OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [alpha/] [alpha.h] - Blame information for rev 298

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler, for DEC Alpha.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 3, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING3.  If not see
21
<http://www.gnu.org/licenses/>.  */
22
 
23
/* Target CPU builtins.  */
24
#define TARGET_CPU_CPP_BUILTINS()                       \
25
  do                                                    \
26
    {                                                   \
27
        builtin_define ("__alpha");                     \
28
        builtin_define ("__alpha__");                   \
29
        builtin_assert ("cpu=alpha");                   \
30
        builtin_assert ("machine=alpha");               \
31
        if (TARGET_CIX)                                 \
32
          {                                             \
33
            builtin_define ("__alpha_cix__");           \
34
            builtin_assert ("cpu=cix");                 \
35
          }                                             \
36
        if (TARGET_FIX)                                 \
37
          {                                             \
38
            builtin_define ("__alpha_fix__");           \
39
            builtin_assert ("cpu=fix");                 \
40
          }                                             \
41
        if (TARGET_BWX)                                 \
42
          {                                             \
43
            builtin_define ("__alpha_bwx__");           \
44
            builtin_assert ("cpu=bwx");                 \
45
          }                                             \
46
        if (TARGET_MAX)                                 \
47
          {                                             \
48
            builtin_define ("__alpha_max__");           \
49
            builtin_assert ("cpu=max");                 \
50
          }                                             \
51
        if (alpha_cpu == PROCESSOR_EV6)                 \
52
          {                                             \
53
            builtin_define ("__alpha_ev6__");           \
54
            builtin_assert ("cpu=ev6");                 \
55
          }                                             \
56
        else if (alpha_cpu == PROCESSOR_EV5)            \
57
          {                                             \
58
            builtin_define ("__alpha_ev5__");           \
59
            builtin_assert ("cpu=ev5");                 \
60
          }                                             \
61
        else    /* Presumably ev4.  */                  \
62
          {                                             \
63
            builtin_define ("__alpha_ev4__");           \
64
            builtin_assert ("cpu=ev4");                 \
65
          }                                             \
66
        if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)    \
67
          builtin_define ("_IEEE_FP");                  \
68
        if (TARGET_IEEE_WITH_INEXACT)                   \
69
          builtin_define ("_IEEE_FP_INEXACT");          \
70
        if (TARGET_LONG_DOUBLE_128)                     \
71
          builtin_define ("__LONG_DOUBLE_128__");       \
72
                                                        \
73
        /* Macros dependent on the C dialect.  */       \
74
        SUBTARGET_LANGUAGE_CPP_BUILTINS();              \
75
} while (0)
76
 
77
#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78
#define SUBTARGET_LANGUAGE_CPP_BUILTINS()               \
79
  do                                                    \
80
    {                                                   \
81
      if (preprocessing_asm_p ())                       \
82
        builtin_define_std ("LANGUAGE_ASSEMBLY");       \
83
      else if (c_dialect_cxx ())                        \
84
        {                                               \
85
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");    \
86
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");  \
87
        }                                               \
88
      else                                              \
89
        builtin_define_std ("LANGUAGE_C");              \
90
      if (c_dialect_objc ())                            \
91
        {                                               \
92
          builtin_define ("__LANGUAGE_OBJECTIVE_C");    \
93
          builtin_define ("__LANGUAGE_OBJECTIVE_C__");  \
94
        }                                               \
95
    }                                                   \
96
  while (0)
97
#endif
98
 
99
#define WORD_SWITCH_TAKES_ARG(STR)              \
100
 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
101
 
102
/* Print subsidiary information on the compiler version in use.  */
103
#define TARGET_VERSION
104
 
105
/* Run-time compilation parameters selecting different hardware subsets.  */
106
 
107
/* Which processor to schedule for. The cpu attribute defines a list that
108
   mirrors this list, so changes to alpha.md must be made at the same time.  */
109
 
110
enum processor_type
111
{
112
  PROCESSOR_EV4,                        /* 2106[46]{a,} */
113
  PROCESSOR_EV5,                        /* 21164{a,pc,} */
114
  PROCESSOR_EV6,                        /* 21264 */
115
  PROCESSOR_MAX
116
};
117
 
118
extern enum processor_type alpha_cpu;
119
extern enum processor_type alpha_tune;
120
 
121
enum alpha_trap_precision
122
{
123
  ALPHA_TP_PROG,        /* No precision (default).  */
124
  ALPHA_TP_FUNC,        /* Trap contained within originating function.  */
125
  ALPHA_TP_INSN         /* Instruction accuracy and code is resumption safe.  */
126
};
127
 
128
enum alpha_fp_rounding_mode
129
{
130
  ALPHA_FPRM_NORM,      /* Normal rounding mode.  */
131
  ALPHA_FPRM_MINF,      /* Round towards minus-infinity.  */
132
  ALPHA_FPRM_CHOP,      /* Chopped rounding mode (towards 0).  */
133
  ALPHA_FPRM_DYN        /* Dynamic rounding mode.  */
134
};
135
 
136
enum alpha_fp_trap_mode
137
{
138
  ALPHA_FPTM_N,         /* Normal trap mode.  */
139
  ALPHA_FPTM_U,         /* Underflow traps enabled.  */
140
  ALPHA_FPTM_SU,        /* Software completion, w/underflow traps */
141
  ALPHA_FPTM_SUI        /* Software completion, w/underflow & inexact traps */
142
};
143
 
144
extern int target_flags;
145
 
146
extern enum alpha_trap_precision alpha_tp;
147
extern enum alpha_fp_rounding_mode alpha_fprm;
148
extern enum alpha_fp_trap_mode alpha_fptm;
149
 
150
/* Invert the easy way to make options work.  */
151
#define TARGET_FP       (!TARGET_SOFT_FP)
152
 
153
/* These are for target os support and cannot be changed at runtime.  */
154
#define TARGET_ABI_WINDOWS_NT 0
155
#define TARGET_ABI_OPEN_VMS 0
156
#define TARGET_ABI_UNICOSMK 0
157
#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT  \
158
                        && !TARGET_ABI_OPEN_VMS \
159
                        && !TARGET_ABI_UNICOSMK)
160
 
161
#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
162
#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
163
#endif
164
#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
165
#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
166
#endif
167
#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
168
#define TARGET_CAN_FAULT_IN_PROLOGUE 0
169
#endif
170
#ifndef TARGET_HAS_XFLOATING_LIBS
171
#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
172
#endif
173
#ifndef TARGET_PROFILING_NEEDS_GP
174
#define TARGET_PROFILING_NEEDS_GP 0
175
#endif
176
#ifndef TARGET_LD_BUGGY_LDGP
177
#define TARGET_LD_BUGGY_LDGP 0
178
#endif
179
#ifndef TARGET_FIXUP_EV5_PREFETCH
180
#define TARGET_FIXUP_EV5_PREFETCH 0
181
#endif
182
#ifndef HAVE_AS_TLS
183
#define HAVE_AS_TLS 0
184
#endif
185
 
