OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [crx/] [crx.c] - Blame information for rev 313

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Output routines for GCC for CRX.
2
   Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify it
9
   under the terms of the GNU General Public License as published
10
   by the Free Software Foundation; either version 3, or (at your
11
   option) any later version.
12
 
13
   GCC is distributed in the hope that it will be useful, but WITHOUT
14
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16
   License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
/*****************************************************************************/
23
/* HEADER INCLUDES                                                           */
24
/*****************************************************************************/
25
 
26
#include "config.h"
27
#include "system.h"
28
#include "coretypes.h"
29
#include "tm.h"
30
#include "rtl.h"
31
#include "tree.h"
32
#include "tm_p.h"
33
#include "regs.h"
34
#include "hard-reg-set.h"
35
#include "real.h"
36
#include "insn-config.h"
37
#include "conditions.h"
38
#include "output.h"
39
#include "insn-codes.h"
40
#include "insn-attr.h"
41
#include "flags.h"
42
#include "except.h"
43
#include "function.h"
44
#include "recog.h"
45
#include "expr.h"
46
#include "optabs.h"
47
#include "toplev.h"
48
#include "basic-block.h"
49
#include "df.h"
50
#include "target.h"
51
#include "target-def.h"
52
 
53
/*****************************************************************************/
54
/* DEFINITIONS                                                               */
55
/*****************************************************************************/
56
 
57
/* Maximum number of register used for passing parameters.  */
58
#define MAX_REG_FOR_PASSING_ARGS 6
59
 
60
/* Minimum number register used for passing parameters.  */
61
#define MIN_REG_FOR_PASSING_ARGS 2
62
 
63
/* The maximum count of words supported in the assembly of the architecture in
64
 * a push/pop instruction.  */
65
#define MAX_COUNT               8
66
 
67
/* Predicate is true if the current function is a 'noreturn' function, i.e. it
68
 * is qualified as volatile.  */
69
#define FUNC_IS_NORETURN_P(decl) (TREE_THIS_VOLATILE (decl))
70
 
71
/* The following macros are used in crx_decompose_address () */
72
 
73
/* Returns the factor of a scaled index address or -1 if invalid. */
74
#define SCALE_FOR_INDEX_P(X)    \
75
 (GET_CODE (X) == CONST_INT ?   \
76
  (INTVAL (X) == 1 ? 1 :        \
77
   INTVAL (X) == 2 ? 2 :        \
78
   INTVAL (X) == 4 ? 4 :        \
79
   INTVAL (X) == 8 ? 8 :        \
80
   -1) :                        \
81
  -1)
82
 
83
/* Nonzero if the rtx X is a signed const int of n bits */
84
#define RTX_SIGNED_INT_FITS_N_BITS(X,n)                 \
85
 ((GET_CODE (X) == CONST_INT                            \
86
   && SIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
87
 
88
/* Nonzero if the rtx X is an unsigned const int of n bits.  */
89
#define RTX_UNSIGNED_INT_FITS_N_BITS(X, n)              \
90
 ((GET_CODE (X) == CONST_INT                            \
91
   && UNSIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
92
 
93
/*****************************************************************************/
94
/* STATIC VARIABLES                                                          */
95
/*****************************************************************************/
96
 
97
/* Nonzero if the last param processed is passed in a register.  */
98
static int last_parm_in_reg;
99
 
100
/* Will hold the number of the last register the prologue saves, -1 if no
101
 * register is saved. */
102
static int last_reg_to_save;
103
 
104
/* Each object in the array is a register number. Mark 1 for registers that
105
 * need to be saved.  */
106
static int save_regs[FIRST_PSEUDO_REGISTER];
107
 
108
/* Number of bytes saved on the stack for non-scratch registers */
109
static int sum_regs = 0;
110
 
111
/* Number of bytes saved on the stack for local variables. */
112
static int local_vars_size;
113
 
114
/* The sum of 2 sizes: locals vars and padding byte for saving the registers.
115
 * Used in expand_prologue () and expand_epilogue ().  */
116
static int size_for_adjusting_sp;
117
 
118
/* In case of a POST_INC or POST_DEC memory reference, we must report the mode
119
 * of the memory reference from PRINT_OPERAND to PRINT_OPERAND_ADDRESS. */
120
static enum machine_mode output_memory_reference_mode;
121
 
122
/*****************************************************************************/
123
/* TARGETM FUNCTION PROTOTYPES                                               */
124
/*****************************************************************************/
125
 
126
static bool crx_fixed_condition_code_regs (unsigned int *, unsigned int *);
127
static rtx crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
128
                                 int incoming ATTRIBUTE_UNUSED);
129
static bool crx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED);
130
static int crx_address_cost (rtx, bool);
131
static bool crx_legitimate_address_p (enum machine_mode, rtx, bool);
132
static bool crx_can_eliminate (const int, const int);
133
 
134
/*****************************************************************************/
135
/* RTL VALIDITY                                                              */
136
/*****************************************************************************/
137
 
138
#undef TARGET_LEGITIMATE_ADDRESS_P
139
#define TARGET_LEGITIMATE_ADDRESS_P     crx_legitimate_address_p
140
 
141
#undef TARGET_CAN_ELIMINATE
142
#define TARGET_CAN_ELIMINATE            crx_can_eliminate
143
 
144
/*****************************************************************************/
145
/* STACK LAYOUT AND CALLING CONVENTIONS                                      */
146
/*****************************************************************************/
147
 
148
#undef  TARGET_FIXED_CONDITION_CODE_REGS
149
#define TARGET_FIXED_CONDITION_CODE_REGS crx_fixed_condition_code_regs
150
 
151
#undef  TARGET_STRUCT_VALUE_RTX
152
#define TARGET_STRUCT_VALUE_RTX         crx_struct_value_rtx
153
 
154
#undef  TARGET_RETURN_IN_MEMORY
155
#define TARGET_RETURN_IN_MEMORY         crx_return_in_memory
156
 
157
/*****************************************************************************/
158
/* RELATIVE COSTS OF OPERATIONS                                              */
159
/*****************************************************************************/
160
 
161
#undef  TARGET_ADDRESS_COST
162
#define TARGET_ADDRESS_COST             crx_address_cost
163
 
