1 |
282 |
jeremybenn |
/* This is a software decimal floating point library.
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GCC.
|
5 |
|
|
|
6 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
7 |
|
|
the terms of the GNU General Public License as published by the Free
|
8 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
9 |
|
|
version.
|
10 |
|
|
|
11 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
12 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
13 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
14 |
|
|
for more details.
|
15 |
|
|
|
16 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
17 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
18 |
|
|
3.1, as published by the Free Software Foundation.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License and
|
21 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
22 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
/* This implements IEEE 754 decimal floating point arithmetic, but
|
26 |
|
|
does not provide a mechanism for setting the rounding mode, or for
|
27 |
|
|
generating or handling exceptions. Conversions between decimal
|
28 |
|
|
floating point types and other types depend on C library functions.
|
29 |
|
|
|
30 |
|
|
Contributed by Ben Elliston <bje@au.ibm.com>. */
|
31 |
|
|
|
32 |
|
|
#include <stdio.h>
|
33 |
|
|
#include <stdlib.h>
|
34 |
|
|
/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
|
35 |
|
|
extern float strtof (const char *, char **);
|
36 |
|
|
extern long double strtold (const char *, char **);
|
37 |
|
|
#include <string.h>
|
38 |
|
|
#include <limits.h>
|
39 |
|
|
|
40 |
|
|
#include "config/dfp-bit.h"
|
41 |
|
|
|
42 |
|
|
/* Forward declarations. */
|
43 |
|
|
#if WIDTH == 32 || WIDTH_TO == 32
|
44 |
|
|
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
|
45 |
|
|
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
|
46 |
|
|
#endif
|
47 |
|
|
#if WIDTH == 64 || WIDTH_TO == 64
|
48 |
|
|
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
|
49 |
|
|
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
|
50 |
|
|
#endif
|
51 |
|
|
#if WIDTH == 128 || WIDTH_TO == 128
|
52 |
|
|
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
|
53 |
|
|
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
|
54 |
|
|
#endif
|
55 |
|
|
|
56 |
|
|
/* A pointer to a binary decFloat operation. */
|
57 |
|
|
typedef decFloat* (*dfp_binary_func)
|
58 |
|
|
(decFloat *, const decFloat *, const decFloat *, decContext *);
|
59 |
|
|
|
60 |
|
|
/* Binary operations. */
|
61 |
|
|
|
62 |
|
|
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
|
63 |
|
|
binary operation. */
|
64 |
|
|
static inline decFloat
|
65 |
|
|
dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
|
66 |
|
|
{
|
67 |
|
|
decFloat result;
|
68 |
|
|
decContext context;
|
69 |
|
|
|
70 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
71 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
72 |
|
|
|
73 |
|
|
/* Perform the operation. */
|
74 |
|
|
op (&result, &arg_a, &arg_b, &context);
|
75 |
|
|
|
76 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
77 |
|
|
{
|
78 |
|
|
/* decNumber exception flags we care about here. */
|
79 |
|
|
int ieee_flags;
|
80 |
|
|
