OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [ia64/] [ia64.h] - Blame information for rev 282

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine GNU compiler.  IA-64 version.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3
   2009 Free Software Foundation, Inc.
4
   Contributed by James E. Wilson <wilson@cygnus.com> and
5
                  David Mosberger <davidm@hpl.hp.com>.
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 3, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING3.  If not see
21
<http://www.gnu.org/licenses/>.  */
22
 
23
/* ??? Look at ABI group documents for list of preprocessor macros and
24
   other features required for ABI compliance.  */
25
 
26
/* ??? Functions containing a non-local goto target save many registers.  Why?
27
   See for instance execute/920428-2.c.  */
28
 
29
 
30
/* Run-time target specifications */
31
 
32
/* Target CPU builtins.  */
33
#define TARGET_CPU_CPP_BUILTINS()               \
34
do {                                            \
35
        builtin_assert("cpu=ia64");             \
36
        builtin_assert("machine=ia64");         \
37
        builtin_define("__ia64");               \
38
        builtin_define("__ia64__");             \
39
        builtin_define("__itanium__");          \
40
        if (TARGET_BIG_ENDIAN)                  \
41
          builtin_define("__BIG_ENDIAN__");     \
42
} while (0)
43
 
44
#ifndef SUBTARGET_EXTRA_SPECS
45
#define SUBTARGET_EXTRA_SPECS
46
#endif
47
 
48
#define EXTRA_SPECS \
49
  { "asm_extra", ASM_EXTRA_SPEC }, \
50
  SUBTARGET_EXTRA_SPECS
51
 
52
#define CC1_SPEC "%(cc1_cpu) "
53
 
54
#define ASM_EXTRA_SPEC ""
55
 
56
/* Variables which are this size or smaller are put in the sdata/sbss
57
   sections.  */
58
extern unsigned int ia64_section_threshold;
59
 
60
/* If the assembler supports thread-local storage, assume that the
61
   system does as well.  If a particular target system has an
62
   assembler that supports TLS -- but the rest of the system does not
63
   support TLS -- that system should explicit define TARGET_HAVE_TLS
64
   to false in its own configuration file.  */
65
#if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66
#define TARGET_HAVE_TLS true
67
#endif
68
 
69
#define TARGET_TLS14            (ia64_tls_size == 14)
70
#define TARGET_TLS22            (ia64_tls_size == 22)
71
#define TARGET_TLS64            (ia64_tls_size == 64)
72
 
73
#define TARGET_HPUX             0
74
#define TARGET_HPUX_LD          0
75
 
76
#define TARGET_ABI_OPEN_VMS 0
77
 
78
#ifndef TARGET_ILP32
79
#define TARGET_ILP32 0
80
#endif
81
 
82
#ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
83
#define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
84
#endif
85
 
86
/* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
87
   TARGET_INLINE_SQRT.  */
88
 
89
enum ia64_inline_type
90
{
91
  INL_NO = 0,
92
  INL_MIN_LAT = 1,
93
  INL_MAX_THR = 2
94
};
95
 
96
/* Default target_flags if no switches are specified  */
97
 
98
#ifndef TARGET_DEFAULT
99
#define TARGET_DEFAULT (MASK_DWARF2_ASM | MASK_FUSED_MADD)
100
#endif
101
 
102
#ifndef TARGET_CPU_DEFAULT
103
#define TARGET_CPU_DEFAULT 0
104
#endif
105
 
106
/* Which processor to schedule for. The cpu attribute defines a list
107
   that mirrors this list, so changes to ia64.md must be made at the
108
   same time.  */
109
 
110
enum processor_type
111
{
112
  PROCESSOR_ITANIUM,                    /* Original Itanium.  */
113
  PROCESSOR_ITANIUM2,
114
  PROCESSOR_max
115
};
116
 
117
extern enum processor_type ia64_tune;
118
 
119
/* Sometimes certain combinations of command options do not make sense on a
120
   particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
121
   take account of this.  This macro, if defined, is executed once just after
122
   all the command options have been parsed.  */
123
 
124
#define OVERRIDE_OPTIONS ia64_override_options ()
125
 
126
/* Some machines may desire to change what optimizations are performed for
127
   various optimization levels.  This macro, if defined, is executed once just
128
   after the optimization level is determined and before the remainder of the
129
   command options have been parsed.  Values set in this macro are used as the
130
   default values for the other command line options.  */
131
 
132
/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
133
 
134
/* Driver configuration */
135
 
136
/* A C string constant that tells the GCC driver program options to pass to
137
   `cc1'.  It can also specify how to translate options you give to GCC into
138
   options for GCC to pass to the `cc1'.  */
139
 
140
#undef CC1_SPEC
141
#define CC1_SPEC "%{G*}"
142
 
143
/* A C string constant that tells the GCC driver program options to pass to
144
   `cc1plus'.  It can also specify how to translate options you give to GCC
145
   into options for GCC to pass to the `cc1plus'.  */
146
 
147
/* #define CC1PLUS_SPEC "" */
148
 
149
/* Storage Layout */
150
 
151
/* Define this macro to have the value 1 if the most significant bit in a byte
152
   has the lowest number; otherwise define it to have the value zero.  */
153
 
