| 1 |
282 |
jeremybenn |
;; ARM 926EJ-S Pipeline Description
|
| 2 |
|
|
;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
|
| 3 |
|
|
;; Written by CodeSourcery, LLC.
|
| 4 |
|
|
;;
|
| 5 |
|
|
;; This file is part of GCC.
|
| 6 |
|
|
;;
|
| 7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
;; under the terms of the GNU General Public License as published by
|
| 9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
;; any later version.
|
| 11 |
|
|
;;
|
| 12 |
|
|
;; GCC is distributed in the hope that it will be useful, but
|
| 13 |
|
|
;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 15 |
|
|
;; General Public License for more details.
|
| 16 |
|
|
;;
|
| 17 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
;; . */
|
| 20 |
|
|
|
| 21 |
|
|
;; These descriptions are based on the information contained in the
|
| 22 |
|
|
;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
|
| 23 |
|
|
;; Limited.
|
| 24 |
|
|
;;
|
| 25 |
|
|
|
| 26 |
|
|
;; This automaton provides a pipeline description for the ARM
|
| 27 |
|
|
;; 926EJ-S core.
|
| 28 |
|
|
;;
|
| 29 |
|
|
;; The model given here assumes that the condition for all conditional
|
| 30 |
|
|
;; instructions is "true", i.e., that all of the instructions are
|
| 31 |
|
|
;; actually executed.
|
| 32 |
|
|
|
| 33 |
|
|
(define_automaton "arm926ejs")
|
| 34 |
|
|
|
| 35 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 36 |
|
|
;; Pipelines
|
| 37 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 38 |
|
|
|
| 39 |
|
|
;; There is a single pipeline
|
| 40 |
|
|
;;
|
| 41 |
|
|
;; The ALU pipeline has fetch, decode, execute, memory, and
|
| 42 |
|
|
;; write stages. We only need to model the execute, memory and write
|
| 43 |
|
|
;; stages.
|
| 44 |
|
|
|
| 45 |
|
|
(define_cpu_unit "e,m,w" "arm926ejs")
|
| 46 |
|
|
|
| 47 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 48 |
|
|
;; ALU Instructions
|
| 49 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 50 |
|
|
|
| 51 |
|
|
;; ALU instructions require three cycles to execute, and use the ALU
|
| 52 |
|
|
;; pipeline in each of the three stages. The results are available
|
| 53 |
|
|
;; after the execute stage stage has finished.
|
| 54 |
|
|
;;
|
| 55 |
|
|
;; If the destination register is the PC, the pipelines are stalled
|
| 56 |
|
|
;; for several cycles. That case is not modeled here.
|
| 57 |
|
|
|
| 58 |
|
|
;; ALU operations with no shifted operand
|
| 59 |
|
|
(define_insn_reservation "9_alu_op" 1
|
| 60 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 61 |
|
|
(eq_attr "type" "alu,alu_shift"))
|
| 62 |
|
|
"e,m,w")
|
| 63 |
|
|
|
| 64 |
|
|
;; ALU operations with a shift-by-register operand
|
| 65 |
|
|
;; These really stall in the decoder, in order to read
|
| 66 |
|
|
;; the shift value in a second cycle. Pretend we take two cycles in
|
| 67 |
|
|
;; the execute stage.
|
| 68 |
|
|
(define_insn_reservation "9_alu_shift_reg_op" 2
|
| 69 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 70 |
|
|
(eq_attr "type" "alu_shift_reg"))
|
| 71 |
|
|
"e*2,m,w")
|
| 72 |
|
|
|
| 73 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 74 |
|
|
;; Multiplication Instructions
|
| 75 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 76 |
|
|
|
| 77 |
|
|
;; Multiplication instructions loop in the execute stage until the
|
| 78 |
|
|
;; instruction has been passed through the multiplier array enough
|
| 79 |
|
|
;; times. Multiply operations occur in both the execute and memory
|
| 80 |
|
|
;; stages of the pipeline
|
| 81 |
|
|
|
| 82 |
|
|
(define_insn_reservation "9_mult1" 3
|
| 83 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 84 |
|
|
(eq_attr "insn" "smlalxy,mul,mla"))
|
| 85 |
|
|
"e*2,m,w")
|
| 86 |
|
|
|
| 87 |
|
|
(define_insn_reservation "9_mult2" 4
|
| 88 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 89 |
|
|
(eq_attr "insn" "muls,mlas"))
|
| 90 |
|
|
"e*3,m,w")
|
| 91 |
|
|
|
| 92 |
|
|
(define_insn_reservation "9_mult3" 4
|
| 93 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 94 |
|
|
(eq_attr "insn" "umull,umlal,smull,smlal"))
|
| 95 |
|
|
"e*3,m,w")
|
| 96 |
|
|
|
| 97 |
|
|
(define_insn_reservation "9_mult4" 5
|
| 98 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 99 |
|
|
(eq_attr "insn" "umulls,umlals,smulls,smlals"))
|
| 100 |
|
|
"e*4,m,w")
|
| 101 |
|
|
|
| 102 |
|
|
(define_insn_reservation "9_mult5" 2
|
| 103 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 104 |
|
|
(eq_attr "insn" "smulxy,smlaxy,smlawx"))
|
| 105 |
|
|
"e,m,w")
|
| 106 |
|
|
|
| 107 |
|
|
(define_insn_reservation "9_mult6" 3
|
| 108 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 109 |
|
|
(eq_attr "insn" "smlalxy"))
|
| 110 |
|
|
"e*2,m,w")
|
| 111 |
|
|
|
| 112 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 113 |
|
|
;; Load/Store Instructions
|
| 114 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 115 |
|
|
|
| 116 |
|
|
;; The models for load/store instructions do not accurately describe
|
| 117 |
|
|
;; the difference between operations with a base register writeback
|
| 118 |
|
|
;; (such as "ldm!"). These models assume that all memory references
|
| 119 |
|
|
;; hit in dcache.
