1 |
280 |
jeremybenn |
/* Discovery of auto-inc and auto-dec instructions.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "insn-config.h"
|
31 |
|
|
#include "regs.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "except.h"
|
36 |
|
|
#include "toplev.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "expr.h"
|
39 |
|
|
#include "timevar.h"
|
40 |
|
|
#include "tree-pass.h"
|
41 |
|
|
#include "df.h"
|
42 |
|
|
#include "dbgcnt.h"
|
43 |
|
|
#include "target.h"
|
44 |
|
|
|
45 |
|
|
/* This pass was originally removed from flow.c. However there is
|
46 |
|
|
almost nothing that remains of that code.
|
47 |
|
|
|
48 |
|
|
There are (4) basic forms that are matched:
|
49 |
|
|
|
50 |
|
|
(1) FORM_PRE_ADD
|
51 |
|
|
a <- b + c
|
52 |
|
|
...
|
53 |
|
|
*a
|
54 |
|
|
|
55 |
|
|
becomes
|
56 |
|
|
|
57 |
|
|
a <- b
|
58 |
|
|
...
|
59 |
|
|
*(a += c) pre
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
(2) FORM_PRE_INC
|
63 |
|
|
a += c
|
64 |
|
|
...
|
65 |
|
|
*a
|
66 |
|
|
|
67 |
|
|
becomes
|
68 |
|
|
|
69 |
|
|
*(a += c) pre
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
(3) FORM_POST_ADD
|
73 |
|
|
*a
|
74 |
|
|
...
|
75 |
|
|
b <- a + c
|
76 |
|
|
|
77 |
|
|
(For this case to be true, b must not be assigned or used between
|
78 |
|
|
the *a and the assignment to b. B must also be a Pmode reg.)
|
79 |
|
|
|
80 |
|
|
becomes
|
81 |
|
|
|
82 |
|
|
b <- a
|
83 |
|
|
...
|
84 |
|
|
*(b += c) post
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
(4) FORM_POST_INC
|
88 |
|
|
*a
|
89 |
|
|
...
|
90 |
|
|
a <- a + c
|
91 |
|
|
|
92 |
|
|
becomes
|
93 |
|
|
|
94 |
|
|
*(a += c) post
|
95 |
|
|
|
96 |
|
|
There are three types of values of c.
|
97 |
|
|
|
98 |
|
|
1) c is a constant equal to the width of the value being accessed by
|
99 |
|
|
the pointer. This is useful for machines that have
|
100 |
|
|
HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
|
101 |
|
|
HAVE_POST_DECREMENT defined.
|
102 |
|
|
|
103 |
|
|
2) c is a constant not equal to the width of the value being accessed
|
104 |
|
|
by the pointer. This is useful for machines that have
|
105 |
|
|
HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
|
106 |
|
|
|
107 |
|
|
3) c is a register. This is useful for machines that have
|
108 |
|
|
HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
|
109 |
|
|
|
110 |
|
|
The is one special case: if a already had an offset equal to it +-
|
111 |
|
|
its width and that offset is equal to -c when the increment was
|
112 |
|
|
before the ref or +c if the increment was after the ref, then if we
|
113 |
|
|
can do the combination but switch the pre/post bit. */
|
114 |
|
|
|
115 |
|
|
#ifdef AUTO_INC_DEC
|
116 |
|
|
|
117 |
|
|
enum form
|
118 |
|
|
{
|
119 |
|
|
FORM_PRE_ADD,
|
120 |
|
|
FORM_PRE_INC,
|
121 |
|
|
FORM_POST_ADD,
|
122 |
|
|
FORM_POST_INC,
|
123 |
|
|
FORM_last
|
124 |
|
|
};
|
125 |
|
|
|
126 |
|
|
/* The states of the second operands of mem refs and inc insns. If no
|
127 |
|
|
second operand of the mem_ref was found, it is assumed to just be
|
128 |
|
|
ZERO. SIZE is the size of the mode accessed in the memref. The
|
129 |
|
|
ANY is used for constants that are not +-size or 0. REG is used if
|
130 |
|
|
the forms are reg1 + reg2. */
|
131 |
|
|
|
132 |
|
|
enum inc_state
|
133 |
|
|
{
|
134 |
|
|
INC_ZERO, /* == 0 */
|
135 |
|
|
INC_NEG_SIZE, /* == +size */
|
136 |
|
|
INC_POS_SIZE, /* == -size */
|
137 |
|
|
INC_NEG_ANY, /* == some -constant */
|
138 |
|
|
INC_POS_ANY, /* == some +constant */
|
139 |
|
|
INC_REG, /* == some register */
|
140 |
|
|
INC_last
|
141 |
|
|
};
|
142 |
|
|
|
143 |
|
|
/* The eight forms that pre/post inc/dec can take. */
|
144 |
|
|
enum gen_form
|
145 |
|
|
{
|
146 |
|
|
NOTHING,
|
147 |
|
|
SIMPLE_PRE_INC, /* ++size */
|
148 |
|
|
SIMPLE_POST_INC, /* size++ */
|
149 |
|
|
SIMPLE_PRE_DEC, /* --size */
|
150 |
|
|
SIMPLE_POST_DEC, /* size-- */
|
151 |
|
|
DISP_PRE, /* ++con */
|
152 |
|
|
DISP_POST, /* con++ */
|
153 |
|
|
REG_PRE, /* ++reg */
|
154 |
|
|
REG_POST /* reg++ */
|
155 |
|
|
};
|
156 |
|
|
|
157 |
|
|
/* Tmp mem rtx for use in cost modeling. */
|
158 |
|
|
static rtx mem_tmp;
|
159 |
|
|
|
160 |
|
|
static enum inc_state
|
161 |
|
|
set_inc_state (HOST_WIDE_INT val, int size)
|
162 |
|
|
{
|
163 |
|
|
if (val == 0)
|
164 |
|
|
return INC_ZERO;
|
165 |
|
|
if (val < 0)
|
166 |
|
|
return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
|
167 |
|
|
else
|
168 |
|
|
return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/* The DECISION_TABLE that describes what form, if any, the increment
|
172 |
|
|
or decrement will take. It is a three dimensional table. The first
|
173 |
|
|
index is the type of constant or register found as the second
|
174 |
|
|
operand of the inc insn. The second index is the type of constant
|
175 |
|
|
or register found as the second operand of the memory reference (if
|
176 |
|
|
no second operand exists, 0 is used). The third index is the form
|
177 |
|
|
and location (relative to the mem reference) of inc insn. */
|
178 |
|
|
|
179 |
|
|
static bool initialized = false;
|
180 |
|
|
static enum gen_form decision_table[INC_last][INC_last][FORM_last];
|
181 |
|
|
|
182 |
|
|
static void
|
183 |
|
|
init_decision_table (void)
|
184 |
|
|
{
|
185 |
|
|
enum gen_form value;
|
186 |
|
|
|
187 |
|
|
if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
|
188 |
|
|
{
|
189 |
|
|
/* Prefer the simple form if both are available. */
|
190 |
|
|
value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
|
191 |
|
|
|
192 |
|
|
decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
|
193 |
|
|
decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
|
194 |
|
|
|
195 |
|
|
decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
|
196 |
|
|
decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
|
200 |
|
|
{
|
201 |
|
|
/* Prefer the simple form if both are available. */
|
202 |
|
|
value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
|
203 |
|
|
|
204 |
|
|
decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
|
205 |
|
|
decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
|
206 |
|
|
|
207 |
|
|
decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
|
208 |
|
|
decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
|
212 |
|
|
{
|
213 |
|
|
/* Prefer the simple form if both are available. */
|
214 |
|
|
value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
|
215 |
|
|
|
216 |
|
|
decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
|
217 |
|
|
decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
|
218 |
|
|
|
219 |
|
|
decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
|
220 |
|
|
decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
|
224 |
|
|
{
|
225 |
|
|
/* Prefer the simple form if both are available. */
|
226 |
|
|
value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
|
227 |
|
|
|
228 |
|
|
decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
|
229 |
|
|
decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
|
230 |
|
|
|
231 |
|
|
decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
|
232 |
|
|
decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
if (HAVE_PRE_MODIFY_DISP)
|
236 |
|
|
{
|
237 |
|
|
decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
|
238 |
|
|
decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
|
239 |
|
|
|
240 |
|
|
decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
|
241 |
|
|
decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
|
242 |
|
|
|
243 |
|
|
decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
|
244 |
|
|
decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
|
245 |
|
|
|
246 |
|
|
decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
|
247 |
|
|
decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
if (HAVE_POST_MODIFY_DISP)
|
251 |
|
|
{
|
252 |
|
|
decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
|
253 |
|
|
decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
|
254 |
|
|
|
255 |
|
|
decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
|
256 |
|
|
decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
|
257 |
|
|
|
258 |
|
|
decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
|
259 |
|
|
decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
|
260 |
|
|
|
261 |
|
|
decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
|
262 |
|
|
decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* This is much simpler than the other cases because we do not look
|
266 |
|
|
for the reg1-reg2 case. Note that we do not have a INC_POS_REG
|
267 |
|
|
and INC_NEG_REG states. Most of the use of such states would be
|
268 |
|
|
on a target that had an R1 - R2 update address form.