154
#define BITS_BIG_ENDIAN 0
155
 
156
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
157
 
158
/* Define this macro to have the value 1 if, in a multiword object, the most
159
   significant word has the lowest number.  */
160
 
161
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
162
 
163
#if defined(__BIG_ENDIAN__)
164
#define LIBGCC2_WORDS_BIG_ENDIAN 1
165
#else
166
#define LIBGCC2_WORDS_BIG_ENDIAN 0
167
#endif
168
 
169
#define UNITS_PER_WORD 8
170
 
171
#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
172
 
173
/* A C expression whose value is zero if pointers that need to be extended
174
   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
175
   they are zero-extended and negative one if there is a ptr_extend operation.
176
 
177
   You need not define this macro if the `POINTER_SIZE' is equal to the width
178
   of `Pmode'.  */
179
/* Need this for 32-bit pointers, see hpux.h for setting it.  */
180
/* #define POINTERS_EXTEND_UNSIGNED */
181
 
182
/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
183
   which has the specified mode and signedness is to be stored in a register.
184
   This macro is only called when TYPE is a scalar type.  */
185
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                               \
186
do                                                                      \
187
  {                                                                     \
188
    if (GET_MODE_CLASS (MODE) == MODE_INT                               \
189
        && GET_MODE_SIZE (MODE) < 4)                                    \
190
      (MODE) = SImode;                                                  \
191
  }                                                                     \
192
while (0)
193
 
194
#define PARM_BOUNDARY 64
195
 
196
/* Define this macro if you wish to preserve a certain alignment for the stack
197
   pointer.  The definition is a C expression for the desired alignment
198
   (measured in bits).  */
199
 
200
#define STACK_BOUNDARY 128
201
 
202
/* Align frames on double word boundaries */
203
#ifndef IA64_STACK_ALIGN
204
#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
205
#endif
206
 
207
#define FUNCTION_BOUNDARY 128
208
 
209
/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
210
   128-bit integers all require 128-bit alignment.  */
211
#define BIGGEST_ALIGNMENT 128
212
 
213
/* If defined, a C expression to compute the alignment for a static variable.
214
   TYPE is the data type, and ALIGN is the alignment that the object
215
   would ordinarily have.  The value of this macro is used instead of that
216
   alignment to align the object.  */
217
 
218
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
219
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
220
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
221
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
222
 
223
/* If defined, a C expression to compute the alignment given to a constant that
224
   is being placed in memory.  CONSTANT is the constant and ALIGN is the
225
   alignment that the object would ordinarily have.  The value of this macro is
226
   used instead of that alignment to align the object.  */
227
 
228
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
229
  (TREE_CODE (EXP) == STRING_CST        \
230
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
231
 
232
#define STRICT_ALIGNMENT 1
233
 
234
/* Define this if you wish to imitate the way many other C compilers handle
235
   alignment of bitfields and the structures that contain them.
236
   The behavior is that the type written for a bit-field (`int', `short', or
237
   other integer type) imposes an alignment for the entire structure, as if the
238
   structure really did contain an ordinary field of that type.  In addition,
239
   the bit-field is placed within the structure so that it would fit within such
240
   a field, not crossing a boundary for it.  */
241
#define PCC_BITFIELD_TYPE_MATTERS 1
242
 
243
/* An integer expression for the size in bits of the largest integer machine
244
   mode that should actually be used.  */
245
 
246
/* Allow pairs of registers to be used, which is the intent of the default.  */
247
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
248
 
249
/* By default, the C++ compiler will use function addresses in the
250
   vtable entries.  Setting this nonzero tells the compiler to use
251
   function descriptors instead.  The value of this macro says how
252
   many words wide the descriptor is (normally 2).  It is assumed
253
   that the address of a function descriptor may be treated as a
254
   pointer to a function.
255
 
256
   For reasons known only to HP, the vtable entries (as opposed to
257
   normal function descriptors) are 16 bytes wide in 32-bit mode as
258
   well, even though the 3rd and 4th words are unused.  */
259
#define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
260
 
261
/* Due to silliness in the HPUX linker, vtable entries must be
262
   8-byte aligned even in 32-bit mode.  Rather than create multiple
263
   ABIs, force this restriction on everyone else too.  */
264
#define TARGET_VTABLE_ENTRY_ALIGN  64
265
 
266
/* Due to the above, we need extra padding for the data entries below 0
267
   to retain the alignment of the descriptors.  */
268
#define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
269
 
270
/* Layout of Source Language Data Types */
271
 
272
#define INT_TYPE_SIZE 32
273
 
274
#define SHORT_TYPE_SIZE 16
275
 
276
#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
277
 
278
#define LONG_LONG_TYPE_SIZE 64
279
 
280
#define FLOAT_TYPE_SIZE 32
281
 
282
#define DOUBLE_TYPE_SIZE 64
283
 
284
/* long double is XFmode normally, and TFmode for HPUX.  It should be
285
   TFmode for VMS as well but we only support up to DFmode now.  */
286
#define LONG_DOUBLE_TYPE_SIZE \
287
  (TARGET_HPUX ? 128 \
288
   : TARGET_ABI_OPEN_VMS ? 64 \
289
   : 80)
290
 
291
/* We always want the XFmode operations from libgcc2.c, except on VMS
292
   where this yields references to unimplemented "insns".  */
293
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE  (TARGET_ABI_OPEN_VMS ? 64 : 80)
294
 
