10211
         return Chars (N1) = Chars (N2);
10212
 
10213
      elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
10214
        and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
10215
      then
10216
         return Same_Name (Selector_Name (N1), Selector_Name (N2))
10217
           and then Same_Name (Prefix (N1), Prefix (N2));
10218
 
10219
      else
10220
         return False;
10221
      end if;
10222
   end Same_Name;
10223
 
10224
   -----------------
10225
   -- Same_Object --
10226
   -----------------
10227
 
10228
   function Same_Object (Node1, Node2 : Node_Id) return Boolean is
10229
      N1 : constant Node_Id := Original_Node (Node1);
10230
      N2 : constant Node_Id := Original_Node (Node2);
10231
      --  We do the tests on original nodes, since we are most interested
10232
      --  in the original source, not any expansion that got in the way.
10233
 
10234
      K1 : constant Node_Kind := Nkind (N1);
10235
      K2 : constant Node_Kind := Nkind (N2);
10236
 
10237
   begin
10238
      --  First case, both are entities with same entity
10239
 
10240
      if K1 in N_Has_Entity
10241
        and then K2 in N_Has_Entity
10242
        and then Present (Entity (N1))
10243
        and then Present (Entity (N2))
10244
        and then (Ekind (Entity (N1)) = E_Variable
10245
                    or else
10246
                  Ekind (Entity (N1)) = E_Constant)
10247
        and then Entity (N1) = Entity (N2)
10248
      then
10249
         return True;
10250
 
10251
      --  Second case, selected component with same selector, same record
10252
 
10253
      elsif K1 = N_Selected_Component
10254
        and then K2 = N_Selected_Component
10255
        and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
10256
      then
10257
         return Same_Object (Prefix (N1), Prefix (N2));
10258
 
10259
      --  Third case, indexed component with same subscripts, same array
10260
 
10261
      elsif K1 = N_Indexed_Component
10262
        and then K2 = N_Indexed_Component
10263
        and then Same_Object (Prefix (N1), Prefix (N2))
10264
      then
10265
         declare
10266
            E1, E2 : Node_Id;
10267
         begin
10268
            E1 := First (Expressions (N1));
10269
            E2 := First (Expressions (N2));
10270
            while Present (E1) loop
10271
               if not Same_Value (E1, E2) then
10272
                  return False;
10273
               else
10274
                  Next (E1);
10275
                  Next (E2);
10276
               end if;
10277
            end loop;
10278
 
10279
            return True;
10280
         end;
10281
 
10282
      --  Fourth case, slice of same array with same bounds
10283
 
10284
      elsif K1 = N_Slice
10285
        and then K2 = N_Slice
10286
        and then Nkind (Discrete_Range (N1)) = N_Range
10287
        and then Nkind (Discrete_Range (N2)) = N_Range
10288
        and then Same_Value (Low_Bound (Discrete_Range (N1)),
10289
                             Low_Bound (Discrete_Range (N2)))
10290
        and then Same_Value (High_Bound (Discrete_Range (N1)),
10291
                             High_Bound (Discrete_Range (N2)))
10292
      then
10293
         return Same_Name (Prefix (N1), Prefix (N2));
10294
 
10295
      --  All other cases, not clearly the same object
10296
 
10297
      else
10298
         return False;
10299
      end if;
10300
   end Same_Object;
10301
 
10302
   ---------------
10303
   -- Same_Type --
10304
   ---------------
10305
 
10306
   function Same_Type (T1, T2 : Entity_Id) return Boolean is
10307
   begin
10308
      if T1 = T2 then
10309
         return True;
10310
 
10311
      elsif not Is_Constrained (T1)
10312
        and then not Is_Constrained (T2)
10313
        and then Base_Type (T1) = Base_Type (T2)
10314
      then
10315
         return True;
10316
 
10317
      --  For now don't bother with case of identical constraints, to be
10318
      --  fiddled with later on perhaps (this is only used for optimization
10319
      --  purposes, so it is not critical to do a best possible job)
10320
 
10321
      else
10322
         return False;
10323
      end if;
10324
   end Same_Type;
10325
 
10326
   ----------------
10327
   -- Same_Value --
10328
   ----------------
10329
 
10330
   function Same_Value (Node1, Node2 : Node_Id) return Boolean is
10331
   begin
10332
      if Compile_Time_Known_Value (Node1)
10333
        and then Compile_Time_Known_Value (Node2)
10334
        and then Expr_Value (Node1) = Expr_Value (Node2)
10335
      then
10336
         return True;
10337
      elsif Same_Object (Node1, Node2) then
10338
         return True;
10339
      else
10340
         return False;
10341
      end if;
10342
   end Same_Value;
10343
 
10344
   ------------------------
10345
   -- Scope_Is_Transient --
10346
   ------------------------
10347
 
10348
   function Scope_Is_Transient return Boolean is
10349
   begin
10350
      return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
10351
   end Scope_Is_Transient;
10352
 
10353
   ------------------
10354
   -- Scope_Within --
10355
   ------------------
10356
 
10357
   function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
10358
      Scop : Entity_Id;
10359
 
10360
   begin
10361
      Scop := Scope1;
10362
      while Scop /= Standard_Standard loop
10363
         Scop := Scope (Scop);
10364
 
10365
         if Scop = Scope2 then
10366
            return True;
10367
         end if;
10368
      end loop;
10369
 
