1 |
282 |
jeremybenn |
;; ARM 1136J[F]-S Pipeline Description
|
2 |
|
|
;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
|
3 |
|
|
;; Written by CodeSourcery, LLC.
|
4 |
|
|
;;
|
5 |
|
|
;; This file is part of GCC.
|
6 |
|
|
;;
|
7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
;; under the terms of the GNU General Public License as published by
|
9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
;; any later version.
|
11 |
|
|
;;
|
12 |
|
|
;; GCC is distributed in the hope that it will be useful, but
|
13 |
|
|
;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
;; General Public License for more details.
|
16 |
|
|
;;
|
17 |
|
|
;; You should have received a copy of the GNU General Public License
|
18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
19 |
|
|
;; . */
|
20 |
|
|
|
21 |
|
|
;; These descriptions are based on the information contained in the
|
22 |
|
|
;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
|
23 |
|
|
;; Limited.
|
24 |
|
|
;;
|
25 |
|
|
|
26 |
|
|
;; This automaton provides a pipeline description for the ARM
|
27 |
|
|
;; 1136J-S and 1136JF-S cores.
|
28 |
|
|
;;
|
29 |
|
|
;; The model given here assumes that the condition for all conditional
|
30 |
|
|
;; instructions is "true", i.e., that all of the instructions are
|
31 |
|
|
;; actually executed.
|
32 |
|
|
|
33 |
|
|
(define_automaton "arm1136jfs")
|
34 |
|
|
|
35 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
36 |
|
|
;; Pipelines
|
37 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
38 |
|
|
|
39 |
|
|
;; There are three distinct pipelines (page 1-26 and following):
|
40 |
|
|
;;
|
41 |
|
|
;; - A 4-stage decode pipeline, shared by all three. It has fetch (1),
|
42 |
|
|
;; fetch (2), decode, and issue stages. Since this is always involved,
|
43 |
|
|
;; we do not model it in the scheduler.
|
44 |
|
|
;;
|
45 |
|
|
;; - A 4-stage ALU pipeline. It has shifter, ALU (main integer operations),
|
46 |
|
|
;; and saturation stages. The fourth stage is writeback; see below.
|
47 |
|
|
;;
|
48 |
|
|
;; - A 4-stage multiply-accumulate pipeline. It has three stages, called
|
49 |
|
|
;; MAC1 through MAC3, and a fourth writeback stage.
|
50 |
|
|
;;
|
51 |
|
|
;; The 4th-stage writeback is shared between the ALU and MAC pipelines,
|
52 |
|
|
;; which operate in lockstep. Results from either pipeline will be
|
53 |
|
|
;; moved into the writeback stage. Because the two pipelines operate
|
54 |
|
|
;; in lockstep, we schedule them as a single "execute" pipeline.
|
55 |
|
|
;;
|
56 |
|
|
;; - A 4-stage LSU pipeline. It has address generation, data cache (1),
|
57 |
|
|
;; data cache (2), and writeback stages. (Note that this pipeline,
|
58 |
|
|
;; including the writeback stage, is independent from the ALU & LSU pipes.)
|
59 |
|
|
|
60 |
|
|
(define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs") ; ALU and MAC
|
61 |
|
|
; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
|
62 |
|
|
(define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
|
63 |
|
|
|
64 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
65 |
|
|
;; ALU Instructions
|
66 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
67 |
|
|
|
68 |
|
|
;; ALU instructions require eight cycles to execute, and use the ALU
|
69 |
|
|
;; pipeline in each of the eight stages. The results are available
|
70 |
|
|
;; after the alu stage has finished.
|
71 |
|
|
;;
|
72 |
|
|
;; If the destination register is the PC, the pipelines are stalled
|
73 |
|
|
;; for several cycles. That case is not modelled here.
