1 |
280 |
jeremybenn |
/* Control flow graph analysis code for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This file contains various simple utilities to analyze the CFG. */
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "obstack.h"
|
29 |
|
|
#include "hard-reg-set.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "insn-config.h"
|
32 |
|
|
#include "recog.h"
|
33 |
|
|
#include "toplev.h"
|
34 |
|
|
#include "tm_p.h"
|
35 |
|
|
#include "vec.h"
|
36 |
|
|
#include "vecprim.h"
|
37 |
|
|
#include "timevar.h"
|
38 |
|
|
|
39 |
|
|
/* Store the data structures necessary for depth-first search. */
|
40 |
|
|
struct depth_first_search_dsS {
|
41 |
|
|
/* stack for backtracking during the algorithm */
|
42 |
|
|
basic_block *stack;
|
43 |
|
|
|
44 |
|
|
/* number of edges in the stack. That is, positions 0, ..., sp-1
|
45 |
|
|
have edges. */
|
46 |
|
|
unsigned int sp;
|
47 |
|
|
|
48 |
|
|
/* record of basic blocks already seen by depth-first search */
|
49 |
|
|
sbitmap visited_blocks;
|
50 |
|
|
};
|
51 |
|
|
typedef struct depth_first_search_dsS *depth_first_search_ds;
|
52 |
|
|
|
53 |
|
|
static void flow_dfs_compute_reverse_init (depth_first_search_ds);
|
54 |
|
|
static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
|
55 |
|
|
basic_block);
|
56 |
|
|
static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
|
57 |
|
|
basic_block);
|
58 |
|
|
static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
|
59 |
|
|
static bool flow_active_insn_p (const_rtx);
|
60 |
|
|
|
61 |
|
|
/* Like active_insn_p, except keep the return value clobber around
|
62 |
|
|
even after reload. */
|
63 |
|
|
|
64 |
|
|
static bool
|
65 |
|
|
flow_active_insn_p (const_rtx insn)
|
66 |
|
|
{
|
67 |
|
|
if (active_insn_p (insn))
|
68 |
|
|
return true;
|
69 |
|
|
|
70 |
|
|
/* A clobber of the function return value exists for buggy
|
71 |
|
|
programs that fail to return a value. Its effect is to
|
72 |
|
|
keep the return value from being live across the entire
|
73 |
|
|
function. If we allow it to be skipped, we introduce the
|
74 |
|
|
possibility for register lifetime confusion. */
|
75 |
|
|
if (GET_CODE (PATTERN (insn)) == CLOBBER
|
76 |
|
|
&& REG_P (XEXP (PATTERN (insn), 0))
|
77 |
|
|
&& REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
|
78 |
|
|
return true;
|
79 |
|
|
|
80 |
|
|
return false;
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
/* Return true if the block has no effect and only forwards control flow to
|
84 |
|
|
its single destination. */
|
85 |
|
|
|
86 |
|
|
bool
|
87 |
|
|
forwarder_block_p (const_basic_block bb)
|
88 |
|
|
{
|
89 |
|
|
rtx insn;
|
90 |
|
|
|
91 |
|
|
if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
|
92 |
|
|
|| !single_succ_p (bb))
|
93 |
|
|
return false;
|
94 |
|
|
|
95 |
|
|
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
|
96 |
|
|
if (INSN_P (insn) && flow_active_insn_p (insn))
|
97 |
|
|
return false;
|
98 |
|
|
|
99 |
|
|
return (!INSN_P (insn)
|
100 |
|
|
|| (JUMP_P (insn) && simplejump_p (insn))
|
101 |
|
|
|| !flow_active_insn_p (insn));
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
/* Return nonzero if we can reach target from src by falling through. */
|
105 |
|
|
|
106 |
|
|
bool
|
107 |
|
|
can_fallthru (basic_block src, basic_block target)
|
108 |
|
|
{
|
109 |
|
|
rtx insn = BB_END (src);
|
110 |
|
|
rtx insn2;
|
111 |
|
|
edge e;
|
112 |
|
|
edge_iterator ei;
|
113 |
|
|
|
114 |
|
|
if (target == EXIT_BLOCK_PTR)
|
115 |
|
|
return true;
|
116 |
|
|
if (src->next_bb != target)
|
117 |
|
|
return 0;
|
118 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
119 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
120 |
|
|
&& e->flags & EDGE_FALLTHRU)
|
121 |
|
|
return 0;
|
122 |
|
|
|
123 |
|
|
insn2 = BB_HEAD (target);
|
124 |
|
|
if (insn2 && !active_insn_p (insn2))
|
125 |
|
|
insn2 = next_active_insn (insn2);
|
126 |
|
|
|
127 |
|
|
/* ??? Later we may add code to move jump tables offline. */
|
128 |
|
|
return next_active_insn (insn) == insn2;
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Return nonzero if we could reach target from src by falling through,
|
132 |
|
|
if the target was made adjacent. If we already have a fall-through
|
133 |
|
|
edge to the exit block, we can't do that. */
|
134 |
|
|
bool
|
135 |
|
|
could_fall_through (basic_block src, basic_block target)
|
136 |
|
|
{
|
137 |
|
|
edge e;
|
138 |
|
|
edge_iterator ei;
|
139 |
|
|
|
140 |
|
|
if (target == EXIT_BLOCK_PTR)
|
141 |
|
|
return true;
|
142 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
143 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
144 |
|
|
&& e->flags & EDGE_FALLTHRU)
|
145 |
|
|
return 0;
|
146 |
|
|
return true;
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/* Mark the back edges in DFS traversal.
|
150 |
|
|
Return nonzero if a loop (natural or otherwise) is present.
