OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [urealp.adb] - Blame information for rev 315

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                               U R E A L P                                --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009  Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
with Alloc;
33
with Output;  use Output;
34
with Table;
35
with Tree_IO; use Tree_IO;
36
 
37
package body Urealp is
38
 
39
   Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
40
   --  First subscript allocated in Ureal table (note that we can't just
41
   --  add 1 to No_Ureal, since "+" means something different for Ureals!
42
 
43
   type Ureal_Entry is record
44
      Num  : Uint;
45
      --  Numerator (always non-negative)
46
 
47
      Den  : Uint;
48
      --  Denominator (always non-zero, always positive if base is zero)
49
 
50
      Rbase : Nat;
51
      --  Base value. If Rbase is zero, then the value is simply Num / Den.
52
      --  If Rbase is non-zero, then the value is Num / (Rbase ** Den)
53
 
54
      Negative : Boolean;
55
      --  Flag set if value is negative
56
   end record;
57
 
58
   --  The following representation clause ensures that the above record
59
   --  has no holes. We do this so that when instances of this record are
60
   --  written by Tree_Gen, we do not write uninitialized values to the file.
61
 
62
   for Ureal_Entry use record
63
      Num      at  0 range 0 .. 31;
64
      Den      at  4 range 0 .. 31;
65
      Rbase    at  8 range 0 .. 31;
66
      Negative at 12 range 0 .. 31;
67
   end record;
68
 
69
   for Ureal_Entry'Size use 16 * 8;
70
   --  This ensures that we did not leave out any fields
71
 
72
   package Ureals is new Table.Table (
73
     Table_Component_Type => Ureal_Entry,
74
     Table_Index_Type     => Ureal'Base,
75
     Table_Low_Bound      => Ureal_First_Entry,
76
     Table_Initial        => Alloc.Ureals_Initial,
77
     Table_Increment      => Alloc.Ureals_Increment,
78
     Table_Name           => "Ureals");
79
 
80
   --  The following universal reals are the values returned by the constant
81
   --  functions. They are initialized by the initialization procedure.
82
 
83
   UR_0          : Ureal;
84
   UR_M_0        : Ureal;
85
   UR_Tenth      : Ureal;
86
   UR_Half       : Ureal;
87
   UR_1          : Ureal;
88
   UR_2          : Ureal;
89
   UR_10         : Ureal;
90
   UR_10_36      : Ureal;
91
   UR_M_10_36    : Ureal;
92
   UR_100        : Ureal;
93
   UR_2_128      : Ureal;
94
   UR_2_80       : Ureal;
95
   UR_2_M_128    : Ureal;
96
   UR_2_M_80     : Ureal;
97
 
98
   Num_Ureal_Constants : constant := 10;
99
   --  This is used for an assertion check in Tree_Read and Tree_Write to
100
   --  help remember to add values to these routines when we add to the list.
101
 
102
   Normalized_Real : Ureal := No_Ureal;
103
   --  Used to memoize Norm_Num and Norm_Den, if either of these functions
104
   --  is called, this value is set and Normalized_Entry contains the result
105
   --  of the normalization. On subsequent calls, this is used to avoid the
106
   --  call to Normalize if it has already been made.
107
 
108
   Normalized_Entry : Ureal_Entry;
109
   --  Entry built by most recent call to Normalize
110
 
111
   -----------------------
112
   -- Local Subprograms --
113
   -----------------------
114
 
115
   function Decimal_Exponent_Hi (V : Ureal) return Int;
116
   --  Returns an estimate of the exponent of Val represented as a normalized
117
   --  decimal number (non-zero digit before decimal point), The estimate is
118
   --  either correct, or high, but never low. The accuracy of the estimate
119
   --  affects only the efficiency of the comparison routines.
120
 
121
   function Decimal_Exponent_Lo (V : Ureal) return Int;
122
   --  Returns an estimate of the exponent of Val represented as a normalized
123
   --  decimal number (non-zero digit before decimal point), The estimate is
124
   --  either correct, or low, but never high. The accuracy of the estimate
125
   --  affects only the efficiency of the comparison routines.
126
 
127
   function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
128
   --  U is a Ureal entry for which the base value is non-zero, the value
129
   --  returned is the equivalent decimal exponent value, i.e. the value of
130
   --  Den, adjusted as though the base were base 10. The value is rounded
131
   --  to the nearest integer, and so can be one off.
132
 
133
   function Is_Integer (Num, Den : Uint) return Boolean;
134
   --  Return true if the real quotient of Num / Den is an integer value
135
 
136
   function Normalize (Val : Ureal_Entry) return Ureal_Entry;
137
   --  Normalizes the Ureal_Entry by reducing it to lowest terms (with a
138
   --  base value of 0).
139
 
140
   function Same (U1, U2 : Ureal) return Boolean;
141
   pragma Inline (Same);
142
   --  Determines if U1 and U2 are the same Ureal. Note that we cannot use
143
   --  the equals operator for this test, since that tests for equality,
144
   --  not identity.
145
 
146
   function Store_Ureal (Val : Ureal_Entry) return Ureal;
147
   --  This store a new entry in the universal reals table and return
148
   --  its index in the table.
149
 
150
   -------------------------
151
   -- Decimal_Exponent_Hi --
152
   -------------------------
153
 
154
   function Decimal_Exponent_Hi (V : Ureal) return Int is
155
      Val : constant Ureal_Entry := Ureals.Table (V);
156
 
157
   begin
158
      --  Zero always returns zero
159
 
160
      if UR_Is_Zero (V) then
161
         return 0;
162
 
163
      --  For numbers in rational form, get the maximum number of digits in the
164
      --  numerator and the minimum number of digits in the denominator, and
165
      --  subtract. For example:
166
 
167
      --     1000 / 99 = 1.010E+1
168
      --     9999 / 10 = 9.999E+2
169
 
170
      --  This estimate may of course be high, but that is acceptable
171
 
172
      elsif Val.Rbase = 0 then
173
         return UI_Decimal_Digits_Hi (Val.Num) -
174
                UI_Decimal_Digits_Lo (Val.Den);
175
 
176
      --  For based numbers, just subtract the decimal exponent from the
177
      --  high estimate of the number of digits in the numerator and add
178
      --  one to accommodate possible round off errors for non-decimal
179
      --  bases. For example:
180
 
