OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [cfgloopmanip.c] - Blame information for rev 328

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Loop manipulation code for GNU compiler.
2
   Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3
   Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "rtl.h"
26
#include "hard-reg-set.h"
27
#include "obstack.h"
28
#include "basic-block.h"
29
#include "cfgloop.h"
30
#include "cfglayout.h"
31
#include "cfghooks.h"
32
#include "output.h"
33
#include "tree-flow.h"
34
 
35
static void copy_loops_to (struct loop **, int,
36
                           struct loop *);
37
static void loop_redirect_edge (edge, basic_block);
38
static void remove_bbs (basic_block *, int);
39
static bool rpe_enum_p (const_basic_block, const void *);
40
static int find_path (edge, basic_block **);
41
static void fix_loop_placements (struct loop *, bool *);
42
static bool fix_bb_placement (basic_block);
43
static void fix_bb_placements (basic_block, bool *);
44
static void unloop (struct loop *, bool *);
45
 
46
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
47
 
48
/* Checks whether basic block BB is dominated by DATA.  */
49
static bool
50
rpe_enum_p (const_basic_block bb, const void *data)
51
{
52
  return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
53
}
54
 
55
/* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
56
 
57
static void
58
remove_bbs (basic_block *bbs, int nbbs)
59
{
60
  int i;
61
 
62
  for (i = 0; i < nbbs; i++)
63
    delete_basic_block (bbs[i]);
64
}
65
 
66
/* Find path -- i.e. the basic blocks dominated by edge E and put them
67
   into array BBS, that will be allocated large enough to contain them.
68
   E->dest must have exactly one predecessor for this to work (it is
69
   easy to achieve and we do not put it here because we do not want to
70
   alter anything by this function).  The number of basic blocks in the
71
   path is returned.  */
72
static int
73
find_path (edge e, basic_block **bbs)
74
{
75
  gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
76
 
77
  /* Find bbs in the path.  */
78
  *bbs = XCNEWVEC (basic_block, n_basic_blocks);
79
  return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
80
                             n_basic_blocks, e->dest);
81
}
82
 
83
/* Fix placement of basic block BB inside loop hierarchy --
84
   Let L be a loop to that BB belongs.  Then every successor of BB must either
85
     1) belong to some superloop of loop L, or
86
     2) be a header of loop K such that K->outer is superloop of L
87
   Returns true if we had to move BB into other loop to enforce this condition,
88
   false if the placement of BB was already correct (provided that placements
89
   of its successors are correct).  */
90
static bool
91
fix_bb_placement (basic_block bb)
92
{
93
  edge e;
94
  edge_iterator ei;
95
  struct loop *loop = current_loops->tree_root, *act;
96
 
97
  FOR_EACH_EDGE (e, ei, bb->succs)
98
    {
99
      if (e->dest == EXIT_BLOCK_PTR)
100
        continue;
101
 
102
      act = e->dest->loop_father;
103
      if (act->header == e->dest)
104
        act = loop_outer (act);
105
 
106
      if (flow_loop_nested_p (loop, act))
107
        loop = act;
108
    }
109
 
110
  if (loop == bb->loop_father)
111
    return false;
112
 
113
  remove_bb_from_loops (bb);
114
  add_bb_to_loop (bb, loop);
115
 
116
  return true;
117
}
118
 
119
/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120
   of LOOP to that leads at least one exit edge of LOOP, and set it
121
   as the immediate superloop of LOOP.  Return true if the immediate superloop
122
   of LOOP changed.  */
123
 
124
static bool
125
fix_loop_placement (struct loop *loop)
126
{
127
  unsigned i;
128
  edge e;
129
  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
130
  struct loop *father = current_loops->tree_root, *act;
131
  bool ret = false;
132
 
133
  for (i = 0; VEC_iterate (edge, exits, i, e); i++)
134
    {
135
      act = find_common_loop (loop, e->dest->loop_father);
136
      if (flow_loop_nested_p (father, act))
137
        father = act;
138
    }
139
 
140
  if (father != loop_outer (loop))
141
    {
142
      for (act = loop_outer (loop); act != father; act = loop_outer (act))
143
        act->num_nodes -= loop->num_nodes;
144
      flow_loop_tree_node_remove (loop);
145
      flow_loop_tree_node_add (father, loop);
146
 
147
      /* The exit edges of LOOP no longer exits its original immediate
148
         superloops; remove them from the appropriate exit lists.  */
149
      for (i = 0; VEC_iterate (edge, exits, i, e); i++)
150
        rescan_loop_exit (e, false, false);
151
 
152
      ret = true;
153
    }
154
 
155
  VEC_free (edge, heap, exits);
156
  return ret;
157
}
158
 
159
/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160
   enforce condition condition stated in description of fix_bb_placement. We
161
   start from basic block FROM that had some of its successors removed, so that
162
   his placement no longer has to be correct, and iteratively fix placement of
163
   its predecessors that may change if placement of FROM changed.  Also fix
164
   placement of subloops of FROM->loop_father, that might also be altered due
165
   to this change; the condition for them is similar, except that instead of
166
   successors we consider edges coming out of the loops.
167
 
168
   If the changes may invalidate the information about irreducible regions,
169
   IRRED_INVALIDATED is set to true.  */
170
 
171
static void
172
fix_bb_placements (basic_block from,
173
                   bool *irred_invalidated)
174
{
175
  sbitmap in_queue;
176
  basic_block *queue, *qtop, *qbeg, *qend;
177
  struct loop *base_loop;
178
  edge e;
179
 
180
  /* We pass through blocks back-reachable from FROM, testing whether some
181
     of their successors moved to outer loop.  It may be necessary to
182
     iterate several times, but it is finite, as we stop unless we move
183
     the basic block up the loop structure.  The whole story is a bit
184
     more complicated due to presence of subloops, those are moved using
185
     fix_loop_placement.  */
186
 
187
  base_loop = from->loop_father;
188
  if (base_loop == current_loops->tree_root)
189
    return;
190
 
191
  in_queue = sbitmap_alloc (last_basic_block);
192
  sbitmap_zero (in_queue);
193
  SET_BIT (in_queue, from->index);
194
  /* Prevent us from going out of the base_loop.  */
195
  SET_BIT (in_queue, base_loop->header->index);
196
 
197
  queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
198
  qtop = queue + base_loop->num_nodes + 1;
199
  qbeg = queue;
200
  qend = queue + 1;
201
  *qbeg = from;
202
 
203
  while (qbeg != qend)
204
    {
205
      edge_iterator ei;
206
      from = *qbeg;
207
      qbeg++;
208
      if (qbeg == qtop)
209
        qbeg = queue;
210
      RESET_BIT (in_queue, from->index);
211
 
212
      if (from->loop_father->header == from)
213
        {
214
          /* Subloop header, maybe move the loop upward.  */
215
          if (!fix_loop_placement (from->loop_father))
216
            continue;
217
        }
218
      else
219
        {
220
          /* Ordinary basic block.  */
221
          if (!fix_bb_placement (from))
222
            continue;
223
        }
224
 
225
      FOR_EACH_EDGE (e, ei, from->succs)
226
        {
227
          if (e->flags & EDGE_IRREDUCIBLE_LOOP)
228
            *irred_invalidated = true;
229
        }
230
 