|
151 |
|
|
Inspired by Depth_First_Search_PP described in:
|
152 |
|
|
|
153 |
|
|
Advanced Compiler Design and Implementation
|
154 |
|
|
Steven Muchnick
|
155 |
|
|
Morgan Kaufmann, 1997
|
156 |
|
|
|
157 |
|
|
and heavily borrowed from pre_and_rev_post_order_compute. */
|
158 |
|
|
|
159 |
|
|
bool
|
160 |
|
|
mark_dfs_back_edges (void)
|
161 |
|
|
{
|
162 |
|
|
edge_iterator *stack;
|
163 |
|
|
int *pre;
|
164 |
|
|
int *post;
|
165 |
|
|
int sp;
|
166 |
|
|
int prenum = 1;
|
167 |
|
|
int postnum = 1;
|
168 |
|
|
sbitmap visited;
|
169 |
|
|
bool found = false;
|
170 |
|
|
|
171 |
|
|
/* Allocate the preorder and postorder number arrays. */
|
172 |
|
|
pre = XCNEWVEC (int, last_basic_block);
|
173 |
|
|
post = XCNEWVEC (int, last_basic_block);
|
174 |
|
|
|
175 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
176 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
177 |
|
|
sp = 0;
|
178 |
|
|
|
179 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
180 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
181 |
|
|
|
182 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
183 |
|
|
sbitmap_zero (visited);
|
184 |
|
|
|
185 |
|
|
/* Push the first edge on to the stack. */
|
186 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
187 |
|
|
|
188 |
|
|
while (sp)
|
189 |
|
|
{
|
190 |
|
|
edge_iterator ei;
|
191 |
|
|
basic_block src;
|
192 |
|
|
basic_block dest;
|
193 |
|
|
|
194 |
|
|
/* Look at the edge on the top of the stack. */
|
195 |
|
|
ei = stack[sp - 1];
|
196 |
|
|
src = ei_edge (ei)->src;
|
197 |
|
|
dest = ei_edge (ei)->dest;
|
198 |
|
|
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
199 |
|
|
|
200 |
|
|
/* Check if the edge destination has been visited yet. */
|
201 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
202 |
|
|
{
|
203 |
|
|
/* Mark that we have visited the destination. */
|
204 |
|
|
SET_BIT (visited, dest->index);
|
205 |
|
|
|
206 |
|
|
pre[dest->index] = prenum++;
|
207 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
208 |
|
|
{
|
209 |
|
|
/* Since the DEST node has been visited for the first
|
210 |
|
|
time, check its successors. */
|
211 |
|
|
stack[sp++] = ei_start (dest->succs);
|
212 |
|
|
}
|
213 |
|
|
else
|
214 |
|
|
post[dest->index] = postnum++;
|
215 |
|
|
}
|
216 |
|
|
else
|
217 |
|
|
{
|
218 |
|
|
if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
|
219 |
|
|
&& pre[src->index] >= pre[dest->index]
|
220 |
|
|
&& post[dest->index] == 0)
|
221 |
|
|
ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
|
222 |
|
|
|
223 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
|
224 |
|
|
post[src->index] = postnum++;
|
225 |
|
|
|
226 |
|
|
if (!ei_one_before_end_p (ei))
|
227 |
|
|
ei_next (&stack[sp - 1]);
|
228 |
|
|
else
|
229 |
|
|
sp--;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
free (pre);
|
234 |
|
|
free (post);
|
235 |
|
|
free (stack);
|
236 |
|
|
sbitmap_free (visited);
|
237 |
|
|
|
238 |
|
|
return found;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
|
242 |
|
|
|
243 |
|
|
void
|
244 |
|
|
set_edge_can_fallthru_flag (void)
|
245 |
|
|
{
|
246 |
|
|
basic_block bb;
|
247 |
|
|
|
248 |
|
|
FOR_EACH_BB (bb)
|
249 |
|
|
{
|
250 |
|
|
edge e;
|
251 |
|
|
edge_iterator ei;
|
252 |
|
|
|
253 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
254 |
|
|
{
|
255 |
|
|
e->flags &= ~EDGE_CAN_FALLTHRU;
|
256 |
|
|
|
257 |
|
|
/* The FALLTHRU edge is also CAN_FALLTHRU edge. */
|
258 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
259 |
|
|
e->flags |= EDGE_CAN_FALLTHRU;
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* If the BB ends with an invertible condjump all (2) edges are
|
263 |
|
|
CAN_FALLTHRU edges. */
|
264 |
|
|
if (EDGE_COUNT (bb->succs) != 2)
|
265 |
|
|
continue;
|
266 |
|
|
if (!any_condjump_p (BB_END (bb)))
|
267 |
|
|
continue;
|
268 |
|
|
if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
|
269 |
|
|
continue;
|
270 |
|
|
invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
|
271 |
|
|
EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
|
272 |
|
|
EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/* Find unreachable blocks. An unreachable block will have 0 in
|
277 |
|
|
the reachable bit in block->flags. A nonzero value indicates the
|
278 |
|
|
block is reachable. */
|
279 |
|
|
|
280 |
|
|
void
|
281 |
|
|
find_unreachable_blocks (void)
|
282 |
|
|
{
|
283 |
|
|
edge e;
|
284 |
|
|
edge_iterator ei;
|
285 |
|
|
basic_block *tos, *worklist, bb;
|
286 |
|
|
|
287 |
|
|
tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
|
288 |
|
|
|
289 |
|
|
/* Clear all the reachability flags. */
|
290 |
|
|
|
291 |
|
|
FOR_EACH_BB (bb)
|
292 |
|
|
bb->flags &= ~BB_REACHABLE;
|
293 |
|
|
|
294 |
|
|
/* Add our starting points to the worklist. Almost always there will
|
295 |
|
|
be only one. It isn't inconceivable that we might one day directly
|
296 |
|
|
support Fortran alternate entry points. */
|
297 |
|
|
|
298 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
299 |
|
|
{
|
300 |
|
|
*tos++ = e->dest;
|
301 |
|
|
|
302 |
|
|
/* Mark the block reachable. */
|
303 |
|
|
e->dest->flags |= BB_REACHABLE;
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/* Iterate: find everything reachable from what we've already seen. */
|
307 |
|
|
|
308 |
|
|
while (tos != worklist)
|
309 |
|
|
{
|
310 |
|
|
basic_block b = *--tos;
|
311 |
|
|
|
312 |
|
|
FOR_EACH_EDGE (e, ei, b->succs)
|
313 |
|
|
{
|
314 |
|
|
basic_block dest = e->dest;
|
315 |
|
|
|
316 |
|
|
if (!(dest->flags & BB_REACHABLE))
|
317 |
|
|
{
|
318 |
|
|
*tos++ = dest;
|
319 |
|
|
dest->flags |= BB_REACHABLE;
|
320 |
|
|
}
|
321 |
|
|
}
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
free (worklist);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
/* Functions to access an edge list with a vector representation.
|
328 |
|
|
Enough data is kept such that given an index number, the
|
329 |
|
|
pred and succ that edge represents can be determined, or
|
330 |
|
|
given a pred and a succ, its index number can be returned.
