OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [urealp.ads] - Blame information for rev 292

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                               U R E A L P                                --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009  Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  Support for universal real arithmetic
33
 
34
with Types; use Types;
35
with Uintp; use Uintp;
36
 
37
package Urealp is
38
 
39
   ---------------------------------------
40
   -- Representation of Universal Reals --
41
   ---------------------------------------
42
 
43
   --  A universal real value is represented by a single value (which is
44
   --  an index into an internal table). These values are not hashed, so
45
   --  the equality operator should not be used on Ureal values (instead
46
   --  use the UR_Eq function).
47
 
48
   --  A Ureal value represents an arbitrary precision universal real value,
49
   --  stored internally using four components
50
 
51
   --    the numerator (Uint, always non-negative)
52
   --    the denominator (Uint, always non-zero, always positive if base = 0)
53
   --    a real base (Nat, either zero, or in the range 2 .. 16)
54
   --    a sign flag (Boolean), set if negative
55
 
56
   --  If the base is zero, then the absolute value of the Ureal is simply
57
   --  numerator/denominator. If the base is non-zero, then the absolute
58
   --  value is num / (rbase ** den).
59
 
60
   --  Negative numbers are represented by the sign of the numerator being
61
   --  negative. The denominator is always positive.
62
 
63
   --  A normalized Ureal value has base = 0, and numerator/denominator
64
   --  reduced to lowest terms, with zero itself being represented as 0/1.
65
   --  This is a canonical format, so that for normalized Ureal values it
66
   --  is the case that two equal values always have the same denominator
67
   --  and numerator values.
68
 
69
   --  Note: a value of minus zero is legitimate, and the operations in
70
   --  Urealp preserve the handling of signed zeroes in accordance with
71
   --  the rules of IEEE P754 ("IEEE floating point").
72
 
73
   ------------------------------
74
   -- Types for Urealp Package --
75
   ------------------------------
76
 
77
   type Ureal is private;
78
   --  Type used for representation of universal reals
79
 
80
   No_Ureal : constant Ureal;
81
   --  Constant used to indicate missing or unset Ureal value
82
 
83
   ---------------------
84
   -- Ureal Constants --
85
   ---------------------
86
 
87
   function Ureal_0 return Ureal;
88
   --  Returns value 0.0
89
 
90
   function Ureal_M_0 return Ureal;
91
   --  Returns value -0.0
92
 
93
   function Ureal_Tenth return Ureal;
94
   --  Returns value 0.1
95
 
96
   function Ureal_Half return Ureal;
97
   --  Returns value 0.5
98
 
99
   function Ureal_1 return Ureal;
100
   --  Returns value 1.0
101
 
102
   function Ureal_2 return Ureal;
103
   --  Returns value 2.0
104
 
105
   function Ureal_10 return Ureal;
106
   --  Returns value 10.0
107
 
108
   function Ureal_100 return Ureal;
109
   --  Returns value 100.0
110
 
111
   function Ureal_2_80 return Ureal;
112
   --  Returns value 2.0 ** 80
113
 
114
   function Ureal_2_M_80 return Ureal;
115
   --  Returns value 2.0 ** (-80)
116
 
117
   function Ureal_2_128 return Ureal;
118
   --  Returns value 2.0 ** 128
119
 
120
   function Ureal_2_M_128 return Ureal;
121
   --  Returns value 2.0 ** (-128)
122
 
123
   function Ureal_10_36 return Ureal;
124
   --  Returns value 10.0 ** 36
125
 
126
   function Ureal_M_10_36 return Ureal;
127
   --  Returns value -(10.0
128
 
129
   -----------------
130
   -- Subprograms --
131
   -----------------
132
 
133
   procedure Initialize;
134
   --  Initialize Ureal tables. Note that Initialize must not be called if
135
   --  Tree_Read is used. Note also that there is no Lock routine in this
136
   --  unit. These tables are among the few tables that can be expanded
137
   --  during Gigi processing.
138
 
139
   procedure Tree_Read;
140
   --  Initializes internal tables from current tree file using the relevant
141
   --  Table.Tree_Read routines. Note that Initialize should not be called if
142
   --  Tree_Read is used. Tree_Read includes all necessary initialization.
143
 
144
   procedure Tree_Write;
145
   --  Writes out internal tables to current tree file using the relevant
146
   --  Table.Tree_Write routines.
147
 
148
   function Rbase (Real : Ureal) return Nat;
149
   --  Return the base of the universal real
150
 
151
   function Denominator (Real : Ureal) return Uint;
152
   --  Return the denominator of the universal real
153
 
154
   function Numerator (Real : Ureal) return Uint;
155
   --  Return the numerator of the universal real
156
 
157
   function Norm_Den (Real : Ureal) return Uint;
158
   --  Return the denominator of the universal real after a normalization
159
 