|
74 |
|
|
|
75 |
|
|
;; ALU operations with no shifted operand
|
76 |
|
|
(define_insn_reservation "11_alu_op" 2
|
77 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
78 |
|
|
(eq_attr "type" "alu"))
|
79 |
|
|
"e_1,e_2,e_3,e_wb")
|
80 |
|
|
|
81 |
|
|
;; ALU operations with a shift-by-constant operand
|
82 |
|
|
(define_insn_reservation "11_alu_shift_op" 2
|
83 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
84 |
|
|
(eq_attr "type" "alu_shift"))
|
85 |
|
|
"e_1,e_2,e_3,e_wb")
|
86 |
|
|
|
87 |
|
|
;; ALU operations with a shift-by-register operand
|
88 |
|
|
;; These really stall in the decoder, in order to read
|
89 |
|
|
;; the shift value in a second cycle. Pretend we take two cycles in
|
90 |
|
|
;; the shift stage.
|
91 |
|
|
(define_insn_reservation "11_alu_shift_reg_op" 3
|
92 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
93 |
|
|
(eq_attr "type" "alu_shift_reg"))
|
94 |
|
|
"e_1*2,e_2,e_3,e_wb")
|
95 |
|
|
|
96 |
|
|
;; alu_ops can start sooner, if there is no shifter dependency
|
97 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
98 |
|
|
"11_alu_op")
|
99 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
100 |
|
|
"11_alu_shift_op"
|
101 |
|
|
"arm_no_early_alu_shift_value_dep")
|
102 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
103 |
|
|
"11_alu_shift_reg_op"
|
104 |
|
|
"arm_no_early_alu_shift_dep")
|
105 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
106 |
|
|
"11_alu_op")
|
107 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
108 |
|
|
"11_alu_shift_op"
|
109 |
|
|
"arm_no_early_alu_shift_value_dep")
|
110 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
111 |
|
|
"11_alu_shift_reg_op"
|
112 |
|
|
"arm_no_early_alu_shift_dep")
|
113 |
|
|
|
114 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
115 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
116 |
|
|
"arm_no_early_mul_dep")
|
117 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
118 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
119 |
|
|
"arm_no_early_mul_dep")
|
120 |
|
|
|
121 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
122 |
|
|
;; Multiplication Instructions
|
123 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
124 |
|
|
|
125 |
|
|
;; Multiplication instructions loop in the first two execute stages until
|
126 |
|
|
;; the instruction has been passed through the multiplier array enough
|
127 |
|
|
;; times.
|
128 |
|
|
|
129 |
|
|
;; Multiply and multiply-accumulate results are available after four stages.
|
130 |
|
|
(define_insn_reservation "11_mult1" 4
|
131 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
132 |
|
|
(eq_attr "insn" "mul,mla"))
|
133 |
|
|
"e_1*2,e_2,e_3,e_wb")
|
134 |
|
|
|
135 |
|
|
;; The *S variants set the condition flags, which requires three more cycles.
|
136 |
|
|
(define_insn_reservation "11_mult2" 4
|
137 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
138 |
|
|
(eq_attr "insn" "muls,mlas"))
|
139 |
|
|
"e_1*2,e_2,e_3,e_wb")
|
140 |
|
|
|
141 |
|
|
(define_bypass 3 "11_mult1,11_mult2"
|
142 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
143 |
|
|
"arm_no_early_mul_dep")
|
144 |
|
|
(define_bypass 3 "11_mult1,11_mult2"
|
145 |
|
|
"11_alu_op")
|
146 |
|
|
(define_bypass 3 "11_mult1,11_mult2"
|
147 |
|
|
"11_alu_shift_op"
|
148 |
|
|
"arm_no_early_alu_shift_value_dep")
|
149 |
|
|
(define_bypass 3 "11_mult1,11_mult2"
|
150 |
|
|
"11_alu_shift_reg_op"
|
151 |
|
|
"arm_no_early_alu_shift_dep")
|
152 |
|
|
(define_bypass 3 "11_mult1,11_mult2"
|
153 |
|
|
"11_store1"
|
154 |
|
|
"arm_no_early_store_addr_dep")
|
155 |
|
|
|
156 |
|
|
;; Signed and unsigned multiply long results are available across two cycles;
|
157 |
|
|
;; the less significant word is available one cycle before the more significant
|
158 |
|
|
;; word. Here we conservatively wait until both are available, which is
|
159 |
|
|
;; after three iterations and the memory cycle. The same is also true of
|
160 |
|
|
;; the two multiply-accumulate instructions.
