OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [bfin/] [bfin.h] - Blame information for rev 301

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions for the Blackfin port.
2
   Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
3
   Contributed by Analog Devices.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published
9
   by the Free Software Foundation; either version 3, or (at your
10
   option) any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING3.  If not see
19
   <http://www.gnu.org/licenses/>.  */
20
 
21
#ifndef _BFIN_CONFIG
22
#define _BFIN_CONFIG
23
 
24
#define OBJECT_FORMAT_ELF
25
 
26
#define BRT 1
27
#define BRF 0
28
 
29
/* CPU type.  */
30
typedef enum bfin_cpu_type
31
{
32
  BFIN_CPU_UNKNOWN,
33
  BFIN_CPU_BF512,
34
  BFIN_CPU_BF514,
35
  BFIN_CPU_BF516,
36
  BFIN_CPU_BF518,
37
  BFIN_CPU_BF522,
38
  BFIN_CPU_BF523,
39
  BFIN_CPU_BF524,
40
  BFIN_CPU_BF525,
41
  BFIN_CPU_BF526,
42
  BFIN_CPU_BF527,
43
  BFIN_CPU_BF531,
44
  BFIN_CPU_BF532,
45
  BFIN_CPU_BF533,
46
  BFIN_CPU_BF534,
47
  BFIN_CPU_BF536,
48
  BFIN_CPU_BF537,
49
  BFIN_CPU_BF538,
50
  BFIN_CPU_BF539,
51
  BFIN_CPU_BF542,
52
  BFIN_CPU_BF542M,
53
  BFIN_CPU_BF544,
54
  BFIN_CPU_BF544M,
55
  BFIN_CPU_BF547,
56
  BFIN_CPU_BF547M,
57
  BFIN_CPU_BF548,
58
  BFIN_CPU_BF548M,
59
  BFIN_CPU_BF549,
60
  BFIN_CPU_BF549M,
61
  BFIN_CPU_BF561
62
} bfin_cpu_t;
63
 
64
/* Value of -mcpu= */
65
extern bfin_cpu_t bfin_cpu_type;
66
 
67
/* Value of -msi-revision= */
68
extern int bfin_si_revision;
69
 
70
extern unsigned int bfin_workarounds;
71
 
72
/* Print subsidiary information on the compiler version in use.  */
73
#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
74
 
75
/* Run-time compilation parameters selecting different hardware subsets.  */
76
 
77
extern int target_flags;
78
 
79
/* Predefinition in the preprocessor for this target machine */
80
#ifndef TARGET_CPU_CPP_BUILTINS
81
#define TARGET_CPU_CPP_BUILTINS()               \
82
  do                                            \
83
    {                                           \
84
      builtin_define_std ("bfin");              \
85
      builtin_define_std ("BFIN");              \
86
      builtin_define ("__ADSPBLACKFIN__");      \
87
      builtin_define ("__ADSPLPBLACKFIN__");    \
88
                                                \
89
      switch (bfin_cpu_type)                    \
90
        {                                       \
91
        case BFIN_CPU_BF512:                    \
92
          builtin_define ("__ADSPBF512__");     \
93
          builtin_define ("__ADSPBF51x__");     \
94
          break;                                \
95
        case BFIN_CPU_BF514:                    \
96
          builtin_define ("__ADSPBF514__");     \
97
          builtin_define ("__ADSPBF51x__");     \
98
          break;                                \
99
        case BFIN_CPU_BF516:                    \
100
          builtin_define ("__ADSPBF516__");     \
101
          builtin_define ("__ADSPBF51x__");     \
102
          break;                                \
103
        case BFIN_CPU_BF518:                    \
104
          builtin_define ("__ADSPBF518__");     \
105
          builtin_define ("__ADSPBF51x__");     \
106
          break;                                \
107
        case BFIN_CPU_BF522:                    \
108
          builtin_define ("__ADSPBF522__");     \
109
          builtin_define ("__ADSPBF52x__");     \
110
          break;                                \
111
        case BFIN_CPU_BF523:                    \
112
          builtin_define ("__ADSPBF523__");     \
113
          builtin_define ("__ADSPBF52x__");     \
114
          break;                                \
115
        case BFIN_CPU_BF524:                    \
116
          builtin_define ("__ADSPBF524__");     \
117
          builtin_define ("__ADSPBF52x__");     \
118
          break;                                \
119
        case BFIN_CPU_BF525:                    \
120
          builtin_define ("__ADSPBF525__");     \
121
          builtin_define ("__ADSPBF52x__");     \
122
          break;                                \
123
        case BFIN_CPU_BF526:                    \
124
          builtin_define ("__ADSPBF526__");     \
125
          builtin_define ("__ADSPBF52x__");     \
126
          break;                                \
127
        case BFIN_CPU_BF527:                    \
128
          builtin_define ("__ADSPBF527__");     \
129
          builtin_define ("__ADSPBF52x__");     \
130
          break;                                \
131
        case BFIN_CPU_BF531:                    \
132
          builtin_define ("__ADSPBF531__");     \
133
          break;                                \
134
        case BFIN_CPU_BF532:                    \
135
          builtin_define ("__ADSPBF532__");     \
136
          break;                                \
137
        case BFIN_CPU_BF533:                    \
138
          builtin_define ("__ADSPBF533__");     \
139
          break;                                \
140
        case BFIN_CPU_BF534:                    \
141
          builtin_define ("__ADSPBF534__");     \
142
          break;                                \
143
        case BFIN_CPU_BF536:                    \
144
          builtin_define ("__ADSPBF536__");     \
145
          break;                                \
146
        case BFIN_CPU_BF537:                    \
147
          builtin_define ("__ADSPBF537__");     \
148
          break;                                \
149
        case BFIN_CPU_BF538:                    \
150
          builtin_define ("__ADSPBF538__");     \
151
          break;                                \
152
        case BFIN_CPU_BF539:                    \
153
          builtin_define ("__ADSPBF539__");     \
154
          break;                                \
155
        case BFIN_CPU_BF542M:                   \
156
          builtin_define ("__ADSPBF542M__");    \
157
        case BFIN_CPU_BF542:                    \
158
          builtin_define ("__ADSPBF542__");     \
159
          builtin_define ("__ADSPBF54x__");     \
160
          break;                                \
161
        case BFIN_CPU_BF544M:                   \
162
          builtin_define ("__ADSPBF544M__");    \
163
        case BFIN_CPU_BF544:                    \
164
          builtin_define ("__ADSPBF544__");     \
165
          builtin_define ("__ADSPBF54x__");     \
166
          break;                                \
167
        case BFIN_CPU_BF547M:                   \
168
          builtin_define ("__ADSPBF547M__");    \
169
        case BFIN_CPU_BF547:                    \
170
          builtin_define ("__ADSPBF547__");     \
171
          builtin_define ("__ADSPBF54x__");     \
172
          break;                                \
173
        case BFIN_CPU_BF548M:                   \
174
          builtin_define ("__ADSPBF548M__");    \
175
        case BFIN_CPU_BF548:                    \
176
          builtin_define ("__ADSPBF548__");     \
177
          builtin_define ("__ADSPBF54x__");     \
178
          break;                                \
179
        case BFIN_CPU_BF549M:                   \
180
          builtin_define ("__ADSPBF549M__");    \
181
        case BFIN_CPU_BF549:                    \
182
          builtin_define ("__ADSPBF549__");     \
183
          builtin_define ("__ADSPBF54x__");     \
184
          break;                                \
185
        case BFIN_CPU_BF561:                    \
186
          builtin_define ("__ADSPBF561__");     \
187
          break;                                \
188
        }                                       \
189
                                                \
190
      if (bfin_si_revision != -1)               \
191
        {                                       \
192
          /* space of 0xnnnn and a NUL */       \
193
          char *buf = XALLOCAVEC (char, 7);     \
194
                                                \
195
          sprintf (buf, "0x%04x", bfin_si_revision);                    \
196
          builtin_define_with_value ("__SILICON_REVISION__", buf, 0);    \
197
        }                                                               \
198
                                                                        \
199
      if (bfin_workarounds)                                             \
200
        builtin_define ("__WORKAROUNDS_ENABLED");                       \
201
      if (ENABLE_WA_SPECULATIVE_LOADS)                                  \
202
        builtin_define ("__WORKAROUND_SPECULATIVE_LOADS");              \
203
      if (ENABLE_WA_SPECULATIVE_SYNCS)                                  \
204
        builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS");              \
205
      if (ENABLE_WA_INDIRECT_CALLS)                                     \
206
        builtin_define ("__WORKAROUND_INDIRECT_CALLS");                 \
207
      if (ENABLE_WA_RETS)                                               \
208
        builtin_define ("__WORKAROUND_RETS");                           \
209
                                                \
210
      if (TARGET_FDPIC)                         \
211
        {                                       \
212
          builtin_define ("__BFIN_FDPIC__");    \
213
          builtin_define ("__FDPIC__");         \
214
        }                                       \
215
      if (TARGET_ID_SHARED_LIBRARY              \
216
          && !TARGET_SEP_DATA)                  \
217
        builtin_define ("__ID_SHARED_LIB__");   \
218
      if (flag_no_builtin)                      \
219
        builtin_define ("__NO_BUILTIN");        \
220
      if (TARGET_MULTICORE)                     \
221
        builtin_define ("__BFIN_MULTICORE");    \
222
      if (TARGET_COREA)                         \
223
        builtin_define ("__BFIN_COREA");        \
224
      if (TARGET_COREB)                         \
225
        builtin_define ("__BFIN_COREB");        \
226
      if (TARGET_SDRAM)                         \
227
        builtin_define ("__BFIN_SDRAM");        \
228
    }                                           \
229
  while (0)
230
#endif
231
 
