1 |
282 |
jeremybenn |
/* Definitions of target machine for GNU compiler, for DEC Alpha.
|
2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
3 |
|
|
2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* Target CPU builtins. */
|
24 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
25 |
|
|
do \
|
26 |
|
|
{ \
|
27 |
|
|
builtin_define ("__alpha"); \
|
28 |
|
|
builtin_define ("__alpha__"); \
|
29 |
|
|
builtin_assert ("cpu=alpha"); \
|
30 |
|
|
builtin_assert ("machine=alpha"); \
|
31 |
|
|
if (TARGET_CIX) \
|
32 |
|
|
{ \
|
33 |
|
|
builtin_define ("__alpha_cix__"); \
|
34 |
|
|
builtin_assert ("cpu=cix"); \
|
35 |
|
|
} \
|
36 |
|
|
if (TARGET_FIX) \
|
37 |
|
|
{ \
|
38 |
|
|
builtin_define ("__alpha_fix__"); \
|
39 |
|
|
builtin_assert ("cpu=fix"); \
|
40 |
|
|
} \
|
41 |
|
|
if (TARGET_BWX) \
|
42 |
|
|
{ \
|
43 |
|
|
builtin_define ("__alpha_bwx__"); \
|
44 |
|
|
builtin_assert ("cpu=bwx"); \
|
45 |
|
|
} \
|
46 |
|
|
if (TARGET_MAX) \
|
47 |
|
|
{ \
|
48 |
|
|
builtin_define ("__alpha_max__"); \
|
49 |
|
|
builtin_assert ("cpu=max"); \
|
50 |
|
|
} \
|
51 |
|
|
if (alpha_cpu == PROCESSOR_EV6) \
|
52 |
|
|
{ \
|
53 |
|
|
builtin_define ("__alpha_ev6__"); \
|
54 |
|
|
builtin_assert ("cpu=ev6"); \
|
55 |
|
|
} \
|
56 |
|
|
else if (alpha_cpu == PROCESSOR_EV5) \
|
57 |
|
|
{ \
|
58 |
|
|
builtin_define ("__alpha_ev5__"); \
|
59 |
|
|
builtin_assert ("cpu=ev5"); \
|
60 |
|
|
} \
|
61 |
|
|
else /* Presumably ev4. */ \
|
62 |
|
|
{ \
|
63 |
|
|
builtin_define ("__alpha_ev4__"); \
|
64 |
|
|
builtin_assert ("cpu=ev4"); \
|
65 |
|
|
} \
|
66 |
|
|
if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
|
67 |
|
|
builtin_define ("_IEEE_FP"); \
|
68 |
|
|
if (TARGET_IEEE_WITH_INEXACT) \
|
69 |
|
|
builtin_define ("_IEEE_FP_INEXACT"); \
|
70 |
|
|
if (TARGET_LONG_DOUBLE_128) \
|
71 |
|
|
builtin_define ("__LONG_DOUBLE_128__"); \
|
72 |
|
|
\
|
73 |
|
|
/* Macros dependent on the C dialect. */ \
|
74 |
|
|
SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
|
75 |
|
|
} while (0)
|
76 |
|
|
|
77 |
|
|
#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
|
78 |
|
|
#define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
|
79 |
|
|
do \
|
80 |
|
|
{ \
|
81 |
|
|
if (preprocessing_asm_p ()) \
|
82 |
|
|
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
|
83 |
|
|
else if (c_dialect_cxx ()) \
|
84 |
|
|
{ \
|
85 |
|
|
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
|
86 |
|
|
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
|
87 |
|
|
} \
|
88 |
|
|
else \
|
89 |
|
|
builtin_define_std ("LANGUAGE_C"); \
|
90 |
|
|
if (c_dialect_objc ()) \
|
91 |
|
|
{ \
|
92 |
|
|
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
|
93 |
|
|
builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
|
94 |
|
|
} \
|
95 |
|
|
} \
|
96 |
|
|
while (0)
|
97 |
|
|
#endif
|
98 |
|
|
|
99 |
|
|
#define WORD_SWITCH_TAKES_ARG(STR) \
|
100 |
|
|
(!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
|
101 |
|
|
|
102 |
|
|
/* Print subsidiary information on the compiler version in use. */
|
103 |
|
|
#define TARGET_VERSION
|
104 |
|
|
|
105 |
|
|
/* Run-time compilation parameters selecting different hardware subsets. */
|
106 |
|
|
|
107 |
|
|
/* Which processor to schedule for. The cpu attribute defines a list that
|
108 |
|
|
mirrors this list, so changes to alpha.md must be made at the same time. */
|
109 |
|
|
|
110 |
|
|
enum processor_type
|
111 |
|
|
{
|
112 |
|
|
PROCESSOR_EV4, /* 2106[46]{a,} */
|
113 |
|
|
PROCESSOR_EV5, /* 21164{a,pc,} */
|
114 |
|
|
PROCESSOR_EV6, /* 21264 */
|
115 |
|
|
PROCESSOR_MAX
|
116 |
|
|
};
|
117 |
|
|
|
118 |
|
|
extern enum processor_type alpha_cpu;
|
119 |
|
|
extern enum processor_type alpha_tune;
|
120 |
|
|
|
121 |
|
|
enum alpha_trap_precision
|
122 |
|
|
{
|
123 |
|
|
ALPHA_TP_PROG, /* No precision (default). */
|
124 |
|
|
ALPHA_TP_FUNC, /* Trap contained within originating function. */
|
125 |
|
|
ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
|
126 |
|
|
};
|
127 |
|
|
|
128 |
|
|
enum alpha_fp_rounding_mode
|
129 |
|
|
{
|
130 |
|
|
ALPHA_FPRM_NORM, /* Normal rounding mode. */
|
131 |
|
|
ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
|
132 |
|
|
ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
|
133 |
|
|
ALPHA_FPRM_DYN /* Dynamic rounding mode. */
|
134 |
|
|
};
|
135 |
|
|
|
136 |
|
|
enum alpha_fp_trap_mode
|
137 |
|
|
{
|
138 |
|
|
ALPHA_FPTM_N, /* Normal trap mode. */
|
139 |
|
|
ALPHA_FPTM_U, /* Underflow traps enabled. */
|
140 |
|
|
ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
|
141 |
|
|
ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
|
142 |
|
|
};
|
143 |
|
|
|
144 |
|
|
extern int target_flags;
|
145 |
|
|
|
146 |
|
|
extern enum alpha_trap_precision alpha_tp;
|
147 |
|
|
extern enum alpha_fp_rounding_mode alpha_fprm;
|
148 |
|
|
extern enum alpha_fp_trap_mode alpha_fptm;
|
149 |
|
|
|
150 |
|
|
/* Invert the easy way to make options work. */
|
151 |
|
|
#define TARGET_FP (!TARGET_SOFT_FP)
|
152 |
|
|
|
153 |
|
|
/* These are for target os support and cannot be changed at runtime. */
|
154 |
|
|
#define TARGET_ABI_WINDOWS_NT 0
|
155 |
|
|
#define TARGET_ABI_OPEN_VMS 0
|
156 |
|
|
#define TARGET_ABI_UNICOSMK 0
|
157 |
|
|
#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
|
158 |
|
|
&& !TARGET_ABI_OPEN_VMS \
|
159 |
|
|
&& !TARGET_ABI_UNICOSMK)
|
160 |
|
|
|
161 |
|
|
#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
|
162 |
|
|
#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
|
163 |
|
|
#endif
|
164 |
|
|
#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
|
165 |
|
|
#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
|
166 |
|
|
#endif
|
167 |
|
|
#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
|
168 |
|
|
#define TARGET_CAN_FAULT_IN_PROLOGUE 0
|
169 |
|
|
#endif
|
170 |
|
|
#ifndef TARGET_HAS_XFLOATING_LIBS
|
171 |
|
|
#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
|
172 |
|
|
#endif
|
173 |
|
|
#ifndef TARGET_PROFILING_NEEDS_GP
|
174 |
|
|
#define TARGET_PROFILING_NEEDS_GP 0
|
175 |
|
|
#endif
|
176 |
|
|
#ifndef TARGET_LD_BUGGY_LDGP
|
177 |
|
|
#define TARGET_LD_BUGGY_LDGP 0
|
178 |
|
|
#endif
|
179 |
|
|
#ifndef TARGET_FIXUP_EV5_PREFETCH
|
180 |
|
|
#define TARGET_FIXUP_EV5_PREFETCH 0
|
181 |
|
|
#endif
|
182 |
|
|
#ifndef HAVE_AS_TLS
|
183 |
|
|
#define HAVE_AS_TLS 0
|
184 |
|
|
#endif
|
185 |
|
|
|
186 |
|
|
#define TARGET_DEFAULT MASK_FPREGS
|
187 |
|
|
|
188 |
|
|
#ifndef TARGET_CPU_DEFAULT
|
189 |
|
|
#define TARGET_CPU_DEFAULT 0
|
190 |
|
|
#endif
|
191 |
|
|
|
192 |
|
|
#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
|
193 |
|
|
#ifdef HAVE_AS_EXPLICIT_RELOCS
|
194 |
|
|
#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
|
195 |
|
|
#define TARGET_SUPPORT_ARCH 1
|
196 |
|
|
#else
|
197 |
|
|
#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
|
198 |
|
|
#endif
|
199 |
|
|
#endif
|
200 |
|
|
|
201 |
|
|
#ifndef TARGET_SUPPORT_ARCH
|
202 |
|
|
#define TARGET_SUPPORT_ARCH 0
|
203 |
|
|
#endif
|
204 |
|
|
|
205 |
|
|
/* Support for a compile-time default CPU, et cetera. The rules are:
|
206 |
|
|
--with-cpu is ignored if -mcpu is specified.
