OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [types.ads] - Blame information for rev 281

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                                T Y P E S                                 --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This package contains host independent type definitions which are used
33
--  in more than one unit in the compiler. They are gathered here for easy
34
--  reference, although in some cases the full description is found in the
35
--  relevant module which implements the definition. The main reason that they
36
--  are not in their "natural" specs is that this would cause a lot of inter-
37
--  spec dependencies, and in particular some awkward circular dependencies
38
--  would have to be dealt with.
39
 
40
--  WARNING: There is a C version of this package. Any changes to this source
41
--  file must be properly reflected in the C header file types.h declarations.
42
 
43
--  Note: the declarations in this package reflect an expectation that the host
44
--  machine has an efficient integer base type with a range at least 32 bits
45
--  2s-complement. If there are any machines for which this is not a correct
46
--  assumption, a significant number of changes will be required!
47
 
48
with System;
49
with Unchecked_Conversion;
50
with Unchecked_Deallocation;
51
 
52
package Types is
53
   pragma Preelaborate;
54
 
55
   -------------------------------
56
   -- General Use Integer Types --
57
   -------------------------------
58
 
59
   type Int is range -2 ** 31 .. +2 ** 31 - 1;
60
   --  Signed 32-bit integer
61
 
62
   type Dint is range -2 ** 63 .. +2 ** 63 - 1;
63
   --  Double length (64-bit) integer
64
 
65
   subtype Nat is Int range 0 .. Int'Last;
66
   --  Non-negative Int values
67
 
68
   subtype Pos is Int range 1 .. Int'Last;
69
   --  Positive Int values
70
 
71
   type Word is mod 2 ** 32;
72
   --  Unsigned 32-bit integer
73
 
74
   type Short is range -32768 .. +32767;
75
   for Short'Size use 16;
76
   --  16-bit signed integer
77
 
78
   type Byte is mod 2 ** 8;
79
   for Byte'Size use 8;
80
   --  8-bit unsigned integer
81
 
82
   type size_t is mod 2 ** Standard'Address_Size;
83
   --  Memory size value, for use in calls to C routines
84
 
85
   --------------------------------------
86
   -- 8-Bit Character and String Types --
87
   --------------------------------------
88
 
89
   --  We use Standard.Character and Standard.String freely, since we are
90
   --  compiling ourselves, and we properly implement the required 8-bit
91
   --  character code as required in Ada 95. This section defines a few
92
   --  general use constants and subtypes.
93
 
94
   EOF : constant Character := ASCII.SUB;
95
   --  The character SUB (16#1A#) is used in DOS and other systems derived
96
   --  from DOS (XP, NT etc) to signal the end of a text file. Internally
97
   --  all source files are ended by an EOF character, even on Unix systems.
98
   --  An EOF character acts as the end of file only as the last character
99
   --  of a source buffer, in any other position, it is treated as a blank
100
   --  if it appears between tokens, and as an illegal character otherwise.
101
   --  This makes life easier dealing with files that originated from DOS,
102
   --  including concatenated files with interspersed EOF characters.
103
 
104
   subtype Graphic_Character is Character range ' ' .. '~';
105
   --  Graphic characters, as defined in ARM
106
 
107
   subtype Line_Terminator is Character range ASCII.LF .. ASCII.CR;
108
   --  Line terminator characters (LF, VT, FF, CR)
109
   --
110
   --  This definition is dubious now that we have two more wide character
111
   --  sequences that constitute a line terminator. Every reference to this
112
   --  subtype needs checking to make sure the wide character case is handled
113
   --  appropriately. ???
114
 
115
   subtype Upper_Half_Character is
116
     Character range Character'Val (16#80#) .. Character'Val (16#FF#);
117
   --  Characters with the upper bit set
118
 
119
   type Character_Ptr is access all Character;
120
   type String_Ptr    is access all String;
121
   --  Standard character and string pointers
122
 
123
   procedure Free is new Unchecked_Deallocation (String, String_Ptr);
124
   --  Procedure for freeing dynamically allocated String values
125
 
126
   subtype Big_String is String (Positive);
127
   type Big_String_Ptr is access all Big_String;
128
   for Big_String_Ptr'Storage_Size use 0;
129
   --  Virtual type for handling imported big strings
130
 
131
   function To_Big_String_Ptr is
132
     new Unchecked_Conversion (System.Address, Big_String_Ptr);
133
   --  Used to obtain Big_String_Ptr values from external addresses
134
 
135
   subtype Word_Hex_String is String (1 .. 8);
136
   --  Type used to represent Word value as 8 hex digits, with lower case
137
   --  letters for the alphabetic cases.
138
 