232
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS   "\
233
 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
234
 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
235
            %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
236
"
237
#ifndef SUBTARGET_DRIVER_SELF_SPECS
238
# define SUBTARGET_DRIVER_SELF_SPECS
239
#endif
240
 
241
#define LINK_GCC_C_SEQUENCE_SPEC "\
242
  %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
243
"
244
 
245
/* A C string constant that tells the GCC driver program options to pass to
246
   the assembler.  It can also specify how to translate options you give to GNU
247
   CC into options for GCC to pass to the assembler.  See the file `sun3.h'
248
   for an example of this.
249
 
250
   Do not define this macro if it does not need to do anything.
251
 
252
   Defined in svr4.h.  */
253
#undef  ASM_SPEC
254
#define ASM_SPEC "\
255
%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
256
    %{mno-fdpic:-mnopic} %{mfdpic}"
257
 
258
#define LINK_SPEC "\
259
%{h*} %{v:-V} \
260
%{b} \
261
%{mfdpic:-melf32bfinfd -z text} \
262
%{static:-dn -Bstatic} \
263
%{shared:-G -Bdynamic} \
264
%{symbolic:-Bsymbolic} \
265
%{G*} \
266
%{YP,*} \
267
%{Qy:} %{!Qn:-Qy} \
268
-init __init -fini __fini "
269
 
270
/* Generate DSP instructions, like DSP halfword loads */
271
#define TARGET_DSP                      (1)
272
 
273
#define TARGET_DEFAULT 0
274
 
275
/* Maximum number of library ids we permit */
276
#define MAX_LIBRARY_ID 255
277
 
278
extern const char *bfin_library_id_string;
279
 
280
/* Sometimes certain combinations of command options do not make
281
   sense on a particular target machine.  You can define a macro
282
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
283
   defined, is executed once just after all the command options have
284
   been parsed.
285
 
286
   Don't use this macro to turn on various extra optimizations for
287
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
288
 
289
#define OVERRIDE_OPTIONS override_options ()
290
 
291
#define FUNCTION_MODE    SImode
292
#define Pmode            SImode
293
 
294
/* store-condition-codes instructions store 0 for false
295
   This is the value stored for true.  */
296
#define STORE_FLAG_VALUE 1
297
 
298
/* Define this if pushing a word on the stack
299
   makes the stack pointer a smaller address.  */
300
#define STACK_GROWS_DOWNWARD
301
 
302
#define STACK_PUSH_CODE PRE_DEC
303
 
304
/* Define this to nonzero if the nominal address of the stack frame
305
   is at the high-address end of the local variables;
306
   that is, each additional local variable allocated
307
   goes at a more negative offset in the frame.  */
308
#define FRAME_GROWS_DOWNWARD 1
309
 