181
      --     1_500_000 / 10**4 = 1.50E-2
182
 
183
      else -- Val.Rbase /= 0
184
         return UI_Decimal_Digits_Hi (Val.Num) -
185
                Equivalent_Decimal_Exponent (Val) + 1;
186
      end if;
187
   end Decimal_Exponent_Hi;
188
 
189
   -------------------------
190
   -- Decimal_Exponent_Lo --
191
   -------------------------
192
 
193
   function Decimal_Exponent_Lo (V : Ureal) return Int is
194
      Val : constant Ureal_Entry := Ureals.Table (V);
195
 
196
   begin
197
      --  Zero always returns zero
198
 
199
      if UR_Is_Zero (V) then
200
         return 0;
201
 
202
      --  For numbers in rational form, get min digits in numerator, max digits
203
      --  in denominator, and subtract and subtract one more for possible loss
204
      --  during the division. For example:
205
 
206
      --     1000 / 99 = 1.010E+1
207
      --     9999 / 10 = 9.999E+2
208
 
209
      --  This estimate may of course be low, but that is acceptable
210
 
211
      elsif Val.Rbase = 0 then
212
         return UI_Decimal_Digits_Lo (Val.Num) -
213
                UI_Decimal_Digits_Hi (Val.Den) - 1;
214
 
215
      --  For based numbers, just subtract the decimal exponent from the
216
      --  low estimate of the number of digits in the numerator and subtract
217
      --  one to accommodate possible round off errors for non-decimal
218
      --  bases. For example:
219
 
220
      --     1_500_000 / 10**4 = 1.50E-2
221
 
222
      else -- Val.Rbase /= 0
223
         return UI_Decimal_Digits_Lo (Val.Num) -
224
                Equivalent_Decimal_Exponent (Val) - 1;
225
      end if;
226
   end Decimal_Exponent_Lo;
227
 
228
   -----------------
229
   -- Denominator --
230
   -----------------
231
 
232
   function Denominator (Real : Ureal) return Uint is
233
   begin
234
      return Ureals.Table (Real).Den;
235
   end Denominator;
236
 
237
   ---------------------------------
238
   -- Equivalent_Decimal_Exponent --
239
   ---------------------------------
240
 
241
   function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is
242
 
243
      --  The following table is a table of logs to the base 10
244
 
245
      Logs : constant array (Nat range 1 .. 16) of Long_Float := (
246
                1 => 0.000000000000000,
247
                2 => 0.301029995663981,
248
                3 => 0.477121254719662,
249
                4 => 0.602059991327962,
250
                5 => 0.698970004336019,
251
                6 => 0.778151250383644,
252
                7 => 0.845098040014257,
253
                8 => 0.903089986991944,
254
                9 => 0.954242509439325,
255
               10 => 1.000000000000000,
256
               11 => 1.041392685158230,
257
               12 => 1.079181246047620,
258
               13 => 1.113943352306840,
259
               14 => 1.146128035678240,
260
               15 => 1.176091259055680,
261
               16 => 1.204119982655920);
262
 
263
   begin
264
      pragma Assert (U.Rbase /= 0);
265
      return Int (Long_Float (UI_To_Int (U.Den)) * Logs (U.Rbase));
266
   end Equivalent_Decimal_Exponent;
267
 
268
   ----------------
269
   -- Initialize --
270
   ----------------
271
 
272
   procedure Initialize is
273
   begin
274
      Ureals.Init;
275
      UR_0       := UR_From_Components (Uint_0, Uint_1,         0, False);
276
      UR_M_0     := UR_From_Components (Uint_0, Uint_1,         0, True);
277
      UR_Half    := UR_From_Components (Uint_1, Uint_1,         2, False);
278
      UR_Tenth   := UR_From_Components (Uint_1, Uint_1,        10, False);
279
      UR_1       := UR_From_Components (Uint_1, Uint_1,         0, False);
280
      UR_2       := UR_From_Components (Uint_1, Uint_Minus_1,   2, False);
281
      UR_10      := UR_From_Components (Uint_1, Uint_Minus_1,  10, False);
282
      UR_10_36   := UR_From_Components (Uint_1, Uint_Minus_36, 10, False);
283
      UR_M_10_36 := UR_From_Components (Uint_1, Uint_Minus_36, 10, True);
284
      UR_100     := UR_From_Components (Uint_1, Uint_Minus_2,  10, False);
285
      UR_2_128   := UR_From_Components (Uint_1, Uint_Minus_128, 2, False);
286
      UR_2_M_128 := UR_From_Components (Uint_1, Uint_128,       2, False);
287
      UR_2_80    := UR_From_Components (Uint_1, Uint_Minus_80,  2, False);
288
      UR_2_M_80  := UR_From_Components (Uint_1, Uint_80,        2, False);
289
   end Initialize;
290
 
291
   ----------------
292
   -- Is_Integer --
293
   ----------------
294
 
295
   function Is_Integer (Num, Den : Uint) return Boolean is
296
   begin
297
      return (Num / Den) * Den = Num;
298
   end Is_Integer;
299
 
300
   ----------
301
   -- Mark --
302
   ----------
303
 
304
   function Mark return Save_Mark is
305
   begin
306
      return Save_Mark (Ureals.Last);
307
   end Mark;
308
 
309
   --------------
310
   -- Norm_Den --
311
   --------------
312
 
313
   function Norm_Den (Real : Ureal) return Uint is
314
   begin
315
      if not Same (Real, Normalized_Real) then
316
         Normalized_Real  := Real;
317
         Normalized_Entry := Normalize (Ureals.Table (Real));
318
      end if;
319
 
320
      return Normalized_Entry.Den;
321
   end Norm_Den;
322
 
323
   --------------
324
   -- Norm_Num --
325
   --------------
326
 
327
   function Norm_Num (Real : Ureal) return Uint is
328
   begin
329
      if not Same (Real, Normalized_Real) then
330
         Normalized_Real  := Real;
331
         Normalized_Entry := Normalize (Ureals.Table (Real));
332
      end if;
333
 