|
207 |
|
|
--with-tune is ignored if -mtune is specified. */
|
208 |
|
|
#define OPTION_DEFAULT_SPECS \
|
209 |
|
|
{"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
|
210 |
|
|
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
|
211 |
|
|
|
212 |
|
|
/* Sometimes certain combinations of command options do not make sense
|
213 |
|
|
on a particular target machine. You can define a macro
|
214 |
|
|
`OVERRIDE_OPTIONS' to take account of this. This macro, if
|
215 |
|
|
defined, is executed once just after all the command options have
|
216 |
|
|
been parsed.
|
217 |
|
|
|
218 |
|
|
On the Alpha, it is used to translate target-option strings into
|
219 |
|
|
numeric values. */
|
220 |
|
|
|
221 |
|
|
#define OVERRIDE_OPTIONS override_options ()
|
222 |
|
|
|
223 |
|
|
|
224 |
|
|
/* Define this macro to change register usage conditional on target flags.
|
225 |
|
|
|
226 |
|
|
On the Alpha, we use this to disable the floating-point registers when
|
227 |
|
|
they don't exist. */
|
228 |
|
|
|
229 |
|
|
#define CONDITIONAL_REGISTER_USAGE \
|
230 |
|
|
{ \
|
231 |
|
|
int i; \
|
232 |
|
|
if (! TARGET_FPREGS) \
|
233 |
|
|
for (i = 32; i < 63; i++) \
|
234 |
|
|
fixed_regs[i] = call_used_regs[i] = 1; \
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
/* Show we can debug even without a frame pointer. */
|
239 |
|
|
#define CAN_DEBUG_WITHOUT_FP
|
240 |
|
|
|
241 |
|
|
/* target machine storage layout */
|
242 |
|
|
|
243 |
|
|
/* Define the size of `int'. The default is the same as the word size. */
|
244 |
|
|
#define INT_TYPE_SIZE 32
|
245 |
|
|
|
246 |
|
|
/* Define the size of `long long'. The default is the twice the word size. */
|
247 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
248 |
|
|
|
249 |
|
|
/* The two floating-point formats we support are S-floating, which is
|
250 |
|
|
4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
|
251 |
|
|
and `long double' are T. */
|
252 |
|
|
|
253 |
|
|
#define FLOAT_TYPE_SIZE 32
|
254 |
|
|
#define DOUBLE_TYPE_SIZE 64
|
255 |
|
|
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
|
256 |
|
|
|
257 |
|
|
/* Define this to set long double type size to use in libgcc2.c, which can
|
258 |
|
|
not depend on target_flags. */
|
259 |
|
|
#ifdef __LONG_DOUBLE_128__
|
260 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
261 |
|
|
#else
|
262 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
|
263 |
|
|
#endif
|
264 |
|
|
|
265 |
|
|
/* Work around target_flags dependency in ada/targtyps.c. */
|
266 |
|
|
#define WIDEST_HARDWARE_FP_SIZE 64
|
267 |
|
|
|
268 |
|
|
#define WCHAR_TYPE "unsigned int"
|
269 |
|
|
#define WCHAR_TYPE_SIZE 32
|
270 |
|
|
|
271 |
|
|
/* Define this macro if it is advisable to hold scalars in registers
|
272 |
|
|
in a wider mode than that declared by the program. In such cases,
|
273 |
|
|
the value is constrained to be within the bounds of the declared
|
274 |
|
|
type, but kept valid in the wider mode. The signedness of the
|
275 |
|
|
extension may differ from that of the type.
|
276 |
|
|
|
277 |
|
|
For Alpha, we always store objects in a full register. 32-bit integers
|
278 |
|
|
are always sign-extended, but smaller objects retain their signedness.
|
279 |
|
|
|
280 |
|
|
Note that small vector types can get mapped onto integer modes at the
|
281 |
|
|
whim of not appearing in alpha-modes.def. We never promoted these
|
282 |
|
|
values before; don't do so now that we've trimmed the set of modes to
|
283 |
|
|
those actually implemented in the backend. */
|
284 |
|
|
|
285 |
|
|
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
286 |
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
287 |
|
|
&& (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
|
288 |
|
|
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
289 |
|
|
{ \
|
290 |
|
|
if ((MODE) == SImode) \
|
291 |
|
|
(UNSIGNEDP) = 0; \
|
292 |
|
|
(MODE) = DImode; \
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/* Define this if most significant bit is lowest numbered
|
296 |
|
|
in instructions that operate on numbered bit-fields.
|
297 |
|
|
|
298 |
|
|
There are no such instructions on the Alpha, but the documentation
|
299 |
|
|
is little endian. */
|
300 |
|
|
#define BITS_BIG_ENDIAN 0
|
301 |
|
|
|
302 |
|
|
/* Define this if most significant byte of a word is the lowest numbered.
|
303 |
|
|
This is false on the Alpha. */
|
304 |
|
|
#define BYTES_BIG_ENDIAN 0
|
305 |
|
|
|
306 |
|
|
/* Define this if most significant word of a multiword number is lowest
|
307 |
|
|
numbered.
|
308 |
|
|
|
309 |
|
|
For Alpha we can decide arbitrarily since there are no machine instructions
|
310 |
|
|
for them. Might as well be consistent with bytes. */
|
311 |
|
|
#define WORDS_BIG_ENDIAN 0
|
312 |
|
|
|
313 |
|
|
/* Width of a word, in units (bytes). */
|
314 |
|
|
#define UNITS_PER_WORD 8
|
315 |
|
|
|
316 |
|
|
/* Width in bits of a pointer.
|
317 |
|
|
See also the macro `Pmode' defined below. */
|
318 |
|
|
#define POINTER_SIZE 64
|
319 |
|
|
|
320 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
321 |
|
|
#define PARM_BOUNDARY 64
|
322 |
|
|
|
323 |
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
324 |
|
|
#define STACK_BOUNDARY 128
|
325 |
|
|
|
326 |
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
327 |
|
|
#define FUNCTION_BOUNDARY 32
|
328 |
|
|
|
329 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
330 |
|
|
#define EMPTY_FIELD_BOUNDARY 64
|
331 |
|
|
|
332 |
|
|
/* Every structure's size must be a multiple of this. */
|
333 |
|
|
#define STRUCTURE_SIZE_BOUNDARY 8
|
334 |
|
|
|
335 |
|
|
/* A bit-field declared as `int' forces `int' alignment for the struct. */
|
336 |
|
|
#define PCC_BITFIELD_TYPE_MATTERS 1
|
337 |
|
|
|
338 |
|
|
/* No data type wants to be aligned rounder than this. */
|
339 |
|
|
#define BIGGEST_ALIGNMENT 128
|
340 |
|
|
|
341 |
|
|
/* For atomic access to objects, must have at least 32-bit alignment
|
342 |
|
|
unless the machine has byte operations. */
|
343 |
|
|
#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
|
344 |
|
|
|
345 |
|
|
/* Align all constants and variables to at least a word boundary so
|
346 |
|
|
we can pick up pieces of them faster. */
|
347 |
|
|
/* ??? Only if block-move stuff knows about different source/destination
|
348 |
|
|
alignment. */
|
349 |
|
|
#if 0
|
350 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
|
351 |
|
|
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
|
352 |
|
|
#endif
|
353 |
|
|
|
354 |
|
|
/* Set this nonzero if move instructions will actually fail to work
|
355 |
|
|
when given unaligned data.
|
356 |
|
|
|
357 |
|
|
Since we get an error message when we do one, call them invalid. */
|
358 |
|
|
|
359 |
|
|
#define STRICT_ALIGNMENT 1
|
360 |
|
|
|
361 |
|
|
/* Set this nonzero if unaligned move instructions are extremely slow.