231
      /* Something has changed, insert predecessors into queue.  */
232
      FOR_EACH_EDGE (e, ei, from->preds)
233
        {
234
          basic_block pred = e->src;
235
          struct loop *nca;
236
 
237
          if (e->flags & EDGE_IRREDUCIBLE_LOOP)
238
            *irred_invalidated = true;
239
 
240
          if (TEST_BIT (in_queue, pred->index))
241
            continue;
242
 
243
          /* If it is subloop, then it either was not moved, or
244
             the path up the loop tree from base_loop do not contain
245
             it.  */
246
          nca = find_common_loop (pred->loop_father, base_loop);
247
          if (pred->loop_father != base_loop
248
              && (nca == base_loop
249
                  || nca != pred->loop_father))
250
            pred = pred->loop_father->header;
251
          else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
252
            {
253
              /* No point in processing it.  */
254
              continue;
255
            }
256
 
257
          if (TEST_BIT (in_queue, pred->index))
258
            continue;
259
 
260
          /* Schedule the basic block.  */
261
          *qend = pred;
262
          qend++;
263
          if (qend == qtop)
264
            qend = queue;
265
          SET_BIT (in_queue, pred->index);
266
        }
267
    }
268
  free (in_queue);
269
  free (queue);
270
}
271
 
272
/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
273
   and update loop structures and dominators.  Return true if we were able
274
   to remove the path, false otherwise (and nothing is affected then).  */
275
bool
276
remove_path (edge e)
277
{
278
  edge ae;
279
  basic_block *rem_bbs, *bord_bbs, from, bb;
280
  VEC (basic_block, heap) *dom_bbs;
281
  int i, nrem, n_bord_bbs;
282
  sbitmap seen;
283
  bool irred_invalidated = false;
284
 
285
  if (!can_remove_branch_p (e))
286
    return false;
287
 
288
  /* Keep track of whether we need to update information about irreducible
289
     regions.  This is the case if the removed area is a part of the
290
     irreducible region, or if the set of basic blocks that belong to a loop
291
     that is inside an irreducible region is changed, or if such a loop is
292
     removed.  */
293
  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
294
    irred_invalidated = true;
295
 
296
  /* We need to check whether basic blocks are dominated by the edge
297
     e, but we only have basic block dominators.  This is easy to
298
     fix -- when e->dest has exactly one predecessor, this corresponds
299
     to blocks dominated by e->dest, if not, split the edge.  */
300
  if (!single_pred_p (e->dest))
301
    e = single_pred_edge (split_edge (e));
302
 
303
  /* It may happen that by removing path we remove one or more loops
304
     we belong to.  In this case first unloop the loops, then proceed
305
     normally.   We may assume that e->dest is not a header of any loop,
306
     as it now has exactly one predecessor.  */
307
  while (loop_outer (e->src->loop_father)
308
         && dominated_by_p (CDI_DOMINATORS,
309
                            e->src->loop_father->latch, e->dest))
310
    unloop (e->src->loop_father, &irred_invalidated);
311
 
312
  /* Identify the path.  */
313
  nrem = find_path (e, &rem_bbs);
314
 
315
  n_bord_bbs = 0;
316
  bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
317
  seen = sbitmap_alloc (last_basic_block);
318
  sbitmap_zero (seen);
319
 
320
  /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
321
  for (i = 0; i < nrem; i++)
322
    SET_BIT (seen, rem_bbs[i]->index);
323
  for (i = 0; i < nrem; i++)
324
    {
325
      edge_iterator ei;
326
      bb = rem_bbs[i];
327
      FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
328
        if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
329
          {
330
            SET_BIT (seen, ae->dest->index);
331
            bord_bbs[n_bord_bbs++] = ae->dest;
332
 
333
            if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
334
              irred_invalidated = true;
335
          }
336
    }
337
 
338
  /* Remove the path.  */
339
  from = e->src;
340
  remove_branch (e);
341
  dom_bbs = NULL;
342
 
343
  /* Cancel loops contained in the path.  */
344
  for (i = 0; i < nrem; i++)
345
    if (rem_bbs[i]->loop_father->header == rem_bbs[i])
346
      cancel_loop_tree (rem_bbs[i]->loop_father);
347
 
348
  remove_bbs (rem_bbs, nrem);
349
  free (rem_bbs);
350
 
351
  /* Find blocks whose dominators may be affected.  */
352
  sbitmap_zero (seen);
353
  for (i = 0; i < n_bord_bbs; i++)
354
    {
355
      basic_block ldom;
356
 
357
      bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
358
      if (TEST_BIT (seen, bb->index))
359
        continue;
360
      SET_BIT (seen, bb->index);
361
 
362
      for (ldom = first_dom_son (CDI_DOMINATORS, bb);
363
           ldom;
364
           ldom = next_dom_son (CDI_DOMINATORS, ldom))
365
        if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
366
          VEC_safe_push (basic_block, heap, dom_bbs, ldom);
367
    }
368
 
369
  free (seen);
370
 
371
  /* Recount dominators.  */
372
  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
373
  VEC_free (basic_block, heap, dom_bbs);
374
  free (bord_bbs);
375
 
376
  /* Fix placements of basic blocks inside loops and the placement of
377
     loops in the loop tree.  */
378
  fix_bb_placements (from, &irred_invalidated);
379
  fix_loop_placements (from->loop_father, &irred_invalidated);
380
 
381
  if (irred_invalidated
382
      && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
383
    mark_irreducible_loops ();
384
 
385
  return true;
386
}
387
 
388
/* Creates place for a new LOOP in loops structure.  */
389
 
390
static void
391
place_new_loop (struct loop *loop)
392
{
393
  loop->num = number_of_loops ();
394
  VEC_safe_push (loop_p, gc, current_loops->larray, loop);
395
}
396
 
397
/* Given LOOP structure with filled header and latch, find the body of the
398
   corresponding loop and add it to loops tree.  Insert the LOOP as a son of
399
   outer.  */
400
 
401
void
402
add_loop (struct loop *loop, struct loop *outer)
403
{
404
  basic_block *bbs;
405
  int i, n;
406
  struct loop *subloop;
407
  edge e;
408
  edge_iterator ei;
409
 
410
  /* Add it to loop structure.  */
411
  place_new_loop (loop);
412
  flow_loop_tree_node_add (outer, loop);
413
 
414
  /* Find its nodes.  */
415
  bbs = XNEWVEC (basic_block, n_basic_blocks);
416
  n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
417
 
418
  for (i = 0; i < n; i++)
419
    {
420
      if (bbs[i]->loop_father == outer)
421
        {
422
          remove_bb_from_loops (bbs[i]);
423
          add_bb_to_loop (bbs[i], loop);
424
          continue;
425
        }
426
 
427
      loop->num_nodes++;
428
 
429
      /* If we find a direct subloop of OUTER, move it to LOOP.  */
430
      subloop = bbs[i]->loop_father;
431
      if (loop_outer (subloop) == outer
432
          && subloop->header == bbs[i])
433
        {
434
          flow_loop_tree_node_remove (subloop);
435
          flow_loop_tree_node_add (loop, subloop);
436
        }
437
    }
438
 