|
331 |
|
|
This allows algorithms which consume a lot of memory to
|
332 |
|
|
represent the normally full matrix of edge (pred,succ) with a
|
333 |
|
|
single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
|
334 |
|
|
wasted space in the client code due to sparse flow graphs. */
|
335 |
|
|
|
336 |
|
|
/* This functions initializes the edge list. Basically the entire
|
337 |
|
|
flowgraph is processed, and all edges are assigned a number,
|
338 |
|
|
and the data structure is filled in. */
|
339 |
|
|
|
340 |
|
|
struct edge_list *
|
341 |
|
|
create_edge_list (void)
|
342 |
|
|
{
|
343 |
|
|
struct edge_list *elist;
|
344 |
|
|
edge e;
|
345 |
|
|
int num_edges;
|
346 |
|
|
int block_count;
|
347 |
|
|
basic_block bb;
|
348 |
|
|
edge_iterator ei;
|
349 |
|
|
|
350 |
|
|
block_count = n_basic_blocks; /* Include the entry and exit blocks. */
|
351 |
|
|
|
352 |
|
|
num_edges = 0;
|
353 |
|
|
|
354 |
|
|
/* Determine the number of edges in the flow graph by counting successor
|
355 |
|
|
edges on each basic block. */
|
356 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
357 |
|
|
{
|
358 |
|
|
num_edges += EDGE_COUNT (bb->succs);
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
elist = XNEW (struct edge_list);
|
362 |
|
|
elist->num_blocks = block_count;
|
363 |
|
|
elist->num_edges = num_edges;
|
364 |
|
|
elist->index_to_edge = XNEWVEC (edge, num_edges);
|
365 |
|
|
|
366 |
|
|
num_edges = 0;
|
367 |
|
|
|
368 |
|
|
/* Follow successors of blocks, and register these edges. */
|
369 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
370 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
371 |
|
|
elist->index_to_edge[num_edges++] = e;
|
372 |
|
|
|
373 |
|
|
return elist;
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/* This function free's memory associated with an edge list. */
|
377 |
|
|
|
378 |
|
|
void
|
379 |
|
|
free_edge_list (struct edge_list *elist)
|
380 |
|
|
{
|
381 |
|
|
if (elist)
|
382 |
|
|
{
|
383 |
|
|
free (elist->index_to_edge);
|
384 |
|
|
free (elist);
|
385 |
|
|
}
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
/* This function provides debug output showing an edge list. */
|
389 |
|
|
|
390 |
|
|
void
|
391 |
|
|
print_edge_list (FILE *f, struct edge_list *elist)
|
392 |
|
|
{
|
393 |
|
|
int x;
|
394 |
|
|
|
395 |
|
|
fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
|
396 |
|
|
elist->num_blocks, elist->num_edges);
|
397 |
|
|
|
398 |
|
|
for (x = 0; x < elist->num_edges; x++)
|
399 |
|
|
{
|
400 |
|
|
fprintf (f, " %-4d - edge(", x);
|
401 |
|
|
if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
|
402 |
|
|
fprintf (f, "entry,");
|
403 |
|
|
else
|
404 |
|
|
fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
|
405 |
|
|
|
406 |
|
|
if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
|
407 |
|
|
fprintf (f, "exit)\n");
|
408 |
|
|
else
|
409 |
|
|
fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
|
410 |
|
|
}
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* This function provides an internal consistency check of an edge list,
|
414 |
|
|
verifying that all edges are present, and that there are no
|
415 |
|
|
extra edges. */
|
416 |
|
|
|
417 |
|
|
void
|
418 |
|
|
verify_edge_list (FILE *f, struct edge_list *elist)
|
419 |
|
|
{
|
420 |
|
|
int pred, succ, index;
|
421 |
|
|
edge e;
|
422 |
|
|
basic_block bb, p, s;
|
423 |
|
|
edge_iterator ei;
|
424 |
|
|
|
425 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
426 |
|
|
{
|
427 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
428 |
|
|
{
|
429 |
|
|
pred = e->src->index;
|
430 |
|
|
succ = e->dest->index;
|
431 |
|
|
index = EDGE_INDEX (elist, e->src, e->dest);
|
432 |
|
|
if (index == EDGE_INDEX_NO_EDGE)
|
433 |
|
|
{
|
434 |
|
|
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
|
435 |
|
|
continue;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
|
439 |
|
|
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
|
440 |
|
|
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
|
441 |
|
|
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
|
442 |
|
|
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
|
443 |
|
|
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
|
444 |
|
|
}
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
/* We've verified that all the edges are in the list, now lets make sure
|
448 |
|
|
there are no spurious edges in the list. */
|
449 |
|
|
|
450 |
|
|
FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
451 |
|
|
FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
|
452 |
|
|
{
|
453 |
|
|
int found_edge = 0;
|
454 |
|
|
|
455 |
|
|
FOR_EACH_EDGE (e, ei, p->succs)
|
456 |
|
|
if (e->dest == s)
|
457 |
|
|
{
|
458 |
|
|
found_edge = 1;
|
459 |
|
|
break;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
FOR_EACH_EDGE (e, ei, s->preds)
|
463 |
|
|
if (e->src == p)
|
464 |
|
|
{
|
465 |
|
|
found_edge = 1;
|
466 |
|
|
break;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
if (EDGE_INDEX (elist, p, s)
|
470 |
|
|
== EDGE_INDEX_NO_EDGE && found_edge != 0)
|
471 |
|
|
fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
|
472 |
|
|
p->index, s->index);
|
473 |
|
|
if (EDGE_INDEX (elist, p, s)
|
474 |
|
|
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
|
475 |
|
|
fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
|
476 |
|
|
p->index, s->index, EDGE_INDEX (elist, p, s));
|
477 |
|
|
}
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* Given PRED and SUCC blocks, return the edge which connects the blocks.
|
481 |
|
|
If no such edge exists, return NULL. */
|
482 |
|
|
|
483 |
|
|
edge
|
484 |
|
|
find_edge (basic_block pred, basic_block succ)
|
485 |
|
|
{
|
486 |
|
|
edge e;
|
487 |
|
|
edge_iterator ei;
|
488 |
|
|
|
489 |
|
|
if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
|
490 |
|
|
{
|
491 |
|
|
FOR_EACH_EDGE (e, ei, pred->succs)
|
492 |
|
|
if (e->dest == succ)
|
493 |
|
|
return e;
|
494 |
|
|
}
|
495 |
|
|
else
|
496 |
|
|
{
|
497 |
|
|
FOR_EACH_EDGE (e, ei, succ->preds)
|
498 |
|
|
if (e->src == pred)
|
499 |
|
|
return e;
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
return NULL;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
/* This routine will determine what, if any, edge there is between
|
506 |
|
|
a specified predecessor and successor. */
|
507 |
|
|
|
508 |
|
|
int
|
509 |
|
|
find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
|
510 |
|
|
{
|
511 |
|
|
int x;
|
512 |
|
|
|
513 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
514 |
|
|
if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
|
515 |
|
|
&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
|
516 |
|
|
return x;
|
517 |
|
|
|
518 |
|
|
return (EDGE_INDEX_NO_EDGE);
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/* Dump the list of basic blocks in the bitmap NODES. */
|
522 |
|
|
|
523 |
|
|
void
|
524 |
|
|
flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
|
525 |
|
|
{
|
526 |
|
|
unsigned int node = 0;
|
527 |
|
|
sbitmap_iterator sbi;
|
528 |
|
|
|
529 |
|
|
if (! nodes)
|
530 |
|
|
return;
|
531 |
|
|
|
532 |
|
|
fprintf (file, "%s { ", str);
|
533 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
|
534 |
|
|
fprintf (file, "%d ", node);
|
535 |
|
|
fputs ("}\n", file);
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Dump the list of edges in the array EDGE_LIST. */
|
539 |
|
|
|
540 |
|
|
void
|
541 |
|
|
flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
|
542 |
|
|
{
|
543 |
|
|
int i;
|
544 |
|
|
|
545 |
|
|
if (! edge_list)
|
546 |
|
|
return;
|
547 |
|
|
|
548 |
|
|
fprintf (file, "%s { ", str);
|
549 |
|
|
for (i = 0; i < num_edges; i++)
|
550 |
|
|
fprintf (file, "%d->%d ", edge_list[i]->src->index,
|
551 |
|
|
edge_list[i]->dest->index);
|
552 |
|
|
|
553 |
|
|
fputs ("}\n", file);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
|
557 |
|
|
/* This routine will remove any fake predecessor edges for a basic block.