139
   function Get_Hex_String (W : Word) return Word_Hex_String;
140
   --  Convert word value to 8-character hex string
141
 
142
   -----------------------------------------
143
   -- Types Used for Text Buffer Handling --
144
   -----------------------------------------
145
 
146
   --  We can not use type String for text buffers, since we must use the
147
   --  standard 32-bit integer as an index value, since we count on all index
148
   --  values being the same size.
149
 
150
   type Text_Ptr is new Int;
151
   --  Type used for subscripts in text buffer
152
 
153
   type Text_Buffer is array (Text_Ptr range <>) of Character;
154
   --  Text buffer used to hold source file or library information file
155
 
156
   type Text_Buffer_Ptr is access all Text_Buffer;
157
   --  Text buffers for input files are allocated dynamically and this type
158
   --  is used to reference these text buffers.
159
 
160
   procedure Free is new Unchecked_Deallocation (Text_Buffer, Text_Buffer_Ptr);
161
   --  Procedure for freeing dynamically allocated text buffers
162
 
163
   ------------------------------------------
164
   -- Types Used for Source Input Handling --
165
   ------------------------------------------
166
 
167
   type Logical_Line_Number is range 0 .. Int'Last;
168
   for Logical_Line_Number'Size use 32;
169
   --  Line number type, used for storing logical line numbers (i.e. line
170
   --  numbers that include effects of any Source_Reference pragmas in the
171
   --  source file). The value zero indicates a line containing a source
172
   --  reference pragma.
173
 
174
   No_Line_Number : constant Logical_Line_Number := 0;
175
   --  Special value used to indicate no line number
176
 
177
   type Physical_Line_Number is range 1 .. Int'Last;
178
   for Physical_Line_Number'Size use 32;
179
   --  Line number type, used for storing physical line numbers (i.e. line
180
   --  numbers in the physical file being compiled, unaffected by the presence
181
   --  of source reference pragmas.
182
 
183
   type Column_Number is range 0 .. 32767;
184
   for Column_Number'Size use 16;
185
   --  Column number (assume that 2**15 - 1 is large enough). The range for
186
   --  this type is used to compute Hostparm.Max_Line_Length. See also the
187
   --  processing for -gnatyM in Stylesw).
188
 
189
   No_Column_Number : constant Column_Number := 0;
190
   --  Special value used to indicate no column number
191
 
192
   subtype Source_Buffer is Text_Buffer;
193
   --  Type used to store text of a source file . The buffer for the main
194
   --  source (the source specified on the command line) has a lower bound
195
   --  starting at zero. Subsequent subsidiary sources have lower bounds
196
   --  which are one greater than the previous upper bound.
197
 
198
   subtype Big_Source_Buffer is Text_Buffer (0 .. Text_Ptr'Last);
199
   --  This is a virtual type used as the designated type of the access type
200
   --  Source_Buffer_Ptr, see Osint.Read_Source_File for details.
201
 
202
   type Source_Buffer_Ptr is access all Big_Source_Buffer;
203
   for Source_Buffer_Ptr'Storage_Size use 0;
204
   --  Pointer to source buffer. We use virtual origin addressing for source
205
   --  buffers, with thin pointers. The pointer points to a virtual instance
206
   --  of type Big_Source_Buffer, where the actual type is in fact of type
207
   --  Source_Buffer. The address is adjusted so that the virtual origin
208
   --  addressing works correctly. See Osint.Read_Source_Buffer for further
209
   --  details.
210
 
211
   subtype Source_Ptr is Text_Ptr;
212
   --  Type used to represent a source location, which is a subscript of a
213
   --  character in the source buffer. As noted above, different source buffers
214
   --  have different ranges, so it is possible to tell from a Source_Ptr value
215
   --  which source it refers to. Note that negative numbers are allowed to
216
   --  accommodate the following special values.
217
 
218
   No_Location : constant Source_Ptr := -1;
219
   --  Value used to indicate no source position set in a node. A test for a
220
   --  Source_Ptr value being > No_Location is the approved way to test for a
221
   --  standard value that does not include No_Location or any of the following
222
   --  special definitions. One important use of No_Location is to label
223
   --  generated nodes that we don't want the debugger to see in normal mode
224
   --  (very often we conditionalize so that we set No_Location in normal mode
225
   --  and the corresponding source line in -gnatD mode).
226
 
227
   Standard_Location : constant Source_Ptr := -2;
228
   --  Used for all nodes in the representation of package Standard other than
229
   --  nodes representing the contents of Standard.ASCII. Note that testing for
230
   --  a value being <= Standard_Location tests for both Standard_Location and
231
   --  for Standard_ASCII_Location.
232
 
