OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [arm1136jfs.md] - Blame information for rev 424

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
;; ARM 1136J[F]-S Pipeline Description
2
;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
3
;; Written by CodeSourcery, LLC.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify it
8
;; under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 3, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful, but
13
;; WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
;; General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING3.  If not see
19
;; .  */
20
 
21
;; These descriptions are based on the information contained in the
22
;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
23
;; Limited.
24
;;
25
 
26
;; This automaton provides a pipeline description for the ARM
27
;; 1136J-S and 1136JF-S cores.
28
;;
29
;; The model given here assumes that the condition for all conditional
30
;; instructions is "true", i.e., that all of the instructions are
31
;; actually executed.
32
 
33
(define_automaton "arm1136jfs")
34
 
35
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36
;; Pipelines
37
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
 
39
;; There are three distinct pipelines (page 1-26 and following):
40
;;
41
;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
42
;;   fetch (2), decode, and issue stages.  Since this is always involved,
43
;;   we do not model it in the scheduler.
44
;;
45
;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
46
;;   and saturation stages.  The fourth stage is writeback; see below.
47
;;
48
;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
49
;;   MAC1 through MAC3, and a fourth writeback stage.
50
;;
51
;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
52
;;   which operate in lockstep.  Results from either pipeline will be
53
;;   moved into the writeback stage.  Because the two pipelines operate
54
;;   in lockstep, we schedule them as a single "execute" pipeline.
55
;;
56
;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
57
;;   data cache (2), and writeback stages.  (Note that this pipeline,
58
;;   including the writeback stage, is independent from the ALU & LSU pipes.)
59
 
60
(define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
61
; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
62
(define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
63
 
64
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
65
;; ALU Instructions
66
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
67
 
68
;; ALU instructions require eight cycles to execute, and use the ALU
69
;; pipeline in each of the eight stages.  The results are available
70
;; after the alu stage has finished.
71
;;
72
;; If the destination register is the PC, the pipelines are stalled
73
;; for several cycles.  That case is not modelled here.
74
 
75
;; ALU operations with no shifted operand
76
(define_insn_reservation "11_alu_op" 2
77
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
78
      (eq_attr "type" "alu"))
79
 "e_1,e_2,e_3,e_wb")
80
 
81
;; ALU operations with a shift-by-constant operand
82
(define_insn_reservation "11_alu_shift_op" 2
83
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
84
      (eq_attr "type" "alu_shift"))
85
 "e_1,e_2,e_3,e_wb")
86
 
87
;; ALU operations with a shift-by-register operand
88
;; These really stall in the decoder, in order to read
89
;; the shift value in a second cycle. Pretend we take two cycles in
90
;; the shift stage.
91
(define_insn_reservation "11_alu_shift_reg_op" 3
92
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
93
      (eq_attr "type" "alu_shift_reg"))
94
 "e_1*2,e_2,e_3,e_wb")
95
 
96
;; alu_ops can start sooner, if there is no shifter dependency
97
(define_bypass 1 "11_alu_op,11_alu_shift_op"
98
               "11_alu_op")
99
(define_bypass 1 "11_alu_op,11_alu_shift_op"
100
               "11_alu_shift_op"
101
               "arm_no_early_alu_shift_value_dep")
102
(define_bypass 1 "11_alu_op,11_alu_shift_op"
103
               "11_alu_shift_reg_op"
104
               "arm_no_early_alu_shift_dep")
105
(define_bypass 2 "11_alu_shift_reg_op"
106
               "11_alu_op")
107
(define_bypass 2 "11_alu_shift_reg_op"
108
               "11_alu_shift_op"
109
               "arm_no_early_alu_shift_value_dep")
110
(define_bypass 2 "11_alu_shift_reg_op"
111
               "11_alu_shift_reg_op"
112
               "arm_no_early_alu_shift_dep")
113
 
114
(define_bypass 1 "11_alu_op,11_alu_shift_op"
115
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
116
               "arm_no_early_mul_dep")
117
(define_bypass 2 "11_alu_shift_reg_op"
118
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
119
               "arm_no_early_mul_dep")
120
 
121
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122
;; Multiplication Instructions
123
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124
 
125
;; Multiplication instructions loop in the first two execute stages until
126
;; the instruction has been passed through the multiplier array enough
127
;; times.
128
 
129
;; Multiply and multiply-accumulate results are available after four stages.
130
(define_insn_reservation "11_mult1" 4
131
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
132
      (eq_attr "insn" "mul,mla"))
133
 "e_1*2,e_2,e_3,e_wb")
134
 
135
;; The *S variants set the condition flags, which requires three more cycles.
136
(define_insn_reservation "11_mult2" 4
137
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
138
      (eq_attr "insn" "muls,mlas"))
139
 "e_1*2,e_2,e_3,e_wb")
140
 