|
362 |
|
|
|
363 |
|
|
On the Alpha, they trap. */
|
364 |
|
|
|
365 |
|
|
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
|
366 |
|
|
|
367 |
|
|
/* Standard register usage. */
|
368 |
|
|
|
369 |
|
|
/* Number of actual hardware registers.
|
370 |
|
|
The hardware registers are assigned numbers for the compiler
|
371 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
372 |
|
|
All registers that the compiler knows about must be given numbers,
|
373 |
|
|
even those that are not normally considered general registers.
|
374 |
|
|
|
375 |
|
|
We define all 32 integer registers, even though $31 is always zero,
|
376 |
|
|
and all 32 floating-point registers, even though $f31 is also
|
377 |
|
|
always zero. We do not bother defining the FP status register and
|
378 |
|
|
there are no other registers.
|
379 |
|
|
|
380 |
|
|
Since $31 is always zero, we will use register number 31 as the
|
381 |
|
|
argument pointer. It will never appear in the generated code
|
382 |
|
|
because we will always be eliminating it in favor of the stack
|
383 |
|
|
pointer or hardware frame pointer.
|
384 |
|
|
|
385 |
|
|
Likewise, we use $f31 for the frame pointer, which will always
|
386 |
|
|
be eliminated in favor of the hardware frame pointer or the
|
387 |
|
|
stack pointer. */
|
388 |
|
|
|
389 |
|
|
#define FIRST_PSEUDO_REGISTER 64
|
390 |
|
|
|
391 |
|
|
/* 1 for registers that have pervasive standard uses
|
392 |
|
|
and are not available for the register allocator. */
|
393 |
|
|
|
394 |
|
|
#define FIXED_REGISTERS \
|
395 |
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
396 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
|
397 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
398 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
|
399 |
|
|
|
400 |
|
|
/* 1 for registers not available across function calls.
|
401 |
|
|
These must include the FIXED_REGISTERS and also any
|
402 |
|
|
registers that can be used without being saved.
|
403 |
|
|
The latter must include the registers where values are returned
|
404 |
|
|
and the register where structure-value addresses are passed.
|
405 |
|
|
Aside from that, you can include as many other registers as you like. */
|
406 |
|
|
#define CALL_USED_REGISTERS \
|
407 |
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
|
408 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
|
409 |
|
|
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
|
410 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
|
411 |
|
|
|
412 |
|
|
/* List the order in which to allocate registers. Each register must be
|
413 |
|
|
listed once, even those in FIXED_REGISTERS. */
|
414 |
|
|
|
415 |
|
|
#define REG_ALLOC_ORDER { \
|
416 |
|
|
1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
|
417 |
|
|
22, 23, 24, 25, 28, /* likewise */ \
|
418 |
|
|
0, /* likewise, but return value */ \
|
419 |
|
|
21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
|
420 |
|
|
27, /* likewise, but OSF procedure value */ \
|
421 |
|
|
\
|
422 |
|
|
42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
|
423 |
|
|
54, 55, 56, 57, 58, 59, /* likewise */ \
|
424 |
|
|
60, 61, 62, /* likewise */ \
|
425 |
|
|
32, 33, /* likewise, but return values */ \
|
426 |
|
|
53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
|
427 |
|
|
\
|
428 |
|
|
9, 10, 11, 12, 13, 14, /* saved integer registers */ \
|
429 |
|
|
26, /* return address */ \
|
430 |
|
|
15, /* hard frame pointer */ \
|
431 |
|
|
\
|
432 |
|
|
34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
|
433 |
|
|
40, 41, /* likewise */ \
|
434 |
|
|
\
|
435 |
|
|
29, 30, 31, 63 /* gp, sp, ap, sfp */ \
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
439 |
|
|
to hold something of mode MODE.
|
440 |
|
|
This is ordinarily the length in words of a value of mode MODE
|
441 |
|
|
but can be less for certain modes in special long registers. */
|
442 |
|
|
|
443 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
444 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
445 |
|
|
|
446 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
447 |
|
|
On Alpha, the integer registers can hold any mode. The floating-point
|
448 |
|
|
registers can hold 64-bit integers as well, but not smaller values. */
|
449 |
|
|
|
450 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
451 |
|
|
(IN_RANGE ((REGNO), 32, 62) \
|
452 |
|
|
? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
|
453 |
|
|
|| (MODE) == SCmode || (MODE) == DCmode \
|
454 |
|
|
: 1)
|
455 |
|
|
|
456 |
|
|
/* A C expression that is nonzero if a value of mode
|
457 |
|
|
MODE1 is accessible in mode MODE2 without copying.
|
458 |
|
|
|
459 |
|
|
This asymmetric test is true when MODE1 could be put
|
460 |
|
|
in an FP register but MODE2 could not. */
|
461 |
|
|
|
462 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
463 |
|
|
(HARD_REGNO_MODE_OK (32, (MODE1)) \
|
464 |
|
|
? HARD_REGNO_MODE_OK (32, (MODE2)) \
|
465 |
|
|
: 1)
|
466 |
|
|
|
467 |
|
|
/* Specify the registers used for certain standard purposes.
|
468 |
|
|
The values of these macros are register numbers. */
|
469 |
|
|
|
470 |
|
|
/* Alpha pc isn't overloaded on a register that the compiler knows about. */
|
471 |
|
|
/* #define PC_REGNUM */
|
472 |
|
|
|
473 |
|
|
/* Register to use for pushing function arguments. */
|
474 |
|
|
#define STACK_POINTER_REGNUM 30
|
475 |
|
|
|
476 |
|
|
/* Base register for access to local variables of the function. */
|
477 |
|
|
#define HARD_FRAME_POINTER_REGNUM 15
|
478 |
|
|
|
479 |
|
|
/* Base register for access to arguments of the function. */
|
480 |
|
|
#define ARG_POINTER_REGNUM 31
|
481 |
|
|
|
482 |
|
|
/* Base register for access to local variables of function. */
|
483 |
|
|
#define FRAME_POINTER_REGNUM 63
|
484 |
|
|
|
485 |
|
|
/* Register in which static-chain is passed to a function.
|
486 |
|
|
|
487 |
|
|
For the Alpha, this is based on an example; the calling sequence
|
488 |
|
|
doesn't seem to specify this. */
|
489 |
|
|
#define STATIC_CHAIN_REGNUM 1
|
490 |
|
|
|
491 |
|
|
/* The register number of the register used to address a table of
|
492 |
|
|
static data addresses in memory. */
|
493 |
|
|
#define PIC_OFFSET_TABLE_REGNUM 29
|
494 |
|
|
|
495 |
|
|
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
|
496 |
|
|
is clobbered by calls. */
|
497 |
|
|
/* ??? It is and it isn't. It's required to be valid for a given
|
498 |
|
|
function when the function returns. It isn't clobbered by
|
499 |
|
|
current_file functions. Moreover, we do not expose the ldgp
|
500 |
|
|
until after reload, so we're probably safe. */
|
501 |
|
|
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
|
502 |
|
|
|
503 |
|
|
/* Define the classes of registers for register constraints in the
|
504 |
|
|
machine description. Also define ranges of constants.
|
505 |
|
|
|
506 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
507 |
|
|
If there is more than one class, another class must be named NO_REGS
|
508 |
|
|
and contain no registers.
|
509 |
|
|
|
510 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
511 |
|
|
another name such as ALL_REGS). This is the class of registers
|
512 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
513 |
|
|
Also, registers outside this class are allocated only when
|
514 |
|
|
instructions express preferences for them.
|
515 |
|
|
|
516 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
517 |
|
|
a larger-numbered class must never be contained completely
|
518 |
|
|
in a smaller-numbered class.
|
519 |
|
|
|
520 |
|
|
For any two classes, it is very desirable that there be another
|
521 |
|
|
class that represents their union. */
|
522 |
|
|
|
523 |
|
|
enum reg_class {
|
524 |
|
|
NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
|
525 |
|
|
GENERAL_REGS, FLOAT_REGS, ALL_REGS,
|
526 |
|
|
LIM_REG_CLASSES
|
527 |
|
|
};
|
528 |
|
|
|
529 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
530 |
|
|
|
531 |
|
|
/* Give names of register classes as strings for dump file. */
|
532 |
|
|
|
533 |
|
|
#define REG_CLASS_NAMES \
|
534 |
|
|
{"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
|
535 |
|
|
"GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
|
536 |
|
|
|
537 |
|
|
/* Define which registers fit in which classes.