295
 
296
/* On HP-UX, we use the l suffix for TFmode in libgcc2.c.  */
297
#define LIBGCC2_TF_CEXT l
298
 
299
#define DEFAULT_SIGNED_CHAR 1
300
 
301
/* A C expression for a string describing the name of the data type to use for
302
   size values.  The typedef name `size_t' is defined using the contents of the
303
   string.  */
304
/* ??? Needs to be defined for P64 code.  */
305
/* #define SIZE_TYPE */
306
 
307
/* A C expression for a string describing the name of the data type to use for
308
   the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
309
   defined using the contents of the string.  See `SIZE_TYPE' above for more
310
   information.  */
311
/* ??? Needs to be defined for P64 code.  */
312
/* #define PTRDIFF_TYPE */
313
 
314
/* A C expression for a string describing the name of the data type to use for
315
   wide characters.  The typedef name `wchar_t' is defined using the contents
316
   of the string.  See `SIZE_TYPE' above for more information.  */
317
/* #define WCHAR_TYPE */
318
 
319
/* A C expression for the size in bits of the data type for wide characters.
320
   This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
321
/* #define WCHAR_TYPE_SIZE */
322
 
323
 
324
/* Register Basics */
325
 
326
/* Number of hardware registers known to the compiler.
327
   We have 128 general registers, 128 floating point registers,
328
   64 predicate registers, 8 branch registers, one frame pointer,
329
   and several "application" registers.  */
330
 
331
#define FIRST_PSEUDO_REGISTER 334
332
 
333
/* Ranges for the various kinds of registers.  */
334
#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
335
#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
336
#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
337
#define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
338
#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
339
#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
340
#define GENERAL_REGNO_P(REGNO) \
341
  (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
342
 
343
#define GR_REG(REGNO) ((REGNO) + 0)
344
#define FR_REG(REGNO) ((REGNO) + 128)
345
#define PR_REG(REGNO) ((REGNO) + 256)
346
#define BR_REG(REGNO) ((REGNO) + 320)
347
#define OUT_REG(REGNO) ((REGNO) + 120)
348
#define IN_REG(REGNO) ((REGNO) + 112)
349
#define LOC_REG(REGNO) ((REGNO) + 32)
350
 
351
#define AR_CCV_REGNUM   329
352
#define AR_UNAT_REGNUM  330
353
#define AR_PFS_REGNUM   331
354
#define AR_LC_REGNUM    332
355
#define AR_EC_REGNUM    333
356
 
357
#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
358
#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
359
#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
360
 
361
#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
362
                             || (REGNO) == AR_UNAT_REGNUM)
363
#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
364
                             && (REGNO) < FIRST_PSEUDO_REGISTER)
365
#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
366
                           && (REGNO) < FIRST_PSEUDO_REGISTER)
367
 
368
 
369
/* ??? Don't really need two sets of macros.  I like this one better because
370
   it is less typing.  */
371
#define R_GR(REGNO) GR_REG (REGNO)
372
#define R_FR(REGNO) FR_REG (REGNO)
373
#define R_PR(REGNO) PR_REG (REGNO)
374
#define R_BR(REGNO) BR_REG (REGNO)
375
 
376
/* An initializer that says which registers are used for fixed purposes all
377
   throughout the compiled code and are therefore not available for general
378
   allocation.
379
 
380
   r0: constant 0
381
   r1: global pointer (gp)
382
   r12: stack pointer (sp)
383
   r13: thread pointer (tp)
384
   f0: constant 0.0
385
   f1: constant 1.0
386
   p0: constant true
387
   fp: eliminable frame pointer */
388
 
389
/* The last 16 stacked regs are reserved for the 8 input and 8 output
390
   registers.  */
391
 
392
#define FIXED_REGISTERS \
393
{ /* General registers.  */                             \
394
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,   \
395
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
396
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
397
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
398
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
399
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
400
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
401
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
402
  /* Floating-point registers.  */                      \
403
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     \
404
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
405
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
406
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
407
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
408
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
409
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
410
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
411
  /* Predicate registers.  */                           \
412
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,      \
413
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
414
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
415
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
416
  /* Branch registers.  */                              \
417
  0, 0, 0, 0, 0, 0, 0, 0,                               \
418
  /*FP CCV UNAT PFS LC EC */                            \
419
     1,  1,   1,  1, 0, 1                                \
420
 }
421
 
422
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
423
   (in general) by function calls as well as for fixed registers.  This
424
   macro therefore identifies the registers that are not available for
425
   general allocation of values that must live across function calls.  */
426
 
427
#define CALL_USED_REGISTERS \
428
{ /* General registers.  */                             \
429
  1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,   \
430
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
431
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
432
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
433
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
434
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
435
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
436
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,       \
437
  /* Floating-point registers.  */                      \
438
  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,   \
439
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
440
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
441
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
442
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
443
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
444
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
445
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
446
  /* Predicate registers.  */                           \
447
  1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,    \
448
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
449
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
450
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
451
  /* Branch registers.  */                              \
452
  1, 0, 0, 0, 0, 0, 1, 1,                            \
453
  /*FP CCV UNAT PFS LC EC */                            \
454
     1,  1,   1,  1, 0, 1                                \
455
}
456
 