439
  /* Update the information about loop exit edges.  */
440
  for (i = 0; i < n; i++)
441
    {
442
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
443
        {
444
          rescan_loop_exit (e, false, false);
445
        }
446
    }
447
 
448
  free (bbs);
449
}
450
 
451
/* Multiply all frequencies in LOOP by NUM/DEN.  */
452
void
453
scale_loop_frequencies (struct loop *loop, int num, int den)
454
{
455
  basic_block *bbs;
456
 
457
  bbs = get_loop_body (loop);
458
  scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
459
  free (bbs);
460
}
461
 
462
/* Recompute dominance information for basic blocks outside LOOP.  */
463
 
464
static void
465
update_dominators_in_loop (struct loop *loop)
466
{
467
  VEC (basic_block, heap) *dom_bbs = NULL;
468
  sbitmap seen;
469
  basic_block *body;
470
  unsigned i;
471
 
472
  seen = sbitmap_alloc (last_basic_block);
473
  sbitmap_zero (seen);
474
  body = get_loop_body (loop);
475
 
476
  for (i = 0; i < loop->num_nodes; i++)
477
    SET_BIT (seen, body[i]->index);
478
 
479
  for (i = 0; i < loop->num_nodes; i++)
480
    {
481
      basic_block ldom;
482
 
483
      for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
484
           ldom;
485
           ldom = next_dom_son (CDI_DOMINATORS, ldom))
486
        if (!TEST_BIT (seen, ldom->index))
487
          {
488
            SET_BIT (seen, ldom->index);
489
            VEC_safe_push (basic_block, heap, dom_bbs, ldom);
490
          }
491
    }
492
 
493
  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
494
  free (body);
495
  free (seen);
496
  VEC_free (basic_block, heap, dom_bbs);
497
}
498
 
499
/* Creates an if region as shown above. CONDITION is used to create
500
   the test for the if.
501
 
502
   |
503
   |     -------------                 -------------
504
   |     |  pred_bb  |                 |  pred_bb  |
505
   |     -------------                 -------------
506
   |           |                             |
507
   |           |                             | ENTRY_EDGE
508
   |           | ENTRY_EDGE                  V
509
   |           |             ====>     -------------
510
   |           |                       |  cond_bb  |
511
   |           |                       | CONDITION |
512
   |           |                       -------------
513
   |           V                        /         \
514
   |     -------------         e_false /           \ e_true
515
   |     |  succ_bb  |                V             V
516
   |     -------------         -----------       -----------
517
   |                           | false_bb |      | true_bb |
518
   |                           -----------       -----------
519
   |                                   \           /
520
   |                                    \         /
521
   |                                     V       V
522
   |                                   -------------
523
   |                                   |  join_bb  |
524
   |                                   -------------
525
   |                                         | exit_edge (result)
526
   |                                         V
527
   |                                    -----------
528
   |                                    | succ_bb |
529
   |                                    -----------
530
   |
531
 */
532
 
533
edge
534
create_empty_if_region_on_edge (edge entry_edge, tree condition)
535
{
536
 
537
  basic_block cond_bb, true_bb, false_bb, join_bb;
538
  edge e_true, e_false, exit_edge;
539
  gimple cond_stmt;
540
  tree simple_cond;
541
  gimple_stmt_iterator gsi;
542
 
543
  cond_bb = split_edge (entry_edge);
544
 
545
  /* Insert condition in cond_bb.  */
546
  gsi = gsi_last_bb (cond_bb);
547
  simple_cond =
548
    force_gimple_operand_gsi (&gsi, condition, true, NULL,
549
                              false, GSI_NEW_STMT);
550
  cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
551
  gsi = gsi_last_bb (cond_bb);
552
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
553
 
554
  join_bb = split_edge (single_succ_edge (cond_bb));
555
 
556
  e_true = single_succ_edge (cond_bb);
557
  true_bb = split_edge (e_true);
558
 
559
  e_false = make_edge (cond_bb, join_bb, 0);
560
  false_bb = split_edge (e_false);
561
 
562
  e_true->flags &= ~EDGE_FALLTHRU;
563
  e_true->flags |= EDGE_TRUE_VALUE;
564
  e_false->flags &= ~EDGE_FALLTHRU;
565
  e_false->flags |= EDGE_FALSE_VALUE;
566
 
567
  set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
568
  set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
569
  set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
570
  set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
571
 
572
  exit_edge = single_succ_edge (join_bb);
573
 
574
  if (single_pred_p (exit_edge->dest))
575
    set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
576
 
577
  return exit_edge;
578
}
579
 
580
/* create_empty_loop_on_edge
581
   |
582
   |    - pred_bb -                   ------ pred_bb ------
583
   |   |           |                 | iv0 = initial_value |
584
   |    -----|-----                   ---------|-----------
585
   |         |                       ______    | entry_edge
586
   |         | entry_edge           /      |   |
587
   |         |             ====>   |      -V---V- loop_header -------------
588
   |         V                     |     | iv_before = phi (iv0, iv_after) |
589
   |    - succ_bb -                |      ---|-----------------------------
590
   |   |           |               |         |
591
   |    -----------                |      ---V--- loop_body ---------------
592
   |                               |     | iv_after = iv_before + stride   |
593
   |                               |     | if (iv_before < upper_bound)    |
594
   |                               |      ---|--------------\--------------
595
   |                               |         |               \ exit_e
596
   |                               |         V                \
597
   |                               |       - loop_latch -      V- succ_bb -
598
   |                               |      |              |     |           |
599
   |                               |       /-------------       -----------
600
   |                                \ ___ /
601
 
602
   Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
603
   that is used before the increment of IV. IV_BEFORE should be used for
604
   adding code to the body that uses the IV.  OUTER is the outer loop in
605
   which the new loop should be inserted.
606
 
607
   Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
608
   inserted on the loop entry edge.  This implies that this function
609
   should be used only when the UPPER_BOUND expression is a loop
610
   invariant.  */
611
 
612
struct loop *
613
create_empty_loop_on_edge (edge entry_edge,
614
                           tree initial_value,
615
                           tree stride, tree upper_bound,
616
                           tree iv,
617
                           tree *iv_before,
618
                           tree *iv_after,
619
                           struct loop *outer)
620
{
621
  basic_block loop_header, loop_latch, succ_bb, pred_bb;
622
  struct loop *loop;
623
  gimple_stmt_iterator gsi;
624
  gimple_seq stmts;
625
  gimple cond_expr;
626
  tree exit_test;
627
  edge exit_e;
628
  int prob;
629
 
630
  gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
631
 
632
  /* Create header, latch and wire up the loop.  */
633
  pred_bb = entry_edge->src;
634
  loop_header = split_edge (entry_edge);
635
  loop_latch = split_edge (single_succ_edge (loop_header));
636
  succ_bb = single_succ (loop_latch);
637
  make_edge (loop_header, succ_bb, 0);
638
  redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
639
 
640
  /* Set immediate dominator information.  */
641
  set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
642
  set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
643
  set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
644
 
645
  /* Initialize a loop structure and put it in a loop hierarchy.  */
646
  loop = alloc_loop ();
647
  loop->header = loop_header;
648
  loop->latch = loop_latch;
649
  add_loop (loop, outer);
650
 
