1 |
282 |
jeremybenn |
;; FR30 machine description.
|
2 |
|
|
;; Copyright (C) 1998, 1999, 2000, 2002, 2004, 2005, 2007
|
3 |
|
|
;; Free Software Foundation, Inc.
|
4 |
|
|
;; Contributed by Cygnus Solutions.
|
5 |
|
|
|
6 |
|
|
;; This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
;; it under the terms of the GNU General Public License as published by
|
10 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
;; any later version.
|
12 |
|
|
|
13 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
14 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
;; GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
;; You should have received a copy of the GNU General Public License
|
19 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
20 |
|
|
;; .
|
21 |
|
|
|
22 |
|
|
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
|
23 |
|
|
|
24 |
|
|
;;{{{ Attributes
|
25 |
|
|
|
26 |
|
|
(define_attr "length" "" (const_int 2))
|
27 |
|
|
|
28 |
|
|
;; Used to distinguish between small memory model targets and big mode targets.
|
29 |
|
|
|
30 |
|
|
(define_attr "size" "small,big"
|
31 |
|
|
(const (if_then_else (symbol_ref "TARGET_SMALL_MODEL")
|
32 |
|
|
(const_string "small")
|
33 |
|
|
(const_string "big"))))
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
;; Define an attribute to be used by the delay slot code.
|
37 |
|
|
;; An instruction by default is considered to be 'delayable'
|
38 |
|
|
;; that is, it can be placed into a delay slot, but it is not
|
39 |
|
|
;; itself a delayed branch type instruction. An instruction
|
40 |
|
|
;; whose type is 'delayed' is one which has a delay slot, and
|
41 |
|
|
;; an instruction whose delay_type is 'other' is one which does
|
42 |
|
|
;; not have a delay slot, nor can it be placed into a delay slot.
|
43 |
|
|
|
44 |
|
|
(define_attr "delay_type" "delayable,delayed,other" (const_string "delayable"))
|
45 |
|
|
|
46 |
|
|
;;}}}
|
47 |
|
|
;;{{{ Delay Slot Specifications
|
48 |
|
|
|
49 |
|
|
(define_delay (eq_attr "delay_type" "delayed")
|
50 |
|
|
[(and (eq_attr "delay_type" "delayable")
|
51 |
|
|
(eq_attr "length" "2"))
|
52 |
|
|
(nil)
|
53 |
|
|
(nil)]
|
54 |
|
|
)
|
55 |
|
|
|
56 |
|
|
(include "predicates.md")
|
57 |
|
|
|
58 |
|
|
;;}}}
|
59 |
|
|
;;{{{ Moves
|
60 |
|
|
|
61 |
|
|
;;{{{ Comment
|
62 |
|
|
|
63 |
|
|
;; Wrap moves in define_expand to prevent memory->memory moves from being
|
64 |
|
|
;; generated at the RTL level, which generates better code for most machines
|
65 |
|
|
;; which can't do mem->mem moves.
|
66 |
|
|
|
67 |
|
|
;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
|
68 |
|
|
;; than M, the effect of this instruction is to store the specified value in
|
69 |
|
|
;; the part of the register that corresponds to mode M. The effect on the rest
|
70 |
|
|
;; of the register is undefined.
|
71 |
|
|
|
72 |
|
|
;; This class of patterns is special in several ways. First of all, each of
|
73 |
|
|
;; these names *must* be defined, because there is no other way to copy a datum
|
74 |
|
|
;; from one place to another.
|
75 |
|
|
|
76 |
|
|
;; Second, these patterns are not used solely in the RTL generation pass. Even
|
77 |
|
|
;; the reload pass can generate move insns to copy values from stack slots into
|
78 |
|
|
;; temporary registers. When it does so, one of the operands is a hard
|
79 |
|
|
;; register and the other is an operand that can need to be reloaded into a
|
80 |
|
|
;; register.
|
81 |
|
|
|
82 |
|
|
;; Therefore, when given such a pair of operands, the pattern must
|
83 |
|
|
;; generate RTL which needs no reloading and needs no temporary
|
84 |
|
|
;; registers--no registers other than the operands. For example, if
|
85 |
|
|
;; you support the pattern with a `define_expand', then in such a
|
86 |
|
|
;; case the `define_expand' mustn't call `force_reg' or any other such
|
87 |
|
|
;; function which might generate new pseudo registers.
|
88 |
|
|
|
89 |
|
|
;; This requirement exists even for subword modes on a RISC machine
|
90 |
|
|
;; where fetching those modes from memory normally requires several
|
91 |
|
|
;; insns and some temporary registers. Look in `spur.md' to see how
|
92 |
|
|
;; the requirement can be satisfied.
|
93 |
|
|
|
94 |
|
|
;; During reload a memory reference with an invalid address may be passed as an
|
95 |
|
|
;; operand. Such an address will be replaced with a valid address later in the
|
96 |
|
|
;; reload pass. In this case, nothing may be done with the address except to
|
97 |
|
|
;; use it as it stands. If it is copied, it will not be replaced with a valid
|
98 |
|
|
;; address. No attempt should be made to make such an address into a valid
|
99 |
|
|
;; address and no routine (such as `change_address') that will do so may be
|
100 |
|
|
;; called. Note that `general_operand' will fail when applied to such an
|
101 |
|
|
;; address.
|
102 |
|
|
;;
|
103 |
|
|
;; The global variable `reload_in_progress' (which must be explicitly declared
|
104 |
|
|
;; if required) can be used to determine whether such special handling is
|
105 |
|
|
;; required.
|
106 |
|
|
;;
|
107 |
|
|
;; The variety of operands that have reloads depends on the rest of
|
108 |
|
|
;; the machine description, but typically on a RISC machine these can
|
109 |
|
|
;; only be pseudo registers that did not get hard registers, while on
|
110 |
|
|
;; other machines explicit memory references will get optional
|
111 |
|
|
;; reloads.
|
112 |
|
|
;;
|
113 |
|
|
;; If a scratch register is required to move an object to or from memory, it
|
114 |
|
|
;; can be allocated using `gen_reg_rtx' prior to reload. But this is
|
115 |
|
|
;; impossible during and after reload. If there are cases needing scratch
|
116 |
|
|
;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
|
117 |
|
|
;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
|
118 |
|
|
;; patterns `reload_inM' or `reload_outM' to handle them.
|
119 |
|
|
|
120 |
|
|
;; The constraints on a `moveM' must permit moving any hard register to any
|
121 |
|
|
;; other hard register provided that `HARD_REGNO_MODE_OK' permits mode M in
|
122 |
|
|
;; both registers and `REGISTER_MOVE_COST' applied to their classes returns a
|
123 |
|
|
;; value of 2.
|
124 |
|
|
|
125 |
|
|
;; It is obligatory to support floating point `moveM' instructions
|
126 |
|
|
;; into and out of any registers that can hold fixed point values,
|
127 |
|
|
;; because unions and structures (which have modes `SImode' or
|
128 |
|
|
;; `DImode') can be in those registers and they may have floating
|
129 |
|
|
;; point members.
|
130 |
|
|
|
131 |
|
|
;; There may also be a need to support fixed point `moveM' instructions in and
|
132 |
|
|
;; out of floating point registers. Unfortunately, I have forgotten why this
|
133 |
|
|
;; was so, and I don't know whether it is still true. If `HARD_REGNO_MODE_OK'
|
134 |
|
|
;; rejects fixed point values in floating point registers, then the constraints
|
135 |
|
|
;; of the fixed point `moveM' instructions must be designed to avoid ever
|
136 |
|
|
;; trying to reload into a floating point register.