int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
|
81 |
|
|
| DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
|
82 |
|
|
| DEC_IEEE_854_Underflow;
|
83 |
|
|
dec_flags &= context.status;
|
84 |
|
|
ieee_flags = DFP_IEEE_FLAGS (dec_flags);
|
85 |
|
|
if (ieee_flags != 0)
|
86 |
|
|
DFP_HANDLE_EXCEPTIONS (ieee_flags);
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
return result;
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
#if WIDTH == 32
|
93 |
|
|
/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
|
94 |
|
|
convert to decDouble, use the operation for that, and convert back. */
|
95 |
|
|
static inline _Decimal32
|
96 |
|
|
d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
|
97 |
|
|
{
|
98 |
|
|
union { _Decimal32 c; decSingle f; } a32, b32, res32;
|
99 |
|
|
decDouble a, b, res;
|
100 |
|
|
decContext context;
|
101 |
|
|
|
102 |
|
|
/* Widen the operands and perform the operation. */
|
103 |
|
|
a32.c = arg_a;
|
104 |
|
|
b32.c = arg_b;
|
105 |
|
|
decSingleToWider (&a32.f, &a);
|
106 |
|
|
decSingleToWider (&b32.f, &b);
|
107 |
|
|
res = dfp_binary_op (op, a, b);
|
108 |
|
|
|
109 |
|
|
/* Narrow the result, which might result in an underflow or overflow. */
|
110 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
111 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
112 |
|
|
decSingleFromWider (&res32.f, &res, &context);
|
113 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
114 |
|
|
{
|
115 |
|
|
/* decNumber exception flags we care about here. */
|
116 |
|
|
int ieee_flags;
|
117 |
|
|
int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
|
118 |
|
|
| DEC_IEEE_854_Underflow;
|
119 |
|
|
dec_flags &= context.status;
|
120 |
|
|
ieee_flags = DFP_IEEE_FLAGS (dec_flags);
|
121 |
|
|
if (ieee_flags != 0)
|
122 |
|
|
DFP_HANDLE_EXCEPTIONS (ieee_flags);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
return res32.c;
|
126 |
|
|
}
|
127 |
|
|
#else
|
128 |
|
|
/* decFloat operations are supported for decDouble (64 bits) and
|
129 |
|
|
decQuad (128 bits). The bit patterns for the types are the same. */
|
130 |
|
|
static inline DFP_C_TYPE
|
131 |
|
|
dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
132 |
|
|
{
|
133 |
|
|
union { DFP_C_TYPE c; decFloat f; } a, b, result;
|
134 |
|
|
|
135 |
|
|
a.c = arg_a;
|
136 |
|
|
b.c = arg_b;
|
137 |
|
|
result.f = dfp_binary_op (op, a.f, b.f);
|
138 |
|
|
return result.c;
|
139 |
|
|
}
|
140 |
|
|
#endif
|
141 |
|
|
|
142 |
|
|
/* Comparison operations. */
|
143 |
|
|
|
144 |
|
|
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
|
145 |
|
|
comparison. */
|
146 |
|
|
static inline CMPtype
|
147 |
|
|
dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
|
148 |
|
|
{
|
149 |
|
|
decContext context;
|
150 |
|
|
decFloat res;
|
151 |
|
|
int result;
|
152 |
|
|
|
153 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
154 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
155 |
|
|
|
156 |
|
|
/* Perform the comparison. */
|
157 |
|
|
op (&res, &arg_a, &arg_b, &context);
|
158 |
|
|
|
159 |
|
|
if (DEC_FLOAT_IS_SIGNED (&res))
|
160 |
|
|
result = -1;
|
161 |
|
|
else if (DEC_FLOAT_IS_ZERO (&res))
|
162 |
|
|
result = 0;
|
163 |
|
|
else if (DEC_FLOAT_IS_NAN (&res))