|
269 |
|
|
|
270 |
|
|
There is the remote possibility that you could also catch a = a +
|
271 |
|
|
b; *(a - b) as a postdecrement of (a + b). However, it is
|
272 |
|
|
unclear if *(a - b) would ever be generated on a machine that did
|
273 |
|
|
not have that kind of addressing mode. The IA-64 and RS6000 will
|
274 |
|
|
not do this, and I cannot speak for any other. If any
|
275 |
|
|
architecture does have an a-b update for, these cases should be
|
276 |
|
|
added. */
|
277 |
|
|
if (HAVE_PRE_MODIFY_REG)
|
278 |
|
|
{
|
279 |
|
|
decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
|
280 |
|
|
decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
|
281 |
|
|
|
282 |
|
|
decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
|
283 |
|
|
decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
if (HAVE_POST_MODIFY_REG)
|
287 |
|
|
{
|
288 |
|
|
decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
|
289 |
|
|
decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
initialized = true;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
|
296 |
|
|
"reg_res = reg0+c". */
|
297 |
|
|
|
298 |
|
|
static struct inc_insn
|
299 |
|
|
{
|
300 |
|
|
rtx insn; /* The insn being parsed. */
|
301 |
|
|
rtx pat; /* The pattern of the insn. */
|
302 |
|
|
bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
|
303 |
|
|
enum form form;
|
304 |
|
|
rtx reg_res;
|
305 |
|
|
rtx reg0;
|
306 |
|
|
rtx reg1;
|
307 |
|
|
enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
|
308 |
|
|
HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
|
309 |
|
|
} inc_insn;
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
/* Dump the parsed inc insn to FILE. */
|
313 |
|
|
|
314 |
|
|
static void
|
315 |
|
|
dump_inc_insn (FILE *file)
|
316 |
|
|
{
|
317 |
|
|
const char *f = ((inc_insn.form == FORM_PRE_ADD)
|
318 |
|
|
|| (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
|
319 |
|
|
|
320 |
|
|
dump_insn_slim (file, inc_insn.insn);
|
321 |
|
|
|
322 |
|
|
switch (inc_insn.form)
|
323 |
|
|
{
|
324 |
|
|
case FORM_PRE_ADD:
|
325 |
|
|
case FORM_POST_ADD:
|
326 |
|
|
if (inc_insn.reg1_is_const)
|
327 |
|
|
fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
|
328 |
|
|
f, INSN_UID (inc_insn.insn),
|
329 |
|
|
REGNO (inc_insn.reg_res),
|
330 |
|
|
REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
|
331 |
|
|
else
|
332 |
|
|
fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
|
333 |
|
|
f, INSN_UID (inc_insn.insn),
|
334 |
|
|
REGNO (inc_insn.reg_res),
|
335 |
|
|
REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
|
336 |
|
|
break;
|
337 |
|
|
|
338 |
|
|
case FORM_PRE_INC:
|
339 |
|
|
case FORM_POST_INC:
|
340 |
|
|
if (inc_insn.reg1_is_const)
|
341 |
|
|
fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
|
342 |
|
|
f, INSN_UID (inc_insn.insn),
|
343 |
|
|
REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
|
344 |
|
|
else
|
345 |
|
|
fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
|
346 |
|
|
f, INSN_UID (inc_insn.insn),
|
347 |
|
|
REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
|
348 |
|
|
break;
|
349 |
|
|
|
350 |
|
|
default:
|
351 |
|
|
break;
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
/* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
|
357 |
|
|
|
358 |
|
|
static struct mem_insn
|
359 |
|
|
{
|
360 |
|
|
rtx insn; /* The insn being parsed. */
|
361 |
|
|
rtx pat; /* The pattern of the insn. */
|
362 |
|
|
rtx *mem_loc; /* The address of the field that holds the mem */
|
363 |
|
|
/* that is to be replaced. */
|
364 |
|
|
bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
|
365 |
|
|
rtx reg0;
|
366 |
|
|
rtx reg1; /* This is either a reg or a const depending on
|
367 |
|
|
reg1_is_const. */
|
368 |
|
|
enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
|
369 |
|
|
HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
|
370 |
|
|
} mem_insn;
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
/* Dump the parsed mem insn to FILE. */
|
374 |
|
|
|
375 |
|
|
static void
|
376 |
|
|
dump_mem_insn (FILE *file)
|
377 |
|
|
{
|
378 |
|
|
dump_insn_slim (file, mem_insn.insn);
|
379 |
|
|
|
380 |
|
|
if (mem_insn.reg1_is_const)
|
381 |
|
|
fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
|
382 |
|
|
INSN_UID (mem_insn.insn),
|
383 |
|
|
REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
|
384 |
|
|
else
|
385 |
|
|
fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
|
386 |
|
|
INSN_UID (mem_insn.insn),
|
387 |
|
|
REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
|
391 |
|
|
/* The following three arrays contain pointers to instructions. They
|
392 |
|
|
are indexed by REGNO. At any point in the basic block where we are
|
393 |
|
|
looking these three arrays contain, respectively, the next insn
|
394 |
|
|
that uses REGNO, the next inc or add insn that uses REGNO and the
|
395 |
|
|
next insn that sets REGNO.
|
396 |
|
|
|
397 |
|
|
The arrays are not cleared when we move from block to block so
|
398 |
|
|
whenever an insn is retrieved from these arrays, it's block number
|
399 |
|
|
must be compared with the current block.