|
161 |
|
|
(define_insn_reservation "11_mult3" 5
|
162 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
163 |
|
|
(eq_attr "insn" "smull,umull,smlal,umlal"))
|
164 |
|
|
"e_1*3,e_2,e_3,e_wb*2")
|
165 |
|
|
|
166 |
|
|
;; The *S variants set the condition flags, which requires three more cycles.
|
167 |
|
|
(define_insn_reservation "11_mult4" 5
|
168 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
169 |
|
|
(eq_attr "insn" "smulls,umulls,smlals,umlals"))
|
170 |
|
|
"e_1*3,e_2,e_3,e_wb*2")
|
171 |
|
|
|
172 |
|
|
(define_bypass 4 "11_mult3,11_mult4"
|
173 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
174 |
|
|
"arm_no_early_mul_dep")
|
175 |
|
|
(define_bypass 4 "11_mult3,11_mult4"
|
176 |
|
|
"11_alu_op")
|
177 |
|
|
(define_bypass 4 "11_mult3,11_mult4"
|
178 |
|
|
"11_alu_shift_op"
|
179 |
|
|
"arm_no_early_alu_shift_value_dep")
|
180 |
|
|
(define_bypass 4 "11_mult3,11_mult4"
|
181 |
|
|
"11_alu_shift_reg_op"
|
182 |
|
|
"arm_no_early_alu_shift_dep")
|
183 |
|
|
(define_bypass 4 "11_mult3,11_mult4"
|
184 |
|
|
"11_store1"
|
185 |
|
|
"arm_no_early_store_addr_dep")
|
186 |
|
|
|
187 |
|
|
;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
|
188 |
|
|
;; of high and low halves of the argument registers. They take a single
|
189 |
|
|
;; pass through the pipeline and make the result available after three
|
190 |
|
|
;; cycles.
|
191 |
|
|
(define_insn_reservation "11_mult5" 3
|
192 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
193 |
|
|
(eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
|
194 |
|
|
"e_1,e_2,e_3,e_wb")
|
195 |
|
|
|
196 |
|
|
(define_bypass 2 "11_mult5"
|
197 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
198 |
|
|
"arm_no_early_mul_dep")
|
199 |
|
|
(define_bypass 2 "11_mult5"
|
200 |
|
|
"11_alu_op")
|
201 |
|
|
(define_bypass 2 "11_mult5"
|
202 |
|
|
"11_alu_shift_op"
|
203 |
|
|
"arm_no_early_alu_shift_value_dep")
|
204 |
|
|
(define_bypass 2 "11_mult5"
|
205 |
|
|
"11_alu_shift_reg_op"
|
206 |
|
|
"arm_no_early_alu_shift_dep")
|
207 |
|
|
(define_bypass 2 "11_mult5"
|
208 |
|
|
"11_store1"
|
209 |
|
|
"arm_no_early_store_addr_dep")
|
210 |
|
|
|
211 |
|
|
;; The same idea, then the 32-bit result is added to a 64-bit quantity.
|
212 |
|
|
(define_insn_reservation "11_mult6" 4
|
213 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
214 |
|
|
(eq_attr "insn" "smlalxy"))
|
215 |
|
|
"e_1*2,e_2,e_3,e_wb*2")
|
216 |
|
|
|
217 |
|
|
;; Signed 32x32 multiply, then the most significant 32 bits are extracted
|
218 |
|
|
;; and are available after the memory stage.