457
/* Like `CALL_USED_REGISTERS' but used to overcome a historical
458
   problem which makes CALL_USED_REGISTERS *always* include
459
   all the FIXED_REGISTERS.  Until this problem has been
460
   resolved this macro can be used to overcome this situation.
461
   In particular, block_propagate() requires this list
462
   be accurate, or we can remove registers which should be live.
463
   This macro is used in regs_invalidated_by_call.  */
464
 
465
#define CALL_REALLY_USED_REGISTERS \
466
{ /* General registers.  */                             \
467
  0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,      \
468
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
469
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
470
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
471
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
472
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
473
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
474
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,       \
475
  /* Floating-point registers.  */                      \
476
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     \
477
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
478
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
479
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
480
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
481
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
482
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
483
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       \
484
  /* Predicate registers.  */                           \
485
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     \
486
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
487
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
488
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       \
489
  /* Branch registers.  */                              \
490
  1, 0, 0, 0, 0, 0, 1, 1,                            \
491
  /*FP CCV UNAT PFS LC EC */                            \
492
     0,  1,   0,  1, 0, 0                           \
493
}
494
 
495
 
496
/* Define this macro if the target machine has register windows.  This C
497
   expression returns the register number as seen by the called function
498
   corresponding to the register number OUT as seen by the calling function.
499
   Return OUT if register number OUT is not an outbound register.  */
500
 
501
#define INCOMING_REGNO(OUT) \
502
  ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
503
 
504
/* Define this macro if the target machine has register windows.  This C
505
   expression returns the register number as seen by the calling function
506
   corresponding to the register number IN as seen by the called function.
507
   Return IN if register number IN is not an inbound register.  */
508
 
509
#define OUTGOING_REGNO(IN) \
510
  ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
511
 
512
/* Define this macro if the target machine has register windows.  This
513
   C expression returns true if the register is call-saved but is in the
514
   register window.  */
515
 
516
#define LOCAL_REGNO(REGNO) \
517
  (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
518
 
519
/* We define CCImode in ia64-modes.def so we need a selector.  */
520
 
521
#define SELECT_CC_MODE(OP,X,Y)  CCmode
522
 
523
/* Order of allocation of registers */
524
 
525
/* If defined, an initializer for a vector of integers, containing the numbers
526
   of hard registers in the order in which GCC should prefer to use them
527
   (from most preferred to least).
528
 
529
   If this macro is not defined, registers are used lowest numbered first (all
530
   else being equal).
531
 
532
   One use of this macro is on machines where the highest numbered registers
533
   must always be saved and the save-multiple-registers instruction supports
534
   only sequences of consecutive registers.  On such machines, define
535
   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
536
   allocatable register first.  */
537
 
538
/* ??? Should the GR return value registers come before or after the rest
539
   of the caller-save GRs?  */
540
 
541
#define REG_ALLOC_ORDER                                                    \
542
{                                                                          \
543
  /* Caller-saved general registers.  */                                   \
544
  R_GR (14), R_GR (15), R_GR (16), R_GR (17),                              \
545
  R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),        \
546
  R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),        \
547
  R_GR (30), R_GR (31),                                                    \
548
  /* Output registers.  */                                                 \
549
  R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
550
  R_GR (126), R_GR (127),                                                  \
551
  /* Caller-saved general registers, also used for return values.  */      \
552
  R_GR (8), R_GR (9), R_GR (10), R_GR (11),                                \
553
  /* addl caller-saved general registers.  */                              \
554
  R_GR (2), R_GR (3),                                                      \
555
  /* Caller-saved FP registers.  */                                        \
556
  R_FR (6), R_FR (7),                                                      \
557
  /* Caller-saved FP registers, used for parameters and return values.  */ \
558
  R_FR (8), R_FR (9), R_FR (10), R_FR (11),                                \
559
  R_FR (12), R_FR (13), R_FR (14), R_FR (15),                              \
560
  /* Rotating caller-saved FP registers.  */                               \
561
  R_FR (32), R_FR (33), R_FR (34), R_FR (35),                              \
562
  R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),        \
563
  R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),        \
564
  R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),        \
565
  R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),        \
566
  R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),        \
567
  R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),        \
568
  R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),        \
569
  R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),        \
570
  R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),        \
571
  R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),        \
572
  R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),      \
573
  R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
574
  R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
575
  R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
576
  R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
577
  R_FR (126), R_FR (127),                                                  \
578
  /* Caller-saved predicate registers.  */                                 \
579
  R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),            \
580
  R_PR (12), R_PR (13), R_PR (14), R_PR (15),                              \
581
  /* Rotating caller-saved predicate registers.  */                        \
582
  R_PR (16), R_PR (17),                                                    \
583
  R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),        \
584
  R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),        \
585
  R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),        \
586
  R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),        \
587
  R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),        \
588
  R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),        \
589
  R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),        \
590
  R_PR (60), R_PR (61), R_PR (62), R_PR (63),                              \
591
  /* Caller-saved branch registers.  */                                    \
592
  R_BR (6), R_BR (7),                                                      \
593
                                                                           \
594
  /* Stacked callee-saved general registers.  */                           \
595
  R_GR (32), R_GR (33), R_GR (34), R_GR (35),                              \
596
  R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),        \
597
  R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),        \
598
  R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),        \
599
  R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),        \
600
  R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),        \
601
  R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),        \
602
  R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),        \
603
  R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),        \
604
  R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),        \
605
  R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),        \
606
  R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),      \
607
  R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
608
  R_GR (108),                                                              \
609
  /* Input registers.  */                                                  \
610
  R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
611
  R_GR (118), R_GR (119),                                                  \
612
  /* Callee-saved general registers.  */                                   \
613
  R_GR (4), R_GR (5), R_GR (6), R_GR (7),                                  \
614
  /* Callee-saved FP registers.  */                                        \
615
  R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),            \
616
  R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),        \
617
  R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),        \
618
  R_FR (30), R_FR (31),                                                    \
619
  /* Callee-saved predicate registers.  */                                 \
620
  R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),                        \
621
  /* Callee-saved branch registers.  */                                    \
622
  R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),                        \
623
                                                                           \
624
  /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */            \
625
  R_GR (109), R_GR (110), R_GR (111),                                      \
626
                                                                           \
627
  /* Special general registers.  */                                        \
628
  R_GR (0), R_GR (1), R_GR (12), R_GR (13),                                 \
629
  /* Special FP registers.  */                                             \
630
  R_FR (0), R_FR (1),                                                       \
631
  /* Special predicate registers.  */                                      \
632
  R_PR (0),                                                                 \
633
  /* Special branch registers.  */                                         \
634
  R_BR (0),                                                                 \
635
  /* Other fixed registers.  */                                            \
636
  FRAME_POINTER_REGNUM,                                                    \
637
  AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,              \
638
  AR_EC_REGNUM                                                             \
639
}
640
 