|
137 |
|
|
|
138 |
|
|
;;}}}
|
139 |
|
|
;;{{{ Push and Pop
|
140 |
|
|
|
141 |
|
|
;; Push a register onto the stack
|
142 |
|
|
(define_insn "movsi_push"
|
143 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
144 |
|
|
(match_operand:SI 0 "register_operand" "a"))]
|
145 |
|
|
""
|
146 |
|
|
"st %0, @-r15"
|
147 |
|
|
)
|
148 |
|
|
|
149 |
|
|
;; Pop a register off the stack
|
150 |
|
|
(define_insn "movsi_pop"
|
151 |
|
|
[(set:SI (match_operand:SI 0 "register_operand" "=a")
|
152 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))]
|
153 |
|
|
""
|
154 |
|
|
"ld @r15+, %0"
|
155 |
|
|
)
|
156 |
|
|
|
157 |
|
|
;;}}}
|
158 |
|
|
;;{{{ 1 Byte Moves
|
159 |
|
|
|
160 |
|
|
(define_expand "movqi"
|
161 |
|
|
[(set (match_operand:QI 0 "general_operand" "")
|
162 |
|
|
(match_operand:QI 1 "general_operand" ""))]
|
163 |
|
|
""
|
164 |
|
|
"
|
165 |
|
|
{
|
166 |
|
|
if (!reload_in_progress
|
167 |
|
|
&& !reload_completed
|
168 |
|
|
&& GET_CODE (operands[0]) == MEM
|
169 |
|
|
&& (GET_CODE (operands[1]) == MEM
|
170 |
|
|
|| immediate_operand (operands[1], QImode)))
|
171 |
|
|
operands[1] = copy_to_mode_reg (QImode, operands[1]);
|
172 |
|
|
}")
|
173 |
|
|
|
174 |
|
|
(define_insn "movqi_unsigned_register_load"
|
175 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
176 |
|
|
(zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
|
177 |
|
|
""
|
178 |
|
|
"ldub %1, %0"
|
179 |
|
|
)
|
180 |
|
|
|
181 |
|
|
(define_expand "movqi_signed_register_load"
|
182 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
183 |
|
|
(sign_extend:SI (match_operand:QI 1 "memory_operand" "")))]
|
184 |
|
|
""
|
185 |
|
|
"
|
186 |
|
|
emit_insn (gen_movqi_unsigned_register_load (operands[0], operands[1]));
|
187 |
|
|
emit_insn (gen_extendqisi2 (operands[0], operands[0]));
|
188 |
|
|
DONE;
|
189 |
|
|
"
|
190 |
|
|
)
|
191 |
|
|
|
192 |
|
|
(define_insn "*movqi_internal"
|
193 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,red,m,r")
|
194 |
|
|
(match_operand:QI 1 "general_operand" "i,red,r,rm"))]
|
195 |
|
|
""
|
196 |
|
|
"@
|
197 |
|
|
ldi:8\\t#%A1, %0
|
198 |
|
|
mov \\t%1, %0
|
199 |
|
|
stb \\t%1, %0
|
200 |
|
|
ldub \\t%1, %0"
|
201 |
|
|
)
|
202 |
|
|
|
203 |
|
|
;;}}}
|
204 |
|
|
;;{{{ 2 Byte Moves
|
205 |
|
|
|
206 |
|
|
(define_expand "movhi"
|
207 |
|
|
[(set (match_operand:HI 0 "general_operand" "")
|
208 |
|
|
(match_operand:HI 1 "general_operand" ""))]
|
209 |
|
|
""
|
210 |
|
|
"
|
211 |
|
|
{
|
212 |
|
|
if (!reload_in_progress
|
213 |
|
|
&& !reload_completed
|
214 |
|
|
&& GET_CODE (operands[0]) == MEM
|
215 |
|
|
&& (GET_CODE (operands[1]) == MEM
|
216 |
|
|
|| immediate_operand (operands[1], HImode)))
|
217 |
|
|
operands[1] = copy_to_mode_reg (HImode, operands[1]);
|
218 |
|
|
}")
|
219 |
|
|
|
220 |
|
|
(define_insn "movhi_unsigned_register_load"
|
221 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
222 |
|
|
(zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
|
223 |
|
|
""
|
224 |
|
|
"lduh %1, %0"
|
225 |
|
|
)
|
226 |
|
|
|
227 |
|
|
(define_expand "movhi_signed_register_load"
|
228 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
229 |
|
|
(sign_extend:SI (match_operand:HI 1 "memory_operand" "")))]
|
230 |
|
|
""
|
231 |
|
|
"
|
232 |
|
|
emit_insn (gen_movhi_unsigned_register_load (operands[0], operands[1]));
|
233 |
|
|
emit_insn (gen_extendhisi2 (operands[0], operands[0]));
|
234 |
|
|
DONE;
|
235 |
|
|
"
|
236 |
|
|
)
|
237 |
|
|
|
238 |
|
|
(define_insn "*movhi_internal"
|
239 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,red,m,r")
|
240 |
|
|
(match_operand:HI 1 "general_operand" "L,M,n,red,r,rm"))]
|
241 |
|
|
""
|
242 |
|
|
"@
|
243 |
|
|
ldi:8 \\t#%1, %0
|
244 |
|
|
ldi:20\\t#%1, %0
|
245 |
|
|
ldi:32\\t#%1, %0
|
246 |
|
|
mov \\t%1, %0
|
247 |
|
|
sth \\t%1, %0
|
248 |
|
|
lduh \\t%1, %0"
|
249 |
|
|
[(set_attr "length" "*,4,6,*,*,*")]
|
250 |
|
|
)
|
251 |
|
|
|
252 |
|
|
;;}}}
|
253 |
|
|
;;{{{ 4 Byte Moves
|
254 |
|
|
|
255 |
|
|
;; If the destination is a MEM and the source is a
|
256 |
|
|
;; MEM or an CONST_INT move the source into a register.
|
257 |
|
|
(define_expand "movsi"
|
258 |
|
|
[(set (match_operand:SI 0 "nonimmediate_operand" "")
|
259 |
|
|
(match_operand:SI 1 "general_operand" ""))]
|
260 |
|
|
""
|
261 |
|
|
"{
|
262 |
|
|
if (!reload_in_progress
|
263 |
|
|
&& !reload_completed
|
264 |
|
|
&& GET_CODE(operands[0]) == MEM
|
265 |
|
|
&& (GET_CODE (operands[1]) == MEM
|
266 |
|
|
|| immediate_operand (operands[1], SImode)))
|
267 |
|
|
operands[1] = copy_to_mode_reg (SImode, operands[1]);
|
268 |
|
|
}"
|
269 |
|
|
)
|
270 |
|
|
|
271 |
|
|
;; We can do some clever tricks when loading certain immediate
|
272 |
|
|
;; values. We implement these tricks as define_splits, rather
|
273 |
|
|
;; than putting the code into the define_expand "movsi" above,
|
274 |
|
|
;; because if we put them there, they will be evaluated at RTL
|
275 |
|
|
;; generation time and then the combiner pass will come along
|
276 |
|
|
;; and replace the multiple insns that have been generated with
|
277 |
|
|
;; the original, slower, load insns. (The combiner pass only
|
278 |
|
|
;; cares about reducing the number of instructions, it does not
|
279 |
|
|
;; care about instruction lengths or speeds). Splits are
|
280 |
|
|
;; evaluated after the combine pass and before the scheduling
|
281 |
|
|
;; passes, so that they are the perfect place to put this
|
282 |
|
|
;; intelligence.
|
283 |
|
|
;;
|
284 |
|
|
;; XXX we probably ought to implement these for QI and HI mode
|
285 |
|
|
;; loads as well.
|
286 |
|
|
|
287 |
|
|
;; If we are loading a small negative constant we can save space
|
288 |
|
|
;; and time by loading the positive value and then sign extending it.
|
289 |
|
|
(define_split
|
290 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
291 |
|
|
(match_operand:SI 1 "const_int_operand" ""))]
|
292 |
|
|
"INTVAL (operands[1]) <= -1 && INTVAL (operands[1]) >= -128
|
293 |
|
|
&& (GET_CODE (operands[0]) != SUBREG
|
294 |
|
|
|| SCALAR_INT_MODE_P (GET_MODE (XEXP (operands[0], 0))))"
|
295 |
|
|
[(set:SI (match_dup 0) (match_dup 1))
|
296 |
|
|
(set:SI (match_dup 0) (sign_extend:SI (match_dup 2)))]
|
297 |
|
|
"{
|
298 |
|
|
operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff);
|
299 |
|
|
operands[2] = gen_lowpart (QImode, operands[0]);
|
300 |
|
|
}"
|
301 |
|
|
)
|
302 |
|
|
|
303 |
|
|
;; If we are loading a large negative constant, one which does
|
304 |
|
|
;; not have any of its bottom 24 bit set, then we can save time
|
305 |
|
|
;; and space by loading the byte value and shifting it into place.