334
      return Normalized_Entry.Num;
335
   end Norm_Num;
336
 
337
   ---------------
338
   -- Normalize --
339
   ---------------
340
 
341
   function Normalize (Val : Ureal_Entry) return Ureal_Entry is
342
      J   : Uint;
343
      K   : Uint;
344
      Tmp : Uint;
345
      Num : Uint;
346
      Den : Uint;
347
      M   : constant Uintp.Save_Mark := Uintp.Mark;
348
 
349
   begin
350
      --  Start by setting J to the greatest of the absolute values of the
351
      --  numerator and the denominator (taking into account the base value),
352
      --  and K to the lesser of the two absolute values. The gcd of Num and
353
      --  Den is the gcd of J and K.
354
 
355
      if Val.Rbase = 0 then
356
         J := Val.Num;
357
         K := Val.Den;
358
 
359
      elsif Val.Den < 0 then
360
         J := Val.Num * Val.Rbase ** (-Val.Den);
361
         K := Uint_1;
362
 
363
      else
364
         J := Val.Num;
365
         K := Val.Rbase ** Val.Den;
366
      end if;
367
 
368
      Num := J;
369
      Den := K;
370
 
371
      if K > J then
372
         Tmp := J;
373
         J := K;
374
         K := Tmp;
375
      end if;
376
 
377
      J := UI_GCD (J, K);
378
      Num := Num / J;
379
      Den := Den / J;
380
      Uintp.Release_And_Save (M, Num, Den);
381
 
382
      --  Divide numerator and denominator by gcd and return result
383
 
384
      return (Num      => Num,
385
              Den      => Den,
386
              Rbase    => 0,
387
              Negative => Val.Negative);
388
   end Normalize;
389
 
390
   ---------------
391
   -- Numerator --
392
   ---------------
393
 
394
   function Numerator (Real : Ureal) return Uint is
395
   begin
396
      return Ureals.Table (Real).Num;
397
   end Numerator;
398
 
399
   --------
400
   -- pr --
401
   --------
402
 
403
   procedure pr (Real : Ureal) is
404
   begin
405
      UR_Write (Real);
406
      Write_Eol;
407
   end pr;
408
 
409
   -----------
410
   -- Rbase --
411
   -----------
412
 
413
   function Rbase (Real : Ureal) return Nat is
414
   begin
415
      return Ureals.Table (Real).Rbase;
416
   end Rbase;
417
 
418
   -------------
419
   -- Release --
420
   -------------
421
 
422
   procedure Release (M : Save_Mark) is
423
   begin
424
      Ureals.Set_Last (Ureal (M));
425
   end Release;
426
 
427
   ----------
428
   -- Same --
429
   ----------
430
 
431
   function Same (U1, U2 : Ureal) return Boolean is
432
   begin
433
      return Int (U1) = Int (U2);
434
   end Same;
435
 
436
   -----------------
437
   -- Store_Ureal --
438
   -----------------
439
 
440
   function Store_Ureal (Val : Ureal_Entry) return Ureal is
441
   begin
442
      Ureals.Append (Val);
443
 
444
      --  Normalize representation of signed values
445
 
446
      if Val.Num < 0 then
447
         Ureals.Table (Ureals.Last).Negative := True;
448
         Ureals.Table (Ureals.Last).Num := -Val.Num;
449
      end if;
450
 
451
      return Ureals.Last;
452
   end Store_Ureal;
453
 
454
   ---------------
455
   -- Tree_Read --
456
   ---------------
457
 
458
   procedure Tree_Read is
459
   begin
460
      pragma Assert (Num_Ureal_Constants = 10);
461
 
462
      Ureals.Tree_Read;
463
      Tree_Read_Int (Int (UR_0));
464
      Tree_Read_Int (Int (UR_M_0));
465
      Tree_Read_Int (Int (UR_Tenth));
466
      Tree_Read_Int (Int (UR_Half));
467
      Tree_Read_Int (Int (UR_1));
468
      Tree_Read_Int (Int (UR_2));
469
      Tree_Read_Int (Int (UR_10));
470
      Tree_Read_Int (Int (UR_100));
471
      Tree_Read_Int (Int (UR_2_128));
472
      Tree_Read_Int (Int (UR_2_M_128));
473
 
474
      --  Clear the normalization cache
475
 
476
      Normalized_Real := No_Ureal;
477
   end Tree_Read;
478
 
479
   ----------------
480
   -- Tree_Write --
481
   ----------------
482
 
483
   procedure Tree_Write is
484
   begin
485
      pragma Assert (Num_Ureal_Constants = 10);
486
 
487
      Ureals.Tree_Write;
488
      Tree_Write_Int (Int (UR_0));
489
      Tree_Write_Int (Int (UR_M_0));
490
      Tree_Write_Int (Int (UR_Tenth));
491
      Tree_Write_Int (Int (UR_Half));
492
      Tree_Write_Int (Int (UR_1));
493
      Tree_Write_Int (Int (UR_2));
494
      Tree_Write_Int (Int (UR_10));
495
      Tree_Write_Int (Int (UR_100));
496
      Tree_Write_Int (Int (UR_2_128));
497
      Tree_Write_Int (Int (UR_2_M_128));
498
   end Tree_Write;
499
 
500
   ------------
501
   -- UR_Abs --
502
   ------------
503
 
504
   function UR_Abs (Real : Ureal) return Ureal is
505
      Val : constant Ureal_Entry := Ureals.Table (Real);
506
 
507
   begin
508
      return Store_Ureal (
509
               (Num      => Val.Num,
510
                Den      => Val.Den,
511
                Rbase    => Val.Rbase,
512
                Negative => False));
513
   end UR_Abs;
514
 
515
   ------------
516
   -- UR_Add --
517
   ------------
518
 
519
   function UR_Add (Left : Uint; Right : Ureal) return Ureal is
520
   begin
521
      return UR_From_Uint (Left) + Right;
522
   end UR_Add;
523
 
524
   function UR_Add (Left : Ureal; Right : Uint) return Ureal is
525
   begin
526
      return Left + UR_From_Uint (Right);
527
   end UR_Add;
528
 
529
   function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
530
      Lval : Ureal_Entry := Ureals.Table (Left);
531
      Rval : Ureal_Entry := Ureals.Table (Right);
532
 
533
      Num  : Uint;
534
 
535
   begin
536
      --  Note, in the temporary Ureal_Entry values used in this procedure,
537
      --  we store the sign as the sign of the numerator (i.e. xxx.Num may
538
      --  be negative, even though in stored entries this can never be so)
539
 