641
/* How Values Fit in Registers */
642
 
643
/* A C expression for the number of consecutive hard registers, starting at
644
   register number REGNO, required to hold a value of mode MODE.  */
645
 
646
/* ??? We say that BImode PR values require two registers.  This allows us to
647
   easily store the normal and inverted values.  We use CCImode to indicate
648
   a single predicate register.  */
649
 
650
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
651
  ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64                        \
652
   : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2                         \
653
   : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1                        \
654
   : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1                         \
655
   : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1                         \
656
   : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2                         \
657
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
658
 
659
/* A C expression that is nonzero if it is permissible to store a value of mode
660
   MODE in hard register number REGNO (or in several registers starting with
661
   that one).  */
662
 
663
#define HARD_REGNO_MODE_OK(REGNO, MODE)                         \
664
  (FR_REGNO_P (REGNO) ?                                         \
665
     GET_MODE_CLASS (MODE) != MODE_CC &&                        \
666
     (MODE) != BImode &&                                        \
667
     (MODE) != TFmode                                           \
668
   : PR_REGNO_P (REGNO) ?                                       \
669
     (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC       \
670
   : GR_REGNO_P (REGNO) ?                                       \
671
     (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
672
   : AR_REGNO_P (REGNO) ? (MODE) == DImode                      \
673
   : BR_REGNO_P (REGNO) ? (MODE) == DImode                      \
674
   : 0)
675
 
676
/* A C expression that is nonzero if it is desirable to choose register
677
   allocation so as to avoid move instructions between a value of mode MODE1
678
   and a value of mode MODE2.
679
 
680
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
681
   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
682
   zero.  */
683
/* Don't tie integer and FP modes, as that causes us to get integer registers
684
   allocated for FP instructions.  XFmode only supported in FP registers so
685
   we can't tie it with any other modes.  */
686
#define MODES_TIEABLE_P(MODE1, MODE2)                   \
687
  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)     \
688
   && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode))      \
689
       == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode)))  \
690
   && (((MODE1) == BImode) == ((MODE2) == BImode)))
691
 
692
/* Specify the modes required to caller save a given hard regno.
693
   We need to ensure floating pt regs are not saved as DImode.  */
694
 
695
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
696
  ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode        \
697
   : choose_hard_reg_mode ((REGNO), (NREGS), false))
698
 
699
/* Handling Leaf Functions */
700
 
701
/* A C initializer for a vector, indexed by hard register number, which
702
   contains 1 for a register that is allowable in a candidate for leaf function
703
   treatment.  */
704
/* ??? This might be useful.  */
705
/* #define LEAF_REGISTERS */
706
 
707
/* A C expression whose value is the register number to which REGNO should be
708
   renumbered, when a function is treated as a leaf function.  */
709
/* ??? This might be useful.  */
710
/* #define LEAF_REG_REMAP(REGNO) */
711
 
712
 
713
/* Register Classes */
714
 
715
/* An enumeral type that must be defined with all the register class names as
716
   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
717
   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
718
   which is not a register class but rather tells how many classes there
719
   are.  */
720
/* ??? When compiling without optimization, it is possible for the only use of
721
   a pseudo to be a parameter load from the stack with a REG_EQUIV note.
722
   Regclass handles this case specially and does not assign any costs to the
723
   pseudo.  The pseudo then ends up using the last class before ALL_REGS.
724
   Thus we must not let either PR_REGS or BR_REGS be the last class.  The
725
   testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
726
enum reg_class
727
{
728
  NO_REGS,
729
  PR_REGS,
730
  BR_REGS,
731
  AR_M_REGS,
732
  AR_I_REGS,
733
  ADDL_REGS,
734
  GR_REGS,
735
  FP_REGS,
736
  FR_REGS,
737
  GR_AND_BR_REGS,
738
  GR_AND_FR_REGS,
739
  ALL_REGS,
740
  LIM_REG_CLASSES
741
};
742
 