|
219 |
|
|
(define_insn_reservation "11_mult7" 4
|
220 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
221 |
|
|
(eq_attr "insn" "smmul,smmulr"))
|
222 |
|
|
"e_1*2,e_2,e_3,e_wb")
|
223 |
|
|
|
224 |
|
|
(define_bypass 3 "11_mult6,11_mult7"
|
225 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
226 |
|
|
"arm_no_early_mul_dep")
|
227 |
|
|
(define_bypass 3 "11_mult6,11_mult7"
|
228 |
|
|
"11_alu_op")
|
229 |
|
|
(define_bypass 3 "11_mult6,11_mult7"
|
230 |
|
|
"11_alu_shift_op"
|
231 |
|
|
"arm_no_early_alu_shift_value_dep")
|
232 |
|
|
(define_bypass 3 "11_mult6,11_mult7"
|
233 |
|
|
"11_alu_shift_reg_op"
|
234 |
|
|
"arm_no_early_alu_shift_dep")
|
235 |
|
|
(define_bypass 3 "11_mult6,11_mult7"
|
236 |
|
|
"11_store1"
|
237 |
|
|
"arm_no_early_store_addr_dep")
|
238 |
|
|
|
239 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
240 |
|
|
;; Branch Instructions
|
241 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
242 |
|
|
|
243 |
|
|
;; These vary greatly depending on their arguments and the results of
|
244 |
|
|
;; stat prediction. Cycle count ranges from zero (unconditional branch,
|
245 |
|
|
;; folded dynamic prediction) to seven (incorrect predictions, etc). We
|
246 |
|
|
;; assume an optimal case for now, because the cost of a cache miss
|
247 |
|
|
;; overwhelms the cost of everything else anyhow.
|
248 |
|
|
|
249 |
|
|
(define_insn_reservation "11_branches" 0
|
250 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
251 |
|
|
(eq_attr "type" "branch"))
|
252 |
|
|
"nothing")
|
253 |
|
|
|
254 |
|
|
;; Call latencies are not predictable. A semi-arbitrary very large
|
255 |
|
|
;; number is used as "positive infinity" so that everything should be
|
256 |
|
|
;; finished by the time of return.
|
257 |
|
|
(define_insn_reservation "11_call" 32
|
258 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
259 |
|
|
(eq_attr "type" "call"))
|
260 |
|
|
"nothing")
|
261 |
|
|
|
262 |
|
|
;; Branches are predicted. A correctly predicted branch will be no
|
263 |
|
|
;; cost, but we're conservative here, and use the timings a
|
264 |
|
|
;; late-register would give us.
|
265 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
266 |
|
|
"11_branches")
|
267 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
268 |
|
|
"11_branches")
|
269 |
|
|
(define_bypass 2 "11_load1,11_load2"
|
270 |
|
|
"11_branches")
|
271 |
|
|
(define_bypass 3 "11_load34"
|
272 |
|
|
"11_branches")
|
273 |
|
|
|
274 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
275 |
|
|
;; Load/Store Instructions
|
276 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
277 |
|
|
|
278 |
|
|
;; The models for load/store instructions do not accurately describe
|
279 |
|
|
;; the difference between operations with a base register writeback.
|
280 |
|
|
;; These models assume that all memory references hit in dcache. Also,
|
281 |
|
|
;; if the PC is one of the registers involved, there are additional stalls
|
282 |
|
|
;; not modelled here. Addressing modes are also not modelled.
|
283 |
|
|
|
284 |
|
|
(define_insn_reservation "11_load1" 3
|
285 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
286 |
|
|
(eq_attr "type" "load1"))
|
287 |
|
|
"l_a+e_1,l_dc1,l_dc2,l_wb")
|
288 |
|
|
|
289 |
|
|
;; Load byte results are not available until the writeback stage, where
|
290 |
|
|
;; the correct byte is extracted.
|
291 |
|
|
|
292 |
|
|
(define_insn_reservation "11_loadb" 4
|
293 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
294 |
|
|
(eq_attr "type" "load_byte"))
|
295 |
|
|
"l_a+e_1,l_dc1,l_dc2,l_wb")
|
296 |
|
|
|
297 |
|
|
(define_insn_reservation "11_store1" 0
|
298 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
299 |
|
|
(eq_attr "type" "store1"))
|
300 |
|
|
"l_a+e_1,l_dc1,l_dc2,l_wb")
|
301 |
|
|
|
302 |
|
|
;; Load/store double words into adjacent registers. The timing and
|
303 |
|
|
;; latencies are different depending on whether the address is 64-bit
|
304 |
|
|
;; aligned. This model assumes that it is.