233
   Standard_ASCII_Location : constant Source_Ptr := -3;
234
   --  Used for all nodes in the presentation of package Standard.ASCII
235
 
236
   System_Location : constant Source_Ptr := -4;
237
   --  Used to identify locations of pragmas scanned by Targparm, where we know
238
   --  the location is in System, but we don't know exactly what line.
239
 
240
   First_Source_Ptr : constant Source_Ptr := 0;
241
   --  Starting source pointer index value for first source program
242
 
243
   -------------------------------------
244
   -- Range Definitions for Tree Data --
245
   -------------------------------------
246
 
247
   --  The tree has fields that can hold any of the following types:
248
 
249
   --    Pointers to other tree nodes (type Node_Id)
250
   --    List pointers (type List_Id)
251
   --    Element list pointers (type Elist_Id)
252
   --    Names (type Name_Id)
253
   --    Strings (type String_Id)
254
   --    Universal integers (type Uint)
255
   --    Universal reals (type Ureal)
256
 
257
   --  In most contexts, the strongly typed interface determines which of
258
   --  these types is present. However, there are some situations (involving
259
   --  untyped traversals of the tree), where it is convenient to be easily
260
   --  able to distinguish these values. The underlying representation in all
261
   --  cases is an integer type Union_Id, and we ensure that the range of
262
   --  the various possible values for each of the above types is disjoint
263
   --  so that this distinction is possible.
264
 
265
   type Union_Id is new Int;
266
   --  The type in the tree for a union of possible ID values
267
 
268
   --  Note: it is also helpful for debugging purposes to make these ranges
269
   --  distinct. If a bug leads to misidentification of a value, then it will
270
   --  typically result in an out of range value and a Constraint_Error.
271
 
272
   List_Low_Bound : constant := -100_000_000;
273
   --  The List_Id values are subscripts into an array of list headers which
274
   --  has List_Low_Bound as its lower bound. This value is chosen so that all
275
   --  List_Id values are negative, and the value zero is in the range of both
276
   --  List_Id and Node_Id values (see further description below).
277
 
278
   List_High_Bound : constant := 0;
279
   --  Maximum List_Id subscript value. This allows up to 100 million list Id
280
   --  values, which is in practice infinite, and there is no need to check the
281
   --  range. The range overlaps the node range by one element (with value
282
   --  zero), which is used both for the Empty node, and for indicating no
283
   --  list. The fact that the same value is used is convenient because it
284
   --  means that the default value of Empty applies to both nodes and lists,
285
   --  and also is more efficient to test for.
286
 
287
   Node_Low_Bound : constant := 0;
288
   --  The tree Id values start at zero, because we use zero for Empty (to
289
   --  allow a zero test for Empty). Actual tree node subscripts start at 0
290
   --  since Empty is a legitimate node value.
291
 
292
   Node_High_Bound : constant := 099_999_999;
293
   --  Maximum number of nodes that can be allocated is 100 million, which
294
   --  is in practice infinite, and there is no need to check the range.
295
 
296
   Elist_Low_Bound : constant := 100_000_000;
297
   --  The Elist_Id values are subscripts into an array of elist headers which
298
   --  has Elist_Low_Bound as its lower bound.
299
 
300
   Elist_High_Bound : constant := 199_999_999;
301
   --  Maximum Elist_Id subscript value. This allows up to 100 million Elists,
302
   --  which is in practice infinite and there is no need to check the range.
303
 
304
   Elmt_Low_Bound : constant := 200_000_000;
305
   --  Low bound of element Id values. The use of these values is internal to
306
   --  the Elists package, but the definition of the range is included here
307
   --  since it must be disjoint from other Id values. The Elmt_Id values are
308
   --  subscripts into an array of list elements which has this as lower bound.
309
 
310
   Elmt_High_Bound : constant := 299_999_999;
311
   --  Upper bound of Elmt_Id values. This allows up to 100 million element
312
   --  list members, which is in practice infinite (no range check needed).
313
 
314
   Names_Low_Bound : constant := 300_000_000;
315
   --  Low bound for name Id values
316
 
317
   Names_High_Bound : constant := 399_999_999;
318
   --  Maximum number of names that can be allocated is 100 million, which is
319
   --  in practice infinite and there is no need to check the range.
320
 
321
   Strings_Low_Bound : constant := 400_000_000;
322
   --  Low bound for string Id values
323
 
324
   Strings_High_Bound : constant := 499_999_999;
325
   --  Maximum number of strings that can be allocated is 100 million, which
326
   --  is in practice infinite and there is no need to check the range.
327
 