743
#define GENERAL_REGS GR_REGS
744
 
745
/* The number of distinct register classes.  */
746
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
747
 
748
/* An initializer containing the names of the register classes as C string
749
   constants.  These names are used in writing some of the debugging dumps.  */
750
#define REG_CLASS_NAMES \
751
{ "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
752
  "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
753
  "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
754
 
755
/* An initializer containing the contents of the register classes, as integers
756
   which are bit masks.  The Nth integer specifies the contents of class N.
757
   The way the integer MASK is interpreted is that register R is in the class
758
   if `MASK & (1 << R)' is 1.  */
759
#define REG_CLASS_CONTENTS \
760
{                                                       \
761
  /* NO_REGS.  */                                       \
762
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
763
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
764
    0x00000000, 0x00000000, 0x0000 },                   \
765
  /* PR_REGS.  */                                       \
766
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
767
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
768
    0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },                   \
769
  /* BR_REGS.  */                                       \
770
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
771
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
772
    0x00000000, 0x00000000, 0x00FF },                   \
773
  /* AR_M_REGS.  */                                     \
774
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
775
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
776
    0x00000000, 0x00000000, 0x0600 },                   \
777
  /* AR_I_REGS.  */                                     \
778
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
779
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
780
    0x00000000, 0x00000000, 0x3800 },                   \
781
  /* ADDL_REGS.  */                                     \
782
  { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,     \
783
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
784
    0x00000000, 0x00000000, 0x0000 },                   \
785
  /* GR_REGS.  */                                       \
786
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
787
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
788
    0x00000000, 0x00000000, 0x0100 },                   \
789
  /* FP_REGS.  */                                       \
790
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
791
    0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,     \
792
    0x00000000, 0x00000000, 0x0000 },                   \
793
  /* FR_REGS.  */                                       \
794
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
795
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
796
    0x00000000, 0x00000000, 0x0000 },                   \
797
  /* GR_AND_BR_REGS.  */                                \
798
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
799
    0x00000000, 0x00000000, 0x00000000, 0x00000000,     \
800
    0x00000000, 0x00000000, 0x01FF },                   \
801
  /* GR_AND_FR_REGS.  */                                \
802
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
803
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
804
    0x00000000, 0x00000000, 0x0100 },                   \
805
  /* ALL_REGS.  */                                      \
806
  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
807
    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,     \
808
    0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },                   \
809
}
810
 
811
/* The following macro defines cover classes for Integrated Register
812
   Allocator.  Cover classes is a set of non-intersected register
813
   classes covering all hard registers used for register allocation
814
   purpose.  Any move between two registers of a cover class should be
815
   cheaper than load or store of the registers.  The macro value is
816
   array of register classes with LIM_REG_CLASSES used as the end
817
   marker.  */
818
 
819
#define IRA_COVER_CLASSES                                                    \
820
{                                                                            \
821
  PR_REGS, BR_REGS, AR_M_REGS, AR_I_REGS, GR_REGS, FR_REGS, LIM_REG_CLASSES  \
822
}
823
 
824
/* A C expression whose value is a register class containing hard register
825
   REGNO.  In general there is more than one such class; choose a class which
826
   is "minimal", meaning that no smaller class also contains the register.  */
827
/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
828
   may call here with private (invalid) register numbers, such as
829
   REG_VOLATILE.  */
830
#define REGNO_REG_CLASS(REGNO) \
831
(ADDL_REGNO_P (REGNO) ? ADDL_REGS       \
832
 : GENERAL_REGNO_P (REGNO) ? GR_REGS    \
833
 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
834
                        && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
835
 : PR_REGNO_P (REGNO) ? PR_REGS         \
836
 : BR_REGNO_P (REGNO) ? BR_REGS         \
837
 : AR_M_REGNO_P (REGNO) ? AR_M_REGS     \
838
 : AR_I_REGNO_P (REGNO) ? AR_I_REGS     \
839
 : NO_REGS)
840
 
841
/* A macro whose definition is the name of the class to which a valid base
842
   register must belong.  A base register is one used in an address which is
843
   the register value plus a displacement.  */
844
#define BASE_REG_CLASS GENERAL_REGS
845
 
846
/* A macro whose definition is the name of the class to which a valid index
847
   register must belong.  An index register is one used in an address where its
848
   value is either multiplied by a scale factor or added to another register
849
   (as well as added to a displacement).  This is needed for POST_MODIFY.  */
850
#define INDEX_REG_CLASS GENERAL_REGS
851
 
852
/* A C expression which is nonzero if register number NUM is suitable for use
853
   as a base register in operand addresses.  It may be either a suitable hard
854
   register or a pseudo register that has been allocated such a hard reg.  */
855
#define REGNO_OK_FOR_BASE_P(REGNO) \
856
  (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
857
 