|
400 |
|
|
*/
|
401 |
|
|
|
402 |
|
|
static rtx *reg_next_use = NULL;
|
403 |
|
|
static rtx *reg_next_inc_use = NULL;
|
404 |
|
|
static rtx *reg_next_def = NULL;
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
/* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
|
408 |
|
|
not really care about moving any other notes from the inc or add
|
409 |
|
|
insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
|
410 |
|
|
does not appear that there are any other kinds of relevant notes. */
|
411 |
|
|
|
412 |
|
|
static void
|
413 |
|
|
move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
|
414 |
|
|
{
|
415 |
|
|
rtx note;
|
416 |
|
|
rtx next_note;
|
417 |
|
|
rtx prev_note = NULL;
|
418 |
|
|
|
419 |
|
|
for (note = REG_NOTES (from_insn); note; note = next_note)
|
420 |
|
|
{
|
421 |
|
|
next_note = XEXP (note, 1);
|
422 |
|
|
|
423 |
|
|
if ((REG_NOTE_KIND (note) == REG_DEAD)
|
424 |
|
|
&& pattern == XEXP (note, 0))
|
425 |
|
|
{
|
426 |
|
|
XEXP (note, 1) = REG_NOTES (to_insn);
|
427 |
|
|
REG_NOTES (to_insn) = note;
|
428 |
|
|
if (prev_note)
|
429 |
|
|
XEXP (prev_note, 1) = next_note;
|
430 |
|
|
else
|
431 |
|
|
REG_NOTES (from_insn) = next_note;
|
432 |
|
|
}
|
433 |
|
|
else prev_note = note;
|
434 |
|
|
}
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
/* Create a mov insn DEST_REG <- SRC_REG and insert it before
|
439 |
|
|
NEXT_INSN. */
|
440 |
|
|
|
441 |
|
|
static rtx
|
442 |
|
|
insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
|
443 |
|
|
{
|
444 |
|
|
rtx insns;
|
445 |
|
|
|
446 |
|
|
start_sequence ();
|
447 |
|
|
emit_move_insn (dest_reg, src_reg);
|
448 |
|
|
insns = get_insns ();
|
449 |
|
|
end_sequence ();
|
450 |
|
|
emit_insn_before (insns, next_insn);
|
451 |
|
|
return insns;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
|
455 |
|
|
/* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
|
456 |
|
|
increment of INC_REG. To have reached this point, the change is a
|
457 |
|
|
legitimate one from a dataflow point of view. The only questions
|
458 |
|
|
are is this a valid change to the instruction and is this a
|
459 |
|
|
profitable change to the instruction. */
|
460 |
|
|
|
461 |
|
|
static bool
|
462 |
|
|
attempt_change (rtx new_addr, rtx inc_reg)
|
463 |
|
|
{
|
464 |
|
|
/* There are four cases: For the two cases that involve an add
|
465 |
|
|
instruction, we are going to have to delete the add and insert a
|
466 |
|
|
mov. We are going to assume that the mov is free. This is
|
467 |
|
|
fairly early in the backend and there are a lot of opportunities
|
468 |
|
|
for removing that move later. In particular, there is the case
|
469 |
|
|
where the move may be dead, this is what dead code elimination
|
470 |
|
|
passes are for. The two cases where we have an inc insn will be
|
471 |
|
|
handled mov free. */
|
472 |
|
|
|
473 |
|
|
basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
|
474 |
|
|
rtx mov_insn = NULL;
|
475 |
|
|
int regno;
|
476 |
|
|
rtx mem = *mem_insn.mem_loc;
|
477 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
478 |
|
|
rtx new_mem;
|
479 |
|
|
int old_cost = 0;
|
480 |
|
|
int new_cost = 0;
|
481 |
|
|
bool speed = optimize_bb_for_speed_p (bb);
|
482 |
|
|
|
483 |
|
|
PUT_MODE (mem_tmp, mode);
|
484 |
|
|
XEXP (mem_tmp, 0) = new_addr;
|
485 |
|
|
|
486 |
|
|
old_cost = (rtx_cost (mem, SET, speed)
|
487 |
|
|
+ rtx_cost (PATTERN (inc_insn.insn), SET, speed));
|
488 |
|
|
new_cost = rtx_cost (mem_tmp, SET, speed);
|
489 |
|
|
|
490 |
|
|
/* The first item of business is to see if this is profitable. */
|
491 |
|
|
if (old_cost < new_cost)
|
492 |
|
|
{
|
493 |
|
|
if (dump_file)
|
494 |
|
|
fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
|
495 |
|
|
return false;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Jump thru a lot of hoops to keep the attributes up to date. We
|
499 |
|
|
do not want to call one of the change address variants that take
|
500 |
|
|
an offset even though we know the offset in many cases. These
|
501 |
|
|
assume you are changing where the address is pointing by the
|
502 |
|
|
offset. */
|
503 |
|
|
new_mem = replace_equiv_address_nv (mem, new_addr);
|
504 |
|
|
if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
|
505 |
|
|
{
|
506 |
|
|
if (dump_file)
|
507 |
|
|
fprintf (dump_file, "validation failure\n");
|
508 |
|
|
return false;
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
/* From here to the end of the function we are committed to the
|
512 |
|
|
change, i.e. nothing fails. Generate any necessary movs, move
|
513 |
|
|
any regnotes, and fix up the reg_next_{use,inc_use,def}. */
|
514 |
|
|
switch (inc_insn.form)
|
515 |
|
|
{
|
516 |
|
|
case FORM_PRE_ADD:
|
517 |
|
|
/* Replace the addition with a move. Do it at the location of
|
518 |
|
|
the addition since the operand of the addition may change
|
519 |
|
|
before the memory reference. */
|
520 |
|
|
mov_insn = insert_move_insn_before (inc_insn.insn,
|
521 |
|
|
inc_insn.reg_res, inc_insn.reg0);
|
522 |
|
|
move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
|
523 |
|
|
|
524 |
|
|
regno = REGNO (inc_insn.reg_res);
|
525 |
|
|
reg_next_def[regno] = mov_insn;
|
526 |
|
|
reg_next_use[regno] = NULL;
|
527 |
|
|
regno = REGNO (inc_insn.reg0);
|
528 |
|
|
reg_next_use[regno] = mov_insn;
|
529 |
|
|
df_recompute_luids (bb);
|
530 |
|
|
break;
|
531 |
|
|
|
532 |
|
|
case FORM_POST_INC:
|
533 |
|
|
regno = REGNO (inc_insn.reg_res);
|
534 |
|
|
if (reg_next_use[regno] == reg_next_inc_use[regno])
|
535 |
|
|
reg_next_inc_use[regno] = NULL;
|
536 |
|
|
|
537 |
|
|
/* Fallthru. */
|
538 |
|
|
case FORM_PRE_INC:
|
539 |
|
|
regno = REGNO (inc_insn.reg_res);
|
540 |
|
|
reg_next_def[regno] = mem_insn.insn;
|
541 |
|
|
reg_next_use[regno] = NULL;
|
542 |
|
|
|
543 |
|
|
break;
|
544 |
|
|
|
545 |
|
|
case FORM_POST_ADD:
|
546 |
|
|
mov_insn = insert_move_insn_before (mem_insn.insn,
|
547 |
|
|
inc_insn.reg_res, inc_insn.reg0);
|
548 |
|
|
move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
|
549 |
|
|
|
550 |
|
|
/* Do not move anything to the mov insn because the instruction
|
551 |
|
|
pointer for the main iteration has not yet hit that. It is
|
552 |
|
|
still pointing to the mem insn. */
|
553 |
|
|
regno = REGNO (inc_insn.reg_res);
|
554 |
|
|
reg_next_def[regno] = mem_insn.insn;
|
555 |
|
|
reg_next_use[regno] = NULL;
|
556 |
|
|
|
557 |
|
|
regno = REGNO (inc_insn.reg0);
|
558 |
|
|
reg_next_use[regno] = mem_insn.insn;
|
559 |
|
|
if ((reg_next_use[regno] == reg_next_inc_use[regno])
|
560 |
|
|
|| (reg_next_inc_use[regno] == inc_insn.insn))
|
561 |
|
|
reg_next_inc_use[regno] = NULL;
|
562 |
|
|
df_recompute_luids (bb);
|
563 |
|
|
break;
|
564 |
|
|
|
565 |
|
|
case FORM_last:
|
566 |
|
|
default:
|
567 |
|
|
gcc_unreachable ();
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
if (!inc_insn.reg1_is_const)
|
571 |
|
|
{
|
572 |
|
|
regno = REGNO (inc_insn.reg1);
|
573 |
|
|
reg_next_use[regno] = mem_insn.insn;
|
574 |
|
|
if ((reg_next_use[regno] == reg_next_inc_use[regno])
|
575 |
|
|
|| (reg_next_inc_use[regno] == inc_insn.insn))
|
576 |
|
|
reg_next_inc_use[regno] = NULL;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
delete_insn (inc_insn.insn);
|
580 |
|
|
|
581 |
|
|
if (dump_file && mov_insn)
|
582 |
|
|
{
|
583 |
|
|
fprintf (dump_file, "inserting mov ");
|
584 |
|
|
dump_insn_slim (dump_file, mov_insn);
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
/* Record that this insn has an implicit side effect. */
|
588 |
|
|
add_reg_note (mem_insn.insn, REG_INC, inc_reg);
|
589 |
|
|
|
590 |
|
|
if (dump_file)
|
591 |
|
|
{
|
592 |
|
|
fprintf (dump_file, "****success ");
|
593 |
|
|
dump_insn_slim (dump_file, mem_insn.insn);
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
return true;
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
|
600 |
|
|
/* Try to combine the instruction in INC_INSN with the instruction in
|
601 |
|
|
MEM_INSN. First the form is determined using the DECISION_TABLE
|
602 |
|
|
and the results of parsing the INC_INSN and the MEM_INSN.