164
/*****************************************************************************/
165
/* TARGET-SPECIFIC USES OF `__attribute__'                                   */
166
/*****************************************************************************/
167
 
168
#undef  TARGET_ATTRIBUTE_TABLE
169
#define TARGET_ATTRIBUTE_TABLE          crx_attribute_table
170
 
171
static const struct attribute_spec crx_attribute_table[] = {
172
  /* ISRs have special prologue and epilogue requirements. */
173
  {"interrupt", 0, 0, false, true, true, NULL},
174
  {NULL, 0, 0, false, false, false, NULL}
175
};
176
 
177
 
178
/* Initialize 'targetm' variable which contains pointers to functions and data
179
 * relating to the target machine.  */
180
 
181
struct gcc_target targetm = TARGET_INITIALIZER;
182
 
183
 
184
/*****************************************************************************/
185
/* TARGET HOOK IMPLEMENTATIONS                                               */
186
/*****************************************************************************/
187
 
188
/* Return the fixed registers used for condition codes.  */
189
 
190
static bool
191
crx_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
192
{
193
    *p1 = CC_REGNUM;
194
    *p2 = INVALID_REGNUM;
195
    return true;
196
}
197
 
198
/* Implements hook TARGET_STRUCT_VALUE_RTX.  */
199
 
200
static rtx
201
crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
202
                      int incoming ATTRIBUTE_UNUSED)
203
{
204
  return gen_rtx_REG (Pmode, CRX_STRUCT_VALUE_REGNUM);
205
}
206
 
207
/* Implements hook TARGET_RETURN_IN_MEMORY.  */
208
 
209
static bool
210
crx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
211
{
212
  if (TYPE_MODE (type) == BLKmode)
213
    {
214
      HOST_WIDE_INT size = int_size_in_bytes (type);
215
      return (size == -1 || size > 8);
216
    }
217
  else
218
    return false;
219
}
220
 
221
 
222
/*****************************************************************************/
223
/* MACRO IMPLEMENTATIONS                                                     */
224
/*****************************************************************************/
225
 
226
/* STACK LAYOUT AND CALLING CONVENTIONS ROUTINES */
227
/* --------------------------------------------- */
228
 
229
/* Return nonzero if the current function being compiled is an interrupt
230
 * function as specified by the "interrupt" attribute.  */
231
 
232
int
233
crx_interrupt_function_p (void)
234
{
235
  tree attributes;
236
 
237
  attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
238
  return lookup_attribute ("interrupt", attributes) != NULL_TREE;
239
}
240
 
241
/* Compute values for the array save_regs and the variable sum_regs.  The index
242
 * of save_regs is numbers of register, each will get 1 if we need to save it
243
 * in the current function, 0 if not. sum_regs is the total sum of the
244
 * registers being saved. */
245
 
246
static void
247
crx_compute_save_regs (void)
248
{
249
  unsigned int regno;
250
 
251
  /* initialize here so in case the function is no-return it will be -1. */
252
  last_reg_to_save = -1;
253
 
254
  /* No need to save any registers if the function never returns.  */
255
  if (FUNC_IS_NORETURN_P (current_function_decl))
256
    return;
257
 
258
  /* Initialize the number of bytes to be saved. */
259
  sum_regs = 0;
260
 
261
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
262
    {
263
      if (fixed_regs[regno])
264
        {
265
          save_regs[regno] = 0;
266
          continue;
267
        }
268
 
269
      /* If this reg is used and not call-used (except RA), save it. */
270
      if (crx_interrupt_function_p ())
271
        {
272
          if (!current_function_is_leaf && call_used_regs[regno])
273
            /* this is a volatile reg in a non-leaf interrupt routine - save it
274
             * for the sake of its sons.  */
275
            save_regs[regno] = 1;
276
 
277
          else if (df_regs_ever_live_p (regno))
278
            /* This reg is used - save it.  */
279
            save_regs[regno] = 1;
280
          else
281
            /* This reg is not used, and is not a volatile - don't save. */
282
            save_regs[regno] = 0;
283
        }
284
      else
285
        {
286
          /* If this reg is used and not call-used (except RA), save it. */
287
          if (df_regs_ever_live_p (regno)
288
              && (!call_used_regs[regno] || regno == RETURN_ADDRESS_REGNUM))
289
            save_regs[regno] = 1;
290
          else
291
            save_regs[regno] = 0;
292
        }
293
    }
294
 
295
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
296
    if (save_regs[regno] == 1)
297
      {
298
        last_reg_to_save = regno;
299
        sum_regs += UNITS_PER_WORD;
300
      }
301
}
302
 
303
/* Compute the size of the local area and the size to be adjusted by the
304
 * prologue and epilogue. */
305
 
306
static void
307
crx_compute_frame (void)
308
{
309
  /* For aligning the local variables. */
310
  int stack_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
311
  int padding_locals;
312
 
313
  /* Padding needed for each element of the frame.  */
314
  local_vars_size = get_frame_size ();
315
 
316
  /* Align to the stack alignment. */
317
  padding_locals = local_vars_size % stack_alignment;
318
  if (padding_locals)
319
    padding_locals = stack_alignment - padding_locals;
320
 
321
  local_vars_size += padding_locals;
322
 
323
  size_for_adjusting_sp = local_vars_size + (ACCUMULATE_OUTGOING_ARGS ?
324
                                     crtl->outgoing_args_size : 0);
325
}
326
 
327
/* Worker function for TARGET_CAN_ELIMINATE.  */
328
 
329
bool
330
crx_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
331
{
332
  return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
333
}
334
 
335
/* Implements the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
336
 
337
int
338
crx_initial_elimination_offset (int from, int to)
339
{
340
  /* Compute this since we need to use sum_regs.  */
341
  crx_compute_save_regs ();
342
 
343
  /* Compute this since we need to use local_vars_size.  */
344
  crx_compute_frame ();
345
 
346
  if ((from) == FRAME_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
347
    return (ACCUMULATE_OUTGOING_ARGS ?
348
            crtl->outgoing_args_size : 0);
349
  else if ((from) == ARG_POINTER_REGNUM && (to) == FRAME_POINTER_REGNUM)
350
    return (sum_regs + local_vars_size);
351
  else if ((from) == ARG_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
352
    return (sum_regs + local_vars_size +
353
            (ACCUMULATE_OUTGOING_ARGS ?
354
             crtl->outgoing_args_size : 0));
355
  else
356
    abort ();
357
}
358
 