310
/* We define a dummy ARGP register; the parameters start at offset 0 from
311
   it. */
312
#define FIRST_PARM_OFFSET(DECL) 0
313
 
314
/* Offset within stack frame to start allocating local variables at.
315
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
316
   first local allocated.  Otherwise, it is the offset to the BEGINNING
317
   of the first local allocated.  */
318
#define STARTING_FRAME_OFFSET 0
319
 
320
/* Register to use for pushing function arguments.  */
321
#define STACK_POINTER_REGNUM REG_P6
322
 
323
/* Base register for access to local variables of the function.  */
324
#define FRAME_POINTER_REGNUM REG_P7
325
 
326
/* A dummy register that will be eliminated to either FP or SP.  */
327
#define ARG_POINTER_REGNUM REG_ARGP
328
 
329
/* `PIC_OFFSET_TABLE_REGNUM'
330
     The register number of the register used to address a table of
331
     static data addresses in memory.  In some cases this register is
332
     defined by a processor's "application binary interface" (ABI).
333
     When this macro is defined, RTL is generated for this register
334
     once, as with the stack pointer and frame pointer registers.  If
335
     this macro is not defined, it is up to the machine-dependent files
336
     to allocate such a register (if necessary). */
337
#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
338
 
339
#define FDPIC_FPTR_REGNO REG_P1
340
#define FDPIC_REGNO REG_P3
341
#define OUR_FDPIC_REG   get_hard_reg_initial_val (SImode, FDPIC_REGNO)
342
 
343
/* A static chain register for nested functions.  We need to use a
344
   call-clobbered register for this.  */
345
#define STATIC_CHAIN_REGNUM REG_P2
346
 
347
/* Define this if functions should assume that stack space has been
348
   allocated for arguments even when their values are passed in
349
   registers.
350
 
351
   The value of this macro is the size, in bytes, of the area reserved for
352
   arguments passed in registers.
353
 
354
   This space can either be allocated by the caller or be a part of the
355
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
356
   says which.  */
357
#define FIXED_STACK_AREA 12
358
#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
359
 
360
/* Define this if the above stack space is to be considered part of the
361
 * space allocated by the caller.  */
362
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
363
 
364
/* Define this if the maximum size of all the outgoing args is to be
365
   accumulated and pushed during the prologue.  The amount can be
366
   found in the variable crtl->outgoing_args_size. */
367
#define ACCUMULATE_OUTGOING_ARGS 1
368
 
369
/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
370
 
371
/* If defined, a C expression to compute the alignment for a local
372
   variable.  TYPE is the data type, and ALIGN is the alignment that
373
   the object would ordinarily have.  The value of this macro is used
374
   instead of that alignment to align the object.
375
 
376
   If this macro is not defined, then ALIGN is used.
377
 
378
   One use of this macro is to increase alignment of medium-size
379
   data to make it all fit in fewer cache lines.  */
380
 
381
#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
382
 
383
/* Make strings word-aligned so strcpy from constants will be faster.  */
384
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
385
  (TREE_CODE (EXP) == STRING_CST        \
386
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
387
 
388
#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
389
 
390
/* Definitions for register eliminations.
391
 
392
   This is an array of structures.  Each structure initializes one pair
393
   of eliminable registers.  The "from" register number is given first,
394
   followed by "to".  Eliminations of the same "from" register are listed
395
   in order of preference.
396
 
397
   There are two registers that can always be eliminated on the i386.
398
   The frame pointer and the arg pointer can be replaced by either the
399
   hard frame pointer or to the stack pointer, depending upon the
400
   circumstances.  The hard frame pointer is not used before reload and
401
   so it is not eligible for elimination.  */
402
 
403
#define ELIMINABLE_REGS                         \
404
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
405
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
406
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
407
 
408
/* Define the offset between two registers, one to be eliminated, and the other
409
   its replacement, at the start of a routine.  */
410
 
411
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
412
  ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
413
 
414
/* This processor has
415
   8 data register for doing arithmetic
416
   8  pointer register for doing addressing, including
417
      1  stack pointer P6
418
      1  frame pointer P7
419
   4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
420
   1  condition code flag register CC
421
   5  return address registers RETS/I/X/N/E
422
   1  arithmetic status register (ASTAT).  */
423
 
424
#define FIRST_PSEUDO_REGISTER 50
425
 
426
#define D_REGNO_P(X) ((X) <= REG_R7)
427
#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
428
#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
429
#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
430
#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
431
#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
432
#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
433
#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
434
#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
435
 
436
#define REGISTER_NAMES { \
437
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
438
  "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
439
  "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
440
  "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
441
  "A0", "A1", \
442
  "CC", \
443
  "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
444
  "ARGP", \
445
  "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
446
}
447
 
448
#define SHORT_REGISTER_NAMES { \
449
        "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
450
        "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
451
        "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
452
        "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
453
 
454
#define HIGH_REGISTER_NAMES { \
455
        "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
456
        "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
457
        "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
458
        "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
459
 
460
#define DREGS_PAIR_NAMES { \
461
  "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
462
 
463
#define BYTE_REGISTER_NAMES { \
464
  "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
465
 
466
 
467
/* 1 for registers that have pervasive standard uses
468
   and are not available for the register allocator.  */
469
 
470
#define FIXED_REGISTERS \
471
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
472
{ 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
473
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
474
  0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
475
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
476
  0, 0, 0, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,    \
477
/*lb0/1 */ \
478
  1, 1  \
479
}
480
 
481
/* 1 for registers not available across function calls.
482
   These must include the FIXED_REGISTERS and also any
483
   registers that can be used without being saved.
484
   The latter must include the registers where values are returned
485
   and the register where structure-value addresses are passed.
486
   Aside from that, you can include as many other registers as you like.  */
487
 
488
#define CALL_USED_REGISTERS \
489
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
490
{ 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
491
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
492
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
493
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
494
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1, \
495
/*lb0/1 */ \
496
  1, 1  \
497
}
498
 