|
538 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
539 |
|
|
of length N_REG_CLASSES. */
|
540 |
|
|
|
541 |
|
|
#define REG_CLASS_CONTENTS \
|
542 |
|
|
{ {0x00000000, 0x00000000}, /* NO_REGS */ \
|
543 |
|
|
{0x00000001, 0x00000000}, /* R0_REG */ \
|
544 |
|
|
{0x01000000, 0x00000000}, /* R24_REG */ \
|
545 |
|
|
{0x02000000, 0x00000000}, /* R25_REG */ \
|
546 |
|
|
{0x08000000, 0x00000000}, /* R27_REG */ \
|
547 |
|
|
{0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
|
548 |
|
|
{0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
|
549 |
|
|
{0xffffffff, 0xffffffff} }
|
550 |
|
|
|
551 |
|
|
/* The following macro defines cover classes for Integrated Register
|
552 |
|
|
Allocator. Cover classes is a set of non-intersected register
|
553 |
|
|
classes covering all hard registers used for register allocation
|
554 |
|
|
purpose. Any move between two registers of a cover class should be
|
555 |
|
|
cheaper than load or store of the registers. The macro value is
|
556 |
|
|
array of register classes with LIM_REG_CLASSES used as the end
|
557 |
|
|
marker. */
|
558 |
|
|
|
559 |
|
|
#define IRA_COVER_CLASSES \
|
560 |
|
|
{ \
|
561 |
|
|
GENERAL_REGS, FLOAT_REGS, LIM_REG_CLASSES \
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
/* The same information, inverted:
|
565 |
|
|
Return the class number of the smallest class containing
|
566 |
|
|
reg number REGNO. This could be a conditional expression
|
567 |
|
|
or could index an array. */
|
568 |
|
|
|
569 |
|
|
#define REGNO_REG_CLASS(REGNO) \
|
570 |
|
|
((REGNO) == 0 ? R0_REG \
|
571 |
|
|
: (REGNO) == 24 ? R24_REG \
|
572 |
|
|
: (REGNO) == 25 ? R25_REG \
|
573 |
|
|
: (REGNO) == 27 ? R27_REG \
|
574 |
|
|
: IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
|
575 |
|
|
: GENERAL_REGS)
|
576 |
|
|
|
577 |
|
|
/* The class value for index registers, and the one for base regs. */
|
578 |
|
|
#define INDEX_REG_CLASS NO_REGS
|
579 |
|
|
#define BASE_REG_CLASS GENERAL_REGS
|
580 |
|
|
|
581 |
|
|
/* Given an rtx X being reloaded into a reg required to be
|
582 |
|
|
in class CLASS, return the class of reg to actually use.
|
583 |
|
|
In general this is just CLASS; but on some machines
|
584 |
|
|
in some cases it is preferable to use a more restrictive class. */
|
585 |
|
|
|
586 |
|
|
#define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
|
587 |
|
|
|
588 |
|
|
/* If we are copying between general and FP registers, we need a memory
|
589 |
|
|
location unless the FIX extension is available. */
|
590 |
|
|
|
591 |
|
|
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
|
592 |
|
|
(! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
|
593 |
|
|
|| ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
|
594 |
|
|
|
595 |
|
|
/* Specify the mode to be used for memory when a secondary memory
|
596 |
|
|
location is needed. If MODE is floating-point, use it. Otherwise,
|
597 |
|
|
widen to a word like the default. This is needed because we always
|
598 |
|
|
store integers in FP registers in quadword format. This whole
|
599 |
|
|
area is very tricky! */
|
600 |
|
|
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
|
601 |
|
|
(GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
|
602 |
|
|
: GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
|
603 |
|
|
: mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
|
604 |
|
|
|
605 |
|
|
/* Return the maximum number of consecutive registers
|
606 |
|
|
needed to represent mode MODE in a register of class CLASS. */
|
607 |
|
|
|
608 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
609 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
610 |
|
|
|
611 |
|
|
/* Return the class of registers that cannot change mode from FROM to TO. */
|
612 |
|
|
|
613 |
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
614 |
|
|
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
|
615 |
|
|
? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
|
616 |
|
|
|
617 |
|
|
/* Define the cost of moving between registers of various classes. Moving
|
618 |
|
|
between FLOAT_REGS and anything else except float regs is expensive.
|
619 |
|
|
In fact, we make it quite expensive because we really don't want to
|
620 |
|
|
do these moves unless it is clearly worth it. Optimizations may
|
621 |
|
|
reduce the impact of not being able to allocate a pseudo to a
|
622 |
|
|
hard register. */
|
623 |
|
|
|
624 |
|
|
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
625 |
|
|
(((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
|
626 |
|
|
: TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
|
627 |
|
|
: 4+2*alpha_memory_latency)
|
628 |
|
|
|
629 |
|
|
/* A C expressions returning the cost of moving data of MODE from a register to
|
630 |
|
|
or from memory.
|
631 |
|
|
|
632 |
|
|
On the Alpha, bump this up a bit. */
|
633 |
|
|
|
634 |
|
|
extern int alpha_memory_latency;
|
635 |
|
|
#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
|
636 |
|
|
|
637 |
|
|
/* Provide the cost of a branch. Exact meaning under development. */
|
638 |
|
|
#define BRANCH_COST(speed_p, predictable_p) 5
|
639 |
|
|
|
640 |
|
|
/* Stack layout; function entry, exit and calling. */
|
641 |
|
|
|
642 |
|
|
/* Define this if pushing a word on the stack
|
643 |
|
|
makes the stack pointer a smaller address. */
|
644 |
|
|
#define STACK_GROWS_DOWNWARD
|
645 |
|
|
|
646 |
|
|
/* Define this to nonzero if the nominal address of the stack frame
|
647 |
|
|
is at the high-address end of the local variables;
|
648 |
|
|
that is, each additional local variable allocated
|
649 |
|
|
goes at a more negative offset in the frame. */
|
650 |
|
|
/* #define FRAME_GROWS_DOWNWARD 0 */
|
651 |
|
|
|
652 |
|
|
/* Offset within stack frame to start allocating local variables at.
|
653 |
|
|
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
654 |
|
|
first local allocated. Otherwise, it is the offset to the BEGINNING
|
655 |
|
|
of the first local allocated. */
|
656 |
|
|
|
657 |
|
|
#define STARTING_FRAME_OFFSET 0
|
658 |
|
|
|
659 |
|
|
/* If we generate an insn to push BYTES bytes,
|
660 |
|
|
this says how many the stack pointer really advances by.
|
661 |
|
|
On Alpha, don't define this because there are no push insns. */
|
662 |
|
|
/* #define PUSH_ROUNDING(BYTES) */
|
663 |
|
|
|
664 |
|
|
/* Define this to be nonzero if stack checking is built into the ABI. */
|
665 |
|
|
#define STACK_CHECK_BUILTIN 1
|
666 |
|
|
|
667 |
|
|
/* Define this if the maximum size of all the outgoing args is to be
|
668 |
|
|
accumulated and pushed during the prologue. The amount can be
|
669 |
|
|
found in the variable crtl->outgoing_args_size. */
|
670 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
671 |
|
|
|
672 |
|
|
/* Offset of first parameter from the argument pointer register value. */
|
673 |
|
|
|
674 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
675 |
|
|
|
676 |
|
|
/* Definitions for register eliminations.
|
677 |
|
|
|
678 |
|
|
We have two registers that can be eliminated on the Alpha. First, the
|
679 |
|
|
frame pointer register can often be eliminated in favor of the stack
|
680 |
|
|
pointer register. Secondly, the argument pointer register can always be
|
681 |
|
|
eliminated; it is replaced with either the stack or frame pointer. */
|
682 |
|
|
|
683 |
|
|
/* This is an array of structures. Each structure initializes one pair
|
684 |
|
|
of eliminable registers. The "from" register number is given first,
|
685 |
|
|
followed by "to". Eliminations of the same "from" register are listed
|
686 |
|
|
in order of preference. */
|
687 |
|
|
|
688 |
|
|
#define ELIMINABLE_REGS \
|
689 |
|
|
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
690 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
691 |
|
|
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
692 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
|
693 |
|
|
|
694 |
|
|
/* Round up to a multiple of 16 bytes. */
|
695 |
|
|
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
|
696 |
|
|
|
697 |
|
|
/* Define the offset between two registers, one to be eliminated, and the other
|
698 |
|
|
its replacement, at the start of a routine. */
|
699 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
700 |
|
|
((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
|
701 |
|
|
|
702 |
|
|
/* Define this if stack space is still allocated for a parameter passed
|
703 |
|
|
in a register. */
|
704 |
|
|
/* #define REG_PARM_STACK_SPACE */
|
705 |
|
|
|
706 |
|
|
/* Value is the number of bytes of arguments automatically
|
707 |
|
|
popped when returning from a subroutine call.
|
708 |
|
|
FUNDECL is the declaration node of the function (as a tree),
|
709 |
|
|
FUNTYPE is the data type of the function (as a tree),
|
710 |
|
|
or for a library call it is an identifier node for the subroutine name.
|
711 |
|
|
SIZE is the number of bytes of arguments passed on the stack. */
|
712 |
|
|
|
713 |
|
|
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
714 |
|
|
|
715 |
|
|
/* Define how to find the value returned by a function.