540
      if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
541
 
542
         declare
543
            Opd_Min, Opd_Max   : Ureal_Entry;
544
            Exp_Min, Exp_Max   : Uint;
545
 
546
         begin
547
            if Lval.Negative then
548
               Lval.Num := (-Lval.Num);
549
            end if;
550
 
551
            if Rval.Negative then
552
               Rval.Num := (-Rval.Num);
553
            end if;
554
 
555
            if Lval.Den < Rval.Den then
556
               Exp_Min := Lval.Den;
557
               Exp_Max := Rval.Den;
558
               Opd_Min := Lval;
559
               Opd_Max := Rval;
560
            else
561
               Exp_Min := Rval.Den;
562
               Exp_Max := Lval.Den;
563
               Opd_Min := Rval;
564
               Opd_Max := Lval;
565
            end if;
566
 
567
            Num :=
568
              Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;
569
 
570
            if Num = 0 then
571
               return Store_Ureal (
572
                        (Num      => Uint_0,
573
                         Den      => Uint_1,
574
                         Rbase    => 0,
575
                         Negative => Lval.Negative));
576
 
577
            else
578
               return Store_Ureal (
579
                        (Num      => abs Num,
580
                         Den      => Exp_Max,
581
                         Rbase    => Lval.Rbase,
582
                         Negative => (Num < 0)));
583
            end if;
584
         end;
585
 
586
      else
587
         declare
588
            Ln : Ureal_Entry := Normalize (Lval);
589
            Rn : Ureal_Entry := Normalize (Rval);
590
 
591
         begin
592
            if Ln.Negative then
593
               Ln.Num := (-Ln.Num);
594
            end if;
595
 
596
            if Rn.Negative then
597
               Rn.Num := (-Rn.Num);
598
            end if;
599
 
600
            Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);
601
 
602
            if Num = 0 then
603
               return Store_Ureal (
604
                        (Num      => Uint_0,
605
                         Den      => Uint_1,
606
                         Rbase    => 0,
607
                         Negative => Lval.Negative));
608
 
609
            else
610
               return Store_Ureal (
611
                        Normalize (
612
                          (Num      => abs Num,
613
                           Den      => Ln.Den * Rn.Den,
614
                           Rbase    => 0,
615
                           Negative => (Num < 0))));
616
            end if;
617
         end;
618
      end if;
619
   end UR_Add;
620
 
621
   ----------------
622
   -- UR_Ceiling --
623
   ----------------
624
 
625
   function UR_Ceiling (Real : Ureal) return Uint is
626
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
627
 
628
   begin
629
      if Val.Negative then
630
         return UI_Negate (Val.Num / Val.Den);
631
      else
632
         return (Val.Num + Val.Den - 1) / Val.Den;
633
      end if;
634
   end UR_Ceiling;
635
 
636
   ------------
637
   -- UR_Div --
638
   ------------
639
 
640
   function UR_Div (Left : Uint; Right : Ureal) return Ureal is
641
   begin
642
      return UR_From_Uint (Left) / Right;
643
   end UR_Div;
644
 
645
   function UR_Div (Left : Ureal; Right : Uint) return Ureal is
646
   begin
647
      return Left / UR_From_Uint (Right);
648
   end UR_Div;
649
 
650
   function UR_Div (Left, Right : Ureal) return Ureal is
651
      Lval : constant Ureal_Entry := Ureals.Table (Left);
652
      Rval : constant Ureal_Entry := Ureals.Table (Right);
653
      Rneg : constant Boolean     := Rval.Negative xor Lval.Negative;
654
 
655
   begin
656
      pragma Assert (Rval.Num /= Uint_0);
657
 
658
      if Lval.Rbase = 0 then
659
 
660
         if Rval.Rbase = 0 then
661
            return Store_Ureal (
662
                     Normalize (
663
                       (Num      => Lval.Num * Rval.Den,
664
                        Den      => Lval.Den * Rval.Num,
665
                        Rbase    => 0,
666
                        Negative => Rneg)));
667
 
668
         elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
669
            return Store_Ureal (
670
                     (Num      => Lval.Num / (Rval.Num * Lval.Den),
671
                      Den      => (-Rval.Den),
672
                      Rbase    => Rval.Rbase,
673
                      Negative => Rneg));
674
 
675
         elsif Rval.Den < 0 then
676
            return Store_Ureal (
677
                     Normalize (
678
                       (Num      => Lval.Num,
679
                        Den      => Rval.Rbase ** (-Rval.Den) *
680
                                    Rval.Num *
681
                                    Lval.Den,
682
                        Rbase    => 0,
683
                        Negative => Rneg)));
684
 
685
         else
686
            return Store_Ureal (
687
                     Normalize (
688
                       (Num      => Lval.Num * Rval.Rbase ** Rval.Den,
689
                        Den      => Rval.Num * Lval.Den,
690
                        Rbase    => 0,
691
                        Negative => Rneg)));
692
         end if;
693
 
694
      elsif Is_Integer (Lval.Num, Rval.Num) then
695
 
696
         if Rval.Rbase = Lval.Rbase then
697
            return Store_Ureal (
698
                     (Num      => Lval.Num / Rval.Num,
699
                      Den      => Lval.Den - Rval.Den,
700
                      Rbase    => Lval.Rbase,
701
                      Negative => Rneg));
702
 
703
         elsif Rval.Rbase = 0 then
704
            return Store_Ureal (
705
                     (Num      => (Lval.Num / Rval.Num) * Rval.Den,
706
                      Den      => Lval.Den,
707
                      Rbase    => Lval.Rbase,
708
                      Negative => Rneg));
709
 
710
         elsif Rval.Den < 0 then
711
            declare
712
               Num, Den : Uint;
713
 
714
            begin
715
               if Lval.Den < 0 then
716
                  Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
717
                  Den := Rval.Rbase ** (-Rval.Den);
718
               else
719
                  Num := Lval.Num / Rval.Num;
720
                  Den := (Lval.Rbase ** Lval.Den) *
721
                         (Rval.Rbase ** (-Rval.Den));
722
               end if;
723
 