651
  /* TODO: Fix frequencies and counts.  */
652
  prob = REG_BR_PROB_BASE / 2;
653
 
654
  scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
655
 
656
  /* Update dominators.  */
657
  update_dominators_in_loop (loop);
658
 
659
  /* Modify edge flags.  */
660
  exit_e = single_exit (loop);
661
  exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
662
  single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
663
 
664
  /* Construct IV code in loop.  */
665
  initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
666
  if (stmts)
667
    {
668
      gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
669
      gsi_commit_edge_inserts ();
670
    }
671
 
672
  upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
673
  if (stmts)
674
    {
675
      gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
676
      gsi_commit_edge_inserts ();
677
    }
678
 
679
  gsi = gsi_last_bb (loop_header);
680
  create_iv (initial_value, stride, iv, loop, &gsi, false,
681
             iv_before, iv_after);
682
 
683
  /* Insert loop exit condition.  */
684
  cond_expr = gimple_build_cond
685
    (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
686
 
687
  exit_test = gimple_cond_lhs (cond_expr);
688
  exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
689
                                        false, GSI_NEW_STMT);
690
  gimple_cond_set_lhs (cond_expr, exit_test);
691
  gsi = gsi_last_bb (exit_e->src);
692
  gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
693
 
694
  split_block_after_labels (loop_header);
695
 
696
  return loop;
697
}
698
 
699
/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
700
   latch to header and update loop tree and dominators
701
   accordingly. Everything between them plus LATCH_EDGE destination must
702
   be dominated by HEADER_EDGE destination, and back-reachable from
703
   LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
704
   FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
705
   TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
706
   Returns the newly created loop.  Frequencies and counts in the new loop
707
   are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
708
 
709
struct loop *
710
loopify (edge latch_edge, edge header_edge,
711
         basic_block switch_bb, edge true_edge, edge false_edge,
712
         bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
713
{
714
  basic_block succ_bb = latch_edge->dest;
715
  basic_block pred_bb = header_edge->src;
716
  struct loop *loop = alloc_loop ();
717
  struct loop *outer = loop_outer (succ_bb->loop_father);
718
  int freq;
719
  gcov_type cnt;
720
  edge e;
721
  edge_iterator ei;
722
 
723
  loop->header = header_edge->dest;
724
  loop->latch = latch_edge->src;
725
 
726
  freq = EDGE_FREQUENCY (header_edge);
727
  cnt = header_edge->count;
728
 
729
  /* Redirect edges.  */
730
  loop_redirect_edge (latch_edge, loop->header);
731
  loop_redirect_edge (true_edge, succ_bb);
732
 
733
  /* During loop versioning, one of the switch_bb edge is already properly
734
     set. Do not redirect it again unless redirect_all_edges is true.  */
735
  if (redirect_all_edges)
736
    {
737
      loop_redirect_edge (header_edge, switch_bb);
738
      loop_redirect_edge (false_edge, loop->header);
739
 
740
      /* Update dominators.  */
741
      set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
742
      set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
743
    }
744
 
745
  set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
746
 
747
  /* Compute new loop.  */
748
  add_loop (loop, outer);
749
 
750
  /* Add switch_bb to appropriate loop.  */
751
  if (switch_bb->loop_father)
752
    remove_bb_from_loops (switch_bb);
753
  add_bb_to_loop (switch_bb, outer);
754
 
755
  /* Fix frequencies.  */
756
  if (redirect_all_edges)
757
    {
758
      switch_bb->frequency = freq;
759
      switch_bb->count = cnt;
760
      FOR_EACH_EDGE (e, ei, switch_bb->succs)
761
        {
762
          e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
763
        }
764
    }
765
  scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
766
  scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
767
  update_dominators_in_loop (loop);
768
 
769
  return loop;
770
}
771
 
772
/* Remove the latch edge of a LOOP and update loops to indicate that
773
   the LOOP was removed.  After this function, original loop latch will
774
   have no successor, which caller is expected to fix somehow.
775
 
776
   If this may cause the information about irreducible regions to become
777
   invalid, IRRED_INVALIDATED is set to true.  */
778
 
779
static void
780
unloop (struct loop *loop, bool *irred_invalidated)
781
{
782
  basic_block *body;
783
  struct loop *ploop;
784
  unsigned i, n;
785
  basic_block latch = loop->latch;
786
  bool dummy = false;
787
 
788
  if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
789
    *irred_invalidated = true;
790
 
791
  /* This is relatively straightforward.  The dominators are unchanged, as
792
     loop header dominates loop latch, so the only thing we have to care of
793
     is the placement of loops and basic blocks inside the loop tree.  We
794
     move them all to the loop->outer, and then let fix_bb_placements do
795
     its work.  */
796
 
797
  body = get_loop_body (loop);
798
  n = loop->num_nodes;
799
  for (i = 0; i < n; i++)
800
    if (body[i]->loop_father == loop)
801
      {
802
        remove_bb_from_loops (body[i]);
803
        add_bb_to_loop (body[i], loop_outer (loop));
804
      }
805
  free(body);
806
 
807
  while (loop->inner)
808
    {
809
      ploop = loop->inner;
810
      flow_loop_tree_node_remove (ploop);
811
      flow_loop_tree_node_add (loop_outer (loop), ploop);
812
    }
813
 
814
  /* Remove the loop and free its data.  */
815
  delete_loop (loop);
816
 
817
  remove_edge (single_succ_edge (latch));
818
 
819
  /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
820
     there is an irreducible region inside the cancelled loop, the flags will
821
     be still correct.  */
822
  fix_bb_placements (latch, &dummy);
823
}
824
 
825
/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
826
   condition stated in description of fix_loop_placement holds for them.
827
   It is used in case when we removed some edges coming out of LOOP, which
828
   may cause the right placement of LOOP inside loop tree to change.
829
 
830
   IRRED_INVALIDATED is set to true if a change in the loop structures might
831
   invalidate the information about irreducible regions.  */
832
 
833
static void
834
fix_loop_placements (struct loop *loop, bool *irred_invalidated)
835
{
836
  struct loop *outer;
837
 
838
  while (loop_outer (loop))
839
    {
840
      outer = loop_outer (loop);
841
      if (!fix_loop_placement (loop))
842
        break;
843
 
844
      /* Changing the placement of a loop in the loop tree may alter the
845
         validity of condition 2) of the description of fix_bb_placement
846
         for its preheader, because the successor is the header and belongs
847
         to the loop.  So call fix_bb_placements to fix up the placement
848
         of the preheader and (possibly) of its predecessors.  */
849
      fix_bb_placements (loop_preheader_edge (loop)->src,
850
                         irred_invalidated);
851
      loop = outer;
852
    }
853
}
854
 
855
/* Copies copy of LOOP as subloop of TARGET loop, placing newly
856
   created loop into loops structure.  */
857
struct loop *
858
duplicate_loop (struct loop *loop, struct loop *target)
859
{
860
  struct loop *cloop;
861
  cloop = alloc_loop ();
862
  place_new_loop (cloop);
863
 
864
  /* Mark the new loop as copy of LOOP.  */
865
  set_loop_copy (loop, cloop);
866
 
867
  /* Add it to target.  */
868
  flow_loop_tree_node_add (target, cloop);
869
 