|
716 |
|
|
VALTYPE is the data type of the value (as a tree).
|
717 |
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
718 |
|
|
otherwise, FUNC is 0.
|
719 |
|
|
|
720 |
|
|
On Alpha the value is found in $0 for integer functions and
|
721 |
|
|
$f0 for floating-point functions. */
|
722 |
|
|
|
723 |
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
724 |
|
|
function_value (VALTYPE, FUNC, VOIDmode)
|
725 |
|
|
|
726 |
|
|
/* Define how to find the value returned by a library function
|
727 |
|
|
assuming the value has mode MODE. */
|
728 |
|
|
|
729 |
|
|
#define LIBCALL_VALUE(MODE) \
|
730 |
|
|
function_value (NULL, NULL, MODE)
|
731 |
|
|
|
732 |
|
|
/* 1 if N is a possible register number for a function value
|
733 |
|
|
as seen by the caller. */
|
734 |
|
|
|
735 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) \
|
736 |
|
|
((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
|
737 |
|
|
|
738 |
|
|
/* 1 if N is a possible register number for function argument passing.
|
739 |
|
|
On Alpha, these are $16-$21 and $f16-$f21. */
|
740 |
|
|
|
741 |
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
742 |
|
|
(IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
|
743 |
|
|
|
744 |
|
|
/* Define a data type for recording info about an argument list
|
745 |
|
|
during the scan of that argument list. This data type should
|
746 |
|
|
hold all necessary information about the function itself
|
747 |
|
|
and about the args processed so far, enough to enable macros
|
748 |
|
|
such as FUNCTION_ARG to determine where the next arg should go.
|
749 |
|
|
|
750 |
|
|
On Alpha, this is a single integer, which is a number of words
|
751 |
|
|
of arguments scanned so far.
|
752 |
|
|
Thus 6 or more means all following args should go on the stack. */
|
753 |
|
|
|
754 |
|
|
#define CUMULATIVE_ARGS int
|
755 |
|
|
|
756 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
757 |
|
|
for a call to a function whose data type is FNTYPE.
|
758 |
|
|
For a library call, FNTYPE is 0. */
|
759 |
|
|
|
760 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
761 |
|
|
(CUM) = 0
|
762 |
|
|
|
763 |
|
|
/* Define intermediate macro to compute the size (in registers) of an argument
|
764 |
|
|
for the Alpha. */
|
765 |
|
|
|
766 |
|
|
#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
|
767 |
|
|
((MODE) == TFmode || (MODE) == TCmode ? 1 \
|
768 |
|
|
: (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
|
769 |
|
|
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
770 |
|
|
|
771 |
|
|
/* Update the data in CUM to advance over an argument
|
772 |
|
|
of mode MODE and data type TYPE.
|
773 |
|
|
(TYPE is null for libcalls where that information may not be available.) */
|
774 |
|
|
|
775 |
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
776 |
|
|
((CUM) += \
|
777 |
|
|
(targetm.calls.must_pass_in_stack (MODE, TYPE)) \
|
778 |
|
|
? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
|
779 |
|
|
|
780 |
|
|
/* Determine where to put an argument to a function.
|
781 |
|
|
Value is zero to push the argument on the stack,
|
782 |
|
|
or a hard register in which to store the argument.
|
783 |
|
|
|
784 |
|
|
MODE is the argument's machine mode.
|
785 |
|
|
TYPE is the data type of the argument (as a tree).
|
786 |
|
|
This is null for libcalls where that information may
|
787 |
|
|
not be available.
|
788 |
|
|
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
789 |
|
|
the preceding args and about the function being called.
|
790 |
|
|
NAMED is nonzero if this argument is a named parameter
|
791 |
|
|
(otherwise it is an extra parameter matching an ellipsis).
|
792 |
|
|
|
793 |
|
|
On Alpha the first 6 words of args are normally in registers
|
794 |
|
|
and the rest are pushed. */
|
795 |
|
|
|
796 |
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
797 |
|
|
function_arg((CUM), (MODE), (TYPE), (NAMED))
|
798 |
|
|
|
799 |
|
|
/* Make (or fake) .linkage entry for function call.
|
800 |
|
|
IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
|
801 |
|
|
|
802 |
|
|
/* This macro defines the start of an assembly comment. */
|
803 |
|
|
|
804 |
|
|
#define ASM_COMMENT_START " #"
|
805 |
|
|
|
806 |
|
|
/* This macro produces the initial definition of a function. */
|
807 |
|
|
|
808 |
|
|
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
|
809 |
|
|
alpha_start_function(FILE,NAME,DECL);
|
810 |
|
|
|
811 |
|
|
/* This macro closes up a function definition for the assembler. */
|
812 |
|
|
|
813 |
|
|
#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
|
814 |
|
|
alpha_end_function(FILE,NAME,DECL)
|
815 |
|
|
|
816 |
|
|
/* Output any profiling code before the prologue. */
|
817 |
|
|
|
818 |
|
|
#define PROFILE_BEFORE_PROLOGUE 1
|
819 |
|
|
|
820 |
|
|
/* Never use profile counters. */
|
821 |
|
|
|
822 |
|
|
#define NO_PROFILE_COUNTERS 1
|
823 |
|
|
|
824 |
|
|
/* Output assembler code to FILE to increment profiler label # LABELNO
|
825 |
|
|
for profiling a function entry. Under OSF/1, profiling is enabled
|
826 |
|
|
by simply passing -pg to the assembler and linker. */
|
827 |
|
|
|
828 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO)
|
829 |
|
|
|
830 |
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
831 |
|
|
the stack pointer does not matter. The value is tested only in
|
832 |
|
|
functions that have frame pointers.
|
833 |
|
|
No definition is equivalent to always zero. */
|
834 |
|
|
|
835 |
|
|
#define EXIT_IGNORE_STACK 1
|
836 |
|
|
|
837 |
|
|
/* Define registers used by the epilogue and return instruction. */
|
838 |
|
|
|
839 |
|
|
#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
|
840 |
|
|
|
841 |
|
|
/* Length in units of the trampoline for entering a nested function. */
|
842 |
|
|
|
843 |
|
|
#define TRAMPOLINE_SIZE 32
|
844 |
|
|
|
845 |
|
|
/* The alignment of a trampoline, in bits. */
|
846 |
|
|
|
847 |
|
|
#define TRAMPOLINE_ALIGNMENT 64
|
848 |
|
|
|
849 |
|
|
/* A C expression whose value is RTL representing the value of the return
|
850 |
|
|
address for the frame COUNT steps up from the current frame.
|
851 |
|
|
FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
|
852 |
|
|
the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
|
853 |
|
|
|
854 |
|
|
#define RETURN_ADDR_RTX alpha_return_addr
|
855 |
|
|
|
856 |
|
|
/* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
|
857 |
|
|
can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
|
858 |
|
|
as the default definition in dwarf2out.c. */
|
859 |
|
|
#undef DWARF_FRAME_REGNUM
|
860 |
|
|
#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
|
861 |
|
|
|
862 |
|
|
/* Before the prologue, RA lives in $26. */
|
863 |
|
|
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
|
864 |
|
|
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
|
865 |
|
|
#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
|
866 |
|
|
#define DWARF_ZERO_REG 31
|
867 |
|
|
|
868 |
|
|
/* Describe how we implement __builtin_eh_return. */
|
869 |
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
|
870 |
|
|
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
|
871 |
|
|
#define EH_RETURN_HANDLER_RTX \
|
872 |
|
|
gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
|
873 |
|
|
crtl->outgoing_args_size))
|
874 |
|
|
|
875 |
|
|
/* Addressing modes, and classification of registers for them. */
|
876 |
|
|
|
877 |
|
|
/* Macros to check register numbers against specific register classes. */
|
878 |
|
|
|
879 |
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
880 |
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
881 |
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
882 |
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
883 |
|
|
has been allocated, which happens in local-alloc.c. */
|
884 |
|
|
|
885 |
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
|
886 |
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
887 |
|
|
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
|
888 |
|
|
|| (REGNO) == 63 || reg_renumber[REGNO] == 63)
|
889 |
|
|
|
890 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
891 |
|
|
#define MAX_REGS_PER_ADDRESS 1
|
892 |
|
|
|
893 |
|
|
/* Recognize any constant value that is a valid address. For the Alpha,
|
894 |
|
|
there are only constants none since we want to use LDA to load any
|
895 |
|
|
symbolic addresses into registers. */
|
896 |
|
|
|
897 |
|
|
#define CONSTANT_ADDRESS_P(X) \
|
898 |
|
|
(CONST_INT_P (X) \
|
899 |
|
|
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
|
900 |
|
|
|
901 |
|
|
/* Include all constant integers and constant doubles, but not
|
902 |
|
|
floating-point, except for floating-point zero. */
|
903 |
|
|
|
904 |
|
|
#define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
|
905 |
|
|
|
906 |
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
907 |
|
|
and check its validity for a certain class.