10370
      return False;
10371
   end Scope_Within;
10372
 
10373
   --------------------------
10374
   -- Scope_Within_Or_Same --
10375
   --------------------------
10376
 
10377
   function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
10378
      Scop : Entity_Id;
10379
 
10380
   begin
10381
      Scop := Scope1;
10382
      while Scop /= Standard_Standard loop
10383
         if Scop = Scope2 then
10384
            return True;
10385
         else
10386
            Scop := Scope (Scop);
10387
         end if;
10388
      end loop;
10389
 
10390
      return False;
10391
   end Scope_Within_Or_Same;
10392
 
10393
   --------------------
10394
   -- Set_Convention --
10395
   --------------------
10396
 
10397
   procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
10398
   begin
10399
      Basic_Set_Convention (E, Val);
10400
 
10401
      if Is_Type (E)
10402
        and then Is_Access_Subprogram_Type (Base_Type (E))
10403
        and then Has_Foreign_Convention (E)
10404
      then
10405
         Set_Can_Use_Internal_Rep (E, False);
10406
      end if;
10407
   end Set_Convention;
10408
 
10409
   ------------------------
10410
   -- Set_Current_Entity --
10411
   ------------------------
10412
 
10413
   --  The given entity is to be set as the currently visible definition
10414
   --  of its associated name (i.e. the Node_Id associated with its name).
10415
   --  All we have to do is to get the name from the identifier, and
10416
   --  then set the associated Node_Id to point to the given entity.
10417
 
10418
   procedure Set_Current_Entity (E : Entity_Id) is
10419
   begin
10420
      Set_Name_Entity_Id (Chars (E), E);
10421
   end Set_Current_Entity;
10422
 
10423
   ---------------------------
10424
   -- Set_Debug_Info_Needed --
10425
   ---------------------------
10426
 
10427
   procedure Set_Debug_Info_Needed (T : Entity_Id) is
10428
 
10429
      procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
10430
      pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
10431
      --  Used to set debug info in a related node if not set already
10432
 
10433
      --------------------------------------
10434
      -- Set_Debug_Info_Needed_If_Not_Set --
10435
      --------------------------------------
10436
 
10437
      procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
10438
      begin
10439
         if Present (E)
10440
           and then not Needs_Debug_Info (E)
10441
         then
10442
            Set_Debug_Info_Needed (E);
10443
 
10444
            --  For a private type, indicate that the full view also needs
10445
            --  debug information.
10446
 
10447
            if Is_Type (E)
10448
              and then Is_Private_Type (E)
10449
              and then Present (Full_View (E))
10450
            then
10451
               Set_Debug_Info_Needed (Full_View (E));
10452
            end if;
10453
         end if;
10454
      end Set_Debug_Info_Needed_If_Not_Set;
10455
 
10456
   --  Start of processing for Set_Debug_Info_Needed
10457
 
10458
   begin
10459
      --  Nothing to do if argument is Empty or has Debug_Info_Off set, which
10460
      --  indicates that Debug_Info_Needed is never required for the entity.
10461
 
10462
      if No (T)
10463
        or else Debug_Info_Off (T)
10464
      then
10465
         return;
10466
      end if;
10467
 
10468
      --  Set flag in entity itself. Note that we will go through the following
10469
      --  circuitry even if the flag is already set on T. That's intentional,
10470
      --  it makes sure that the flag will be set in subsidiary entities.
10471
 
10472
      Set_Needs_Debug_Info (T);
10473
 
10474
      --  Set flag on subsidiary entities if not set already
10475
 
10476
      if Is_Object (T) then
10477
         Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10478
 
10479
      elsif Is_Type (T) then
10480
         Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10481
 
10482
         if Is_Record_Type (T) then
10483
            declare
10484
               Ent : Entity_Id := First_Entity (T);
10485
            begin
10486
               while Present (Ent) loop
10487
                  Set_Debug_Info_Needed_If_Not_Set (Ent);
10488
                  Next_Entity (Ent);
10489
               end loop;
10490
            end;
10491
 
10492
            if Ekind (T) = E_Class_Wide_Subtype then
10493
               Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
10494
            end if;
10495
 
10496
         elsif Is_Array_Type (T) then
10497
            Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
10498
 
10499
            declare
10500
               Indx : Node_Id := First_Index (T);
10501
            begin
10502
               while Present (Indx) loop
10503
                  Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
10504
                  Indx := Next_Index (Indx);
10505
               end loop;
10506
            end;
10507
 
10508
            if Is_Packed (T) then
10509
               Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
10510
            end if;
10511
 
10512
         elsif Is_Access_Type (T) then
10513
            Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
10514
 
10515
         elsif Is_Private_Type (T) then
10516
            Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
10517
 
10518
         elsif Is_Protected_Type (T) then
10519
            Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
10520
         end if;
10521
      end if;
10522
   end Set_Debug_Info_Needed;
10523
 
10524
   ---------------------------------
10525
   -- Set_Entity_With_Style_Check --
10526
   ---------------------------------
10527
 
10528
   procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
10529
      Val_Actual : Entity_Id;
10530
      Nod        : Node_Id;
10531
 