|
306 |
|
|
(define_split
|
307 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
308 |
|
|
(match_operand:SI 1 "const_int_operand" ""))]
|
309 |
|
|
"(INTVAL (operands[1]) < 0) && ((INTVAL (operands[1]) & 0x00ffffff) == 0)"
|
310 |
|
|
[(set:SI (match_dup 0) (match_dup 2))
|
311 |
|
|
(parallel [(set:SI (match_dup 0) (ashift:SI (match_dup 0) (const_int 24)))
|
312 |
|
|
(clobber (reg:CC 16))])]
|
313 |
|
|
"{
|
314 |
|
|
HOST_WIDE_INT val = INTVAL (operands[1]);
|
315 |
|
|
operands[2] = GEN_INT (val >> 24);
|
316 |
|
|
}"
|
317 |
|
|
)
|
318 |
|
|
|
319 |
|
|
;; If we are loading a large positive constant, one which has bits
|
320 |
|
|
;; in the top byte set, but whose set bits all lie within an 8 bit
|
321 |
|
|
;; range, then we can save time and space by loading the byte value
|
322 |
|
|
;; and shifting it into place.
|
323 |
|
|
(define_split
|
324 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
325 |
|
|
(match_operand:SI 1 "const_int_operand" ""))]
|
326 |
|
|
"(INTVAL (operands[1]) > 0x00ffffff)
|
327 |
|
|
&& ((INTVAL (operands[1]) >> exact_log2 (INTVAL (operands[1]) & (- INTVAL (operands[1])))) < 0x100)"
|
328 |
|
|
[(set:SI (match_dup 0) (match_dup 2))
|
329 |
|
|
(parallel [(set:SI (match_dup 0) (ashift:SI (match_dup 0) (match_dup 3)))
|
330 |
|
|
(clobber (reg:CC 16))])]
|
331 |
|
|
"{
|
332 |
|
|
HOST_WIDE_INT val = INTVAL (operands[1]);
|
333 |
|
|
int shift = exact_log2 (val & ( - val));
|
334 |
|
|
operands[2] = GEN_INT (val >> shift);
|
335 |
|
|
operands[3] = GEN_INT (shift);
|
336 |
|
|
}"
|
337 |
|
|
)
|
338 |
|
|
|
339 |
|
|
;; When TARGET_SMALL_MODEL is defined we assume that all symbolic
|
340 |
|
|
;; values are addresses which will fit in 20 bits.
|
341 |
|
|
|
342 |
|
|
(define_insn "movsi_internal"
|
343 |
|
|
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,red,V,r,m")
|
344 |
|
|
(match_operand:SI 1 "general_operand" "L,M,n,i,rde,r,rm,r"))]
|
345 |
|
|
""
|
346 |
|
|
"*
|
347 |
|
|
{
|
348 |
|
|
switch (which_alternative)
|
349 |
|
|
{
|
350 |
|
|
case 0: return \"ldi:8 \\t#%1, %0\";
|
351 |
|
|
case 1: return \"ldi:20\\t#%1, %0\";
|
352 |
|
|
case 2: return \"ldi:32\\t#%1, %0\";
|
353 |
|
|
case 3: if (TARGET_SMALL_MODEL)
|
354 |
|
|
return \"ldi:20\\t%1, %0\";
|
355 |
|
|
else
|
356 |
|
|
return \"ldi:32\\t%1, %0\";
|
357 |
|
|
case 4: return \"mov \\t%1, %0\";
|
358 |
|
|
case 5: return \"st \\t%1, %0\";
|
359 |
|
|
case 6: return \"ld \\t%1, %0\";
|
360 |
|
|
case 7: return \"st \\t%1, %0\";
|
361 |
|
|
default: gcc_unreachable ();
|
362 |
|
|
}
|
363 |
|
|
}"
|
364 |
|
|
[(set (attr "length") (cond [(eq_attr "alternative" "1") (const_int 4)
|
365 |
|
|
(eq_attr "alternative" "2") (const_int 6)
|
366 |
|
|
(eq_attr "alternative" "3")
|
367 |
|
|
(if_then_else (eq_attr "size" "small")
|
368 |
|
|
(const_int 4)
|
369 |
|
|
(const_int 6))]
|
370 |
|
|
(const_int 2)))]
|
371 |
|
|
)
|
372 |
|
|
|
373 |
|
|
;;}}}
|
374 |
|
|
;;{{{ 8 Byte Moves
|
375 |
|
|
|
376 |
|
|
;; Note - the FR30 does not have an 8 byte load/store instruction
|
377 |
|
|
;; but we have to support this pattern because some other patterns
|
378 |
|
|
;; (e.g. muldisi2) can produce a DImode result.
|
379 |
|
|
;; (This code is stolen from the M32R port.)
|
380 |
|
|
|
381 |
|
|
(define_expand "movdi"
|
382 |
|
|
[(set (match_operand:DI 0 "nonimmediate_operand" "")
|
383 |
|
|
(match_operand:DI 1 "general_operand" ""))]
|
384 |
|
|
""
|
385 |
|
|
"
|
386 |
|
|
/* Everything except mem = const or mem = mem can be done easily. */
|
387 |
|
|
|
388 |
|
|
if (GET_CODE (operands[0]) == MEM)
|
389 |
|
|
operands[1] = force_reg (DImode, operands[1]);
|
390 |
|
|
"
|
391 |
|
|
)
|
392 |
|
|
|
393 |
|
|
;; We use an insn and a split so that we can generate
|
394 |
|
|
;; RTL rather than text from fr30_move_double().
|
395 |
|
|
|
396 |
|
|
(define_insn "*movdi_insn"
|
397 |
|
|
[(set (match_operand:DI 0 "nonimmediate_di_operand" "=r,r,m,r")
|
398 |
|
|
(match_operand:DI 1 "di_operand" "r,m,r,nF"))]
|
399 |
|
|
"register_operand (operands[0], DImode) || register_operand (operands[1], DImode)"
|
400 |
|
|
"#"
|
401 |
|
|
[(set_attr "length" "4,8,12,12")]
|
402 |
|
|
)
|
403 |
|
|
|
404 |
|
|
(define_split
|
405 |
|
|
[(set (match_operand:DI 0 "nonimmediate_di_operand" "")
|
406 |
|
|
(match_operand:DI 1 "di_operand" ""))]
|
407 |
|
|
"reload_completed"
|
408 |
|
|
[(match_dup 2)]
|
409 |
|
|
"operands[2] = fr30_move_double (operands);"
|
410 |
|
|
)
|
411 |
|
|
|
412 |
|
|
;;}}}
|
413 |
|
|
;;{{{ Load & Store Multiple Registers
|
414 |
|
|
|
415 |
|
|
;; The load multiple and store multiple patterns are implemented
|
416 |
|
|
;; as peepholes because the only time they are expected to occur
|
417 |
|
|
;; is during function prologues and epilogues.