870
  return cloop;
871
}
872
 
873
/* Copies structure of subloops of LOOP into TARGET loop, placing
874
   newly created loops into loop tree.  */
875
void
876
duplicate_subloops (struct loop *loop, struct loop *target)
877
{
878
  struct loop *aloop, *cloop;
879
 
880
  for (aloop = loop->inner; aloop; aloop = aloop->next)
881
    {
882
      cloop = duplicate_loop (aloop, target);
883
      duplicate_subloops (aloop, cloop);
884
    }
885
}
886
 
887
/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
888
   into TARGET loop, placing newly created loops into loop tree.  */
889
static void
890
copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
891
{
892
  struct loop *aloop;
893
  int i;
894
 
895
  for (i = 0; i < n; i++)
896
    {
897
      aloop = duplicate_loop (copied_loops[i], target);
898
      duplicate_subloops (copied_loops[i], aloop);
899
    }
900
}
901
 
902
/* Redirects edge E to basic block DEST.  */
903
static void
904
loop_redirect_edge (edge e, basic_block dest)
905
{
906
  if (e->dest == dest)
907
    return;
908
 
909
  redirect_edge_and_branch_force (e, dest);
910
}
911
 
912
/* Check whether LOOP's body can be duplicated.  */
913
bool
914
can_duplicate_loop_p (const struct loop *loop)
915
{
916
  int ret;
917
  basic_block *bbs = get_loop_body (loop);
918
 
919
  ret = can_copy_bbs_p (bbs, loop->num_nodes);
920
  free (bbs);
921
 
922
  return ret;
923
}
924
 
925
/* Sets probability and count of edge E to zero.  The probability and count
926
   is redistributed evenly to the remaining edges coming from E->src.  */
927
 
928
static void
929
set_zero_probability (edge e)
930
{
931
  basic_block bb = e->src;
932
  edge_iterator ei;
933
  edge ae, last = NULL;
934
  unsigned n = EDGE_COUNT (bb->succs);
935
  gcov_type cnt = e->count, cnt1;
936
  unsigned prob = e->probability, prob1;
937
 
938
  gcc_assert (n > 1);
939
  cnt1 = cnt / (n - 1);
940
  prob1 = prob / (n - 1);
941
 
942
  FOR_EACH_EDGE (ae, ei, bb->succs)
943
    {
944
      if (ae == e)
945
        continue;
946
 
947
      ae->probability += prob1;
948
      ae->count += cnt1;
949
      last = ae;
950
    }
951
 
952
  /* Move the rest to one of the edges.  */
953
  last->probability += prob % (n - 1);
954
  last->count += cnt % (n - 1);
955
 
956
  e->probability = 0;
957
  e->count = 0;
958
}
959
 
960
/* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
961
   loop structure and dominators.  E's destination must be LOOP header for
962
   this to work, i.e. it must be entry or latch edge of this loop; these are
963
   unique, as the loops must have preheaders for this function to work
964
   correctly (in case E is latch, the function unrolls the loop, if E is entry
965
   edge, it peels the loop).  Store edges created by copying ORIG edge from
966
   copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
967
   original LOOP body, the other copies are numbered in order given by control
968
   flow through them) into TO_REMOVE array.  Returns false if duplication is
969
   impossible.  */
970
 
971
bool
972
duplicate_loop_to_header_edge (struct loop *loop, edge e,
973
                               unsigned int ndupl, sbitmap wont_exit,
974
                               edge orig, VEC (edge, heap) **to_remove,
975
                               int flags)
976
{
977
  struct loop *target, *aloop;
978
  struct loop **orig_loops;
979
  unsigned n_orig_loops;
980
  basic_block header = loop->header, latch = loop->latch;
981
  basic_block *new_bbs, *bbs, *first_active;
982
  basic_block new_bb, bb, first_active_latch = NULL;
983
  edge ae, latch_edge;
984
  edge spec_edges[2], new_spec_edges[2];
985
#define SE_LATCH 0
986
#define SE_ORIG 1
987
  unsigned i, j, n;
988
  int is_latch = (latch == e->src);
989
  int scale_act = 0, *scale_step = NULL, scale_main = 0;
990
  int scale_after_exit = 0;
991
  int p, freq_in, freq_le, freq_out_orig;
992
  int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
993
  int add_irreducible_flag;
994
  basic_block place_after;
995
  bitmap bbs_to_scale = NULL;
996
  bitmap_iterator bi;
997
 
998
  gcc_assert (e->dest == loop->header);
999
  gcc_assert (ndupl > 0);
1000
 
1001
  if (orig)
1002
    {
1003
      /* Orig must be edge out of the loop.  */
1004
      gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1005
      gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1006
    }
1007
 
1008
  n = loop->num_nodes;
1009
  bbs = get_loop_body_in_dom_order (loop);
1010
  gcc_assert (bbs[0] == loop->header);
1011
  gcc_assert (bbs[n  - 1] == loop->latch);
1012
 
1013
  /* Check whether duplication is possible.  */
1014
  if (!can_copy_bbs_p (bbs, loop->num_nodes))
1015
    {
1016
      free (bbs);
1017
      return false;
1018
    }
1019
  new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1020
 
1021
  /* In case we are doing loop peeling and the loop is in the middle of
1022
     irreducible region, the peeled copies will be inside it too.  */
1023
  add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1024
  gcc_assert (!is_latch || !add_irreducible_flag);
1025
 
1026
  /* Find edge from latch.  */
1027
  latch_edge = loop_latch_edge (loop);
1028
 
1029
  if (flags & DLTHE_FLAG_UPDATE_FREQ)
1030
    {
1031
      /* Calculate coefficients by that we have to scale frequencies
1032
         of duplicated loop bodies.  */
1033
      freq_in = header->frequency;
1034
      freq_le = EDGE_FREQUENCY (latch_edge);
1035
      if (freq_in == 0)
1036
        freq_in = 1;
1037
      if (freq_in < freq_le)
1038
        freq_in = freq_le;
1039
      freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1040
      if (freq_out_orig > freq_in - freq_le)
1041
        freq_out_orig = freq_in - freq_le;
1042
      prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1043
      prob_pass_wont_exit =
1044
              RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1045
 
1046
      if (orig
1047
          && REG_BR_PROB_BASE - orig->probability != 0)
1048
        {
1049
          /* The blocks that are dominated by a removed exit edge ORIG have
1050
             frequencies scaled by this.  */
1051
          scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1052
                                   REG_BR_PROB_BASE - orig->probability);
1053
          bbs_to_scale = BITMAP_ALLOC (NULL);
1054
          for (i = 0; i < n; i++)
1055
            {
1056
              if (bbs[i] != orig->src
1057
                  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1058
                bitmap_set_bit (bbs_to_scale, i);
1059
            }
1060
        }
1061
 
1062
      scale_step = XNEWVEC (int, ndupl);
1063
 
1064
      for (i = 1; i <= ndupl; i++)
1065
        scale_step[i - 1] = TEST_BIT (wont_exit, i)
1066
                                ? prob_pass_wont_exit
1067
                                : prob_pass_thru;
1068
 