328
   Ureal_Low_Bound : constant := 500_000_000;
329
   --  Low bound for Ureal values
330
 
331
   Ureal_High_Bound : constant := 599_999_999;
332
   --  Maximum number of Ureal values stored is 100_000_000 which is in
333
   --  practice infinite so that no check is required.
334
 
335
   Uint_Low_Bound : constant := 600_000_000;
336
   --  Low bound for Uint values
337
 
338
   Uint_Table_Start : constant := 2_000_000_000;
339
   --  Location where table entries for universal integers start (see
340
   --  Uintp spec for details of the representation of Uint values).
341
 
342
   Uint_High_Bound : constant := 2_099_999_999;
343
   --  The range of Uint values is very large, since a substantial part
344
   --  of this range is used to store direct values, see Uintp for details.
345
 
346
   --  The following subtype definitions are used to provide convenient names
347
   --  for membership tests on Int values to see what data type range they
348
   --  lie in. Such tests appear only in the lowest level packages.
349
 
350
   subtype List_Range      is Union_Id
351
     range List_Low_Bound   .. List_High_Bound;
352
 
353
   subtype Node_Range      is Union_Id
354
     range Node_Low_Bound   .. Node_High_Bound;
355
 
356
   subtype Elist_Range     is Union_Id
357
     range Elist_Low_Bound  .. Elist_High_Bound;
358
 
359
   subtype Elmt_Range      is Union_Id
360
     range Elmt_Low_Bound   .. Elmt_High_Bound;
361
 
362
   subtype Names_Range     is Union_Id
363
     range Names_Low_Bound   .. Names_High_Bound;
364
 
365
   subtype Strings_Range   is Union_Id
366
     range Strings_Low_Bound .. Strings_High_Bound;
367
 
368
   subtype Uint_Range      is Union_Id
369
     range Uint_Low_Bound    .. Uint_High_Bound;
370
 
371
   subtype Ureal_Range     is Union_Id
372
     range Ureal_Low_Bound    .. Ureal_High_Bound;
373
 
374
   ----------------------------
375
   -- Types for Atree Package --
376
   ----------------------------
377
 
378
   --  Node_Id values are used to identify nodes in the tree. They are
379
   --  subscripts into the Node table declared in package Tree. Note that
380
   --  the special values Empty and Error are subscripts into this table,
381
   --  See package Atree for further details.
382
 
383
   type Node_Id is range Node_Low_Bound .. Node_High_Bound;
384
   --  Type used to identify nodes in the tree
385
 
386
   subtype Entity_Id is Node_Id;
387
   --  A synonym for node types, used in the entity package to refer to nodes
388
   --  that are entities (i.e. nodes with an Nkind of N_Defining_xxx) All such
389
   --  nodes are extended nodes and these are the only extended nodes, so that
390
   --  in practice entity and extended nodes are synonymous.
391
 
392
   subtype Node_Or_Entity_Id is Node_Id;
393
   --  A synonym for node types, used in cases where a given value may be used
394
   --  to represent either a node or an entity. We like to minimize such uses
395
   --  for obvious reasons of logical type consistency, but where such uses
396
   --  occur, they should be documented by use of this type.
397
 
398
   Empty : constant Node_Id := Node_Low_Bound;
399
   --  Used to indicate null node. A node is actually allocated with this
400
   --  Id value, so that Nkind (Empty) = N_Empty. Note that Node_Low_Bound
401
   --  is zero, so Empty = No_List = zero.
402
 
403
   Empty_List_Or_Node : constant := 0;
404
   --  This constant is used in situations (e.g. initializing empty fields)
405
   --  where the value set will be used to represent either an empty node
406
   --  or a non-existent list, depending on the context.
407
 
408
   Error : constant Node_Id := Node_Low_Bound + 1;
409
   --  Used to indicate that there was an error in the source program. A node
410
   --  is actually allocated at this address, so that Nkind (Error) = N_Error.
411
 
412
   Empty_Or_Error : constant Node_Id := Error;
413
   --  Since Empty and Error are the first two Node_Id values, the test for
414
   --  N <= Empty_Or_Error tests to see if N is Empty or Error. This definition
415
   --  provides convenient self-documentation for such tests.
416
 
417
   First_Node_Id  : constant Node_Id := Node_Low_Bound;
418
   --  Subscript of first allocated node. Note that Empty and Error are both
419
   --  allocated nodes, whose Nkind fields can be accessed without error.
420
 
421
   ------------------------------
422
   -- Types for Nlists Package --
423
   ------------------------------
424
 