359
/* REGISTER USAGE */
360
/* -------------- */
361
 
362
/* Return the class number of the smallest class containing reg number REGNO.
363
 * This could be a conditional expression or could index an array. */
364
 
365
enum reg_class
366
crx_regno_reg_class (int regno)
367
{
368
  if (regno >= 0 && regno < SP_REGNUM)
369
    return NOSP_REGS;
370
 
371
  if (regno == SP_REGNUM)
372
    return GENERAL_REGS;
373
 
374
  if (regno == LO_REGNUM)
375
    return LO_REGS;
376
  if (regno == HI_REGNUM)
377
    return HI_REGS;
378
 
379
  return NO_REGS;
380
}
381
 
382
/* Transfer between HILO_REGS and memory via secondary reloading. */
383
 
384
enum reg_class
385
crx_secondary_reload_class (enum reg_class rclass,
386
                            enum machine_mode mode ATTRIBUTE_UNUSED,
387
                            rtx x ATTRIBUTE_UNUSED)
388
{
389
  if (reg_classes_intersect_p (rclass, HILO_REGS)
390
      && true_regnum (x) == -1)
391
    return GENERAL_REGS;
392
 
393
  return NO_REGS;
394
}
395
 
396
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
397
 
398
int
399
crx_hard_regno_mode_ok (int regno, enum machine_mode mode)
400
{
401
  /* CC can only hold CCmode values.  */
402
  if (regno == CC_REGNUM)
403
    return GET_MODE_CLASS (mode) == MODE_CC;
404
  if (GET_MODE_CLASS (mode) == MODE_CC)
405
    return 0;
406
  /* HILO registers can only hold SImode and DImode */
407
  if (HILO_REGNO_P (regno))
408
    return mode == SImode || mode == DImode;
409
  return 1;
410
}
411
 
412
/* PASSING FUNCTION ARGUMENTS */
413
/* -------------------------- */
414
 
415
/* If enough param regs are available for passing the param of type TYPE return
416
 * the number of registers needed else 0.  */
417
 
418
static int
419
enough_regs_for_param (CUMULATIVE_ARGS * cum, tree type,
420
                       enum machine_mode mode)
421
{
422
  int type_size;
423
  int remaining_size;
424
 
425
  if (mode != BLKmode)
426
    type_size = GET_MODE_BITSIZE (mode);
427
  else
428
    type_size = int_size_in_bytes (type) * BITS_PER_UNIT;
429
 
430
  remaining_size =
431
    BITS_PER_WORD * (MAX_REG_FOR_PASSING_ARGS -
432
    (MIN_REG_FOR_PASSING_ARGS + cum->ints) + 1);
433
 
434
  /* Any variable which is too big to pass in two registers, will pass on
435
   * stack. */
436
  if ((remaining_size >= type_size) && (type_size <= 2 * BITS_PER_WORD))
437
    return (type_size + BITS_PER_WORD - 1) / BITS_PER_WORD;
438
 
439
  return 0;
440
}
441
 
442
/* Implements the macro FUNCTION_ARG defined in crx.h.  */
443
 
444
rtx
445
crx_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, tree type,
446
              int named ATTRIBUTE_UNUSED)
447
{
448
  last_parm_in_reg = 0;
449
 
450
  /* Function_arg () is called with this type just after all the args have had
451
   * their registers assigned. The rtx that function_arg returns from this type
452
   * is supposed to pass to 'gen_call' but currently it is not implemented (see
453
   * macro GEN_CALL).  */
454
  if (type == void_type_node)
455
    return NULL_RTX;
456
 
457
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
458
    return NULL_RTX;
459
 
460
  if (mode == BLKmode)
461
    {
462
      /* Enable structures that need padding bytes at the end to pass to a
463
       * function in registers. */
464
      if (enough_regs_for_param (cum, type, mode) != 0)
465
        {
466
          last_parm_in_reg = 1;
467
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
468
        }
469
    }
470
 
471
  if (MIN_REG_FOR_PASSING_ARGS + cum->ints > MAX_REG_FOR_PASSING_ARGS)
472
    return NULL_RTX;
473
  else
474
    {
475
      if (enough_regs_for_param (cum, type, mode) != 0)
476
        {
477
          last_parm_in_reg = 1;
478
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
479
        }
480
    }
481
 
482
  return NULL_RTX;
483
}
484
 
485
/* Implements the macro INIT_CUMULATIVE_ARGS defined in crx.h.  */
486
 
487
void
488
crx_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
489
                      rtx libfunc ATTRIBUTE_UNUSED)
490
{
491
  tree param, next_param;
492
 
493
  cum->ints = 0;
494
 
495
  /* Determine if this function has variable arguments.  This is indicated by
496
   * the last argument being 'void_type_mode' if there are no variable
497
   * arguments.  Change here for a different vararg.  */
498
  for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
499
       param != (tree) 0; param = next_param)
500
    {
501
      next_param = TREE_CHAIN (param);
502
      if (next_param == (tree) 0 && TREE_VALUE (param) != void_type_node)
503
        {
504
          cum->ints = -1;
505
          return;
506
        }
507
    }
508
}
509
 
510
/* Implements the macro FUNCTION_ARG_ADVANCE defined in crx.h.  */
511
 
512
void
513
crx_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
514
                      tree type, int named ATTRIBUTE_UNUSED)
515
{
516
  /* l holds the number of registers required */
517
  int l = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
518
 
519
  /* If the parameter isn't passed on a register don't advance cum.  */
520
  if (!last_parm_in_reg)
521
    return;
522
 
523
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
524
    return;
525
 
526
  if (mode == SImode || mode == HImode || mode == QImode || mode == DImode)
527
    {
528
      if (l <= 1)
529
        cum->ints += 1;
530
      else
531
        cum->ints += l;
532
    }
533
  else if (mode == SFmode || mode == DFmode)
534
    cum->ints += l;
535
  else if ((mode) == BLKmode)
536
    {
537
      if ((l = enough_regs_for_param (cum, type, mode)) != 0)
538
        cum->ints += l;
539
    }
540
 