|
164 |
|
|
result = -2;
|
165 |
|
|
else
|
166 |
|
|
result = 1;
|
167 |
|
|
|
168 |
|
|
return (CMPtype) result;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
#if WIDTH == 32
|
172 |
|
|
/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
|
173 |
|
|
convert to decDouble, use the operation for that, and convert back. */
|
174 |
|
|
static inline CMPtype
|
175 |
|
|
d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
|
176 |
|
|
{
|
177 |
|
|
union { _Decimal32 c; decSingle f; } a32, b32;
|
178 |
|
|
decDouble a, b;
|
179 |
|
|
|
180 |
|
|
a32.c = arg_a;
|
181 |
|
|
b32.c = arg_b;
|
182 |
|
|
decSingleToWider (&a32.f, &a);
|
183 |
|
|
decSingleToWider (&b32.f, &b);
|
184 |
|
|
return dfp_compare_op (op, a, b);
|
185 |
|
|
}
|
186 |
|
|
#else
|
187 |
|
|
/* decFloat comparisons are supported for decDouble (64 bits) and
|
188 |
|
|
decQuad (128 bits). The bit patterns for the types are the same. */
|
189 |
|
|
static inline CMPtype
|
190 |
|
|
dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
191 |
|
|
{
|
192 |
|
|
union { DFP_C_TYPE c; decFloat f; } a, b;
|
193 |
|
|
|
194 |
|
|
a.c = arg_a;
|
195 |
|
|
b.c = arg_b;
|
196 |
|
|
return dfp_compare_op (op, a.f, b.f);
|
197 |
|
|
}
|
198 |
|
|
#endif
|
199 |
|
|
|
200 |
|
|
#if defined(L_conv_sd)
|
201 |
|
|
void
|
202 |
|
|
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
|
203 |
|
|
{
|
204 |
|
|
memcpy (out, &in, 4);
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
void
|
208 |
|
|
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
|
209 |
|
|
{
|
210 |
|
|
memcpy (out, &in, 4);
|
211 |
|
|
}
|
212 |
|
|
#endif /* L_conv_sd */
|
213 |
|
|
|
214 |
|
|
#if defined(L_conv_dd)
|
215 |
|
|
void
|
216 |
|
|
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
|
217 |
|
|
{
|
218 |
|
|
memcpy (out, &in, 8);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
void
|
222 |
|
|
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
|
223 |
|
|
{
|
224 |
|
|
memcpy (out, &in, 8);
|
225 |
|
|
}
|
226 |
|
|
#endif /* L_conv_dd */
|
227 |
|
|
|
228 |
|
|
#if defined(L_conv_td)
|
229 |
|
|
void
|
230 |
|
|
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
|
231 |
|
|
{
|
232 |
|
|
memcpy (out, &in, 16);
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
void
|
236 |
|
|
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
|
237 |
|
|
{
|
238 |
|
|
memcpy (out, &in, 16);
|
239 |
|
|
}
|
240 |
|
|
#endif /* L_conv_td */
|
241 |
|
|
|
242 |
|
|
#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
|
243 |
|
|
DFP_C_TYPE
|
244 |
|
|
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
245 |
|
|
{
|
246 |
|
|
return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
DFP_C_TYPE
|
250 |
|
|
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
251 |
|
|
{
|
252 |
|
|
return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
|
253 |
|
|
}
|
254 |
|
|
#endif /* L_addsub */
|
255 |
|
|
|
256 |
|
|
#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
|
257 |
|
|
DFP_C_TYPE
|
258 |
|
|
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
259 |
|
|
{
|
260 |
|
|
return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
|
261 |
|
|
}
|
262 |
|
|
#endif /* L_mul */
|
263 |
|
|
|
264 |
|
|