1069
      /* Complete peeling is special as the probability of exit in last
1070
         copy becomes 1.  */
1071
      if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1072
        {
1073
          int wanted_freq = EDGE_FREQUENCY (e);
1074
 
1075
          if (wanted_freq > freq_in)
1076
            wanted_freq = freq_in;
1077
 
1078
          gcc_assert (!is_latch);
1079
          /* First copy has frequency of incoming edge.  Each subsequent
1080
             frequency should be reduced by prob_pass_wont_exit.  Caller
1081
             should've managed the flags so all except for original loop
1082
             has won't exist set.  */
1083
          scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1084
          /* Now simulate the duplication adjustments and compute header
1085
             frequency of the last copy.  */
1086
          for (i = 0; i < ndupl; i++)
1087
            wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1088
          scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1089
        }
1090
      else if (is_latch)
1091
        {
1092
          prob_pass_main = TEST_BIT (wont_exit, 0)
1093
                                ? prob_pass_wont_exit
1094
                                : prob_pass_thru;
1095
          p = prob_pass_main;
1096
          scale_main = REG_BR_PROB_BASE;
1097
          for (i = 0; i < ndupl; i++)
1098
            {
1099
              scale_main += p;
1100
              p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1101
            }
1102
          scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1103
          scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1104
        }
1105
      else
1106
        {
1107
          scale_main = REG_BR_PROB_BASE;
1108
          for (i = 0; i < ndupl; i++)
1109
            scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1110
          scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1111
        }
1112
      for (i = 0; i < ndupl; i++)
1113
        gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1114
      gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1115
                  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
1116
    }
1117
 
1118
  /* Loop the new bbs will belong to.  */
1119
  target = e->src->loop_father;
1120
 
1121
  /* Original loops.  */
1122
  n_orig_loops = 0;
1123
  for (aloop = loop->inner; aloop; aloop = aloop->next)
1124
    n_orig_loops++;
1125
  orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1126
  for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1127
    orig_loops[i] = aloop;
1128
 
1129
  set_loop_copy (loop, target);
1130
 
1131
  first_active = XNEWVEC (basic_block, n);
1132
  if (is_latch)
1133
    {
1134
      memcpy (first_active, bbs, n * sizeof (basic_block));
1135
      first_active_latch = latch;
1136
    }
1137
 
1138
  spec_edges[SE_ORIG] = orig;
1139
  spec_edges[SE_LATCH] = latch_edge;
1140
 
1141
  place_after = e->src;
1142
  for (j = 0; j < ndupl; j++)
1143
    {
1144
      /* Copy loops.  */
1145
      copy_loops_to (orig_loops, n_orig_loops, target);
1146
 
1147
      /* Copy bbs.  */
1148
      copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1149
                place_after);
1150
      place_after = new_spec_edges[SE_LATCH]->src;
1151
 
1152
      if (flags & DLTHE_RECORD_COPY_NUMBER)
1153
        for (i = 0; i < n; i++)
1154
          {
1155
            gcc_assert (!new_bbs[i]->aux);
1156
            new_bbs[i]->aux = (void *)(size_t)(j + 1);
1157
          }
1158
 
1159
      /* Note whether the blocks and edges belong to an irreducible loop.  */
1160
      if (add_irreducible_flag)
1161
        {
1162
          for (i = 0; i < n; i++)
1163
            new_bbs[i]->flags |= BB_DUPLICATED;
1164
          for (i = 0; i < n; i++)
1165
            {
1166
              edge_iterator ei;
1167
              new_bb = new_bbs[i];
1168
              if (new_bb->loop_father == target)
1169
                new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1170
 
1171
              FOR_EACH_EDGE (ae, ei, new_bb->succs)
1172
                if ((ae->dest->flags & BB_DUPLICATED)
1173
                    && (ae->src->loop_father == target
1174
                        || ae->dest->loop_father == target))
1175
                  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1176
            }
1177
          for (i = 0; i < n; i++)
1178
            new_bbs[i]->flags &= ~BB_DUPLICATED;
1179
        }
1180
 
1181
      /* Redirect the special edges.  */
1182
      if (is_latch)
1183
        {
1184
          redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1185
          redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1186
                                          loop->header);
1187
          set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1188
          latch = loop->latch = new_bbs[n - 1];
1189
          e = latch_edge = new_spec_edges[SE_LATCH];
1190
        }
1191
      else
1192
        {
1193
          redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1194
                                          loop->header);
1195
          redirect_edge_and_branch_force (e, new_bbs[0]);
1196
          set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1197
          e = new_spec_edges[SE_LATCH];
1198
        }
1199
 
1200
      /* Record exit edge in this copy.  */
1201
      if (orig && TEST_BIT (wont_exit, j + 1))
1202
        {
1203
          if (to_remove)
1204
            VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1205
          set_zero_probability (new_spec_edges[SE_ORIG]);
1206
 
1207
          /* Scale the frequencies of the blocks dominated by the exit.  */
1208
          if (bbs_to_scale)
1209
            {
1210
              EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1211
                {
1212
                  scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1213
                                             REG_BR_PROB_BASE);
1214
                }
1215
            }
1216
        }
1217
 
1218
      /* Record the first copy in the control flow order if it is not
1219
         the original loop (i.e. in case of peeling).  */
1220
      if (!first_active_latch)
1221
        {
1222
          memcpy (first_active, new_bbs, n * sizeof (basic_block));
1223
          first_active_latch = new_bbs[n - 1];
1224
        }
1225
 
1226
      /* Set counts and frequencies.  */
1227
      if (flags & DLTHE_FLAG_UPDATE_FREQ)
1228
        {
1229
          scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1230
          scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1231
        }
1232
    }
1233
  free (new_bbs);
1234
  free (orig_loops);
1235
 
1236
  /* Record the exit edge in the original loop body, and update the frequencies.  */
1237
  if (orig && TEST_BIT (wont_exit, 0))
1238
    {
1239
      if (to_remove)
1240
        VEC_safe_push (edge, heap, *to_remove, orig);
1241
      set_zero_probability (orig);
1242
 
1243
      /* Scale the frequencies of the blocks dominated by the exit.  */
1244
      if (bbs_to_scale)
1245
        {
1246
          EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1247
            {
1248
              scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1249
                                         REG_BR_PROB_BASE);
1250
            }
1251
        }
1252
    }
1253
 
1254
  /* Update the original loop.  */
1255
  if (!is_latch)
1256
    set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1257
  if (flags & DLTHE_FLAG_UPDATE_FREQ)
1258
    {
1259
      scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1260
      free (scale_step);
1261
    }
1262
 
1263
  /* Update dominators of outer blocks if affected.  */
1264
  for (i = 0; i < n; i++)
1265
    {
1266
      basic_block dominated, dom_bb;
1267
      VEC (basic_block, heap) *dom_bbs;
1268
      unsigned j;
1269
 
1270
      bb = bbs[i];
1271
      bb->aux = 0;
1272
 
1273
      dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1274
      for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1275
        {
1276
          if (flow_bb_inside_loop_p (loop, dominated))
1277
            continue;
1278
          dom_bb = nearest_common_dominator (
1279
                        CDI_DOMINATORS, first_active[i], first_active_latch);
1280
          set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1281
        }
1282
      VEC_free (basic_block, heap, dom_bbs);
1283
    }
1284
  free (first_active);
1285
 