724
               return Store_Ureal (
725
                        (Num      => Num,
726
                         Den      => Den,
727
                         Rbase    => 0,
728
                         Negative => Rneg));
729
            end;
730
 
731
         else
732
            return Store_Ureal (
733
                     (Num      => (Lval.Num / Rval.Num) *
734
                                  (Rval.Rbase ** Rval.Den),
735
                      Den      => Lval.Den,
736
                      Rbase    => Lval.Rbase,
737
                      Negative => Rneg));
738
         end if;
739
 
740
      else
741
         declare
742
            Num, Den : Uint;
743
 
744
         begin
745
            if Lval.Den < 0 then
746
               Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
747
               Den := Rval.Num;
748
 
749
            else
750
               Num := Lval.Num;
751
               Den := Rval.Num * (Lval.Rbase ** Lval.Den);
752
            end if;
753
 
754
            if Rval.Rbase /= 0 then
755
               if Rval.Den < 0 then
756
                  Den := Den * (Rval.Rbase ** (-Rval.Den));
757
               else
758
                  Num := Num * (Rval.Rbase ** Rval.Den);
759
               end if;
760
 
761
            else
762
               Num := Num * Rval.Den;
763
            end if;
764
 
765
            return Store_Ureal (
766
                     Normalize (
767
                       (Num      => Num,
768
                        Den      => Den,
769
                        Rbase    => 0,
770
                        Negative => Rneg)));
771
         end;
772
      end if;
773
   end UR_Div;
774
 
775
   -----------
776
   -- UR_Eq --
777
   -----------
778
 
779
   function UR_Eq (Left, Right : Ureal) return Boolean is
780
   begin
781
      return not UR_Ne (Left, Right);
782
   end UR_Eq;
783
 
784
   ---------------------
785
   -- UR_Exponentiate --
786
   ---------------------
787
 
788
   function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
789
      X    : constant Uint := abs N;
790
      Bas  : Ureal;
791
      Val  : Ureal_Entry;
792
      Neg  : Boolean;
793
      IBas : Uint;
794
 
795
   begin
796
      --  If base is negative, then the resulting sign depends on whether
797
      --  the exponent is even or odd (even => positive, odd = negative)
798
 
799
      if UR_Is_Negative (Real) then
800
         Neg := (N mod 2) /= 0;
801
         Bas := UR_Negate (Real);
802
      else
803
         Neg := False;
804
         Bas := Real;
805
      end if;
806
 
807
      Val := Ureals.Table (Bas);
808
 
809
      --  If the base is a small integer, then we can return the result in
810
      --  exponential form, which can save a lot of time for junk exponents.
811
 
812
      IBas := UR_Trunc (Bas);
813
 
814
      if IBas <= 16
815
        and then UR_From_Uint (IBas) = Bas
816
      then
817
         return Store_Ureal (
818
                 (Num      => Uint_1,
819
                  Den      => -N,
820
                  Rbase    => UI_To_Int (UR_Trunc (Bas)),
821
                  Negative => Neg));
822
 
823
      --  If the exponent is negative then we raise the numerator and the
824
      --  denominator (after normalization) to the absolute value of the
825
      --  exponent and we return the reciprocal. An assert error will happen
826
      --  if the numerator is zero.
827
 
828
      elsif N < 0 then
829
         pragma Assert (Val.Num /= 0);
830
         Val := Normalize (Val);
831
 
832
         return Store_Ureal (
833
                 (Num      => Val.Den ** X,
834
                  Den      => Val.Num ** X,
835
                  Rbase    => 0,
836
                  Negative => Neg));
837
 
838
      --  If positive, we distinguish the case when the base is not zero, in
839
      --  which case the new denominator is just the product of the old one
840
      --  with the exponent,
841
 
842
      else
843
         if Val.Rbase /= 0 then
844
 
845
            return Store_Ureal (
846
                    (Num      => Val.Num ** X,
847
                     Den      => Val.Den * X,
848
                     Rbase    => Val.Rbase,
849
                     Negative => Neg));
850
 
851
         --  And when the base is zero, in which case we exponentiate
852
         --  the old denominator.
853
 
854
         else
855
            return Store_Ureal (
856
                    (Num      => Val.Num ** X,
857
                     Den      => Val.Den ** X,
858
                     Rbase    => 0,
859
                     Negative => Neg));
860
         end if;
861
      end if;
862
   end UR_Exponentiate;
863
 
864
   --------------
865
   -- UR_Floor --
866
   --------------
867
 
868
   function UR_Floor (Real : Ureal) return Uint is
869
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
870
 
871
   begin
872
      if Val.Negative then
873
         return UI_Negate ((Val.Num + Val.Den - 1) / Val.Den);
874
      else
875
         return Val.Num / Val.Den;
876
      end if;
877
   end UR_Floor;
878
 
879
   ------------------------
880
   -- UR_From_Components --
881
   ------------------------
882
 
883
   function UR_From_Components
884
     (Num      : Uint;
885
      Den      : Uint;
886
      Rbase    : Nat := 0;
887
      Negative : Boolean := False)
888
      return     Ureal
889
   is
890
   begin
891
      return Store_Ureal (
892
               (Num      => Num,
893
                Den      => Den,
894
                Rbase    => Rbase,
895
                Negative => Negative));
896
   end UR_From_Components;
897
 
898
   ------------------
899
   -- UR_From_Uint --
900
   ------------------
901
 
902
   function UR_From_Uint (UI : Uint) return Ureal is
903
   begin
904
      return UR_From_Components
905
        (abs UI, Uint_1, Negative => (UI < 0));
906
   end UR_From_Uint;
907
 
908
   -----------
909
   -- UR_Ge --
910
   -----------
911
 
912
   function UR_Ge (Left, Right : Ureal) return Boolean is
913
   begin
914
      return not (Left < Right);
915
   end UR_Ge;
916
 
917
   -----------
918
   -- UR_Gt --
919
   -----------
920
 
921
   function UR_Gt (Left, Right : Ureal) return Boolean is
922
   begin
923
      return (Right < Left);
924
   end UR_Gt;
925
 
926
   --------------------
927
   -- UR_Is_Negative --
928
   --------------------
929
 
930
   function UR_Is_Negative (Real : Ureal) return Boolean is
931
   begin
932
      return Ureals.Table (Real).Negative;
933
   end UR_Is_Negative;
934
 