141
(define_bypass 3 "11_mult1,11_mult2"
142
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
143
               "arm_no_early_mul_dep")
144
(define_bypass 3 "11_mult1,11_mult2"
145
               "11_alu_op")
146
(define_bypass 3 "11_mult1,11_mult2"
147
               "11_alu_shift_op"
148
               "arm_no_early_alu_shift_value_dep")
149
(define_bypass 3 "11_mult1,11_mult2"
150
               "11_alu_shift_reg_op"
151
               "arm_no_early_alu_shift_dep")
152
(define_bypass 3 "11_mult1,11_mult2"
153
               "11_store1"
154
               "arm_no_early_store_addr_dep")
155
 
156
;; Signed and unsigned multiply long results are available across two cycles;
157
;; the less significant word is available one cycle before the more significant
158
;; word.  Here we conservatively wait until both are available, which is
159
;; after three iterations and the memory cycle.  The same is also true of
160
;; the two multiply-accumulate instructions.
161
(define_insn_reservation "11_mult3" 5
162
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
163
      (eq_attr "insn" "smull,umull,smlal,umlal"))
164
 "e_1*3,e_2,e_3,e_wb*2")
165
 
166
;; The *S variants set the condition flags, which requires three more cycles.
167
(define_insn_reservation "11_mult4" 5
168
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
169
      (eq_attr "insn" "smulls,umulls,smlals,umlals"))
170
 "e_1*3,e_2,e_3,e_wb*2")
171
 
172
(define_bypass 4 "11_mult3,11_mult4"
173
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
174
               "arm_no_early_mul_dep")
175
(define_bypass 4 "11_mult3,11_mult4"
176
               "11_alu_op")
177
(define_bypass 4 "11_mult3,11_mult4"
178
               "11_alu_shift_op"
179
               "arm_no_early_alu_shift_value_dep")
180
(define_bypass 4 "11_mult3,11_mult4"
181
               "11_alu_shift_reg_op"
182
               "arm_no_early_alu_shift_dep")
183
(define_bypass 4 "11_mult3,11_mult4"
184
               "11_store1"
185
               "arm_no_early_store_addr_dep")
186
 
187
;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
188
;; of high and low halves of the argument registers.  They take a single
189
;; pass through the pipeline and make the result available after three
190
;; cycles.
191
(define_insn_reservation "11_mult5" 3
192
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
193
      (eq_attr "insn" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,smusd,smusdx,smlsd,smlsdx"))
194
 "e_1,e_2,e_3,e_wb")
195
 
196
(define_bypass 2 "11_mult5"
197
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
198
               "arm_no_early_mul_dep")
199
(define_bypass 2 "11_mult5"
200
               "11_alu_op")
201
(define_bypass 2 "11_mult5"
202
               "11_alu_shift_op"
203
               "arm_no_early_alu_shift_value_dep")
204
(define_bypass 2 "11_mult5"
205
               "11_alu_shift_reg_op"
206
               "arm_no_early_alu_shift_dep")
207
(define_bypass 2 "11_mult5"
208
               "11_store1"
209
               "arm_no_early_store_addr_dep")
210
 
211
;; The same idea, then the 32-bit result is added to a 64-bit quantity.
212
(define_insn_reservation "11_mult6" 4
213
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
214
      (eq_attr "insn" "smlalxy"))
215
 "e_1*2,e_2,e_3,e_wb*2")
216
 
217
;; Signed 32x32 multiply, then the most significant 32 bits are extracted
218
;; and are available after the memory stage.
219
(define_insn_reservation "11_mult7" 4
220
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
221
      (eq_attr "insn" "smmul,smmulr"))
222
 "e_1*2,e_2,e_3,e_wb")
223
 
224
(define_bypass 3 "11_mult6,11_mult7"
225
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
226
               "arm_no_early_mul_dep")
227
(define_bypass 3 "11_mult6,11_mult7"
228
               "11_alu_op")
229
(define_bypass 3 "11_mult6,11_mult7"
230
               "11_alu_shift_op"
231
               "arm_no_early_alu_shift_value_dep")
232
(define_bypass 3 "11_mult6,11_mult7"
233
               "11_alu_shift_reg_op"
234
               "arm_no_early_alu_shift_dep")
235
(define_bypass 3 "11_mult6,11_mult7"
236
               "11_store1"
237
               "arm_no_early_store_addr_dep")
238
 
239
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
240
;; Branch Instructions
241
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
242
 
243
;; These vary greatly depending on their arguments and the results of
244
;; stat prediction.  Cycle count ranges from zero (unconditional branch,
245
;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
246
;; assume an optimal case for now, because the cost of a cache miss
247
;; overwhelms the cost of everything else anyhow.
248
 
249
(define_insn_reservation "11_branches" 0
250
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
251
      (eq_attr "type" "branch"))
252
 "nothing")
253
 