425
   --  List_Id values are used to identify node lists in the tree. They are
426
   --  subscripts into the Lists table declared in package Tree. Note that the
427
   --  special value Error_List is a subscript in this table, but the value
428
   --  No_List is *not* a valid subscript, and any attempt to apply list
429
   --  operations to No_List will cause a (detected) error.
430
 
431
   type List_Id is range List_Low_Bound .. List_High_Bound;
432
   --  Type used to identify a node list
433
 
434
   No_List : constant List_Id := List_High_Bound;
435
   --  Used to indicate absence of a list. Note that the value is zero, which
436
   --  is the same as Empty, which is helpful in initializing nodes where a
437
   --  value of zero can represent either an empty node or an empty list.
438
 
439
   Error_List : constant List_Id := List_Low_Bound;
440
   --  Used to indicate that there was an error in the source program in a
441
   --  context which would normally require a list. This node appears to be
442
   --  an empty list to the list operations (a null list is actually allocated
443
   --  which has this Id value).
444
 
445
   First_List_Id : constant List_Id := Error_List;
446
   --  Subscript of first allocated list header
447
 
448
   ------------------------------
449
   -- Types for Elists Package --
450
   ------------------------------
451
 
452
   --  Element list Id values are used to identify element lists stored in the
453
   --  tree (see package Atree for further details). They are formed by adding
454
   --  a bias (Element_List_Bias) to subscript values in the same array that is
455
   --  used for node list headers.
456
 
457
   type Elist_Id is range Elist_Low_Bound .. Elist_High_Bound;
458
   --  Type used to identify an element list (Elist header table subscript)
459
 
460
   No_Elist : constant Elist_Id := Elist_Low_Bound;
461
   --  Used to indicate absence of an element list. Note that this is not
462
   --  an actual Elist header, so element list operations on this value
463
   --  are not valid.
464
 
465
   First_Elist_Id : constant Elist_Id := No_Elist + 1;
466
   --  Subscript of first allocated Elist header
467
 
468
   --  Element Id values are used to identify individual elements of an
469
   --  element list (see package Elists for further details).
470
 
471
   type Elmt_Id is range Elmt_Low_Bound .. Elmt_High_Bound;
472
   --  Type used to identify an element list
473
 
474
   No_Elmt : constant Elmt_Id := Elmt_Low_Bound;
475
   --  Used to represent empty element
476
 
477
   First_Elmt_Id : constant Elmt_Id := No_Elmt + 1;
478
   --  Subscript of first allocated Elmt table entry
479
 
480
   -------------------------------
481
   -- Types for Stringt Package --
482
   -------------------------------
483
 
484
   --  String_Id values are used to identify entries in the strings table. They
485
   --  are subscripts into the strings table defined in package Strings.
486
 
487
   --  Note that with only a few exceptions, which are clearly documented, the
488
   --  type String_Id should be regarded as a private type. In particular it is
489
   --  never appropriate to perform arithmetic operations using this type.
490
 
491
   type String_Id is range Strings_Low_Bound .. Strings_High_Bound;
492
   --  Type used to identify entries in the strings table
493
 
494
   No_String : constant String_Id := Strings_Low_Bound;
495
   --  Used to indicate missing string Id. Note that the value zero is used
496
   --  to indicate a missing data value for all the Int types in this section.
497
 
498
   First_String_Id : constant String_Id := No_String + 1;
499
   --  First subscript allocated in string table
500
 
501
   -------------------------
502
   -- Character Code Type --
503
   -------------------------
504
 
505
   --  The type Char is used for character data internally in the compiler, but
506
   --  character codes in the source are represented by the Char_Code type.
507
   --  Each character literal in the source is interpreted as being one of the
508
   --  16#8000_0000 possible Wide_Wide_Character codes, and a unique Integer
509
   --  Value is assigned, corresponding to the UTF_32 value, which also
510
   --  corresponds to the POS value in the Wide_Wide_Character type, and also
511
   --  corresponds to the POS value in the Wide_Character and Character types
512
   --  for values that are in appropriate range. String literals are similarly
513
   --  interpreted as a sequence of such codes.
514
 
515
   type Char_Code_Base is mod 2 ** 32;
516
   for Char_Code_Base'Size use 32;
517
 
518
   subtype Char_Code is Char_Code_Base range 0 .. 16#7FFF_FFFF#;
519
   for Char_Code'Value_Size use 32;
520
   for Char_Code'Object_Size use 32;
521
 