541
}
542
 
543
/* Implements the macro FUNCTION_ARG_REGNO_P defined in crx.h.  Return nonzero
544
 * if N is a register used for passing parameters.  */
545
 
546
int
547
crx_function_arg_regno_p (int n)
548
{
549
  return (n <= MAX_REG_FOR_PASSING_ARGS && n >= MIN_REG_FOR_PASSING_ARGS);
550
}
551
 
552
/* ADDRESSING MODES */
553
/* ---------------- */
554
 
555
/* Implements the hook for TARGET_LEGITIMATE_ADDRESS_P defined in crx.h.
556
 * The following addressing modes are supported on CRX:
557
 *
558
 * Relocations          --> const | symbol_ref | label_ref
559
 * Absolute address     --> 32-bit absolute
560
 * Post increment       --> reg + 12-bit disp.
561
 * Post modify          --> reg + 12-bit disp.
562
 * Register relative    --> reg | 32-bit disp. + reg | 4 bit + reg
563
 * Scaled index         --> reg + reg | 22-bit disp. + reg + reg |
564
 *                          22-disp. + reg + reg + (2 | 4 | 8) */
565
 
566
static int crx_addr_reg_p (rtx addr_reg)
567
{
568
  rtx reg;
569
 
570
  if (REG_P (addr_reg))
571
    {
572
      reg = addr_reg;
573
    }
574
  else if ((GET_CODE (addr_reg) == SUBREG
575
           && REG_P (SUBREG_REG (addr_reg))
576
           && GET_MODE_SIZE (GET_MODE (SUBREG_REG (addr_reg)))
577
           <= UNITS_PER_WORD))
578
    {
579
      reg = SUBREG_REG (addr_reg);
580
    }
581
  else
582
    return FALSE;
583
 
584
  if (GET_MODE (addr_reg) != Pmode)
585
    {
586
      return FALSE;
587
    }
588
 
589
  return TRUE;
590
}
591
 
592
enum crx_addrtype
593
crx_decompose_address (rtx addr, struct crx_address *out)
594
{
595
  rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
596
  rtx scale_rtx = NULL_RTX, side_effect = NULL_RTX;
597
  int scale = -1;
598
 
599
  enum crx_addrtype retval = CRX_INVALID;
600
 
601
  switch (GET_CODE (addr))
602
    {
603
    case CONST_INT:
604
      /* Absolute address (known at compile time) */
605
      retval = CRX_ABSOLUTE;
606
      disp = addr;
607
      if (!UNSIGNED_INT_FITS_N_BITS (INTVAL (disp), GET_MODE_BITSIZE (Pmode)))
608
        return CRX_INVALID;
609
      break;
610
 
611
    case CONST:
612
    case SYMBOL_REF:
613
    case LABEL_REF:
614
      /* Absolute address (known at link time) */
615
      retval = CRX_ABSOLUTE;
616
      disp = addr;
617
      break;
618
 
619
    case REG:
620
    case SUBREG:
621
      /* Register relative address */
622
      retval = CRX_REG_REL;
623
      base = addr;
624
      break;
625
 
626
    case PLUS:
627
      switch (GET_CODE (XEXP (addr, 0)))
628
        {
629
        case REG:
630
        case SUBREG:
631
          if (REG_P (XEXP (addr, 1)))
632
            {
633
              /* Scaled index with scale = 1 and disp. = 0 */
634
              retval = CRX_SCALED_INDX;
635
              base = XEXP (addr, 1);
636
              index = XEXP (addr, 0);
637
              scale = 1;
638
            }
639
          else if (RTX_SIGNED_INT_FITS_N_BITS (XEXP (addr, 1), 28))
640
            {
641
              /* Register relative address and <= 28-bit disp. */
642
              retval = CRX_REG_REL;
643
              base = XEXP (addr, 0);
644
              disp = XEXP (addr, 1);
645
            }
646
          else
647
            return CRX_INVALID;
648
          break;
649
 
650
        case PLUS:
651
          /* Scaled index and <= 22-bit disp. */
652
          retval = CRX_SCALED_INDX;
653
          base = XEXP (XEXP (addr, 0), 1);
654
          disp = XEXP (addr, 1);
655
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 22))
656
            return CRX_INVALID;
657
          switch (GET_CODE (XEXP (XEXP (addr, 0), 0)))
658
            {
659
            case REG:
660
              /* Scaled index with scale = 0 and <= 22-bit disp. */
661
              index = XEXP (XEXP (addr, 0), 0);
662
              scale = 1;
663
              break;
664
 
665
            case MULT:
666
              /* Scaled index with scale >= 0 and <= 22-bit disp. */
667
              index = XEXP (XEXP (XEXP (addr, 0), 0), 0);
668
              scale_rtx = XEXP (XEXP (XEXP (addr, 0), 0), 1);
669
              if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
670
                return CRX_INVALID;
671
              break;
672
 
673
            default:
674
              return CRX_INVALID;
675
            }
676
          break;
677
 
678
        case MULT:
679
          /* Scaled index with scale >= 0 */
680
          retval = CRX_SCALED_INDX;
681
          base = XEXP (addr, 1);
682
          index = XEXP (XEXP (addr, 0), 0);
683
          scale_rtx = XEXP (XEXP (addr, 0), 1);
684
          /* Scaled index with scale >= 0 and <= 22-bit disp. */
685
          if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
686
            return CRX_INVALID;
687
          break;
688
 
689
        default:
690
          return CRX_INVALID;
691
        }
692
      break;
693
 
694
    case POST_INC:
695
    case POST_DEC:
696
      /* Simple post-increment */
697
      retval = CRX_POST_INC;
698
      base = XEXP (addr, 0);
699
      side_effect = addr;
700
      break;
701
 
702
    case POST_MODIFY:
703
      /* Generic post-increment with <= 12-bit disp. */
704
      retval = CRX_POST_INC;
705
      base = XEXP (addr, 0);
706
      side_effect = XEXP (addr, 1);
707
      if (base != XEXP (side_effect, 0))
708
        return CRX_INVALID;
709
      switch (GET_CODE (side_effect))
710
        {
711
        case PLUS:
712
        case MINUS:
713
          disp = XEXP (side_effect, 1);
714
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 12))
715
            return CRX_INVALID;
716
          break;
717
 