|
603 |
|
|
Assuming the form is ok, a prototype new address is built which is
|
604 |
|
|
passed to ATTEMPT_CHANGE for final processing. */
|
605 |
|
|
|
606 |
|
|
static bool
|
607 |
|
|
try_merge (void)
|
608 |
|
|
{
|
609 |
|
|
enum gen_form gen_form;
|
610 |
|
|
rtx mem = *mem_insn.mem_loc;
|
611 |
|
|
rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
|
612 |
|
|
inc_insn.reg_res : mem_insn.reg0;
|
613 |
|
|
|
614 |
|
|
/* The width of the mem being accessed. */
|
615 |
|
|
int size = GET_MODE_SIZE (GET_MODE (mem));
|
616 |
|
|
rtx last_insn = NULL;
|
617 |
|
|
enum machine_mode reg_mode = GET_MODE (inc_reg);
|
618 |
|
|
|
619 |
|
|
switch (inc_insn.form)
|
620 |
|
|
{
|
621 |
|
|
case FORM_PRE_ADD:
|
622 |
|
|
case FORM_PRE_INC:
|
623 |
|
|
last_insn = mem_insn.insn;
|
624 |
|
|
break;
|
625 |
|
|
case FORM_POST_INC:
|
626 |
|
|
case FORM_POST_ADD:
|
627 |
|
|
last_insn = inc_insn.insn;
|
628 |
|
|
break;
|
629 |
|
|
case FORM_last:
|
630 |
|
|
default:
|
631 |
|
|
gcc_unreachable ();
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
/* Cannot handle auto inc of the stack. */
|
635 |
|
|
if (inc_reg == stack_pointer_rtx)
|
636 |
|
|
{
|
637 |
|
|
if (dump_file)
|
638 |
|
|
fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
|
639 |
|
|
return false;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
/* Look to see if the inc register is dead after the memory
|
643 |
|
|
reference. If it is, do not do the combination. */
|
644 |
|
|
if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
|
645 |
|
|
{
|
646 |
|
|
if (dump_file)
|
647 |
|
|
fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
|
648 |
|
|
return false;
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
mem_insn.reg1_state = (mem_insn.reg1_is_const)
|
652 |
|
|
? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
|
653 |
|
|
inc_insn.reg1_state = (inc_insn.reg1_is_const)
|
654 |
|
|
? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
|
655 |
|
|
|
656 |
|
|
/* Now get the form that we are generating. */
|
657 |
|
|
gen_form = decision_table
|
658 |
|
|
[inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
|
659 |
|
|
|
660 |
|
|
if (dbg_cnt (auto_inc_dec) == false)
|
661 |
|
|
return false;
|
662 |
|
|
|
663 |
|
|
switch (gen_form)
|
664 |
|
|
{
|
665 |
|
|
default:
|
666 |
|
|
case NOTHING:
|
667 |
|
|
return false;
|
668 |
|
|
|
669 |
|
|
case SIMPLE_PRE_INC: /* ++size */
|
670 |
|
|
if (dump_file)
|
671 |
|
|
fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
|
672 |
|
|
return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
|
673 |
|
|
break;
|
674 |
|
|
|
675 |
|
|
case SIMPLE_POST_INC: /* size++ */
|
676 |
|
|
if (dump_file)
|
677 |
|
|
fprintf (dump_file, "trying SIMPLE_POST_INC\n");
|
678 |
|
|
return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
|
679 |
|
|
break;
|
680 |
|
|
|
681 |
|
|
case SIMPLE_PRE_DEC: /* --size */
|
682 |
|
|
if (dump_file)
|
683 |
|
|
fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
|
684 |
|
|
return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
|
685 |
|
|
break;
|
686 |
|
|
|
687 |
|
|
case SIMPLE_POST_DEC: /* size-- */
|
688 |
|
|
if (dump_file)
|
689 |
|
|
fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
|
690 |
|
|
return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
|
691 |
|
|
break;
|
692 |
|
|
|
693 |
|
|
case DISP_PRE: /* ++con */
|
694 |
|
|
if (dump_file)
|
695 |
|
|
fprintf (dump_file, "trying DISP_PRE\n");
|
696 |
|
|
return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
|
697 |
|
|
inc_reg,
|
698 |
|
|
gen_rtx_PLUS (reg_mode,
|
699 |
|
|
inc_reg,
|
700 |
|
|
inc_insn.reg1)),
|
701 |
|
|
inc_reg);
|
702 |
|
|
break;
|
703 |
|
|
|
704 |
|
|
case DISP_POST: /* con++ */
|
705 |
|
|
if (dump_file)
|
706 |
|
|
fprintf (dump_file, "trying POST_DISP\n");
|
707 |
|
|
return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
|
708 |
|
|
inc_reg,
|
709 |
|
|
gen_rtx_PLUS (reg_mode,
|
710 |
|
|
inc_reg,
|
711 |
|
|
inc_insn.reg1)),
|
712 |
|
|
inc_reg);
|
713 |
|
|
break;
|
714 |
|
|
|
715 |
|
|
case REG_PRE: /* ++reg */
|
716 |
|
|
if (dump_file)
|
717 |
|
|
fprintf (dump_file, "trying PRE_REG\n");
|
718 |
|
|
return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
|
719 |
|
|
inc_reg,
|
720 |
|
|
gen_rtx_PLUS (reg_mode,
|
721 |
|
|
inc_reg,
|
722 |
|
|
inc_insn.reg1)),
|
723 |
|
|
inc_reg);
|
724 |
|
|
break;
|
725 |
|
|
|
726 |
|
|
case REG_POST: /* reg++ */
|
727 |
|
|
if (dump_file)
|
728 |
|
|
fprintf (dump_file, "trying POST_REG\n");
|
729 |
|
|
return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
|
730 |
|
|
inc_reg,
|
731 |
|
|
gen_rtx_PLUS (reg_mode,
|
732 |
|
|
inc_reg,
|
733 |
|
|
inc_insn.reg1)),
|
734 |
|
|
inc_reg);
|
735 |
|
|
break;
|
736 |
|
|
}
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
/* Return the next insn that uses (if reg_next_use is passed in
|
740 |
|
|
NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
|
741 |
|
|
REGNO in BB. */
|
742 |
|
|
|
743 |
|
|
static rtx
|
744 |
|
|
get_next_ref (int regno, basic_block bb, rtx *next_array)
|
745 |
|
|
{
|
746 |
|
|
rtx insn = next_array[regno];
|
747 |
|
|
|
748 |
|
|
/* Lazy about cleaning out the next_arrays. */
|
749 |
|
|
if (insn && BLOCK_FOR_INSN (insn) != bb)
|
750 |
|
|
{
|
751 |
|
|
next_array[regno] = NULL;
|
752 |
|
|
insn = NULL;
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
return insn;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
|
759 |
|
|
/* Reverse the operands in a mem insn. */
|
760 |
|
|
|
761 |
|
|
static void
|
762 |
|
|
reverse_mem (void)
|
763 |
|
|
{
|
764 |
|
|
rtx tmp = mem_insn.reg1;
|
765 |
|
|
mem_insn.reg1 = mem_insn.reg0;
|
766 |
|
|
mem_insn.reg0 = tmp;
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
|
770 |
|
|
/* Reverse the operands in a inc insn. */
|
771 |
|
|
|
772 |
|
|
static void
|
773 |
|
|
reverse_inc (void)
|
774 |
|
|
{
|
775 |
|
|
rtx tmp = inc_insn.reg1;
|
776 |
|
|
inc_insn.reg1 = inc_insn.reg0;
|
777 |
|
|
inc_insn.reg0 = tmp;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
|
781 |
|
|
/* Return true if INSN is of a form "a = b op c" where a and b are
|
782 |
|
|
regs. op is + if c is a reg and +|- if c is a const. Fill in
|
783 |
|
|
INC_INSN with what is found.