#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
|
265 |
|
|
DFP_C_TYPE
|
266 |
|
|
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
267 |
|
|
{
|
268 |
|
|
return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
|
269 |
|
|
}
|
270 |
|
|
#endif /* L_div */
|
271 |
|
|
|
272 |
|
|
#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
|
273 |
|
|
CMPtype
|
274 |
|
|
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
275 |
|
|
{
|
276 |
|
|
CMPtype stat;
|
277 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
278 |
|
|
/* For EQ return zero for true, nonzero for false. */
|
279 |
|
|
return stat != 0;
|
280 |
|
|
}
|
281 |
|
|
#endif /* L_eq */
|
282 |
|
|
|
283 |
|
|
#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
|
284 |
|
|
CMPtype
|
285 |
|
|
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
286 |
|
|
{
|
287 |
|
|
int stat;
|
288 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
289 |
|
|
/* For NE return zero for true, nonzero for false. */
|
290 |
|
|
if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
|
291 |
|
|
return 1;
|
292 |
|
|
return stat != 0;
|
293 |
|
|
}
|
294 |
|
|
#endif /* L_ne */
|
295 |
|
|
|
296 |
|
|
#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
|
297 |
|
|
CMPtype
|
298 |
|
|
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
299 |
|
|
{
|
300 |
|
|
int stat;
|
301 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
302 |
|
|
/* For LT return -1 (<0) for true, 1 for false. */
|
303 |
|
|
return (stat == -1) ? -1 : 1;
|
304 |
|
|
}
|
305 |
|
|
#endif /* L_lt */
|
306 |
|
|
|
307 |
|
|
#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
|
308 |
|
|
CMPtype
|
309 |
|
|
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
310 |
|
|
{
|
311 |
|
|
int stat;
|
312 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
313 |
|
|
/* For GT return 1 (>0) for true, -1 for false. */
|
314 |
|
|
return (stat == 1) ? 1 : -1;
|
315 |
|
|
}
|
316 |
|
|
#endif
|
317 |
|
|
|
318 |
|
|
#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
|
319 |
|
|
CMPtype
|
320 |
|
|
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
321 |
|
|
{
|
322 |
|
|
int stat;
|
323 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
324 |
|
|
/* For LE return 0 (<= 0) for true, 1 for false. */
|
325 |
|
|
if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
|
326 |
|
|
return 1;
|
327 |
|
|
return stat == 1;
|
328 |
|
|
}
|
329 |
|
|
#endif /* L_le */
|
330 |
|
|
|
331 |
|
|
#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
|
332 |
|
|
CMPtype
|
333 |
|
|
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
334 |
|
|
{
|
335 |
|
|
int stat;
|
336 |
|
|
stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
|
337 |
|
|
/* For GE return 1 (>=0) for true, -1 for false. */
|
338 |
|
|
if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
|
339 |
|
|
return -1;
|
340 |
|
|
return (stat != -1) ? 1 : -1;
|
341 |
|
|
}
|
342 |
|
|
#endif /* L_ge */
|
343 |
|
|
|
344 |
|
|
#define BUFMAX 128
|
345 |
|
|
|
346 |
|
|
/* Check for floating point exceptions that are relevant for conversions
|
347 |
|
|
between decimal float values and handle them. */
|
348 |
|
|
static inline void
|
349 |
|
|
dfp_conversion_exceptions (const int status)
|
350 |
|