499
/* Order in which to allocate registers.  Each register must be
500
   listed once, even those in FIXED_REGISTERS.  List frame pointer
501
   late and fixed registers last.  Note that, in general, we prefer
502
   registers listed in CALL_USED_REGISTERS, keeping the others
503
   available for storage of persistent values. */
504
 
505
#define REG_ALLOC_ORDER \
506
{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
507
  REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
508
  REG_A0, REG_A1, \
509
  REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
510
  REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
511
  REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,               \
512
  REG_ASTAT, REG_SEQSTAT, REG_USP,                                \
513
  REG_CC, REG_ARGP,                                               \
514
  REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1            \
515
}
516
 
517
/* Macro to conditionally modify fixed_regs/call_used_regs.  */
518
#define CONDITIONAL_REGISTER_USAGE                      \
519
  {                                                     \
520
    conditional_register_usage();                       \
521
    if (TARGET_FDPIC)                                   \
522
      call_used_regs[FDPIC_REGNO] = 1;                  \
523
    if (!TARGET_FDPIC && flag_pic)                      \
524
      {                                                 \
525
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
526
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
527
      }                                                 \
528
  }
529
 
530
/* Define the classes of registers for register constraints in the
531
   machine description.  Also define ranges of constants.
532
 
533
   One of the classes must always be named ALL_REGS and include all hard regs.
534
   If there is more than one class, another class must be named NO_REGS
535
   and contain no registers.
536
 
537
   The name GENERAL_REGS must be the name of a class (or an alias for
538
   another name such as ALL_REGS).  This is the class of registers
539
   that is allowed by "g" or "r" in a register constraint.
540
   Also, registers outside this class are allocated only when
541
   instructions express preferences for them.
542
 
543
   The classes must be numbered in nondecreasing order; that is,
544
   a larger-numbered class must never be contained completely
545
   in a smaller-numbered class.
546
 
547
   For any two classes, it is very desirable that there be another
548
   class that represents their union. */
549
 
550
 
551
enum reg_class
552
{
553
  NO_REGS,
554
  IREGS,
555
  BREGS,
556
  LREGS,
557
  MREGS,
558
  CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
559
  DAGREGS,
560
  EVEN_AREGS,
561
  ODD_AREGS,
562
  AREGS,
563
  CCREGS,
564
  EVEN_DREGS,
565
  ODD_DREGS,
566
  D0REGS,
567
  D1REGS,
568
  D2REGS,
569
  D3REGS,
570
  D4REGS,
571
  D5REGS,
572
  D6REGS,
573
  D7REGS,
574
  DREGS,
575
  P0REGS,
576
  FDPIC_REGS,
577
  FDPIC_FPTR_REGS,
578
  PREGS_CLOBBERED,
579
  PREGS,
580
  IPREGS,
581
  DPREGS,
582
  MOST_REGS,
583
  LT_REGS,
584
  LC_REGS,
585
  LB_REGS,
586
  PROLOGUE_REGS,
587
  NON_A_CC_REGS,
588
  ALL_REGS, LIM_REG_CLASSES
589
};
590
 
591
#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
592
 
593
#define GENERAL_REGS DPREGS
594
 
595
/* Give names of register classes as strings for dump file.   */
596
 
597
#define REG_CLASS_NAMES \
598
{  "NO_REGS",           \
599
   "IREGS",             \
600
   "BREGS",             \
601
   "LREGS",             \
602
   "MREGS",             \
603
   "CIRCREGS",          \
604
   "DAGREGS",           \
605
   "EVEN_AREGS",        \
606
   "ODD_AREGS",         \
607
   "AREGS",             \
608
   "CCREGS",            \
609
   "EVEN_DREGS",        \
610
   "ODD_DREGS",         \
611
   "D0REGS",            \
612
   "D1REGS",            \
613
   "D2REGS",            \
614
   "D3REGS",            \
615
   "D4REGS",            \
616
   "D5REGS",            \
617
   "D6REGS",            \
618
   "D7REGS",            \
619
   "DREGS",             \
620
   "P0REGS",            \
621
   "FDPIC_REGS",        \
622
   "FDPIC_FPTR_REGS",   \
623
   "PREGS_CLOBBERED",   \
624
   "PREGS",             \
625
   "IPREGS",            \
626
   "DPREGS",            \
627
   "MOST_REGS",         \
628
   "LT_REGS",           \
629
   "LC_REGS",           \
630
   "LB_REGS",           \
631
   "PROLOGUE_REGS",     \
632
   "NON_A_CC_REGS",     \
633
   "ALL_REGS" }
634
 
635
/* An initializer containing the contents of the register classes, as integers
636
   which are bit masks.  The Nth integer specifies the contents of class N.
637
   The way the integer MASK is interpreted is that register R is in the class
638
   if `MASK & (1 << R)' is 1.
639
 
640
   When the machine has more than 32 registers, an integer does not suffice.
641
   Then the integers are replaced by sub-initializers, braced groupings
642
   containing several integers.  Each sub-initializer must be suitable as an
643
   initializer for the type `HARD_REG_SET' which is defined in
644
   `hard-reg-set.h'.  */
645
 
646
/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
647
   MOST_REGS as the union of DPREGS and DAGREGS.  */
648
 