|
784 |
|
|
|
785 |
|
|
This function is called in two contexts, if BEFORE_MEM is true,
|
786 |
|
|
this is called for each insn in the basic block. If BEFORE_MEM is
|
787 |
|
|
false, it is called for the instruction in the block that uses the
|
788 |
|
|
index register for some memory reference that is currently being
|
789 |
|
|
processed. */
|
790 |
|
|
|
791 |
|
|
static bool
|
792 |
|
|
parse_add_or_inc (rtx insn, bool before_mem)
|
793 |
|
|
{
|
794 |
|
|
rtx pat = single_set (insn);
|
795 |
|
|
if (!pat)
|
796 |
|
|
return false;
|
797 |
|
|
|
798 |
|
|
/* Result must be single reg. */
|
799 |
|
|
if (!REG_P (SET_DEST (pat)))
|
800 |
|
|
return false;
|
801 |
|
|
|
802 |
|
|
if ((GET_CODE (SET_SRC (pat)) != PLUS)
|
803 |
|
|
&& (GET_CODE (SET_SRC (pat)) != MINUS))
|
804 |
|
|
return false;
|
805 |
|
|
|
806 |
|
|
if (!REG_P (XEXP (SET_SRC (pat), 0)))
|
807 |
|
|
return false;
|
808 |
|
|
|
809 |
|
|
inc_insn.insn = insn;
|
810 |
|
|
inc_insn.pat = pat;
|
811 |
|
|
inc_insn.reg_res = SET_DEST (pat);
|
812 |
|
|
inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
|
813 |
|
|
if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
|
814 |
|
|
inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
|
815 |
|
|
else
|
816 |
|
|
inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
|
817 |
|
|
|
818 |
|
|
if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
|
819 |
|
|
{
|
820 |
|
|
/* Process a = b + c where c is a const. */
|
821 |
|
|
inc_insn.reg1_is_const = true;
|
822 |
|
|
if (GET_CODE (SET_SRC (pat)) == PLUS)
|
823 |
|
|
{
|
824 |
|
|
inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
|
825 |
|
|
inc_insn.reg1_val = INTVAL (inc_insn.reg1);
|
826 |
|
|
}
|
827 |
|
|
else
|
828 |
|
|
{
|
829 |
|
|
inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
|
830 |
|
|
inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
|
831 |
|
|
}
|
832 |
|
|
return true;
|
833 |
|
|
}
|
834 |
|
|
else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
|
835 |
|
|
&& (REG_P (XEXP (SET_SRC (pat), 1)))
|
836 |
|
|
&& GET_CODE (SET_SRC (pat)) == PLUS)
|
837 |
|
|
{
|
838 |
|
|
/* Process a = b + c where c is a reg. */
|
839 |
|
|
inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
|
840 |
|
|
inc_insn.reg1_is_const = false;
|
841 |
|
|
|
842 |
|
|
if (inc_insn.form == FORM_PRE_INC
|
843 |
|
|
|| inc_insn.form == FORM_POST_INC)
|
844 |
|
|
return true;
|
845 |
|
|
else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
|
846 |
|
|
{
|
847 |
|
|
/* Reverse the two operands and turn *_ADD into *_INC since
|
848 |
|
|
a = c + a. */
|
849 |
|
|
reverse_inc ();
|
850 |
|
|
inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
|
851 |
|
|
return true;
|
852 |
|
|
}
|
853 |
|
|
else
|
854 |
|
|
return true;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
return false;
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
|
861 |
|
|
/* A recursive function that checks all of the mem uses in
|
862 |
|
|
ADDRESS_OF_X to see if any single one of them is compatible with
|
863 |
|
|
what has been found in inc_insn.
|
864 |
|
|
|
865 |
|
|
-1 is returned for success. 0 is returned if nothing was found and
|
866 |
|
|
1 is returned for failure. */
|
867 |
|
|
|
868 |
|
|
static int
|
869 |
|
|
find_address (rtx *address_of_x)
|
870 |
|
|
{
|
871 |
|
|
rtx x = *address_of_x;
|
872 |
|
|
enum rtx_code code = GET_CODE (x);
|
873 |
|
|
const char *const fmt = GET_RTX_FORMAT (code);
|
874 |
|
|
int i;
|
875 |
|
|
int value = 0;
|
876 |
|
|
int tem;
|
877 |
|
|
|
878 |
|
|
if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
|
879 |
|
|
{
|
880 |
|
|
/* Match with *reg0. */
|
881 |
|
|
mem_insn.mem_loc = address_of_x;
|
882 |
|
|
mem_insn.reg0 = inc_insn.reg_res;
|
883 |
|
|
mem_insn.reg1_is_const = true;
|
884 |
|
|
mem_insn.reg1_val = 0;
|
885 |
|
|
mem_insn.reg1 = GEN_INT (0);
|
886 |
|
|
return -1;
|
887 |
|
|
}
|
888 |
|
|
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
|
889 |
|
|
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
|
890 |
|
|
{
|
891 |
|
|
rtx b = XEXP (XEXP (x, 0), 1);
|
892 |
|
|
mem_insn.mem_loc = address_of_x;
|
893 |
|
|
mem_insn.reg0 = inc_insn.reg_res;
|
894 |
|
|
mem_insn.reg1 = b;
|
895 |
|
|
mem_insn.reg1_is_const = inc_insn.reg1_is_const;
|
896 |
|
|
if (CONST_INT_P (b))
|
897 |
|
|
{
|
898 |
|
|
/* Match with *(reg0 + reg1) where reg1 is a const. */
|
899 |
|
|
HOST_WIDE_INT val = INTVAL (b);
|
900 |
|
|
if (inc_insn.reg1_is_const
|
901 |
|
|
&& (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
|
902 |
|
|
{
|
903 |
|
|
mem_insn.reg1_val = val;
|
904 |
|
|
return -1;
|
905 |
|
|
}
|
906 |
|
|
}
|
907 |
|
|
else if (!inc_insn.reg1_is_const
|
908 |
|
|
&& rtx_equal_p (inc_insn.reg1, b))
|
909 |
|
|
/* Match with *(reg0 + reg1). */
|
910 |
|
|
return -1;
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
|
914 |
|
|
{
|
915 |
|
|
/* If REG occurs inside a MEM used in a bit-field reference,
|
916 |
|
|
that is unacceptable. */
|
917 |
|
|
if (find_address (&XEXP (x, 0)))
|
918 |
|
|
return 1;
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
if (x == inc_insn.reg_res)
|
922 |
|
|
return 1;
|
923 |
|
|
|
924 |
|
|
/* Time for some deep diving. */
|
925 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
926 |
|
|
{
|
927 |
|
|
if (fmt[i] == 'e')
|
928 |
|
|
{
|
929 |
|
|
tem = find_address (&XEXP (x, i));
|
930 |
|
|
/* If this is the first use, let it go so the rest of the
|
931 |
|
|
insn can be checked. */
|
932 |
|
|
if (value == 0)
|
933 |
|
|
value = tem;
|
934 |
|
|
else if (tem != 0)
|
935 |
|
|
/* More than one match was found. */
|
936 |
|
|
return 1;
|
937 |
|
|
}
|
938 |
|
|
else if (fmt[i] == 'E')
|
939 |
|
|
{
|
940 |
|
|
int j;
|
941 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
942 |
|
|
{
|
943 |
|
|
tem = find_address (&XVECEXP (x, i, j));
|
944 |
|
|
/* If this is the first use, let it go so the rest of
|
945 |
|
|
the insn can be checked. */
|
946 |
|
|
if (value == 0)
|
947 |
|
|
value = tem;
|
948 |
|
|
else if (tem != 0)
|
949 |
|
|
/* More than one match was found. */
|
950 |
|
|
return 1;
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
}
|
954 |
|
|
return value;
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
/* Once a suitable mem reference has been found and the MEM_INSN
|
958 |
|
|
structure has been filled in, FIND_INC is called to see if there is
|
959 |
|
|
a suitable add or inc insn that follows the mem reference and
|
960 |
|
|
determine if it is suitable to merge.