|
{
|
351 |
|
|
/* decNumber exception flags we care about here. */
|
352 |
|
|
int ieee_flags;
|
353 |
|
|
int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
|
354 |
|
|
| DEC_IEEE_854_Overflow;
|
355 |
|
|
dec_flags &= status;
|
356 |
|
|
ieee_flags = DFP_IEEE_FLAGS (dec_flags);
|
357 |
|
|
if (ieee_flags != 0)
|
358 |
|
|
DFP_HANDLE_EXCEPTIONS (ieee_flags);
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
#if defined (L_sd_to_dd)
|
362 |
|
|
/* Use decNumber to convert directly from _Decimal32 to _Decimal64. */
|
363 |
|
|
_Decimal64
|
364 |
|
|
DFP_TO_DFP (_Decimal32 f_from)
|
365 |
|
|
{
|
366 |
|
|
union { _Decimal32 c; decSingle f; } from;
|
367 |
|
|
union { _Decimal64 c; decDouble f; } to;
|
368 |
|
|
|
369 |
|
|
from.c = f_from;
|
370 |
|
|
to.f = *decSingleToWider (&from.f, &to.f);
|
371 |
|
|
return to.c;
|
372 |
|
|
}
|
373 |
|
|
#endif
|
374 |
|
|
|
375 |
|
|
#if defined (L_sd_to_td)
|
376 |
|
|
/* Use decNumber to convert directly from _Decimal32 to _Decimal128. */
|
377 |
|
|
_Decimal128
|
378 |
|
|
DFP_TO_DFP (_Decimal32 f_from)
|
379 |
|
|
{
|
380 |
|
|
union { _Decimal32 c; decSingle f; } from;
|
381 |
|
|
union { _Decimal128 c; decQuad f; } to;
|
382 |
|
|
decDouble temp;
|
383 |
|
|
|
384 |
|
|
from.c = f_from;
|
385 |
|
|
temp = *decSingleToWider (&from.f, &temp);
|
386 |
|
|
to.f = *decDoubleToWider (&temp, &to.f);
|
387 |
|
|
return to.c;
|
388 |
|
|
}
|
389 |
|
|
#endif
|
390 |
|
|
|
391 |
|
|
#if defined (L_dd_to_td)
|
392 |
|
|
/* Use decNumber to convert directly from _Decimal64 to _Decimal128. */
|
393 |
|
|
_Decimal128
|
394 |
|
|
DFP_TO_DFP (_Decimal64 f_from)
|
395 |
|
|
{
|
396 |
|
|
union { _Decimal64 c; decDouble f; } from;
|
397 |
|
|
union { _Decimal128 c; decQuad f; } to;
|
398 |
|
|
|
399 |
|
|
from.c = f_from;
|
400 |
|
|
to.f = *decDoubleToWider (&from.f, &to.f);
|
401 |
|
|
return to.c;
|
402 |
|
|
}
|
403 |
|
|
#endif
|
404 |
|
|
|
405 |
|
|
#if defined (L_dd_to_sd)
|
406 |
|
|
/* Use decNumber to convert directly from _Decimal64 to _Decimal32. */
|
407 |
|
|
_Decimal32
|
408 |
|
|
DFP_TO_DFP (_Decimal64 f_from)
|
409 |
|
|
{
|
410 |
|
|
union { _Decimal32 c; decSingle f; } to;
|
411 |
|
|
union { _Decimal64 c; decDouble f; } from;
|
412 |
|
|
decContext context;
|
413 |
|
|
|
414 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
415 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
416 |
|
|
from.c = f_from;
|
417 |
|
|
to.f = *decSingleFromWider (&to.f, &from.f, &context);
|
418 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
419 |
|
|
dfp_conversion_exceptions (context.status);
|
420 |
|
|
return to.c;
|
421 |
|
|
}
|
422 |
|
|
#endif
|
423 |
|
|
|
424 |
|
|
#if defined (L_td_to_sd)
|
425 |
|
|
/* Use decNumber to convert directly from _Decimal128 to _Decimal32. */
|
426 |
|
|
_Decimal32
|
427 |
|
|
DFP_TO_DFP (_Decimal128 f_from)
|
428 |
|
|
{
|
429 |
|
|
union { _Decimal32 c; decSingle f; } to;
|
430 |
|
|
union { _Decimal128 c; decQuad f; } from;
|
431 |
|
|
decDouble temp;
|
432 |
|
|
decContext context;
|
433 |
|
|
|
434 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
435 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
436 |
|
|
from.c = f_from;
|
437 |
|
|
temp = *decDoubleFromWider (&temp, &from.f, &context);