|
558 |
|
|
When the edge is removed, it is also removed from whatever successor
|
559 |
|
|
list it is in. */
|
560 |
|
|
|
561 |
|
|
static void
|
562 |
|
|
remove_fake_predecessors (basic_block bb)
|
563 |
|
|
{
|
564 |
|
|
edge e;
|
565 |
|
|
edge_iterator ei;
|
566 |
|
|
|
567 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
568 |
|
|
{
|
569 |
|
|
if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
|
570 |
|
|
remove_edge (e);
|
571 |
|
|
else
|
572 |
|
|
ei_next (&ei);
|
573 |
|
|
}
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* This routine will remove all fake edges from the flow graph. If
|
577 |
|
|
we remove all fake successors, it will automatically remove all
|
578 |
|
|
fake predecessors. */
|
579 |
|
|
|
580 |
|
|
void
|
581 |
|
|
remove_fake_edges (void)
|
582 |
|
|
{
|
583 |
|
|
basic_block bb;
|
584 |
|
|
|
585 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
|
586 |
|
|
remove_fake_predecessors (bb);
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/* This routine will remove all fake edges to the EXIT_BLOCK. */
|
590 |
|
|
|
591 |
|
|
void
|
592 |
|
|
remove_fake_exit_edges (void)
|
593 |
|
|
{
|
594 |
|
|
remove_fake_predecessors (EXIT_BLOCK_PTR);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
|
598 |
|
|
/* This function will add a fake edge between any block which has no
|
599 |
|
|
successors, and the exit block. Some data flow equations require these
|
600 |
|
|
edges to exist. */
|
601 |
|
|
|
602 |
|
|
void
|
603 |
|
|
add_noreturn_fake_exit_edges (void)
|
604 |
|
|
{
|
605 |
|
|
basic_block bb;
|
606 |
|
|
|
607 |
|
|
FOR_EACH_BB (bb)
|
608 |
|
|
if (EDGE_COUNT (bb->succs) == 0)
|
609 |
|
|
make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
/* This function adds a fake edge between any infinite loops to the
|
613 |
|
|
exit block. Some optimizations require a path from each node to
|
614 |
|
|
the exit node.
|
615 |
|
|
|
616 |
|
|
See also Morgan, Figure 3.10, pp. 82-83.
|
617 |
|
|
|
618 |
|
|
The current implementation is ugly, not attempting to minimize the
|
619 |
|
|
number of inserted fake edges. To reduce the number of fake edges
|
620 |
|
|
to insert, add fake edges from _innermost_ loops containing only
|
621 |
|
|
nodes not reachable from the exit block. */
|
622 |
|
|
|
623 |
|
|
void
|
624 |
|
|
connect_infinite_loops_to_exit (void)
|
625 |
|
|
{
|
626 |
|
|
basic_block unvisited_block = EXIT_BLOCK_PTR;
|
627 |
|
|
struct depth_first_search_dsS dfs_ds;
|
628 |
|
|
|
629 |
|
|
/* Perform depth-first search in the reverse graph to find nodes
|
630 |
|
|
reachable from the exit block. */
|
631 |
|
|
flow_dfs_compute_reverse_init (&dfs_ds);
|
632 |
|
|
flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
|
633 |
|
|
|
634 |
|
|
/* Repeatedly add fake edges, updating the unreachable nodes. */
|
635 |
|
|
while (1)
|
636 |
|
|
{
|
637 |
|
|
unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
|
638 |
|
|
unvisited_block);
|
639 |
|
|
if (!unvisited_block)
|
640 |
|
|
break;
|
641 |
|
|
|
642 |
|
|
make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
|
643 |
|
|
flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
flow_dfs_compute_reverse_finish (&dfs_ds);
|
647 |
|
|
return;
|
648 |
|
|
}
|
649 |
|
|
|
650 |
|
|
/* Compute reverse top sort order. This is computing a post order
|
651 |
|
|
numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
|
652 |
|
|
ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
|
653 |
|
|
true, unreachable blocks are deleted. */
|
654 |
|
|
|
655 |
|
|
int
|
656 |
|
|
post_order_compute (int *post_order, bool include_entry_exit,
|
657 |
|
|
bool delete_unreachable)
|
658 |
|
|
{
|
659 |
|
|
edge_iterator *stack;
|
660 |
|
|
int sp;
|
661 |
|
|
int post_order_num = 0;
|
662 |
|
|
sbitmap visited;
|
663 |
|
|
int count;
|
664 |
|
|
|
665 |
|
|
if (include_entry_exit)
|
666 |
|
|
post_order[post_order_num++] = EXIT_BLOCK;
|
667 |
|
|
|
668 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
669 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
670 |
|
|
sp = 0;
|
671 |
|
|
|
672 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
673 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
674 |
|
|
|
675 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
676 |
|
|
sbitmap_zero (visited);
|
677 |
|
|
|
678 |
|
|
/* Push the first edge on to the stack. */
|
679 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
680 |
|
|
|
681 |
|
|
while (sp)
|
682 |
|
|
{
|
683 |
|
|
edge_iterator ei;
|
684 |
|
|
basic_block src;
|
685 |
|
|
basic_block dest;
|
686 |
|
|
|
687 |
|
|
/* Look at the edge on the top of the stack. */
|
688 |
|
|
ei = stack[sp - 1];
|
689 |
|
|
src = ei_edge (ei)->src;
|
690 |
|
|
dest = ei_edge (ei)->dest;
|
691 |
|
|
|
692 |
|
|
/* Check if the edge destination has been visited yet. */
|
693 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
694 |
|
|
{
|
695 |
|
|
/* Mark that we have visited the destination. */
|
696 |
|
|
SET_BIT (visited, dest->index);
|
697 |
|
|
|
698 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
699 |
|
|
/* Since the DEST node has been visited for the first
|
700 |
|
|
time, check its successors. */
|
701 |
|
|
stack[sp++] = ei_start (dest->succs);
|
702 |
|
|
else
|
703 |
|
|
post_order[post_order_num++] = dest->index;
|
704 |
|
|
}
|
705 |
|
|
else
|
706 |
|
|
{
|
707 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
|
708 |
|
|
post_order[post_order_num++] = src->index;
|
709 |
|
|
|
710 |
|
|
if (!ei_one_before_end_p (ei))
|
711 |
|
|
ei_next (&stack[sp - 1]);
|
712 |
|
|
else
|
713 |
|
|
sp--;
|
714 |
|
|
}
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
if (include_entry_exit)
|
718 |
|
|
{
|
719 |
|
|
post_order[post_order_num++] = ENTRY_BLOCK;
|
720 |
|
|
count = post_order_num;
|
721 |
|
|
}
|
722 |
|
|
else
|
723 |
|
|
count = post_order_num + 2;
|
724 |
|
|
|
725 |
|
|
/* Delete the unreachable blocks if some were found and we are
|
726 |
|
|
supposed to do it. */
|
727 |
|
|
if (delete_unreachable && (count != n_basic_blocks))
|
728 |
|
|
{
|
729 |
|
|
basic_block b;
|
730 |
|
|
basic_block next_bb;
|
731 |
|
|
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
|
732 |
|
|
{
|
733 |
|
|
next_bb = b->next_bb;
|
734 |
|
|
|
735 |
|
|
if (!(TEST_BIT (visited, b->index)))
|
736 |
|
|
delete_basic_block (b);
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
tidy_fallthru_edges ();
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
free (stack);
|
743 |
|
|
sbitmap_free (visited);
|
744 |
|
|
return post_order_num;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
|
748 |
|
|
/* Helper routine for inverted_post_order_compute.