186
#define TARGET_DEFAULT MASK_FPREGS
187
 
188
#ifndef TARGET_CPU_DEFAULT
189
#define TARGET_CPU_DEFAULT 0
190
#endif
191
 
192
#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
193
#ifdef HAVE_AS_EXPLICIT_RELOCS
194
#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
195
#define TARGET_SUPPORT_ARCH 1
196
#else
197
#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
198
#endif
199
#endif
200
 
201
#ifndef TARGET_SUPPORT_ARCH
202
#define TARGET_SUPPORT_ARCH 0
203
#endif
204
 
205
/* Support for a compile-time default CPU, et cetera.  The rules are:
206
   --with-cpu is ignored if -mcpu is specified.
207
   --with-tune is ignored if -mtune is specified.  */
208
#define OPTION_DEFAULT_SPECS \
209
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
210
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
211
 
212
/* Sometimes certain combinations of command options do not make sense
213
   on a particular target machine.  You can define a macro
214
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
215
   defined, is executed once just after all the command options have
216
   been parsed.
217
 
218
   On the Alpha, it is used to translate target-option strings into
219
   numeric values.  */
220
 
221
#define OVERRIDE_OPTIONS override_options ()
222
 
223
 
224
/* Define this macro to change register usage conditional on target flags.
225
 
226
   On the Alpha, we use this to disable the floating-point registers when
227
   they don't exist.  */
228
 
229
#define CONDITIONAL_REGISTER_USAGE              \
230
{                                               \
231
  int i;                                        \
232
  if (! TARGET_FPREGS)                          \
233
    for (i = 32; i < 63; i++)                   \
234
      fixed_regs[i] = call_used_regs[i] = 1;    \
235
}
236
 
237
 
238
/* Show we can debug even without a frame pointer.  */
239
#define CAN_DEBUG_WITHOUT_FP
240
 
241
/* target machine storage layout */
242
 
243
/* Define the size of `int'.  The default is the same as the word size.  */
244
#define INT_TYPE_SIZE 32
245
 
246
/* Define the size of `long long'.  The default is the twice the word size.  */
247
#define LONG_LONG_TYPE_SIZE 64
248
 
249
/* The two floating-point formats we support are S-floating, which is
250
   4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
251
   and `long double' are T.  */
252
 
253
#define FLOAT_TYPE_SIZE 32
254
#define DOUBLE_TYPE_SIZE 64
255
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
256
 
257
/* Define this to set long double type size to use in libgcc2.c, which can
258
   not depend on target_flags.  */
259
#ifdef __LONG_DOUBLE_128__
260
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
261
#else
262
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
263
#endif
264
 
265
/* Work around target_flags dependency in ada/targtyps.c.  */
266
#define WIDEST_HARDWARE_FP_SIZE 64
267
 
268
#define WCHAR_TYPE "unsigned int"
269
#define WCHAR_TYPE_SIZE 32
270
 
271
/* Define this macro if it is advisable to hold scalars in registers
272
   in a wider mode than that declared by the program.  In such cases,
273
   the value is constrained to be within the bounds of the declared
274
   type, but kept valid in the wider mode.  The signedness of the
275
   extension may differ from that of the type.
276
 
277
   For Alpha, we always store objects in a full register.  32-bit integers
278
   are always sign-extended, but smaller objects retain their signedness.
279
 
280
   Note that small vector types can get mapped onto integer modes at the
281
   whim of not appearing in alpha-modes.def.  We never promoted these
282
   values before; don't do so now that we've trimmed the set of modes to
283
   those actually implemented in the backend.  */
284
 
285
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                       \
286
  if (GET_MODE_CLASS (MODE) == MODE_INT                         \
287
      && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)      \
288
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                 \
289
    {                                                           \
290
      if ((MODE) == SImode)                                     \
291
        (UNSIGNEDP) = 0;                                 \
292
      (MODE) = DImode;                                          \
293
    }
294
 
295
/* Define this if most significant bit is lowest numbered
296
   in instructions that operate on numbered bit-fields.
297
 
298
   There are no such instructions on the Alpha, but the documentation
299
   is little endian.  */
300
#define BITS_BIG_ENDIAN 0
301
 
302
/* Define this if most significant byte of a word is the lowest numbered.
303
   This is false on the Alpha.  */
304
#define BYTES_BIG_ENDIAN 0
305
 
306
/* Define this if most significant word of a multiword number is lowest
307
   numbered.
308
 
309
   For Alpha we can decide arbitrarily since there are no machine instructions
310
   for them.  Might as well be consistent with bytes.  */
311
#define WORDS_BIG_ENDIAN 0
312
 
313
/* Width of a word, in units (bytes).  */
314
#define UNITS_PER_WORD 8
315
 
316
/* Width in bits of a pointer.
317
   See also the macro `Pmode' defined below.  */
318
#define POINTER_SIZE 64
319
 
320
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
321
#define PARM_BOUNDARY 64
322
 
323
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
324
#define STACK_BOUNDARY 128
325
 
326
/* Allocation boundary (in *bits*) for the code of a function.  */
327
#define FUNCTION_BOUNDARY 32
328
 
329
/* Alignment of field after `int : 0' in a structure.  */
330
#define EMPTY_FIELD_BOUNDARY 64
331
 
332
/* Every structure's size must be a multiple of this.  */
333
#define STRUCTURE_SIZE_BOUNDARY 8
334
 
335
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
336
#define PCC_BITFIELD_TYPE_MATTERS 1
337
 
338
/* No data type wants to be aligned rounder than this.  */
339
#define BIGGEST_ALIGNMENT 128
340
 
341
/* For atomic access to objects, must have at least 32-bit alignment
342
   unless the machine has byte operations.  */
343
#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
344
 
345
/* Align all constants and variables to at least a word boundary so
346
   we can pick up pieces of them faster.  */
347
/* ??? Only if block-move stuff knows about different source/destination
348
   alignment.  */
349
#if 0
350
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
351
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
352
#endif
353
 
354
/* Set this nonzero if move instructions will actually fail to work
355
   when given unaligned data.
356
 
357
   Since we get an error message when we do one, call them invalid.  */
358
 
359
#define STRICT_ALIGNMENT 1
360
 
361
/* Set this nonzero if unaligned move instructions are extremely slow.
362
 
363
   On the Alpha, they trap.  */
364
 
365
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
366
 
367
/* Standard register usage.  */
368
 
369
/* Number of actual hardware registers.
370
   The hardware registers are assigned numbers for the compiler
371
   from 0 to just below FIRST_PSEUDO_REGISTER.
372
   All registers that the compiler knows about must be given numbers,
373
   even those that are not normally considered general registers.
374
 