10532
   begin
10533
      Set_Entity (N, Val);
10534
 
10535
      if Style_Check
10536
        and then not Suppress_Style_Checks (Val)
10537
        and then not In_Instance
10538
      then
10539
         if Nkind (N) = N_Identifier then
10540
            Nod := N;
10541
         elsif Nkind (N) = N_Expanded_Name then
10542
            Nod := Selector_Name (N);
10543
         else
10544
            return;
10545
         end if;
10546
 
10547
         --  A special situation arises for derived operations, where we want
10548
         --  to do the check against the parent (since the Sloc of the derived
10549
         --  operation points to the derived type declaration itself).
10550
 
10551
         Val_Actual := Val;
10552
         while not Comes_From_Source (Val_Actual)
10553
           and then Nkind (Val_Actual) in N_Entity
10554
           and then (Ekind (Val_Actual) = E_Enumeration_Literal
10555
                      or else Is_Subprogram (Val_Actual)
10556
                      or else Is_Generic_Subprogram (Val_Actual))
10557
           and then Present (Alias (Val_Actual))
10558
         loop
10559
            Val_Actual := Alias (Val_Actual);
10560
         end loop;
10561
 
10562
         --  Renaming declarations for generic actuals do not come from source,
10563
         --  and have a different name from that of the entity they rename, so
10564
         --  there is no style check to perform here.
10565
 
10566
         if Chars (Nod) = Chars (Val_Actual) then
10567
            Style.Check_Identifier (Nod, Val_Actual);
10568
         end if;
10569
      end if;
10570
 
10571
      Set_Entity (N, Val);
10572
   end Set_Entity_With_Style_Check;
10573
 
10574
   ------------------------
10575
   -- Set_Name_Entity_Id --
10576
   ------------------------
10577
 
10578
   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
10579
   begin
10580
      Set_Name_Table_Info (Id, Int (Val));
10581
   end Set_Name_Entity_Id;
10582
 
10583
   ---------------------
10584
   -- Set_Next_Actual --
10585
   ---------------------
10586
 
10587
   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
10588
   begin
10589
      if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
10590
         Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
10591
      end if;
10592
   end Set_Next_Actual;
10593
 
10594
   ----------------------------------
10595
   -- Set_Optimize_Alignment_Flags --
10596
   ----------------------------------
10597
 
10598
   procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
10599
   begin
10600
      if Optimize_Alignment = 'S' then
10601
         Set_Optimize_Alignment_Space (E);
10602
      elsif Optimize_Alignment = 'T' then
10603
         Set_Optimize_Alignment_Time (E);
10604
      end if;
10605
   end Set_Optimize_Alignment_Flags;
10606
 
10607
   -----------------------
10608
   -- Set_Public_Status --
10609
   -----------------------
10610
 
10611
   procedure Set_Public_Status (Id : Entity_Id) is
10612
      S : constant Entity_Id := Current_Scope;
10613
 
10614
      function Within_HSS_Or_If (E : Entity_Id) return Boolean;
10615
      --  Determines if E is defined within handled statement sequence or
10616
      --  an if statement, returns True if so, False otherwise.
10617
 
10618
      ----------------------
10619
      -- Within_HSS_Or_If --
10620
      ----------------------
10621
 
10622
      function Within_HSS_Or_If (E : Entity_Id) return Boolean is
10623
         N : Node_Id;
10624
      begin
10625
         N := Declaration_Node (E);
10626
         loop
10627
            N := Parent (N);
10628
 
10629
            if No (N) then
10630
               return False;
10631
 
10632
            elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
10633
                               N_If_Statement)
10634
            then
10635
               return True;
10636
            end if;
10637
         end loop;
10638
      end Within_HSS_Or_If;
10639
 
10640
   --  Start of processing for Set_Public_Status
10641
 
10642
   begin
10643
      --  Everything in the scope of Standard is public
10644
 
10645
      if S = Standard_Standard then
10646
         Set_Is_Public (Id);
10647
 
10648
      --  Entity is definitely not public if enclosing scope is not public
10649
 
10650
      elsif not Is_Public (S) then
10651
         return;
10652
 
10653
      --  An object or function declaration that occurs in a handled sequence
10654
      --  of statements or within an if statement is the declaration for a
10655
      --  temporary object or local subprogram generated by the expander. It
10656
      --  never needs to be made public and furthermore, making it public can
10657
      --  cause back end problems.
10658
 
10659
      elsif Nkind_In (Parent (Id), N_Object_Declaration,
10660
                                   N_Function_Specification)
10661
        and then Within_HSS_Or_If (Id)
10662
      then
10663
         return;
10664
 
10665
      --  Entities in public packages or records are public
10666
 
10667
      elsif Ekind (S) = E_Package or Is_Record_Type (S) then
10668
         Set_Is_Public (Id);
10669
 
10670
      --  The bounds of an entry family declaration can generate object
10671
      --  declarations that are visible to the back-end, e.g. in the
10672
      --  the declaration of a composite type that contains tasks.
10673
 
10674
      elsif Is_Concurrent_Type (S)
10675
        and then not Has_Completion (S)
10676
        and then Nkind (Parent (Id)) = N_Object_Declaration
10677
      then
10678
         Set_Is_Public (Id);
10679
      end if;
10680
   end Set_Public_Status;
10681
 
10682
   -----------------------------
10683
   -- Set_Referenced_Modified --
10684
   -----------------------------
10685
 
10686
   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
10687
      Pref : Node_Id;
10688
 