|
418 |
|
|
|
419 |
|
|
(define_peephole
|
420 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
421 |
|
|
(match_operand:SI 0 "high_register_operand" "h"))
|
422 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
423 |
|
|
(match_operand:SI 1 "high_register_operand" "h"))
|
424 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
425 |
|
|
(match_operand:SI 2 "high_register_operand" "h"))
|
426 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
427 |
|
|
(match_operand:SI 3 "high_register_operand" "h"))]
|
428 |
|
|
"fr30_check_multiple_regs (operands, 4, 1)"
|
429 |
|
|
"stm1 (%0, %1, %2, %3)"
|
430 |
|
|
[(set_attr "delay_type" "other")]
|
431 |
|
|
)
|
432 |
|
|
|
433 |
|
|
(define_peephole
|
434 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
435 |
|
|
(match_operand:SI 0 "high_register_operand" "h"))
|
436 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
437 |
|
|
(match_operand:SI 1 "high_register_operand" "h"))
|
438 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
439 |
|
|
(match_operand:SI 2 "high_register_operand" "h"))]
|
440 |
|
|
"fr30_check_multiple_regs (operands, 3, 1)"
|
441 |
|
|
"stm1 (%0, %1, %2)"
|
442 |
|
|
[(set_attr "delay_type" "other")]
|
443 |
|
|
)
|
444 |
|
|
|
445 |
|
|
(define_peephole
|
446 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
447 |
|
|
(match_operand:SI 0 "high_register_operand" "h"))
|
448 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
449 |
|
|
(match_operand:SI 1 "high_register_operand" "h"))]
|
450 |
|
|
"fr30_check_multiple_regs (operands, 2, 1)"
|
451 |
|
|
"stm1 (%0, %1)"
|
452 |
|
|
[(set_attr "delay_type" "other")]
|
453 |
|
|
)
|
454 |
|
|
|
455 |
|
|
(define_peephole
|
456 |
|
|
[(set:SI (match_operand:SI 0 "high_register_operand" "h")
|
457 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
458 |
|
|
(set:SI (match_operand:SI 1 "high_register_operand" "h")
|
459 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
460 |
|
|
(set:SI (match_operand:SI 2 "high_register_operand" "h")
|
461 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
462 |
|
|
(set:SI (match_operand:SI 3 "high_register_operand" "h")
|
463 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))]
|
464 |
|
|
"fr30_check_multiple_regs (operands, 4, 0)"
|
465 |
|
|
"ldm1 (%0, %1, %2, %3)"
|
466 |
|
|
[(set_attr "delay_type" "other")]
|
467 |
|
|
)
|
468 |
|
|
|
469 |
|
|
(define_peephole
|
470 |
|
|
[(set:SI (match_operand:SI 0 "high_register_operand" "h")
|
471 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
472 |
|
|
(set:SI (match_operand:SI 1 "high_register_operand" "h")
|
473 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
474 |
|
|
(set:SI (match_operand:SI 2 "high_register_operand" "h")
|
475 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))]
|
476 |
|
|
"fr30_check_multiple_regs (operands, 3, 0)"
|
477 |
|
|
"ldm1 (%0, %1, %2)"
|
478 |
|
|
[(set_attr "delay_type" "other")]
|
479 |
|
|
)
|
480 |
|
|
|
481 |
|
|
(define_peephole
|
482 |
|
|
[(set:SI (match_operand:SI 0 "high_register_operand" "h")
|
483 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))
|
484 |
|
|
(set:SI (match_operand:SI 1 "high_register_operand" "h")
|
485 |
|
|
(mem:SI (post_inc:SI (reg:SI 15))))]
|
486 |
|
|
"fr30_check_multiple_regs (operands, 2, 0)"
|
487 |
|
|
"ldm1 (%0, %1)"
|
488 |
|
|
[(set_attr "delay_type" "other")]
|
489 |
|
|
)
|
490 |
|
|
|
491 |
|
|
(define_peephole
|
492 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
493 |
|
|
(match_operand:SI 0 "low_register_operand" "l"))
|
494 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
495 |
|
|
(match_operand:SI 1 "low_register_operand" "l"))
|
496 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
497 |
|
|
(match_operand:SI 2 "low_register_operand" "l"))
|
498 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
499 |
|
|
(match_operand:SI 3 "low_register_operand" "l"))]
|
500 |
|
|
"fr30_check_multiple_regs (operands, 4, 1)"
|
501 |
|
|
"stm0 (%0, %1, %2, %3)"
|
502 |
|
|
[(set_attr "delay_type" "other")]
|
503 |
|
|
)
|
504 |
|
|
|
505 |
|
|
(define_peephole
|
506 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
507 |
|
|
(match_operand:SI 0 "low_register_operand" "l"))
|
508 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
509 |
|
|
(match_operand:SI 1 "low_register_operand" "l"))
|
510 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
511 |
|
|
(match_operand:SI 2 "low_register_operand" "l"))]
|
512 |
|
|
"fr30_check_multiple_regs (operands, 3, 1)"
|
513 |
|
|
"stm0 (%0, %1, %2)"
|
514 |
|
|
[(set_attr "delay_type" "other")]
|
515 |
|
|
)
|
516 |
|
|
|
517 |
|
|
(define_peephole
|
518 |
|
|
[(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
519 |
|
|
(match_operand:SI 0 "low_register_operand" "l"))
|
520 |
|
|
(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
|
521 |
|
|
(match_operand:SI 1 "low_register_operand" "l"))]
|
522 |
|
|
"fr30_check_multiple_regs (operands, 2, 1)"
|
523 |
|
|
"stm0 (%0, %1)"
|
524 |
|
|
[(set_attr "delay_type" "other")]
|
525 |
|
|
)
|
526 |
|
|
|
527 |
|
|
;;}}}
|
528 |
|
|
;;{{{ Floating Point Moves
|
529 |
|
|
|
530 |
|
|
;; Note - Patterns for SF mode moves are compulsory, but
|
531 |
|
|
;; patterns for DF are optional, as GCC can synthesize them.
|
532 |
|
|
|
533 |
|
|
(define_expand "movsf"
|
534 |
|
|
[(set (match_operand:SF 0 "general_operand" "")
|
535 |
|
|
(match_operand:SF 1 "general_operand" ""))]
|
536 |
|
|
""
|
537 |
|
|
"{
|
538 |
|
|
if (!reload_in_progress && !reload_completed
|
539 |
|
|
&& memory_operand (operands[0], SFmode)
|
540 |
|
|
&& memory_operand (operands[1], SFmode))
|
541 |
|
|
operands[1] = copy_to_mode_reg (SFmode, operands[1]);
|
542 |
|
|
}"
|
543 |
|
|
)
|
544 |
|
|
|
545 |
|
|
(define_insn "*movsf_internal"
|
546 |
|
|
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,red,m,r")
|
547 |
|
|
(match_operand:SF 1 "general_operand" "Fn,i,rde,r,rm"))]
|
548 |
|
|
""
|
549 |
|
|
"*
|
550 |
|
|
{
|
551 |
|
|
switch (which_alternative)
|
552 |
|
|
{
|
553 |
|
|
case 0: return \"ldi:32\\t%1, %0\";
|
554 |
|
|
case 1: if (TARGET_SMALL_MODEL)
|
555 |
|
|
return \"ldi:20\\t%1, %0\";
|
556 |
|
|
else
|
557 |
|
|
return \"ldi:32\\t%1, %0\";
|
558 |
|
|
case 2: return \"mov \\t%1, %0\";
|
559 |
|
|
case 3: return \"st \\t%1, %0\";
|
560 |
|
|
case 4: return \"ld \\t%1, %0\";
|
561 |
|
|
default: gcc_unreachable ();
|
562 |
|
|
}
|
563 |
|
|
}"
|
564 |
|
|
[(set (attr "length") (cond [(eq_attr "alternative" "0") (const_int 6)
|
565 |
|
|
(eq_attr "alternative" "1")
|
566 |
|
|
(if_then_else (eq_attr "size" "small")
|
567 |
|
|
(const_int 4)
|
568 |
|
|
(const_int 6))]
|
569 |
|
|
(const_int 2)))]
|
570 |
|
|
)
|
571 |
|
|
|
572 |
|
|
(define_insn "*movsf_constant_store"
|
573 |
|
|
[(set (match_operand:SF 0 "memory_operand" "=m")
|
574 |
|
|
(match_operand:SF 1 "immediate_operand" "F"))]
|
575 |
|
|
""
|
576 |
|
|
"*
|
577 |
|
|
{
|
578 |
|
|
const char * ldi_instr;
|
579 |
|
|
const char * tmp_reg;
|
580 |
|
|
static char buffer[100];
|
581 |
|
|
|
582 |
|
|
ldi_instr = fr30_const_double_is_zero (operands[1])
|
583 |
|
|
? ldi_instr = \"ldi:8\" : \"ldi:32\";
|
584 |
|
|
|
585 |
|
|
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
|
586 |
|
|
|
587 |
|
|
sprintf (buffer, \"%s\\t#%%1, %s\\t;\\n\\tst\\t%s, %%0\\t; Created by movsf_constant_store\",
|
588 |
|
|
ldi_instr, tmp_reg, tmp_reg);
|
589 |
|
|
|
590 |
|
|
return buffer;
|
591 |
|
|
}"
|
592 |
|
|
[(set_attr "length" "8")]
|
593 |
|
|
)
|
594 |
|
|
|
595 |
|
|
;;}}}
|
596 |
|
|
|
597 |
|
|
;;}}}
|
598 |
|
|
;;{{{ Conversions
|
599 |
|
|
|
600 |
|
|
;; Signed conversions from a smaller integer to a larger integer
|
601 |
|
|
|
602 |
|
|
(define_insn "extendqisi2"
|
603 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
604 |
|
|
(sign_extend:SI (match_operand:QI 1 "register_operand" "0")))]
|
605 |
|
|
""
|
606 |
|
|
"extsb %0"
|
607 |
|
|
)
|
608 |
|
|
|
609 |
|
|
(define_insn "extendhisi2"
|
610 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
611 |
|
|
(sign_extend:SI (match_operand:HI 1 "register_operand" "0")))]
|
612 |
|
|
""
|
613 |
|
|
"extsh %0"
|
614 |
|
|
)
|
615 |
|
|
|
616 |
|
|
;; Unsigned conversions from a smaller integer to a larger integer
|
617 |
|
|
|
618 |
|
|
(define_insn "zero_extendqisi2"
|
619 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
620 |
|
|
(zero_extend:SI (match_operand:QI 1 "register_operand" "0")))]
|
621 |
|
|
""
|
622 |
|
|
"extub %0"
|
623 |
|
|
)
|
624 |
|
|
|
625 |
|
|
(define_insn "zero_extendhisi2"
|
626 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
627 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))]
|
628 |
|
|
""
|
629 |
|
|
"extuh %0"
|
630 |
|
|
)
|
631 |
|
|
|
632 |
|
|
;;}}}
|
633 |
|
|
;;{{{ Arithmetic
|
634 |
|
|
|
635 |
|
|
;;{{{ Addition
|
636 |
|
|
|
637 |
|
|
;; This is a special pattern just for adjusting the stack size.