|
908 |
|
|
We have two alternate definitions for each of them.
|
909 |
|
|
The usual definition accepts all pseudo regs; the other rejects
|
910 |
|
|
them unless they have been allocated suitable hard regs.
|
911 |
|
|
The symbol REG_OK_STRICT causes the latter definition to be used.
|
912 |
|
|
|
913 |
|
|
Most source files want to accept pseudo regs in the hope that
|
914 |
|
|
they will get allocated to the class that the insn wants them to be in.
|
915 |
|
|
Source files for reload pass need to be strict.
|
916 |
|
|
After reload, it makes no difference, since pseudo regs have
|
917 |
|
|
been eliminated by then. */
|
918 |
|
|
|
919 |
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
920 |
|
|
or if it is a pseudo reg. */
|
921 |
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
922 |
|
|
|
923 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
924 |
|
|
or if it is a pseudo reg. */
|
925 |
|
|
#define NONSTRICT_REG_OK_FOR_BASE_P(X) \
|
926 |
|
|
(REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
927 |
|
|
|
928 |
|
|
/* ??? Nonzero if X is the frame pointer, or some virtual register
|
929 |
|
|
that may eliminate to the frame pointer. These will be allowed to
|
930 |
|
|
have offsets greater than 32K. This is done because register
|
931 |
|
|
elimination offsets will change the hi/lo split, and if we split
|
932 |
|
|
before reload, we will require additional instructions. */
|
933 |
|
|
#define NONSTRICT_REG_OK_FP_BASE_P(X) \
|
934 |
|
|
(REGNO (X) == 31 || REGNO (X) == 63 \
|
935 |
|
|
|| (REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
936 |
|
|
&& REGNO (X) < LAST_VIRTUAL_REGISTER))
|
937 |
|
|
|
938 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
939 |
|
|
#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
940 |
|
|
|
941 |
|
|
#ifdef REG_OK_STRICT
|
942 |
|
|
#define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
|
943 |
|
|
#else
|
944 |
|
|
#define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
|
945 |
|
|
#endif
|
946 |
|
|
|
947 |
|
|
/* Try a machine-dependent way of reloading an illegitimate address
|
948 |
|
|
operand. If we find one, push the reload and jump to WIN. This
|
949 |
|
|
macro is used in only one place: `find_reloads_address' in reload.c. */
|
950 |
|
|
|
951 |
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
|
952 |
|
|
do { \
|
953 |
|
|
rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
|
954 |
|
|
if (new_x) \
|
955 |
|
|
{ \
|
956 |
|
|
X = new_x; \
|
957 |
|
|
goto WIN; \
|
958 |
|
|
} \
|
959 |
|
|
} while (0)
|
960 |
|
|
|
961 |
|
|
/* Go to LABEL if ADDR (a legitimate address expression)
|
962 |
|
|
has an effect that depends on the machine mode it is used for.
|
963 |
|
|
On the Alpha this is true only for the unaligned modes. We can
|
964 |
|
|
simplify this test since we know that the address must be valid. */
|
965 |
|
|
|
966 |
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
967 |
|
|
{ if (GET_CODE (ADDR) == AND) goto LABEL; }
|
968 |
|
|
|
969 |
|
|
/* Specify the machine mode that this machine uses
|
970 |
|
|
for the index in the tablejump instruction. */
|
971 |
|
|
#define CASE_VECTOR_MODE SImode
|
972 |
|
|
|
973 |
|
|
/* Define as C expression which evaluates to nonzero if the tablejump
|
974 |
|
|
instruction expects the table to contain offsets from the address of the
|
975 |
|
|
table.
|
976 |
|
|
|
977 |
|
|
Do not define this if the table should contain absolute addresses.
|
978 |
|
|
On the Alpha, the table is really GP-relative, not relative to the PC
|
979 |
|
|
of the table, but we pretend that it is PC-relative; this should be OK,
|
980 |
|
|
but we should try to find some better way sometime. */
|
981 |
|
|
#define CASE_VECTOR_PC_RELATIVE 1
|
982 |
|
|
|
983 |
|
|
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
984 |
|
|
#define DEFAULT_SIGNED_CHAR 1
|
985 |
|
|
|
986 |
|
|
/* Max number of bytes we can move to or from memory
|
987 |
|
|
in one reasonably fast instruction. */
|
988 |
|
|
|
989 |
|
|
#define MOVE_MAX 8
|
990 |
|
|
|
991 |
|
|
/* If a memory-to-memory move would take MOVE_RATIO or more simple
|
992 |
|
|
move-instruction pairs, we will do a movmem or libcall instead.
|
993 |
|
|
|
994 |
|
|
Without byte/word accesses, we want no more than four instructions;
|
995 |
|
|
with, several single byte accesses are better. */
|
996 |
|
|
|
997 |
|
|
#define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
|
998 |
|
|
|
999 |
|
|
/* Largest number of bytes of an object that can be placed in a register.
|
1000 |
|
|
On the Alpha we have plenty of registers, so use TImode. */
|
1001 |
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
|
1002 |
|
|
|
1003 |
|
|
/* Nonzero if access to memory by bytes is no faster than for words.
|
1004 |
|
|
Also nonzero if doing byte operations (specifically shifts) in registers
|
1005 |
|
|
is undesirable.
|
1006 |
|
|
|
1007 |
|
|
On the Alpha, we want to not use the byte operation and instead use
|
1008 |
|
|
masking operations to access fields; these will save instructions. */
|
1009 |
|
|
|
1010 |
|
|
#define SLOW_BYTE_ACCESS 1
|
1011 |
|
|
|
1012 |
|
|
/* Define if operations between registers always perform the operation
|
1013 |
|
|
on the full register even if a narrower mode is specified. */
|
1014 |
|
|
#define WORD_REGISTER_OPERATIONS
|
1015 |
|
|
|
1016 |
|
|
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
1017 |
|
|
will either zero-extend or sign-extend. The value of this macro should
|
1018 |
|
|
be the code that says which one of the two operations is implicitly
|
1019 |
|
|
done, UNKNOWN if none. */
|
1020 |
|
|
#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
|
1021 |
|
|
|
1022 |
|
|
/* Define if loading short immediate values into registers sign extends. */
|
1023 |
|
|
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
1024 |
|
|
|
1025 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
1026 |
|
|
is done just by pretending it is already truncated. */
|
1027 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
1028 |
|
|
|
1029 |
|
|
/* The CIX ctlz and cttz instructions return 64 for zero. */
|
1030 |
|
|
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
|
1031 |
|
|
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
|
1032 |
|
|
|
1033 |
|
|
/* Define the value returned by a floating-point comparison instruction. */
|
1034 |
|
|
|
1035 |
|
|
#define FLOAT_STORE_FLAG_VALUE(MODE) \
|
1036 |
|
|
REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
|
1037 |
|
|
|
1038 |
|
|
/* Canonicalize a comparison from one we don't have to one we do have. */
|
1039 |
|
|
|
1040 |
|
|
#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
|
1041 |
|
|
do { \
|
1042 |
|
|
if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
|
1043 |
|
|
&& (REG_P (OP1) || (OP1) == const0_rtx)) \
|
1044 |
|
|
{ \
|
1045 |
|
|
rtx tem = (OP0); \
|
1046 |
|
|
(OP0) = (OP1); \
|
1047 |
|
|
(OP1) = tem; \
|
1048 |
|
|
(CODE) = swap_condition (CODE); \
|
1049 |
|
|
} \
|
1050 |
|
|
if (((CODE) == LT || (CODE) == LTU) \
|
1051 |
|
|
&& CONST_INT_P (OP1) && INTVAL (OP1) == 256) \
|
1052 |
|
|
{ \
|
1053 |
|
|
(CODE) = (CODE) == LT ? LE : LEU; \
|
1054 |
|
|
(OP1) = GEN_INT (255); \
|
1055 |
|
|
} \
|
1056 |
|
|
} while (0)
|
1057 |
|
|
|
1058 |
|
|
/* Specify the machine mode that pointers have.
|
1059 |
|
|
After generation of rtl, the compiler makes no further distinction
|
1060 |
|
|
between pointers and any other objects of this machine mode. */
|
1061 |
|
|
#define Pmode DImode
|
1062 |
|
|
|
1063 |
|
|
/* Mode of a function address in a call instruction (for indexing purposes). */
|
1064 |
|
|
|
1065 |
|
|
#define FUNCTION_MODE Pmode
|
1066 |
|
|
|
1067 |
|
|
/* Define this if addresses of constant functions
|
1068 |
|
|
shouldn't be put through pseudo regs where they can be cse'd.