375
   We define all 32 integer registers, even though $31 is always zero,
376
   and all 32 floating-point registers, even though $f31 is also
377
   always zero.  We do not bother defining the FP status register and
378
   there are no other registers.
379
 
380
   Since $31 is always zero, we will use register number 31 as the
381
   argument pointer.  It will never appear in the generated code
382
   because we will always be eliminating it in favor of the stack
383
   pointer or hardware frame pointer.
384
 
385
   Likewise, we use $f31 for the frame pointer, which will always
386
   be eliminated in favor of the hardware frame pointer or the
387
   stack pointer.  */
388
 
389
#define FIRST_PSEUDO_REGISTER 64
390
 
391
/* 1 for registers that have pervasive standard uses
392
   and are not available for the register allocator.  */
393
 
394
#define FIXED_REGISTERS  \
395
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
396
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
397
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
398
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
399
 
400
/* 1 for registers not available across function calls.
401
   These must include the FIXED_REGISTERS and also any
402
   registers that can be used without being saved.
403
   The latter must include the registers where values are returned
404
   and the register where structure-value addresses are passed.
405
   Aside from that, you can include as many other registers as you like.  */
406
#define CALL_USED_REGISTERS  \
407
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
408
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
409
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
410
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
411
 
412
/* List the order in which to allocate registers.  Each register must be
413
   listed once, even those in FIXED_REGISTERS.  */
414
 
415
#define REG_ALLOC_ORDER { \
416
   1, 2, 3, 4, 5, 6, 7, 8,      /* nonsaved integer registers */        \
417
   22, 23, 24, 25, 28,          /* likewise */                          \
418
   0,                            /* likewise, but return value */        \
419
   21, 20, 19, 18, 17, 16,      /* likewise, but input args */          \
420
   27,                          /* likewise, but OSF procedure value */ \
421
                                                                        \
422
   42, 43, 44, 45, 46, 47,      /* nonsaved floating-point registers */ \
423
   54, 55, 56, 57, 58, 59,      /* likewise */                          \
424
   60, 61, 62,                  /* likewise */                          \
425
   32, 33,                      /* likewise, but return values */       \
426
   53, 52, 51, 50, 49, 48,      /* likewise, but input args */          \
427
                                                                        \
428
   9, 10, 11, 12, 13, 14,       /* saved integer registers */           \
429
   26,                          /* return address */                    \
430
   15,                          /* hard frame pointer */                \
431
                                                                        \
432
   34, 35, 36, 37, 38, 39,      /* saved floating-point registers */    \
433
   40, 41,                      /* likewise */                          \
434
                                                                        \
435
   29, 30, 31, 63               /* gp, sp, ap, sfp */                   \
436
}
437
 
438
/* Return number of consecutive hard regs needed starting at reg REGNO
439
   to hold something of mode MODE.
440
   This is ordinarily the length in words of a value of mode MODE
441
   but can be less for certain modes in special long registers.  */
442
 
443
#define HARD_REGNO_NREGS(REGNO, MODE)   \
444
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
445
 
446
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
447
   On Alpha, the integer registers can hold any mode.  The floating-point
448
   registers can hold 64-bit integers as well, but not smaller values.  */
449
 
450
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
451
  (IN_RANGE ((REGNO), 32, 62)                                           \
452
   ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode           \
453
     || (MODE) == SCmode || (MODE) == DCmode                            \
454
   : 1)
455
 
456
/* A C expression that is nonzero if a value of mode
457
   MODE1 is accessible in mode MODE2 without copying.
458
 
459
   This asymmetric test is true when MODE1 could be put
460
   in an FP register but MODE2 could not.  */
461
 
462
#define MODES_TIEABLE_P(MODE1, MODE2)                           \
463
  (HARD_REGNO_MODE_OK (32, (MODE1))                             \
464
   ? HARD_REGNO_MODE_OK (32, (MODE2))                           \
465
   : 1)
466
 
467
/* Specify the registers used for certain standard purposes.
468
   The values of these macros are register numbers.  */
469
 
470
/* Alpha pc isn't overloaded on a register that the compiler knows about.  */
471
/* #define PC_REGNUM  */
472
 
473
/* Register to use for pushing function arguments.  */
474
#define STACK_POINTER_REGNUM 30
475
 
476
/* Base register for access to local variables of the function.  */
477
#define HARD_FRAME_POINTER_REGNUM 15
478
 
479
/* Base register for access to arguments of the function.  */
480
#define ARG_POINTER_REGNUM 31
481
 
482
/* Base register for access to local variables of function.  */
483
#define FRAME_POINTER_REGNUM 63
484
 
485
/* Register in which static-chain is passed to a function.
486
 
487
   For the Alpha, this is based on an example; the calling sequence
488
   doesn't seem to specify this.  */
489
#define STATIC_CHAIN_REGNUM 1
490
 
491
/* The register number of the register used to address a table of
492
   static data addresses in memory.  */
493
#define PIC_OFFSET_TABLE_REGNUM 29
494
 
495
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
496
   is clobbered by calls.  */
497
/* ??? It is and it isn't.  It's required to be valid for a given
498
   function when the function returns.  It isn't clobbered by
499
   current_file functions.  Moreover, we do not expose the ldgp
500
   until after reload, so we're probably safe.  */
501
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
502
 
503
/* Define the classes of registers for register constraints in the
504
   machine description.  Also define ranges of constants.
505
 
506
   One of the classes must always be named ALL_REGS and include all hard regs.
507
   If there is more than one class, another class must be named NO_REGS
508
   and contain no registers.
509
 
510
   The name GENERAL_REGS must be the name of a class (or an alias for
511
   another name such as ALL_REGS).  This is the class of registers
512
   that is allowed by "g" or "r" in a register constraint.
513
   Also, registers outside this class are allocated only when
514
   instructions express preferences for them.
515
 
516
   The classes must be numbered in nondecreasing order; that is,
517
   a larger-numbered class must never be contained completely
518
   in a smaller-numbered class.
519
 
520
   For any two classes, it is very desirable that there be another
521
   class that represents their union.  */
522
 
523
enum reg_class {
524
  NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
525
  GENERAL_REGS, FLOAT_REGS, ALL_REGS,
526
  LIM_REG_CLASSES
527
};
528
 
529
#define N_REG_CLASSES (int) LIM_REG_CLASSES
530
 
531
/* Give names of register classes as strings for dump file.  */
532
 
533
#define REG_CLASS_NAMES                                 \
534
 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
535
  "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
536
 
537
/* Define which registers fit in which classes.
538
   This is an initializer for a vector of HARD_REG_SET
539
   of length N_REG_CLASSES.  */
540
 