|
638 |
|
|
(define_insn "add_to_stack"
|
639 |
|
|
[(set (reg:SI 15)
|
640 |
|
|
(plus:SI (reg:SI 15)
|
641 |
|
|
(match_operand:SI 0 "stack_add_operand" "i")))]
|
642 |
|
|
""
|
643 |
|
|
"addsp %0"
|
644 |
|
|
)
|
645 |
|
|
|
646 |
|
|
;; We need some trickery to be able to handle the addition of
|
647 |
|
|
;; large (i.e. outside +/- 16) constants. We need to be able to
|
648 |
|
|
;; handle this because reload assumes that it can generate add
|
649 |
|
|
;; instructions with arbitrary sized constants.
|
650 |
|
|
(define_expand "addsi3"
|
651 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
652 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "")
|
653 |
|
|
(match_operand:SI 2 "nonmemory_operand" "")))]
|
654 |
|
|
""
|
655 |
|
|
"{
|
656 |
|
|
if ( GET_CODE (operands[2]) == REG
|
657 |
|
|
|| GET_CODE (operands[2]) == SUBREG)
|
658 |
|
|
emit_insn (gen_addsi_regs (operands[0], operands[1], operands[2]));
|
659 |
|
|
else if (GET_CODE (operands[2]) != CONST_INT)
|
660 |
|
|
emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
|
661 |
|
|
else if (INTVAL (operands[2]) >= -16
|
662 |
|
|
&& INTVAL (operands[2]) <= 15
|
663 |
|
|
&& (!REG_P (operands[1])
|
664 |
|
|
|| !REGNO_PTR_FRAME_P (REGNO (operands[1]))
|
665 |
|
|
|| REGNO (operands[1]) == STACK_POINTER_REGNUM))
|
666 |
|
|
emit_insn (gen_addsi_small_int (operands[0], operands[1], operands[2]));
|
667 |
|
|
else
|
668 |
|
|
emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
|
669 |
|
|
DONE;
|
670 |
|
|
}"
|
671 |
|
|
)
|
672 |
|
|
|
673 |
|
|
(define_insn "addsi_regs"
|
674 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
675 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "%0")
|
676 |
|
|
(match_operand:SI 2 "register_operand" "r")))]
|
677 |
|
|
""
|
678 |
|
|
"addn %2, %0"
|
679 |
|
|
)
|
680 |
|
|
|
681 |
|
|
;; Do not allow an eliminable register in the source register. It
|
682 |
|
|
;; might be eliminated in favor of the stack pointer, probably
|
683 |
|
|
;; increasing the offset, and so rendering the instruction illegal.
|
684 |
|
|
(define_insn "addsi_small_int"
|
685 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r")
|
686 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "0,0")
|
687 |
|
|
(match_operand:SI 2 "add_immediate_operand" "I,J")))]
|
688 |
|
|
"!REG_P (operands[1])
|
689 |
|
|
|| !REGNO_PTR_FRAME_P (REGNO (operands[1]))
|
690 |
|
|
|| REGNO (operands[1]) == STACK_POINTER_REGNUM"
|
691 |
|
|
"@
|
692 |
|
|
addn %2, %0
|
693 |
|
|
addn2 %2, %0"
|
694 |
|
|
)
|
695 |
|
|
|
696 |
|
|
(define_expand "addsi_big_int"
|
697 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
698 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "")
|
699 |
|
|
(match_operand:SI 2 "immediate_operand" "")))]
|
700 |
|
|
""
|
701 |
|
|
"{
|
702 |
|
|
/* Cope with the possibility that ops 0 and 1 are the same register. */
|
703 |
|
|
if (rtx_equal_p (operands[0], operands[1]))
|
704 |
|
|
{
|
705 |
|
|
if (reload_in_progress || reload_completed)
|
706 |
|
|
{
|
707 |
|
|
rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
|
708 |
|
|
|
709 |
|
|
emit_insn (gen_movsi (reg, operands[2]));
|
710 |
|
|
emit_insn (gen_addsi_regs (operands[0], operands[0], reg));
|
711 |
|
|
}
|
712 |
|
|
else
|
713 |
|
|
{
|
714 |
|
|
operands[2] = force_reg (SImode, operands[2]);
|
715 |
|
|
emit_insn (gen_addsi_regs (operands[0], operands[0], operands[2]));
|
716 |
|
|
}
|
717 |
|
|
}
|
718 |
|
|
else
|
719 |
|
|
{
|
720 |
|
|
emit_insn (gen_movsi (operands[0], operands[2]));
|
721 |
|
|
emit_insn (gen_addsi_regs (operands[0], operands[0], operands[1]));
|
722 |
|
|
}
|
723 |
|
|
DONE;
|
724 |
|
|
}"
|
725 |
|
|
)
|
726 |
|
|
|
727 |
|
|
(define_insn "*addsi_for_reload"
|
728 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r,r,r")
|
729 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "r,r,r")
|
730 |
|
|
(match_operand:SI 2 "immediate_operand" "L,M,n")))]
|
731 |
|
|
"reload_in_progress || reload_completed"
|
732 |
|
|
"@
|
733 |
|
|
ldi:8\\t#%2, %0 \\n\\taddn\\t%1, %0
|
734 |
|
|
ldi:20\\t#%2, %0 \\n\\taddn\\t%1, %0
|
735 |
|
|
ldi:32\\t#%2, %0 \\n\\taddn\\t%1, %0"
|
736 |
|
|
[(set_attr "length" "4,6,8")]
|
737 |
|
|
)
|
738 |
|
|
|
739 |
|
|
;;}}}
|
740 |
|
|
;;{{{ Subtraction
|
741 |
|
|
|
742 |
|
|
(define_insn "subsi3"
|
743 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
744 |
|
|
(minus:SI (match_operand:SI 1 "register_operand" "0")
|
745 |
|
|
(match_operand:SI 2 "register_operand" "r")))]
|
746 |
|
|
""
|
747 |
|
|
"subn %2, %0"
|
748 |
|
|
)
|
749 |
|
|
|
750 |
|
|
;;}}}
|
751 |
|
|
;;{{{ Multiplication
|
752 |
|
|
|
753 |
|
|
;; Signed multiplication producing 64-bit results from 32-bit inputs
|
754 |
|
|
(define_insn "mulsidi3"
|
755 |
|
|
[(set (match_operand:DI 0 "register_operand" "=r")
|
756 |
|
|
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
757 |
|
|
(sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))
|
758 |
|
|
(clobber (reg:CC 16))]
|
759 |
|
|
""
|
760 |
|
|
"mul %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
|
761 |
|
|
[(set_attr "length" "6")]
|
762 |
|
|
)
|
763 |
|
|
|
764 |
|
|
;; Unsigned multiplication producing 64-bit results from 32-bit inputs
|
765 |
|
|
(define_insn "umulsidi3"
|
766 |
|
|
[(set (match_operand:DI 0 "register_operand" "=r")
|
767 |
|
|
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
768 |
|
|
(zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))
|
769 |
|
|
(clobber (reg:CC 16))]
|
770 |
|
|
""
|
771 |
|
|
"mulu %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
|
772 |
|
|
[(set_attr "length" "6")]
|
773 |
|
|
)
|
774 |
|
|
|
775 |
|
|
;; Signed multiplication producing 32-bit result from 16-bit inputs
|
776 |
|
|
(define_insn "mulhisi3"
|
777 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
778 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
779 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))
|
780 |
|
|
(clobber (reg:CC 16))]
|
781 |
|
|