522
   function Get_Char_Code (C : Character) return Char_Code;
523
   pragma Inline (Get_Char_Code);
524
   --  Function to obtain internal character code from source character. For
525
   --  the moment, the internal character code is simply the Pos value of the
526
   --  input source character, but we provide this interface for possible
527
   --  later support of alternative character sets.
528
 
529
   function In_Character_Range (C : Char_Code) return Boolean;
530
   pragma Inline (In_Character_Range);
531
   --  Determines if the given character code is in range of type Character,
532
   --  and if so, returns True. If not, returns False.
533
 
534
   function In_Wide_Character_Range (C : Char_Code) return Boolean;
535
   pragma Inline (In_Wide_Character_Range);
536
   --  Determines if the given character code is in range of the type
537
   --  Wide_Character, and if so, returns True. If not, returns False.
538
 
539
   function Get_Character (C : Char_Code) return Character;
540
   pragma Inline (Get_Character);
541
   --  For a character C that is in Character range (see above function), this
542
   --  function returns the corresponding Character value. It is an error to
543
   --  call Get_Character if C is not in Character range.
544
 
545
   function Get_Wide_Character (C : Char_Code) return Wide_Character;
546
   --  For a character C that is in Wide_Character range (see above function),
547
   --  this function returns the corresponding Wide_Character value. It is an
548
   --  error to call Get_Wide_Character if C is not in Wide_Character range.
549
 
550
   ---------------------------------------
551
   -- Types used for Library Management --
552
   ---------------------------------------
553
 
554
   type Unit_Number_Type is new Int;
555
   --  Unit number. The main source is unit 0, and subsidiary sources have
556
   --  non-zero numbers starting with 1. Unit numbers are used to index the
557
   --  file table in Lib.
558
 
559
   Main_Unit : constant Unit_Number_Type := 0;
560
   --  Unit number value for main unit
561
 
562
   No_Unit : constant Unit_Number_Type := -1;
563
   --  Special value used to signal no unit
564
 
565
   type Source_File_Index is new Int range -1 .. Int'Last;
566
   --  Type used to index the source file table (see package Sinput)
567
 
568
   Internal_Source_File : constant Source_File_Index :=
569
                            Source_File_Index'First;
570
   --  Value used to indicate the buffer for the source-code-like strings
571
   --  internally created withing the compiler (see package Sinput)
572
 
573
   No_Source_File : constant Source_File_Index := 0;
574
   --  Value used to indicate no source file present
575
 
576
   -----------------------------------
577
   -- Representation of Time Stamps --
578
   -----------------------------------
579
 
580
   --  All compiled units are marked with a time stamp which is derived from
581
   --  the source file (we assume that the host system has the concept of a
582
   --  file time stamp which is modified when a file is modified). These
583
   --  time stamps are used to ensure consistency of the set of units that
584
   --  constitutes a library. Time stamps are 12 character strings with
585
   --  with the following format:
586
 
587
   --     YYYYMMDDHHMMSS
588
 
589
   --       YYYY   year
590
   --       MM     month (2 digits 01-12)
591
   --       DD     day (2 digits 01-31)
592
   --       HH     hour (2 digits 00-23)
593
   --       MM     minutes (2 digits 00-59)
594
   --       SS     seconds (2 digits 00-59)
595
 
596
   --  In the case of Unix systems (and other systems which keep the time in
597
   --  GMT), the time stamp is the GMT time of the file, not the local time.
598
   --  This solves problems in using libraries across networks with clients
599
   --  spread across multiple time-zones.
600
 
601
   Time_Stamp_Length : constant := 14;
602
   --  Length of time stamp value
603
 
604
   subtype Time_Stamp_Index is Natural range 1 .. Time_Stamp_Length;
605
   type Time_Stamp_Type is new String (Time_Stamp_Index);
606
   --  Type used to represent time stamp
607
 
608
   Empty_Time_Stamp : constant Time_Stamp_Type := (others => ' ');
609
   --  Value representing an empty or missing time stamp. Looks less than any
610
   --  real time stamp if two time stamps are compared. Note that although this
611
   --  is not private, clients should not rely on the exact way in which this
612
   --  string is represented, and instead should use the subprograms below.
613
 
614
   Dummy_Time_Stamp : constant Time_Stamp_Type := (others => '0');
615
   --  This is used for dummy time stamp values used in the D lines for
616
   --  non-existent files, and is intended to be an impossible value.
617
 