|
749 |
|
|
BB has to belong to a region of CFG
|
750 |
|
|
unreachable by inverted traversal from the exit.
|
751 |
|
|
i.e. there's no control flow path from ENTRY to EXIT
|
752 |
|
|
that contains this BB.
|
753 |
|
|
This can happen in two cases - if there's an infinite loop
|
754 |
|
|
or if there's a block that has no successor
|
755 |
|
|
(call to a function with no return).
|
756 |
|
|
Some RTL passes deal with this condition by
|
757 |
|
|
calling connect_infinite_loops_to_exit () and/or
|
758 |
|
|
add_noreturn_fake_exit_edges ().
|
759 |
|
|
However, those methods involve modifying the CFG itself
|
760 |
|
|
which may not be desirable.
|
761 |
|
|
Hence, we deal with the infinite loop/no return cases
|
762 |
|
|
by identifying a unique basic block that can reach all blocks
|
763 |
|
|
in such a region by inverted traversal.
|
764 |
|
|
This function returns a basic block that guarantees
|
765 |
|
|
that all blocks in the region are reachable
|
766 |
|
|
by starting an inverted traversal from the returned block. */
|
767 |
|
|
|
768 |
|
|
static basic_block
|
769 |
|
|
dfs_find_deadend (basic_block bb)
|
770 |
|
|
{
|
771 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
772 |
|
|
sbitmap_zero (visited);
|
773 |
|
|
|
774 |
|
|
for (;;)
|
775 |
|
|
{
|
776 |
|
|
SET_BIT (visited, bb->index);
|
777 |
|
|
if (EDGE_COUNT (bb->succs) == 0
|
778 |
|
|
|| TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
|
779 |
|
|
{
|
780 |
|
|
sbitmap_free (visited);
|
781 |
|
|
return bb;
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
bb = EDGE_SUCC (bb, 0)->dest;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
gcc_unreachable ();
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
|
791 |
|
|
/* Compute the reverse top sort order of the inverted CFG
|
792 |
|
|
i.e. starting from the exit block and following the edges backward
|
793 |
|
|
(from successors to predecessors).
|
794 |
|
|
This ordering can be used for forward dataflow problems among others.
|
795 |
|
|
|
796 |
|
|
This function assumes that all blocks in the CFG are reachable
|
797 |
|
|
from the ENTRY (but not necessarily from EXIT).
|
798 |
|
|
|
799 |
|
|
If there's an infinite loop,
|
800 |
|
|
a simple inverted traversal starting from the blocks
|
801 |
|
|
with no successors can't visit all blocks.
|
802 |
|
|
To solve this problem, we first do inverted traversal
|
803 |
|
|
starting from the blocks with no successor.
|
804 |
|
|
And if there's any block left that's not visited by the regular
|
805 |
|
|
inverted traversal from EXIT,
|
806 |
|
|
those blocks are in such problematic region.
|
807 |
|
|
Among those, we find one block that has
|
808 |
|
|
any visited predecessor (which is an entry into such a region),
|
809 |
|
|
and start looking for a "dead end" from that block
|
810 |
|
|
and do another inverted traversal from that block. */
|
811 |
|
|
|
812 |
|
|
int
|
813 |
|
|
inverted_post_order_compute (int *post_order)
|
814 |
|
|
{
|
815 |
|
|
basic_block bb;
|
816 |
|
|
edge_iterator *stack;
|
817 |
|
|
int sp;
|
818 |
|
|
int post_order_num = 0;
|
819 |
|
|
sbitmap visited;
|
820 |
|
|
|
821 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
822 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
823 |
|
|
sp = 0;
|
824 |
|
|
|
825 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
826 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
827 |
|
|
|
828 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
829 |
|
|
sbitmap_zero (visited);
|
830 |
|
|
|
831 |
|
|
/* Put all blocks that have no successor into the initial work list. */
|
832 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
833 |
|
|
if (EDGE_COUNT (bb->succs) == 0)
|
834 |
|
|
{
|
835 |
|
|
/* Push the initial edge on to the stack. */
|
836 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
837 |
|
|
{
|
838 |
|
|
stack[sp++] = ei_start (bb->preds);
|
839 |
|
|
SET_BIT (visited, bb->index);
|
840 |
|
|
}
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
do
|
844 |
|
|
{
|
845 |
|
|
bool has_unvisited_bb = false;
|
846 |
|
|
|
847 |
|
|
/* The inverted traversal loop. */
|
848 |
|
|
while (sp)
|
849 |
|
|
{
|
850 |
|
|
edge_iterator ei;
|
851 |
|
|
basic_block pred;
|
852 |
|
|
|
853 |
|
|
/* Look at the edge on the top of the stack. */
|
854 |
|
|
ei = stack[sp - 1];
|
855 |
|
|
bb = ei_edge (ei)->dest;
|
856 |
|
|
pred = ei_edge (ei)->src;
|
857 |
|
|
|
858 |
|
|
/* Check if the predecessor has been visited yet. */
|
859 |
|
|
if (! TEST_BIT (visited, pred->index))
|
860 |
|
|
{
|
861 |
|
|
/* Mark that we have visited the destination. */
|
862 |
|
|
SET_BIT (visited, pred->index);
|
863 |
|
|
|
864 |
|
|
if (EDGE_COUNT (pred->preds) > 0)
|
865 |
|
|
/* Since the predecessor node has been visited for the first
|
866 |
|
|
time, check its predecessors. */
|
867 |
|
|
stack[sp++] = ei_start (pred->preds);
|
868 |
|
|
else
|
869 |
|
|
post_order[post_order_num++] = pred->index;
|
870 |
|
|
}
|
871 |
|
|
else
|
872 |
|
|
{
|
873 |
|
|
if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
|
874 |
|
|
post_order[post_order_num++] = bb->index;
|
875 |
|
|
|
876 |
|
|
if (!ei_one_before_end_p (ei))
|
877 |
|
|
ei_next (&stack[sp - 1]);
|
878 |
|
|
else
|
879 |
|
|
sp--;
|
880 |
|
|
}
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
/* Detect any infinite loop and activate the kludge.
|
884 |
|
|
Note that this doesn't check EXIT_BLOCK itself
|
885 |
|
|
since EXIT_BLOCK is always added after the outer do-while loop. */
|
886 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
887 |
|
|
if (!TEST_BIT (visited, bb->index))
|
888 |
|
|
{
|
889 |
|
|
has_unvisited_bb = true;
|
890 |
|
|
|
891 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
892 |
|
|
{
|
893 |
|
|
edge_iterator ei;
|
894 |
|
|
edge e;
|
895 |
|
|
basic_block visited_pred = NULL;
|
896 |
|
|
|
897 |
|
|
/* Find an already visited predecessor. */
|
898 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
899 |
|
|
{
|
900 |
|
|
if (TEST_BIT (visited, e->src->index))
|
901 |
|
|
visited_pred = e->src;
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
if (visited_pred)
|
905 |
|
|
{
|
906 |
|
|
basic_block be = dfs_find_deadend (bb);
|
907 |
|
|
gcc_assert (be != NULL);
|
908 |
|
|
SET_BIT (visited, be->index);
|
909 |
|
|
stack[sp++] = ei_start (be->preds);
|
910 |
|
|
break;
|
911 |
|
|
}
|
912 |
|
|
}
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
if (has_unvisited_bb && sp == 0)
|
916 |
|
|
{
|
917 |
|
|
/* No blocks are reachable from EXIT at all.