""
|
782 |
|
|
"mulh %2, %1\\n\\tmov\\tmdl, %0"
|
783 |
|
|
[(set_attr "length" "4")]
|
784 |
|
|
)
|
785 |
|
|
|
786 |
|
|
;; Unsigned multiplication producing 32-bit result from 16-bit inputs
|
787 |
|
|
(define_insn "umulhisi3"
|
788 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
789 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
790 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))
|
791 |
|
|
(clobber (reg:CC 16))]
|
792 |
|
|
""
|
793 |
|
|
"muluh %2, %1\\n\\tmov\\tmdl, %0"
|
794 |
|
|
[(set_attr "length" "4")]
|
795 |
|
|
)
|
796 |
|
|
|
797 |
|
|
;; Signed multiplication producing 32-bit result from 32-bit inputs
|
798 |
|
|
(define_insn "mulsi3"
|
799 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
800 |
|
|
(mult:SI (match_operand:SI 1 "register_operand" "%r")
|
801 |
|
|
(match_operand:SI 2 "register_operand" "r")))
|
802 |
|
|
(clobber (reg:CC 16))]
|
803 |
|
|
""
|
804 |
|
|
"mul %2, %1\\n\\tmov\\tmdl, %0"
|
805 |
|
|
[(set_attr "length" "4")]
|
806 |
|
|
)
|
807 |
|
|
|
808 |
|
|
;;}}}
|
809 |
|
|
;;}}}
|
810 |
|
|
;;{{{ Shifts
|
811 |
|
|
|
812 |
|
|
;; Arithmetic Shift Left
|
813 |
|
|
(define_insn "ashlsi3"
|
814 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
815 |
|
|
(ashift:SI (match_operand:SI 1 "register_operand" "0,0,0")
|
816 |
|
|
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
|
817 |
|
|
(clobber (reg:CC 16))]
|
818 |
|
|
""
|
819 |
|
|
"@
|
820 |
|
|
lsl %2, %0
|
821 |
|
|
lsl %2, %0
|
822 |
|
|
lsl2 %x2, %0"
|
823 |
|
|
)
|
824 |
|
|
|
825 |
|
|
;; Arithmetic Shift Right
|
826 |
|
|
(define_insn "ashrsi3"
|
827 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
828 |
|
|
(ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
|
829 |
|
|
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
|
830 |
|
|
(clobber (reg:CC 16))]
|
831 |
|
|
""
|
832 |
|
|
"@
|
833 |
|
|
asr %2, %0
|
834 |
|
|
asr %2, %0
|
835 |
|
|
asr2 %x2, %0"
|
836 |
|
|
)
|
837 |
|
|
|
838 |
|
|
;; Logical Shift Right
|
839 |
|
|
(define_insn "lshrsi3"
|
840 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
841 |
|
|
(lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
|
842 |
|
|
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
|
843 |
|
|
(clobber (reg:CC 16))]
|
844 |
|
|
""
|
845 |
|
|
"@
|
846 |
|
|
lsr %2, %0
|
847 |
|
|
lsr %2, %0
|
848 |
|
|
lsr2 %x2, %0"
|
849 |
|
|
)
|
850 |
|
|
|
851 |
|
|
;;}}}
|
852 |
|
|
;;{{{ Logical Operations
|
853 |
|
|
|
854 |
|
|
;; Logical AND, 32-bit integers
|
855 |
|
|
(define_insn "andsi3"
|
856 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
857 |
|
|
(and:SI (match_operand:SI 1 "register_operand" "%r")
|
858 |
|
|
(match_operand:SI 2 "register_operand" "0")))
|
859 |
|
|
(clobber (reg:CC 16))]
|
860 |
|
|
""
|
861 |
|
|
"and %1, %0"
|
862 |
|
|
)
|
863 |
|
|
|
864 |
|
|
;; Inclusive OR, 32-bit integers
|
865 |
|
|
(define_insn "iorsi3"
|
866 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
867 |
|
|
(ior:SI (match_operand:SI 1 "register_operand" "%r")
|
868 |
|
|
(match_operand:SI 2 "register_operand" "0")))
|
869 |
|
|
(clobber (reg:CC 16))]
|
870 |
|
|
""
|
871 |
|
|
"or %1, %0"
|
872 |
|
|
)
|
873 |
|
|
|
874 |
|
|
;; Exclusive OR, 32-bit integers
|
875 |
|
|
(define_insn "xorsi3"
|
876 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
877 |
|
|
(xor:SI (match_operand:SI 1 "register_operand" "%r")
|
878 |
|
|
(match_operand:SI 2 "register_operand" "0")))
|
879 |
|
|
(clobber (reg:CC 16))]
|
880 |
|
|
""
|
881 |
|
|
"eor %1, %0"
|
882 |
|
|
)
|
883 |
|
|
|
884 |
|
|
;; One's complement, 32-bit integers
|
885 |
|
|
(define_expand "one_cmplsi2"
|
886 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
887 |
|
|
(not:SI (match_operand:SI 1 "register_operand" "")))]
|
888 |
|
|
""
|
889 |
|
|
"{
|
890 |
|
|
if (rtx_equal_p (operands[0], operands[1]))
|
891 |
|
|
{
|
892 |
|
|
if (reload_in_progress || reload_completed)
|
893 |
|
|
{
|
894 |
|
|
rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
|
895 |
|
|
|
896 |
|
|
emit_insn (gen_movsi (reg, constm1_rtx));
|
897 |
|
|
emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
|
898 |
|
|
}
|
899 |
|
|
else
|
900 |
|
|
{
|
901 |
|
|
rtx reg = gen_reg_rtx (SImode);
|
902 |
|
|
|
903 |
|
|
emit_insn (gen_movsi (reg, constm1_rtx));
|
904 |
|
|
emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
|
905 |
|
|
}
|
906 |
|
|
}
|
907 |
|
|
else
|
908 |
|
|
{
|
909 |
|
|
emit_insn (gen_movsi_internal (operands[0], constm1_rtx));
|
910 |
|
|
emit_insn (gen_xorsi3 (operands[0], operands[1], operands[0]));
|
911 |
|
|
}
|
912 |
|
|
DONE;
|
913 |
|
|
}"
|
914 |
|
|
)
|
915 |
|
|
|
916 |
|
|
;;}}}
|
917 |
|
|
;;{{{ Comparisons
|
918 |
|
|
|
919 |
|
|
;; The actual comparisons, generated by the cbranch and/or cstore expanders
|
920 |
|
|
|
921 |
|
|
(define_insn "*cmpsi_internal"
|
922 |
|
|
[(set (reg:CC 16)
|
923 |
|
|
(compare:CC (match_operand:SI 0 "register_operand" "r,r,r")
|
924 |
|
|
(match_operand:SI 1 "nonmemory_operand" "r,I,J")))]
|
925 |
|
|
""
|
926 |
|
|
"@
|
927 |
|
|
cmp %1, %0
|
928 |
|
|
cmp %1, %0
|
929 |
|
|
cmp2 %1, %0"
|
930 |
|
|
)
|
931 |
|
|
|
932 |
|
|
;;}}}
|
933 |
|
|
;;{{{ Branches
|
934 |
|
|
|
935 |
|
|
;; Define_expands called by the machine independent part of the compiler
|
936 |
|
|
;; to allocate a new comparison register
|
937 |
|
|
|
938 |
|
|
(define_expand "cbranchsi4"
|
939 |
|
|
[(set (reg:CC 16)
|
940 |
|
|
(compare:CC (match_operand:SI 1 "register_operand" "")
|
941 |
|
|
(match_operand:SI 2 "nonmemory_operand" "")))
|
942 |
|
|
(set (pc)
|
943 |
|
|
(if_then_else (match_operator:CC 0 "ordered_comparison_operator"
|
944 |
|
|
[(reg:CC 16) (const_int 0)])
|
945 |
|
|
(label_ref (match_operand 3 "" ""))
|
946 |
|
|
(pc)))]
|
947 |
|
|
""
|
948 |
|
|
""
|
949 |
|
|
)
|
950 |
|
|
|
951 |
|
|
|
952 |
|
|
;; Actual branches. We must allow for the (label_ref) and the (pc) to be
|
953 |
|
|
;; swapped. If they are swapped, it reverses the sense of the branch.
