1 |
280 |
jeremybenn |
/* Basic block reordering routines for the GNU compiler.
|
2 |
|
|
Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
15 |
|
|
License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* This (greedy) algorithm constructs traces in several rounds.
|
22 |
|
|
The construction starts from "seeds". The seed for the first round
|
23 |
|
|
is the entry point of function. When there are more than one seed
|
24 |
|
|
that one is selected first that has the lowest key in the heap
|
25 |
|
|
(see function bb_to_key). Then the algorithm repeatedly adds the most
|
26 |
|
|
probable successor to the end of a trace. Finally it connects the traces.
|
27 |
|
|
|
28 |
|
|
There are two parameters: Branch Threshold and Exec Threshold.
|
29 |
|
|
If the edge to a successor of the actual basic block is lower than
|
30 |
|
|
Branch Threshold or the frequency of the successor is lower than
|
31 |
|
|
Exec Threshold the successor will be the seed in one of the next rounds.
|
32 |
|
|
Each round has these parameters lower than the previous one.
|
33 |
|
|
The last round has to have these parameters set to zero
|
34 |
|
|
so that the remaining blocks are picked up.
|
35 |
|
|
|
36 |
|
|
The algorithm selects the most probable successor from all unvisited
|
37 |
|
|
successors and successors that have been added to this trace.
|
38 |
|
|
The other successors (that has not been "sent" to the next round) will be
|
39 |
|
|
other seeds for this round and the secondary traces will start in them.
|
40 |
|
|
If the successor has not been visited in this trace it is added to the trace
|
41 |
|
|
(however, there is some heuristic for simple branches).
|
42 |
|
|
If the successor has been visited in this trace the loop has been found.
|
43 |
|
|
If the loop has many iterations the loop is rotated so that the
|
44 |
|
|
source block of the most probable edge going out from the loop
|
45 |
|
|
is the last block of the trace.
|
46 |
|
|
If the loop has few iterations and there is no edge from the last block of
|
47 |
|
|
the loop going out from loop the loop header is duplicated.
|
48 |
|
|
Finally, the construction of the trace is terminated.
|
49 |
|
|
|
50 |
|
|
When connecting traces it first checks whether there is an edge from the
|
51 |
|
|
last block of one trace to the first block of another trace.
|
52 |
|
|
When there are still some unconnected traces it checks whether there exists
|
53 |
|
|
a basic block BB such that BB is a successor of the last bb of one trace
|
54 |
|
|
and BB is a predecessor of the first block of another trace. In this case,
|
55 |
|
|
BB is duplicated and the traces are connected through this duplicate.
|
56 |
|
|
The rest of traces are simply connected so there will be a jump to the
|
57 |
|
|
beginning of the rest of trace.
|
58 |
|
|
|
59 |
|
|
|
60 |
|
|
References:
|
61 |
|
|
|
62 |
|
|
"Software Trace Cache"
|
63 |
|
|
A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
|
64 |
|
|
http://citeseer.nj.nec.com/15361.html
|
65 |
|
|
|
66 |
|
|
*/
|
67 |
|
|
|
68 |
|
|
#include "config.h"
|
69 |
|
|
#include "system.h"
|
70 |
|
|
#include "coretypes.h"
|
71 |
|
|
#include "tm.h"
|
72 |
|
|
#include "rtl.h"
|
73 |
|
|
#include "regs.h"
|
74 |
|
|
#include "flags.h"
|
75 |
|
|
#include "timevar.h"
|
76 |
|
|
#include "output.h"
|
77 |
|
|
#include "cfglayout.h"
|
78 |
|
|
#include "fibheap.h"
|
79 |
|
|
#include "target.h"
|
80 |
|
|
#include "function.h"
|
81 |
|
|
#include "tm_p.h"
|
82 |
|
|
#include "obstack.h"
|
83 |
|
|
#include "expr.h"
|
84 |
|
|
#include "params.h"
|
85 |
|
|
#include "toplev.h"
|
86 |
|
|
#include "tree-pass.h"
|
87 |
|
|
#include "df.h"
|
88 |
|
|
|
89 |
|
|
/* The number of rounds. In most cases there will only be 4 rounds, but
|
90 |
|
|
when partitioning hot and cold basic blocks into separate sections of
|
91 |
|
|
the .o file there will be an extra round.*/
|
92 |
|
|
#define N_ROUNDS 5
|
93 |
|
|
|
94 |
|
|
/* Stubs in case we don't have a return insn.
|
95 |
|
|
We have to check at runtime too, not only compiletime. */
|
96 |
|
|
|
97 |
|
|
#ifndef HAVE_return
|
98 |
|
|
#define HAVE_return 0
|
99 |
|
|
#define gen_return() NULL_RTX
|
100 |
|
|
#endif
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
|
104 |
|
|
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
|
105 |
|
|
|
106 |
|
|
/* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
|
107 |
|
|
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
|
108 |
|
|
|
109 |
|
|
/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
|
110 |
|
|
block the edge destination is not duplicated while connecting traces. */
|
111 |
|
|
#define DUPLICATION_THRESHOLD 100
|
112 |
|
|
|
113 |
|
|
/* Length of unconditional jump instruction. */
|
114 |
|
|
static int uncond_jump_length;
|
115 |
|
|
|
116 |
|
|
/* Structure to hold needed information for each basic block. */
|
117 |
|
|
typedef struct bbro_basic_block_data_def
|
118 |
|
|
{
|
119 |
|
|
/* Which trace is the bb start of (-1 means it is not a start of a trace). */
|
120 |
|
|
int start_of_trace;
|
121 |
|
|
|
122 |
|
|
/* Which trace is the bb end of (-1 means it is not an end of a trace). */
|
123 |
|
|
int end_of_trace;
|
124 |
|
|
|
125 |
|
|
/* Which trace is the bb in? */
|
126 |
|
|
int in_trace;
|
127 |
|
|
|
128 |
|
|
/* Which heap is BB in (if any)? */
|
129 |
|
|
fibheap_t heap;
|
130 |
|
|
|
131 |
|
|
/* Which heap node is BB in (if any)? */
|
132 |
|
|
fibnode_t node;
|
133 |
|
|
} bbro_basic_block_data;
|
134 |
|
|
|
135 |
|
|
/* The current size of the following dynamic array. */
|
136 |
|
|
static int array_size;
|
137 |
|
|
|
138 |
|
|
/* The array which holds needed information for basic blocks. */
|
139 |
|
|
static bbro_basic_block_data *bbd;
|
140 |
|
|
|
141 |
|
|
/* To avoid frequent reallocation the size of arrays is greater than needed,
|
142 |
|
|
the number of elements is (not less than) 1.25 * size_wanted. */
|
143 |
|
|
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
|
144 |
|
|
|
145 |
|
|
/* Free the memory and set the pointer to NULL. */
|
146 |
|
|
#define FREE(P) (gcc_assert (P), free (P), P = 0)
|
147 |
|
|
|
148 |
|
|
/* Structure for holding information about a trace. */
|
149 |
|
|
struct trace
|
150 |
|
|
{
|
151 |
|
|
/* First and last basic block of the trace. */
|
152 |
|
|
basic_block first, last;
|
153 |
|
|
|
154 |
|
|
/* The round of the STC creation which this trace was found in. */
|
155 |
|
|
int round;
|
156 |
|
|
|
157 |
|
|
/* The length (i.e. the number of basic blocks) of the trace. */
|
158 |
|
|
int length;
|
159 |
|
|
};
|
160 |
|
|
|
161 |
|
|
/* Maximum frequency and count of one of the entry blocks. */
|
162 |
|
|
static int max_entry_frequency;
|
163 |
|
|
static gcov_type max_entry_count;
|
164 |
|
|
|
165 |
|
|
/* Local function prototypes. */
|
166 |
|
|
static void find_traces (int *, struct trace *);
|
167 |
|
|
static basic_block rotate_loop (edge, struct trace *, int);
|
168 |
|
|
static void mark_bb_visited (basic_block, int);
|
169 |
|
|
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
|
170 |
|
|
int, fibheap_t *, int);
|
171 |
|
|
static basic_block copy_bb (basic_block, edge, basic_block, int);
|
172 |
|
|
static fibheapkey_t bb_to_key (basic_block);
|
173 |
|
|
static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
|
174 |
|
|
static void connect_traces (int, struct trace *);
|
175 |
|
|
static bool copy_bb_p (const_basic_block, int);
|
176 |
|
|
static int get_uncond_jump_length (void);
|
177 |
|
|
static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
|
178 |
|
|
static void find_rarely_executed_basic_blocks_and_crossing_edges (edge **,
|
179 |
|
|
int *,
|
180 |
|
|
int *);
|
181 |
|
|
static void add_labels_and_missing_jumps (edge *, int);
|
182 |
|
|
static void add_reg_crossing_jump_notes (void);
|
183 |
|
|
static void fix_up_fall_thru_edges (void);
|
184 |
|
|
static void fix_edges_for_rarely_executed_code (edge *, int);
|
185 |
|
|
static void fix_crossing_conditional_branches (void);
|
186 |
|
|
static void fix_crossing_unconditional_branches (void);
|
187 |
|
|
|
188 |
|
|
/* Check to see if bb should be pushed into the next round of trace
|
189 |
|
|
collections or not. Reasons for pushing the block forward are 1).
|
190 |
|
|
If the block is cold, we are doing partitioning, and there will be
|
191 |
|
|
another round (cold partition blocks are not supposed to be
|
192 |
|
|
collected into traces until the very last round); or 2). There will
|
193 |
|
|
be another round, and the basic block is not "hot enough" for the
|
194 |
|
|
current round of trace collection. */
|
195 |
|
|
|
196 |
|
|
static bool
|
197 |
|
|
push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
|
198 |
|
|
int exec_th, gcov_type count_th)
|
199 |
|
|
{
|
200 |
|
|
bool there_exists_another_round;
|
201 |
|
|
bool block_not_hot_enough;
|
202 |
|
|
|
203 |
|
|
there_exists_another_round = round < number_of_rounds - 1;
|
204 |
|
|
|
205 |
|
|
block_not_hot_enough = (bb->frequency < exec_th
|
206 |
|
|
|| bb->count < count_th
|
207 |
|
|
|| probably_never_executed_bb_p (bb));
|
208 |
|
|
|
209 |
|
|
if (there_exists_another_round
|
210 |
|
|
&& block_not_hot_enough)
|
211 |
|
|
return true;
|
212 |
|
|
else
|
213 |
|
|
return false;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* Find the traces for Software Trace Cache. Chain each trace through
|
217 |
|
|
RBI()->next. Store the number of traces to N_TRACES and description of
|
218 |
|
|
traces to TRACES. */
|
219 |
|
|
|
220 |
|
|
static void
|
221 |
|
|
find_traces (int *n_traces, struct trace *traces)
|
222 |
|
|
{
|
223 |
|
|
int i;
|
224 |
|
|
int number_of_rounds;
|
225 |
|
|
edge e;
|
226 |
|
|
edge_iterator ei;
|
227 |
|
|
fibheap_t heap;
|
228 |
|
|
|
229 |
|
|
/* Add one extra round of trace collection when partitioning hot/cold
|
230 |
|
|
basic blocks into separate sections. The last round is for all the
|
231 |
|
|
cold blocks (and ONLY the cold blocks). */
|
232 |
|
|
|
233 |
|
|
number_of_rounds = N_ROUNDS - 1;
|
234 |
|
|
|
235 |
|
|
/* Insert entry points of function into heap. */
|
236 |
|
|
heap = fibheap_new ();
|
237 |
|
|
max_entry_frequency = 0;
|
238 |
|
|
max_entry_count = 0;
|
239 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
240 |
|
|
{
|
241 |
|
|
bbd[e->dest->index].heap = heap;
|
242 |
|
|
bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
|
243 |
|
|
e->dest);
|
244 |
|
|
if (e->dest->frequency > max_entry_frequency)
|
245 |
|
|
max_entry_frequency = e->dest->frequency;
|
246 |
|
|
if (e->dest->count > max_entry_count)
|
247 |
|
|
max_entry_count = e->dest->count;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
/* Find the traces. */
|
251 |
|
|
for (i = 0; i < number_of_rounds; i++)
|
252 |
|
|
{
|
253 |
|
|
gcov_type count_threshold;
|
254 |
|
|
|
255 |
|
|
if (dump_file)
|
256 |
|
|
fprintf (dump_file, "STC - round %d\n", i + 1);
|
257 |
|
|
|
258 |
|
|
if (max_entry_count < INT_MAX / 1000)
|
259 |
|
|
count_threshold = max_entry_count * exec_threshold[i] / 1000;
|
260 |
|
|
else
|
261 |
|
|
count_threshold = max_entry_count / 1000 * exec_threshold[i];
|
262 |
|
|
|
263 |
|
|
find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
|
264 |
|
|
max_entry_frequency * exec_threshold[i] / 1000,
|
265 |
|
|
count_threshold, traces, n_traces, i, &heap,
|
266 |
|
|
number_of_rounds);
|
267 |
|
|
}
|
268 |
|
|
fibheap_delete (heap);
|
269 |
|
|
|
270 |
|
|
if (dump_file)
|
271 |
|
|
{
|
272 |
|
|
for (i = 0; i < *n_traces; i++)
|
273 |
|
|
{
|
274 |
|
|
basic_block bb;
|
275 |
|
|
fprintf (dump_file, "Trace %d (round %d): ", i + 1,
|
276 |
|
|
traces[i].round + 1);
|
277 |
|
|
for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
|
278 |
|
|
fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
|
279 |
|
|
fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
|
280 |
|
|
}
|
281 |
|
|
fflush (dump_file);
|
282 |
|
|
}
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
|
286 |
|
|
(with sequential number TRACE_N). */
|
287 |
|
|
|
288 |
|
|
static basic_block
|
289 |
|
|
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
|
290 |
|
|
{
|
291 |
|
|
basic_block bb;
|
292 |
|
|
|
293 |
|
|
/* Information about the best end (end after rotation) of the loop. */
|
294 |
|
|
basic_block best_bb = NULL;
|
295 |
|
|
edge best_edge = NULL;
|
296 |
|
|
int best_freq = -1;
|
297 |
|
|
gcov_type best_count = -1;
|
298 |
|
|
/* The best edge is preferred when its destination is not visited yet
|
299 |
|
|
or is a start block of some trace. */
|
300 |
|
|
bool is_preferred = false;
|
301 |
|
|
|
302 |
|
|
/* Find the most frequent edge that goes out from current trace. */