718
        default:
719
          /* CRX only supports PLUS and MINUS */
720
          return CRX_INVALID;
721
        }
722
      break;
723
 
724
    default:
725
      return CRX_INVALID;
726
    }
727
 
728
  if (base && !crx_addr_reg_p (base)) return CRX_INVALID;
729
  if (index && !crx_addr_reg_p (index)) return CRX_INVALID;
730
 
731
  out->base = base;
732
  out->index = index;
733
  out->disp = disp;
734
  out->scale = scale;
735
  out->side_effect = side_effect;
736
 
737
  return retval;
738
}
739
 
740
bool
741
crx_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
742
                          rtx addr, bool strict)
743
{
744
  enum crx_addrtype addrtype;
745
  struct crx_address address;
746
 
747
  if (TARGET_DEBUG_ADDR)
748
    {
749
      fprintf (stderr,
750
               "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
751
               GET_MODE_NAME (mode), strict);
752
      debug_rtx (addr);
753
    }
754
 
755
  addrtype = crx_decompose_address (addr, &address);
756
 
757
  if (addrtype == CRX_POST_INC && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
758
    return FALSE;
759
 
760
  if (TARGET_DEBUG_ADDR)
761
    {
762
      const char *typestr;
763
      switch (addrtype)
764
        {
765
        case CRX_INVALID:
766
          typestr = "Invalid";
767
          break;
768
        case CRX_REG_REL:
769
          typestr = "Register relative";
770
          break;
771
        case CRX_POST_INC:
772
          typestr = "Post-increment";
773
          break;
774
        case CRX_SCALED_INDX:
775
          typestr = "Scaled index";
776
          break;
777
        case CRX_ABSOLUTE:
778
          typestr = "Absolute";
779
          break;
780
        default:
781
          abort ();
782
        }
783
      fprintf (stderr, "CRX Address type: %s\n", typestr);
784
    }
785
 
786
  if (addrtype == CRX_INVALID)
787
    return FALSE;
788
 
789
  if (strict)
790
    {
791
      if (address.base && !REGNO_OK_FOR_BASE_P (REGNO (address.base)))
792
        {
793
          if (TARGET_DEBUG_ADDR)
794
            fprintf (stderr, "Base register not strict\n");
795
          return FALSE;
796
        }
797
      if (address.index && !REGNO_OK_FOR_INDEX_P (REGNO (address.index)))
798
        {
799
          if (TARGET_DEBUG_ADDR)
800
            fprintf (stderr, "Index register not strict\n");
801
          return FALSE;
802
        }
803
    }
804
 
805
  return TRUE;
806
}
807
 
808
/* ROUTINES TO COMPUTE COSTS */
809
/* ------------------------- */
810
 
811
/* Return cost of the memory address x. */
812
 
813
static int
814
crx_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED)
815
{
816
  enum crx_addrtype addrtype;
817
  struct crx_address address;
818
 
819
  int cost = 2;
820
 
821
  addrtype = crx_decompose_address (addr, &address);
822
 
823
  gcc_assert (addrtype != CRX_INVALID);
824
 
825
  /* An absolute address causes a 3-word instruction */
826
  if (addrtype == CRX_ABSOLUTE)
827
    cost+=2;
828
 
829
  /* Post-modifying addresses are more powerful.  */
830
  if (addrtype == CRX_POST_INC)
831
    cost-=2;
832
 
833
  /* Attempt to minimize number of registers in the address. */
834
  if (address.base)
835
    cost++;
836
 
837
  if (address.index && address.scale == 1)
838
    cost+=5;
839
 
840
  if (address.disp && !INT_CST4 (INTVAL (address.disp)))
841
    cost+=2;
842
 
843
  if (TARGET_DEBUG_ADDR)
844
    {
845
      fprintf (stderr, "\n======\nTARGET_ADDRESS_COST = %d\n", cost);
846
      debug_rtx (addr);
847
    }
848
 
849
  return cost;
850
}
851
 
852
/* Return the cost of moving data of mode MODE between a register of class
853
 * RCLASS and memory; IN is zero if the value is to be written to memory,
854
 * nonzero if it is to be read in. This cost is relative to those in
855
 * REGISTER_MOVE_COST.  */
856
 
857
int
858
crx_memory_move_cost (enum machine_mode mode,
859
                  enum reg_class rclass ATTRIBUTE_UNUSED,
860
                  int in ATTRIBUTE_UNUSED)
861
{
862
  /* One LD or ST takes twice the time of a simple reg-reg move */
863
  if (reg_classes_intersect_p (rclass, GENERAL_REGS))
864
    {
865
      /* printf ("GENERAL_REGS LD/ST = %d\n", 4 * HARD_REGNO_NREGS (0, mode));*/
866
      return 4 * HARD_REGNO_NREGS (0, mode);
867
    }
868
  else if (reg_classes_intersect_p (rclass, HILO_REGS))
869
    {
870
      /* HILO to memory and vice versa */
871
      /* printf ("HILO_REGS %s = %d\n", in ? "LD" : "ST",
872
             (REGISTER_MOVE_COST (mode,
873
                                 in ? GENERAL_REGS : HILO_REGS,
874
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
875
        * HARD_REGNO_NREGS (0, mode)); */
876
      return (REGISTER_MOVE_COST (mode,
877
                                 in ? GENERAL_REGS : HILO_REGS,
878
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
879
        * HARD_REGNO_NREGS (0, mode);
880
    }
881
  else /* default (like in i386) */
882
    {
883
      /* printf ("ANYREGS = 100\n"); */
884
      return 100;
885
    }
886
}
887
 
888
/* INSTRUCTION OUTPUT */
889
/* ------------------ */
890
 
891
/* Check if a const_double is ok for crx store-immediate instructions */
892
 
893
int
894
crx_const_double_ok (rtx op)
895
{
896
  if (GET_MODE (op) == DFmode)
897
  {
898
    REAL_VALUE_TYPE r;
899
    long l[2];
900
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
901
    REAL_VALUE_TO_TARGET_DOUBLE (r, l);
902
    return (UNSIGNED_INT_FITS_N_BITS (l[0], 4) &&
903
            UNSIGNED_INT_FITS_N_BITS (l[1], 4)) ? 1 : 0;
904
  }
905
 