649
#define REG_CLASS_CONTENTS \
650
    /* 31 - 0       63-32   */ \
651
{   { 0x00000000,    0 },               /* NO_REGS */   \
652
    { 0x000f0000,    0 },               /* IREGS */     \
653
    { 0x00f00000,    0 },               /* BREGS */             \
654
    { 0x0f000000,    0 },               /* LREGS */     \
655
    { 0xf0000000,    0 },               /* MREGS */   \
656
    { 0x0fff0000,    0 },               /* CIRCREGS */   \
657
    { 0xffff0000,    0 },               /* DAGREGS */   \
658
    { 0x00000000,    0x1 },             /* EVEN_AREGS */   \
659
    { 0x00000000,    0x2 },             /* ODD_AREGS */   \
660
    { 0x00000000,    0x3 },             /* AREGS */   \
661
    { 0x00000000,    0x4 },             /* CCREGS */  \
662
    { 0x00000055,    0 },               /* EVEN_DREGS */   \
663
    { 0x000000aa,    0 },               /* ODD_DREGS */   \
664
    { 0x00000001,    0 },               /* D0REGS */   \
665
    { 0x00000002,    0 },               /* D1REGS */   \
666
    { 0x00000004,    0 },               /* D2REGS */   \
667
    { 0x00000008,    0 },               /* D3REGS */   \
668
    { 0x00000010,    0 },               /* D4REGS */   \
669
    { 0x00000020,    0 },               /* D5REGS */   \
670
    { 0x00000040,    0 },               /* D6REGS */   \
671
    { 0x00000080,    0 },               /* D7REGS */   \
672
    { 0x000000ff,    0 },               /* DREGS */   \
673
    { 0x00000100,    0x000 },           /* P0REGS */   \
674
    { 0x00000800,    0x000 },           /* FDPIC_REGS */   \
675
    { 0x00000200,    0x000 },           /* FDPIC_FPTR_REGS */   \
676
    { 0x00004700,    0x800 },           /* PREGS_CLOBBERED */   \
677
    { 0x0000ff00,    0x800 },           /* PREGS */   \
678
    { 0x000fff00,    0x800 },           /* IPREGS */    \
679
    { 0x0000ffff,    0x800 },           /* DPREGS */   \
680
    { 0xffffffff,    0x800 },           /* MOST_REGS */\
681
    { 0x00000000,    0x3000 },          /* LT_REGS */\
682
    { 0x00000000,    0xc000 },          /* LC_REGS */\
683
    { 0x00000000,    0x30000 },         /* LB_REGS */\
684
    { 0x00000000,    0x3f7f8 },         /* PROLOGUE_REGS */\
685
    { 0xffffffff,    0x3fff8 },         /* NON_A_CC_REGS */\
686
    { 0xffffffff,    0x3ffff }}         /* ALL_REGS */
687
 
688
#define IREG_POSSIBLE_P(OUTER)                               \
689
  ((OUTER) == POST_INC || (OUTER) == PRE_INC                 \
690
   || (OUTER) == POST_DEC || (OUTER) == PRE_DEC              \
691
   || (OUTER) == MEM || (OUTER) == ADDRESS)
692
 
693
#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX)                    \
694
  ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
695
 
696
#define INDEX_REG_CLASS         PREGS
697
 
698
#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX)       \
699
  (P_REGNO_P (X) || (X) == REG_ARGP                             \
700
   || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode              \
701
       && I_REGNO_P (X)))
702
 
703
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX)    \
704
  ((X) >= FIRST_PSEUDO_REGISTER                                 \
705
   || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
706
 
707
#ifdef REG_OK_STRICT
708
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
709
  REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
710
#else
711
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
712
  REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
713
#endif
714
 
715
#define REGNO_OK_FOR_INDEX_P(X)   0
716
 
717
/* The same information, inverted:
718
   Return the class number of the smallest class containing
719
   reg number REGNO.  This could be a conditional expression
720
   or could index an array.  */
721
 
722
#define REGNO_REG_CLASS(REGNO) \
723
((REGNO) == REG_R0 ? D0REGS                             \
724
 : (REGNO) == REG_R1 ? D1REGS                           \
725
 : (REGNO) == REG_R2 ? D2REGS                           \
726
 : (REGNO) == REG_R3 ? D3REGS                           \
727
 : (REGNO) == REG_R4 ? D4REGS                           \
728
 : (REGNO) == REG_R5 ? D5REGS                           \
729
 : (REGNO) == REG_R6 ? D6REGS                           \
730
 : (REGNO) == REG_R7 ? D7REGS                           \
731
 : (REGNO) == REG_P0 ? P0REGS                           \
732
 : (REGNO) < REG_I0 ? PREGS                             \
733
 : (REGNO) == REG_ARGP ? PREGS                          \
734
 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS       \
735
 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS       \
736
 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS       \
737
 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS       \
738
 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS       \
739
 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS   \
740
 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS   \
741
 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS   \
742
 : (REGNO) == REG_CC ? CCREGS                           \
743
 : (REGNO) >= REG_RETS ? PROLOGUE_REGS                  \
744
 : NO_REGS)
745
 
746
/* The following macro defines cover classes for Integrated Register
747
   Allocator.  Cover classes is a set of non-intersected register
748
   classes covering all hard registers used for register allocation
749
   purpose.  Any move between two registers of a cover class should be
750
   cheaper than load or store of the registers.  The macro value is
751
   array of register classes with LIM_REG_CLASSES used as the end
752
   marker.  */
753
 
754
#define IRA_COVER_CLASSES                               \
755
{                                                       \
756
    MOST_REGS, AREGS, CCREGS, LIM_REG_CLASSES           \
757
}
758
 
759
/* When defined, the compiler allows registers explicitly used in the
760
   rtl to be used as spill registers but prevents the compiler from
761
   extending the lifetime of these registers. */
762
#define SMALL_REGISTER_CLASSES 1
763
 
764
#define CLASS_LIKELY_SPILLED_P(CLASS) \
765
    ((CLASS) == PREGS_CLOBBERED \
766
     || (CLASS) == PROLOGUE_REGS \
767
     || (CLASS) == P0REGS \
768
     || (CLASS) == D0REGS \
769
     || (CLASS) == D1REGS \
770
     || (CLASS) == D2REGS \
771
     || (CLASS) == CCREGS)
772
 
773
/* Do not allow to store a value in REG_CC for any mode */
774
/* Do not allow to store value in pregs if mode is not SI*/
775
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
776
 
777
/* Return the maximum number of consecutive registers
778
   needed to represent mode MODE in a register of class CLASS.  */
779
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
780
  ((MODE) == V2PDImode && (CLASS) == AREGS ? 2                          \
781
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
782
 
783
#define HARD_REGNO_NREGS(REGNO, MODE) \
784
  ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1    \
785
   : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
786
   : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
787
 
788
/* A C expression that is nonzero if hard register TO can be
789
   considered for use as a rename register for FROM register */
790
#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
791
 
792
/* A C expression that is nonzero if it is desirable to choose
793
   register allocation so as to avoid move instructions between a
794
   value of mode MODE1 and a value of mode MODE2.
795
 