541
#define REG_CLASS_CONTENTS                              \
542
{ {0x00000000, 0x00000000},     /* NO_REGS */           \
543
  {0x00000001, 0x00000000},     /* R0_REG */            \
544
  {0x01000000, 0x00000000},     /* R24_REG */           \
545
  {0x02000000, 0x00000000},     /* R25_REG */           \
546
  {0x08000000, 0x00000000},     /* R27_REG */           \
547
  {0xffffffff, 0x80000000},     /* GENERAL_REGS */      \
548
  {0x00000000, 0x7fffffff},     /* FLOAT_REGS */        \
549
  {0xffffffff, 0xffffffff} }
550
 
551
/* The following macro defines cover classes for Integrated Register
552
   Allocator.  Cover classes is a set of non-intersected register
553
   classes covering all hard registers used for register allocation
554
   purpose.  Any move between two registers of a cover class should be
555
   cheaper than load or store of the registers.  The macro value is
556
   array of register classes with LIM_REG_CLASSES used as the end
557
   marker.  */
558
 
559
#define IRA_COVER_CLASSES                                                    \
560
{                                                                            \
561
  GENERAL_REGS, FLOAT_REGS, LIM_REG_CLASSES                                  \
562
}
563
 
564
/* The same information, inverted:
565
   Return the class number of the smallest class containing
566
   reg number REGNO.  This could be a conditional expression
567
   or could index an array.  */
568
 
569
#define REGNO_REG_CLASS(REGNO)                  \
570
 ((REGNO) == 0 ? R0_REG                          \
571
  : (REGNO) == 24 ? R24_REG                     \
572
  : (REGNO) == 25 ? R25_REG                     \
573
  : (REGNO) == 27 ? R27_REG                     \
574
  : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS     \
575
  : GENERAL_REGS)
576
 
577
/* The class value for index registers, and the one for base regs.  */
578
#define INDEX_REG_CLASS NO_REGS
579
#define BASE_REG_CLASS GENERAL_REGS
580
 
581
/* Given an rtx X being reloaded into a reg required to be
582
   in class CLASS, return the class of reg to actually use.
583
   In general this is just CLASS; but on some machines
584
   in some cases it is preferable to use a more restrictive class.  */
585
 
586
#define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
587
 
588
/* If we are copying between general and FP registers, we need a memory
589
   location unless the FIX extension is available.  */
590
 
591
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
592
 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
593
                   || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
594
 
595
/* Specify the mode to be used for memory when a secondary memory
596
   location is needed.  If MODE is floating-point, use it.  Otherwise,
597
   widen to a word like the default.  This is needed because we always
598
   store integers in FP registers in quadword format.  This whole
599
   area is very tricky! */
600
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
601
  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)         \
602
   : GET_MODE_SIZE (MODE) >= 4 ? (MODE)                 \
603
   : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
604
 
605
/* Return the maximum number of consecutive registers
606
   needed to represent mode MODE in a register of class CLASS.  */
607
 
608
#define CLASS_MAX_NREGS(CLASS, MODE)                            \
609
 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
610
 
611
/* Return the class of registers that cannot change mode from FROM to TO.  */
612
 
613
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
614
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                   \
615
   ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
616
 
617
/* Define the cost of moving between registers of various classes.  Moving
618
   between FLOAT_REGS and anything else except float regs is expensive.
619
   In fact, we make it quite expensive because we really don't want to
620
   do these moves unless it is clearly worth it.  Optimizations may
621
   reduce the impact of not being able to allocate a pseudo to a
622
   hard register.  */
623
 
624
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
625
  (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2     \
626
   : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)              \
627
   : 4+2*alpha_memory_latency)
628
 
629
/* A C expressions returning the cost of moving data of MODE from a register to
630
   or from memory.
631
 
632
   On the Alpha, bump this up a bit.  */
633
 
634
extern int alpha_memory_latency;
635
#define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
636
 
637
/* Provide the cost of a branch.  Exact meaning under development.  */
638
#define BRANCH_COST(speed_p, predictable_p) 5
639
 
640
/* Stack layout; function entry, exit and calling.  */
641
 
642
/* Define this if pushing a word on the stack
643
   makes the stack pointer a smaller address.  */
644
#define STACK_GROWS_DOWNWARD
645
 
646
/* Define this to nonzero if the nominal address of the stack frame
647
   is at the high-address end of the local variables;
648
   that is, each additional local variable allocated
649
   goes at a more negative offset in the frame.  */
650
/* #define FRAME_GROWS_DOWNWARD 0 */
651
 
652
/* Offset within stack frame to start allocating local variables at.
653
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
654
   first local allocated.  Otherwise, it is the offset to the BEGINNING
655
   of the first local allocated.  */
656
 
657
#define STARTING_FRAME_OFFSET 0
658
 
659
/* If we generate an insn to push BYTES bytes,
660
   this says how many the stack pointer really advances by.
661
   On Alpha, don't define this because there are no push insns.  */
662
/*  #define PUSH_ROUNDING(BYTES) */
663
 
664
/* Define this to be nonzero if stack checking is built into the ABI.  */
665
#define STACK_CHECK_BUILTIN 1
666
 
667
/* Define this if the maximum size of all the outgoing args is to be
668
   accumulated and pushed during the prologue.  The amount can be
669
   found in the variable crtl->outgoing_args_size.  */
670
#define ACCUMULATE_OUTGOING_ARGS 1
671
 
672
/* Offset of first parameter from the argument pointer register value.  */
673
 
674
#define FIRST_PARM_OFFSET(FNDECL) 0
675
 
676
/* Definitions for register eliminations.
677
 
678
   We have two registers that can be eliminated on the Alpha.  First, the
679
   frame pointer register can often be eliminated in favor of the stack
680
   pointer register.  Secondly, the argument pointer register can always be
681
   eliminated; it is replaced with either the stack or frame pointer.  */
682
 
683
/* This is an array of structures.  Each structure initializes one pair
684
   of eliminable registers.  The "from" register number is given first,
685
   followed by "to".  Eliminations of the same "from" register are listed
686
   in order of preference.  */
687
 
688
#define ELIMINABLE_REGS                              \
689
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
690
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
691
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},      \
692
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
693
 
694
/* Round up to a multiple of 16 bytes.  */
695
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
696
 
697
/* Define the offset between two registers, one to be eliminated, and the other
698
   its replacement, at the start of a routine.  */
699
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
700
  ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
701
 
702
/* Define this if stack space is still allocated for a parameter passed
703
   in a register.  */
704
/* #define REG_PARM_STACK_SPACE */
705
 