|
303 |
|
|
bb = back_edge->dest;
|
304 |
|
|
do
|
305 |
|
|
{
|
306 |
|
|
edge e;
|
307 |
|
|
edge_iterator ei;
|
308 |
|
|
|
309 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
310 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
311 |
|
|
&& e->dest->il.rtl->visited != trace_n
|
312 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
313 |
|
|
&& !(e->flags & EDGE_COMPLEX))
|
314 |
|
|
{
|
315 |
|
|
if (is_preferred)
|
316 |
|
|
{
|
317 |
|
|
/* The best edge is preferred. */
|
318 |
|
|
if (!e->dest->il.rtl->visited
|
319 |
|
|
|| bbd[e->dest->index].start_of_trace >= 0)
|
320 |
|
|
{
|
321 |
|
|
/* The current edge E is also preferred. */
|
322 |
|
|
int freq = EDGE_FREQUENCY (e);
|
323 |
|
|
if (freq > best_freq || e->count > best_count)
|
324 |
|
|
{
|
325 |
|
|
best_freq = freq;
|
326 |
|
|
best_count = e->count;
|
327 |
|
|
best_edge = e;
|
328 |
|
|
best_bb = bb;
|
329 |
|
|
}
|
330 |
|
|
}
|
331 |
|
|
}
|
332 |
|
|
else
|
333 |
|
|
{
|
334 |
|
|
if (!e->dest->il.rtl->visited
|
335 |
|
|
|| bbd[e->dest->index].start_of_trace >= 0)
|
336 |
|
|
{
|
337 |
|
|
/* The current edge E is preferred. */
|
338 |
|
|
is_preferred = true;
|
339 |
|
|
best_freq = EDGE_FREQUENCY (e);
|
340 |
|
|
best_count = e->count;
|
341 |
|
|
best_edge = e;
|
342 |
|
|
best_bb = bb;
|
343 |
|
|
}
|
344 |
|
|
else
|
345 |
|
|
{
|
346 |
|
|
int freq = EDGE_FREQUENCY (e);
|
347 |
|
|
if (!best_edge || freq > best_freq || e->count > best_count)
|
348 |
|
|
{
|
349 |
|
|
best_freq = freq;
|
350 |
|
|
best_count = e->count;
|
351 |
|
|
best_edge = e;
|
352 |
|
|
best_bb = bb;
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
}
|
356 |
|
|
}
|
357 |
|
|
bb = (basic_block) bb->aux;
|
358 |
|
|
}
|
359 |
|
|
while (bb != back_edge->dest);
|
360 |
|
|
|
361 |
|
|
if (best_bb)
|
362 |
|
|
{
|
363 |
|
|
/* Rotate the loop so that the BEST_EDGE goes out from the last block of
|
364 |
|
|
the trace. */
|
365 |
|
|
if (back_edge->dest == trace->first)
|
366 |
|
|
{
|
367 |
|
|
trace->first = (basic_block) best_bb->aux;
|
368 |
|
|
}
|
369 |
|
|
else
|
370 |
|
|
{
|
371 |
|
|
basic_block prev_bb;
|
372 |
|
|
|
373 |
|
|
for (prev_bb = trace->first;
|
374 |
|
|
prev_bb->aux != back_edge->dest;
|
375 |
|
|
prev_bb = (basic_block) prev_bb->aux)
|
376 |
|
|
;
|
377 |
|
|
prev_bb->aux = best_bb->aux;
|
378 |
|
|
|
379 |
|
|
/* Try to get rid of uncond jump to cond jump. */
|
380 |
|
|
if (single_succ_p (prev_bb))
|
381 |
|
|
{
|
382 |
|
|
basic_block header = single_succ (prev_bb);
|
383 |
|
|
|
384 |
|
|
/* Duplicate HEADER if it is a small block containing cond jump
|
385 |
|
|
in the end. */
|
386 |
|
|
if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
|
387 |
|
|
&& !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
|
388 |
|
|
NULL_RTX))
|
389 |
|
|
copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
|
390 |
|
|
}
|
391 |
|
|
}
|
392 |
|
|
}
|
393 |
|
|
else
|
394 |
|
|
{
|
395 |
|
|
/* We have not found suitable loop tail so do no rotation. */
|
396 |
|
|
best_bb = back_edge->src;
|
397 |
|
|
}
|
398 |
|
|
best_bb->aux = NULL;
|
399 |
|
|
return best_bb;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/* This function marks BB that it was visited in trace number TRACE. */
|
403 |
|
|
|
404 |
|
|
static void
|
405 |
|
|
mark_bb_visited (basic_block bb, int trace)
|
406 |
|
|
{
|
407 |
|
|
bb->il.rtl->visited = trace;
|
408 |
|
|
if (bbd[bb->index].heap)
|
409 |
|
|
{
|
410 |
|
|
fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
|
411 |
|
|
bbd[bb->index].heap = NULL;
|
412 |
|
|
bbd[bb->index].node = NULL;
|
413 |
|
|
}
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
|
417 |
|
|
not include basic blocks their probability is lower than BRANCH_TH or their
|
418 |
|
|
frequency is lower than EXEC_TH into traces (or count is lower than
|
419 |
|
|
COUNT_TH). It stores the new traces into TRACES and modifies the number of
|
420 |
|
|
traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
|
421 |
|
|
expects that starting basic blocks are in *HEAP and at the end it deletes
|
422 |
|
|
*HEAP and stores starting points for the next round into new *HEAP. */
|
423 |
|
|
|
424 |
|
|
static void
|
425 |
|
|
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
|
426 |
|
|
struct trace *traces, int *n_traces, int round,
|
427 |
|
|
fibheap_t *heap, int number_of_rounds)
|
428 |
|
|
{
|
429 |
|
|
/* Heap for discarded basic blocks which are possible starting points for
|
430 |
|
|
the next round. */
|
431 |
|
|
fibheap_t new_heap = fibheap_new ();
|
432 |
|
|
|
433 |
|
|
while (!fibheap_empty (*heap))
|
434 |
|
|
{
|
435 |
|
|
basic_block bb;
|
436 |
|
|
struct trace *trace;
|
437 |
|
|
edge best_edge, e;
|
438 |
|
|
fibheapkey_t key;
|
439 |
|
|
edge_iterator ei;
|
440 |
|
|
|
441 |
|
|
bb = (basic_block) fibheap_extract_min (*heap);
|
442 |
|
|
bbd[bb->index].heap = NULL;
|
443 |
|
|
bbd[bb->index].node = NULL;
|
444 |
|
|
|
445 |
|
|
if (dump_file)
|
446 |
|
|
fprintf (dump_file, "Getting bb %d\n", bb->index);
|
447 |
|
|
|
448 |
|
|
/* If the BB's frequency is too low send BB to the next round. When
|
449 |
|
|
partitioning hot/cold blocks into separate sections, make sure all
|
450 |
|
|
the cold blocks (and ONLY the cold blocks) go into the (extra) final
|
451 |
|
|
round. */
|
452 |
|
|
|
453 |
|
|
if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
|
454 |
|
|
count_th))
|
455 |
|
|
{
|
456 |
|
|
int key = bb_to_key (bb);
|
457 |
|
|
bbd[bb->index].heap = new_heap;
|
458 |
|
|
bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
|
459 |
|
|
|
460 |
|
|
if (dump_file)
|
461 |
|
|
fprintf (dump_file,
|
462 |
|
|
" Possible start point of next round: %d (key: %d)\n",
|
463 |
|
|
bb->index, key);
|
464 |
|
|
continue;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
trace = traces + *n_traces;
|
468 |
|
|
trace->first = bb;
|
469 |
|
|
trace->round = round;
|
470 |
|
|
trace->length = 0;
|
471 |
|
|
bbd[bb->index].in_trace = *n_traces;
|
472 |
|
|
(*n_traces)++;
|
473 |
|
|
|
474 |
|
|
do
|
475 |
|
|
{
|
476 |
|
|
int prob, freq;
|
477 |
|
|
bool ends_in_call;
|
478 |
|
|
|
479 |
|
|
/* The probability and frequency of the best edge. */
|
480 |
|
|
int best_prob = INT_MIN / 2;
|
481 |
|
|
int best_freq = INT_MIN / 2;
|
482 |
|
|
|
483 |
|
|
best_edge = NULL;
|
484 |
|
|
mark_bb_visited (bb, *n_traces);
|
485 |
|
|
trace->length++;
|
486 |
|
|
|
487 |
|
|
if (dump_file)
|
488 |
|
|
fprintf (dump_file, "Basic block %d was visited in trace %d\n",
|
489 |
|
|
bb->index, *n_traces - 1);
|
490 |
|
|
|
491 |
|
|
ends_in_call = block_ends_with_call_p (bb);
|
492 |
|
|
|
493 |
|
|
/* Select the successor that will be placed after BB. */
|
494 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
495 |
|
|
{
|
496 |
|
|
gcc_assert (!(e->flags & EDGE_FAKE));
|
497 |
|
|
|
498 |
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
499 |
|
|
continue;
|
500 |
|
|
|
501 |
|
|
if (e->dest->il.rtl->visited
|
502 |
|
|
&& e->dest->il.rtl->visited != *n_traces)
|
503 |
|
|
continue;
|
504 |
|
|
|
505 |
|
|
if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
|
506 |
|
|
continue;
|
507 |
|
|
|
508 |
|
|
prob = e->probability;
|
509 |
|
|
freq = e->dest->frequency;
|
510 |
|
|
|
511 |
|
|
/* The only sensible preference for a call instruction is the
|
512 |
|
|
fallthru edge. Don't bother selecting anything else. */
|
513 |
|
|
if (ends_in_call)
|
514 |
|
|
{
|
515 |
|
|
if (e->flags & EDGE_CAN_FALLTHRU)
|
516 |
|
|
{
|
517 |
|
|
best_edge = e;
|
518 |
|
|
best_prob = prob;
|
519 |
|
|
best_freq = freq;
|
520 |
|
|
}
|
521 |
|
|
continue;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
/* Edge that cannot be fallthru or improbable or infrequent
|
525 |
|
|
successor (i.e. it is unsuitable successor). */
|
526 |
|
|
if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
|
527 |
|
|
|| prob < branch_th || EDGE_FREQUENCY (e) < exec_th
|
528 |
|
|
|| e->count < count_th)
|
529 |
|
|
continue;
|
530 |
|
|
|
531 |
|
|
/* If partitioning hot/cold basic blocks, don't consider edges
|
532 |
|
|
that cross section boundaries. */
|
533 |
|
|
|
534 |
|
|
if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
|
535 |
|
|
best_edge))
|
536 |
|
|
{
|
537 |
|
|
best_edge = e;
|
538 |
|
|
best_prob = prob;
|
539 |
|
|
best_freq = freq;
|
540 |
|
|
}
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
/* If the best destination has multiple predecessors, and can be
|
544 |
|
|
duplicated cheaper than a jump, don't allow it to be added
|
545 |
|
|
to a trace. We'll duplicate it when connecting traces. */
|
546 |
|
|
if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
|
547 |
|
|
&& copy_bb_p (best_edge->dest, 0))
|
548 |
|
|
best_edge = NULL;
|
549 |
|
|
|
550 |
|
|
/* Add all non-selected successors to the heaps. */
|
551 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
552 |
|
|
{
|
553 |
|
|
if (e == best_edge
|
554 |
|
|
|| e->dest == EXIT_BLOCK_PTR
|
555 |
|
|
|| e->dest->il.rtl->visited)
|
556 |
|
|
continue;
|
557 |
|
|
|
558 |
|
|
key = bb_to_key (e->dest);
|
559 |
|
|
|
560 |
|
|
if (bbd[e->dest->index].heap)
|
561 |
|
|
{
|
562 |
|
|
/* E->DEST is already in some heap. */
|
563 |
|
|
if (key != bbd[e->dest->index].node->key)
|
564 |
|
|
{
|
565 |
|
|
if (dump_file)
|
566 |
|
|
{
|
567 |
|
|
fprintf (dump_file,
|
568 |
|
|
"Changing key for bb %d from %ld to %ld.\n",
|
569 |
|
|
e->dest->index,
|
570 |
|
|
(long) bbd[e->dest->index].node->key,
|
571 |
|
|
key);
|
572 |
|
|
}
|
573 |
|
|
fibheap_replace_key (bbd[e->dest->index].heap,
|
574 |
|
|
bbd[e->dest->index].node, key);
|
575 |
|
|
}
|
576 |
|
|
}
|
577 |
|
|
else
|
578 |
|
|
{
|
579 |
|
|
fibheap_t which_heap = *heap;
|
580 |
|
|
|
581 |
|
|
prob = e->probability;
|
582 |
|
|
freq = EDGE_FREQUENCY (e);
|
583 |
|
|
|
584 |
|
|
if (!(e->flags & EDGE_CAN_FALLTHRU)
|
585 |
|
|
|| (e->flags & EDGE_COMPLEX)
|
586 |
|
|
|| prob < branch_th || freq < exec_th
|
587 |
|
|
|| e->count < count_th)
|
588 |
|
|
{
|
589 |
|
|
/* When partitioning hot/cold basic blocks, make sure
|
590 |
|
|
the cold blocks (and only the cold blocks) all get
|
591 |
|
|
pushed to the last round of trace collection. */
|
592 |
|
|
|
593 |
|
|
if (push_to_next_round_p (e->dest, round,
|
594 |
|
|
number_of_rounds,
|
595 |
|
|
exec_th, count_th))
|
596 |
|
|
which_heap = new_heap;
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
bbd[e->dest->index].heap = which_heap;
|
600 |
|
|
bbd[e->dest->index].node = fibheap_insert (which_heap,
|
601 |
|
|
key, e->dest);
|
602 |
|
|
|
603 |
|
|
if (dump_file)
|
604 |
|
|
{
|
605 |
|
|
fprintf (dump_file,
|
606 |
|
|
" Possible start of %s round: %d (key: %ld)\n",
|
607 |
|
|
(which_heap == new_heap) ? "next" : "this",
|
608 |
|
|
e->dest->index, (long) key);
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
}
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
if (best_edge) /* Suitable successor was found. */
|
615 |
|
|
{
|
616 |
|
|
if (best_edge->dest->il.rtl->visited == *n_traces)
|
617 |
|
|
{
|
618 |
|
|
/* We do nothing with one basic block loops. */
|
619 |
|
|
if (best_edge->dest != bb)
|
620 |
|
|
{
|
621 |
|
|
if (EDGE_FREQUENCY (best_edge)
|
622 |
|
|
> 4 * best_edge->dest->frequency / 5)
|
623 |
|
|
{
|
624 |
|
|
/* The loop has at least 4 iterations. If the loop
|
625 |
|
|
header is not the first block of the function
|
626 |
|
|
we can rotate the loop. */
|
627 |
|
|
|
628 |
|
|
if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
|
629 |
|
|
{
|
630 |
|
|
if (dump_file)
|
631 |
|
|
{
|
632 |
|
|
fprintf (dump_file,
|
633 |
|
|
"Rotating loop %d - %d\n",
|
634 |
|
|
best_edge->dest->index, bb->index);
|
635 |
|
|
}
|
636 |
|
|
bb->aux = best_edge->dest;
|
637 |
|
|
bbd[best_edge->dest->index].in_trace =
|
638 |
|
|
(*n_traces) - 1;
|
639 |
|
|
bb = rotate_loop (best_edge, trace, *n_traces);
|
640 |
|
|
}
|
641 |
|
|
}
|
642 |
|
|
else
|
643 |
|
|
{
|
644 |
|
|
/* The loop has less than 4 iterations. */
|
645 |
|
|
|
646 |
|
|
if (single_succ_p (bb)
|
647 |
|
|
&& copy_bb_p (best_edge->dest,
|
648 |
|
|
optimize_edge_for_speed_p (best_edge)))
|
649 |
|
|
{
|
650 |
|
|
bb = copy_bb (best_edge->dest, best_edge, bb,
|
651 |
|
|
*n_traces);
|
652 |
|
|
trace->length++;
|
653 |
|
|
}
|
654 |
|
|
}
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
/* Terminate the trace. */
|
658 |
|
|
break;
|
659 |
|
|
}
|
660 |
|
|
else
|
661 |
|
|
{
|
662 |
|
|
/* Check for a situation
|
663 |
|
|
|
664 |
|
|
A
|
665 |
|
|
/|
|
666 |
|
|
B |
|
667 |
|
|
\|
|
668 |
|
|
C
|
669 |
|
|
|
670 |
|
|
where
|
671 |
|
|
EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
|
672 |
|
|
>= EDGE_FREQUENCY (AC).