|
1069 |
|
|
Desirable on machines where ordinary constants are expensive
|
1070 |
|
|
but a CALL with constant address is cheap.
|
1071 |
|
|
|
1072 |
|
|
We define this on the Alpha so that gen_call and gen_call_value
|
1073 |
|
|
get to see the SYMBOL_REF (for the hint field of the jsr). It will
|
1074 |
|
|
then copy it into a register, thus actually letting the address be
|
1075 |
|
|
cse'ed. */
|
1076 |
|
|
|
1077 |
|
|
#define NO_FUNCTION_CSE
|
1078 |
|
|
|
1079 |
|
|
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
1080 |
|
|
few bits. */
|
1081 |
|
|
#define SHIFT_COUNT_TRUNCATED 1
|
1082 |
|
|
|
1083 |
|
|
/* Control the assembler format that we output. */
|
1084 |
|
|
|
1085 |
|
|
/* Output to assembler file text saying following lines
|
1086 |
|
|
may contain character constants, extra white space, comments, etc. */
|
1087 |
|
|
#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
|
1088 |
|
|
|
1089 |
|
|
/* Output to assembler file text saying following lines
|
1090 |
|
|
no longer contain unusual constructs. */
|
1091 |
|
|
#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
|
1092 |
|
|
|
1093 |
|
|
#define TEXT_SECTION_ASM_OP "\t.text"
|
1094 |
|
|
|
1095 |
|
|
/* Output before read-only data. */
|
1096 |
|
|
|
1097 |
|
|
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
|
1098 |
|
|
|
1099 |
|
|
/* Output before writable data. */
|
1100 |
|
|
|
1101 |
|
|
#define DATA_SECTION_ASM_OP "\t.data"
|
1102 |
|
|
|
1103 |
|
|
/* How to refer to registers in assembler output.
|
1104 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
1105 |
|
|
|
1106 |
|
|
#define REGISTER_NAMES \
|
1107 |
|
|
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
|
1108 |
|
|
"$9", "$10", "$11", "$12", "$13", "$14", "$15", \
|
1109 |
|
|
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
|
1110 |
|
|
"$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
|
1111 |
|
|
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
|
1112 |
|
|
"$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
|
1113 |
|
|
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
|
1114 |
|
|
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
|
1115 |
|
|
|
1116 |
|
|
/* Strip name encoding when emitting labels. */
|
1117 |
|
|
|
1118 |
|
|
#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
|
1119 |
|
|
do { \
|
1120 |
|
|
const char *name_ = NAME; \
|
1121 |
|
|
if (*name_ == '@' || *name_ == '%') \
|
1122 |
|
|
name_ += 2; \
|
1123 |
|
|
if (*name_ == '*') \
|
1124 |
|
|
name_++; \
|
1125 |
|
|
else \
|
1126 |
|
|
fputs (user_label_prefix, STREAM); \
|
1127 |
|
|
fputs (name_, STREAM); \
|
1128 |
|
|
} while (0)
|
1129 |
|
|
|
1130 |
|
|
/* Globalizing directive for a label. */
|
1131 |
|
|
#define GLOBAL_ASM_OP "\t.globl "
|
1132 |
|
|
|
1133 |
|
|
/* The prefix to add to user-visible assembler symbols. */
|
1134 |
|
|
|
1135 |
|
|
#define USER_LABEL_PREFIX ""
|
1136 |
|
|
|
1137 |
|
|
/* This is how to output a label for a jump table. Arguments are the same as
|
1138 |
|
|
for (*targetm.asm_out.internal_label), except the insn for the jump table is
|
1139 |
|
|
passed. */
|
1140 |
|
|
|
1141 |
|
|
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
|
1142 |
|
|
{ ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
|
1143 |
|
|
|
1144 |
|
|
/* This is how to store into the string LABEL
|
1145 |
|
|
the symbol_ref name of an internal numbered label where
|
1146 |
|
|
PREFIX is the class of label and NUM is the number within the class.
|
1147 |
|
|
This is suitable for output with `assemble_name'. */
|
1148 |
|
|
|
1149 |
|
|
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
1150 |
|
|
sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
|
1151 |
|
|
|
1152 |
|
|
/* We use the default ASCII-output routine, except that we don't write more
|
1153 |
|
|
than 50 characters since the assembler doesn't support very long lines. */
|
1154 |
|
|
|
1155 |
|
|
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
|
1156 |
|
|
do { \
|
1157 |
|
|
FILE *_hide_asm_out_file = (MYFILE); \
|
1158 |
|
|
const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
|
1159 |
|
|
int _hide_thissize = (MYLENGTH); \
|
1160 |
|
|
int _size_so_far = 0; \
|
1161 |
|
|
{ \
|
1162 |
|
|
FILE *asm_out_file = _hide_asm_out_file; \
|
1163 |
|
|
const unsigned char *p = _hide_p; \
|
1164 |
|
|
int thissize = _hide_thissize; \
|
1165 |
|
|
int i; \
|
1166 |
|
|
fprintf (asm_out_file, "\t.ascii \""); \
|
1167 |
|
|
\
|
1168 |
|
|
for (i = 0; i < thissize; i++) \
|
1169 |
|
|
{ \
|
1170 |
|
|
register int c = p[i]; \
|
1171 |
|
|
\
|
1172 |
|
|
if (_size_so_far ++ > 50 && i < thissize - 4) \
|
1173 |
|
|
_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
|
1174 |
|
|
\
|
1175 |
|
|
if (c == '\"' || c == '\\') \
|
1176 |
|
|
putc ('\\', asm_out_file); \
|
1177 |
|
|
if (c >= ' ' && c < 0177) \
|
1178 |
|
|
putc (c, asm_out_file); \
|
1179 |
|
|
else \
|
1180 |
|
|
{ \
|
1181 |
|
|
fprintf (asm_out_file, "\\%o", c); \
|
1182 |
|
|
/* After an octal-escape, if a digit follows, \
|
1183 |
|
|
terminate one string constant and start another. \
|
1184 |
|
|
The VAX assembler fails to stop reading the escape \
|
1185 |
|
|
after three digits, so this is the only way we \
|
1186 |
|
|
can get it to parse the data properly. */ \
|
1187 |
|
|
if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
|
1188 |
|
|
_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
|
1189 |
|
|
} \
|
1190 |
|
|
} \
|
1191 |
|
|
fprintf (asm_out_file, "\"\n"); \
|
1192 |
|
|
} \
|
1193 |
|
|
} \
|
1194 |
|
|
while (0)
|
1195 |
|
|
|
1196 |
|
|
/* This is how to output an element of a case-vector that is relative. */
|
1197 |
|
|
|
1198 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
1199 |
|
|
fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
|
1200 |
|
|
(VALUE))
|
1201 |
|
|
|
1202 |
|
|
/* This is how to output an assembler line
|
1203 |
|
|
that says to advance the location counter
|
1204 |
|
|
to a multiple of 2**LOG bytes. */
|
1205 |
|
|
|
1206 |
|
|
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
1207 |
|
|
if ((LOG) != 0) \
|
1208 |
|
|
fprintf (FILE, "\t.align %d\n", LOG);
|
1209 |
|
|
|
1210 |
|
|
/* This is how to advance the location counter by SIZE bytes. */
|
1211 |
|
|
|
1212 |
|
|
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
1213 |
|
|
fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
|
1214 |
|
|
|
1215 |
|
|
/* This says how to output an assembler line
|
1216 |
|
|
to define a global common symbol. */
|
1217 |
|
|
|
1218 |
|
|
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
1219 |
|
|
( fputs ("\t.comm ", (FILE)), \
|
1220 |
|
|
assemble_name ((FILE), (NAME)), \
|
1221 |
|
|
fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
|
1222 |
|
|
|
1223 |
|
|
/* This says how to output an assembler line
|
1224 |
|
|
to define a local common symbol. */
|
1225 |
|
|
|
1226 |
|
|
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
|
1227 |
|
|
( fputs ("\t.lcomm ", (FILE)), \
|
1228 |
|
|
assemble_name ((FILE), (NAME)), \
|
1229 |
|
|
fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
|
1230 |
|
|
|
1231 |
|
|
|
1232 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
1233 |
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
1234 |
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
1235 |
|
|
|
1236 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
1237 |
|
|
|
1238 |
|
|
/* Determine which codes are valid without a following integer. These must
|
1239 |
|
|
not be alphabetic.
|
1240 |
|
|
|
1241 |
|
|
~ Generates the name of the current function.
|
1242 |
|
|
|
1243 |
|
|
/ Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
|
1244 |
|
|
attributes are examined to determine what is appropriate.