706
/* Value is the number of bytes of arguments automatically
707
   popped when returning from a subroutine call.
708
   FUNDECL is the declaration node of the function (as a tree),
709
   FUNTYPE is the data type of the function (as a tree),
710
   or for a library call it is an identifier node for the subroutine name.
711
   SIZE is the number of bytes of arguments passed on the stack.  */
712
 
713
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
714
 
715
/* Define how to find the value returned by a function.
716
   VALTYPE is the data type of the value (as a tree).
717
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
718
   otherwise, FUNC is 0.
719
 
720
   On Alpha the value is found in $0 for integer functions and
721
   $f0 for floating-point functions.  */
722
 
723
#define FUNCTION_VALUE(VALTYPE, FUNC) \
724
  function_value (VALTYPE, FUNC, VOIDmode)
725
 
726
/* Define how to find the value returned by a library function
727
   assuming the value has mode MODE.  */
728
 
729
#define LIBCALL_VALUE(MODE) \
730
  function_value (NULL, NULL, MODE)
731
 
732
/* 1 if N is a possible register number for a function value
733
   as seen by the caller.  */
734
 
735
#define FUNCTION_VALUE_REGNO_P(N)  \
736
  ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
737
 
738
/* 1 if N is a possible register number for function argument passing.
739
   On Alpha, these are $16-$21 and $f16-$f21.  */
740
 
741
#define FUNCTION_ARG_REGNO_P(N) \
742
  (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
743
 
744
/* Define a data type for recording info about an argument list
745
   during the scan of that argument list.  This data type should
746
   hold all necessary information about the function itself
747
   and about the args processed so far, enough to enable macros
748
   such as FUNCTION_ARG to determine where the next arg should go.
749
 
750
   On Alpha, this is a single integer, which is a number of words
751
   of arguments scanned so far.
752
   Thus 6 or more means all following args should go on the stack.  */
753
 
754
#define CUMULATIVE_ARGS int
755
 
756
/* Initialize a variable CUM of type CUMULATIVE_ARGS
757
   for a call to a function whose data type is FNTYPE.
758
   For a library call, FNTYPE is 0.  */
759
 
760
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
761
  (CUM) = 0
762
 
763
/* Define intermediate macro to compute the size (in registers) of an argument
764
   for the Alpha.  */
765
 
766
#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)                               \
767
  ((MODE) == TFmode || (MODE) == TCmode ? 1                             \
768
   : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
769
      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
770
 
771
/* Update the data in CUM to advance over an argument
772
   of mode MODE and data type TYPE.
773
   (TYPE is null for libcalls where that information may not be available.)  */
774
 
775
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
776
  ((CUM) +=                                                             \
777
   (targetm.calls.must_pass_in_stack (MODE, TYPE))                      \
778
    ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
779
 
780
/* Determine where to put an argument to a function.
781
   Value is zero to push the argument on the stack,
782
   or a hard register in which to store the argument.
783
 
784
   MODE is the argument's machine mode.
785
   TYPE is the data type of the argument (as a tree).
786
    This is null for libcalls where that information may
787
    not be available.
788
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
789
    the preceding args and about the function being called.
790
   NAMED is nonzero if this argument is a named parameter
791
    (otherwise it is an extra parameter matching an ellipsis).
792
 
793
   On Alpha the first 6 words of args are normally in registers
794
   and the rest are pushed.  */
795
 
796
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
797
  function_arg((CUM), (MODE), (TYPE), (NAMED))
798
 
799
/* Make (or fake) .linkage entry for function call.
800
   IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
801
 
802
/* This macro defines the start of an assembly comment.  */
803
 
804
#define ASM_COMMENT_START " #"
805
 
806
/* This macro produces the initial definition of a function.  */
807
 
808
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
809
  alpha_start_function(FILE,NAME,DECL);
810
 
811
/* This macro closes up a function definition for the assembler.  */
812
 
813
#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
814
  alpha_end_function(FILE,NAME,DECL)
815
 
816
/* Output any profiling code before the prologue.  */
817
 
818
#define PROFILE_BEFORE_PROLOGUE 1
819
 
820
/* Never use profile counters.  */
821
 
822
#define NO_PROFILE_COUNTERS 1
823
 
824
/* Output assembler code to FILE to increment profiler label # LABELNO
825
   for profiling a function entry.  Under OSF/1, profiling is enabled
826
   by simply passing -pg to the assembler and linker.  */
827
 
828
#define FUNCTION_PROFILER(FILE, LABELNO)
829
 
830
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
831
   the stack pointer does not matter.  The value is tested only in
832
   functions that have frame pointers.
833
   No definition is equivalent to always zero.  */
834
 
835
#define EXIT_IGNORE_STACK 1
836
 
837
/* Define registers used by the epilogue and return instruction.  */
838
 
839
#define EPILOGUE_USES(REGNO)    ((REGNO) == 26)
840
 
841
/* Length in units of the trampoline for entering a nested function.  */
842
 
843
#define TRAMPOLINE_SIZE    32
844
 
845
/* The alignment of a trampoline, in bits.  */
846
 
847
#define TRAMPOLINE_ALIGNMENT  64
848
 
849
/* A C expression whose value is RTL representing the value of the return
850
   address for the frame COUNT steps up from the current frame.
851
   FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
852
   the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
853
 
854
#define RETURN_ADDR_RTX  alpha_return_addr
855
 
856
/* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
857
   can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
858
   as the default definition in dwarf2out.c.  */
859
#undef DWARF_FRAME_REGNUM
860
#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
861
 
862
/* Before the prologue, RA lives in $26.  */
863
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
864
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
865
#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
866
#define DWARF_ZERO_REG 31
867
 
868
/* Describe how we implement __builtin_eh_return.  */
869
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
870
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 28)
871
#define EH_RETURN_HANDLER_RTX \
872
  gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
873
                                     crtl->outgoing_args_size))
874
 
875
/* Addressing modes, and classification of registers for them.  */
876
 
877
/* Macros to check register numbers against specific register classes.  */
878
 
879
/* These assume that REGNO is a hard or pseudo reg number.
880
   They give nonzero only if REGNO is a hard reg of the suitable class
881
   or a pseudo reg currently allocated to a suitable hard reg.
882
   Since they use reg_renumber, they are safe only once reg_renumber
883
   has been allocated, which happens in local-alloc.c.  */
884
 
885
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
886
#define REGNO_OK_FOR_BASE_P(REGNO) \
887
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
888
 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
889
 
890
/* Maximum number of registers that can appear in a valid memory address.  */
891
#define MAX_REGS_PER_ADDRESS 1
892
 
893
/* Recognize any constant value that is a valid address.  For the Alpha,
894
   there are only constants none since we want to use LDA to load any
895
   symbolic addresses into registers.  */
896
 
897
#define CONSTANT_ADDRESS_P(X)   \
898
  (CONST_INT_P (X)              \
899
   && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
900
 