|
673 |
|
|
(i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
|
674 |
|
|
Best ordering is then A B C.
|
675 |
|
|
|
676 |
|
|
This situation is created for example by:
|
677 |
|
|
|
678 |
|
|
if (A) B;
|
679 |
|
|
C;
|
680 |
|
|
|
681 |
|
|
*/
|
682 |
|
|
|
683 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
684 |
|
|
if (e != best_edge
|
685 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
686 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
687 |
|
|
&& !e->dest->il.rtl->visited
|
688 |
|
|
&& single_pred_p (e->dest)
|
689 |
|
|
&& !(e->flags & EDGE_CROSSING)
|
690 |
|
|
&& single_succ_p (e->dest)
|
691 |
|
|
&& (single_succ_edge (e->dest)->flags
|
692 |
|
|
& EDGE_CAN_FALLTHRU)
|
693 |
|
|
&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
|
694 |
|
|
&& single_succ (e->dest) == best_edge->dest
|
695 |
|
|
&& 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
|
696 |
|
|
{
|
697 |
|
|
best_edge = e;
|
698 |
|
|
if (dump_file)
|
699 |
|
|
fprintf (dump_file, "Selecting BB %d\n",
|
700 |
|
|
best_edge->dest->index);
|
701 |
|
|
break;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
bb->aux = best_edge->dest;
|
705 |
|
|
bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
|
706 |
|
|
bb = best_edge->dest;
|
707 |
|
|
}
|
708 |
|
|
}
|
709 |
|
|
}
|
710 |
|
|
while (best_edge);
|
711 |
|
|
trace->last = bb;
|
712 |
|
|
bbd[trace->first->index].start_of_trace = *n_traces - 1;
|
713 |
|
|
bbd[trace->last->index].end_of_trace = *n_traces - 1;
|
714 |
|
|
|
715 |
|
|
/* The trace is terminated so we have to recount the keys in heap
|
716 |
|
|
(some block can have a lower key because now one of its predecessors
|
717 |
|
|
is an end of the trace). */
|
718 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
719 |
|
|
{
|
720 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
721 |
|
|
|| e->dest->il.rtl->visited)
|
722 |
|
|
continue;
|
723 |
|
|
|
724 |
|
|
if (bbd[e->dest->index].heap)
|
725 |
|
|
{
|
726 |
|
|
key = bb_to_key (e->dest);
|
727 |
|
|
if (key != bbd[e->dest->index].node->key)
|
728 |
|
|
{
|
729 |
|
|
if (dump_file)
|
730 |
|
|
{
|
731 |
|
|
fprintf (dump_file,
|
732 |
|
|
"Changing key for bb %d from %ld to %ld.\n",
|
733 |
|
|
e->dest->index,
|
734 |
|
|
(long) bbd[e->dest->index].node->key, key);
|
735 |
|
|
}
|
736 |
|
|
fibheap_replace_key (bbd[e->dest->index].heap,
|
737 |
|
|
bbd[e->dest->index].node,
|
738 |
|
|
key);
|
739 |
|
|
}
|
740 |
|
|
}
|
741 |
|
|
}
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
fibheap_delete (*heap);
|
745 |
|
|
|
746 |
|
|
/* "Return" the new heap. */
|
747 |
|
|
*heap = new_heap;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
|
751 |
|
|
it to trace after BB, mark OLD_BB visited and update pass' data structures
|
752 |
|
|
(TRACE is a number of trace which OLD_BB is duplicated to). */
|
753 |
|
|
|
754 |
|
|
static basic_block
|
755 |
|
|
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
|
756 |
|
|
{
|
757 |
|
|
basic_block new_bb;
|
758 |
|
|
|
759 |
|
|
new_bb = duplicate_block (old_bb, e, bb);
|
760 |
|
|
BB_COPY_PARTITION (new_bb, old_bb);
|
761 |
|
|
|
762 |
|
|
gcc_assert (e->dest == new_bb);
|
763 |
|
|
gcc_assert (!e->dest->il.rtl->visited);
|
764 |
|
|
|
765 |
|
|
if (dump_file)
|
766 |
|
|
fprintf (dump_file,
|
767 |
|
|
"Duplicated bb %d (created bb %d)\n",
|
768 |
|
|
old_bb->index, new_bb->index);
|
769 |
|
|
new_bb->il.rtl->visited = trace;
|
770 |
|
|
new_bb->aux = bb->aux;
|
771 |
|
|
bb->aux = new_bb;
|
772 |
|
|
|
773 |
|
|
if (new_bb->index >= array_size || last_basic_block > array_size)
|
774 |
|
|
{
|
775 |
|
|
int i;
|
776 |
|
|
int new_size;
|
777 |
|
|
|
778 |
|
|
new_size = MAX (last_basic_block, new_bb->index + 1);
|
779 |
|
|
new_size = GET_ARRAY_SIZE (new_size);
|
780 |
|
|
bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
|
781 |
|
|
for (i = array_size; i < new_size; i++)
|
782 |
|
|
{
|
783 |
|
|
bbd[i].start_of_trace = -1;
|
784 |
|
|
bbd[i].in_trace = -1;
|
785 |
|
|
bbd[i].end_of_trace = -1;
|
786 |
|
|
bbd[i].heap = NULL;
|
787 |
|
|
bbd[i].node = NULL;
|
788 |
|
|
}
|
789 |
|
|
array_size = new_size;
|
790 |
|
|
|
791 |
|
|
if (dump_file)
|
792 |
|
|
{
|
793 |
|
|
fprintf (dump_file,
|
794 |
|
|
"Growing the dynamic array to %d elements.\n",
|
795 |
|
|
array_size);
|
796 |
|
|
}
|
797 |
|
|
}
|
798 |
|
|
|
799 |
|
|
bbd[new_bb->index].in_trace = trace;
|
800 |
|
|
|
801 |
|
|
return new_bb;
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
/* Compute and return the key (for the heap) of the basic block BB. */
|
805 |
|
|
|
806 |
|
|
static fibheapkey_t
|
807 |
|
|
bb_to_key (basic_block bb)
|
808 |
|
|
{
|
809 |
|
|
edge e;
|
810 |
|
|
edge_iterator ei;
|
811 |
|
|
int priority = 0;
|
812 |
|
|
|
813 |
|
|
/* Do not start in probably never executed blocks. */
|
814 |
|
|
|
815 |
|
|
if (BB_PARTITION (bb) == BB_COLD_PARTITION
|
816 |
|
|
|| probably_never_executed_bb_p (bb))
|
817 |
|
|
return BB_FREQ_MAX;
|
818 |
|
|
|
819 |
|
|
/* Prefer blocks whose predecessor is an end of some trace
|
820 |
|
|
or whose predecessor edge is EDGE_DFS_BACK. */
|
821 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
822 |
|
|
{
|
823 |
|
|
if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
|
824 |
|
|
|| (e->flags & EDGE_DFS_BACK))
|
825 |
|
|
{
|
826 |
|
|
int edge_freq = EDGE_FREQUENCY (e);
|
827 |
|
|
|
828 |
|
|
if (edge_freq > priority)
|
829 |
|
|
priority = edge_freq;
|
830 |
|
|
}
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
if (priority)
|
834 |
|
|
/* The block with priority should have significantly lower key. */
|
835 |
|
|
return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
|
836 |
|
|
return -bb->frequency;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
/* Return true when the edge E from basic block BB is better than the temporary
|
840 |
|
|
best edge (details are in function). The probability of edge E is PROB. The
|
841 |
|
|
frequency of the successor is FREQ. The current best probability is
|
842 |
|
|
BEST_PROB, the best frequency is BEST_FREQ.
|
843 |
|
|
The edge is considered to be equivalent when PROB does not differ much from
|
844 |
|
|
BEST_PROB; similarly for frequency. */
|
845 |
|
|
|
846 |
|
|
static bool
|
847 |
|
|
better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
|
848 |
|
|
int best_freq, const_edge cur_best_edge)
|
849 |
|
|
{
|
850 |
|
|
bool is_better_edge;
|
851 |
|
|
|
852 |
|
|
/* The BEST_* values do not have to be best, but can be a bit smaller than
|
853 |
|
|
maximum values. */
|
854 |
|
|
int diff_prob = best_prob / 10;
|
855 |
|
|
int diff_freq = best_freq / 10;
|
856 |
|
|
|
857 |
|
|
if (prob > best_prob + diff_prob)
|
858 |
|
|
/* The edge has higher probability than the temporary best edge. */
|
859 |
|
|
is_better_edge = true;
|
860 |
|
|
else if (prob < best_prob - diff_prob)
|
861 |
|
|
/* The edge has lower probability than the temporary best edge. */
|
862 |
|
|
is_better_edge = false;
|
863 |
|
|
else if (freq < best_freq - diff_freq)
|
864 |
|
|
/* The edge and the temporary best edge have almost equivalent
|
865 |
|
|
probabilities. The higher frequency of a successor now means
|
866 |
|
|
that there is another edge going into that successor.