935
   --------------------
936
   -- UR_Is_Positive --
937
   --------------------
938
 
939
   function UR_Is_Positive (Real : Ureal) return Boolean is
940
   begin
941
      return not Ureals.Table (Real).Negative
942
        and then Ureals.Table (Real).Num /= 0;
943
   end UR_Is_Positive;
944
 
945
   ----------------
946
   -- UR_Is_Zero --
947
   ----------------
948
 
949
   function UR_Is_Zero (Real : Ureal) return Boolean is
950
   begin
951
      return Ureals.Table (Real).Num = 0;
952
   end UR_Is_Zero;
953
 
954
   -----------
955
   -- UR_Le --
956
   -----------
957
 
958
   function UR_Le (Left, Right : Ureal) return Boolean is
959
   begin
960
      return not (Right < Left);
961
   end UR_Le;
962
 
963
   -----------
964
   -- UR_Lt --
965
   -----------
966
 
967
   function UR_Lt (Left, Right : Ureal) return Boolean is
968
   begin
969
      --  An operand is not less than itself
970
 
971
      if Same (Left, Right) then
972
         return False;
973
 
974
      --  Deal with zero cases
975
 
976
      elsif UR_Is_Zero (Left) then
977
         return UR_Is_Positive (Right);
978
 
979
      elsif UR_Is_Zero (Right) then
980
         return Ureals.Table (Left).Negative;
981
 
982
      --  Different signs are decisive (note we dealt with zero cases)
983
 
984
      elsif Ureals.Table (Left).Negative
985
        and then not Ureals.Table (Right).Negative
986
      then
987
         return True;
988
 
989
      elsif not Ureals.Table (Left).Negative
990
        and then Ureals.Table (Right).Negative
991
      then
992
         return False;
993
 
994
      --  Signs are same, do rapid check based on worst case estimates of
995
      --  decimal exponent, which will often be decisive. Precise test
996
      --  depends on whether operands are positive or negative.
997
 
998
      elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
999
         return UR_Is_Positive (Left);
1000
 
1001
      elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
1002
         return UR_Is_Negative (Left);
1003
 
1004
      --  If we fall through, full gruesome test is required. This happens
1005
      --  if the numbers are close together, or in some weird (/=10) base.
1006
 
1007
      else
1008
         declare
1009
            Imrk   : constant Uintp.Save_Mark  := Mark;
1010
            Rmrk   : constant Urealp.Save_Mark := Mark;
1011
            Lval   : Ureal_Entry;
1012
            Rval   : Ureal_Entry;
1013
            Result : Boolean;
1014
 
1015
         begin
1016
            Lval := Ureals.Table (Left);
1017
            Rval := Ureals.Table (Right);
1018
 
1019
            --  An optimization. If both numbers are based, then subtract
1020
            --  common value of base to avoid unnecessarily giant numbers
1021
 
1022
            if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
1023
               if Lval.Den < Rval.Den then
1024
                  Rval.Den := Rval.Den - Lval.Den;
1025
                  Lval.Den := Uint_0;
1026
               else
1027
                  Lval.Den := Lval.Den - Rval.Den;
1028
                  Rval.Den := Uint_0;
1029
               end if;
1030
            end if;
1031
 
1032
            Lval := Normalize (Lval);
1033
            Rval := Normalize (Rval);
1034
 
1035
            if Lval.Negative then
1036
               Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
1037
            else
1038
               Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
1039
            end if;
1040
 
1041
            Release (Imrk);
1042
            Release (Rmrk);
1043
            return Result;
1044
         end;
1045
      end if;
1046
   end UR_Lt;
1047
 
1048
   ------------
1049
   -- UR_Max --
1050
   ------------
1051
 
1052
   function UR_Max (Left, Right : Ureal) return Ureal is
1053
   begin
1054
      if Left >= Right then
1055
         return Left;
1056
      else
1057
         return Right;
1058
      end if;
1059
   end UR_Max;
1060
 
1061
   ------------
1062
   -- UR_Min --
1063
   ------------
1064
 
1065
   function UR_Min (Left, Right : Ureal) return Ureal is
1066
   begin
1067
      if Left <= Right then
1068
         return Left;
1069
      else
1070
         return Right;
1071
      end if;
1072
   end UR_Min;
1073
 
1074
   ------------
1075
   -- UR_Mul --
1076
   ------------
1077
 
1078
   function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
1079
   begin
1080
      return UR_From_Uint (Left) * Right;
1081
   end UR_Mul;
1082
 
1083
   function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
1084
   begin
1085
      return Left * UR_From_Uint (Right);
1086
   end UR_Mul;
1087
 
1088
   function UR_Mul (Left, Right : Ureal) return Ureal is
1089
      Lval : constant Ureal_Entry := Ureals.Table (Left);
1090
      Rval : constant Ureal_Entry := Ureals.Table (Right);
1091
      Num  : Uint                 := Lval.Num * Rval.Num;
1092
      Den  : Uint;
1093
      Rneg : constant Boolean     := Lval.Negative xor Rval.Negative;
1094
 
1095
   begin
1096
      if Lval.Rbase = 0 then
1097
         if Rval.Rbase = 0 then
1098
            return Store_Ureal (
1099
                     Normalize (
1100
                        (Num      => Num,
1101
                         Den      => Lval.Den * Rval.Den,
1102
                         Rbase    => 0,
1103
                         Negative => Rneg)));
1104
 
1105
         elsif Is_Integer (Num, Lval.Den) then
1106
            return Store_Ureal (
1107
                     (Num      => Num / Lval.Den,
1108
                      Den      => Rval.Den,
1109
                      Rbase    => Rval.Rbase,
1110
                      Negative => Rneg));
1111
 
1112
         elsif Rval.Den < 0 then
1113
            return Store_Ureal (
1114
                     Normalize (
1115
                       (Num      => Num * (Rval.Rbase ** (-Rval.Den)),
1116
                        Den      => Lval.Den,
1117
                        Rbase    => 0,
1118
                        Negative => Rneg)));
1119
 
1120
         else
1121
            return Store_Ureal (
1122
                     Normalize (
1123
                       (Num      => Num,
1124
                        Den      => Lval.Den * (Rval.Rbase ** Rval.Den),
1125
                        Rbase    => 0,
1126
                        Negative => Rneg)));
1127
         end if;
1128
 