10689
   begin
10690
      --  Deal with indexed or selected component where prefix is modified
10691
 
10692
      if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
10693
         Pref := Prefix (N);
10694
 
10695
         --  If prefix is access type, then it is the designated object that is
10696
         --  being modified, which means we have no entity to set the flag on.
10697
 
10698
         if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
10699
            return;
10700
 
10701
            --  Otherwise chase the prefix
10702
 
10703
         else
10704
            Set_Referenced_Modified (Pref, Out_Param);
10705
         end if;
10706
 
10707
      --  Otherwise see if we have an entity name (only other case to process)
10708
 
10709
      elsif Is_Entity_Name (N) and then Present (Entity (N)) then
10710
         Set_Referenced_As_LHS           (Entity (N), not Out_Param);
10711
         Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
10712
      end if;
10713
   end Set_Referenced_Modified;
10714
 
10715
   ----------------------------
10716
   -- Set_Scope_Is_Transient --
10717
   ----------------------------
10718
 
10719
   procedure Set_Scope_Is_Transient (V : Boolean := True) is
10720
   begin
10721
      Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
10722
   end Set_Scope_Is_Transient;
10723
 
10724
   -------------------
10725
   -- Set_Size_Info --
10726
   -------------------
10727
 
10728
   procedure Set_Size_Info (T1, T2 : Entity_Id) is
10729
   begin
10730
      --  We copy Esize, but not RM_Size, since in general RM_Size is
10731
      --  subtype specific and does not get inherited by all subtypes.
10732
 
10733
      Set_Esize                     (T1, Esize                     (T2));
10734
      Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
10735
 
10736
      if Is_Discrete_Or_Fixed_Point_Type (T1)
10737
           and then
10738
         Is_Discrete_Or_Fixed_Point_Type (T2)
10739
      then
10740
         Set_Is_Unsigned_Type       (T1, Is_Unsigned_Type          (T2));
10741
      end if;
10742
 
10743
      Set_Alignment                 (T1, Alignment                 (T2));
10744
   end Set_Size_Info;
10745
 
10746
   --------------------
10747
   -- Static_Integer --
10748
   --------------------
10749
 
10750
   function Static_Integer (N : Node_Id) return Uint is
10751
   begin
10752
      Analyze_And_Resolve (N, Any_Integer);
10753
 
10754
      if N = Error
10755
        or else Error_Posted (N)
10756
        or else Etype (N) = Any_Type
10757
      then
10758
         return No_Uint;
10759
      end if;
10760
 
10761
      if Is_Static_Expression (N) then
10762
         if not Raises_Constraint_Error (N) then
10763
            return Expr_Value (N);
10764
         else
10765
            return No_Uint;
10766
         end if;
10767
 
10768
      elsif Etype (N) = Any_Type then
10769
         return No_Uint;
10770
 
10771
      else
10772
         Flag_Non_Static_Expr
10773
           ("static integer expression required here", N);
10774
         return No_Uint;
10775
      end if;
10776
   end Static_Integer;
10777
 
10778
   --------------------------
10779
   -- Statically_Different --
10780
   --------------------------
10781
 
10782
   function Statically_Different (E1, E2 : Node_Id) return Boolean is
10783
      R1 : constant Node_Id := Get_Referenced_Object (E1);
10784
      R2 : constant Node_Id := Get_Referenced_Object (E2);
10785
   begin
10786
      return     Is_Entity_Name (R1)
10787
        and then Is_Entity_Name (R2)
10788
        and then Entity (R1) /= Entity (R2)
10789
        and then not Is_Formal (Entity (R1))
10790
        and then not Is_Formal (Entity (R2));
10791
   end Statically_Different;
10792
 
10793
   -----------------------------
10794
   -- Subprogram_Access_Level --
10795
   -----------------------------
10796
 
10797
   function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
10798
   begin
10799
      if Present (Alias (Subp)) then
10800
         return Subprogram_Access_Level (Alias (Subp));
10801
      else
10802
         return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
10803
      end if;
10804
   end Subprogram_Access_Level;
10805
 
10806
   -----------------
10807
   -- Trace_Scope --
10808
   -----------------
10809
 
10810
   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
10811
   begin
10812
      if Debug_Flag_W then
10813
         for J in 0 .. Scope_Stack.Last loop
10814
            Write_Str ("  ");
10815
         end loop;
10816
 
10817
         Write_Str (Msg);
10818
         Write_Name (Chars (E));
10819
         Write_Str (" from ");
10820
         Write_Location (Sloc (N));
10821
         Write_Eol;
10822
      end if;
10823
   end Trace_Scope;
10824
 
10825
   -----------------------
10826
   -- Transfer_Entities --
10827
   -----------------------
10828
 
10829
   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
10830
      Ent : Entity_Id := First_Entity (From);
10831
 
10832
   begin
10833
      if No (Ent) then
10834
         return;
10835
      end if;
10836
 
10837
      if (Last_Entity (To)) = Empty then
10838
         Set_First_Entity (To, Ent);
10839
      else
10840
         Set_Next_Entity (Last_Entity (To), Ent);
10841
      end if;
10842
 
10843
      Set_Last_Entity (To, Last_Entity (From));
10844
 
10845
      while Present (Ent) loop
10846
         Set_Scope (Ent, To);
10847
 
10848
         if not Is_Public (Ent) then
10849
            Set_Public_Status (Ent);
10850
 