|
1245 |
|
|
|
1246 |
|
|
, Generates single precision suffix for floating point
|
1247 |
|
|
instructions (s for IEEE, f for VAX)
|
1248 |
|
|
|
1249 |
|
|
- Generates double precision suffix for floating point
|
1250 |
|
|
instructions (t for IEEE, g for VAX)
|
1251 |
|
|
*/
|
1252 |
|
|
|
1253 |
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
1254 |
|
|
((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
|
1255 |
|
|
|| (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
|
1256 |
|
|
|
1257 |
|
|
/* Print a memory address as an operand to reference that memory location. */
|
1258 |
|
|
|
1259 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
1260 |
|
|
print_operand_address((FILE), (ADDR))
|
1261 |
|
|
|
1262 |
|
|
/* Tell collect that the object format is ECOFF. */
|
1263 |
|
|
#define OBJECT_FORMAT_COFF
|
1264 |
|
|
#define EXTENDED_COFF
|
1265 |
|
|
|
1266 |
|
|
/* If we use NM, pass -g to it so it only lists globals. */
|
1267 |
|
|
#define NM_FLAGS "-pg"
|
1268 |
|
|
|
1269 |
|
|
/* Definitions for debugging. */
|
1270 |
|
|
|
1271 |
|
|
#define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
|
1272 |
|
|
#define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
|
1273 |
|
|
#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
|
1274 |
|
|
|
1275 |
|
|
#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
|
1276 |
|
|
#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
|
1277 |
|
|
#endif
|
1278 |
|
|
|
1279 |
|
|
|
1280 |
|
|
/* Correct the offset of automatic variables and arguments. Note that
|
1281 |
|
|
the Alpha debug format wants all automatic variables and arguments
|
1282 |
|
|
to be in terms of two different offsets from the virtual frame pointer,
|
1283 |
|
|
which is the stack pointer before any adjustment in the function.
|
1284 |
|
|
The offset for the argument pointer is fixed for the native compiler,
|
1285 |
|
|
it is either zero (for the no arguments case) or large enough to hold
|
1286 |
|
|
all argument registers.
|
1287 |
|
|
The offset for the auto pointer is the fourth argument to the .frame
|
1288 |
|
|
directive (local_offset).
|
1289 |
|
|
To stay compatible with the native tools we use the same offsets
|
1290 |
|
|
from the virtual frame pointer and adjust the debugger arg/auto offsets
|
1291 |
|
|
accordingly. These debugger offsets are set up in output_prolog. */
|
1292 |
|
|
|
1293 |
|
|
extern long alpha_arg_offset;
|
1294 |
|
|
extern long alpha_auto_offset;
|
1295 |
|
|
#define DEBUGGER_AUTO_OFFSET(X) \
|
1296 |
|
|
((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
|
1297 |
|
|
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
|
1298 |
|
|
|
1299 |
|
|
/* mips-tfile doesn't understand .stabd directives. */
|
1300 |
|
|
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
|
1301 |
|
|
dbxout_begin_stabn_sline (LINE); \
|
1302 |
|
|
dbxout_stab_value_internal_label ("LM", &COUNTER); \
|
1303 |
|
|
} while (0)
|
1304 |
|
|
|
1305 |
|
|
/* We want to use MIPS-style .loc directives for SDB line numbers. */
|
1306 |
|
|
extern int num_source_filenames;
|
1307 |
|
|
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
|
1308 |
|
|
fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
|
1309 |
|
|
|
1310 |
|
|
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
|
1311 |
|
|
alpha_output_filename (STREAM, NAME)
|
1312 |
|
|
|
1313 |
|
|
/* mips-tfile.c limits us to strings of one page. We must underestimate this
|
1314 |
|
|
number, because the real length runs past this up to the next
|
1315 |
|
|
continuation point. This is really a dbxout.c bug. */
|
1316 |
|
|
#define DBX_CONTIN_LENGTH 3000
|
1317 |
|
|
|
1318 |
|
|
/* By default, turn on GDB extensions. */
|
1319 |
|
|
#define DEFAULT_GDB_EXTENSIONS 1
|
1320 |
|
|
|
1321 |
|
|
/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
|
1322 |
|
|
#define NO_DBX_FUNCTION_END 1
|
1323 |
|
|
|
1324 |
|
|
/* If we are smuggling stabs through the ALPHA ECOFF object
|
1325 |
|
|
format, put a comment in front of the .stab<x> operation so
|
1326 |
|
|
that the ALPHA assembler does not choke. The mips-tfile program
|
1327 |
|
|
will correctly put the stab into the object file. */
|
1328 |
|
|
|
1329 |
|
|
#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
|
1330 |
|
|
#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
|
1331 |
|
|
#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
|
1332 |
|
|
|
1333 |
|
|
/* Forward references to tags are allowed. */
|
1334 |
|
|
#define SDB_ALLOW_FORWARD_REFERENCES
|
1335 |
|
|
|
1336 |
|
|
/* Unknown tags are also allowed. */
|
1337 |
|
|
#define SDB_ALLOW_UNKNOWN_REFERENCES
|
1338 |
|
|
|
1339 |
|
|
#define PUT_SDB_DEF(a) \
|
1340 |
|
|
do { \
|
1341 |
|
|
fprintf (asm_out_file, "\t%s.def\t", \
|
1342 |
|
|
(TARGET_GAS) ? "" : "#"); \
|
1343 |
|
|
ASM_OUTPUT_LABELREF (asm_out_file, a); \
|
1344 |
|
|
fputc (';', asm_out_file); \
|
1345 |
|
|
} while (0)
|
1346 |
|
|
|
1347 |
|
|
#define PUT_SDB_PLAIN_DEF(a) \
|
1348 |
|
|
do { \
|
1349 |
|
|
fprintf (asm_out_file, "\t%s.def\t.%s;", \
|
1350 |
|
|
(TARGET_GAS) ? "" : "#", (a)); \
|
1351 |
|
|
} while (0)
|
1352 |
|
|
|
1353 |
|
|
#define PUT_SDB_TYPE(a) \
|
1354 |
|
|
do { \
|
1355 |
|
|
fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
|
1356 |
|
|
} while (0)
|
1357 |
|
|
|
1358 |
|
|
/* For block start and end, we create labels, so that
|
1359 |
|
|
later we can figure out where the correct offset is.
|
1360 |
|
|
The normal .ent/.end serve well enough for functions,
|
1361 |
|
|
so those are just commented out. */
|
1362 |
|
|
|
1363 |
|
|
extern int sdb_label_count; /* block start/end next label # */
|
1364 |
|
|
|
1365 |
|
|
#define PUT_SDB_BLOCK_START(LINE) \
|
1366 |
|
|
do { \
|
1367 |
|
|
fprintf (asm_out_file, \
|
1368 |
|
|
"$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
|
1369 |
|
|
sdb_label_count, \
|
1370 |
|
|
(TARGET_GAS) ? "" : "#", \
|
1371 |
|
|
sdb_label_count, \
|
1372 |
|
|
(LINE)); \
|
1373 |
|
|
sdb_label_count++; \
|
1374 |
|
|
} while (0)
|
1375 |
|
|
|
1376 |
|
|
#define PUT_SDB_BLOCK_END(LINE) \
|
1377 |
|
|
do { \
|
1378 |
|
|
fprintf (asm_out_file, \
|
1379 |
|
|
"$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
|
1380 |
|
|
sdb_label_count, \
|
1381 |
|
|
(TARGET_GAS) ? "" : "#", \
|
1382 |
|
|
sdb_label_count, \
|
1383 |
|
|
(LINE)); \
|
1384 |
|
|
sdb_label_count++; \
|
1385 |
|
|
} while (0)
|
1386 |
|
|
|
1387 |
|
|
#define PUT_SDB_FUNCTION_START(LINE)
|
1388 |
|
|
|
1389 |
|
|
#define PUT_SDB_FUNCTION_END(LINE)
|
1390 |
|
|
|
1391 |
|
|
#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
|
1392 |
|
|
|
1393 |
|
|
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
|
1394 |
|
|
mips-tdump.c to print them out.
|
1395 |
|
|
|
1396 |
|
|
These must match the corresponding definitions in gdb/mipsread.c.
|
1397 |
|
|
Unfortunately, gcc and gdb do not currently share any directories. */
|
1398 |
|
|
|
1399 |
|
|
#define CODE_MASK 0x8F300
|
1400 |
|
|
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
|
1401 |
|
|
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
|
1402 |
|
|
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
|
1403 |
|
|
|
1404 |
|
|
/* Override some mips-tfile definitions. */
|
1405 |
|
|
|
1406 |
|
|
#define SHASH_SIZE 511
|
1407 |
|
|
#define THASH_SIZE 55
|
1408 |
|
|
|
1409 |
|
|
/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
|
1410 |
|
|
|
1411 |
|
|
#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
|
1412 |
|
|
|
1413 |
|
|
/* The system headers under Alpha systems are generally C++-aware. */
|
1414 |
|
|
#define NO_IMPLICIT_EXTERN_C
|