1129
      elsif Lval.Rbase = Rval.Rbase then
1130
         return Store_Ureal (
1131
                  (Num      => Num,
1132
                   Den      => Lval.Den + Rval.Den,
1133
                   Rbase    => Lval.Rbase,
1134
                   Negative => Rneg));
1135
 
1136
      elsif Rval.Rbase = 0 then
1137
         if Is_Integer (Num, Rval.Den) then
1138
            return Store_Ureal (
1139
                     (Num      => Num / Rval.Den,
1140
                      Den      => Lval.Den,
1141
                      Rbase    => Lval.Rbase,
1142
                      Negative => Rneg));
1143
 
1144
         elsif Lval.Den < 0 then
1145
            return Store_Ureal (
1146
                     Normalize (
1147
                       (Num      => Num * (Lval.Rbase ** (-Lval.Den)),
1148
                        Den      => Rval.Den,
1149
                        Rbase    => 0,
1150
                        Negative => Rneg)));
1151
 
1152
         else
1153
            return Store_Ureal (
1154
                     Normalize (
1155
                       (Num      => Num,
1156
                        Den      => Rval.Den * (Lval.Rbase ** Lval.Den),
1157
                        Rbase    => 0,
1158
                        Negative => Rneg)));
1159
         end if;
1160
 
1161
      else
1162
         Den := Uint_1;
1163
 
1164
         if Lval.Den < 0 then
1165
            Num := Num * (Lval.Rbase ** (-Lval.Den));
1166
         else
1167
            Den := Den * (Lval.Rbase ** Lval.Den);
1168
         end if;
1169
 
1170
         if Rval.Den < 0 then
1171
            Num := Num * (Rval.Rbase ** (-Rval.Den));
1172
         else
1173
            Den := Den * (Rval.Rbase ** Rval.Den);
1174
         end if;
1175
 
1176
         return Store_Ureal (
1177
                  Normalize (
1178
                    (Num      => Num,
1179
                     Den      => Den,
1180
                     Rbase    => 0,
1181
                     Negative => Rneg)));
1182
      end if;
1183
   end UR_Mul;
1184
 
1185
   -----------
1186
   -- UR_Ne --
1187
   -----------
1188
 
1189
   function UR_Ne (Left, Right : Ureal) return Boolean is
1190
   begin
1191
      --  Quick processing for case of identical Ureal values (note that
1192
      --  this also deals with comparing two No_Ureal values).
1193
 
1194
      if Same (Left, Right) then
1195
         return False;
1196
 
1197
      --  Deal with case of one or other operand is No_Ureal, but not both
1198
 
1199
      elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
1200
         return True;
1201
 
1202
      --  Do quick check based on number of decimal digits
1203
 
1204
      elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
1205
            Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
1206
      then
1207
         return True;
1208
 
1209
      --  Otherwise full comparison is required
1210
 
1211
      else
1212
         declare
1213
            Imrk   : constant Uintp.Save_Mark  := Mark;
1214
            Rmrk   : constant Urealp.Save_Mark := Mark;
1215
            Lval   : constant Ureal_Entry := Normalize (Ureals.Table (Left));
1216
            Rval   : constant Ureal_Entry := Normalize (Ureals.Table (Right));
1217
            Result : Boolean;
1218
 
1219
         begin
1220
            if UR_Is_Zero (Left) then
1221
               return not UR_Is_Zero (Right);
1222
 
1223
            elsif UR_Is_Zero (Right) then
1224
               return not UR_Is_Zero (Left);
1225
 
1226
            --  Both operands are non-zero
1227
 
1228
            else
1229
               Result :=
1230
                  Rval.Negative /= Lval.Negative
1231
                   or else Rval.Num /= Lval.Num
1232
                   or else Rval.Den /= Lval.Den;
1233
               Release (Imrk);
1234
               Release (Rmrk);
1235
               return Result;
1236
            end if;
1237
         end;
1238
      end if;
1239
   end UR_Ne;
1240
 
1241
   ---------------
1242
   -- UR_Negate --
1243
   ---------------
1244
 
1245
   function UR_Negate (Real : Ureal) return Ureal is
1246
   begin
1247
      return Store_Ureal (
1248
               (Num      => Ureals.Table (Real).Num,
1249
                Den      => Ureals.Table (Real).Den,
1250
                Rbase    => Ureals.Table (Real).Rbase,
1251
                Negative => not Ureals.Table (Real).Negative));
1252
   end UR_Negate;
1253
 
1254
   ------------
1255
   -- UR_Sub --
1256
   ------------
1257
 
1258
   function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
1259
   begin
1260
      return UR_From_Uint (Left) + UR_Negate (Right);
1261
   end UR_Sub;
1262
 
1263
   function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
1264
   begin
1265
      return Left + UR_From_Uint (-Right);
1266
   end UR_Sub;
1267
 
1268
   function UR_Sub (Left, Right : Ureal) return Ureal is
1269
   begin
1270
      return Left + UR_Negate (Right);
1271
   end UR_Sub;
1272
 
1273
   ----------------
1274
   -- UR_To_Uint --
1275
   ----------------
1276
 
1277
   function UR_To_Uint (Real : Ureal) return Uint is
1278
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
1279
      Res : Uint;
1280
 
1281
   begin
1282
      Res := (Val.Num + (Val.Den / 2)) / Val.Den;
1283
 
1284
      if Val.Negative then
1285
         return UI_Negate (Res);
1286
      else
1287
         return Res;
1288
      end if;
1289
   end UR_To_Uint;
1290
 
1291
   --------------
1292
   -- UR_Trunc --
1293
   --------------
1294
 
1295
   function UR_Trunc (Real : Ureal) return Uint is
1296
      Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
1297
 
1298
   begin
1299
      if Val.Negative then
1300
         return -(Val.Num / Val.Den);
1301
      else
1302
         return Val.Num / Val.Den;
1303
      end if;
1304
   end UR_Trunc;
1305
 
1306
   --------------
1307
   -- UR_Write --
1308
   --------------
1309
 
1310
   procedure UR_Write (Real : Ureal) is
1311
      Val : constant Ureal_Entry := Ureals.Table (Real);
1312
 