796
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
797
   MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
798
   MODE2)' must be zero. */
799
#define MODES_TIEABLE_P(MODE1, MODE2)                   \
800
 ((MODE1) == (MODE2)                                    \
801
  || ((GET_MODE_CLASS (MODE1) == MODE_INT               \
802
       || GET_MODE_CLASS (MODE1) == MODE_FLOAT)         \
803
      && (GET_MODE_CLASS (MODE2) == MODE_INT            \
804
          || GET_MODE_CLASS (MODE2) == MODE_FLOAT)      \
805
      && (MODE1) != BImode && (MODE2) != BImode         \
806
      && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD        \
807
      && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
808
 
809
/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
810
   A C expression that places additional restrictions on the register
811
   class to use when it is necessary to copy value X into a register
812
   in class CLASS.  The value is a register class; perhaps CLASS, or
813
   perhaps another, smaller class.  */
814
#define PREFERRED_RELOAD_CLASS(X, CLASS)                \
815
  (GET_CODE (X) == POST_INC                             \
816
   || GET_CODE (X) == POST_DEC                          \
817
   || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
818
 
819
/* Function Calling Conventions. */
820
 
821
/* The type of the current function; normal functions are of type
822
   SUBROUTINE.  */
823
typedef enum {
824
  SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
825
} e_funkind;
826
#define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
827
 
828
#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
829
 
830
/* Flags for the call/call_value rtl operations set up by function_arg */
831
#define CALL_NORMAL             0x00000000      /* no special processing */
832
#define CALL_LONG               0x00000001      /* always call indirect */
833
#define CALL_SHORT              0x00000002      /* always call by symbol */
834
 
835
typedef struct {
836
  int words;                    /* # words passed so far */
837
  int nregs;                    /* # registers available for passing */
838
  int *arg_regs;                /* array of register -1 terminated */
839
  int call_cookie;              /* Do special things for this call */
840
} CUMULATIVE_ARGS;
841
 
842
/* Define where to put the arguments to a function.
843
   Value is zero to push the argument on the stack,
844
   or a hard register in which to store the argument.
845
 
846
   MODE is the argument's machine mode.
847
   TYPE is the data type of the argument (as a tree).
848
    This is null for libcalls where that information may
849
    not be available.
850
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
851
    the preceding args and about the function being called.
852
   NAMED is nonzero if this argument is a named parameter
853
    (otherwise it is an extra parameter matching an ellipsis).  */
854
 
855
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
856
  (function_arg (&CUM, MODE, TYPE, NAMED))
857
 
858
#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
859
 
860
 
861
/* Initialize a variable CUM of type CUMULATIVE_ARGS
862
   for a call to a function whose data type is FNTYPE.
863
   For a library call, FNTYPE is 0.  */
864
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
865
  (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
866
 
867
/* Update the data in CUM to advance over an argument
868
   of mode MODE and data type TYPE.
869
   (TYPE is null for libcalls where that information may not be available.)  */
870
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
871
  (function_arg_advance (&CUM, MODE, TYPE, NAMED))
872
 
873
#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
874
 
875
/* Define how to find the value returned by a function.
876
   VALTYPE is the data type of the value (as a tree).
877
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
878
   otherwise, FUNC is 0.
879
*/
880
 
881
#define VALUE_REGNO(MODE) (REG_R0)
882
 
883
#define FUNCTION_VALUE(VALTYPE, FUNC)           \
884
  gen_rtx_REG (TYPE_MODE (VALTYPE),             \
885
               VALUE_REGNO(TYPE_MODE(VALTYPE)))
886
 
887
/* Define how to find the value returned by a library function
888
   assuming the value has mode MODE.  */
889
 
890
#define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
891
 
892
#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
893
 
894
#define DEFAULT_PCC_STRUCT_RETURN 0
895
 
896
/* Before the prologue, the return address is in the RETS register.  */
897
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
898
 
899
#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
900
 
901
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
902
 
903
/* Call instructions don't modify the stack pointer on the Blackfin.  */
904
#define INCOMING_FRAME_SP_OFFSET 0
905
 
906
/* Describe how we implement __builtin_eh_return.  */
907
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
908
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, REG_P2)
909
#define EH_RETURN_HANDLER_RTX \
910
    gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
911
 
912
/* Addressing Modes */
913
 
914
/* Nonzero if the constant value X is a legitimate general operand.
915
   symbol_ref are not legitimate and will be put into constant pool.
916
   See force_const_mem().
917
   If -mno-pool, all constants are legitimate.
918
 */
919
#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
920
 
921
/*   A number, the maximum number of registers that can appear in a
922
     valid memory address.  Note that it is up to you to specify a
923
     value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
924
     would ever accept. */
925
#define MAX_REGS_PER_ADDRESS 1
926
 
927
#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
928
      (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
929
 
930
#define HAVE_POST_INCREMENT 1
931
#define HAVE_POST_DECREMENT 1
932
#define HAVE_PRE_DECREMENT  1
933
 
934
/* `LEGITIMATE_PIC_OPERAND_P (X)'
935
     A C expression that is nonzero if X is a legitimate immediate
936
     operand on the target machine when generating position independent
937
     code.  You can assume that X satisfies `CONSTANT_P', so you need
938
     not check this.  You can also assume FLAG_PIC is true, so you need
939
     not check it either.  You need not define this macro if all
940
     constants (including `SYMBOL_REF') can be immediate operands when
941
     generating position independent code. */
942
#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
943
 
944
#define SYMBOLIC_CONST(X)       \
945
(GET_CODE (X) == SYMBOL_REF                                             \
946
 || GET_CODE (X) == LABEL_REF                                           \
947
 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
948
 
949
#define NOTICE_UPDATE_CC(EXPR, INSN) 0
950
 
951
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
952
   is done just by pretending it is already truncated.  */
953
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
954
 
955
/* Max number of bytes we can move from memory to memory
956
   in one reasonably fast instruction.  */
957
#define MOVE_MAX UNITS_PER_WORD
958
 
959
/* If a memory-to-memory move would take MOVE_RATIO or more simple
960
   move-instruction pairs, we will do a movmem or libcall instead.  */
961
 