10851
            if Is_Public (Ent)
10852
              and then Ekind (Ent) = E_Record_Subtype
10853
 
10854
            then
10855
               --  The components of the propagated Itype must be public
10856
               --  as well.
10857
 
10858
               declare
10859
                  Comp : Entity_Id;
10860
               begin
10861
                  Comp := First_Entity (Ent);
10862
                  while Present (Comp) loop
10863
                     Set_Is_Public (Comp);
10864
                     Next_Entity (Comp);
10865
                  end loop;
10866
               end;
10867
            end if;
10868
         end if;
10869
 
10870
         Next_Entity (Ent);
10871
      end loop;
10872
 
10873
      Set_First_Entity (From, Empty);
10874
      Set_Last_Entity (From, Empty);
10875
   end Transfer_Entities;
10876
 
10877
   -----------------------
10878
   -- Type_Access_Level --
10879
   -----------------------
10880
 
10881
   function Type_Access_Level (Typ : Entity_Id) return Uint is
10882
      Btyp : Entity_Id;
10883
 
10884
   begin
10885
      Btyp := Base_Type (Typ);
10886
 
10887
      --  Ada 2005 (AI-230): For most cases of anonymous access types, we
10888
      --  simply use the level where the type is declared. This is true for
10889
      --  stand-alone object declarations, and for anonymous access types
10890
      --  associated with components the level is the same as that of the
10891
      --  enclosing composite type. However, special treatment is needed for
10892
      --  the cases of access parameters, return objects of an anonymous access
10893
      --  type, and, in Ada 95, access discriminants of limited types.
10894
 
10895
      if Ekind (Btyp) in Access_Kind then
10896
         if Ekind (Btyp) = E_Anonymous_Access_Type then
10897
 
10898
            --  If the type is a nonlocal anonymous access type (such as for
10899
            --  an access parameter) we treat it as being declared at the
10900
            --  library level to ensure that names such as X.all'access don't
10901
            --  fail static accessibility checks.
10902
 
10903
            if not Is_Local_Anonymous_Access (Typ) then
10904
               return Scope_Depth (Standard_Standard);
10905
 
10906
            --  If this is a return object, the accessibility level is that of
10907
            --  the result subtype of the enclosing function. The test here is
10908
            --  little complicated, because we have to account for extended
10909
            --  return statements that have been rewritten as blocks, in which
10910
            --  case we have to find and the Is_Return_Object attribute of the
10911
            --  itype's associated object. It would be nice to find a way to
10912
            --  simplify this test, but it doesn't seem worthwhile to add a new
10913
            --  flag just for purposes of this test. ???
10914
 
10915
            elsif Ekind (Scope (Btyp)) = E_Return_Statement
10916
              or else
10917
                (Is_Itype (Btyp)
10918
                  and then Nkind (Associated_Node_For_Itype (Btyp)) =
10919
                             N_Object_Declaration
10920
                  and then Is_Return_Object
10921
                             (Defining_Identifier
10922
                                (Associated_Node_For_Itype (Btyp))))
10923
            then
10924
               declare
10925
                  Scop : Entity_Id;
10926
 
10927
               begin
10928
                  Scop := Scope (Scope (Btyp));
10929
                  while Present (Scop) loop
10930
                     exit when Ekind (Scop) = E_Function;
10931
                     Scop := Scope (Scop);
10932
                  end loop;
10933
 
10934
                  --  Treat the return object's type as having the level of the
10935
                  --  function's result subtype (as per RM05-6.5(5.3/2)).
10936
 
10937
                  return Type_Access_Level (Etype (Scop));
10938
               end;
10939
            end if;
10940
         end if;
10941
 
10942
         Btyp := Root_Type (Btyp);
10943
 
10944
         --  The accessibility level of anonymous access types associated with
10945
         --  discriminants is that of the current instance of the type, and
10946
         --  that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
10947
 
10948
         --  AI-402: access discriminants have accessibility based on the
10949
         --  object rather than the type in Ada 2005, so the above paragraph
10950
         --  doesn't apply.
10951
 
10952
         --  ??? Needs completion with rules from AI-416
10953
 
10954
         if Ada_Version <= Ada_95
10955
           and then Ekind (Typ) = E_Anonymous_Access_Type
10956
           and then Present (Associated_Node_For_Itype (Typ))
10957
           and then Nkind (Associated_Node_For_Itype (Typ)) =
10958
                                                 N_Discriminant_Specification
10959
         then
10960
            return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
10961
         end if;
10962
      end if;
10963
 
10964
      return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
10965
   end Type_Access_Level;
10966
 
10967
   --------------------
10968
   -- Ultimate_Alias --
10969
   --------------------
10970
   --  To do: add occurrences calling this new subprogram
10971
 
10972
   function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
10973
      E : Entity_Id := Prim;
10974
 
10975
   begin
10976
      while Present (Alias (E)) loop
10977
         E := Alias (E);
10978
      end loop;
10979
 
10980
      return E;
10981
   end Ultimate_Alias;
10982
 
10983
   --------------------------
10984
   -- Unit_Declaration_Node --
10985
   --------------------------
10986
 
10987
   function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
10988
      N : Node_Id := Parent (Unit_Id);
10989
 