858
/* A C expression which is nonzero if register number NUM is suitable for use
859
   as an index register in operand addresses.  It may be either a suitable hard
860
   register or a pseudo register that has been allocated such a hard reg.
861
   This is needed for POST_MODIFY.  */
862
#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
863
 
864
/* A C expression that places additional restrictions on the register class to
865
   use when it is necessary to copy value X into a register in class CLASS.
866
   The value is a register class; perhaps CLASS, or perhaps another, smaller
867
   class.  */
868
 
869
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
870
  ia64_preferred_reload_class (X, CLASS)
871
 
872
/* You should define this macro to indicate to the reload phase that it may
873
   need to allocate at least one register for a reload in addition to the
874
   register to contain the data.  Specifically, if copying X to a register
875
   CLASS in MODE requires an intermediate register, you should define this
876
   to return the largest register class all of whose registers can be used
877
   as intermediate registers or scratch registers.  */
878
 
879
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
880
 ia64_secondary_reload_class (CLASS, MODE, X)
881
 
882
/* Certain machines have the property that some registers cannot be copied to
883
   some other registers without using memory.  Define this macro on those
884
   machines to be a C expression that is nonzero if objects of mode M in
885
   registers of CLASS1 can only be copied to registers of class CLASS2 by
886
   storing a register of CLASS1 into memory and loading that memory location
887
   into a register of CLASS2.  */
888
 
889
#if 0
890
/* ??? May need this, but since we've disallowed XFmode in GR_REGS,
891
   I'm not quite sure how it could be invoked.  The normal problems
892
   with unions should be solved with the addressof fiddling done by
893
   movxf and friends.  */
894
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)                   \
895
  (((MODE) == XFmode || (MODE) == XCmode)                               \
896
   && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)                     \
897
       || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
898
#endif
899
 
900
/* A C expression for the maximum number of consecutive registers of
901
   class CLASS needed to hold a value of mode MODE.
902
   This is closely related to the macro `HARD_REGNO_NREGS'.  */
903
 
904
#define CLASS_MAX_NREGS(CLASS, MODE) \
905
  ((MODE) == BImode && (CLASS) == PR_REGS ? 2                   \
906
   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
907
   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
908
   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
909
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
910
 
911
/* In BR regs, we can't change the DImode at all.
912
   In FP regs, we can't change FP values to integer values and vice versa,
913
   but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
914
 
915
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
916
  (reg_classes_intersect_p (CLASS, BR_REGS)                     \
917
   ? (FROM) != (TO)                                             \
918
   : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)    \
919
      ? reg_classes_intersect_p (CLASS, FR_REGS)                \
920
      : 0))
921
 
922
/* Basic Stack Layout */
923
 
924
/* Define this macro if pushing a word onto the stack moves the stack pointer
925
   to a smaller address.  */
926
#define STACK_GROWS_DOWNWARD 1
927
 
928
/* Define this macro to nonzero if the addresses of local variable slots
929
   are at negative offsets from the frame pointer.  */
930
#define FRAME_GROWS_DOWNWARD 0
931
 
932
/* Offset from the frame pointer to the first local variable slot to
933
   be allocated.  */
934
#define STARTING_FRAME_OFFSET 0
935
 
936
/* Offset from the stack pointer register to the first location at which
937
   outgoing arguments are placed.  If not specified, the default value of zero
938
   is used.  This is the proper value for most machines.  */
939
/* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
940
#define STACK_POINTER_OFFSET 16
941
 
942
/* Offset from the argument pointer register to the first argument's address.
943
   On some machines it may depend on the data type of the function.  */
944
#define FIRST_PARM_OFFSET(FUNDECL) 0
945
 
946
/* A C expression whose value is RTL representing the value of the return
947
   address for the frame COUNT steps up from the current frame, after the
948
   prologue.  */
949
 
950
/* ??? Frames other than zero would likely require interpreting the frame
951
   unwind info, so we don't try to support them.  We would also need to define
952
   DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
953
 
954
#define RETURN_ADDR_RTX(COUNT, FRAME) \
955
  ia64_return_addr_rtx (COUNT, FRAME)
956
 
957
/* A C expression whose value is RTL representing the location of the incoming
958
   return address at the beginning of any function, before the prologue.  This
959
   RTL is either a `REG', indicating that the return value is saved in `REG',
960
   or a `MEM' representing a location in the stack.  This enables DWARF2
961
   unwind info for C++ EH.  */
962
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
963
 
964
/* A C expression whose value is an integer giving the offset, in bytes, from
965
   the value of the stack pointer register to the top of the stack frame at the
966
   beginning of any function, before the prologue.  The top of the frame is
967
   defined to be the value of the stack pointer in the previous frame, just
968
   before the call instruction.  */
969
/* The CFA is past the red zone, not at the entry-point stack
970
   pointer.  */
971
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
972
 
973
/* We shorten debug info by using CFA-16 as DW_AT_frame_base.  */
974
#define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
975
 
976
 
977
/* Register That Address the Stack Frame.  */
978
 
979
/* The register number of the stack pointer register, which must also be a
980
   fixed register according to `FIXED_REGISTERS'.  On most machines, the
981
   hardware determines which register this is.  */
982
 
983
#define STACK_POINTER_REGNUM 12
984
 
985
/* The register number of the frame pointer register, which is used to access
986
   automatic variables in the stack frame.  On some machines, the hardware
987
   determines which register this is.  On other machines, you can choose any
988
   register you wish for this purpose.  */
989
 