|
438 |
|
|
to.f = *decSingleFromWider (&to.f, &temp, &context);
|
439 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
440 |
|
|
dfp_conversion_exceptions (context.status);
|
441 |
|
|
return to.c;
|
442 |
|
|
}
|
443 |
|
|
#endif
|
444 |
|
|
|
445 |
|
|
#if defined (L_td_to_dd)
|
446 |
|
|
/* Use decNumber to convert directly from _Decimal128 to _Decimal64. */
|
447 |
|
|
_Decimal64
|
448 |
|
|
DFP_TO_DFP (_Decimal128 f_from)
|
449 |
|
|
{
|
450 |
|
|
union { _Decimal64 c; decDouble f; } to;
|
451 |
|
|
union { _Decimal128 c; decQuad f; } from;
|
452 |
|
|
decContext context;
|
453 |
|
|
|
454 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
455 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
456 |
|
|
from.c = f_from;
|
457 |
|
|
to.f = *decDoubleFromWider (&to.f, &from.f, &context);
|
458 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
459 |
|
|
dfp_conversion_exceptions (context.status);
|
460 |
|
|
return to.c;
|
461 |
|
|
}
|
462 |
|
|
#endif
|
463 |
|
|
|
464 |
|
|
#if defined (L_dd_to_si) || defined (L_td_to_si) \
|
465 |
|
|
|| defined (L_dd_to_usi) || defined (L_td_to_usi)
|
466 |
|
|
/* Use decNumber to convert directly from decimal float to integer types. */
|
467 |
|
|
INT_TYPE
|
468 |
|
|
DFP_TO_INT (DFP_C_TYPE x)
|
469 |
|
|
{
|
470 |
|
|
union { DFP_C_TYPE c; decFloat f; } u;
|
471 |
|
|
decContext context;
|
472 |
|
|
INT_TYPE i;
|
473 |
|
|
|
474 |
|
|
decContextDefault (&context, DEC_INIT_DECIMAL128);
|
475 |
|
|
context.round = DEC_ROUND_DOWN;
|
476 |
|
|
u.c = x;
|
477 |
|
|
i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
|
478 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
479 |
|
|
dfp_conversion_exceptions (context.status);
|
480 |
|
|
return i;
|
481 |
|
|
}
|
482 |
|
|
#endif
|
483 |
|
|
|
484 |
|
|
#if defined (L_sd_to_si) || (L_sd_to_usi)
|
485 |
|
|
/* Use decNumber to convert directly from decimal float to integer types. */
|
486 |
|
|
INT_TYPE
|
487 |
|
|
DFP_TO_INT (_Decimal32 x)
|
488 |
|
|
{
|
489 |
|
|
union { _Decimal32 c; decSingle f; } u32;
|
490 |
|
|
decDouble f64;
|
491 |
|
|
decContext context;
|
492 |
|
|
INT_TYPE i;
|
493 |
|
|
|
494 |
|
|
decContextDefault (&context, DEC_INIT_DECIMAL128);
|
495 |
|
|
context.round = DEC_ROUND_DOWN;
|
496 |
|
|
u32.c = x;
|
497 |
|
|
f64 = *decSingleToWider (&u32.f, &f64);
|
498 |
|
|
i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
|
499 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
500 |
|
|
dfp_conversion_exceptions (context.status);
|
501 |
|
|
return i;
|
502 |
|
|
}
|
503 |
|
|
#endif
|
504 |
|
|
|
505 |
|
|
#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
|
506 |
|
|
|| defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
|
507 |
|
|
/* decNumber doesn't provide support for conversions to 64-bit integer
|
508 |
|
|
types, so do it the hard way. */
|
509 |
|
|
INT_TYPE
|
510 |
|
|
DFP_TO_INT (DFP_C_TYPE x)
|
511 |
|
|
{
|
512 |
|
|
/* decNumber's decimal* types have the same format as C's _Decimal*
|
513 |
|
|
types, but they have different calling conventions. */
|
514 |
|
|
|
515 |
|
|
/* TODO: Decimal float to integer conversions should raise FE_INVALID
|
516 |
|
|
if the result value does not fit into the result type. */