|
918 |
|
|
Find a dead-end from the ENTRY, and restart the iteration. */
|
919 |
|
|
basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
|
920 |
|
|
gcc_assert (be != NULL);
|
921 |
|
|
SET_BIT (visited, be->index);
|
922 |
|
|
stack[sp++] = ei_start (be->preds);
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
/* The only case the below while fires is
|
926 |
|
|
when there's an infinite loop. */
|
927 |
|
|
}
|
928 |
|
|
while (sp);
|
929 |
|
|
|
930 |
|
|
/* EXIT_BLOCK is always included. */
|
931 |
|
|
post_order[post_order_num++] = EXIT_BLOCK;
|
932 |
|
|
|
933 |
|
|
free (stack);
|
934 |
|
|
sbitmap_free (visited);
|
935 |
|
|
return post_order_num;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* Compute the depth first search order and store in the array
|
939 |
|
|
PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
|
940 |
|
|
REV_POST_ORDER is nonzero, return the reverse completion number for each
|
941 |
|
|
node. Returns the number of nodes visited. A depth first search
|
942 |
|
|
tries to get as far away from the starting point as quickly as
|
943 |
|
|
possible.
|
944 |
|
|
|
945 |
|
|
pre_order is a really a preorder numbering of the graph.
|
946 |
|
|
rev_post_order is really a reverse postorder numbering of the graph.
|
947 |
|
|
*/
|
948 |
|
|
|
949 |
|
|
int
|
950 |
|
|
pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
|
951 |
|
|
bool include_entry_exit)
|
952 |
|
|
{
|
953 |
|
|
edge_iterator *stack;
|
954 |
|
|
int sp;
|
955 |
|
|
int pre_order_num = 0;
|
956 |
|
|
int rev_post_order_num = n_basic_blocks - 1;
|
957 |
|
|
sbitmap visited;
|
958 |
|
|
|
959 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
960 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
961 |
|
|
sp = 0;
|
962 |
|
|
|
963 |
|
|
if (include_entry_exit)
|
964 |
|
|
{
|
965 |
|
|
if (pre_order)
|
966 |
|
|
pre_order[pre_order_num] = ENTRY_BLOCK;
|
967 |
|
|
pre_order_num++;
|
968 |
|
|
if (rev_post_order)
|
969 |
|
|
rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
|
970 |
|
|
}
|
971 |
|
|
else
|
972 |
|
|
rev_post_order_num -= NUM_FIXED_BLOCKS;
|
973 |
|
|
|
974 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
975 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
976 |
|
|
|
977 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
978 |
|
|
sbitmap_zero (visited);
|
979 |
|
|
|
980 |
|
|
/* Push the first edge on to the stack. */
|
981 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
982 |
|
|
|
983 |
|
|
while (sp)
|
984 |
|
|
{
|
985 |
|
|
edge_iterator ei;
|
986 |
|
|
basic_block src;
|
987 |
|
|
basic_block dest;
|
988 |
|
|
|
989 |
|
|
/* Look at the edge on the top of the stack. */
|
990 |
|
|
ei = stack[sp - 1];
|
991 |
|
|
src = ei_edge (ei)->src;
|
992 |
|
|
dest = ei_edge (ei)->dest;
|
993 |
|
|
|
994 |
|
|
/* Check if the edge destination has been visited yet. */
|
995 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
996 |
|
|
{
|
997 |
|
|
/* Mark that we have visited the destination. */
|
998 |
|
|
SET_BIT (visited, dest->index);
|
999 |
|
|
|
1000 |
|
|
if (pre_order)
|
1001 |
|
|
pre_order[pre_order_num] = dest->index;
|
1002 |
|
|
|
1003 |
|
|
pre_order_num++;
|
1004 |
|
|
|
1005 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
1006 |
|
|
/* Since the DEST node has been visited for the first
|
1007 |
|
|
time, check its successors. */
|
1008 |
|
|
stack[sp++] = ei_start (dest->succs);
|
1009 |
|
|
else if (rev_post_order)
|
1010 |
|
|
/* There are no successors for the DEST node so assign
|
1011 |
|
|
its reverse completion number. */
|
1012 |
|
|
rev_post_order[rev_post_order_num--] = dest->index;
|
1013 |
|
|
}
|
1014 |
|
|
else
|
1015 |
|
|
{
|
1016 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
|
1017 |
|
|
&& rev_post_order)
|
1018 |
|
|
/* There are no more successors for the SRC node
|
1019 |
|
|
so assign its reverse completion number. */
|
1020 |
|
|
rev_post_order[rev_post_order_num--] = src->index;
|
1021 |
|
|
|
1022 |
|
|
if (!ei_one_before_end_p (ei))
|
1023 |
|
|
ei_next (&stack[sp - 1]);
|
1024 |
|
|
else
|
1025 |
|
|
sp--;
|
1026 |
|
|
}
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
free (stack);
|
1030 |
|
|
sbitmap_free (visited);
|
1031 |
|
|
|
1032 |
|
|
if (include_entry_exit)
|
1033 |
|
|
{
|
1034 |
|
|
if (pre_order)
|
1035 |
|
|
pre_order[pre_order_num] = EXIT_BLOCK;
|
1036 |
|
|
pre_order_num++;
|
1037 |
|
|
if (rev_post_order)
|
1038 |
|
|
rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
|
1039 |
|
|
/* The number of nodes visited should be the number of blocks. */
|
1040 |
|
|
gcc_assert (pre_order_num == n_basic_blocks);
|
1041 |
|
|
}
|
1042 |
|
|
else
|
1043 |
|
|
/* The number of nodes visited should be the number of blocks minus
|
1044 |
|
|
the entry and exit blocks which are not visited here. */
|
1045 |
|
|
gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
|
1046 |
|
|
|
1047 |
|
|
return pre_order_num;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Compute the depth first search order on the _reverse_ graph and
|
1051 |
|
|
store in the array DFS_ORDER, marking the nodes visited in VISITED.
|
1052 |
|
|
Returns the number of nodes visited.
|
1053 |
|
|
|
1054 |
|
|
The computation is split into three pieces:
|
1055 |
|
|
|
1056 |
|
|
flow_dfs_compute_reverse_init () creates the necessary data
|
1057 |
|
|
structures.
|
1058 |
|
|
|
1059 |
|
|
flow_dfs_compute_reverse_add_bb () adds a basic block to the data
|
1060 |
|
|
structures. The block will start the search.
|
1061 |
|
|
|
1062 |
|
|
flow_dfs_compute_reverse_execute () continues (or starts) the
|
1063 |
|
|
search using the block on the top of the stack, stopping when the
|
1064 |
|
|
stack is empty.
|
1065 |
|
|
|
1066 |
|
|
flow_dfs_compute_reverse_finish () destroys the necessary data
|
1067 |
|
|
structures.