1286
  free (bbs);
1287
  BITMAP_FREE (bbs_to_scale);
1288
 
1289
  return true;
1290
}
1291
 
1292
/* A callback for make_forwarder block, to redirect all edges except for
1293
   MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1294
   whether to redirect it.  */
1295
 
1296
edge mfb_kj_edge;
1297
bool
1298
mfb_keep_just (edge e)
1299
{
1300
  return e != mfb_kj_edge;
1301
}
1302
 
1303
/* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1304
 
1305
static bool
1306
has_preds_from_loop (basic_block block, struct loop *loop)
1307
{
1308
  edge e;
1309
  edge_iterator ei;
1310
 
1311
  FOR_EACH_EDGE (e, ei, block->preds)
1312
    if (e->src->loop_father == loop)
1313
      return true;
1314
  return false;
1315
}
1316
 
1317
/* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1318
   CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1319
   entry; otherwise we also force preheader block to have only one successor.
1320
   When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1321
   to be a fallthru predecessor to the loop header and to have only
1322
   predecessors from outside of the loop.
1323
   The function also updates dominators.  */
1324
 
1325
basic_block
1326
create_preheader (struct loop *loop, int flags)
1327
{
1328
  edge e, fallthru;
1329
  basic_block dummy;
1330
  int nentry = 0;
1331
  bool irred = false;
1332
  bool latch_edge_was_fallthru;
1333
  edge one_succ_pred = NULL, single_entry = NULL;
1334
  edge_iterator ei;
1335
 
1336
  FOR_EACH_EDGE (e, ei, loop->header->preds)
1337
    {
1338
      if (e->src == loop->latch)
1339
        continue;
1340
      irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1341
      nentry++;
1342
      single_entry = e;
1343
      if (single_succ_p (e->src))
1344
        one_succ_pred = e;
1345
    }
1346
  gcc_assert (nentry);
1347
  if (nentry == 1)
1348
    {
1349
      bool need_forwarder_block = false;
1350
 
1351
      /* We do not allow entry block to be the loop preheader, since we
1352
             cannot emit code there.  */
1353
      if (single_entry->src == ENTRY_BLOCK_PTR)
1354
        need_forwarder_block = true;
1355
      else
1356
        {
1357
          /* If we want simple preheaders, also force the preheader to have
1358
             just a single successor.  */
1359
          if ((flags & CP_SIMPLE_PREHEADERS)
1360
              && !single_succ_p (single_entry->src))
1361
            need_forwarder_block = true;
1362
          /* If we want fallthru preheaders, also create forwarder block when
1363
             preheader ends with a jump or has predecessors from loop.  */
1364
          else if ((flags & CP_FALLTHRU_PREHEADERS)
1365
                   && (JUMP_P (BB_END (single_entry->src))
1366
                       || has_preds_from_loop (single_entry->src, loop)))
1367
            need_forwarder_block = true;
1368
        }
1369
      if (! need_forwarder_block)
1370
        return NULL;
1371
    }
1372
 
1373
  mfb_kj_edge = loop_latch_edge (loop);
1374
  latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1375
  fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1376
  dummy = fallthru->src;
1377
  loop->header = fallthru->dest;
1378
 
1379
  /* Try to be clever in placing the newly created preheader.  The idea is to
1380
     avoid breaking any "fallthruness" relationship between blocks.
1381
 
1382
     The preheader was created just before the header and all incoming edges
1383
     to the header were redirected to the preheader, except the latch edge.
1384
     So the only problematic case is when this latch edge was a fallthru
1385
     edge: it is not anymore after the preheader creation so we have broken
1386
     the fallthruness.  We're therefore going to look for a better place.  */
1387
  if (latch_edge_was_fallthru)
1388
    {
1389
      if (one_succ_pred)
1390
        e = one_succ_pred;
1391
      else
1392
        e = EDGE_PRED (dummy, 0);
1393
 
1394
      move_block_after (dummy, e->src);
1395
    }
1396
 
1397
  if (irred)
1398
    {
1399
      dummy->flags |= BB_IRREDUCIBLE_LOOP;
1400
      single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1401
    }
1402
 
1403
  if (dump_file)
1404
    fprintf (dump_file, "Created preheader block for loop %i\n",
1405
             loop->num);
1406
 
1407
  if (flags & CP_FALLTHRU_PREHEADERS)
1408
    gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1409
                && !JUMP_P (BB_END (dummy)));
1410
 
1411
  return dummy;
1412
}
1413
 
1414
/* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1415
 
1416
void
1417
create_preheaders (int flags)
1418
{
1419
  loop_iterator li;
1420
  struct loop *loop;
1421
 
1422
  if (!current_loops)
1423
    return;
1424
 
1425
  FOR_EACH_LOOP (li, loop, 0)
1426
    create_preheader (loop, flags);
1427
  loops_state_set (LOOPS_HAVE_PREHEADERS);
1428
}
1429
 
1430
/* Forces all loop latches to have only single successor.  */
1431
 
1432
void
1433
force_single_succ_latches (void)
1434
{
1435
  loop_iterator li;
1436
  struct loop *loop;
1437
  edge e;
1438
 
1439
  FOR_EACH_LOOP (li, loop, 0)
1440
    {
1441
      if (loop->latch != loop->header && single_succ_p (loop->latch))
1442
        continue;
1443
 
1444
      e = find_edge (loop->latch, loop->header);
1445
 
1446
      split_edge (e);
1447
    }
1448
  loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1449
}
1450
 
1451
/* This function is called from loop_version.  It splits the entry edge
1452
   of the loop we want to version, adds the versioning condition, and
1453
   adjust the edges to the two versions of the loop appropriately.
1454
   e is an incoming edge. Returns the basic block containing the
1455
   condition.
1456
 
1457
   --- edge e ---- > [second_head]
1458
 
1459
   Split it and insert new conditional expression and adjust edges.
1460
 
1461
    --- edge e ---> [cond expr] ---> [first_head]
1462
                        |
1463
                        +---------> [second_head]
1464
 
1465
  THEN_PROB is the probability of then branch of the condition.  */
1466
 
1467
static basic_block
1468
lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1469
                           edge e, void *cond_expr, unsigned then_prob)
1470
{
1471
  basic_block new_head = NULL;
1472
  edge e1;
1473
 
1474
  gcc_assert (e->dest == second_head);
1475
 
1476
  /* Split edge 'e'. This will create a new basic block, where we can
1477
     insert conditional expr.  */
1478
  new_head = split_edge (e);
1479
 
1480
  lv_add_condition_to_bb (first_head, second_head, new_head,
1481
                          cond_expr);
1482
 
1483
  /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1484
  e = single_succ_edge (new_head);
1485
  e1 = make_edge (new_head, first_head,
1486
                  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1487
  e1->probability = then_prob;
1488
  e->probability = REG_BR_PROB_BASE - then_prob;
1489
  e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1490
  e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1491
 
1492
  set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1493
  set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1494
 
1495
  /* Adjust loop header phi nodes.  */
1496
  lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1497
 