|
961 |
|
|
|
962 |
|
|
In the case where the MEM_INSN has two registers in the reference,
|
963 |
|
|
this function may be called recursively. The first time looking
|
964 |
|
|
for an add of the first register, and if that fails, looking for an
|
965 |
|
|
add of the second register. The FIRST_TRY parameter is used to
|
966 |
|
|
only allow the parameters to be reversed once. */
|
967 |
|
|
|
968 |
|
|
static bool
|
969 |
|
|
find_inc (bool first_try)
|
970 |
|
|
{
|
971 |
|
|
rtx insn;
|
972 |
|
|
basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
|
973 |
|
|
rtx other_insn;
|
974 |
|
|
df_ref *def_rec;
|
975 |
|
|
|
976 |
|
|
/* Make sure this reg appears only once in this insn. */
|
977 |
|
|
if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
|
978 |
|
|
{
|
979 |
|
|
if (dump_file)
|
980 |
|
|
fprintf (dump_file, "mem count failure\n");
|
981 |
|
|
return false;
|
982 |
|
|
}
|
983 |
|
|
|
984 |
|
|
if (dump_file)
|
985 |
|
|
dump_mem_insn (dump_file);
|
986 |
|
|
|
987 |
|
|
/* Find the next use that is an inc. */
|
988 |
|
|
insn = get_next_ref (REGNO (mem_insn.reg0),
|
989 |
|
|
BLOCK_FOR_INSN (mem_insn.insn),
|
990 |
|
|
reg_next_inc_use);
|
991 |
|
|
if (!insn)
|
992 |
|
|
return false;
|
993 |
|
|
|
994 |
|
|
/* Even though we know the next use is an add or inc because it came
|
995 |
|
|
from the reg_next_inc_use, we must still reparse. */
|
996 |
|
|
if (!parse_add_or_inc (insn, false))
|
997 |
|
|
{
|
998 |
|
|
/* Next use was not an add. Look for one extra case. It could be
|
999 |
|
|
that we have:
|
1000 |
|
|
|
1001 |
|
|
*(a + b)
|
1002 |
|
|
...= a;
|
1003 |
|
|
...= b + a
|
1004 |
|
|
|
1005 |
|
|
if we reverse the operands in the mem ref we would
|
1006 |
|
|
find this. Only try it once though. */
|
1007 |
|
|
if (first_try && !mem_insn.reg1_is_const)
|
1008 |
|
|
{
|
1009 |
|
|
reverse_mem ();
|
1010 |
|
|
return find_inc (false);
|
1011 |
|
|
}
|
1012 |
|
|
else
|
1013 |
|
|
return false;
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
|
|
/* Need to assure that none of the operands of the inc instruction are
|
1017 |
|
|
assigned to by the mem insn. */
|
1018 |
|
|
for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
|
1019 |
|
|
{
|
1020 |
|
|
df_ref def = *def_rec;
|
1021 |
|
|
unsigned int regno = DF_REF_REGNO (def);
|
1022 |
|
|
if ((regno == REGNO (inc_insn.reg0))
|
1023 |
|
|
|| (regno == REGNO (inc_insn.reg_res)))
|
1024 |
|
|
{
|
1025 |
|
|
if (dump_file)
|
1026 |
|
|
fprintf (dump_file, "inc conflicts with store failure.\n");
|
1027 |
|
|
return false;
|
1028 |
|
|
}
|
1029 |
|
|
if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
|
1030 |
|
|
{
|
1031 |
|
|
if (dump_file)
|
1032 |
|
|
fprintf (dump_file, "inc conflicts with store failure.\n");
|
1033 |
|
|
return false;
|
1034 |
|
|
}
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
if (dump_file)
|
1038 |
|
|
dump_inc_insn (dump_file);
|
1039 |
|
|
|
1040 |
|
|
if (inc_insn.form == FORM_POST_ADD)
|
1041 |
|
|
{
|
1042 |
|
|
/* Make sure that there is no insn that assigns to inc_insn.res
|
1043 |
|
|
between the mem_insn and the inc_insn. */
|
1044 |
|
|
rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
|
1045 |
|
|
BLOCK_FOR_INSN (mem_insn.insn),
|
1046 |
|
|
reg_next_def);
|
1047 |
|
|
if (other_insn != inc_insn.insn)
|
1048 |
|
|
{
|
1049 |
|
|
if (dump_file)
|
1050 |
|
|
fprintf (dump_file,
|
1051 |
|
|
"result of add is assigned to between mem and inc insns.\n");
|
1052 |
|
|
return false;
|
1053 |
|
|
}
|
1054 |
|
|
|
1055 |
|
|
other_insn = get_next_ref (REGNO (inc_insn.reg_res),
|
1056 |
|
|
BLOCK_FOR_INSN (mem_insn.insn),
|
1057 |
|
|
reg_next_use);
|
1058 |
|
|
if (other_insn
|
1059 |
|
|
&& (other_insn != inc_insn.insn)
|
1060 |
|
|
&& (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
|
1061 |
|
|
{
|
1062 |
|
|
if (dump_file)
|
1063 |
|
|
fprintf (dump_file,
|
1064 |
|
|
"result of add is used between mem and inc insns.\n");
|
1065 |
|
|
return false;
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
/* For the post_add to work, the result_reg of the inc must not be
|
1069 |
|
|
used in the mem insn since this will become the new index
|
1070 |
|
|
register. */
|
1071 |
|
|
if (count_occurrences (PATTERN (mem_insn.insn), inc_insn.reg_res, 1) != 0)
|
1072 |
|
|
{
|
1073 |
|
|
if (dump_file)
|
1074 |
|
|
fprintf (dump_file, "base reg replacement failure.\n");
|
1075 |
|
|
return false;
|
1076 |
|
|
}
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
if (mem_insn.reg1_is_const)
|
1080 |
|
|
{
|
1081 |
|
|
if (mem_insn.reg1_val == 0)
|
1082 |
|
|
{
|
1083 |
|
|
if (!inc_insn.reg1_is_const)
|
1084 |
|
|
{
|
1085 |
|
|
/* The mem looks like *r0 and the rhs of the add has two
|
1086 |
|
|
registers. */
|
1087 |
|
|
int luid = DF_INSN_LUID (inc_insn.insn);
|
1088 |
|
|
if (inc_insn.form == FORM_POST_ADD)
|
1089 |
|
|
{
|
1090 |
|
|
/* The trick is that we are not going to increment r0,
|
1091 |
|
|
we are going to increment the result of the add insn.
|
1092 |
|
|
For this trick to be correct, the result reg of
|
1093 |
|
|
the inc must be a valid addressing reg. */
|
1094 |
|
|
addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
|
1095 |
|
|
if (GET_MODE (inc_insn.reg_res)
|
1096 |
|
|
!= targetm.addr_space.address_mode (as))
|
1097 |
|
|
{
|
1098 |
|
|
if (dump_file)
|
1099 |
|
|
fprintf (dump_file, "base reg mode failure.\n");
|
1100 |
|
|
return false;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* We also need to make sure that the next use of
|
1104 |
|
|
inc result is after the inc. */
|
1105 |
|
|
other_insn
|
1106 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
|
1107 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1108 |
|
|
return false;
|
1109 |
|
|
|
1110 |
|
|
if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
|
1111 |
|
|
reverse_inc ();
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
other_insn
|
1115 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
|
1116 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1117 |
|
|
return false;
|
1118 |
|
|
}
|
1119 |
|
|
}
|
1120 |
|
|
/* Both the inc/add and the mem have a constant. Need to check
|
1121 |
|
|
that the constants are ok. */
|
1122 |
|
|
else if ((mem_insn.reg1_val != inc_insn.reg1_val)
|
1123 |
|
|
&& (mem_insn.reg1_val != -inc_insn.reg1_val))
|
1124 |
|
|
return false;
|
1125 |
|
|
}
|
1126 |
|
|
else
|
1127 |
|
|
{
|
1128 |
|
|
/* The mem insn is of the form *(a + b) where a and b are both
|
1129 |
|
|
regs. It may be that in order to match the add or inc we
|
1130 |
|
|
need to treat it as if it was *(b + a). It may also be that
|
1131 |
|
|
the add is of the form a + c where c does not match b and
|
1132 |
|
|
then we just abandon this. */
|
1133 |
|
|
|
1134 |
|
|
int luid = DF_INSN_LUID (inc_insn.insn);
|
1135 |
|
|
rtx other_insn;
|
1136 |
|
|
|
1137 |
|
|
/* Make sure this reg appears only once in this insn. */
|
1138 |
|
|
if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
|
1139 |
|
|
return false;
|
1140 |
|
|
|
1141 |
|
|
if (inc_insn.form == FORM_POST_ADD)
|
1142 |
|
|
{
|
1143 |
|
|
/* For this trick to be correct, the result reg of the inc
|
1144 |
|
|
must be a valid addressing reg. */
|
1145 |
|
|
addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
|
1146 |
|
|
if (GET_MODE (inc_insn.reg_res)
|
1147 |
|
|
!= targetm.addr_space.address_mode (as))
|
1148 |
|
|
{
|
1149 |
|
|
if (dump_file)
|
1150 |
|
|
fprintf (dump_file, "base reg mode failure.\n");
|
1151 |
|
|
return false;
|
1152 |
|
|
}
|
1153 |
|
|
|
1154 |
|
|
if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
|
1155 |
|
|
{
|
1156 |
|
|
if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
|
1157 |
|
|
{
|
1158 |
|
|
/* See comment above on find_inc (false) call. */
|
1159 |
|
|
if (first_try)
|
1160 |
|
|
{
|
1161 |
|
|
reverse_mem ();
|
1162 |
|
|
return find_inc (false);
|
1163 |
|
|
}
|
1164 |
|
|
else
|
1165 |
|
|
return false;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/* Need to check that there are no assignments to b
|
1169 |
|
|
before the add insn. */
|
1170 |
|
|
other_insn
|
1171 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
|
1172 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1173 |
|
|
return false;
|
1174 |
|
|
/* All ok for the next step. */
|
1175 |
|
|
}
|
1176 |
|
|
else
|
1177 |
|
|
{
|
1178 |
|
|
/* We know that mem_insn.reg0 must equal inc_insn.reg1
|
1179 |
|
|
or else we would not have found the inc insn. */
|
1180 |
|
|
reverse_mem ();
|
1181 |
|
|
if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
|
1182 |
|
|
{
|
1183 |
|
|
/* See comment above on find_inc (false) call. */
|
1184 |
|
|
if (first_try)
|
1185 |
|
|
return find_inc (false);
|
1186 |
|
|
else
|
1187 |
|
|
return false;
|
1188 |
|
|
}
|
1189 |
|
|
/* To have gotten here know that.