|
867 |
|
|
This successor has lower frequency so it is better. */
|
868 |
|
|
is_better_edge = true;
|
869 |
|
|
else if (freq > best_freq + diff_freq)
|
870 |
|
|
/* This successor has higher frequency so it is worse. */
|
871 |
|
|
is_better_edge = false;
|
872 |
|
|
else if (e->dest->prev_bb == bb)
|
873 |
|
|
/* The edges have equivalent probabilities and the successors
|
874 |
|
|
have equivalent frequencies. Select the previous successor. */
|
875 |
|
|
is_better_edge = true;
|
876 |
|
|
else
|
877 |
|
|
is_better_edge = false;
|
878 |
|
|
|
879 |
|
|
/* If we are doing hot/cold partitioning, make sure that we always favor
|
880 |
|
|
non-crossing edges over crossing edges. */
|
881 |
|
|
|
882 |
|
|
if (!is_better_edge
|
883 |
|
|
&& flag_reorder_blocks_and_partition
|
884 |
|
|
&& cur_best_edge
|
885 |
|
|
&& (cur_best_edge->flags & EDGE_CROSSING)
|
886 |
|
|
&& !(e->flags & EDGE_CROSSING))
|
887 |
|
|
is_better_edge = true;
|
888 |
|
|
|
889 |
|
|
return is_better_edge;
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
/* Connect traces in array TRACES, N_TRACES is the count of traces. */
|
893 |
|
|
|
894 |
|
|
static void
|
895 |
|
|
connect_traces (int n_traces, struct trace *traces)
|
896 |
|
|
{
|
897 |
|
|
int i;
|
898 |
|
|
bool *connected;
|
899 |
|
|
bool two_passes;
|
900 |
|
|
int last_trace;
|
901 |
|
|
int current_pass;
|
902 |
|
|
int current_partition;
|
903 |
|
|
int freq_threshold;
|
904 |
|
|
gcov_type count_threshold;
|
905 |
|
|
|
906 |
|
|
freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
|
907 |
|
|
if (max_entry_count < INT_MAX / 1000)
|
908 |
|
|
count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
|
909 |
|
|
else
|
910 |
|
|
count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
|
911 |
|
|
|
912 |
|
|
connected = XCNEWVEC (bool, n_traces);
|
913 |
|
|
last_trace = -1;
|
914 |
|
|
current_pass = 1;
|
915 |
|
|
current_partition = BB_PARTITION (traces[0].first);
|
916 |
|
|
two_passes = false;
|
917 |
|
|
|
918 |
|
|
if (flag_reorder_blocks_and_partition)
|
919 |
|
|
for (i = 0; i < n_traces && !two_passes; i++)
|
920 |
|
|
if (BB_PARTITION (traces[0].first)
|
921 |
|
|
!= BB_PARTITION (traces[i].first))
|
922 |
|
|
two_passes = true;
|
923 |
|
|
|
924 |
|
|
for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
|
925 |
|
|
{
|
926 |
|
|
int t = i;
|
927 |
|
|
int t2;
|
928 |
|
|
edge e, best;
|
929 |
|
|
int best_len;
|
930 |
|
|
|
931 |
|
|
if (i >= n_traces)
|
932 |
|
|
{
|
933 |
|
|
gcc_assert (two_passes && current_pass == 1);
|
934 |
|
|
i = 0;
|
935 |
|
|
t = i;
|
936 |
|
|
current_pass = 2;
|
937 |
|
|
if (current_partition == BB_HOT_PARTITION)
|
938 |
|
|
current_partition = BB_COLD_PARTITION;
|
939 |
|
|
else
|
940 |
|
|
current_partition = BB_HOT_PARTITION;
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
if (connected[t])
|
944 |
|
|
continue;
|
945 |
|
|
|
946 |
|
|
if (two_passes
|
947 |
|
|
&& BB_PARTITION (traces[t].first) != current_partition)
|
948 |
|
|
continue;
|
949 |
|
|
|
950 |
|
|
connected[t] = true;
|
951 |
|
|
|
952 |
|
|
/* Find the predecessor traces. */
|
953 |
|
|
for (t2 = t; t2 > 0;)
|
954 |
|
|
{
|
955 |
|
|
edge_iterator ei;
|
956 |
|
|
best = NULL;
|
957 |
|
|
best_len = 0;
|
958 |
|
|
FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
|
959 |
|
|
{
|
960 |
|
|
int si = e->src->index;
|
961 |
|
|
|
962 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
963 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
964 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
965 |
|
|
&& bbd[si].end_of_trace >= 0
|
966 |
|
|
&& !connected[bbd[si].end_of_trace]
|
967 |
|
|
&& (BB_PARTITION (e->src) == current_partition)
|
968 |
|
|
&& (!best
|
969 |
|
|
|| e->probability > best->probability
|
970 |
|
|
|| (e->probability == best->probability
|
971 |
|
|
&& traces[bbd[si].end_of_trace].length > best_len)))
|
972 |
|
|
{
|
973 |
|
|
best = e;
|
974 |
|
|
best_len = traces[bbd[si].end_of_trace].length;
|
975 |
|
|
}
|
976 |
|
|
}
|
977 |
|
|
if (best)
|
978 |
|
|
{
|
979 |
|
|
best->src->aux = best->dest;
|
980 |
|
|
t2 = bbd[best->src->index].end_of_trace;
|
981 |
|
|
connected[t2] = true;
|
982 |
|
|
|
983 |
|
|
if (dump_file)
|
984 |
|
|
{
|
985 |
|
|
fprintf (dump_file, "Connection: %d %d\n",
|
986 |
|
|
best->src->index, best->dest->index);
|
987 |
|
|
}
|
988 |
|
|
}
|
989 |
|
|
else
|
990 |
|
|
break;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
if (last_trace >= 0)
|
994 |
|
|
traces[last_trace].last->aux = traces[t2].first;
|
995 |
|
|
last_trace = t;
|
996 |
|
|
|
997 |
|
|
/* Find the successor traces. */
|
998 |
|
|
while (1)
|
999 |
|
|
{
|
1000 |
|
|
/* Find the continuation of the chain. */
|
1001 |
|
|
edge_iterator ei;
|
1002 |
|
|
best = NULL;
|
1003 |
|
|
best_len = 0;
|
1004 |
|
|
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
|
1005 |
|
|
{
|
1006 |
|
|
int di = e->dest->index;
|
1007 |
|
|
|
1008 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
1009 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
1010 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
1011 |
|
|
&& bbd[di].start_of_trace >= 0
|
1012 |
|
|
&& !connected[bbd[di].start_of_trace]
|
1013 |
|
|
&& (BB_PARTITION (e->dest) == current_partition)
|
1014 |
|
|
&& (!best
|
1015 |
|
|
|| e->probability > best->probability
|
1016 |
|
|
|| (e->probability == best->probability
|
1017 |
|
|
&& traces[bbd[di].start_of_trace].length > best_len)))
|
1018 |
|
|
{
|
1019 |
|
|
best = e;
|
1020 |
|
|
best_len = traces[bbd[di].start_of_trace].length;
|
1021 |
|
|
}
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
if (best)
|
1025 |
|
|
{
|
1026 |
|
|
if (dump_file)
|
1027 |
|
|
{
|
1028 |
|
|
fprintf (dump_file, "Connection: %d %d\n",
|
1029 |
|
|
best->src->index, best->dest->index);
|
1030 |
|
|
}
|
1031 |
|
|
t = bbd[best->dest->index].start_of_trace;
|
1032 |
|
|
traces[last_trace].last->aux = traces[t].first;
|
1033 |
|
|
connected[t] = true;
|
1034 |
|
|
last_trace = t;
|
1035 |
|
|
}
|
1036 |
|
|
else
|
1037 |
|
|
{
|
1038 |
|
|
/* Try to connect the traces by duplication of 1 block. */
|
1039 |
|
|
edge e2;
|
1040 |
|
|
basic_block next_bb = NULL;
|
1041 |
|
|
bool try_copy = false;
|
1042 |
|
|
|
1043 |
|
|
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
|
1044 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
1045 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
1046 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
1047 |
|
|
&& (!best || e->probability > best->probability))
|
1048 |
|
|
{
|
1049 |
|
|
edge_iterator ei;
|
1050 |
|
|
edge best2 = NULL;
|
1051 |
|
|
int best2_len = 0;
|
1052 |
|
|
|
1053 |
|
|
/* If the destination is a start of a trace which is only
|
1054 |
|
|
one block long, then no need to search the successor
|
1055 |
|
|
blocks of the trace. Accept it. */
|
1056 |
|
|
if (bbd[e->dest->index].start_of_trace >= 0
|
1057 |
|
|
&& traces[bbd[e->dest->index].start_of_trace].length
|
1058 |
|
|
== 1)
|
1059 |
|
|
{
|
1060 |
|
|
best = e;
|
1061 |
|
|
try_copy = true;
|
1062 |
|
|
continue;
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
FOR_EACH_EDGE (e2, ei, e->dest->succs)
|
1066 |
|
|
{
|
1067 |
|
|
int di = e2->dest->index;
|
1068 |
|
|
|
1069 |
|
|
if (e2->dest == EXIT_BLOCK_PTR
|
1070 |
|
|
|| ((e2->flags & EDGE_CAN_FALLTHRU)
|
1071 |
|
|
&& !(e2->flags & EDGE_COMPLEX)
|
1072 |
|
|
&& bbd[di].start_of_trace >= 0
|
1073 |
|
|
&& !connected[bbd[di].start_of_trace]
|
1074 |
|
|
&& (BB_PARTITION (e2->dest) == current_partition)
|
1075 |
|
|
&& (EDGE_FREQUENCY (e2) >= freq_threshold)
|
1076 |
|
|
&& (e2->count >= count_threshold)
|
1077 |
|
|
&& (!best2
|
1078 |
|
|
|| e2->probability > best2->probability
|
1079 |
|
|
|| (e2->probability == best2->probability
|
1080 |
|
|
&& traces[bbd[di].start_of_trace].length
|
1081 |
|
|
> best2_len))))
|
1082 |
|
|
{
|
1083 |
|
|
best = e;
|
1084 |
|
|
best2 = e2;
|
1085 |
|
|
if (e2->dest != EXIT_BLOCK_PTR)
|
1086 |
|
|
best2_len = traces[bbd[di].start_of_trace].length;
|
1087 |
|
|
else
|
1088 |
|
|
best2_len = INT_MAX;
|
1089 |
|
|
next_bb = e2->dest;
|
1090 |
|
|
try_copy = true;
|
1091 |
|
|
}
|
1092 |
|
|
}
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
if (flag_reorder_blocks_and_partition)
|
1096 |
|
|
try_copy = false;
|
1097 |
|
|
|
1098 |
|
|
/* Copy tiny blocks always; copy larger blocks only when the
|
1099 |
|
|
edge is traversed frequently enough. */
|
1100 |
|
|
if (try_copy
|
1101 |
|
|
&& copy_bb_p (best->dest,
|
1102 |
|
|
optimize_edge_for_speed_p (best)
|
1103 |
|
|
&& EDGE_FREQUENCY (best) >= freq_threshold
|
1104 |
|
|
&& best->count >= count_threshold))
|
1105 |
|
|
{
|
1106 |
|
|
basic_block new_bb;
|
1107 |
|
|
|
1108 |
|
|
if (dump_file)
|
1109 |
|
|
{
|
1110 |
|
|
fprintf (dump_file, "Connection: %d %d ",
|
1111 |
|
|
traces[t].last->index, best->dest->index);
|
1112 |
|
|
if (!next_bb)
|
1113 |
|
|
fputc ('\n', dump_file);
|
1114 |
|
|
else if (next_bb == EXIT_BLOCK_PTR)
|
1115 |
|
|
fprintf (dump_file, "exit\n");
|
1116 |
|
|
else
|
1117 |
|
|
fprintf (dump_file, "%d\n", next_bb->index);
|
1118 |
|
|
}
|
1119 |
|
|
|
1120 |
|
|
new_bb = copy_bb (best->dest, best, traces[t].last, t);
|
1121 |
|
|
traces[t].last = new_bb;
|
1122 |
|
|
if (next_bb && next_bb != EXIT_BLOCK_PTR)
|
1123 |
|
|
{
|
1124 |
|
|
t = bbd[next_bb->index].start_of_trace;
|
1125 |
|
|
traces[last_trace].last->aux = traces[t].first;
|
1126 |
|
|
connected[t] = true;
|
1127 |
|
|
last_trace = t;
|
1128 |
|
|
}
|
1129 |
|
|
else
|
1130 |
|
|
break; /* Stop finding the successor traces. */
|
1131 |
|
|
}
|
1132 |
|
|
else
|
1133 |
|
|
break; /* Stop finding the successor traces. */
|
1134 |
|
|
}
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
if (dump_file)
|
1139 |
|
|
{
|
1140 |
|
|
basic_block bb;
|
1141 |
|
|
|
1142 |
|
|
fprintf (dump_file, "Final order:\n");
|
1143 |
|
|
for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
|
1144 |
|
|
fprintf (dump_file, "%d ", bb->index);
|
1145 |
|
|
fprintf (dump_file, "\n");
|
1146 |
|
|
fflush (dump_file);
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
FREE (connected);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Return true when BB can and should be copied. CODE_MAY_GROW is true
|
1153 |
|
|
when code size is allowed to grow by duplication. */
|
1154 |
|
|
|
1155 |
|
|
static bool
|
1156 |
|
|
copy_bb_p (const_basic_block bb, int code_may_grow)
|
1157 |
|
|
{
|
1158 |
|
|
int size = 0;
|
1159 |
|
|
int max_size = uncond_jump_length;
|
1160 |
|
|
rtx insn;
|
1161 |
|
|
|
1162 |
|
|
if (!bb->frequency)
|
1163 |
|
|
return false;
|
1164 |
|
|
if (EDGE_COUNT (bb->preds) < 2)
|
1165 |
|
|
return false;
|
1166 |
|
|
if (!can_duplicate_block_p (bb))
|
1167 |
|
|
return false;
|
1168 |
|
|
|
1169 |
|
|
/* Avoid duplicating blocks which have many successors (PR/13430). */
|
1170 |
|
|
if (EDGE_COUNT (bb->succs) > 8)
|
1171 |
|
|
return false;
|
1172 |
|
|
|
1173 |
|
|
if (code_may_grow && optimize_bb_for_speed_p (bb))
|
1174 |
|
|
max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
|
1175 |
|
|
|
1176 |
|
|
FOR_BB_INSNS (bb, insn)
|
1177 |
|
|
{
|
1178 |
|
|
if (INSN_P (insn))
|
1179 |
|
|
size += get_attr_min_length (insn);
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
if (size <= max_size)
|
1183 |
|
|
return true;
|
1184 |
|
|
|
1185 |
|
|
if (dump_file)
|
1186 |
|
|
{
|
1187 |
|
|
fprintf (dump_file,
|
1188 |
|
|
"Block %d can't be copied because its size = %d.\n",
|
1189 |
|
|
bb->index, size);
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
return false;
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