|
517 |
|
|
|
518 |
|
|
IEEE_TYPE s;
|
519 |
|
|
char buf[BUFMAX];
|
520 |
|
|
char *pos;
|
521 |
|
|
decNumber qval, n1, n2;
|
522 |
|
|
decContext context;
|
523 |
|
|
|
524 |
|
|
/* Use a large context to avoid losing precision. */
|
525 |
|
|
decContextDefault (&context, DEC_INIT_DECIMAL128);
|
526 |
|
|
/* Need non-default rounding mode here. */
|
527 |
|
|
context.round = DEC_ROUND_DOWN;
|
528 |
|
|
|
529 |
|
|
HOST_TO_IEEE (x, &s);
|
530 |
|
|
TO_INTERNAL (&s, &n1);
|
531 |
|
|
/* Rescale if the exponent is less than zero. */
|
532 |
|
|
decNumberToIntegralValue (&n2, &n1, &context);
|
533 |
|
|
/* Get a value to use for the quantize call. */
|
534 |
|
|
decNumberFromString (&qval, "1.", &context);
|
535 |
|
|
/* Force the exponent to zero. */
|
536 |
|
|
decNumberQuantize (&n1, &n2, &qval, &context);
|
537 |
|
|
/* Get a string, which at this point will not include an exponent. */
|
538 |
|
|
decNumberToString (&n1, buf);
|
539 |
|
|
/* Ignore the fractional part. */
|
540 |
|
|
pos = strchr (buf, '.');
|
541 |
|
|
if (pos)
|
542 |
|
|
*pos = 0;
|
543 |
|
|
/* Use a C library function to convert to the integral type. */
|
544 |
|
|
return STR_TO_INT (buf, NULL, 10);
|
545 |
|
|
}
|
546 |
|
|
#endif
|
547 |
|
|
|
548 |
|
|
#if defined (L_si_to_dd) || defined (L_si_to_td) \
|
549 |
|
|
|| defined (L_usi_to_dd) || defined (L_usi_to_td)
|
550 |
|
|
/* Use decNumber to convert directly from integer to decimal float types. */
|
551 |
|
|
DFP_C_TYPE
|
552 |
|
|
INT_TO_DFP (INT_TYPE i)
|
553 |
|
|
{
|
554 |
|
|
union { DFP_C_TYPE c; decFloat f; } u;
|
555 |
|
|
|
556 |
|
|
u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
|
557 |
|
|
return u.c;
|
558 |
|
|
}
|
559 |
|
|
#endif
|
560 |
|
|
|
561 |
|
|
#if defined (L_si_to_sd) || defined (L_usi_to_sd)
|
562 |
|
|
_Decimal32
|
563 |
|
|
/* Use decNumber to convert directly from integer to decimal float types. */
|
564 |
|
|
INT_TO_DFP (INT_TYPE i)
|
565 |
|
|
{
|
566 |
|
|
union { _Decimal32 c; decSingle f; } u32;
|
567 |
|
|
decDouble f64;
|
568 |
|
|
decContext context;
|
569 |
|
|
|
570 |
|
|
decContextDefault (&context, DEC_INIT_DECIMAL128);
|
571 |
|
|
f64 = *DEC_FLOAT_FROM_INT (&f64, i);
|
572 |
|
|
u32.f = *decSingleFromWider (&u32.f, &f64, &context);
|
573 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
574 |
|
|
dfp_conversion_exceptions (context.status);
|
575 |
|
|
return u32.c;
|
576 |
|
|
}
|
577 |
|
|
#endif
|
578 |
|
|
|
579 |
|
|
#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
|
580 |
|
|
|| defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
|
581 |
|
|
/* decNumber doesn't provide support for conversions from 64-bit integer
|
582 |
|
|
types, so do it the hard way. */
|
583 |
|
|
DFP_C_TYPE
|
584 |
|
|
INT_TO_DFP (INT_TYPE i)
|
585 |
|
|
{
|
586 |
|
|
DFP_C_TYPE f;
|
587 |
|
|
IEEE_TYPE s;
|
588 |
|
|
char buf[BUFMAX];
|
589 |
|
|
decContext context;
|
590 |
|
|
|
591 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
592 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
593 |
|
|
|
594 |
|
|
/* Use a C library function to get a floating point string. */
|
595 |
|
|
sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
|
596 |
|
|
/* Convert from the floating point string to a decimal* type. */