160
   function Norm_Num (Real : Ureal) return Uint;
161
   --  Return the numerator of the universal real after a normalization
162
 
163
   function UR_From_Uint (UI : Uint) return Ureal;
164
   --  Returns real corresponding to universal integer value
165
 
166
   function UR_To_Uint (Real : Ureal) return Uint;
167
   --  Return integer value obtained by accurate rounding of real value.
168
   --  The rounding of values half way between two integers is away from
169
   --  zero, as required by normal Ada 95 rounding semantics.
170
 
171
   function UR_Trunc (Real : Ureal) return Uint;
172
   --  Return integer value obtained by a truncation of real towards zero
173
 
174
   function UR_Ceiling (Real : Ureal) return Uint;
175
   --  Return value of smallest integer not less than the given value
176
 
177
   function UR_Floor (Real : Ureal) return Uint;
178
   --  Return value of smallest integer not greater than the given value
179
 
180
   --  Conversion table for above four functions
181
 
182
   --    Input    To_Uint    Trunc    Ceiling    Floor
183
   --     1.0        1         1         1         1
184
   --     1.2        1         1         2         1
185
   --     1.5        2         1         2         1
186
   --     1.7        2         1         2         1
187
   --     2.0        2         2         2         2
188
   --    -1.0       -1        -1        -1        -1
189
   --    -1.2       -1        -1        -1        -2
190
   --    -1.5       -2        -1        -1        -2
191
   --    -1.7       -2        -1        -1        -2
192
   --    -2.0       -2        -2        -2        -2
193
 
194
   function UR_From_Components
195
     (Num      : Uint;
196
      Den      : Uint;
197
      Rbase    : Nat := 0;
198
      Negative : Boolean := False)
199
      return     Ureal;
200
   --  Builds real value from given numerator, denominator and base. The
201
   --  value is negative if Negative is set to true, and otherwise is
202
   --  non-negative.
203
 
204
   function UR_Add (Left : Ureal; Right : Ureal) return Ureal;
205
   function UR_Add (Left : Ureal; Right : Uint)  return Ureal;
206
   function UR_Add (Left : Uint;  Right : Ureal) return Ureal;
207
   --  Returns real sum of operands
208
 
209
   function UR_Div (Left : Ureal; Right : Ureal) return Ureal;
210
   function UR_Div (Left : Uint;  Right : Ureal) return Ureal;
211
   function UR_Div (Left : Ureal; Right : Uint)  return Ureal;
212
   --  Returns real quotient of operands. Fatal error if Right is zero
213
 
214
   function UR_Mul (Left : Ureal; Right : Ureal) return Ureal;
215
   function UR_Mul (Left : Uint;  Right : Ureal) return Ureal;
216
   function UR_Mul (Left : Ureal; Right : Uint)  return Ureal;
217
   --  Returns real product of operands
218
 
219
   function UR_Sub (Left : Ureal; Right : Ureal) return Ureal;
220
   function UR_Sub (Left : Uint;  Right : Ureal) return Ureal;
221
   function UR_Sub (Left : Ureal; Right : Uint)  return Ureal;
222
   --  Returns real difference of operands
223
 
224
   function UR_Exponentiate (Real  : Ureal; N : Uint) return  Ureal;
225
   --  Returns result of raising Ureal to Uint power.
226
   --  Fatal error if Left is 0 and Right is negative.
227
 
228
   function UR_Abs (Real : Ureal) return Ureal;
229
   --  Returns abs function of real
230
 
231
   function UR_Negate (Real : Ureal) return Ureal;
232
   --  Returns negative of real
233
 
234
   function UR_Eq (Left, Right : Ureal) return Boolean;
235
   --  Compares reals for equality
236
 
237
   function UR_Max (Left, Right : Ureal) return Ureal;
238
   --  Returns the maximum of two reals
239
 
240
   function UR_Min (Left, Right : Ureal) return Ureal;
241
   --  Returns the minimum of two reals
242
 
243
   function UR_Ne (Left, Right : Ureal) return Boolean;
244
   --  Compares reals for inequality
245
 
246
   function UR_Lt (Left, Right : Ureal) return Boolean;
247
   --  Compares reals for less than
248
 
249
   function UR_Le (Left, Right : Ureal) return Boolean;
250
   --  Compares reals for less than or equal
251
 
252
   function UR_Gt (Left, Right : Ureal) return Boolean;
253
   --  Compares reals for greater than
254
 
255
   function UR_Ge (Left, Right : Ureal) return Boolean;
256
   --  Compares reals for greater than or equal
257
 
258
   function UR_Is_Zero (Real : Ureal) return Boolean;
259
   --  Tests if real value is zero
260
 