|
1068 |
|
|
|
1069 |
|
|
Thus, the user will probably call ..._init(), call ..._add_bb() to
|
1070 |
|
|
add a beginning basic block to the stack, call ..._execute(),
|
1071 |
|
|
possibly add another bb to the stack and again call ..._execute(),
|
1072 |
|
|
..., and finally call _finish(). */
|
1073 |
|
|
|
1074 |
|
|
/* Initialize the data structures used for depth-first search on the
|
1075 |
|
|
reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
|
1076 |
|
|
added to the basic block stack. DATA is the current depth-first
|
1077 |
|
|
search context. If INITIALIZE_STACK is nonzero, there is an
|
1078 |
|
|
element on the stack. */
|
1079 |
|
|
|
1080 |
|
|
static void
|
1081 |
|
|
flow_dfs_compute_reverse_init (depth_first_search_ds data)
|
1082 |
|
|
{
|
1083 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
1084 |
|
|
data->stack = XNEWVEC (basic_block, n_basic_blocks);
|
1085 |
|
|
data->sp = 0;
|
1086 |
|
|
|
1087 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
1088 |
|
|
data->visited_blocks = sbitmap_alloc (last_basic_block);
|
1089 |
|
|
|
1090 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
1091 |
|
|
sbitmap_zero (data->visited_blocks);
|
1092 |
|
|
|
1093 |
|
|
return;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
/* Add the specified basic block to the top of the dfs data
|
1097 |
|
|
structures. When the search continues, it will start at the
|
1098 |
|
|
block. */
|
1099 |
|
|
|
1100 |
|
|
static void
|
1101 |
|
|
flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
|
1102 |
|
|
{
|
1103 |
|
|
data->stack[data->sp++] = bb;
|
1104 |
|
|
SET_BIT (data->visited_blocks, bb->index);
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
/* Continue the depth-first search through the reverse graph starting with the
|
1108 |
|
|
block at the stack's top and ending when the stack is empty. Visited nodes
|
1109 |
|
|
are marked. Returns an unvisited basic block, or NULL if there is none
|
1110 |
|
|
available. */
|
1111 |
|
|
|
1112 |
|
|
static basic_block
|
1113 |
|
|
flow_dfs_compute_reverse_execute (depth_first_search_ds data,
|
1114 |
|
|
basic_block last_unvisited)
|
1115 |
|
|
{
|
1116 |
|
|
basic_block bb;
|
1117 |
|
|
edge e;
|
1118 |
|
|
edge_iterator ei;
|
1119 |
|
|
|
1120 |
|
|
while (data->sp > 0)
|
1121 |
|
|
{
|
1122 |
|
|
bb = data->stack[--data->sp];
|
1123 |
|
|
|
1124 |
|
|
/* Perform depth-first search on adjacent vertices. */
|
1125 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1126 |
|
|
if (!TEST_BIT (data->visited_blocks, e->src->index))
|
1127 |
|
|
flow_dfs_compute_reverse_add_bb (data, e->src);
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
/* Determine if there are unvisited basic blocks. */
|
1131 |
|
|
FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
|
1132 |
|
|
if (!TEST_BIT (data->visited_blocks, bb->index))
|
1133 |
|
|
return bb;
|
1134 |
|
|
|
1135 |
|
|
return NULL;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Destroy the data structures needed for depth-first search on the
|
1139 |
|
|
reverse graph. */
|
1140 |
|
|
|
1141 |
|
|
static void
|
1142 |
|
|
flow_dfs_compute_reverse_finish (depth_first_search_ds data)
|
1143 |
|
|
{
|
1144 |
|
|
free (data->stack);
|
1145 |
|
|
sbitmap_free (data->visited_blocks);
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
/* Performs dfs search from BB over vertices satisfying PREDICATE;
|
1149 |
|
|
if REVERSE, go against direction of edges. Returns number of blocks
|
1150 |
|
|
found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
|
1151 |
|
|
int
|
1152 |
|
|
dfs_enumerate_from (basic_block bb, int reverse,
|
1153 |
|
|
bool (*predicate) (const_basic_block, const void *),
|
1154 |
|
|
basic_block *rslt, int rslt_max, const void *data)
|
1155 |
|
|
{
|
1156 |
|
|
basic_block *st, lbb;
|
1157 |
|
|
int sp = 0, tv = 0;
|
1158 |
|
|
unsigned size;
|
1159 |
|
|
|
1160 |
|
|
/* A bitmap to keep track of visited blocks. Allocating it each time
|
1161 |
|
|
this function is called is not possible, since dfs_enumerate_from
|
1162 |
|
|
is often used on small (almost) disjoint parts of cfg (bodies of
|
1163 |
|
|
loops), and allocating a large sbitmap would lead to quadratic
|
1164 |
|
|
behavior. */
|
1165 |
|
|
static sbitmap visited;
|
1166 |
|
|
static unsigned v_size;
|
1167 |
|
|
|
1168 |
|
|
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
|
1169 |
|
|
#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
|
1170 |
|
|
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
|
1171 |
|
|
|
1172 |
|
|
/* Resize the VISITED sbitmap if necessary. */
|
1173 |
|
|
size = last_basic_block;
|
1174 |
|
|
if (size < 10)
|
1175 |
|
|
size = 10;
|
1176 |
|
|
|
1177 |
|
|
if (!visited)
|
1178 |
|
|
{
|
1179 |
|
|
|
1180 |
|
|
visited = sbitmap_alloc (size);
|
1181 |
|
|
sbitmap_zero (visited);
|
1182 |
|
|
v_size = size;
|
1183 |
|
|
}
|
1184 |
|
|
else if (v_size < size)
|
1185 |
|
|
{
|
1186 |
|
|
/* Ensure that we increase the size of the sbitmap exponentially. */
|
1187 |
|
|
if (2 * v_size > size)
|
1188 |
|
|
size = 2 * v_size;
|
1189 |
|
|
|
1190 |
|
|
visited = sbitmap_resize (visited, size, 0);
|
1191 |
|
|
v_size = size;
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
st = XCNEWVEC (basic_block, rslt_max);
|
1195 |
|
|
rslt[tv++] = st[sp++] = bb;
|
1196 |
|
|
MARK_VISITED (bb);
|
1197 |
|
|
while (sp)
|
1198 |
|
|
{
|
1199 |
|
|
edge e;
|
1200 |
|
|
edge_iterator ei;
|
1201 |
|
|
lbb = st[--sp];
|
1202 |
|
|
if (reverse)
|
1203 |
|
|
{
|
1204 |
|
|
FOR_EACH_EDGE (e, ei, lbb->preds)
|
1205 |
|
|
if (!VISITED_P (e->src) && predicate (e->src, data))
|
1206 |
|
|
{
|
1207 |
|
|
gcc_assert (tv != rslt_max);
|
1208 |
|
|
rslt[tv++] = st[sp++] = e->src;
|
1209 |
|
|
MARK_VISITED (e->src);
|
1210 |
|
|
}
|
1211 |
|
|
}
|
1212 |
|
|
else
|
1213 |
|
|
{
|
1214 |
|
|
FOR_EACH_EDGE (e, ei, lbb->succs)
|
1215 |
|
|
if (!VISITED_P (e->dest) && predicate (e->dest, data))
|
1216 |
|
|
{
|
1217 |
|
|
gcc_assert (tv != rslt_max);
|
1218 |
|
|
rslt[tv++] = st[sp++] = e->dest;
|
1219 |
|
|
MARK_VISITED (e->dest);
|
1220 |
|
|
}
|
1221 |
|
|
}
|
1222 |
|
|
}
|
1223 |
|
|
free (st);
|
1224 |
|
|
for (sp = 0; sp < tv; sp++)
|
1225 |
|
|
UNMARK_VISITED (rslt[sp]);
|
1226 |
|
|
return tv;
|
1227 |
|
|
#undef MARK_VISITED
|
1228 |
|
|
#undef UNMARK_VISITED
|
1229 |
|
|
#undef VISITED_P
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
|
1233 |
|
|
/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
|
1234 |
|
|
|
1235 |
|
|
This algorithm can be found in Timothy Harvey's PhD thesis, at
|
1236 |
|
|
http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
|
1237 |
|
|
dominance algorithms.