906
  if (GET_MODE (op) == SFmode)
907
  {
908
    REAL_VALUE_TYPE r;
909
    long l;
910
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
911
    REAL_VALUE_TO_TARGET_SINGLE (r, l);
912
    return UNSIGNED_INT_FITS_N_BITS (l, 4) ? 1 : 0;
913
  }
914
 
915
  return (UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_LOW (op), 4) &&
916
          UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_HIGH (op), 4)) ? 1 : 0;
917
}
918
 
919
/* Implements the macro PRINT_OPERAND defined in crx.h.  */
920
 
921
void
922
crx_print_operand (FILE * file, rtx x, int code)
923
{
924
  switch (code)
925
    {
926
    case 'p' :
927
      if (GET_CODE (x) == REG) {
928
        if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
929
          {
930
            int regno = REGNO (x);
931
            if (regno + 1 >= SP_REGNUM) abort ();
932
            fprintf (file, "{%s, %s}", reg_names[regno], reg_names[regno + 1]);
933
            return;
934
          }
935
        else
936
          {
937
            if (REGNO (x) >= SP_REGNUM) abort ();
938
            fprintf (file, "%s", reg_names[REGNO (x)]);
939
            return;
940
          }
941
      }
942
 
943
    case 'd' :
944
        {
945
          const char *crx_cmp_str;
946
          switch (GET_CODE (x))
947
            { /* MD: compare (reg, reg or imm) but CRX: cmp (reg or imm, reg)
948
               * -> swap all non symmetric ops */
949
            case EQ  : crx_cmp_str = "eq"; break;
950
            case NE  : crx_cmp_str = "ne"; break;
951
            case GT  : crx_cmp_str = "lt"; break;
952
            case GTU : crx_cmp_str = "lo"; break;
953
            case LT  : crx_cmp_str = "gt"; break;
954
            case LTU : crx_cmp_str = "hi"; break;
955
            case GE  : crx_cmp_str = "le"; break;
956
            case GEU : crx_cmp_str = "ls"; break;
957
            case LE  : crx_cmp_str = "ge"; break;
958
            case LEU : crx_cmp_str = "hs"; break;
959
            default : abort ();
960
            }
961
          fprintf (file, "%s", crx_cmp_str);
962
          return;
963
        }
964
 
965
    case 'H':
966
      /* Print high part of a double precision value. */
967
      switch (GET_CODE (x))
968
        {
969
        case CONST_DOUBLE:
970
          if (GET_MODE (x) == SFmode) abort ();
971
          if (GET_MODE (x) == DFmode)
972
            {
973
              /* High part of a DF const. */
974
              REAL_VALUE_TYPE r;
975
              long l[2];
976
 
977
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
978
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
979
 
980
              fprintf (file, "$0x%lx", l[1]);
981
              return;
982
            }
983
 
984
          /* -- Fallthrough to handle DI consts -- */
985
 
986
        case CONST_INT:
987
            {
988
              rtx high, low;
989
              split_double (x, &low, &high);
990
              putc ('$', file);
991
              output_addr_const (file, high);
992
              return;
993
            }
994
 
995
        case REG:
996
          if (REGNO (x) + 1 >= FIRST_PSEUDO_REGISTER) abort ();
997
          fprintf (file, "%s", reg_names[REGNO (x) + 1]);
998
          return;
999
 
1000
        case MEM:
1001
          /* Adjust memory address to high part.  */
1002
            {
1003
              rtx adj_mem = x;
1004
              adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), 4);
1005
 
1006
              output_memory_reference_mode = GET_MODE (adj_mem);
1007
              output_address (XEXP (adj_mem, 0));
1008
              return;
1009
            }
1010
 
1011
        default:
1012
          abort ();
1013
        }
1014
 
1015
    case 'L':
1016
      /* Print low part of a double precision value. */
1017
      switch (GET_CODE (x))
1018
        {
1019
        case CONST_DOUBLE:
1020
          if (GET_MODE (x) == SFmode) abort ();
1021
          if (GET_MODE (x) == DFmode)
1022
            {
1023
              /* High part of a DF const. */
1024
              REAL_VALUE_TYPE r;
1025
              long l[2];
1026
 
1027
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1028
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
1029
 
1030
              fprintf (file, "$0x%lx", l[0]);
1031
              return;
1032
            }
1033
 
1034
          /* -- Fallthrough to handle DI consts -- */
1035
 
1036
        case CONST_INT:
1037
            {
1038
              rtx high, low;
1039
              split_double (x, &low, &high);
1040
              putc ('$', file);
1041
              output_addr_const (file, low);
1042
              return;
1043
            }
1044
 
1045
        case REG:
1046
          fprintf (file, "%s", reg_names[REGNO (x)]);
1047
          return;
1048
 
1049
        case MEM:
1050
          output_memory_reference_mode = GET_MODE (x);
1051
          output_address (XEXP (x, 0));
1052
          return;
1053
 
1054
        default:
1055
          abort ();
1056
        }
1057
 
1058
    case 0 : /* default */
1059
      switch (GET_CODE (x))
1060
        {
1061
        case REG:
1062
          fprintf (file, "%s", reg_names[REGNO (x)]);
1063
          return;
1064
 
1065
        case MEM:
1066
          output_memory_reference_mode = GET_MODE (x);
1067
          output_address (XEXP (x, 0));
1068
          return;
1069
 
1070
        case CONST_DOUBLE:
1071
            {
1072
              REAL_VALUE_TYPE r;
1073
              long l;
1074
 
1075
              /* Always use H and L for double precision - see above */
1076
              gcc_assert (GET_MODE (x) == SFmode);
1077
 
1078
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1079
              REAL_VALUE_TO_TARGET_SINGLE (r, l);
1080
 
1081
              fprintf (file, "$0x%lx", l);
1082
              return;
1083
            }
1084
 
1085
        default:
1086
          putc ('$', file);
1087
          output_addr_const (file, x);
1088
          return;
1089
        }
1090
 
1091
    default:
1092
      output_operand_lossage ("invalid %%xn code");
1093
    }
1094
 