|
| 120 |
|
|
|
| 121 |
|
|
;; Loads with a shifted offset take 3 cycles, and are (a) probably the
|
| 122 |
|
|
;; most common and (b) the pessimistic assumption will lead to fewer stalls.
|
| 123 |
|
|
(define_insn_reservation "9_load1_op" 3
|
| 124 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 125 |
|
|
(eq_attr "type" "load1,load_byte"))
|
| 126 |
|
|
"e*2,m,w")
|
| 127 |
|
|
|
| 128 |
|
|
(define_insn_reservation "9_store1_op" 0
|
| 129 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 130 |
|
|
(eq_attr "type" "store1"))
|
| 131 |
|
|
"e,m,w")
|
| 132 |
|
|
|
| 133 |
|
|
;; multiple word loads and stores
|
| 134 |
|
|
(define_insn_reservation "9_load2_op" 3
|
| 135 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 136 |
|
|
(eq_attr "type" "load2"))
|
| 137 |
|
|
"e,m*2,w")
|
| 138 |
|
|
|
| 139 |
|
|
(define_insn_reservation "9_load3_op" 4
|
| 140 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 141 |
|
|
(eq_attr "type" "load3"))
|
| 142 |
|
|
"e,m*3,w")
|
| 143 |
|
|
|
| 144 |
|
|
(define_insn_reservation "9_load4_op" 5
|
| 145 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 146 |
|
|
(eq_attr "type" "load4"))
|
| 147 |
|
|
"e,m*4,w")
|
| 148 |
|
|
|
| 149 |
|
|
(define_insn_reservation "9_store2_op" 0
|
| 150 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 151 |
|
|
(eq_attr "type" "store2"))
|
| 152 |
|
|
"e,m*2,w")
|
| 153 |
|
|
|
| 154 |
|
|
(define_insn_reservation "9_store3_op" 0
|
| 155 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 156 |
|
|
(eq_attr "type" "store3"))
|
| 157 |
|
|
"e,m*3,w")
|
| 158 |
|
|
|
| 159 |
|
|
(define_insn_reservation "9_store4_op" 0
|
| 160 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 161 |
|
|
(eq_attr "type" "store4"))
|
| 162 |
|
|
"e,m*4,w")
|
| 163 |
|
|
|
| 164 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 165 |
|
|
;; Branch and Call Instructions
|
| 166 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 167 |
|
|
|
| 168 |
|
|
;; Branch instructions are difficult to model accurately. The ARM
|
| 169 |
|
|
;; core can predict most branches. If the branch is predicted
|
| 170 |
|
|
;; correctly, and predicted early enough, the branch can be completely
|
| 171 |
|
|
;; eliminated from the instruction stream. Some branches can
|
| 172 |
|
|
;; therefore appear to require zero cycles to execute. We assume that
|
| 173 |
|
|
;; all branches are predicted correctly, and that the latency is
|
| 174 |
|
|
;; therefore the minimum value.
|
| 175 |
|
|
|
| 176 |
|
|
(define_insn_reservation "9_branch_op" 0
|
| 177 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 178 |
|
|
(eq_attr "type" "branch"))
|
| 179 |
|
|
"nothing")
|
| 180 |
|
|
|
| 181 |
|
|
;; The latency for a call is not predictable. Therefore, we use 32 as
|
| 182 |
|
|
;; roughly equivalent to positive infinity.
|
| 183 |
|
|
|
| 184 |
|
|
(define_insn_reservation "9_call_op" 32
|
| 185 |
|
|
(and (eq_attr "tune" "arm926ejs")
|
| 186 |
|
|
(eq_attr "type" "call"))
|
| 187 |
|
|
"nothing")
|