|
305 |
|
|
(define_insn_reservation "11_load2" 3
|
306 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
307 |
|
|
(eq_attr "type" "load2"))
|
308 |
|
|
"l_a+e_1,l_dc1,l_dc2,l_wb")
|
309 |
|
|
|
310 |
|
|
(define_insn_reservation "11_store2" 0
|
311 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
312 |
|
|
(eq_attr "type" "store2"))
|
313 |
|
|
"l_a+e_1,l_dc1,l_dc2,l_wb")
|
314 |
|
|
|
315 |
|
|
;; Load/store multiple registers. Two registers are stored per cycle.
|
316 |
|
|
;; Actual timing depends on how many registers are affected, so we
|
317 |
|
|
;; optimistically schedule a low latency.
|
318 |
|
|
(define_insn_reservation "11_load34" 4
|
319 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
320 |
|
|
(eq_attr "type" "load3,load4"))
|
321 |
|
|
"l_a+e_1,l_dc1*2,l_dc2,l_wb")
|
322 |
|
|
|
323 |
|
|
(define_insn_reservation "11_store34" 0
|
324 |
|
|
(and (eq_attr "tune" "arm1136js,arm1136jfs")
|
325 |
|
|
(eq_attr "type" "store3,store4"))
|
326 |
|
|
"l_a+e_1,l_dc1*2,l_dc2,l_wb")
|
327 |
|
|
|
328 |
|
|
;; A store can start immediately after an alu op, if that alu op does
|
329 |
|
|
;; not provide part of the address to access.
|
330 |
|
|
(define_bypass 1 "11_alu_op,11_alu_shift_op"
|
331 |
|
|
"11_store1"
|
332 |
|
|
"arm_no_early_store_addr_dep")
|
333 |
|
|
(define_bypass 2 "11_alu_shift_reg_op"
|
334 |
|
|
"11_store1"
|
335 |
|
|
"arm_no_early_store_addr_dep")
|
336 |
|
|
|
337 |
|
|
;; An alu op can start sooner after a load, if that alu op does not
|
338 |
|
|
;; have an early register dependency on the load
|
339 |
|
|
(define_bypass 2 "11_load1"
|
340 |
|
|
"11_alu_op")
|
341 |
|
|
(define_bypass 2 "11_load1"
|
342 |
|
|
"11_alu_shift_op"
|
343 |
|
|
"arm_no_early_alu_shift_value_dep")
|
344 |
|
|
(define_bypass 2 "11_load1"
|
345 |
|
|
"11_alu_shift_reg_op"
|
346 |
|
|
"arm_no_early_alu_shift_dep")
|
347 |
|
|
|
348 |
|
|
(define_bypass 3 "11_loadb"
|
349 |
|
|
"11_alu_op")
|
350 |
|
|
(define_bypass 3 "11_loadb"
|
351 |
|
|
"11_alu_shift_op"
|
352 |
|
|
"arm_no_early_alu_shift_value_dep")
|
353 |
|
|
(define_bypass 3 "11_loadb"
|
354 |
|
|
"11_alu_shift_reg_op"
|
355 |
|
|
"arm_no_early_alu_shift_dep")
|
356 |
|
|
|
357 |
|
|
;; A mul op can start sooner after a load, if that mul op does not
|
358 |
|
|
;; have an early multiply dependency
|
359 |
|
|
(define_bypass 2 "11_load1"
|
360 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
361 |
|
|
"arm_no_early_mul_dep")
|
362 |
|
|
(define_bypass 3 "11_load34"
|
363 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
364 |
|
|
"arm_no_early_mul_dep")
|
365 |
|
|
(define_bypass 3 "11_loadb"
|
366 |
|
|
"11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
|
367 |
|
|
"arm_no_early_mul_dep")
|
368 |
|
|
|
369 |
|
|
;; A store can start sooner after a load, if that load does not
|
370 |
|
|
;; produce part of the address to access
|
371 |
|
|
(define_bypass 2 "11_load1"
|
372 |
|
|
"11_store1"
|
373 |
|
|
"arm_no_early_store_addr_dep")
|
374 |
|
|
(define_bypass 3 "11_loadb"
|
375 |
|
|
"11_store1"
|
376 |
|
|
"arm_no_early_store_addr_dep")
|