1498
  return new_head;
1499
}
1500
 
1501
/* Main entry point for Loop Versioning transformation.
1502
 
1503
   This transformation given a condition and a loop, creates
1504
   -if (condition) { loop_copy1 } else { loop_copy2 },
1505
   where loop_copy1 is the loop transformed in one way, and loop_copy2
1506
   is the loop transformed in another way (or unchanged). 'condition'
1507
   may be a run time test for things that were not resolved by static
1508
   analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1509
 
1510
   THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1511
   is the ratio by that the frequencies in the original loop should
1512
   be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1513
   new loop should be scaled.
1514
 
1515
   If PLACE_AFTER is true, we place the new loop after LOOP in the
1516
   instruction stream, otherwise it is placed before LOOP.  */
1517
 
1518
struct loop *
1519
loop_version (struct loop *loop,
1520
              void *cond_expr, basic_block *condition_bb,
1521
              unsigned then_prob, unsigned then_scale, unsigned else_scale,
1522
              bool place_after)
1523
{
1524
  basic_block first_head, second_head;
1525
  edge entry, latch_edge, true_edge, false_edge;
1526
  int irred_flag;
1527
  struct loop *nloop;
1528
  basic_block cond_bb;
1529
 
1530
  /* Record entry and latch edges for the loop */
1531
  entry = loop_preheader_edge (loop);
1532
  irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1533
  entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1534
 
1535
  /* Note down head of loop as first_head.  */
1536
  first_head = entry->dest;
1537
 
1538
  /* Duplicate loop.  */
1539
  if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1540
                                               NULL, NULL, NULL, 0))
1541
    return NULL;
1542
 
1543
  /* After duplication entry edge now points to new loop head block.
1544
     Note down new head as second_head.  */
1545
  second_head = entry->dest;
1546
 
1547
  /* Split loop entry edge and insert new block with cond expr.  */
1548
  cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1549
                                        entry, cond_expr, then_prob);
1550
  if (condition_bb)
1551
    *condition_bb = cond_bb;
1552
 
1553
  if (!cond_bb)
1554
    {
1555
      entry->flags |= irred_flag;
1556
      return NULL;
1557
    }
1558
 
1559
  latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1560
 
1561
  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1562
  nloop = loopify (latch_edge,
1563
                   single_pred_edge (get_bb_copy (loop->header)),
1564
                   cond_bb, true_edge, false_edge,
1565
                   false /* Do not redirect all edges.  */,
1566
                   then_scale, else_scale);
1567
 
1568
  /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1569
  lv_flush_pending_stmts (latch_edge);
1570
 
1571
  /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1572
  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1573
  lv_flush_pending_stmts (false_edge);
1574
  /* Adjust irreducible flag.  */
1575
  if (irred_flag)
1576
    {
1577
      cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1578
      loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1579
      loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1580
      single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1581
    }
1582
 
1583
  if (place_after)
1584
    {
1585
      basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1586
      unsigned i;
1587
 
1588
      after = loop->latch;
1589
 
1590
      for (i = 0; i < nloop->num_nodes; i++)
1591
        {
1592
          move_block_after (bbs[i], after);
1593
          after = bbs[i];
1594
        }
1595
      free (bbs);
1596
    }
1597
 
1598
  /* At this point condition_bb is loop preheader with two successors,
1599
     first_head and second_head.   Make sure that loop preheader has only
1600
     one successor.  */
1601
  split_edge (loop_preheader_edge (loop));
1602
  split_edge (loop_preheader_edge (nloop));
1603
 
1604
  return nloop;
1605
}
1606
 
1607
/* The structure of loops might have changed.  Some loops might get removed
1608
   (and their headers and latches were set to NULL), loop exists might get
1609
   removed (thus the loop nesting may be wrong), and some blocks and edges
1610
   were changed (so the information about bb --> loop mapping does not have
1611
   to be correct).  But still for the remaining loops the header dominates
1612
   the latch, and loops did not get new subloops (new loops might possibly
1613
   get created, but we are not interested in them).  Fix up the mess.
1614
 
1615
   If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1616
   marked in it.  */
1617
 
1618
void
1619
fix_loop_structure (bitmap changed_bbs)
1620
{
1621
  basic_block bb;
1622
  struct loop *loop, *ploop;
1623
  loop_iterator li;
1624
  bool record_exits = false;
1625
  struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1626
 
1627
  /* Remove the old bb -> loop mapping.  Remember the depth of the blocks in
1628
     the loop hierarchy, so that we can recognize blocks whose loop nesting
1629
     relationship has changed.  */
1630
  FOR_EACH_BB (bb)
1631
    {
1632
      if (changed_bbs)
1633
        bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1634
      bb->loop_father = current_loops->tree_root;
1635
    }
1636
 
1637
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1638
    {
1639
      release_recorded_exits ();
1640
      record_exits = true;
1641
    }
1642
 
1643
  /* Remove the dead loops from structures.  We start from the innermost
1644
     loops, so that when we remove the loops, we know that the loops inside
1645
     are preserved, and do not waste time relinking loops that will be
1646
     removed later.  */
1647
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1648
    {
1649
      if (loop->header)
1650
        continue;
1651
 
1652
      while (loop->inner)
1653
        {
1654
          ploop = loop->inner;
1655
          flow_loop_tree_node_remove (ploop);
1656
          flow_loop_tree_node_add (loop_outer (loop), ploop);
1657
        }
1658
 
1659
      /* Remove the loop and free its data.  */
1660
      delete_loop (loop);
1661
    }
1662
 
1663
  /* Rescan the bodies of loops, starting from the outermost ones.  We assume
1664
     that no optimization interchanges the order of the loops, i.e., it cannot
1665
     happen that L1 was superloop of L2 before and it is subloop of L2 now
1666
     (without explicitly updating loop information).  At the same time, we also
1667
     determine the new loop structure.  */
1668
  current_loops->tree_root->num_nodes = n_basic_blocks;
1669
  FOR_EACH_LOOP (li, loop, 0)
1670
    {
1671
      superloop[loop->num] = loop->header->loop_father;
1672
      loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1673
    }
1674
 
1675
  /* Now fix the loop nesting.  */
1676
  FOR_EACH_LOOP (li, loop, 0)
1677
    {
1678
      ploop = superloop[loop->num];
1679
      if (ploop != loop_outer (loop))
1680
        {
1681
          flow_loop_tree_node_remove (loop);
1682
          flow_loop_tree_node_add (ploop, loop);
1683
        }
1684
    }
1685
  free (superloop);
1686
 
1687
  /* Mark the blocks whose loop has changed.  */
1688
  if (changed_bbs)
1689
    {
1690
      FOR_EACH_BB (bb)
1691
        {
1692
          if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1693
            bitmap_set_bit (changed_bbs, bb->index);
1694
 
1695
          bb->aux = NULL;
1696
        }
1697
    }
1698
 
1699
  if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1700
    create_preheaders (CP_SIMPLE_PREHEADERS);
1701
 
1702
  if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1703
    force_single_succ_latches ();
1704
 
1705
  if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1706
    mark_irreducible_loops ();
1707
 
1708
  if (record_exits)
1709
    record_loop_exits ();
1710
 
1711
#ifdef ENABLE_CHECKING
1712
  verify_loop_structure ();
1713
#endif
1714
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.