/* Return the length of unconditional jump instruction. */
|
1196 |
|
|
|
1197 |
|
|
static int
|
1198 |
|
|
get_uncond_jump_length (void)
|
1199 |
|
|
{
|
1200 |
|
|
rtx label, jump;
|
1201 |
|
|
int length;
|
1202 |
|
|
|
1203 |
|
|
label = emit_label_before (gen_label_rtx (), get_insns ());
|
1204 |
|
|
jump = emit_jump_insn (gen_jump (label));
|
1205 |
|
|
|
1206 |
|
|
length = get_attr_min_length (jump);
|
1207 |
|
|
|
1208 |
|
|
delete_insn (jump);
|
1209 |
|
|
delete_insn (label);
|
1210 |
|
|
return length;
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
/* Find the basic blocks that are rarely executed and need to be moved to
|
1214 |
|
|
a separate section of the .o file (to cut down on paging and improve
|
1215 |
|
|
cache locality). */
|
1216 |
|
|
|
1217 |
|
|
static void
|
1218 |
|
|
find_rarely_executed_basic_blocks_and_crossing_edges (edge **crossing_edges,
|
1219 |
|
|
int *n_crossing_edges,
|
1220 |
|
|
int *max_idx)
|
1221 |
|
|
{
|
1222 |
|
|
basic_block bb;
|
1223 |
|
|
edge e;
|
1224 |
|
|
int i;
|
1225 |
|
|
edge_iterator ei;
|
1226 |
|
|
|
1227 |
|
|
/* Mark which partition (hot/cold) each basic block belongs in. */
|
1228 |
|
|
|
1229 |
|
|
FOR_EACH_BB (bb)
|
1230 |
|
|
{
|
1231 |
|
|
if (probably_never_executed_bb_p (bb))
|
1232 |
|
|
BB_SET_PARTITION (bb, BB_COLD_PARTITION);
|
1233 |
|
|
else
|
1234 |
|
|
BB_SET_PARTITION (bb, BB_HOT_PARTITION);
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
/* Mark every edge that crosses between sections. */
|
1238 |
|
|
|
1239 |
|
|
i = 0;
|
1240 |
|
|
FOR_EACH_BB (bb)
|
1241 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1242 |
|
|
{
|
1243 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
1244 |
|
|
&& e->dest != EXIT_BLOCK_PTR
|
1245 |
|
|
&& BB_PARTITION (e->src) != BB_PARTITION (e->dest))
|
1246 |
|
|
{
|
1247 |
|
|
e->flags |= EDGE_CROSSING;
|
1248 |
|
|
if (i == *max_idx)
|
1249 |
|
|
{
|
1250 |
|
|
*max_idx *= 2;
|
1251 |
|
|
*crossing_edges = XRESIZEVEC (edge, *crossing_edges, *max_idx);
|
1252 |
|
|
}
|
1253 |
|
|
(*crossing_edges)[i++] = e;
|
1254 |
|
|
}
|
1255 |
|
|
else
|
1256 |
|
|
e->flags &= ~EDGE_CROSSING;
|
1257 |
|
|
}
|
1258 |
|
|
*n_crossing_edges = i;
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
/* If any destination of a crossing edge does not have a label, add label;
|
1262 |
|
|
Convert any fall-through crossing edges (for blocks that do not contain
|
1263 |
|
|
a jump) to unconditional jumps. */
|
1264 |
|
|
|
1265 |
|
|
static void
|
1266 |
|
|
add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
|
1267 |
|
|
{
|
1268 |
|
|
int i;
|
1269 |
|
|
basic_block src;
|
1270 |
|
|
basic_block dest;
|
1271 |
|
|
rtx label;
|
1272 |
|
|
rtx barrier;
|
1273 |
|
|
rtx new_jump;
|
1274 |
|
|
|
1275 |
|
|
for (i=0; i < n_crossing_edges; i++)
|
1276 |
|
|
{
|
1277 |
|
|
if (crossing_edges[i])
|
1278 |
|
|
{
|
1279 |
|
|
src = crossing_edges[i]->src;
|
1280 |
|
|
dest = crossing_edges[i]->dest;
|
1281 |
|
|
|
1282 |
|
|
/* Make sure dest has a label. */
|
1283 |
|
|
|
1284 |
|
|
if (dest && (dest != EXIT_BLOCK_PTR))
|
1285 |
|
|
{
|
1286 |
|
|
label = block_label (dest);
|
1287 |
|
|
|
1288 |
|
|
/* Make sure source block ends with a jump. If the
|
1289 |
|
|
source block does not end with a jump it might end
|
1290 |
|
|
with a call_insn; this case will be handled in
|
1291 |
|
|
fix_up_fall_thru_edges function. */
|
1292 |
|
|
|
1293 |
|
|
if (src && (src != ENTRY_BLOCK_PTR))
|
1294 |
|
|
{
|
1295 |
|
|
if (!JUMP_P (BB_END (src)) && !block_ends_with_call_p (src))
|
1296 |
|
|
/* bb just falls through. */
|
1297 |
|
|
{
|
1298 |
|
|
/* make sure there's only one successor */
|
1299 |
|
|
gcc_assert (single_succ_p (src));
|
1300 |
|
|
|
1301 |
|
|
/* Find label in dest block. */
|
1302 |
|
|
label = block_label (dest);
|
1303 |
|
|
|
1304 |
|
|
new_jump = emit_jump_insn_after (gen_jump (label),
|
1305 |
|
|
BB_END (src));
|
1306 |
|
|
barrier = emit_barrier_after (new_jump);
|
1307 |
|
|
JUMP_LABEL (new_jump) = label;
|
1308 |
|
|
LABEL_NUSES (label) += 1;
|
1309 |
|
|
src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
|
1310 |
|
|
/* Mark edge as non-fallthru. */
|
1311 |
|
|
crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
|
1312 |
|
|
} /* end: 'if (GET_CODE ... ' */
|
1313 |
|
|
} /* end: 'if (src && src->index...' */
|
1314 |
|
|
} /* end: 'if (dest && dest->index...' */
|
1315 |
|
|
} /* end: 'if (crossing_edges[i]...' */
|
1316 |
|
|
} /* end for loop */
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* Find any bb's where the fall-through edge is a crossing edge (note that
|
1320 |
|
|
these bb's must also contain a conditional jump or end with a call
|
1321 |
|
|
instruction; we've already dealt with fall-through edges for blocks
|
1322 |
|
|
that didn't have a conditional jump or didn't end with call instruction
|
1323 |
|
|
in the call to add_labels_and_missing_jumps). Convert the fall-through
|
1324 |
|
|
edge to non-crossing edge by inserting a new bb to fall-through into.
|
1325 |
|
|
The new bb will contain an unconditional jump (crossing edge) to the
|
1326 |
|
|
original fall through destination. */
|
1327 |
|
|
|
1328 |
|
|
static void
|
1329 |
|
|
fix_up_fall_thru_edges (void)
|
1330 |
|
|
{
|
1331 |
|
|
basic_block cur_bb;
|
1332 |
|
|
basic_block new_bb;
|
1333 |
|
|
edge succ1;
|
1334 |
|
|
edge succ2;
|
1335 |
|
|
edge fall_thru;
|
1336 |
|
|
edge cond_jump = NULL;
|
1337 |
|
|
edge e;
|
1338 |
|
|
bool cond_jump_crosses;
|
1339 |
|
|
int invert_worked;
|
1340 |
|
|
rtx old_jump;
|
1341 |
|
|
rtx fall_thru_label;
|
1342 |
|
|
rtx barrier;
|
1343 |
|
|
|
1344 |
|
|
FOR_EACH_BB (cur_bb)
|
1345 |
|
|
{
|
1346 |
|
|
fall_thru = NULL;
|
1347 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 0)
|
1348 |
|
|
succ1 = EDGE_SUCC (cur_bb, 0);
|
1349 |
|
|
else
|
1350 |
|
|
succ1 = NULL;
|
1351 |
|
|
|
1352 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 1)
|
1353 |
|
|
succ2 = EDGE_SUCC (cur_bb, 1);
|
1354 |
|
|
else
|
1355 |
|
|
succ2 = NULL;
|
1356 |
|
|
|
1357 |
|
|
/* Find the fall-through edge. */
|
1358 |
|
|
|
1359 |
|
|
if (succ1
|
1360 |
|
|
&& (succ1->flags & EDGE_FALLTHRU))
|
1361 |
|
|
{
|
1362 |
|
|
fall_thru = succ1;
|
1363 |
|
|
cond_jump = succ2;
|
1364 |
|
|
}
|
1365 |
|
|
else if (succ2
|
1366 |
|
|
&& (succ2->flags & EDGE_FALLTHRU))
|
1367 |
|
|
{
|
1368 |
|
|
fall_thru = succ2;
|
1369 |
|
|
cond_jump = succ1;
|
1370 |
|
|
}
|
1371 |
|
|
else if (!fall_thru && succ1 && block_ends_with_call_p (cur_bb))
|
1372 |
|
|
{
|
1373 |
|
|
edge e;
|
1374 |
|
|
edge_iterator ei;
|
1375 |
|
|
|
1376 |
|
|
/* Find EDGE_CAN_FALLTHRU edge. */
|
1377 |
|
|
FOR_EACH_EDGE (e, ei, cur_bb->succs)
|
1378 |
|
|
if (e->flags & EDGE_CAN_FALLTHRU)
|
1379 |
|
|
{
|
1380 |
|
|
fall_thru = e;
|
1381 |
|
|
break;
|
1382 |
|
|
}
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
|
1386 |
|
|
{
|
1387 |
|
|
/* Check to see if the fall-thru edge is a crossing edge. */
|
1388 |
|
|
|
1389 |
|
|
if (fall_thru->flags & EDGE_CROSSING)
|
1390 |
|
|
{
|
1391 |
|
|
/* The fall_thru edge crosses; now check the cond jump edge, if
|
1392 |
|
|
it exists. */
|
1393 |
|
|
|
1394 |
|
|
cond_jump_crosses = true;
|
1395 |
|
|
invert_worked = 0;
|
1396 |
|
|
old_jump = BB_END (cur_bb);
|
1397 |
|
|
|
1398 |
|
|
/* Find the jump instruction, if there is one. */
|
1399 |
|
|
|
1400 |
|
|
if (cond_jump)
|
1401 |
|
|
{
|
1402 |
|
|
if (!(cond_jump->flags & EDGE_CROSSING))
|
1403 |
|
|
cond_jump_crosses = false;
|
1404 |
|
|
|
1405 |
|
|
/* We know the fall-thru edge crosses; if the cond
|
1406 |
|
|
jump edge does NOT cross, and its destination is the
|
1407 |
|
|
next block in the bb order, invert the jump
|
1408 |
|
|
(i.e. fix it so the fall thru does not cross and
|
1409 |
|
|
the cond jump does). */
|
1410 |
|
|
|
1411 |
|
|
if (!cond_jump_crosses
|
1412 |
|
|
&& cur_bb->aux == cond_jump->dest)
|
1413 |
|
|
{
|
1414 |
|
|
/* Find label in fall_thru block. We've already added
|
1415 |
|
|
any missing labels, so there must be one. */
|
1416 |
|
|
|
1417 |
|
|
fall_thru_label = block_label (fall_thru->dest);
|
1418 |
|
|
|
1419 |
|
|
if (old_jump && JUMP_P (old_jump) && fall_thru_label)
|
1420 |
|
|
invert_worked = invert_jump (old_jump,
|
1421 |
|
|
fall_thru_label,0);
|
1422 |
|
|
if (invert_worked)
|
1423 |
|
|
{
|
1424 |
|
|
fall_thru->flags &= ~EDGE_FALLTHRU;
|
1425 |
|
|
cond_jump->flags |= EDGE_FALLTHRU;
|
1426 |
|
|
update_br_prob_note (cur_bb);
|
1427 |
|
|
e = fall_thru;
|
1428 |
|
|
fall_thru = cond_jump;
|
1429 |
|
|
cond_jump = e;
|
1430 |
|
|
cond_jump->flags |= EDGE_CROSSING;
|
1431 |
|
|
fall_thru->flags &= ~EDGE_CROSSING;
|
1432 |
|
|
}
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
if (cond_jump_crosses || !invert_worked)
|
1437 |
|
|
{
|
1438 |
|
|
/* This is the case where both edges out of the basic
|
1439 |
|
|
block are crossing edges. Here we will fix up the
|
1440 |
|
|
fall through edge. The jump edge will be taken care
|
1441 |
|
|
of later. The EDGE_CROSSING flag of fall_thru edge
|
1442 |
|
|
is unset before the call to force_nonfallthru
|
1443 |
|
|
function because if a new basic-block is created
|
1444 |
|
|
this edge remains in the current section boundary
|
1445 |
|
|
while the edge between new_bb and the fall_thru->dest
|
1446 |
|
|
becomes EDGE_CROSSING. */
|
1447 |
|
|
|
1448 |
|
|
fall_thru->flags &= ~EDGE_CROSSING;
|
1449 |
|
|
new_bb = force_nonfallthru (fall_thru);
|
1450 |
|
|
|
1451 |
|
|
if (new_bb)
|
1452 |
|
|
{
|
1453 |
|
|
new_bb->aux = cur_bb->aux;
|
1454 |
|
|
cur_bb->aux = new_bb;
|
1455 |
|
|
|
1456 |
|
|
/* Make sure new fall-through bb is in same
|
1457 |
|
|
partition as bb it's falling through from. */
|
1458 |
|
|
|
1459 |
|
|
BB_COPY_PARTITION (new_bb, cur_bb);
|
1460 |
|
|
single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
|
1461 |
|
|
}
|
1462 |
|
|
else
|
1463 |
|
|
{
|
1464 |
|
|
/* If a new basic-block was not created; restore
|
1465 |
|
|
the EDGE_CROSSING flag. */
|
1466 |
|
|
fall_thru->flags |= EDGE_CROSSING;
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
/* Add barrier after new jump */
|
1470 |
|
|
|
1471 |
|
|
if (new_bb)
|
1472 |
|
|
{
|
1473 |
|
|
barrier = emit_barrier_after (BB_END (new_bb));
|
1474 |
|
|
new_bb->il.rtl->footer = unlink_insn_chain (barrier,
|
1475 |
|
|
barrier);
|
1476 |
|
|
}
|
1477 |
|
|
else
|
1478 |
|
|
{
|
1479 |
|
|
barrier = emit_barrier_after (BB_END (cur_bb));
|
1480 |
|
|
cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
|
1481 |
|
|
barrier);
|
1482 |
|
|
}
|
1483 |
|
|
}
|
1484 |
|
|
}
|
1485 |
|
|
}
|
1486 |
|
|
}
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
/* This function checks the destination block of a "crossing jump" to
|
1490 |
|
|
see if it has any crossing predecessors that begin with a code label
|
1491 |
|
|
and end with an unconditional jump. If so, it returns that predecessor
|
1492 |
|
|
block. (This is to avoid creating lots of new basic blocks that all
|
1493 |
|
|
contain unconditional jumps to the same destination). */
|
1494 |
|
|
|
1495 |
|
|
static basic_block
|
1496 |
|
|
find_jump_block (basic_block jump_dest)
|
1497 |
|
|
{
|
1498 |
|
|
basic_block source_bb = NULL;
|
1499 |
|
|
edge e;
|
1500 |
|
|
rtx insn;
|
1501 |
|
|
edge_iterator ei;
|
1502 |
|
|
|
1503 |
|
|
FOR_EACH_EDGE (e, ei, jump_dest->preds)
|
1504 |
|
|
if (e->flags & EDGE_CROSSING)
|
1505 |
|
|
{
|
1506 |
|
|
basic_block src = e->src;
|
1507 |
|
|
|
1508 |
|
|
/* Check each predecessor to see if it has a label, and contains
|
1509 |
|
|
only one executable instruction, which is an unconditional jump.