962
#define MOVE_RATIO(speed) 5
963
 
964
/* STORAGE LAYOUT: target machine storage layout
965
   Define this macro as a C expression which is nonzero if accessing
966
   less than a word of memory (i.e. a `char' or a `short') is no
967
   faster than accessing a word of memory, i.e., if such access
968
   require more than one instruction or if there is no difference in
969
   cost between byte and (aligned) word loads.
970
 
971
   When this macro is not defined, the compiler will access a field by
972
   finding the smallest containing object; when it is defined, a
973
   fullword load will be used if alignment permits.  Unless bytes
974
   accesses are faster than word accesses, using word accesses is
975
   preferable since it may eliminate subsequent memory access if
976
   subsequent accesses occur to other fields in the same word of the
977
   structure, but to different bytes.  */
978
#define SLOW_BYTE_ACCESS  0
979
#define SLOW_SHORT_ACCESS 0
980
 
981
/* Define this if most significant bit is lowest numbered
982
   in instructions that operate on numbered bit-fields. */
983
#define BITS_BIG_ENDIAN  0
984
 
985
/* Define this if most significant byte of a word is the lowest numbered.
986
   We can't access bytes but if we could we would in the Big Endian order. */
987
#define BYTES_BIG_ENDIAN 0
988
 
989
/* Define this if most significant word of a multiword number is numbered. */
990
#define WORDS_BIG_ENDIAN 0
991
 
992
/* number of bits in an addressable storage unit */
993
#define BITS_PER_UNIT 8
994
 
995
/* Width in bits of a "word", which is the contents of a machine register.
996
   Note that this is not necessarily the width of data type `int';
997
   if using 16-bit ints on a 68000, this would still be 32.
998
   But on a machine with 16-bit registers, this would be 16.  */
999
#define BITS_PER_WORD 32
1000
 
1001
/* Width of a word, in units (bytes).  */
1002
#define UNITS_PER_WORD 4
1003
 
1004
/* Width in bits of a pointer.
1005
   See also the macro `Pmode1' defined below.  */
1006
#define POINTER_SIZE 32
1007
 
1008
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
1009
#define POINTER_BOUNDARY 32
1010
 
1011
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1012
#define PARM_BOUNDARY 32
1013
 
1014
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
1015
#define STACK_BOUNDARY 32
1016
 
1017
/* Allocation boundary (in *bits*) for the code of a function.  */
1018
#define FUNCTION_BOUNDARY 32
1019
 
1020
/* Alignment of field after `int : 0' in a structure.  */
1021
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
1022
 
1023
/* No data type wants to be aligned rounder than this.  */
1024
#define BIGGEST_ALIGNMENT 32
1025
 
1026
/* Define this if move instructions will actually fail to work
1027
   when given unaligned data.  */
1028
#define STRICT_ALIGNMENT 1
1029
 
1030
/* (shell-command "rm c-decl.o stor-layout.o")
1031
 *  never define PCC_BITFIELD_TYPE_MATTERS
1032
 *  really cause some alignment problem
1033
 */
1034
 
1035
#define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
1036
                           BITS_PER_UNIT)
1037
 
1038
#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1039
                           BITS_PER_UNIT)
1040
 
1041
 
1042
/* what is the 'type' of size_t */
1043
#define SIZE_TYPE "long unsigned int"
1044
 
1045
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1046
#define DEFAULT_SIGNED_CHAR 1
1047
#define FLOAT_TYPE_SIZE BITS_PER_WORD
1048
#define SHORT_TYPE_SIZE 16
1049
#define CHAR_TYPE_SIZE  8
1050
#define INT_TYPE_SIZE   32
1051
#define LONG_TYPE_SIZE  32
1052
#define LONG_LONG_TYPE_SIZE 64
1053
 
1054
/* Note: Fix this to depend on target switch. -- lev */
1055
 
1056
/* Note: Try to implement double and force long double. -- tonyko
1057
 * #define __DOUBLES_ARE_FLOATS__
1058
 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1059
 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1060
 * #define DOUBLES_ARE_FLOATS 1
1061
 */
1062
 
1063
#define DOUBLE_TYPE_SIZE        64
1064
#define LONG_DOUBLE_TYPE_SIZE   64
1065
 
1066
/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1067
     A macro to update M and UNSIGNEDP when an object whose type is
1068
     TYPE and which has the specified mode and signedness is to be
1069
     stored in a register.  This macro is only called when TYPE is a
1070
     scalar type.
1071
 
1072
     On most RISC machines, which only have operations that operate on
1073
     a full register, define this macro to set M to `word_mode' if M is
1074
     an integer mode narrower than `BITS_PER_WORD'.  In most cases,
1075
     only integer modes should be widened because wider-precision
1076
     floating-point operations are usually more expensive than their
1077
     narrower counterparts.
1078
 
1079
     For most machines, the macro definition does not change UNSIGNEDP.
1080
     However, some machines, have instructions that preferentially
1081
     handle either signed or unsigned quantities of certain modes.  For
1082
     example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1083
     instructions sign-extend the result to 64 bits.  On such machines,
1084
     set UNSIGNEDP according to which kind of extension is more
1085
     efficient.
1086
 
1087
     Do not define this macro if it would never modify M.*/
1088
 
1089
#define BFIN_PROMOTE_MODE_P(MODE) \
1090
    (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT   \
1091
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1092
 
1093
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
1094
  if (BFIN_PROMOTE_MODE_P(MODE))                \
1095
    {                                           \
1096
      if (MODE == QImode)                       \
1097
        UNSIGNEDP = 1;                          \
1098
      else if (MODE == HImode)                  \
1099
        UNSIGNEDP = 0;                          \
1100
      (MODE) = SImode;                          \
1101
    }
1102
 
1103
/* Describing Relative Costs of Operations */
1104
 
1105
/* Do not put function addr into constant pool */
1106
#define NO_FUNCTION_CSE 1
1107
 
1108
/* A C expression for the cost of moving data from a register in class FROM to
1109
   one in class TO.  The classes are expressed using the enumeration values
1110
   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1111
   interpreted relative to that.
1112
 
1113
   It is not required that the cost always equal 2 when FROM is the same as TO;
1114
   on some machines it is expensive to move between registers if they are not
1115
   general registers.  */
1116
 
1117
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1118
   bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1119
 