10990
   begin
10991
      --  Predefined operators do not have a full function declaration
10992
 
10993
      if Ekind (Unit_Id) = E_Operator then
10994
         return N;
10995
      end if;
10996
 
10997
      --  Isn't there some better way to express the following ???
10998
 
10999
      while Nkind (N) /= N_Abstract_Subprogram_Declaration
11000
        and then Nkind (N) /= N_Formal_Package_Declaration
11001
        and then Nkind (N) /= N_Function_Instantiation
11002
        and then Nkind (N) /= N_Generic_Package_Declaration
11003
        and then Nkind (N) /= N_Generic_Subprogram_Declaration
11004
        and then Nkind (N) /= N_Package_Declaration
11005
        and then Nkind (N) /= N_Package_Body
11006
        and then Nkind (N) /= N_Package_Instantiation
11007
        and then Nkind (N) /= N_Package_Renaming_Declaration
11008
        and then Nkind (N) /= N_Procedure_Instantiation
11009
        and then Nkind (N) /= N_Protected_Body
11010
        and then Nkind (N) /= N_Subprogram_Declaration
11011
        and then Nkind (N) /= N_Subprogram_Body
11012
        and then Nkind (N) /= N_Subprogram_Body_Stub
11013
        and then Nkind (N) /= N_Subprogram_Renaming_Declaration
11014
        and then Nkind (N) /= N_Task_Body
11015
        and then Nkind (N) /= N_Task_Type_Declaration
11016
        and then Nkind (N) not in N_Formal_Subprogram_Declaration
11017
        and then Nkind (N) not in N_Generic_Renaming_Declaration
11018
      loop
11019
         N := Parent (N);
11020
         pragma Assert (Present (N));
11021
      end loop;
11022
 
11023
      return N;
11024
   end Unit_Declaration_Node;
11025
 
11026
   ------------------------------
11027
   -- Universal_Interpretation --
11028
   ------------------------------
11029
 
11030
   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
11031
      Index : Interp_Index;
11032
      It    : Interp;
11033
 
11034
   begin
11035
      --  The argument may be a formal parameter of an operator or subprogram
11036
      --  with multiple interpretations, or else an expression for an actual.
11037
 
11038
      if Nkind (Opnd) = N_Defining_Identifier
11039
        or else not Is_Overloaded (Opnd)
11040
      then
11041
         if Etype (Opnd) = Universal_Integer
11042
           or else Etype (Opnd) = Universal_Real
11043
         then
11044
            return Etype (Opnd);
11045
         else
11046
            return Empty;
11047
         end if;
11048
 
11049
      else
11050
         Get_First_Interp (Opnd, Index, It);
11051
         while Present (It.Typ) loop
11052
            if It.Typ = Universal_Integer
11053
              or else It.Typ = Universal_Real
11054
            then
11055
               return It.Typ;
11056
            end if;
11057
 
11058
            Get_Next_Interp (Index, It);
11059
         end loop;
11060
 
11061
         return Empty;
11062
      end if;
11063
   end Universal_Interpretation;
11064
 
11065
   ---------------
11066
   -- Unqualify --
11067
   ---------------
11068
 
11069
   function Unqualify (Expr : Node_Id) return Node_Id is
11070
   begin
11071
      --  Recurse to handle unlikely case of multiple levels of qualification
11072
 
11073
      if Nkind (Expr) = N_Qualified_Expression then
11074
         return Unqualify (Expression (Expr));
11075
 
11076
      --  Normal case, not a qualified expression
11077
 
11078
      else
11079
         return Expr;
11080
      end if;
11081
   end Unqualify;
11082
 
11083
   ----------------------
11084
   -- Within_Init_Proc --
11085
   ----------------------
11086
 
11087
   function Within_Init_Proc return Boolean is
11088
      S : Entity_Id;
11089
 
11090
   begin
11091
      S := Current_Scope;
11092
      while not Is_Overloadable (S) loop
11093
         if S = Standard_Standard then
11094
            return False;
11095
         else
11096
            S := Scope (S);
11097
         end if;
11098
      end loop;
11099
 
11100
      return Is_Init_Proc (S);
11101
   end Within_Init_Proc;
11102
 
11103
   ----------------
11104
   -- Wrong_Type --
11105
   ----------------
11106
 
11107
   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
11108
      Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
11109
      Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
11110
 
11111
      function Has_One_Matching_Field return Boolean;
11112
      --  Determines if Expec_Type is a record type with a single component or
11113
      --  discriminant whose type matches the found type or is one dimensional
11114
      --  array whose component type matches the found type.
11115
 
11116
      ----------------------------
11117
      -- Has_One_Matching_Field --
11118
      ----------------------------
11119
 
11120
      function Has_One_Matching_Field return Boolean is
11121
         E : Entity_Id;
11122
 
11123
      begin
11124
         if Is_Array_Type (Expec_Type)
11125
           and then Number_Dimensions (Expec_Type) = 1
11126
           and then
11127
             Covers (Etype (Component_Type (Expec_Type)), Found_Type)
11128
         then
11129
            return True;
11130
 
11131
         elsif not Is_Record_Type (Expec_Type) then
11132
            return False;
11133
 
11134
         else
11135
            E := First_Entity (Expec_Type);
11136
            loop
11137
               if No (E) then
11138
                  return False;
11139
 