|
1510 |
|
|
If so, we can use it. */
|
1511 |
|
|
|
1512 |
|
|
if (LABEL_P (BB_HEAD (src)))
|
1513 |
|
|
for (insn = BB_HEAD (src);
|
1514 |
|
|
!INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
|
1515 |
|
|
insn = NEXT_INSN (insn))
|
1516 |
|
|
{
|
1517 |
|
|
if (INSN_P (insn)
|
1518 |
|
|
&& insn == BB_END (src)
|
1519 |
|
|
&& JUMP_P (insn)
|
1520 |
|
|
&& !any_condjump_p (insn))
|
1521 |
|
|
{
|
1522 |
|
|
source_bb = src;
|
1523 |
|
|
break;
|
1524 |
|
|
}
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
if (source_bb)
|
1528 |
|
|
break;
|
1529 |
|
|
}
|
1530 |
|
|
|
1531 |
|
|
return source_bb;
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
/* Find all BB's with conditional jumps that are crossing edges;
|
1535 |
|
|
insert a new bb and make the conditional jump branch to the new
|
1536 |
|
|
bb instead (make the new bb same color so conditional branch won't
|
1537 |
|
|
be a 'crossing' edge). Insert an unconditional jump from the
|
1538 |
|
|
new bb to the original destination of the conditional jump. */
|
1539 |
|
|
|
1540 |
|
|
static void
|
1541 |
|
|
fix_crossing_conditional_branches (void)
|
1542 |
|
|
{
|
1543 |
|
|
basic_block cur_bb;
|
1544 |
|
|
basic_block new_bb;
|
1545 |
|
|
basic_block last_bb;
|
1546 |
|
|
basic_block dest;
|
1547 |
|
|
edge succ1;
|
1548 |
|
|
edge succ2;
|
1549 |
|
|
edge crossing_edge;
|
1550 |
|
|
edge new_edge;
|
1551 |
|
|
rtx old_jump;
|
1552 |
|
|
rtx set_src;
|
1553 |
|
|
rtx old_label = NULL_RTX;
|
1554 |
|
|
rtx new_label;
|
1555 |
|
|
rtx new_jump;
|
1556 |
|
|
rtx barrier;
|
1557 |
|
|
|
1558 |
|
|
last_bb = EXIT_BLOCK_PTR->prev_bb;
|
1559 |
|
|
|
1560 |
|
|
FOR_EACH_BB (cur_bb)
|
1561 |
|
|
{
|
1562 |
|
|
crossing_edge = NULL;
|
1563 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 0)
|
1564 |
|
|
succ1 = EDGE_SUCC (cur_bb, 0);
|
1565 |
|
|
else
|
1566 |
|
|
succ1 = NULL;
|
1567 |
|
|
|
1568 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 1)
|
1569 |
|
|
succ2 = EDGE_SUCC (cur_bb, 1);
|
1570 |
|
|
else
|
1571 |
|
|
succ2 = NULL;
|
1572 |
|
|
|
1573 |
|
|
/* We already took care of fall-through edges, so only one successor
|
1574 |
|
|
can be a crossing edge. */
|
1575 |
|
|
|
1576 |
|
|
if (succ1 && (succ1->flags & EDGE_CROSSING))
|
1577 |
|
|
crossing_edge = succ1;
|
1578 |
|
|
else if (succ2 && (succ2->flags & EDGE_CROSSING))
|
1579 |
|
|
crossing_edge = succ2;
|
1580 |
|
|
|
1581 |
|
|
if (crossing_edge)
|
1582 |
|
|
{
|
1583 |
|
|
old_jump = BB_END (cur_bb);
|
1584 |
|
|
|
1585 |
|
|
/* Check to make sure the jump instruction is a
|
1586 |
|
|
conditional jump. */
|
1587 |
|
|
|
1588 |
|
|
set_src = NULL_RTX;
|
1589 |
|
|
|
1590 |
|
|
if (any_condjump_p (old_jump))
|
1591 |
|
|
{
|
1592 |
|
|
if (GET_CODE (PATTERN (old_jump)) == SET)
|
1593 |
|
|
set_src = SET_SRC (PATTERN (old_jump));
|
1594 |
|
|
else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
|
1595 |
|
|
{
|
1596 |
|
|
set_src = XVECEXP (PATTERN (old_jump), 0,0);
|
1597 |
|
|
if (GET_CODE (set_src) == SET)
|
1598 |
|
|
set_src = SET_SRC (set_src);
|
1599 |
|
|
else
|
1600 |
|
|
set_src = NULL_RTX;
|
1601 |
|
|
}
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
|
1605 |
|
|
{
|
1606 |
|
|
if (GET_CODE (XEXP (set_src, 1)) == PC)
|
1607 |
|
|
old_label = XEXP (set_src, 2);
|
1608 |
|
|
else if (GET_CODE (XEXP (set_src, 2)) == PC)
|
1609 |
|
|
old_label = XEXP (set_src, 1);
|
1610 |
|
|
|
1611 |
|
|
/* Check to see if new bb for jumping to that dest has
|
1612 |
|
|
already been created; if so, use it; if not, create
|
1613 |
|
|
a new one. */
|
1614 |
|
|
|
1615 |
|
|
new_bb = find_jump_block (crossing_edge->dest);
|
1616 |
|
|
|
1617 |
|
|
if (new_bb)
|
1618 |
|
|
new_label = block_label (new_bb);
|
1619 |
|
|
else
|
1620 |
|
|
{
|
1621 |
|
|
/* Create new basic block to be dest for
|
1622 |
|
|
conditional jump. */
|
1623 |
|
|
|
1624 |
|
|
new_bb = create_basic_block (NULL, NULL, last_bb);
|
1625 |
|
|
new_bb->aux = last_bb->aux;
|
1626 |
|
|
last_bb->aux = new_bb;
|
1627 |
|
|
last_bb = new_bb;
|
1628 |
|
|
/* Put appropriate instructions in new bb. */
|
1629 |
|
|
|
1630 |
|
|
new_label = gen_label_rtx ();
|
1631 |
|
|
emit_label_before (new_label, BB_HEAD (new_bb));
|
1632 |
|
|
BB_HEAD (new_bb) = new_label;
|
1633 |
|
|
|
1634 |
|
|
if (GET_CODE (old_label) == LABEL_REF)
|
1635 |
|
|
{
|
1636 |
|
|
old_label = JUMP_LABEL (old_jump);
|
1637 |
|
|
new_jump = emit_jump_insn_after (gen_jump
|
1638 |
|
|
(old_label),
|
1639 |
|
|
BB_END (new_bb));
|
1640 |
|
|
}
|
1641 |
|
|
else
|
1642 |
|
|
{
|
1643 |
|
|
gcc_assert (HAVE_return
|
1644 |
|
|
&& GET_CODE (old_label) == RETURN);
|
1645 |
|
|
new_jump = emit_jump_insn_after (gen_return (),
|
1646 |
|
|
BB_END (new_bb));
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
barrier = emit_barrier_after (new_jump);
|
1650 |
|
|
JUMP_LABEL (new_jump) = old_label;
|
1651 |
|
|
new_bb->il.rtl->footer = unlink_insn_chain (barrier,
|
1652 |
|
|
barrier);
|
1653 |
|
|
|
1654 |
|
|
/* Make sure new bb is in same partition as source
|
1655 |
|
|
of conditional branch. */
|
1656 |
|
|
BB_COPY_PARTITION (new_bb, cur_bb);
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
/* Make old jump branch to new bb. */
|
1660 |
|
|
|
1661 |
|
|
redirect_jump (old_jump, new_label, 0);
|
1662 |
|
|
|
1663 |
|
|
/* Remove crossing_edge as predecessor of 'dest'. */
|
1664 |
|
|
|
1665 |
|
|
dest = crossing_edge->dest;
|
1666 |
|
|
|
1667 |
|
|
redirect_edge_succ (crossing_edge, new_bb);
|
1668 |
|
|
|
1669 |
|
|
/* Make a new edge from new_bb to old dest; new edge
|
1670 |
|
|
will be a successor for new_bb and a predecessor
|
1671 |
|
|
for 'dest'. */
|
1672 |
|
|
|
1673 |
|
|
if (EDGE_COUNT (new_bb->succs) == 0)
|
1674 |
|
|
new_edge = make_edge (new_bb, dest, 0);
|
1675 |
|
|
else
|
1676 |
|
|
new_edge = EDGE_SUCC (new_bb, 0);
|
1677 |
|
|
|
1678 |
|
|
crossing_edge->flags &= ~EDGE_CROSSING;
|
1679 |
|
|
new_edge->flags |= EDGE_CROSSING;
|
1680 |
|
|
}
|
1681 |
|
|
}
|
1682 |
|
|
}
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
/* Find any unconditional branches that cross between hot and cold
|
1686 |
|
|
sections. Convert them into indirect jumps instead. */
|
1687 |
|
|
|
1688 |
|
|
static void
|
1689 |
|
|
fix_crossing_unconditional_branches (void)
|
1690 |
|
|
{
|
1691 |
|
|
basic_block cur_bb;
|
1692 |
|
|
rtx last_insn;
|
1693 |
|
|
rtx label;
|
1694 |
|
|
rtx label_addr;
|
1695 |
|
|
rtx indirect_jump_sequence;
|
1696 |
|
|
rtx jump_insn = NULL_RTX;
|
1697 |
|
|
rtx new_reg;
|
1698 |
|
|
rtx cur_insn;
|
1699 |
|
|
edge succ;
|
1700 |
|
|
|
1701 |
|
|
FOR_EACH_BB (cur_bb)
|
1702 |
|
|
{
|
1703 |
|
|
last_insn = BB_END (cur_bb);
|
1704 |
|
|
|
1705 |
|
|
if (EDGE_COUNT (cur_bb->succs) < 1)
|
1706 |
|
|
continue;
|
1707 |
|
|
|
1708 |
|
|
succ = EDGE_SUCC (cur_bb, 0);
|
1709 |
|
|
|
1710 |
|
|
/* Check to see if bb ends in a crossing (unconditional) jump. At
|
1711 |
|
|
this point, no crossing jumps should be conditional. */
|
1712 |
|
|
|
1713 |
|
|
if (JUMP_P (last_insn)
|
1714 |
|
|
&& (succ->flags & EDGE_CROSSING))
|
1715 |
|
|
{
|
1716 |
|
|
rtx label2, table;
|
1717 |
|
|
|
1718 |
|
|
gcc_assert (!any_condjump_p (last_insn));
|
1719 |
|
|
|
1720 |
|
|
/* Make sure the jump is not already an indirect or table jump. */
|
1721 |
|
|
|
1722 |
|
|
if (!computed_jump_p (last_insn)
|
1723 |
|
|
&& !tablejump_p (last_insn, &label2, &table))
|
1724 |
|
|
{
|
1725 |
|
|
/* We have found a "crossing" unconditional branch. Now
|
1726 |
|
|
we must convert it to an indirect jump. First create
|
1727 |
|
|
reference of label, as target for jump. */
|
1728 |
|
|
|
1729 |
|
|
label = JUMP_LABEL (last_insn);
|
1730 |
|
|
label_addr = gen_rtx_LABEL_REF (Pmode, label);
|
1731 |
|
|
LABEL_NUSES (label) += 1;
|
1732 |
|
|
|
1733 |
|
|
/* Get a register to use for the indirect jump. */
|
1734 |
|
|
|
1735 |
|
|
new_reg = gen_reg_rtx (Pmode);
|
1736 |
|
|
|
1737 |
|
|
/* Generate indirect the jump sequence. */
|
1738 |
|
|
|
1739 |
|
|
start_sequence ();
|
1740 |
|
|
emit_move_insn (new_reg, label_addr);
|
1741 |
|
|
emit_indirect_jump (new_reg);
|
1742 |
|
|
indirect_jump_sequence = get_insns ();
|
1743 |
|
|
end_sequence ();
|
1744 |
|
|
|
1745 |
|
|
/* Make sure every instruction in the new jump sequence has
|
1746 |
|
|
its basic block set to be cur_bb. */
|
1747 |
|
|
|
1748 |
|
|
for (cur_insn = indirect_jump_sequence; cur_insn;
|
1749 |
|
|
cur_insn = NEXT_INSN (cur_insn))
|
1750 |
|
|
{
|
1751 |
|
|
if (!BARRIER_P (cur_insn))
|
1752 |
|
|
BLOCK_FOR_INSN (cur_insn) = cur_bb;
|
1753 |
|
|
if (JUMP_P (cur_insn))
|
1754 |
|
|
jump_insn = cur_insn;
|
1755 |
|
|
}
|
1756 |
|
|
|
1757 |
|
|
/* Insert the new (indirect) jump sequence immediately before
|
1758 |
|
|
the unconditional jump, then delete the unconditional jump. */
|
1759 |
|
|
|
1760 |
|
|
emit_insn_before (indirect_jump_sequence, last_insn);
|
1761 |
|
|
delete_insn (last_insn);
|
1762 |
|
|
|
1763 |
|
|
/* Make BB_END for cur_bb be the jump instruction (NOT the
|
1764 |
|
|
barrier instruction at the end of the sequence...). */
|
1765 |
|
|
|
1766 |
|
|
BB_END (cur_bb) = jump_insn;
|
1767 |
|
|
}
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
}
|
1771 |
|
|
|
1772 |
|
|
/* Add REG_CROSSING_JUMP note to all crossing jump insns. */
|
1773 |
|
|
|
1774 |
|
|
static void
|
1775 |
|
|
add_reg_crossing_jump_notes (void)
|
1776 |
|
|
{
|
1777 |
|
|
basic_block bb;
|
1778 |
|
|
edge e;
|
1779 |
|
|
edge_iterator ei;
|
1780 |
|
|
|
1781 |
|
|
FOR_EACH_BB (bb)
|
1782 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1783 |
|
|
if ((e->flags & EDGE_CROSSING)
|
1784 |
|
|
&& JUMP_P (BB_END (e->src)))
|
1785 |
|
|
add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
/* Hot and cold basic blocks are partitioned and put in separate
|
1789 |
|
|
sections of the .o file, to reduce paging and improve cache
|
1790 |
|
|
performance (hopefully). This can result in bits of code from the
|
1791 |
|
|
same function being widely separated in the .o file. However this
|
1792 |
|
|
is not obvious to the current bb structure. Therefore we must take
|
1793 |
|
|
care to ensure that: 1). There are no fall_thru edges that cross
|
1794 |
|
|
between sections; 2). For those architectures which have "short"
|
1795 |
|
|
conditional branches, all conditional branches that attempt to
|
1796 |
|
|
cross between sections are converted to unconditional branches;
|
1797 |
|
|
and, 3). For those architectures which have "short" unconditional
|
1798 |
|
|
branches, all unconditional branches that attempt to cross between
|
1799 |
|
|
sections are converted to indirect jumps.