618
   function "="  (Left, Right : Time_Stamp_Type) return Boolean;
619
   function "<=" (Left, Right : Time_Stamp_Type) return Boolean;
620
   function ">=" (Left, Right : Time_Stamp_Type) return Boolean;
621
   function "<"  (Left, Right : Time_Stamp_Type) return Boolean;
622
   function ">"  (Left, Right : Time_Stamp_Type) return Boolean;
623
   --  Comparison functions on time stamps. Note that two time stamps are
624
   --  defined as being equal if they have the same day/month/year and the
625
   --  hour/minutes/seconds values are within 2 seconds of one another. This
626
   --  deals with rounding effects in library file time stamps caused by
627
   --  copying operations during installation. We have particularly noticed
628
   --  that WinNT seems susceptible to such changes.
629
   --
630
   --  Note : the Empty_Time_Stamp value looks equal to itself, and less than
631
   --  any non-empty time stamp value.
632
 
633
   procedure Split_Time_Stamp
634
     (TS      : Time_Stamp_Type;
635
      Year    : out Nat;
636
      Month   : out Nat;
637
      Day     : out Nat;
638
      Hour    : out Nat;
639
      Minutes : out Nat;
640
      Seconds : out Nat);
641
   --  Given a time stamp, decompose it into its components
642
 
643
   procedure Make_Time_Stamp
644
     (Year    : Nat;
645
      Month   : Nat;
646
      Day     : Nat;
647
      Hour    : Nat;
648
      Minutes : Nat;
649
      Seconds : Nat;
650
      TS      : out Time_Stamp_Type);
651
   --  Given the components of a time stamp, initialize the value
652
 
653
   -----------------------------------------------
654
   -- Types used for Pragma Suppress Management --
655
   -----------------------------------------------
656
 
657
   type Check_Id is new Nat;
658
   --  Type used to represent a check id
659
 
660
   No_Check_Id         : constant := 0;
661
   --  Check_Id value used to indicate no check
662
 
663
   Access_Check        : constant :=  1;
664
   Accessibility_Check : constant :=  2;
665
   Alignment_Check     : constant :=  3;
666
   Discriminant_Check  : constant :=  4;
667
   Division_Check      : constant :=  5;
668
   Elaboration_Check   : constant :=  6;
669
   Index_Check         : constant :=  7;
670
   Length_Check        : constant :=  8;
671
   Overflow_Check      : constant :=  9;
672
   Range_Check         : constant := 10;
673
   Storage_Check       : constant := 11;
674
   Tag_Check           : constant := 12;
675
   Validity_Check      : constant := 13;
676
   --  Values used to represent individual predefined checks
677
 
678
   All_Checks          : constant := 14;
679
   --  Value used to represent All_Checks value
680
 
681
   subtype Predefined_Check_Id is Check_Id range 1 .. All_Checks;
682
   --  Subtype for predefined checks, including All_Checks
683
 
684
   --  The following array contains an entry for each recognized check name
685
   --  for pragma Suppress. It is used to represent current settings of scope
686
   --  based suppress actions from pragma Suppress or command line settings.
687
 
688
   --  Note: when Suppress_Array (All_Checks) is True, then generally all other
689
   --  specific check entries are set True, except for the Elaboration_Check
690
   --  entry which is set only if an explicit Suppress for this check is given.
691
   --  The reason for this non-uniformity is that we do not want All_Checks to
692
   --  suppress elaboration checking when using the static elaboration model.
693
   --  We recognize only an explicit suppress of Elaboration_Check as a signal
694
   --  that the static elaboration checking should skip a compile time check.
695
 
696
   type Suppress_Array is array (Predefined_Check_Id) of Boolean;
697
   pragma Pack (Suppress_Array);
698
 
699
   --  To add a new check type to GNAT, the following steps are required:
700
 
701
   --    1.  Add an entry to Snames spec and body for the new name
702
   --    2.  Add an entry to the definition of Check_Id above
703
   --    3.  Add a new function to Checks to handle the new check test
704
   --    4.  Add a new Do_xxx_Check flag to Sinfo (if required)
705
   --    5.  Add appropriate checks for the new test
706
 
707
   -----------------------------------
708
   -- Global Exception Declarations --
709
   -----------------------------------
710
 
711
   --  This section contains declarations of exceptions that are used
712
   --  throughout the compiler or in other GNAT tools.
713
 
714
   Unrecoverable_Error : exception;
715
   --  This exception is raised to immediately terminate the compilation of the
716
   --  current source program. Used in situations where things are bad enough
717
   --  that it doesn't seem worth continuing (e.g. max errors reached, or a
718
   --  required file is not found). Also raised when the compiler finds itself
719
   --  in trouble after an error (see Comperr).
720
 
721
   Terminate_Program : exception;
722
   --  This exception is raised to immediately terminate the tool being
723
   --  executed. Each tool where this exception may be raised must have a
724
   --  single exception handler that contains only a null statement and that is
725
   --  the last statement of the program. If needed, procedure Set_Exit_Status
726
   --  is called with the appropriate exit status before raising
727
   --  Terminate_Program.
728
 