261
   function UR_Is_Negative (Real : Ureal) return Boolean;
262
   --  Tests if real value is negative, note that negative zero gives true
263
 
264
   function UR_Is_Positive (Real : Ureal) return Boolean;
265
   --  Test if real value is greater than zero
266
 
267
   procedure UR_Write (Real : Ureal);
268
   --  Writes value of Real to standard output. Used only for debugging and
269
   --  tree/source output. If the result is easily representable as a standard
270
   --  Ada literal, it will be given that way, but as a result of evaluation
271
   --  of static expressions, it is possible to generate constants (e.g. 1/13)
272
   --  which have no such representation. In such cases (and in cases where it
273
   --  is too much work to figure out the Ada literal), the string that is
274
   --  output is of the form [numerator/denominator].
275
 
276
   procedure pr (Real : Ureal);
277
   pragma Export (Ada, pr);
278
   --  Writes value of Real to standard output with a terminating line return,
279
   --  using UR_Write as described above. This is for use from the debugger.
280
 
281
   ------------------------
282
   -- Operator Renamings --
283
   ------------------------
284
 
285
   function "+" (Left : Ureal; Right : Ureal) return Ureal renames UR_Add;
286
   function "+" (Left : Uint;  Right : Ureal) return Ureal renames UR_Add;
287
   function "+" (Left : Ureal; Right : Uint)  return Ureal renames UR_Add;
288
 
289
   function "/" (Left : Ureal; Right : Ureal) return Ureal renames UR_Div;
290
   function "/" (Left : Uint;  Right : Ureal) return Ureal renames UR_Div;
291
   function "/" (Left : Ureal; Right : Uint)  return Ureal renames UR_Div;
292
 
293
   function "*" (Left : Ureal; Right : Ureal) return Ureal renames UR_Mul;
294
   function "*" (Left : Uint;  Right : Ureal) return Ureal renames UR_Mul;
295
   function "*" (Left : Ureal; Right : Uint)  return Ureal renames UR_Mul;
296
 
297
   function "-" (Left : Ureal; Right : Ureal) return Ureal renames UR_Sub;
298
   function "-" (Left : Uint;  Right : Ureal) return Ureal renames UR_Sub;
299
   function "-" (Left : Ureal; Right : Uint)  return Ureal renames UR_Sub;
300
 
301
   function "**"  (Real  : Ureal; N : Uint) return Ureal
302
                                                     renames UR_Exponentiate;
303
 
304
   function "abs" (Real : Ureal) return Ureal renames UR_Abs;
305
 
306
   function "-"   (Real : Ureal) return Ureal renames UR_Negate;
307
 
308
   function "="   (Left, Right : Ureal) return Boolean renames UR_Eq;
309
 
310
   function "<"   (Left, Right : Ureal) return Boolean renames UR_Lt;
311
 
312
   function "<="  (Left, Right : Ureal) return Boolean renames UR_Le;
313
 
314
   function ">="  (Left, Right : Ureal) return Boolean renames UR_Ge;
315
 
316
   function ">"   (Left, Right : Ureal) return Boolean renames UR_Gt;
317
 
318
   -----------------------------
319
   -- Mark/Release Processing --
320
   -----------------------------
321
 
322
   --  The space used by Ureal data is not automatically reclaimed. However,
323
   --  a mark-release regime is implemented which allows storage to be
324
   --  released back to a previously noted mark. This is used for example
325
   --  when doing comparisons, where only intermediate results get stored
326
   --  that do not need to be saved for future use.
327
 
328
   type Save_Mark is private;
329
 
330
   function Mark return Save_Mark;
331
   --  Note mark point for future release
332
 
333
   procedure Release (M : Save_Mark);
334
   --  Release storage allocated since mark was noted
335
 
336
   ------------------------------------
337
   -- Representation of Ureal Values --
338
   ------------------------------------
339
 
340
private
341
 
342
   type Ureal is new Int range Ureal_Low_Bound .. Ureal_High_Bound;
343
   for Ureal'Size use 32;
344
 
345
   No_Ureal : constant Ureal := Ureal'First;
346
 
347
   type Save_Mark is new Int;
348
 
349
   pragma Inline (Denominator);
350
   pragma Inline (Mark);
351
   pragma Inline (Norm_Num);
352
   pragma Inline (Norm_Den);
353
   pragma Inline (Numerator);
354
   pragma Inline (Rbase);
355
   pragma Inline (Release);
356
   pragma Inline (Ureal_0);
357
   pragma Inline (Ureal_M_0);
358
   pragma Inline (Ureal_Tenth);
359
   pragma Inline (Ureal_Half);
360
   pragma Inline (Ureal_1);
361
   pragma Inline (Ureal_2);
362
   pragma Inline (Ureal_10);
363
   pragma Inline (UR_From_Components);
364
 
365
end Urealp;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.