|
1190 |
|
|
*(b + a)
|
1191 |
|
|
|
1192 |
|
|
... = (b + a)
|
1193 |
|
|
|
1194 |
|
|
We also know that the lhs of the inc is not b or a. We
|
1195 |
|
|
need to make sure that there are no assignments to b
|
1196 |
|
|
between the mem ref and the inc. */
|
1197 |
|
|
|
1198 |
|
|
other_insn
|
1199 |
|
|
= get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
|
1200 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1201 |
|
|
return false;
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
/* Need to check that the next use of the add result is later than
|
1205 |
|
|
add insn since this will be the reg incremented. */
|
1206 |
|
|
other_insn
|
1207 |
|
|
= get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
|
1208 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1209 |
|
|
return false;
|
1210 |
|
|
}
|
1211 |
|
|
else /* FORM_POST_INC. There is less to check here because we
|
1212 |
|
|
know that operands must line up. */
|
1213 |
|
|
{
|
1214 |
|
|
if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
|
1215 |
|
|
/* See comment above on find_inc (false) call. */
|
1216 |
|
|
{
|
1217 |
|
|
if (first_try)
|
1218 |
|
|
{
|
1219 |
|
|
reverse_mem ();
|
1220 |
|
|
return find_inc (false);
|
1221 |
|
|
}
|
1222 |
|
|
else
|
1223 |
|
|
return false;
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
/* To have gotten here know that.
|
1227 |
|
|
*(a + b)
|
1228 |
|
|
|
1229 |
|
|
... = (a + b)
|
1230 |
|
|
|
1231 |
|
|
We also know that the lhs of the inc is not b. We need to make
|
1232 |
|
|
sure that there are no assignments to b between the mem ref and
|
1233 |
|
|
the inc. */
|
1234 |
|
|
other_insn
|
1235 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
|
1236 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1237 |
|
|
return false;
|
1238 |
|
|
}
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
if (inc_insn.form == FORM_POST_INC)
|
1242 |
|
|
{
|
1243 |
|
|
other_insn
|
1244 |
|
|
= get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
|
1245 |
|
|
/* When we found inc_insn, we were looking for the
|
1246 |
|
|
next add or inc, not the next insn that used the
|
1247 |
|
|
reg. Because we are going to increment the reg
|
1248 |
|
|
in this form, we need to make sure that there
|
1249 |
|
|
were no intervening uses of reg. */
|
1250 |
|
|
if (inc_insn.insn != other_insn)
|
1251 |
|
|
return false;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
return try_merge ();
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
|
1258 |
|
|
/* A recursive function that walks ADDRESS_OF_X to find all of the mem
|
1259 |
|
|
uses in pat that could be used as an auto inc or dec. It then
|
1260 |
|
|
calls FIND_INC for each one. */
|
1261 |
|
|
|
1262 |
|
|
static bool
|
1263 |
|
|
find_mem (rtx *address_of_x)
|
1264 |
|
|
{
|
1265 |
|
|
rtx x = *address_of_x;
|
1266 |
|
|
enum rtx_code code = GET_CODE (x);
|
1267 |
|
|
const char *const fmt = GET_RTX_FORMAT (code);
|
1268 |
|
|
int i;
|
1269 |
|
|
|
1270 |
|
|
if (code == MEM && REG_P (XEXP (x, 0)))
|
1271 |
|
|
{
|
1272 |
|
|
/* Match with *reg0. */
|
1273 |
|
|
mem_insn.mem_loc = address_of_x;
|
1274 |
|
|
mem_insn.reg0 = XEXP (x, 0);
|
1275 |
|
|
mem_insn.reg1_is_const = true;
|
1276 |
|
|
mem_insn.reg1_val = 0;
|
1277 |
|
|
mem_insn.reg1 = GEN_INT (0);
|
1278 |
|
|
if (find_inc (true))
|
1279 |
|
|
return true;
|
1280 |
|
|
}
|
1281 |
|
|
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
|
1282 |
|
|
&& REG_P (XEXP (XEXP (x, 0), 0)))
|
1283 |
|
|
{
|
1284 |
|
|
rtx reg1 = XEXP (XEXP (x, 0), 1);
|
1285 |
|
|
mem_insn.mem_loc = address_of_x;
|
1286 |
|
|
mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
|
1287 |
|
|
mem_insn.reg1 = reg1;
|
1288 |
|
|
if (CONST_INT_P (reg1))
|
1289 |
|
|
{
|
1290 |
|
|
mem_insn.reg1_is_const = true;
|
1291 |
|
|
/* Match with *(reg0 + c) where c is a const. */
|
1292 |
|
|
mem_insn.reg1_val = INTVAL (reg1);
|
1293 |
|
|
if (find_inc (true))
|
1294 |
|
|
return true;
|
1295 |
|
|
}
|
1296 |
|
|
else if (REG_P (reg1))
|
1297 |
|
|
{
|
1298 |
|
|
/* Match with *(reg0 + reg1). */
|
1299 |
|
|
mem_insn.reg1_is_const = false;
|
1300 |
|
|
if (find_inc (true))
|
1301 |
|
|
return true;
|
1302 |
|
|
}
|
1303 |
|
|
}
|
1304 |
|
|
|
1305 |
|
|
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
|
1306 |
|
|
{
|
1307 |
|
|
/* If REG occurs inside a MEM used in a bit-field reference,
|
1308 |
|
|
that is unacceptable. */
|
1309 |
|
|
return false;
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
/* Time for some deep diving. */
|
1313 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1314 |
|
|
{
|
1315 |
|
|
if (fmt[i] == 'e')
|
1316 |
|
|
{
|
1317 |
|
|
if (find_mem (&XEXP (x, i)))
|
1318 |
|
|
return true;
|
1319 |
|
|
}
|
1320 |
|
|
else if (fmt[i] == 'E')
|
1321 |
|
|
{
|
1322 |
|
|
int j;
|
1323 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1324 |
|
|
if (find_mem (&XVECEXP (x, i, j)))
|
1325 |
|
|
return true;
|
1326 |
|
|
}
|
1327 |
|
|
}
|
1328 |
|
|
return false;
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
|
1332 |
|
|
/* Try to combine all incs and decs by constant values with memory
|
1333 |
|
|
references in BB. */
|
1334 |
|
|
|
1335 |
|
|
static void
|
1336 |
|
|
merge_in_block (int max_reg, basic_block bb)
|
1337 |
|
|
{
|
1338 |
|
|
rtx insn;
|
1339 |
|
|
rtx curr;
|
1340 |
|
|
int success_in_block = 0;
|
1341 |
|
|
|
1342 |
|
|
if (dump_file)
|
1343 |
|
|
fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
|
1344 |
|
|
|
1345 |
|
|
FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
|
1346 |
|
|
{
|
1347 |
|
|
unsigned int uid = INSN_UID (insn);
|
1348 |
|
|
bool insn_is_add_or_inc = true;
|
1349 |
|
|
|
1350 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
1351 |
|
|
continue;
|
1352 |
|
|
|
1353 |
|
|
/* This continue is deliberate. We do not want the uses of the
|
1354 |
|
|
jump put into reg_next_use because it is not considered safe to
|
1355 |
|
|
combine a preincrement with a jump. */
|
1356 |
|
|
if (JUMP_P (insn))