|
1800 |
|
|
|
1801 |
|
|
The code for fixing up fall_thru edges that cross between hot and
|
1802 |
|
|
cold basic blocks does so by creating new basic blocks containing
|
1803 |
|
|
unconditional branches to the appropriate label in the "other"
|
1804 |
|
|
section. The new basic block is then put in the same (hot or cold)
|
1805 |
|
|
section as the original conditional branch, and the fall_thru edge
|
1806 |
|
|
is modified to fall into the new basic block instead. By adding
|
1807 |
|
|
this level of indirection we end up with only unconditional branches
|
1808 |
|
|
crossing between hot and cold sections.
|
1809 |
|
|
|
1810 |
|
|
Conditional branches are dealt with by adding a level of indirection.
|
1811 |
|
|
A new basic block is added in the same (hot/cold) section as the
|
1812 |
|
|
conditional branch, and the conditional branch is retargeted to the
|
1813 |
|
|
new basic block. The new basic block contains an unconditional branch
|
1814 |
|
|
to the original target of the conditional branch (in the other section).
|
1815 |
|
|
|
1816 |
|
|
Unconditional branches are dealt with by converting them into
|
1817 |
|
|
indirect jumps. */
|
1818 |
|
|
|
1819 |
|
|
static void
|
1820 |
|
|
fix_edges_for_rarely_executed_code (edge *crossing_edges,
|
1821 |
|
|
int n_crossing_edges)
|
1822 |
|
|
{
|
1823 |
|
|
/* Make sure the source of any crossing edge ends in a jump and the
|
1824 |
|
|
destination of any crossing edge has a label. */
|
1825 |
|
|
|
1826 |
|
|
add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
|
1827 |
|
|
|
1828 |
|
|
/* Convert all crossing fall_thru edges to non-crossing fall
|
1829 |
|
|
thrus to unconditional jumps (that jump to the original fall
|
1830 |
|
|
thru dest). */
|
1831 |
|
|
|
1832 |
|
|
fix_up_fall_thru_edges ();
|
1833 |
|
|
|
1834 |
|
|
/* If the architecture does not have conditional branches that can
|
1835 |
|
|
span all of memory, convert crossing conditional branches into
|
1836 |
|
|
crossing unconditional branches. */
|
1837 |
|
|
|
1838 |
|
|
if (!HAS_LONG_COND_BRANCH)
|
1839 |
|
|
fix_crossing_conditional_branches ();
|
1840 |
|
|
|
1841 |
|
|
/* If the architecture does not have unconditional branches that
|
1842 |
|
|
can span all of memory, convert crossing unconditional branches
|
1843 |
|
|
into indirect jumps. Since adding an indirect jump also adds
|
1844 |
|
|
a new register usage, update the register usage information as
|
1845 |
|
|
well. */
|
1846 |
|
|
|
1847 |
|
|
if (!HAS_LONG_UNCOND_BRANCH)
|
1848 |
|
|
fix_crossing_unconditional_branches ();
|
1849 |
|
|
|
1850 |
|
|
add_reg_crossing_jump_notes ();
|
1851 |
|
|
}
|
1852 |
|
|
|
1853 |
|
|
/* Verify, in the basic block chain, that there is at most one switch
|
1854 |
|
|
between hot/cold partitions. This is modelled on
|
1855 |
|
|
rtl_verify_flow_info_1, but it cannot go inside that function
|
1856 |
|
|
because this condition will not be true until after
|
1857 |
|
|
reorder_basic_blocks is called. */
|
1858 |
|
|
|
1859 |
|
|
static void
|
1860 |
|
|
verify_hot_cold_block_grouping (void)
|
1861 |
|
|
{
|
1862 |
|
|
basic_block bb;
|
1863 |
|
|
int err = 0;
|
1864 |
|
|
bool switched_sections = false;
|
1865 |
|
|
int current_partition = 0;
|
1866 |
|
|
|
1867 |
|
|
FOR_EACH_BB (bb)
|
1868 |
|
|
{
|
1869 |
|
|
if (!current_partition)
|
1870 |
|
|
current_partition = BB_PARTITION (bb);
|
1871 |
|
|
if (BB_PARTITION (bb) != current_partition)
|
1872 |
|
|
{
|
1873 |
|
|
if (switched_sections)
|
1874 |
|
|
{
|
1875 |
|
|
error ("multiple hot/cold transitions found (bb %i)",
|
1876 |
|
|
bb->index);
|
1877 |
|
|
err = 1;
|
1878 |
|
|
}
|
1879 |
|
|
else
|
1880 |
|
|
{
|
1881 |
|
|
switched_sections = true;
|
1882 |
|
|
current_partition = BB_PARTITION (bb);
|
1883 |
|
|
}
|
1884 |
|
|
}
|
1885 |
|
|
}
|
1886 |
|
|
|
1887 |
|
|
gcc_assert(!err);
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
/* Reorder basic blocks. The main entry point to this file. FLAGS is
|
1891 |
|
|
the set of flags to pass to cfg_layout_initialize(). */
|
1892 |
|
|
|
1893 |
|
|
void
|
1894 |
|
|
reorder_basic_blocks (void)
|
1895 |
|
|
{
|
1896 |
|
|
int n_traces;
|
1897 |
|
|
int i;
|
1898 |
|
|
struct trace *traces;
|
1899 |
|
|
|
1900 |
|
|
gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
|
1901 |
|
|
|
1902 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
1903 |
|
|
return;
|
1904 |
|
|
|
1905 |
|
|
set_edge_can_fallthru_flag ();
|
1906 |
|
|
mark_dfs_back_edges ();
|
1907 |
|
|
|
1908 |
|
|
/* We are estimating the length of uncond jump insn only once since the code
|
1909 |
|
|
for getting the insn length always returns the minimal length now. */
|
1910 |
|
|
if (uncond_jump_length == 0)
|
1911 |
|
|
uncond_jump_length = get_uncond_jump_length ();
|
1912 |
|
|
|
1913 |
|
|
/* We need to know some information for each basic block. */
|
1914 |
|
|
array_size = GET_ARRAY_SIZE (last_basic_block);
|
1915 |
|
|
bbd = XNEWVEC (bbro_basic_block_data, array_size);
|
1916 |
|
|
for (i = 0; i < array_size; i++)
|
1917 |
|
|
{
|
1918 |
|
|
bbd[i].start_of_trace = -1;
|
1919 |
|
|
bbd[i].in_trace = -1;
|
1920 |
|
|
bbd[i].end_of_trace = -1;
|
1921 |
|
|
bbd[i].heap = NULL;
|
1922 |
|
|
bbd[i].node = NULL;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
traces = XNEWVEC (struct trace, n_basic_blocks);
|
1926 |
|
|
n_traces = 0;
|
1927 |
|
|
find_traces (&n_traces, traces);
|
1928 |
|
|
connect_traces (n_traces, traces);
|
1929 |
|
|
FREE (traces);
|
1930 |
|
|
FREE (bbd);
|
1931 |
|
|
|
1932 |
|
|
relink_block_chain (/*stay_in_cfglayout_mode=*/true);
|
1933 |
|
|
|
1934 |
|
|
if (dump_file)
|
1935 |
|
|
dump_flow_info (dump_file, dump_flags);
|
1936 |
|
|
|
1937 |
|
|
if (flag_reorder_blocks_and_partition)
|
1938 |
|
|
verify_hot_cold_block_grouping ();
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
/* Determine which partition the first basic block in the function
|
1942 |
|
|
belongs to, then find the first basic block in the current function
|
1943 |
|
|
that belongs to a different section, and insert a
|
1944 |
|
|
NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
|
1945 |
|
|
instruction stream. When writing out the assembly code,
|
1946 |
|
|
encountering this note will make the compiler switch between the
|
1947 |
|
|
hot and cold text sections. */
|
1948 |
|
|
|
1949 |
|
|
static void
|
1950 |
|
|
insert_section_boundary_note (void)
|
1951 |
|
|
{
|
1952 |
|
|
basic_block bb;
|
1953 |
|
|
rtx new_note;
|
1954 |
|
|
int first_partition = 0;
|
1955 |
|
|
|
1956 |
|
|
if (flag_reorder_blocks_and_partition)
|
1957 |
|
|
FOR_EACH_BB (bb)
|
1958 |
|
|
{
|
1959 |
|
|
if (!first_partition)
|
1960 |
|
|
first_partition = BB_PARTITION (bb);
|
1961 |
|
|
if (BB_PARTITION (bb) != first_partition)
|
1962 |
|
|
{
|
1963 |
|
|
new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
|
1964 |
|
|
BB_HEAD (bb));
|
1965 |
|
|
/* ??? This kind of note always lives between basic blocks,
|
1966 |
|
|
but add_insn_before will set BLOCK_FOR_INSN anyway. */
|
1967 |
|
|
BLOCK_FOR_INSN (new_note) = NULL;
|
1968 |
|
|
break;
|
1969 |
|
|
}
|
1970 |
|
|
}
|
1971 |
|
|
}
|
1972 |
|
|
|
1973 |
|
|
/* Duplicate the blocks containing computed gotos. This basically unfactors
|
1974 |
|
|
computed gotos that were factored early on in the compilation process to
|
1975 |
|
|
speed up edge based data flow. We used to not unfactoring them again,
|
1976 |
|
|
which can seriously pessimize code with many computed jumps in the source
|
1977 |
|
|
code, such as interpreters. See e.g. PR15242. */
|
1978 |
|
|
|
1979 |
|
|
static bool
|
1980 |
|
|
gate_duplicate_computed_gotos (void)
|
1981 |
|
|
{
|
1982 |
|
|
if (targetm.cannot_modify_jumps_p ())
|
1983 |
|
|
return false;
|
1984 |
|
|
return (optimize > 0
|
1985 |
|
|
&& flag_expensive_optimizations
|
1986 |
|
|
&& ! optimize_function_for_size_p (cfun));
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
|
1990 |
|
|
static unsigned int
|
1991 |
|
|
duplicate_computed_gotos (void)
|
1992 |
|
|
{
|
1993 |
|
|
basic_block bb, new_bb;
|
1994 |
|
|
bitmap candidates;
|
1995 |
|
|
int max_size;
|
1996 |
|
|
|
1997 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
1998 |
|
|
return 0;
|
1999 |
|
|
|
2000 |
|
|
cfg_layout_initialize (0);
|
2001 |
|
|
|
2002 |
|
|
/* We are estimating the length of uncond jump insn only once
|
2003 |
|
|
since the code for getting the insn length always returns
|
2004 |
|
|
the minimal length now. */
|
2005 |
|
|
if (uncond_jump_length == 0)
|
2006 |
|
|
uncond_jump_length = get_uncond_jump_length ();
|
2007 |
|
|
|
2008 |
|
|
max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
|
2009 |
|
|
candidates = BITMAP_ALLOC (NULL);
|
2010 |
|
|
|
2011 |
|
|
/* Look for blocks that end in a computed jump, and see if such blocks
|
2012 |
|
|
are suitable for unfactoring. If a block is a candidate for unfactoring,
|
2013 |
|
|
mark it in the candidates. */
|
2014 |
|
|
FOR_EACH_BB (bb)
|
2015 |
|
|
{
|
2016 |
|
|
rtx insn;
|
2017 |
|
|
edge e;
|
2018 |
|
|
edge_iterator ei;
|
2019 |
|
|
int size, all_flags;
|
2020 |
|
|
|
2021 |
|
|
/* Build the reorder chain for the original order of blocks. */
|
2022 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
2023 |
|
|
bb->aux = bb->next_bb;
|
2024 |
|
|
|
2025 |
|
|
/* Obviously the block has to end in a computed jump. */
|
2026 |
|
|
if (!computed_jump_p (BB_END (bb)))
|
2027 |
|
|
continue;
|
2028 |
|
|
|
2029 |
|
|
/* Only consider blocks that can be duplicated. */
|
2030 |
|
|
if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
|
2031 |
|
|
|| !can_duplicate_block_p (bb))
|
2032 |
|
|
continue;
|
2033 |
|
|
|
2034 |
|
|
/* Make sure that the block is small enough. */
|
2035 |
|
|
size = 0;
|
2036 |
|
|
FOR_BB_INSNS (bb, insn)
|
2037 |
|
|
if (INSN_P (insn))
|
2038 |
|
|
{
|
2039 |
|
|
size += get_attr_min_length (insn);
|
2040 |
|
|
if (size > max_size)
|
2041 |
|
|
break;
|
2042 |
|
|
}
|
2043 |
|
|
if (size > max_size)
|
2044 |
|
|
continue;
|
2045 |
|
|
|
2046 |
|
|
/* Final check: there must not be any incoming abnormal edges. */
|
2047 |
|
|
all_flags = 0;
|
2048 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2049 |
|
|
all_flags |= e->flags;
|
2050 |
|
|
if (all_flags & EDGE_COMPLEX)
|
2051 |
|
|
continue;
|
2052 |
|
|
|
2053 |
|
|
bitmap_set_bit (candidates, bb->index);
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
/* Nothing to do if there is no computed jump here. */
|
2057 |
|
|
if (bitmap_empty_p (candidates))
|
2058 |
|
|
goto done;
|
2059 |
|
|
|
2060 |
|
|
/* Duplicate computed gotos. */
|
2061 |
|
|
FOR_EACH_BB (bb)
|
2062 |
|
|
{
|
2063 |
|
|
if (bb->il.rtl->visited)
|
2064 |
|
|
continue;
|
2065 |
|
|
|
2066 |
|
|
bb->il.rtl->visited = 1;
|
2067 |
|
|
|
2068 |
|
|
/* BB must have one outgoing edge. That edge must not lead to
|
2069 |
|
|
the exit block or the next block.