1095
  abort ();
1096
}
1097
 
1098
/* Implements the macro PRINT_OPERAND_ADDRESS defined in crx.h.  */
1099
 
1100
void
1101
crx_print_operand_address (FILE * file, rtx addr)
1102
{
1103
  enum crx_addrtype addrtype;
1104
  struct crx_address address;
1105
 
1106
  int offset;
1107
 
1108
  addrtype = crx_decompose_address (addr, &address);
1109
 
1110
  if (address.disp)
1111
    offset = INTVAL (address.disp);
1112
  else
1113
    offset = 0;
1114
 
1115
  switch (addrtype)
1116
    {
1117
    case CRX_REG_REL:
1118
      fprintf (file, "%d(%s)", offset, reg_names[REGNO (address.base)]);
1119
      return;
1120
 
1121
    case CRX_POST_INC:
1122
      switch (GET_CODE (address.side_effect))
1123
        {
1124
        case PLUS:
1125
          break;
1126
        case MINUS:
1127
          offset = -offset;
1128
          break;
1129
        case POST_INC:
1130
          offset = GET_MODE_SIZE (output_memory_reference_mode);
1131
          break;
1132
        case POST_DEC:
1133
          offset = -GET_MODE_SIZE (output_memory_reference_mode);
1134
          break;
1135
        default:
1136
          abort ();
1137
        }
1138
        fprintf (file, "%d(%s)+", offset, reg_names[REGNO (address.base)]);
1139
      return;
1140
 
1141
    case CRX_SCALED_INDX:
1142
      fprintf (file, "%d(%s, %s, %d)", offset, reg_names[REGNO (address.base)],
1143
               reg_names[REGNO (address.index)], address.scale);
1144
      return;
1145
 
1146
    case CRX_ABSOLUTE:
1147
      output_addr_const (file, address.disp);
1148
      return;
1149
 
1150
    default:
1151
      abort ();
1152
    }
1153
}
1154
 
1155
 
1156
/*****************************************************************************/
1157
/* MACHINE DESCRIPTION HELPER-FUNCTIONS                                      */
1158
/*****************************************************************************/
1159
 
1160
void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
1161
                               rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
1162
{
1163
  rtx addr, mem;
1164
  unsigned HOST_WIDE_INT offset = *offset_p;
1165
 
1166
  /* Load */
1167
  addr = plus_constant (src, offset);
1168
  mem = adjust_automodify_address (srcbase, SImode, addr, offset);
1169
  emit_move_insn (tmp_reg, mem);
1170
 
1171
  /* Store */
1172
  addr = plus_constant (dst, offset);
1173
  mem = adjust_automodify_address (dstbase, SImode, addr, offset);
1174
  emit_move_insn (mem, tmp_reg);
1175
 
1176
  *offset_p = offset + 4;
1177
}
1178
 
1179
int
1180
crx_expand_movmem (rtx dstbase, rtx srcbase, rtx count_exp, rtx align_exp)
1181
{
1182
  unsigned HOST_WIDE_INT count = 0, offset, si_moves, i;
1183
  HOST_WIDE_INT align = 0;
1184
 
1185
  rtx src, dst;
1186
  rtx tmp_reg;
1187
 
1188
  if (GET_CODE (align_exp) == CONST_INT)
1189
    { /* Only if aligned */
1190
      align = INTVAL (align_exp);
1191
      if (align & 3)
1192
        return 0;
1193
    }
1194
 
1195
  if (GET_CODE (count_exp) == CONST_INT)
1196
    { /* No more than 16 SImode moves */
1197
      count = INTVAL (count_exp);
1198
      if (count > 64)
1199
        return 0;
1200
    }
1201
 
1202
  tmp_reg = gen_reg_rtx (SImode);
1203
 
1204
  /* Create psrs for the src and dest pointers */
1205
  dst = copy_to_mode_reg (Pmode, XEXP (dstbase, 0));
1206
  if (dst != XEXP (dstbase, 0))
1207
    dstbase = replace_equiv_address_nv (dstbase, dst);
1208
  src = copy_to_mode_reg (Pmode, XEXP (srcbase, 0));
1209
  if (src != XEXP (srcbase, 0))
1210
    srcbase = replace_equiv_address_nv (srcbase, src);
1211
 
1212
  offset = 0;
1213
 
1214
  /* Emit SImode moves */
1215
  si_moves = count >> 2;
1216
  for (i = 0; i < si_moves; i++)
1217
    crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1218
 
1219
  /* Special cases */
1220
  if (count & 3)
1221
    {
1222
      offset = count - 4;
1223
      crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1224
    }
1225
 
1226
  gcc_assert (offset == count);
1227
 
1228
  return 1;
1229
}
1230
 
1231
static void
1232
mpushpop_str (char *stringbuffer, const char *mnemonic, char *mask)
1233
{
1234
  if (strlen (mask) > 2 || crx_interrupt_function_p ()) /* needs 2-word instr. */
1235
    sprintf (stringbuffer, "\n\t%s\tsp, {%s}", mnemonic, mask);
1236
  else /* single word instruction */
1237
    sprintf (stringbuffer, "\n\t%s\t%s", mnemonic, mask);
1238
}
1239
 
1240
/* Called from crx.md. The return value depends on the parameter push_or_pop:
1241
 * When push_or_pop is zero -> string for push instructions of prologue.
1242
 * When push_or_pop is nonzero -> string for pop/popret/retx in epilogue.
1243
 * Relies on the assumptions:
1244
 * 1. RA is the last register to be saved.
1245
 * 2. The maximal value of the counter is MAX_COUNT. */
1246
 
1247
char *
1248
crx_prepare_push_pop_string (int push_or_pop)
1249
{
1250
  /* j is the number of registers being saved, takes care that there won't be
1251
   * more than 8 in one push/pop instruction */
1252
 
1253
  /* For the register mask string */
1254
  static char mask_str[50];
1255
 
1256
  /* i is the index of save_regs[], going from 0 until last_reg_to_save */
1257
  int i = 0;
1258
 
1259
  int ra_in_bitmask = 0;
1260
 
1261
  char *return_str;
1262
 
1263
  /* For reversing on the push instructions if there are more than one. */
1264
  char *temp_str;
1265
 
1266
  return_str = (char *) xmalloc (120);
1267
  temp_str = (char *) xmalloc (120);
1268
 