|
1357 |
|
|
continue;
|
1358 |
|
|
|
1359 |
|
|
if (dump_file)
|
1360 |
|
|
dump_insn_slim (dump_file, insn);
|
1361 |
|
|
|
1362 |
|
|
/* Does this instruction increment or decrement a register? */
|
1363 |
|
|
if (parse_add_or_inc (insn, true))
|
1364 |
|
|
{
|
1365 |
|
|
int regno = REGNO (inc_insn.reg_res);
|
1366 |
|
|
/* Cannot handle case where there are three separate regs
|
1367 |
|
|
before a mem ref. Too many moves would be needed to be
|
1368 |
|
|
profitable. */
|
1369 |
|
|
if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
|
1370 |
|
|
{
|
1371 |
|
|
mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
|
1372 |
|
|
if (mem_insn.insn)
|
1373 |
|
|
{
|
1374 |
|
|
bool ok = true;
|
1375 |
|
|
if (!inc_insn.reg1_is_const)
|
1376 |
|
|
{
|
1377 |
|
|
/* We are only here if we are going to try a
|
1378 |
|
|
HAVE_*_MODIFY_REG type transformation. c is a
|
1379 |
|
|
reg and we must sure that the path from the
|
1380 |
|
|
inc_insn to the mem_insn.insn is both def and use
|
1381 |
|
|
clear of c because the inc insn is going to move
|
1382 |
|
|
into the mem_insn.insn. */
|
1383 |
|
|
int luid = DF_INSN_LUID (mem_insn.insn);
|
1384 |
|
|
rtx other_insn
|
1385 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
|
1386 |
|
|
|
1387 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1388 |
|
|
ok = false;
|
1389 |
|
|
|
1390 |
|
|
other_insn
|
1391 |
|
|
= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
|
1392 |
|
|
|
1393 |
|
|
if (other_insn && luid > DF_INSN_LUID (other_insn))
|
1394 |
|
|
ok = false;
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
if (dump_file)
|
1398 |
|
|
dump_inc_insn (dump_file);
|
1399 |
|
|
|
1400 |
|
|
if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
|
1401 |
|
|
{
|
1402 |
|
|
if (dump_file)
|
1403 |
|
|
dump_mem_insn (dump_file);
|
1404 |
|
|
if (try_merge ())
|
1405 |
|
|
{
|
1406 |
|
|
success_in_block++;
|
1407 |
|
|
insn_is_add_or_inc = false;
|
1408 |
|
|
}
|
1409 |
|
|
}
|
1410 |
|
|
}
|
1411 |
|
|
}
|
1412 |
|
|
}
|
1413 |
|
|
else
|
1414 |
|
|
{
|
1415 |
|
|
insn_is_add_or_inc = false;
|
1416 |
|
|
mem_insn.insn = insn;
|
1417 |
|
|
if (find_mem (&PATTERN (insn)))
|
1418 |
|
|
success_in_block++;
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
/* If the inc insn was merged with a mem, the inc insn is gone
|
1422 |
|
|
and there is noting to update. */
|
1423 |
|
|
if (DF_INSN_UID_GET (uid))
|
1424 |
|
|
{
|
1425 |
|
|
df_ref *def_rec;
|
1426 |
|
|
df_ref *use_rec;
|
1427 |
|
|
/* Need to update next use. */
|
1428 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
1429 |
|
|
{
|
1430 |
|
|
df_ref def = *def_rec;
|
1431 |
|
|
reg_next_use[DF_REF_REGNO (def)] = NULL;
|
1432 |
|
|
reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
|
1433 |
|
|
reg_next_def[DF_REF_REGNO (def)] = insn;
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
1437 |
|
|
{
|
1438 |
|
|
df_ref use = *use_rec;
|
1439 |
|
|
reg_next_use[DF_REF_REGNO (use)] = insn;
|
1440 |
|
|
if (insn_is_add_or_inc)
|
1441 |
|
|
reg_next_inc_use[DF_REF_REGNO (use)] = insn;
|
1442 |
|
|
else
|
1443 |
|
|
reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
|
1444 |
|
|
}
|
1445 |
|
|
}
|
1446 |
|
|
else if (dump_file)
|
1447 |
|
|
fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
/* If we were successful, try again. There may have been several
|
1451 |
|
|
opportunities that were interleaved. This is rare but
|
1452 |
|
|
gcc.c-torture/compile/pr17273.c actually exhibits this. */
|
1453 |
|
|
if (success_in_block)
|
1454 |
|
|
{
|
1455 |
|
|
/* In this case, we must clear these vectors since the trick of
|
1456 |
|
|
testing if the stale insn in the block will not work. */
|
1457 |
|
|
memset (reg_next_use, 0, max_reg * sizeof(rtx));
|
1458 |
|
|
memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
|
1459 |
|
|
memset (reg_next_def, 0, max_reg * sizeof(rtx));
|
1460 |
|
|
df_recompute_luids (bb);
|
1461 |
|
|
merge_in_block (max_reg, bb);
|
1462 |
|
|
}
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
#endif
|
1466 |
|
|
|
1467 |
|
|
static unsigned int
|
1468 |
|
|
rest_of_handle_auto_inc_dec (void)
|
1469 |
|
|
{
|
1470 |
|
|
#ifdef AUTO_INC_DEC
|
1471 |
|
|
basic_block bb;
|
1472 |
|
|
int max_reg = max_reg_num ();
|
1473 |
|
|
|
1474 |
|
|
if (!initialized)
|
1475 |
|
|
init_decision_table ();
|
1476 |
|
|
|
1477 |
|
|
mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
|
1478 |
|
|
|
1479 |
|
|
df_note_add_problem ();
|
1480 |
|
|
df_analyze ();
|
1481 |
|
|
|
1482 |
|
|
reg_next_use = XCNEWVEC (rtx, max_reg);
|
1483 |
|
|
reg_next_inc_use = XCNEWVEC (rtx, max_reg);
|
1484 |
|
|
reg_next_def = XCNEWVEC (rtx, max_reg);
|
1485 |
|
|
FOR_EACH_BB (bb)
|
1486 |
|
|
merge_in_block (max_reg, bb);
|
1487 |
|
|
|
1488 |
|
|
free (reg_next_use);
|
1489 |
|
|
free (reg_next_inc_use);
|
1490 |
|
|
free (reg_next_def);
|
1491 |
|
|
|
1492 |
|
|
mem_tmp = NULL;
|
1493 |
|
|
#endif
|
1494 |
|
|
return 0;
|
1495 |
|
|
}
|
1496 |
|
|
|
1497 |
|
|
|
1498 |
|
|
/* Discover auto-inc auto-dec instructions. */
|
1499 |
|
|
|
1500 |
|
|
static bool
|
1501 |
|
|
gate_auto_inc_dec (void)
|
1502 |
|
|
{
|
1503 |
|
|
#ifdef AUTO_INC_DEC
|
1504 |
|
|
return (optimize > 0 && flag_auto_inc_dec);
|
1505 |
|
|
#else
|
1506 |
|
|
return false;
|
1507 |
|
|
#endif
|
1508 |
|
|
}
|
1509 |
|
|
|
1510 |
|
|
|
1511 |
|
|
struct rtl_opt_pass pass_inc_dec =
|
1512 |
|
|
{
|
1513 |
|
|
{
|
1514 |
|
|
RTL_PASS,
|
1515 |
|
|
"auto_inc_dec", /* name */
|
1516 |
|
|
gate_auto_inc_dec, /* gate */
|
1517 |
|
|
rest_of_handle_auto_inc_dec, /* execute */
|
1518 |
|
|
NULL, /* sub */
|
1519 |
|
|
NULL, /* next */
|
1520 |
|
|
0, /* static_pass_number */
|
1521 |
|
|
TV_AUTO_INC_DEC, /* tv_id */
|
1522 |
|
|
0, /* properties_required */
|
1523 |
|
|
0, /* properties_provided */
|
1524 |
|
|
0, /* properties_destroyed */
|
1525 |
|
|
0, /* todo_flags_start */
|
1526 |
|
|
TODO_dump_func |
|
1527 |
|
|
TODO_df_finish, /* todo_flags_finish */
|
1528 |
|
|
}
|
1529 |
|
|
};
|