254
;; Call latencies are not predictable.  A semi-arbitrary very large
255
;; number is used as "positive infinity" so that everything should be
256
;; finished by the time of return.
257
(define_insn_reservation "11_call" 32
258
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
259
      (eq_attr "type" "call"))
260
 "nothing")
261
 
262
;; Branches are predicted. A correctly predicted branch will be no
263
;; cost, but we're conservative here, and use the timings a
264
;; late-register would give us.
265
(define_bypass 1 "11_alu_op,11_alu_shift_op"
266
               "11_branches")
267
(define_bypass 2 "11_alu_shift_reg_op"
268
               "11_branches")
269
(define_bypass 2 "11_load1,11_load2"
270
               "11_branches")
271
(define_bypass 3 "11_load34"
272
               "11_branches")
273
 
274
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
275
;; Load/Store Instructions
276
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
277
 
278
;; The models for load/store instructions do not accurately describe
279
;; the difference between operations with a base register writeback.
280
;; These models assume that all memory references hit in dcache.  Also,
281
;; if the PC is one of the registers involved, there are additional stalls
282
;; not modelled here.  Addressing modes are also not modelled.
283
 
284
(define_insn_reservation "11_load1" 3
285
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
286
      (eq_attr "type" "load1"))
287
 "l_a+e_1,l_dc1,l_dc2,l_wb")
288
 
289
;; Load byte results are not available until the writeback stage, where
290
;; the correct byte is extracted.
291
 
292
(define_insn_reservation "11_loadb" 4
293
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
294
      (eq_attr "type" "load_byte"))
295
 "l_a+e_1,l_dc1,l_dc2,l_wb")
296
 
297
(define_insn_reservation "11_store1" 0
298
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
299
      (eq_attr "type" "store1"))
300
 "l_a+e_1,l_dc1,l_dc2,l_wb")
301
 
302
;; Load/store double words into adjacent registers.  The timing and
303
;; latencies are different depending on whether the address is 64-bit
304
;; aligned.  This model assumes that it is.
305
(define_insn_reservation "11_load2" 3
306
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
307
      (eq_attr "type" "load2"))
308
 "l_a+e_1,l_dc1,l_dc2,l_wb")
309
 
310
(define_insn_reservation "11_store2" 0
311
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
312
      (eq_attr "type" "store2"))
313
 "l_a+e_1,l_dc1,l_dc2,l_wb")
314
 
315
;; Load/store multiple registers.  Two registers are stored per cycle.
316
;; Actual timing depends on how many registers are affected, so we
317
;; optimistically schedule a low latency.
318
(define_insn_reservation "11_load34" 4
319
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
320
      (eq_attr "type" "load3,load4"))
321
 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
322
 
323
(define_insn_reservation "11_store34" 0
324
 (and (eq_attr "tune" "arm1136js,arm1136jfs")
325
      (eq_attr "type" "store3,store4"))
326
 "l_a+e_1,l_dc1*2,l_dc2,l_wb")
327
 
328
;; A store can start immediately after an alu op, if that alu op does
329
;; not provide part of the address to access.
330
(define_bypass 1 "11_alu_op,11_alu_shift_op"
331
               "11_store1"
332
               "arm_no_early_store_addr_dep")
333
(define_bypass 2 "11_alu_shift_reg_op"
334
               "11_store1"
335
               "arm_no_early_store_addr_dep")
336
 
337
;; An alu op can start sooner after a load, if that alu op does not
338
;; have an early register dependency on the load
339
(define_bypass 2 "11_load1"
340
               "11_alu_op")
341
(define_bypass 2 "11_load1"
342
               "11_alu_shift_op"
343
               "arm_no_early_alu_shift_value_dep")
344
(define_bypass 2 "11_load1"
345
               "11_alu_shift_reg_op"
346
               "arm_no_early_alu_shift_dep")
347
 
348
(define_bypass 3 "11_loadb"
349
               "11_alu_op")
350
(define_bypass 3 "11_loadb"
351
               "11_alu_shift_op"
352
               "arm_no_early_alu_shift_value_dep")
353
(define_bypass 3 "11_loadb"
354
               "11_alu_shift_reg_op"
355
               "arm_no_early_alu_shift_dep")
356
 
357
;; A mul op can start sooner after a load, if that mul op does not
358
;; have an early multiply dependency
359
(define_bypass 2 "11_load1"
360
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
361
               "arm_no_early_mul_dep")
362
(define_bypass 3 "11_load34"
363
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
364
               "arm_no_early_mul_dep")
365
(define_bypass 3 "11_loadb"
366
               "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
367
               "arm_no_early_mul_dep")
368
 
369
;; A store can start sooner after a load, if that load does not
370
;; produce part of the address to access
371
(define_bypass 2 "11_load1"
372
               "11_store1"
373
               "arm_no_early_store_addr_dep")
374
(define_bypass 3 "11_loadb"
375
               "11_store1"
376
               "arm_no_early_store_addr_dep")

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.