|
954 |
|
|
|
955 |
|
|
;; This pattern matches the (branch-if-true) branches generated above.
|
956 |
|
|
;; It generates two different instruction sequences depending upon how
|
957 |
|
|
;; far away the destination is.
|
958 |
|
|
|
959 |
|
|
;; The calculation for the instruction length is derived as follows:
|
960 |
|
|
;; The branch instruction has a 9-bit signed displacement so we have
|
961 |
|
|
;; this inequality for the displacement:
|
962 |
|
|
;;
|
963 |
|
|
;; -256 <= pc < 256
|
964 |
|
|
;; or
|
965 |
|
|
;; -256 + 256 <= pc + 256 < 256 + 256
|
966 |
|
|
;; i.e.
|
967 |
|
|
;; 0 <= pc + 256 < 512
|
968 |
|
|
;;
|
969 |
|
|
;; if we consider the displacement as an unsigned value, then negative
|
970 |
|
|
;; displacements become very large positive displacements, and the
|
971 |
|
|
;; inequality becomes:
|
972 |
|
|
;;
|
973 |
|
|
;; pc + 256 < 512
|
974 |
|
|
;;
|
975 |
|
|
;; In order to allow for the fact that the real branch instruction works
|
976 |
|
|
;; from pc + 2, we increase the offset to 258.
|
977 |
|
|
;;
|
978 |
|
|
;; Note - we do not have to worry about whether the branch is delayed or
|
979 |
|
|
;; not, as branch shortening happens after delay slot reorganization.
|
980 |
|
|
|
981 |
|
|
(define_insn "*branch_true"
|
982 |
|
|
[(set (pc)
|
983 |
|
|
(if_then_else (match_operator:CC 0 "comparison_operator"
|
984 |
|
|
[(reg:CC 16)
|
985 |
|
|
(const_int 0)])
|
986 |
|
|
(label_ref (match_operand 1 "" ""))
|
987 |
|
|
(pc)))]
|
988 |
|
|
""
|
989 |
|
|
"*
|
990 |
|
|
{
|
991 |
|
|
if (get_attr_length (insn) == 2)
|
992 |
|
|
return \"b%b0%#\\t%l1\";
|
993 |
|
|
else
|
994 |
|
|
{
|
995 |
|
|
static char buffer [100];
|
996 |
|
|
const char * tmp_reg;
|
997 |
|
|
const char * ldi_insn;
|
998 |
|
|
|
999 |
|
|
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
|
1000 |
|
|
|
1001 |
|
|
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
|
1002 |
|
|
|
1003 |
|
|
/* The code produced here is, for say the EQ case:
|
1004 |
|
|
|
1005 |
|
|
Bne 1f
|
1006 |
|
|
LDI
|
1007 |
|
|
JMP r0
|
1008 |
|
|
1: */
|
1009 |
|
|
|
1010 |
|
|
sprintf (buffer,
|
1011 |
|
|
\"b%%B0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
|
1012 |
|
|
ldi_insn, tmp_reg, tmp_reg);
|
1013 |
|
|
|
1014 |
|
|
return buffer;
|
1015 |
|
|
}
|
1016 |
|
|
}"
|
1017 |
|
|
[(set (attr "length") (if_then_else
|
1018 |
|
|
(ltu
|
1019 |
|
|
(plus
|
1020 |
|
|
(minus
|
1021 |
|
|
(match_dup 1)
|
1022 |
|
|
(pc))
|
1023 |
|
|
(const_int 254))
|
1024 |
|
|
(const_int 506))
|
1025 |
|
|
(const_int 2)
|
1026 |
|
|
(if_then_else (eq_attr "size" "small")
|
1027 |
|
|
(const_int 8)
|
1028 |
|
|
(const_int 10))))
|
1029 |
|
|
(set_attr "delay_type" "delayed")]
|
1030 |
|
|
)
|
1031 |
|
|
|
1032 |
|
|
|
1033 |
|
|
;; This pattern is a duplicate of the previous one, except that the
|
1034 |
|
|
;; branch occurs if the test is false, so the %B operator is used.
|
1035 |
|
|
(define_insn "*branch_false"
|
1036 |
|
|
[(set (pc)
|
1037 |
|
|
(if_then_else (match_operator:CC 0 "comparison_operator"
|
1038 |
|
|
[(reg:CC 16)
|
1039 |
|
|
(const_int 0)])
|
1040 |
|
|
(pc)
|
1041 |
|
|
(label_ref (match_operand 1 "" ""))))]
|
1042 |
|
|
""
|
1043 |
|
|
"*
|
1044 |
|
|
{
|
1045 |
|
|
if (get_attr_length (insn) == 2)
|
1046 |
|
|
return \"b%B0%#\\t%l1 \";
|
1047 |
|
|
else
|
1048 |
|
|
{
|
1049 |
|
|
static char buffer [100];
|
1050 |
|
|
const char * tmp_reg;
|
1051 |
|
|
const char * ldi_insn;
|
1052 |
|
|
|
1053 |
|
|
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
|
1054 |
|
|
|
1055 |
|
|
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
|
1056 |
|
|
|
1057 |
|
|
sprintf (buffer,
|
1058 |
|
|
\"b%%b0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
|
1059 |
|
|
ldi_insn, tmp_reg, tmp_reg);
|
1060 |
|
|
|
1061 |
|
|
return buffer;
|
1062 |
|
|
}
|
1063 |
|
|
}"
|
1064 |
|
|
[(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 1) (pc))
|
1065 |
|
|
(const_int 254))
|
1066 |
|
|
(const_int 506))
|
1067 |
|
|
(const_int 2)
|
1068 |
|
|
(if_then_else (eq_attr "size" "small")
|
1069 |
|
|
(const_int 8)
|
1070 |
|
|
(const_int 10))))
|
1071 |
|
|
(set_attr "delay_type" "delayed")]
|
1072 |
|
|
)
|
1073 |
|
|
|
1074 |
|
|
;;}}}
|
1075 |
|
|
;;{{{ Calls & Jumps
|
1076 |
|
|
|
1077 |
|
|
;; Subroutine call instruction returning no value. Operand 0 is the function
|
1078 |
|
|
;; to call; operand 1 is the number of bytes of arguments pushed (in mode
|
1079 |
|
|
;; `SImode', except it is normally a `const_int'); operand 2 is the number of
|
1080 |
|
|
;; registers used as operands.
|
1081 |
|
|
|
1082 |
|
|
(define_insn "call"
|
1083 |
|
|
[(call (match_operand 0 "call_operand" "Qm")
|
1084 |
|
|
(match_operand 1 "" "g"))
|
1085 |
|
|
(clobber (reg:SI 17))]
|
1086 |
|
|
""
|
1087 |
|
|
"call%#\\t%0"
|
1088 |
|
|
[(set_attr "delay_type" "delayed")]
|
1089 |
|
|
)
|
1090 |
|
|
|
1091 |
|
|
;; Subroutine call instruction returning a value. Operand 0 is the hard
|
1092 |
|
|
;; register in which the value is returned. There are three more operands, the
|
1093 |
|
|
;; same as the three operands of the `call' instruction (but with numbers
|
1094 |
|
|
;; increased by one).
|
1095 |
|
|
|
1096 |
|
|
;; Subroutines that return `BLKmode' objects use the `call' insn.
|
1097 |
|
|
|
1098 |
|
|
(define_insn "call_value"
|
1099 |
|
|
[(set (match_operand 0 "register_operand" "=r")
|
1100 |
|
|
(call (match_operand 1 "call_operand" "Qm")
|
1101 |
|
|
(match_operand 2 "" "g")))
|
1102 |
|
|
(clobber (reg:SI 17))]
|
1103 |
|
|
""
|
1104 |
|
|
"call%#\\t%1"
|
1105 |
|
|
[(set_attr "delay_type" "delayed")]
|
1106 |
|
|
)
|
1107 |
|
|
|
1108 |
|
|
;; Normal unconditional jump.
|
1109 |
|
|
;; For a description of the computation of the length
|
1110 |
|
|
;; attribute see the branch patterns above.