1120
/* A C expression for the cost of moving data of mode M between a
1121
   register and memory.  A value of 2 is the default; this cost is
1122
   relative to those in `REGISTER_MOVE_COST'.
1123
 
1124
   If moving between registers and memory is more expensive than
1125
   between two registers, you should define this macro to express the
1126
   relative cost.  */
1127
 
1128
#define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
1129
  bfin_memory_move_cost ((MODE), (CLASS), (IN))
1130
 
1131
/* Specify the machine mode that this machine uses
1132
   for the index in the tablejump instruction.  */
1133
#define CASE_VECTOR_MODE SImode
1134
 
1135
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1136
 
1137
/* Define if operations between registers always perform the operation
1138
   on the full register even if a narrower mode is specified.
1139
#define WORD_REGISTER_OPERATIONS
1140
*/
1141
 
1142
/* Evaluates to true if A and B are mac flags that can be used
1143
   together in a single multiply insn.  That is the case if they are
1144
   both the same flag not involving M, or if one is a combination of
1145
   the other with M.  */
1146
#define MACFLAGS_MATCH_P(A, B) \
1147
 ((A) == (B) \
1148
  || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1149
  || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1150
  || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1151
  || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1152
 
1153
/* Switch into a generic section.  */
1154
#define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1155
 
1156
#define PRINT_OPERAND(FILE, RTX, CODE)   print_operand (FILE, RTX, CODE)
1157
#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1158
 
1159
typedef enum sections {
1160
    CODE_DIR,
1161
    DATA_DIR,
1162
    LAST_SECT_NM
1163
} SECT_ENUM_T;
1164
 
1165
typedef enum directives {
1166
    LONG_CONST_DIR,
1167
    SHORT_CONST_DIR,
1168
    BYTE_CONST_DIR,
1169
    SPACE_DIR,
1170
    INIT_DIR,
1171
    LAST_DIR_NM
1172
} DIR_ENUM_T;
1173
 
1174
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR)   \
1175
  ((C) == ';'                                   \
1176
   || ((C) == '|' && (STR)[1] == '|'))
1177
 
1178
#define TEXT_SECTION_ASM_OP ".text;"
1179
#define DATA_SECTION_ASM_OP ".data;"
1180
 
1181
#define ASM_APP_ON  ""
1182
#define ASM_APP_OFF ""
1183
 
1184
#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1185
  do {  fputs (".global ", FILE);               \
1186
        assemble_name (FILE, NAME);             \
1187
        fputc (';',FILE);                       \
1188
        fputc ('\n',FILE);                      \
1189
      } while (0)
1190
 
1191
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1192
  do {                                  \
1193
    fputs (".type ", FILE);             \
1194
    assemble_name (FILE, NAME);         \
1195
    fputs (", STT_FUNC", FILE);         \
1196
    fputc (';',FILE);                   \
1197
    fputc ('\n',FILE);                  \
1198
    ASM_OUTPUT_LABEL(FILE, NAME);       \
1199
  } while (0)
1200
 
1201
#define ASM_OUTPUT_LABEL(FILE, NAME)    \
1202
  do {  assemble_name (FILE, NAME);             \
1203
        fputs (":\n",FILE);                     \
1204
      } while (0)
1205
 
1206
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1207
    do {  fprintf (FILE, "_%s", NAME); \
1208
        } while (0)
1209
 
1210
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)            \
1211
do { char __buf[256];                                   \
1212
     fprintf (FILE, "\t.dd\t");                         \
1213
     ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);   \
1214
     assemble_name (FILE, __buf);                       \
1215
     fputc (';', FILE);                                 \
1216
     fputc ('\n', FILE);                                \
1217
   } while (0)
1218
 
1219
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1220
    MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1221
 
1222
#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)           \
1223
    do {                                                        \
1224
        char __buf[256];                                        \
1225
        fprintf (FILE, "\t.dd\t");                              \
1226
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);        \
1227
        assemble_name (FILE, __buf);                            \
1228
        fputs (" - ", FILE);                                    \
1229
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);          \
1230
        assemble_name (FILE, __buf);                            \
1231
        fputc (';', FILE);                                      \
1232
        fputc ('\n', FILE);                                     \
1233
    } while (0)
1234
 
1235
#define ASM_OUTPUT_ALIGN(FILE,LOG)                              \
1236
    do {                                                        \
1237
      if ((LOG) != 0)                                           \
1238
        fprintf (FILE, "\t.align %d\n", 1 << (LOG));            \
1239
    } while (0)
1240
 
1241
#define ASM_OUTPUT_SKIP(FILE,SIZE)              \
1242
    do {                                        \
1243
        asm_output_skip (FILE, SIZE);           \
1244
    } while (0)
1245
 
1246
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)     \
1247
do {                                            \
1248
    switch_to_section (data_section);                           \
1249
    if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);  \
1250
    ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);               \
1251
    ASM_OUTPUT_LABEL (FILE, NAME);                              \
1252
    fprintf (FILE, "%s %ld;\n", ASM_SPACE,                      \
1253
             (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);     \
1254
} while (0)
1255
 
1256
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
1257
     do {                                               \
1258
        ASM_GLOBALIZE_LABEL1(FILE,NAME);                \
1259
        ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1260
 
1261
#define ASM_COMMENT_START "//"
1262
 
1263
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1264
  do {                                          \
1265
    fprintf (FILE, "\tCALL __mcount;\n");       \
1266
  } while(0)
1267
 
1268
#undef NO_PROFILE_COUNTERS
1269
#define NO_PROFILE_COUNTERS 1
1270
 
1271
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1272
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1273
 
1274
extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1275
 
1276
/* This works for GAS and some other assemblers.  */
1277
#define SET_ASM_OP              ".set "
1278
 
1279
/* DBX register number for a given compiler register number */
1280
#define DBX_REGISTER_NUMBER(REGNO)  (REGNO) 
1281
 
1282
#define SIZE_ASM_OP     "\t.size\t"
1283
 
1284
extern int splitting_for_sched, splitting_loops;
1285
 
1286
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1287
 
1288
#ifndef TARGET_SUPPORTS_SYNC_CALLS
1289
#define TARGET_SUPPORTS_SYNC_CALLS 0
1290
#endif
1291
 
1292
#endif /*  _BFIN_CONFIG */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.