|
2070 |
|
|
The destination must have more than one predecessor. */
|
2071 |
|
|
if (!single_succ_p (bb)
|
2072 |
|
|
|| single_succ (bb) == EXIT_BLOCK_PTR
|
2073 |
|
|
|| single_succ (bb) == bb->next_bb
|
2074 |
|
|
|| single_pred_p (single_succ (bb)))
|
2075 |
|
|
continue;
|
2076 |
|
|
|
2077 |
|
|
/* The successor block has to be a duplication candidate. */
|
2078 |
|
|
if (!bitmap_bit_p (candidates, single_succ (bb)->index))
|
2079 |
|
|
continue;
|
2080 |
|
|
|
2081 |
|
|
new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
|
2082 |
|
|
new_bb->aux = bb->aux;
|
2083 |
|
|
bb->aux = new_bb;
|
2084 |
|
|
new_bb->il.rtl->visited = 1;
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
done:
|
2088 |
|
|
cfg_layout_finalize ();
|
2089 |
|
|
|
2090 |
|
|
BITMAP_FREE (candidates);
|
2091 |
|
|
return 0;
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
struct rtl_opt_pass pass_duplicate_computed_gotos =
|
2095 |
|
|
{
|
2096 |
|
|
{
|
2097 |
|
|
RTL_PASS,
|
2098 |
|
|
"compgotos", /* name */
|
2099 |
|
|
gate_duplicate_computed_gotos, /* gate */
|
2100 |
|
|
duplicate_computed_gotos, /* execute */
|
2101 |
|
|
NULL, /* sub */
|
2102 |
|
|
NULL, /* next */
|
2103 |
|
|
0, /* static_pass_number */
|
2104 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
2105 |
|
|
0, /* properties_required */
|
2106 |
|
|
0, /* properties_provided */
|
2107 |
|
|
0, /* properties_destroyed */
|
2108 |
|
|
0, /* todo_flags_start */
|
2109 |
|
|
TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
|
2110 |
|
|
}
|
2111 |
|
|
};
|
2112 |
|
|
|
2113 |
|
|
|
2114 |
|
|
/* This function is the main 'entrance' for the optimization that
|
2115 |
|
|
partitions hot and cold basic blocks into separate sections of the
|
2116 |
|
|
.o file (to improve performance and cache locality). Ideally it
|
2117 |
|
|
would be called after all optimizations that rearrange the CFG have
|
2118 |
|
|
been called. However part of this optimization may introduce new
|
2119 |
|
|
register usage, so it must be called before register allocation has
|
2120 |
|
|
occurred. This means that this optimization is actually called
|
2121 |
|
|
well before the optimization that reorders basic blocks (see
|
2122 |
|
|
function above).
|
2123 |
|
|
|
2124 |
|
|
This optimization checks the feedback information to determine
|
2125 |
|
|
which basic blocks are hot/cold, updates flags on the basic blocks
|
2126 |
|
|
to indicate which section they belong in. This information is
|
2127 |
|
|
later used for writing out sections in the .o file. Because hot
|
2128 |
|
|
and cold sections can be arbitrarily large (within the bounds of
|
2129 |
|
|
memory), far beyond the size of a single function, it is necessary
|
2130 |
|
|
to fix up all edges that cross section boundaries, to make sure the
|
2131 |
|
|
instructions used can actually span the required distance. The
|
2132 |
|
|
fixes are described below.
|
2133 |
|
|
|
2134 |
|
|
Fall-through edges must be changed into jumps; it is not safe or
|
2135 |
|
|
legal to fall through across a section boundary. Whenever a
|
2136 |
|
|
fall-through edge crossing a section boundary is encountered, a new
|
2137 |
|
|
basic block is inserted (in the same section as the fall-through
|
2138 |
|
|
source), and the fall through edge is redirected to the new basic
|
2139 |
|
|
block. The new basic block contains an unconditional jump to the
|
2140 |
|
|
original fall-through target. (If the unconditional jump is
|
2141 |
|
|
insufficient to cross section boundaries, that is dealt with a
|
2142 |
|
|
little later, see below).
|
2143 |
|
|
|
2144 |
|
|
In order to deal with architectures that have short conditional
|
2145 |
|
|
branches (which cannot span all of memory) we take any conditional
|
2146 |
|
|
jump that attempts to cross a section boundary and add a level of
|
2147 |
|
|
indirection: it becomes a conditional jump to a new basic block, in
|
2148 |
|
|
the same section. The new basic block contains an unconditional
|
2149 |
|
|
jump to the original target, in the other section.
|
2150 |
|
|
|
2151 |
|
|
For those architectures whose unconditional branch is also
|
2152 |
|
|
incapable of reaching all of memory, those unconditional jumps are
|
2153 |
|
|
converted into indirect jumps, through a register.
|
2154 |
|
|
|
2155 |
|
|
IMPORTANT NOTE: This optimization causes some messy interactions
|
2156 |
|
|
with the cfg cleanup optimizations; those optimizations want to
|
2157 |
|
|
merge blocks wherever possible, and to collapse indirect jump
|
2158 |
|
|
sequences (change "A jumps to B jumps to C" directly into "A jumps
|
2159 |
|
|
to C"). Those optimizations can undo the jump fixes that
|
2160 |
|
|
partitioning is required to make (see above), in order to ensure
|
2161 |
|
|
that jumps attempting to cross section boundaries are really able
|
2162 |
|
|
to cover whatever distance the jump requires (on many architectures
|
2163 |
|
|
conditional or unconditional jumps are not able to reach all of
|
2164 |
|
|
memory). Therefore tests have to be inserted into each such
|
2165 |
|
|
optimization to make sure that it does not undo stuff necessary to
|
2166 |
|
|
cross partition boundaries. This would be much less of a problem
|
2167 |
|
|
if we could perform this optimization later in the compilation, but
|
2168 |
|
|
unfortunately the fact that we may need to create indirect jumps
|
2169 |
|
|
(through registers) requires that this optimization be performed
|
2170 |
|
|
before register allocation. */
|
2171 |
|
|
|
2172 |
|
|
static void
|
2173 |
|
|
partition_hot_cold_basic_blocks (void)
|
2174 |
|
|
{
|
2175 |
|
|
edge *crossing_edges;
|
2176 |
|
|
int n_crossing_edges;
|
2177 |
|
|
int max_edges = 2 * last_basic_block;
|
2178 |
|
|
|
2179 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
2180 |
|
|
return;
|
2181 |
|
|
|
2182 |
|
|
crossing_edges = XCNEWVEC (edge, max_edges);
|
2183 |
|
|
|
2184 |
|
|
find_rarely_executed_basic_blocks_and_crossing_edges (&crossing_edges,
|
2185 |
|
|
&n_crossing_edges,
|
2186 |
|
|
&max_edges);
|
2187 |
|
|
|
2188 |
|
|
if (n_crossing_edges > 0)
|
2189 |
|
|
fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
|
2190 |
|
|
|
2191 |
|
|
free (crossing_edges);
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
static bool
|
2195 |
|
|
gate_handle_reorder_blocks (void)
|
2196 |
|
|
{
|
2197 |
|
|
if (targetm.cannot_modify_jumps_p ())
|
2198 |
|
|
return false;
|
2199 |
|
|
return (optimize > 0);
|
2200 |
|
|
}
|
2201 |
|
|
|
2202 |
|
|
|
2203 |
|
|
/* Reorder basic blocks. */
|
2204 |
|
|
static unsigned int
|
2205 |
|
|
rest_of_handle_reorder_blocks (void)
|
2206 |
|
|
{
|
2207 |
|
|
basic_block bb;
|
2208 |
|
|
|
2209 |
|
|
/* Last attempt to optimize CFG, as scheduling, peepholing and insn
|
2210 |
|
|
splitting possibly introduced more crossjumping opportunities. */
|
2211 |
|
|
cfg_layout_initialize (CLEANUP_EXPENSIVE);
|
2212 |
|
|
|
2213 |
|
|
if ((flag_reorder_blocks || flag_reorder_blocks_and_partition)
|
2214 |
|
|
/* Don't reorder blocks when optimizing for size because extra jump insns may
|
2215 |
|
|
be created; also barrier may create extra padding.
|
2216 |
|
|
|
2217 |
|
|
More correctly we should have a block reordering mode that tried to
|
2218 |
|
|
minimize the combined size of all the jumps. This would more or less
|
2219 |
|
|
automatically remove extra jumps, but would also try to use more short
|
2220 |
|
|
jumps instead of long jumps. */
|
2221 |
|
|
&& optimize_function_for_speed_p (cfun))
|
2222 |
|
|
{
|
2223 |
|
|
reorder_basic_blocks ();
|
2224 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
FOR_EACH_BB (bb)
|
2228 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
2229 |
|
|
bb->aux = bb->next_bb;
|
2230 |
|
|
cfg_layout_finalize ();
|
2231 |
|
|
|
2232 |
|
|
/* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
|
2233 |
|
|
insert_section_boundary_note ();
|
2234 |
|
|
return 0;
|
2235 |
|
|
}
|
2236 |
|
|
|
2237 |
|
|
struct rtl_opt_pass pass_reorder_blocks =
|
2238 |
|
|
{
|
2239 |
|
|
{
|
2240 |
|
|
RTL_PASS,
|
2241 |
|
|
"bbro", /* name */
|
2242 |
|
|
gate_handle_reorder_blocks, /* gate */
|
2243 |
|
|
rest_of_handle_reorder_blocks, /* execute */
|
2244 |
|
|
NULL, /* sub */
|
2245 |
|
|
NULL, /* next */
|
2246 |
|
|
0, /* static_pass_number */
|
2247 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
2248 |
|
|
0, /* properties_required */
|
2249 |
|
|
0, /* properties_provided */
|
2250 |
|
|
0, /* properties_destroyed */
|
2251 |
|
|
0, /* todo_flags_start */
|
2252 |
|
|
TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
|
2253 |
|
|
}
|
2254 |
|
|
};
|
2255 |
|
|
|
2256 |
|
|
static bool
|
2257 |
|
|
gate_handle_partition_blocks (void)
|
2258 |
|
|
{
|
2259 |
|
|
/* The optimization to partition hot/cold basic blocks into separate
|
2260 |
|
|
sections of the .o file does not work well with linkonce or with
|
2261 |
|
|
user defined section attributes. Don't call it if either case
|
2262 |
|
|
arises. */
|
2263 |
|
|
|
2264 |
|
|
return (flag_reorder_blocks_and_partition
|
2265 |
|
|
&& !DECL_ONE_ONLY (current_function_decl)
|
2266 |
|
|
&& !user_defined_section_attribute);
|
2267 |
|
|
}
|
2268 |
|
|
|
2269 |
|
|
/* Partition hot and cold basic blocks. */
|
2270 |
|
|
static unsigned int
|
2271 |
|
|
rest_of_handle_partition_blocks (void)
|
2272 |
|
|
{
|
2273 |
|
|
partition_hot_cold_basic_blocks ();
|
2274 |
|
|
return 0;
|
2275 |
|
|
}
|
2276 |
|
|
|
2277 |
|
|
struct rtl_opt_pass pass_partition_blocks =
|
2278 |
|
|
{
|
2279 |
|
|
{
|
2280 |
|
|
RTL_PASS,
|
2281 |
|
|
"bbpart", /* name */
|
2282 |
|
|
gate_handle_partition_blocks, /* gate */
|
2283 |
|
|
rest_of_handle_partition_blocks, /* execute */
|
2284 |
|
|
NULL, /* sub */
|
2285 |
|
|
NULL, /* next */
|
2286 |
|
|
0, /* static_pass_number */
|
2287 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
2288 |
|
|
PROP_cfglayout, /* properties_required */
|
2289 |
|
|
0, /* properties_provided */
|
2290 |
|
|
0, /* properties_destroyed */
|
2291 |
|
|
0, /* todo_flags_start */
|
2292 |
|
|
TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */
|
2293 |
|
|
}
|
2294 |
|
|
};
|