901
/* Include all constant integers and constant doubles, but not
902
   floating-point, except for floating-point zero.  */
903
 
904
#define LEGITIMATE_CONSTANT_P  alpha_legitimate_constant_p
905
 
906
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
907
   and check its validity for a certain class.
908
   We have two alternate definitions for each of them.
909
   The usual definition accepts all pseudo regs; the other rejects
910
   them unless they have been allocated suitable hard regs.
911
   The symbol REG_OK_STRICT causes the latter definition to be used.
912
 
913
   Most source files want to accept pseudo regs in the hope that
914
   they will get allocated to the class that the insn wants them to be in.
915
   Source files for reload pass need to be strict.
916
   After reload, it makes no difference, since pseudo regs have
917
   been eliminated by then.  */
918
 
919
/* Nonzero if X is a hard reg that can be used as an index
920
   or if it is a pseudo reg.  */
921
#define REG_OK_FOR_INDEX_P(X) 0
922
 
923
/* Nonzero if X is a hard reg that can be used as a base reg
924
   or if it is a pseudo reg.  */
925
#define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
926
  (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
927
 
928
/* ??? Nonzero if X is the frame pointer, or some virtual register
929
   that may eliminate to the frame pointer.  These will be allowed to
930
   have offsets greater than 32K.  This is done because register
931
   elimination offsets will change the hi/lo split, and if we split
932
   before reload, we will require additional instructions.  */
933
#define NONSTRICT_REG_OK_FP_BASE_P(X)           \
934
  (REGNO (X) == 31 || REGNO (X) == 63           \
935
   || (REGNO (X) >= FIRST_PSEUDO_REGISTER       \
936
       && REGNO (X) < LAST_VIRTUAL_REGISTER))
937
 
938
/* Nonzero if X is a hard reg that can be used as a base reg.  */
939
#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
940
 
941
#ifdef REG_OK_STRICT
942
#define REG_OK_FOR_BASE_P(X)    STRICT_REG_OK_FOR_BASE_P (X)
943
#else
944
#define REG_OK_FOR_BASE_P(X)    NONSTRICT_REG_OK_FOR_BASE_P (X)
945
#endif
946
 
947
/* Try a machine-dependent way of reloading an illegitimate address
948
   operand.  If we find one, push the reload and jump to WIN.  This
949
   macro is used in only one place: `find_reloads_address' in reload.c.  */
950
 
951
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)               \
952
do {                                                                         \
953
  rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
954
  if (new_x)                                                                 \
955
    {                                                                        \
956
      X = new_x;                                                             \
957
      goto WIN;                                                              \
958
    }                                                                        \
959
} while (0)
960
 
961
/* Go to LABEL if ADDR (a legitimate address expression)
962
   has an effect that depends on the machine mode it is used for.
963
   On the Alpha this is true only for the unaligned modes.   We can
964
   simplify this test since we know that the address must be valid.  */
965
 
966
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
967
{ if (GET_CODE (ADDR) == AND) goto LABEL; }
968
 
969
/* Specify the machine mode that this machine uses
970
   for the index in the tablejump instruction.  */
971
#define CASE_VECTOR_MODE SImode
972
 
973
/* Define as C expression which evaluates to nonzero if the tablejump
974
   instruction expects the table to contain offsets from the address of the
975
   table.
976
 
977
   Do not define this if the table should contain absolute addresses.
978
   On the Alpha, the table is really GP-relative, not relative to the PC
979
   of the table, but we pretend that it is PC-relative; this should be OK,
980
   but we should try to find some better way sometime.  */
981
#define CASE_VECTOR_PC_RELATIVE 1
982
 
983
/* Define this as 1 if `char' should by default be signed; else as 0.  */
984
#define DEFAULT_SIGNED_CHAR 1
985
 
986
/* Max number of bytes we can move to or from memory
987
   in one reasonably fast instruction.  */
988
 
989
#define MOVE_MAX 8
990
 
991
/* If a memory-to-memory move would take MOVE_RATIO or more simple
992
   move-instruction pairs, we will do a movmem or libcall instead.
993
 
994
   Without byte/word accesses, we want no more than four instructions;
995
   with, several single byte accesses are better.  */
996
 
997
#define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
998
 
999
/* Largest number of bytes of an object that can be placed in a register.
1000
   On the Alpha we have plenty of registers, so use TImode.  */
1001
#define MAX_FIXED_MODE_SIZE     GET_MODE_BITSIZE (TImode)
1002
 
1003
/* Nonzero if access to memory by bytes is no faster than for words.
1004
   Also nonzero if doing byte operations (specifically shifts) in registers
1005
   is undesirable.
1006
 
1007
   On the Alpha, we want to not use the byte operation and instead use
1008
   masking operations to access fields; these will save instructions.  */
1009
 
1010
#define SLOW_BYTE_ACCESS        1
1011
 
1012
/* Define if operations between registers always perform the operation
1013
   on the full register even if a narrower mode is specified.  */
1014
#define WORD_REGISTER_OPERATIONS
1015
 
1016
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1017
   will either zero-extend or sign-extend.  The value of this macro should
1018
   be the code that says which one of the two operations is implicitly
1019
   done, UNKNOWN if none.  */
1020
#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1021
 
1022
/* Define if loading short immediate values into registers sign extends.  */
1023
#define SHORT_IMMEDIATES_SIGN_EXTEND
1024
 
1025
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1026
   is done just by pretending it is already truncated.  */
1027
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1028
 
1029
/* The CIX ctlz and cttz instructions return 64 for zero.  */
1030
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1031
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1032
 
1033
/* Define the value returned by a floating-point comparison instruction.  */
1034
 
1035
#define FLOAT_STORE_FLAG_VALUE(MODE) \
1036
  REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1037
 
1038
/* Canonicalize a comparison from one we don't have to one we do have.  */
1039
 
1040
#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1041
  do {                                                                  \
1042
    if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1043
        && (REG_P (OP1) || (OP1) == const0_rtx))                \
1044
      {                                                                 \
1045
        rtx tem = (OP0);                                                \
1046
        (OP0) = (OP1);                                                  \
1047
        (OP1) = tem;                                                    \
1048
        (CODE) = swap_condition (CODE);                                 \
1049
      }                                                                 \
1050
    if (((CODE) == LT || (CODE) == LTU)                                 \
1051
        && CONST_INT_P (OP1) && INTVAL (OP1) == 256)                    \
1052
      {                                                                 \
1053
        (CODE) = (CODE) == LT ? LE : LEU;                               \
1054
        (OP1) = GEN_INT (255);                                          \
1055
      }                                                                 \
1056
  } while (0)
1057
 