729
   ---------------------------------
730
   -- Parameter Mechanism Control --
731
   ---------------------------------
732
 
733
   --  Function and parameter entities have a field that records the
734
   --  passing mechanism. See specification of Sem_Mech for full details.
735
   --  The following subtype is used to represent values of this type:
736
 
737
   subtype Mechanism_Type is Int range -18 .. Int'Last;
738
   --  Type used to represent a mechanism value. This is a subtype rather
739
   --  than a type to avoid some annoying processing problems with certain
740
   --  routines in Einfo (processing them to create the corresponding C).
741
 
742
   ------------------------------
743
   -- Run-Time Exception Codes --
744
   ------------------------------
745
 
746
   --  When the code generator generates a run-time exception, it provides a
747
   --  reason code which is one of the following. This reason code is used to
748
   --  select the appropriate run-time routine to be called, determining both
749
   --  the exception to be raised, and the message text to be added.
750
 
751
   --  The prefix CE/PE/SE indicates the exception to be raised
752
   --    CE = Constraint_Error
753
   --    PE = Program_Error
754
   --    SE = Storage_Error
755
 
756
   --  The remaining part of the name indicates the message text to be added,
757
   --  where all letters are lower case, and underscores are converted to
758
   --  spaces (for example CE_Invalid_Data adds the text "invalid data").
759
 
760
   --  To add a new code, you need to do the following:
761
 
762
   --    1. Modify the type and subtype declarations below appropriately,
763
   --       keeping things in alphabetical order.
764
 
765
   --    2. Modify the corresponding definitions in types.h, including
766
   --       the definition of last_reason_code.
767
 
768
   --    3. Add a new routine in Ada.Exceptions with the appropriate call
769
   --       and static string constant. Note that there is more than one
770
   --       version of a-except.adb which must be modified.
771
 
772
   type RT_Exception_Code is
773
     (CE_Access_Check_Failed,            -- 00
774
      CE_Access_Parameter_Is_Null,       -- 01
775
      CE_Discriminant_Check_Failed,      -- 02
776
      CE_Divide_By_Zero,                 -- 03
777
      CE_Explicit_Raise,                 -- 04
778
      CE_Index_Check_Failed,             -- 05
779
      CE_Invalid_Data,                   -- 06
780
      CE_Length_Check_Failed,            -- 07
781
      CE_Null_Exception_Id,              -- 08
782
      CE_Null_Not_Allowed,               -- 09
783
      CE_Overflow_Check_Failed,          -- 10
784
      CE_Partition_Check_Failed,         -- 11
785
      CE_Range_Check_Failed,             -- 12
786
      CE_Tag_Check_Failed,               -- 13
787
 
788
      PE_Access_Before_Elaboration,      -- 14
789
      PE_Accessibility_Check_Failed,     -- 15
790
      PE_Address_Of_Intrinsic,           -- 16
791
      PE_All_Guards_Closed,              -- 17
792
      PE_Current_Task_In_Entry_Body,     -- 18
793
      PE_Duplicated_Entry_Address,       -- 19
794
      PE_Explicit_Raise,                 -- 20
795
      PE_Finalize_Raised_Exception,      -- 21
796
      PE_Implicit_Return,                -- 22
797
      PE_Misaligned_Address_Value,       -- 23
798
      PE_Missing_Return,                 -- 24
799
      PE_Overlaid_Controlled_Object,     -- 25
800
      PE_Potentially_Blocking_Operation, -- 26
801
      PE_Stubbed_Subprogram_Called,      -- 27
802
      PE_Unchecked_Union_Restriction,    -- 28
803
      PE_Non_Transportable_Actual,       -- 29
804
 
805
      SE_Empty_Storage_Pool,             -- 30
806
      SE_Explicit_Raise,                 -- 31
807
      SE_Infinite_Recursion,             -- 32
808
      SE_Object_Too_Large);              -- 33
809
 
810
   subtype RT_CE_Exceptions is RT_Exception_Code range
811
     CE_Access_Check_Failed ..
812
     CE_Tag_Check_Failed;
813
 
814
   subtype RT_PE_Exceptions is RT_Exception_Code range
815
     PE_Access_Before_Elaboration ..
816
     PE_Non_Transportable_Actual;
817
 
818
   subtype RT_SE_Exceptions is RT_Exception_Code range
819
     SE_Empty_Storage_Pool ..
820
     SE_Object_Too_Large;
821
 
822
end Types;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.