11140
               elsif (Ekind (E) /= E_Discriminant
11141
                       and then Ekind (E) /= E_Component)
11142
                 or else (Chars (E) = Name_uTag
11143
                           or else Chars (E) = Name_uParent)
11144
               then
11145
                  Next_Entity (E);
11146
 
11147
               else
11148
                  exit;
11149
               end if;
11150
            end loop;
11151
 
11152
            if not Covers (Etype (E), Found_Type) then
11153
               return False;
11154
 
11155
            elsif Present (Next_Entity (E)) then
11156
               return False;
11157
 
11158
            else
11159
               return True;
11160
            end if;
11161
         end if;
11162
      end Has_One_Matching_Field;
11163
 
11164
   --  Start of processing for Wrong_Type
11165
 
11166
   begin
11167
      --  Don't output message if either type is Any_Type, or if a message
11168
      --  has already been posted for this node. We need to do the latter
11169
      --  check explicitly (it is ordinarily done in Errout), because we
11170
      --  are using ! to force the output of the error messages.
11171
 
11172
      if Expec_Type = Any_Type
11173
        or else Found_Type = Any_Type
11174
        or else Error_Posted (Expr)
11175
      then
11176
         return;
11177
 
11178
      --  In  an instance, there is an ongoing problem with completion of
11179
      --  type derived from private types. Their structure is what Gigi
11180
      --  expects, but the  Etype is the parent type rather than the
11181
      --  derived private type itself. Do not flag error in this case. The
11182
      --  private completion is an entity without a parent, like an Itype.
11183
      --  Similarly, full and partial views may be incorrect in the instance.
11184
      --  There is no simple way to insure that it is consistent ???
11185
 
11186
      elsif In_Instance then
11187
         if Etype (Etype (Expr)) = Etype (Expected_Type)
11188
           and then
11189
             (Has_Private_Declaration (Expected_Type)
11190
               or else Has_Private_Declaration (Etype (Expr)))
11191
           and then No (Parent (Expected_Type))
11192
         then
11193
            return;
11194
         end if;
11195
      end if;
11196
 
11197
      --  An interesting special check. If the expression is parenthesized
11198
      --  and its type corresponds to the type of the sole component of the
11199
      --  expected record type, or to the component type of the expected one
11200
      --  dimensional array type, then assume we have a bad aggregate attempt.
11201
 
11202
      if Nkind (Expr) in N_Subexpr
11203
        and then Paren_Count (Expr) /= 0
11204
        and then Has_One_Matching_Field
11205
      then
11206
         Error_Msg_N ("positional aggregate cannot have one component", Expr);
11207
 
11208
      --  Another special check, if we are looking for a pool-specific access
11209
      --  type and we found an E_Access_Attribute_Type, then we have the case
11210
      --  of an Access attribute being used in a context which needs a pool-
11211
      --  specific type, which is never allowed. The one extra check we make
11212
      --  is that the expected designated type covers the Found_Type.
11213
 
11214
      elsif Is_Access_Type (Expec_Type)
11215
        and then Ekind (Found_Type) = E_Access_Attribute_Type
11216
        and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
11217
        and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
11218
        and then Covers
11219
          (Designated_Type (Expec_Type), Designated_Type (Found_Type))
11220
      then
11221
         Error_Msg_N ("result must be general access type!", Expr);
11222
         Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
11223
 
11224
      --  Another special check, if the expected type is an integer type,
11225
      --  but the expression is of type System.Address, and the parent is
11226
      --  an addition or subtraction operation whose left operand is the
11227
      --  expression in question and whose right operand is of an integral
11228
      --  type, then this is an attempt at address arithmetic, so give
11229
      --  appropriate message.
11230
 
11231
      elsif Is_Integer_Type (Expec_Type)
11232
        and then Is_RTE (Found_Type, RE_Address)
11233
        and then (Nkind (Parent (Expr)) = N_Op_Add
11234
                    or else
11235
                  Nkind (Parent (Expr)) = N_Op_Subtract)
11236
        and then Expr = Left_Opnd (Parent (Expr))
11237
        and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
11238
      then
11239
         Error_Msg_N
11240
           ("address arithmetic not predefined in package System",
11241
            Parent (Expr));
11242
         Error_Msg_N
11243
           ("\possible missing with/use of System.Storage_Elements",
11244
            Parent (Expr));
11245
         return;
11246
 
11247
      --  If the expected type is an anonymous access type, as for access
11248
      --  parameters and discriminants, the error is on the designated types.
11249
 
11250
      elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
11251
         if Comes_From_Source (Expec_Type) then
11252
            Error_Msg_NE ("expected}!", Expr, Expec_Type);
11253
         else
11254
            Error_Msg_NE
11255
              ("expected an access type with designated}",
11256
                 Expr, Designated_Type (Expec_Type));
11257
         end if;
11258
 
11259
         if Is_Access_Type (Found_Type)
11260
           and then not Comes_From_Source (Found_Type)
11261
         then
11262
            Error_Msg_NE
11263
              ("\\found an access type with designated}!",
11264
                Expr, Designated_Type (Found_Type));
11265
         else
11266
            if From_With_Type (Found_Type) then
11267
               Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
11268
               Error_Msg_Qual_Level := 99;
11269
               Error_Msg_NE ("\\missing `WITH &;", Expr, Scope (Found_Type));
11270
               Error_Msg_Qual_Level := 0;
11271
            else
11272
               Error_Msg_NE ("found}!", Expr, Found_Type);
11273
            end if;
11274
         end if;
11275
 