1058
/* Specify the machine mode that pointers have.
1059
   After generation of rtl, the compiler makes no further distinction
1060
   between pointers and any other objects of this machine mode.  */
1061
#define Pmode DImode
1062
 
1063
/* Mode of a function address in a call instruction (for indexing purposes).  */
1064
 
1065
#define FUNCTION_MODE Pmode
1066
 
1067
/* Define this if addresses of constant functions
1068
   shouldn't be put through pseudo regs where they can be cse'd.
1069
   Desirable on machines where ordinary constants are expensive
1070
   but a CALL with constant address is cheap.
1071
 
1072
   We define this on the Alpha so that gen_call and gen_call_value
1073
   get to see the SYMBOL_REF (for the hint field of the jsr).  It will
1074
   then copy it into a register, thus actually letting the address be
1075
   cse'ed.  */
1076
 
1077
#define NO_FUNCTION_CSE
1078
 
1079
/* Define this to be nonzero if shift instructions ignore all but the low-order
1080
   few bits.  */
1081
#define SHIFT_COUNT_TRUNCATED 1
1082
 
1083
/* Control the assembler format that we output.  */
1084
 
1085
/* Output to assembler file text saying following lines
1086
   may contain character constants, extra white space, comments, etc.  */
1087
#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1088
 
1089
/* Output to assembler file text saying following lines
1090
   no longer contain unusual constructs.  */
1091
#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1092
 
1093
#define TEXT_SECTION_ASM_OP "\t.text"
1094
 
1095
/* Output before read-only data.  */
1096
 
1097
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1098
 
1099
/* Output before writable data.  */
1100
 
1101
#define DATA_SECTION_ASM_OP "\t.data"
1102
 
1103
/* How to refer to registers in assembler output.
1104
   This sequence is indexed by compiler's hard-register-number (see above).  */
1105
 
1106
#define REGISTER_NAMES                                          \
1107
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",          \
1108
 "$9", "$10", "$11", "$12", "$13", "$14", "$15",                \
1109
 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",        \
1110
 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",         \
1111
 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1112
 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",         \
1113
 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1114
 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1115
 
1116
/* Strip name encoding when emitting labels.  */
1117
 
1118
#define ASM_OUTPUT_LABELREF(STREAM, NAME)       \
1119
do {                                            \
1120
  const char *name_ = NAME;                     \
1121
  if (*name_ == '@' || *name_ == '%')           \
1122
    name_ += 2;                                 \
1123
  if (*name_ == '*')                            \
1124
    name_++;                                    \
1125
  else                                          \
1126
    fputs (user_label_prefix, STREAM);          \
1127
  fputs (name_, STREAM);                        \
1128
} while (0)
1129
 
1130
/* Globalizing directive for a label.  */
1131
#define GLOBAL_ASM_OP "\t.globl "
1132
 
1133
/* The prefix to add to user-visible assembler symbols.  */
1134
 
1135
#define USER_LABEL_PREFIX ""
1136
 
1137
/* This is how to output a label for a jump table.  Arguments are the same as
1138
   for (*targetm.asm_out.internal_label), except the insn for the jump table is
1139
   passed.  */
1140
 
1141
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)        \
1142
{ ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1143
 
1144
/* This is how to store into the string LABEL
1145
   the symbol_ref name of an internal numbered label where
1146
   PREFIX is the class of label and NUM is the number within the class.
1147
   This is suitable for output with `assemble_name'.  */
1148
 
1149
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1150
  sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1151
 
1152
/* We use the default ASCII-output routine, except that we don't write more
1153
   than 50 characters since the assembler doesn't support very long lines.  */
1154
 
1155
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1156
  do {                                                                        \
1157
    FILE *_hide_asm_out_file = (MYFILE);                                      \
1158
    const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);        \
1159
    int _hide_thissize = (MYLENGTH);                                          \
1160
    int _size_so_far = 0;                                                      \
1161
    {                                                                         \
1162
      FILE *asm_out_file = _hide_asm_out_file;                                \
1163
      const unsigned char *p = _hide_p;                                       \
1164
      int thissize = _hide_thissize;                                          \
1165
      int i;                                                                  \
1166
      fprintf (asm_out_file, "\t.ascii \"");                                  \
1167
                                                                              \
1168
      for (i = 0; i < thissize; i++)                                           \
1169
        {                                                                     \
1170
          register int c = p[i];                                              \
1171
                                                                              \
1172
          if (_size_so_far ++ > 50 && i < thissize - 4)                       \
1173
            _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1174
                                                                              \
1175
          if (c == '\"' || c == '\\')                                         \
1176
            putc ('\\', asm_out_file);                                        \
1177
          if (c >= ' ' && c < 0177)                                           \
1178
            putc (c, asm_out_file);                                           \
1179
          else                                                                \
1180
            {                                                                 \
1181
              fprintf (asm_out_file, "\\%o", c);                              \
1182
              /* After an octal-escape, if a digit follows,                   \
1183
                 terminate one string constant and start another.             \
1184
                 The VAX assembler fails to stop reading the escape           \
1185
                 after three digits, so this is the only way we               \
1186
                 can get it to parse the data properly.  */                   \
1187
              if (i < thissize - 1 && ISDIGIT (p[i + 1]))                     \
1188
                _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1189
          }                                                                   \
1190
        }                                                                     \
1191
      fprintf (asm_out_file, "\"\n");                                         \
1192
    }                                                                         \
1193
  }                                                                           \
1194
  while (0)
1195
 
1196
/* This is how to output an element of a case-vector that is relative.  */
1197
 
1198
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1199
  fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1200
           (VALUE))
1201
 
1202
/* This is how to output an assembler line
1203
   that says to advance the location counter
1204
   to a multiple of 2**LOG bytes.  */
1205
 
1206
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1207
  if ((LOG) != 0)                        \
1208
    fprintf (FILE, "\t.align %d\n", LOG);
1209
 
1210
/* This is how to advance the location counter by SIZE bytes.  */
1211
 
1212
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1213
  fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1214
 
1215
/* This says how to output an assembler line
1216
   to define a global common symbol.  */
1217
 
1218
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1219
( fputs ("\t.comm ", (FILE)),                   \
1220
  assemble_name ((FILE), (NAME)),               \
1221
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1222
 
1223
/* This says how to output an assembler line
1224
   to define a local common symbol.  */
1225
 
1226
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)      \
1227
( fputs ("\t.lcomm ", (FILE)),                          \
1228
  assemble_name ((FILE), (NAME)),                       \
1229
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1230
 
1231
 
1232
/* Print operand X (an rtx) in assembler syntax to file FILE.
1233
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1234
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1235
 
1236
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1237
 
1238
/* Determine which codes are valid without a following integer.  These must
1239
   not be alphabetic.
1240
 