1313
   begin
1314
      --  If value is negative, we precede the constant by a minus sign
1315
      --  and add an extra layer of parentheses on the outside since the
1316
      --  minus sign is part of the value, not a negation operator.
1317
 
1318
      if Val.Negative then
1319
         Write_Str ("(-");
1320
      end if;
1321
 
1322
      --  Constants in base 10 can be written in normal Ada literal style
1323
 
1324
      if Val.Rbase = 10 then
1325
         UI_Write (Val.Num / 10);
1326
         Write_Char ('.');
1327
         UI_Write (Val.Num mod 10);
1328
 
1329
         if Val.Den /= 0 then
1330
            Write_Char ('E');
1331
            UI_Write (1 - Val.Den);
1332
         end if;
1333
 
1334
      --  Constants in a base other than 10 can still be easily written
1335
      --  in normal Ada literal style if the numerator is one.
1336
 
1337
      elsif Val.Rbase /= 0 and then Val.Num = 1 then
1338
         Write_Int (Val.Rbase);
1339
         Write_Str ("#1.0#E");
1340
         UI_Write (-Val.Den);
1341
 
1342
      --  Other constants with a base other than 10 are written using one
1343
      --  of the following forms, depending on the sign of the number
1344
      --  and the sign of the exponent (= minus denominator value)
1345
 
1346
      --    (numerator.0*base**exponent)
1347
      --    (numerator.0*base**(-exponent))
1348
 
1349
      elsif Val.Rbase /= 0 then
1350
         Write_Char ('(');
1351
         UI_Write (Val.Num, Decimal);
1352
         Write_Str (".0*");
1353
         Write_Int (Val.Rbase);
1354
         Write_Str ("**");
1355
 
1356
         if Val.Den <= 0 then
1357
            UI_Write (-Val.Den, Decimal);
1358
 
1359
         else
1360
            Write_Str ("(-");
1361
            UI_Write (Val.Den, Decimal);
1362
            Write_Char (')');
1363
         end if;
1364
 
1365
         Write_Char (')');
1366
 
1367
      --  Rational constants with a denominator of 1 can be written as
1368
      --  a real literal for the numerator integer.
1369
 
1370
      elsif Val.Den = 1 then
1371
         UI_Write (Val.Num, Decimal);
1372
         Write_Str (".0");
1373
 
1374
      --  Non-based (rational) constants are written in (num/den) style
1375
 
1376
      else
1377
         Write_Char ('(');
1378
         UI_Write (Val.Num, Decimal);
1379
         Write_Str (".0/");
1380
         UI_Write (Val.Den, Decimal);
1381
         Write_Str (".0)");
1382
      end if;
1383
 
1384
      --  Add trailing paren for negative values
1385
 
1386
      if Val.Negative then
1387
         Write_Char (')');
1388
      end if;
1389
   end UR_Write;
1390
 
1391
   -------------
1392
   -- Ureal_0 --
1393
   -------------
1394
 
1395
   function Ureal_0 return Ureal is
1396
   begin
1397
      return UR_0;
1398
   end Ureal_0;
1399
 
1400
   -------------
1401
   -- Ureal_1 --
1402
   -------------
1403
 
1404
   function Ureal_1 return Ureal is
1405
   begin
1406
      return UR_1;
1407
   end Ureal_1;
1408
 
1409
   -------------
1410
   -- Ureal_2 --
1411
   -------------
1412
 
1413
   function Ureal_2 return Ureal is
1414
   begin
1415
      return UR_2;
1416
   end Ureal_2;
1417
 
1418
   --------------
1419
   -- Ureal_10 --
1420
   --------------
1421
 
1422
   function Ureal_10 return Ureal is
1423
   begin
1424
      return UR_10;
1425
   end Ureal_10;
1426
 
1427
   ---------------
1428
   -- Ureal_100 --
1429
   ---------------
1430
 
1431
   function Ureal_100 return Ureal is
1432
   begin
1433
      return UR_100;
1434
   end Ureal_100;
1435
 
1436
   -----------------
1437
   -- Ureal_10_36 --
1438
   -----------------
1439
 
1440
   function Ureal_10_36 return Ureal is
1441
   begin
1442
      return UR_10_36;
1443
   end Ureal_10_36;
1444
 
1445
   ----------------
1446
   -- Ureal_2_80 --
1447
   ----------------
1448
 
1449
   function Ureal_2_80 return Ureal is
1450
   begin
1451
      return UR_2_80;
1452
   end Ureal_2_80;
1453
 
1454
   -----------------
1455
   -- Ureal_2_128 --
1456
   -----------------
1457
 
1458
   function Ureal_2_128 return Ureal is
1459
   begin
1460
      return UR_2_128;
1461
   end Ureal_2_128;
1462
 
1463
   -------------------
1464
   -- Ureal_2_M_80 --
1465
   -------------------
1466
 
1467
   function Ureal_2_M_80 return Ureal is
1468
   begin
1469
      return UR_2_M_80;
1470
   end Ureal_2_M_80;
1471
 
1472
   -------------------
1473
   -- Ureal_2_M_128 --
1474
   -------------------
1475
 
1476
   function Ureal_2_M_128 return Ureal is
1477
   begin
1478
      return UR_2_M_128;
1479
   end Ureal_2_M_128;
1480
 
1481
   ----------------
1482
   -- Ureal_Half --
1483
   ----------------
1484
 
1485
   function Ureal_Half return Ureal is
1486
   begin
1487
      return UR_Half;
1488
   end Ureal_Half;
1489
 
1490
   ---------------
1491
   -- Ureal_M_0 --
1492
   ---------------
1493
 
1494
   function Ureal_M_0 return Ureal is
1495
   begin
1496
      return UR_M_0;
1497
   end Ureal_M_0;
1498
 
1499
   -------------------
1500
   -- Ureal_M_10_36 --
1501
   -------------------
1502
 
1503
   function Ureal_M_10_36 return Ureal is
1504
   begin
1505
      return UR_M_10_36;
1506
   end Ureal_M_10_36;
1507
 
1508
   -----------------
1509
   -- Ureal_Tenth --
1510
   -----------------
1511
 
1512
   function Ureal_Tenth return Ureal is
1513
   begin
1514
      return UR_Tenth;
1515
   end Ureal_Tenth;
1516
 
1517
end Urealp;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.