11276
      --  Normal case of one type found, some other type expected
11277
 
11278
      else
11279
         --  If the names of the two types are the same, see if some number
11280
         --  of levels of qualification will help. Don't try more than three
11281
         --  levels, and if we get to standard, it's no use (and probably
11282
         --  represents an error in the compiler) Also do not bother with
11283
         --  internal scope names.
11284
 
11285
         declare
11286
            Expec_Scope : Entity_Id;
11287
            Found_Scope : Entity_Id;
11288
 
11289
         begin
11290
            Expec_Scope := Expec_Type;
11291
            Found_Scope := Found_Type;
11292
 
11293
            for Levels in Int range 0 .. 3 loop
11294
               if Chars (Expec_Scope) /= Chars (Found_Scope) then
11295
                  Error_Msg_Qual_Level := Levels;
11296
                  exit;
11297
               end if;
11298
 
11299
               Expec_Scope := Scope (Expec_Scope);
11300
               Found_Scope := Scope (Found_Scope);
11301
 
11302
               exit when Expec_Scope = Standard_Standard
11303
                 or else Found_Scope = Standard_Standard
11304
                 or else not Comes_From_Source (Expec_Scope)
11305
                 or else not Comes_From_Source (Found_Scope);
11306
            end loop;
11307
         end;
11308
 
11309
         if Is_Record_Type (Expec_Type)
11310
           and then Present (Corresponding_Remote_Type (Expec_Type))
11311
         then
11312
            Error_Msg_NE ("expected}!", Expr,
11313
                          Corresponding_Remote_Type (Expec_Type));
11314
         else
11315
            Error_Msg_NE ("expected}!", Expr, Expec_Type);
11316
         end if;
11317
 
11318
         if Is_Entity_Name (Expr)
11319
           and then Is_Package_Or_Generic_Package (Entity (Expr))
11320
         then
11321
            Error_Msg_N ("\\found package name!", Expr);
11322
 
11323
         elsif Is_Entity_Name (Expr)
11324
           and then
11325
             (Ekind (Entity (Expr)) = E_Procedure
11326
                or else
11327
              Ekind (Entity (Expr)) = E_Generic_Procedure)
11328
         then
11329
            if Ekind (Expec_Type) = E_Access_Subprogram_Type then
11330
               Error_Msg_N
11331
                 ("found procedure name, possibly missing Access attribute!",
11332
                   Expr);
11333
            else
11334
               Error_Msg_N
11335
                 ("\\found procedure name instead of function!", Expr);
11336
            end if;
11337
 
11338
         elsif Nkind (Expr) = N_Function_Call
11339
           and then Ekind (Expec_Type) = E_Access_Subprogram_Type
11340
           and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
11341
           and then No (Parameter_Associations (Expr))
11342
         then
11343
            Error_Msg_N
11344
              ("found function name, possibly missing Access attribute!",
11345
               Expr);
11346
 
11347
         --  Catch common error: a prefix or infix operator which is not
11348
         --  directly visible because the type isn't.
11349
 
11350
         elsif Nkind (Expr) in N_Op
11351
            and then Is_Overloaded (Expr)
11352
            and then not Is_Immediately_Visible (Expec_Type)
11353
            and then not Is_Potentially_Use_Visible (Expec_Type)
11354
            and then not In_Use (Expec_Type)
11355
            and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
11356
         then
11357
            Error_Msg_N
11358
              ("operator of the type is not directly visible!", Expr);
11359
 
11360
         elsif Ekind (Found_Type) = E_Void
11361
           and then Present (Parent (Found_Type))
11362
           and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
11363
         then
11364
            Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
11365
 
11366
         else
11367
            Error_Msg_NE ("\\found}!", Expr, Found_Type);
11368
         end if;
11369
 
11370
         --  A special check for cases like M1 and M2 = 0 where M1 and M2 are
11371
         --  of the same modular type, and (M1 and M2) = 0 was intended.
11372
 
11373
         if Expec_Type = Standard_Boolean
11374
           and then Is_Modular_Integer_Type (Found_Type)
11375
           and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
11376
           and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
11377
         then
11378
            declare
11379
               Op : constant Node_Id := Right_Opnd (Parent (Expr));
11380
               L  : constant Node_Id := Left_Opnd (Op);
11381
               R  : constant Node_Id := Right_Opnd (Op);
11382
            begin
11383
               --  The case for the message is when the left operand of the
11384
               --  comparison is the same modular type, or when it is an
11385
               --  integer literal (or other universal integer expression),
11386
               --  which would have been typed as the modular type if the
11387
               --  parens had been there.
11388
 
11389
               if (Etype (L) = Found_Type
11390
                     or else
11391
                   Etype (L) = Universal_Integer)
11392
                 and then Is_Integer_Type (Etype (R))
11393
               then
11394
                  Error_Msg_N
11395
                    ("\\possible missing parens for modular operation", Expr);
11396
               end if;
11397
            end;
11398
         end if;
11399
 
11400
         --  Reset error message qualification indication
11401
 
11402
         Error_Msg_Qual_Level := 0;
11403
      end if;
11404
   end Wrong_Type;
11405
 
11406
end Sem_Util;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.