1269
  /* Initialize */
1270
  memset (return_str, 0, 3);
1271
 
1272
  while (i <= last_reg_to_save)
1273
    {
1274
      /* Prepare mask for one instruction. */
1275
      mask_str[0] = 0;
1276
 
1277
      if (i <= SP_REGNUM)
1278
        { /* Add regs unit full or SP register reached */
1279
          int j = 0;
1280
          while (j < MAX_COUNT && i <= SP_REGNUM)
1281
            {
1282
              if (save_regs[i])
1283
                {
1284
                  /* TODO to use ra_in_bitmask for detecting last pop is not
1285
                   * smart it prevents things like:  popret r5 */
1286
                  if (i == RETURN_ADDRESS_REGNUM) ra_in_bitmask = 1;
1287
                  if (j > 0) strcat (mask_str, ", ");
1288
                  strcat (mask_str, reg_names[i]);
1289
                  ++j;
1290
                }
1291
              ++i;
1292
            }
1293
        }
1294
      else
1295
        {
1296
          /* Handle hi/lo savings */
1297
          while (i <= last_reg_to_save)
1298
            {
1299
              if (save_regs[i])
1300
                {
1301
                  strcat (mask_str, "lo, hi");
1302
                  i = last_reg_to_save + 1;
1303
                  break;
1304
                }
1305
              ++i;
1306
            }
1307
        }
1308
 
1309
      if (strlen (mask_str) == 0) continue;
1310
 
1311
      if (push_or_pop == 1)
1312
        {
1313
          if (crx_interrupt_function_p ())
1314
            mpushpop_str (temp_str, "popx", mask_str);
1315
          else
1316
            {
1317
              if (ra_in_bitmask)
1318
                {
1319
                  mpushpop_str (temp_str, "popret", mask_str);
1320
                  ra_in_bitmask = 0;
1321
                }
1322
              else mpushpop_str (temp_str, "pop", mask_str);
1323
            }
1324
 
1325
          strcat (return_str, temp_str);
1326
        }
1327
      else
1328
        {
1329
          /* push - We need to reverse the order of the instructions if there
1330
           * are more than one. (since the pop will not be reversed in the
1331
           * epilogue */
1332
          if (crx_interrupt_function_p ())
1333
            mpushpop_str (temp_str, "pushx", mask_str);
1334
          else
1335
            mpushpop_str (temp_str, "push", mask_str);
1336
          strcat (temp_str, return_str);
1337
          strcpy (strcat (return_str, "\t"), temp_str);
1338
        }
1339
 
1340
    }
1341
 
1342
  if (push_or_pop == 1)
1343
    {
1344
      /* pop */
1345
      if (crx_interrupt_function_p ())
1346
        strcat (return_str, "\n\tretx\n");
1347
 
1348
      else if (!FUNC_IS_NORETURN_P (current_function_decl)
1349
               && !save_regs[RETURN_ADDRESS_REGNUM])
1350
        strcat (return_str, "\n\tjump\tra\n");
1351
    }
1352
 
1353
  /* Skip the newline and the tab in the start of return_str. */
1354
  return_str += 2;
1355
  return return_str;
1356
}
1357
 
1358
/*  CompactRISC CRX Architecture stack layout:
1359
 
1360
 
1361
        |
1362
        .
1363
        .
1364
        |
1365
        +==================== Sp(x)=Ap(x+1)
1366
      A | Args for functions
1367
      | | called by X and      Dynamically
1368
      | | Dynamic allocations  allocated and
1369
      | | (alloca, variable    deallocated
1370
  Stack | length arrays).
1371
  grows +-------------------- Fp(x)
1372
  down| | Local variables of X
1373
  ward| +--------------------
1374
      | | Regs saved for X-1
1375
      | +==================== Sp(x-1)=Ap(x)
1376
        | Args for func X
1377
        | pushed by X-1
1378
        +-------------------- Fp(x-1)
1379
        |
1380
        |
1381
        V
1382
 
1383
*/
1384
 
1385
void
1386
crx_expand_prologue (void)
1387
{
1388
  crx_compute_frame ();
1389
  crx_compute_save_regs ();
1390
 
1391
  /* If there is no need in push and adjustment to sp, return. */
1392
  if (size_for_adjusting_sp + sum_regs == 0)
1393
    return;
1394
 
1395
  if (last_reg_to_save != -1)
1396
    /* If there are registers to push.  */
1397
    emit_insn (gen_push_for_prologue (GEN_INT (sum_regs)));
1398
 
1399
  if (size_for_adjusting_sp > 0)
1400
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1401
                           GEN_INT (-size_for_adjusting_sp)));
1402
 
1403
  if (frame_pointer_needed)
1404
    /* Initialize the frame pointer with the value of the stack pointer
1405
     * pointing now to the locals. */
1406
    emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
1407
}
1408
 
1409
/* Generate insn that updates the stack for local variables and padding for
1410
 * registers we save. - Generate the appropriate return insn. */
1411
 
1412
void
1413
crx_expand_epilogue (void)
1414
{
1415
  rtx return_reg;
1416
 
1417
  /* Nonzero if we need to return and pop only RA. This will generate a
1418
   * different insn. This differentiate is for the peepholes for call as last
1419
   * statement in function. */
1420
  int only_popret_RA = (save_regs[RETURN_ADDRESS_REGNUM]
1421
                        && (sum_regs == UNITS_PER_WORD));
1422
 
1423
  /* Return register.  */
1424
  return_reg = gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM);
1425
 
1426
  if (frame_pointer_needed)
1427
    /* Restore the stack pointer with the frame pointers value */
1428
    emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
1429
 
1430
  if (size_for_adjusting_sp > 0)
1431
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1432
                           GEN_INT (size_for_adjusting_sp)));
1433
 
1434
  if (crx_interrupt_function_p ())
1435
    emit_jump_insn (gen_interrupt_return ());
1436
  else if (last_reg_to_save == -1)
1437
    /* Nothing to pop */
1438
    /* Don't output jump for interrupt routine, only retx.  */
1439
    emit_jump_insn (gen_indirect_jump_return ());
1440
  else if (only_popret_RA)
1441
    emit_jump_insn (gen_popret_RA_return ());
1442
  else
1443
    emit_jump_insn (gen_pop_and_popret_return (GEN_INT (sum_regs)));
1444
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.