|
1111 |
|
|
;;
|
1112 |
|
|
;; Although this instruction really clobbers r0, flow
|
1113 |
|
|
;; relies on jump being simplejump_p in several places
|
1114 |
|
|
;; and as r0 is fixed, this doesn't change anything
|
1115 |
|
|
(define_insn "jump"
|
1116 |
|
|
[(set (pc) (label_ref (match_operand 0 "" "")))]
|
1117 |
|
|
""
|
1118 |
|
|
"*
|
1119 |
|
|
{
|
1120 |
|
|
if (get_attr_length (insn) == 2)
|
1121 |
|
|
return \"bra%#\\t%0\";
|
1122 |
|
|
else
|
1123 |
|
|
{
|
1124 |
|
|
static char buffer [100];
|
1125 |
|
|
const char * tmp_reg;
|
1126 |
|
|
const char * ldi_insn;
|
1127 |
|
|
|
1128 |
|
|
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
|
1129 |
|
|
|
1130 |
|
|
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
|
1131 |
|
|
|
1132 |
|
|
sprintf (buffer, \"%s\\t%%0, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\",
|
1133 |
|
|
ldi_insn, tmp_reg, tmp_reg);
|
1134 |
|
|
|
1135 |
|
|
return buffer;
|
1136 |
|
|
}
|
1137 |
|
|
}"
|
1138 |
|
|
[(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
|
1139 |
|
|
(const_int 254))
|
1140 |
|
|
(const_int 506))
|
1141 |
|
|
(const_int 2)
|
1142 |
|
|
(if_then_else (eq_attr "size" "small")
|
1143 |
|
|
(const_int 6)
|
1144 |
|
|
(const_int 8))))
|
1145 |
|
|
(set_attr "delay_type" "delayed")]
|
1146 |
|
|
)
|
1147 |
|
|
|
1148 |
|
|
;; Indirect jump through a register
|
1149 |
|
|
(define_insn "indirect_jump"
|
1150 |
|
|
[(set (pc) (match_operand:SI 0 "nonimmediate_operand" "r"))]
|
1151 |
|
|
"GET_CODE (operands[0]) != MEM || GET_CODE (XEXP (operands[0], 0)) != PLUS"
|
1152 |
|
|
"jmp%#\\t@%0"
|
1153 |
|
|
[(set_attr "delay_type" "delayed")]
|
1154 |
|
|
)
|
1155 |
|
|
|
1156 |
|
|
(define_insn "tablejump"
|
1157 |
|
|
[(set (pc) (match_operand:SI 0 "register_operand" "r"))
|
1158 |
|
|
(use (label_ref (match_operand 1 "" "")))]
|
1159 |
|
|
""
|
1160 |
|
|
"jmp%#\\t@%0"
|
1161 |
|
|
[(set_attr "delay_type" "delayed")]
|
1162 |
|
|
)
|
1163 |
|
|
|
1164 |
|
|
;;}}}
|
1165 |
|
|
;;{{{ Function Prologues and Epilogues
|
1166 |
|
|
|
1167 |
|
|
;; Called after register allocation to add any instructions needed for the
|
1168 |
|
|
;; prologue. Using a prologue insn is favored compared to putting all of the
|
1169 |
|
|
;; instructions in output_function_prologue(), since it allows the scheduler
|
1170 |
|
|
;; to intermix instructions with the saves of the caller saved registers. In
|
1171 |
|
|
;; some cases, it might be necessary to emit a barrier instruction as the last
|
1172 |
|
|
;; insn to prevent such scheduling.
|
1173 |
|
|
(define_expand "prologue"
|
1174 |
|
|
[(clobber (const_int 0))]
|
1175 |
|
|
""
|
1176 |
|
|
"{
|
1177 |
|
|
fr30_expand_prologue ();
|
1178 |
|
|
DONE;
|
1179 |
|
|
}"
|
1180 |
|
|
)
|
1181 |
|
|
|
1182 |
|
|
;; Called after register allocation to add any instructions needed for the
|
1183 |
|
|
;; epilogue. Using an epilogue insn is favored compared to putting all of the
|
1184 |
|
|
;; instructions in output_function_epilogue(), since it allows the scheduler
|
1185 |
|
|
;; to intermix instructions with the restores of the caller saved registers.
|
1186 |
|
|
;; In some cases, it might be necessary to emit a barrier instruction as the
|
1187 |
|
|
;; first insn to prevent such scheduling.
|
1188 |
|
|
(define_expand "epilogue"
|
1189 |
|
|
[(return)]
|
1190 |
|
|
""
|
1191 |
|
|
"{
|
1192 |
|
|
fr30_expand_epilogue ();
|
1193 |
|
|
DONE;
|
1194 |
|
|
}"
|
1195 |
|
|
)
|
1196 |
|
|
|
1197 |
|
|
(define_insn "return_from_func"
|
1198 |
|
|
[(return)
|
1199 |
|
|
(use (reg:SI 17))]
|
1200 |
|
|
"reload_completed"
|
1201 |
|
|
"ret%#"
|
1202 |
|
|
[(set_attr "delay_type" "delayed")]
|
1203 |
|
|
)
|
1204 |
|
|
|
1205 |
|
|
(define_insn "leave_func"
|
1206 |
|
|
[(set (reg:SI 15) (reg:SI 14))
|
1207 |
|
|
(set (reg:SI 14) (mem:SI (post_inc:SI (reg:SI 15))))]
|
1208 |
|
|
"reload_completed"
|
1209 |
|
|
"leave"
|
1210 |
|
|
)
|
1211 |
|
|
|
1212 |
|
|
(define_expand "enter_func"
|
1213 |
|
|
[(parallel
|
1214 |
|
|
[(set:SI (mem:SI (minus:SI (match_dup 1)
|
1215 |
|
|
(const_int 4)))
|
1216 |
|
|
(match_dup 2))
|
1217 |
|
|
(set:SI (match_dup 2)
|
1218 |
|
|
(minus:SI (match_dup 1)
|
1219 |
|
|
(const_int 4)))
|
1220 |
|
|
(set:SI (match_dup 1)
|
1221 |
|
|
(minus:SI (match_dup 1)
|
1222 |
|
|
(match_operand:SI 0 "immediate_operand")))]
|
1223 |
|
|
)]
|
1224 |
|
|
""
|
1225 |
|
|
{
|
1226 |
|
|
operands[1] = stack_pointer_rtx;
|
1227 |
|
|
operands[2] = hard_frame_pointer_rtx;
|
1228 |
|
|
})
|
1229 |
|
|
|
1230 |
|
|
(define_insn "*enter_func"
|
1231 |
|
|
[(set:SI (mem:SI (minus:SI (reg:SI 15)
|
1232 |
|
|
(const_int 4)))
|
1233 |
|
|
(reg:SI 14))
|
1234 |
|
|
(set:SI (reg:SI 14)
|
1235 |
|
|
(minus:SI (reg:SI 15)
|
1236 |
|
|
(const_int 4)))
|
1237 |
|
|
(set:SI (reg:SI 15)
|
1238 |
|
|
(minus:SI (reg:SI 15)
|
1239 |
|
|
(match_operand 0 "immediate_operand" "i")))]
|
1240 |
|
|
"reload_completed"
|
1241 |
|
|
"enter #%0"
|
1242 |
|
|
[(set_attr "delay_type" "other")]
|
1243 |
|
|
)
|
1244 |
|
|
|
1245 |
|
|
;;}}}
|
1246 |
|
|
;;{{{ Miscellaneous
|
1247 |
|
|
|
1248 |
|
|
;; No operation, needed in case the user uses -g but not -O.
|
1249 |
|
|
(define_insn "nop"
|
1250 |
|
|
[(const_int 0)]
|
1251 |
|
|
""
|
1252 |
|
|
"nop"
|
1253 |
|
|
)
|
1254 |
|
|
|
1255 |
|
|
;; Pseudo instruction that prevents the scheduler from moving code above this
|
1256 |
|
|
;; point.
|
1257 |
|
|
(define_insn "blockage"
|
1258 |
|
|
[(unspec_volatile [(const_int 0)] 0)]
|
1259 |
|
|
""
|
1260 |
|
|
""
|
1261 |
|
|
[(set_attr "length" "0")]
|
1262 |
|
|
)
|
1263 |
|
|
;;}}}
|
1264 |
|
|
|
1265 |
|
|
;; Local Variables:
|
1266 |
|
|
;; mode: md
|
1267 |
|
|
;; folded-file: t
|
1268 |
|
|
;; End:
|