1241
   ~    Generates the name of the current function.
1242
 
1243
   /    Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1244
        attributes are examined to determine what is appropriate.
1245
 
1246
   ,    Generates single precision suffix for floating point
1247
        instructions (s for IEEE, f for VAX)
1248
 
1249
   -    Generates double precision suffix for floating point
1250
        instructions (t for IEEE, g for VAX)
1251
   */
1252
 
1253
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1254
  ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1255
   || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1256
 
1257
/* Print a memory address as an operand to reference that memory location.  */
1258
 
1259
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1260
  print_operand_address((FILE), (ADDR))
1261
 
1262
/* Tell collect that the object format is ECOFF.  */
1263
#define OBJECT_FORMAT_COFF
1264
#define EXTENDED_COFF
1265
 
1266
/* If we use NM, pass -g to it so it only lists globals.  */
1267
#define NM_FLAGS "-pg"
1268
 
1269
/* Definitions for debugging.  */
1270
 
1271
#define SDB_DEBUGGING_INFO 1            /* generate info for mips-tfile */
1272
#define DBX_DEBUGGING_INFO 1            /* generate embedded stabs */
1273
#define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
1274
 
1275
#ifndef PREFERRED_DEBUGGING_TYPE        /* assume SDB_DEBUGGING_INFO */
1276
#define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
1277
#endif
1278
 
1279
 
1280
/* Correct the offset of automatic variables and arguments.  Note that
1281
   the Alpha debug format wants all automatic variables and arguments
1282
   to be in terms of two different offsets from the virtual frame pointer,
1283
   which is the stack pointer before any adjustment in the function.
1284
   The offset for the argument pointer is fixed for the native compiler,
1285
   it is either zero (for the no arguments case) or large enough to hold
1286
   all argument registers.
1287
   The offset for the auto pointer is the fourth argument to the .frame
1288
   directive (local_offset).
1289
   To stay compatible with the native tools we use the same offsets
1290
   from the virtual frame pointer and adjust the debugger arg/auto offsets
1291
   accordingly. These debugger offsets are set up in output_prolog.  */
1292
 
1293
extern long alpha_arg_offset;
1294
extern long alpha_auto_offset;
1295
#define DEBUGGER_AUTO_OFFSET(X) \
1296
  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1297
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1298
 
1299
/* mips-tfile doesn't understand .stabd directives.  */
1300
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
1301
  dbxout_begin_stabn_sline (LINE);                              \
1302
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
1303
} while (0)
1304
 
1305
/* We want to use MIPS-style .loc directives for SDB line numbers.  */
1306
extern int num_source_filenames;
1307
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)    \
1308
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1309
 
1310
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
1311
  alpha_output_filename (STREAM, NAME)
1312
 
1313
/* mips-tfile.c limits us to strings of one page.  We must underestimate this
1314
   number, because the real length runs past this up to the next
1315
   continuation point.  This is really a dbxout.c bug.  */
1316
#define DBX_CONTIN_LENGTH 3000
1317
 
1318
/* By default, turn on GDB extensions.  */
1319
#define DEFAULT_GDB_EXTENSIONS 1
1320
 
1321
/* Stabs-in-ECOFF can't handle dbxout_function_end().  */
1322
#define NO_DBX_FUNCTION_END 1
1323
 
1324
/* If we are smuggling stabs through the ALPHA ECOFF object
1325
   format, put a comment in front of the .stab<x> operation so
1326
   that the ALPHA assembler does not choke.  The mips-tfile program
1327
   will correctly put the stab into the object file.  */
1328
 
1329
#define ASM_STABS_OP    ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1330
#define ASM_STABN_OP    ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1331
#define ASM_STABD_OP    ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1332
 
1333
/* Forward references to tags are allowed.  */
1334
#define SDB_ALLOW_FORWARD_REFERENCES
1335
 
1336
/* Unknown tags are also allowed.  */
1337
#define SDB_ALLOW_UNKNOWN_REFERENCES
1338
 
1339
#define PUT_SDB_DEF(a)                                  \
1340
do {                                                    \
1341
  fprintf (asm_out_file, "\t%s.def\t",                  \
1342
           (TARGET_GAS) ? "" : "#");                    \
1343
  ASM_OUTPUT_LABELREF (asm_out_file, a);                \
1344
  fputc (';', asm_out_file);                            \
1345
} while (0)
1346
 
1347
#define PUT_SDB_PLAIN_DEF(a)                            \
1348
do {                                                    \
1349
  fprintf (asm_out_file, "\t%s.def\t.%s;",              \
1350
           (TARGET_GAS) ? "" : "#", (a));               \
1351
} while (0)
1352
 
1353
#define PUT_SDB_TYPE(a)                                 \
1354
do {                                                    \
1355
  fprintf (asm_out_file, "\t.type\t0x%x;", (a));        \
1356
} while (0)
1357
 
1358
/* For block start and end, we create labels, so that
1359
   later we can figure out where the correct offset is.
1360
   The normal .ent/.end serve well enough for functions,
1361
   so those are just commented out.  */
1362
 
1363
extern int sdb_label_count;             /* block start/end next label # */
1364
 
1365
#define PUT_SDB_BLOCK_START(LINE)                       \
1366
do {                                                    \
1367
  fprintf (asm_out_file,                                \
1368
           "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",           \
1369
           sdb_label_count,                             \
1370
           (TARGET_GAS) ? "" : "#",                     \
1371
           sdb_label_count,                             \
1372
           (LINE));                                     \
1373
  sdb_label_count++;                                    \
1374
} while (0)
1375
 
1376
#define PUT_SDB_BLOCK_END(LINE)                         \
1377
do {                                                    \
1378
  fprintf (asm_out_file,                                \
1379
           "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",            \
1380
           sdb_label_count,                             \
1381
           (TARGET_GAS) ? "" : "#",                     \
1382
           sdb_label_count,                             \
1383
           (LINE));                                     \
1384
  sdb_label_count++;                                    \
1385
} while (0)
1386
 
1387
#define PUT_SDB_FUNCTION_START(LINE)
1388
 
1389
#define PUT_SDB_FUNCTION_END(LINE)
1390
 
1391
#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1392
 
1393
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1394
   mips-tdump.c to print them out.
1395
 
1396
   These must match the corresponding definitions in gdb/mipsread.c.
1397
   Unfortunately, gcc and gdb do not currently share any directories.  */
1398
 
1399
#define CODE_MASK 0x8F300
1400
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1401
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1402
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1403
 
1404
/* Override some mips-tfile definitions.  */
1405
 
1406
#define SHASH_SIZE 511
1407
#define THASH_SIZE 55
1408
 
1409
/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */
1410
 
1411
#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1412
 
1413
/* The system headers under Alpha systems are generally C++-aware.  */
1414
#define NO_IMPLICIT_EXTERN_C

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.