|
597 |
|
|
FROM_STRING (&s, buf, &context);
|
598 |
|
|
IEEE_TO_HOST (s, &f);
|
599 |
|
|
|
600 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
601 |
|
|
dfp_conversion_exceptions (context.status);
|
602 |
|
|
|
603 |
|
|
return f;
|
604 |
|
|
}
|
605 |
|
|
#endif
|
606 |
|
|
|
607 |
|
|
#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
|
608 |
|
|
|| defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
|
609 |
|
|
|| ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
|
610 |
|
|
&& LONG_DOUBLE_HAS_XF_MODE) \
|
611 |
|
|
|| ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
|
612 |
|
|
&& LONG_DOUBLE_HAS_TF_MODE)
|
613 |
|
|
BFP_TYPE
|
614 |
|
|
DFP_TO_BFP (DFP_C_TYPE f)
|
615 |
|
|
{
|
616 |
|
|
IEEE_TYPE s;
|
617 |
|
|
char buf[BUFMAX];
|
618 |
|
|
|
619 |
|
|
HOST_TO_IEEE (f, &s);
|
620 |
|
|
/* Write the value to a string. */
|
621 |
|
|
TO_STRING (&s, buf);
|
622 |
|
|
/* Read it as the binary floating point type and return that. */
|
623 |
|
|
return STR_TO_BFP (buf, NULL);
|
624 |
|
|
}
|
625 |
|
|
#endif
|
626 |
|
|
|
627 |
|
|
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
|
628 |
|
|
|| defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
|
629 |
|
|
|| ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
|
630 |
|
|
&& LONG_DOUBLE_HAS_XF_MODE) \
|
631 |
|
|
|| ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
|
632 |
|
|
&& LONG_DOUBLE_HAS_TF_MODE)
|
633 |
|
|
DFP_C_TYPE
|
634 |
|
|
BFP_TO_DFP (BFP_TYPE x)
|
635 |
|
|
{
|
636 |
|
|
DFP_C_TYPE f;
|
637 |
|
|
IEEE_TYPE s;
|
638 |
|
|
char buf[BUFMAX];
|
639 |
|
|
decContext context;
|
640 |
|
|
|
641 |
|
|
decContextDefault (&context, CONTEXT_INIT);
|
642 |
|
|
DFP_INIT_ROUNDMODE (context.round);
|
643 |
|
|
|
644 |
|
|
/* Use a C library function to write the floating point value to a string. */
|
645 |
|
|
sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
|
646 |
|
|
|
647 |
|
|
/* Convert from the floating point string to a decimal* type. */
|
648 |
|
|
FROM_STRING (&s, buf, &context);
|
649 |
|
|
IEEE_TO_HOST (s, &f);
|
650 |
|
|
|
651 |
|
|
if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
|
652 |
|
|
{
|
653 |
|
|
/* decNumber exception flags we care about here. */
|
654 |
|
|
int ieee_flags;
|
655 |
|
|
int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
|
656 |
|
|
| DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
|
657 |
|
|
dec_flags &= context.status;
|
658 |
|
|
ieee_flags = DFP_IEEE_FLAGS (dec_flags);
|
659 |
|
|
if (ieee_flags != 0)
|
660 |
|
|
DFP_HANDLE_EXCEPTIONS (ieee_flags);
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
return f;
|
664 |
|
|
}
|
665 |
|
|
#endif
|
666 |
|
|
|
667 |
|
|
#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
|
668 |
|
|
CMPtype
|
669 |
|
|
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
|
670 |
|
|
{
|
671 |
|
|
decNumber arg1, arg2;
|
672 |
|
|
IEEE_TYPE a, b;
|
673 |
|
|
|
674 |
|
|
HOST_TO_IEEE (arg_a, &a);
|
675 |
|
|
HOST_TO_IEEE (arg_b, &b);
|
676 |
|
|
TO_INTERNAL (&a, &arg1);
|
677 |
|
|
TO_INTERNAL (&b, &arg2);
|
678 |
|
|
return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
|
679 |
|
|
}
|
680 |
|
|
#endif /* L_unord_sd || L_unord_dd || L_unord_td */
|