|
1238 |
|
|
|
1239 |
|
|
First, we identify each join point, j (any node with more than one
|
1240 |
|
|
incoming edge is a join point).
|
1241 |
|
|
|
1242 |
|
|
We then examine each predecessor, p, of j and walk up the dominator tree
|
1243 |
|
|
starting at p.
|
1244 |
|
|
|
1245 |
|
|
We stop the walk when we reach j's immediate dominator - j is in the
|
1246 |
|
|
dominance frontier of each of the nodes in the walk, except for j's
|
1247 |
|
|
immediate dominator. Intuitively, all of the rest of j's dominators are
|
1248 |
|
|
shared by j's predecessors as well.
|
1249 |
|
|
Since they dominate j, they will not have j in their dominance frontiers.
|
1250 |
|
|
|
1251 |
|
|
The number of nodes touched by this algorithm is equal to the size
|
1252 |
|
|
of the dominance frontiers, no more, no less.
|
1253 |
|
|
*/
|
1254 |
|
|
|
1255 |
|
|
|
1256 |
|
|
static void
|
1257 |
|
|
compute_dominance_frontiers_1 (bitmap *frontiers)
|
1258 |
|
|
{
|
1259 |
|
|
edge p;
|
1260 |
|
|
edge_iterator ei;
|
1261 |
|
|
basic_block b;
|
1262 |
|
|
FOR_EACH_BB (b)
|
1263 |
|
|
{
|
1264 |
|
|
if (EDGE_COUNT (b->preds) >= 2)
|
1265 |
|
|
{
|
1266 |
|
|
FOR_EACH_EDGE (p, ei, b->preds)
|
1267 |
|
|
{
|
1268 |
|
|
basic_block runner = p->src;
|
1269 |
|
|
basic_block domsb;
|
1270 |
|
|
if (runner == ENTRY_BLOCK_PTR)
|
1271 |
|
|
continue;
|
1272 |
|
|
|
1273 |
|
|
domsb = get_immediate_dominator (CDI_DOMINATORS, b);
|
1274 |
|
|
while (runner != domsb)
|
1275 |
|
|
{
|
1276 |
|
|
if (bitmap_bit_p (frontiers[runner->index], b->index))
|
1277 |
|
|
break;
|
1278 |
|
|
bitmap_set_bit (frontiers[runner->index],
|
1279 |
|
|
b->index);
|
1280 |
|
|
runner = get_immediate_dominator (CDI_DOMINATORS,
|
1281 |
|
|
runner);
|
1282 |
|
|
}
|
1283 |
|
|
}
|
1284 |
|
|
}
|
1285 |
|
|
}
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
|
1289 |
|
|
void
|
1290 |
|
|
compute_dominance_frontiers (bitmap *frontiers)
|
1291 |
|
|
{
|
1292 |
|
|
timevar_push (TV_DOM_FRONTIERS);
|
1293 |
|
|
|
1294 |
|
|
compute_dominance_frontiers_1 (frontiers);
|
1295 |
|
|
|
1296 |
|
|
timevar_pop (TV_DOM_FRONTIERS);
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
/* Given a set of blocks with variable definitions (DEF_BLOCKS),
|
1300 |
|
|
return a bitmap with all the blocks in the iterated dominance
|
1301 |
|
|
frontier of the blocks in DEF_BLOCKS. DFS contains dominance
|
1302 |
|
|
frontier information as returned by compute_dominance_frontiers.
|
1303 |
|
|
|
1304 |
|
|
The resulting set of blocks are the potential sites where PHI nodes
|
1305 |
|
|
are needed. The caller is responsible for freeing the memory
|
1306 |
|
|
allocated for the return value. */
|
1307 |
|
|
|
1308 |
|
|
bitmap
|
1309 |
|
|
compute_idf (bitmap def_blocks, bitmap *dfs)
|
1310 |
|
|
{
|
1311 |
|
|
bitmap_iterator bi;
|
1312 |
|
|
unsigned bb_index, i;
|
1313 |
|
|
VEC(int,heap) *work_stack;
|
1314 |
|
|
bitmap phi_insertion_points;
|
1315 |
|
|
|
1316 |
|
|
work_stack = VEC_alloc (int, heap, n_basic_blocks);
|
1317 |
|
|
phi_insertion_points = BITMAP_ALLOC (NULL);
|
1318 |
|
|
|
1319 |
|
|
/* Seed the work list with all the blocks in DEF_BLOCKS. We use
|
1320 |
|
|
VEC_quick_push here for speed. This is safe because we know that
|
1321 |
|
|
the number of definition blocks is no greater than the number of
|
1322 |
|
|
basic blocks, which is the initial capacity of WORK_STACK. */
|
1323 |
|
|
EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
|
1324 |
|
|
VEC_quick_push (int, work_stack, bb_index);
|
1325 |
|
|
|
1326 |
|
|
/* Pop a block off the worklist, add every block that appears in
|
1327 |
|
|
the original block's DF that we have not already processed to
|
1328 |
|
|
the worklist. Iterate until the worklist is empty. Blocks
|
1329 |
|
|
which are added to the worklist are potential sites for
|
1330 |
|
|
PHI nodes. */
|
1331 |
|
|
while (VEC_length (int, work_stack) > 0)
|
1332 |
|
|
{
|
1333 |
|
|
bb_index = VEC_pop (int, work_stack);
|
1334 |
|
|
|
1335 |
|
|
/* Since the registration of NEW -> OLD name mappings is done
|
1336 |
|
|
separately from the call to update_ssa, when updating the SSA
|
1337 |
|
|
form, the basic blocks where new and/or old names are defined
|
1338 |
|
|
may have disappeared by CFG cleanup calls. In this case,
|
1339 |
|
|
we may pull a non-existing block from the work stack. */
|
1340 |
|
|
gcc_assert (bb_index < (unsigned) last_basic_block);
|
1341 |
|
|
|
1342 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
|
1343 |
|
|
0, i, bi)
|
1344 |
|
|
{
|
1345 |
|
|
/* Use a safe push because if there is a definition of VAR
|
1346 |
|
|
in every basic block, then WORK_STACK may eventually have
|
1347 |
|
|
more than N_BASIC_BLOCK entries. */
|
1348 |
|
|
VEC_safe_push (int, heap, work_stack, i);
|
1349 |
|
|
bitmap_set_bit (phi_insertion_points, i);
|
1350 |
|
|
}
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
VEC_free (int, heap, work_stack);
|
1354 |
|
|
|
1355 |
|
|
return phi_insertion_points;
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
|