990
#define FRAME_POINTER_REGNUM 328
991
 
992
/* Base register for access to local variables of the function.  */
993
#define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
994
 
995
/* The register number of the arg pointer register, which is used to access the
996
   function's argument list.  */
997
/* r0 won't otherwise be used, so put the always eliminated argument pointer
998
   in it.  */
999
#define ARG_POINTER_REGNUM R_GR(0)
1000
 
1001
/* Due to the way varargs and argument spilling happens, the argument
1002
   pointer is not 16-byte aligned like the stack pointer.  */
1003
#define INIT_EXPANDERS                                  \
1004
  do {                                                  \
1005
    ia64_init_expanders ();                             \
1006
    if (crtl->emit.regno_pointer_align) \
1007
      REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;    \
1008
  } while (0)
1009
 
1010
/* Register numbers used for passing a function's static chain pointer.  */
1011
/* ??? The ABI sez the static chain should be passed as a normal parameter.  */
1012
#define STATIC_CHAIN_REGNUM 15
1013
 
1014
/* Eliminating the Frame Pointer and the Arg Pointer */
1015
 
1016
/* Show we can debug even without a frame pointer.  */
1017
#define CAN_DEBUG_WITHOUT_FP
1018
 
1019
/* If defined, this macro specifies a table of register pairs used to eliminate
1020
   unneeded registers that point into the stack frame.  */
1021
 
1022
#define ELIMINABLE_REGS                                                 \
1023
{                                                                       \
1024
  {ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
1025
  {ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},                    \
1026
  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                         \
1027
  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},                    \
1028
}
1029
 
1030
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1031
   specifies the initial difference between the specified pair of
1032
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
1033
   defined.  */
1034
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1035
  ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1036
 
1037
/* Passing Function Arguments on the Stack */
1038
 
1039
/* If defined, the maximum amount of space required for outgoing arguments will
1040
   be computed and placed into the variable
1041
   `crtl->outgoing_args_size'.  */
1042
 
1043
#define ACCUMULATE_OUTGOING_ARGS 1
1044
 
1045
/* A C expression that should indicate the number of bytes of its own arguments
1046
   that a function pops on returning, or 0 if the function pops no arguments
1047
   and the caller must therefore pop them all after the function returns.  */
1048
 
1049
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1050
 
1051
 
1052
/* Function Arguments in Registers */
1053
 
1054
#define MAX_ARGUMENT_SLOTS 8
1055
#define MAX_INT_RETURN_SLOTS 4
1056
#define GR_ARG_FIRST IN_REG (0)
1057
#define GR_RET_FIRST GR_REG (8)
1058
#define GR_RET_LAST  GR_REG (11)
1059
#define FR_ARG_FIRST FR_REG (8)
1060
#define FR_RET_FIRST FR_REG (8)
1061
#define FR_RET_LAST  FR_REG (15)
1062
#define AR_ARG_FIRST OUT_REG (0)
1063
 
1064
/* A C expression that controls whether a function argument is passed in a
1065
   register, and which register.  */
1066
 
1067
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1068
  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1069
 
1070
/* Define this macro if the target machine has "register windows", so that the
1071
   register in which a function sees an arguments is not necessarily the same
1072
   as the one in which the caller passed the argument.  */
1073
 
1074
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1075
  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1076
 
1077
/* A C type for declaring a variable that is used as the first argument of
1078
   `FUNCTION_ARG' and other related values.  For some target machines, the type
1079
   `int' suffices and can hold the number of bytes of argument so far.  */
1080
 
1081
enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1082
/* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T.  */
1083
 
1084
typedef struct ia64_args
1085
{
1086
  int words;                    /* # words of arguments so far  */
1087
  int int_regs;                 /* # GR registers used so far  */
1088
  int fp_regs;                  /* # FR registers used so far  */
1089
  int prototype;                /* whether function prototyped  */
1090
  enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1091
} CUMULATIVE_ARGS;
1092
 
1093
/* A C statement (sans semicolon) for initializing the variable CUM for the
1094
   state at the beginning of the argument list.  */
1095
 
1096
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1097
do {                                                                    \
1098
  (CUM).words = 0;                                                       \
1099
  (CUM).int_regs = 0;                                                    \
1100
  (CUM).fp_regs = 0;                                                     \
1101
  (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1102
  (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;             \
1103
  (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1104
  (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1105
} while (0)
1106
 
1107
/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1108
   arguments for the function being compiled.  If this macro is undefined,
1109
   `INIT_CUMULATIVE_ARGS' is used instead.  */
1110
 
1111
/* We set prototype to true so that we never try to return a PARALLEL from
1112
   function_arg.  */
1113
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1114
do {                                                                    \
1115
  (CUM).words = 0;                                                       \
1116
  (CUM).int_regs = 0;                                                    \
1117
  (CUM).fp_regs = 0;                                                     \
1118
  (CUM).prototype = 1;                                                  \
1119
  (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;             \
1120
  (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1121
  (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1122
} while (0)
1123
 
1124
/* A C statement (sans semicolon) to update the summarizer variable CUM to
1125
   advance past an argument in the argument list.  The values MODE, TYPE and
1126
   NAMED describe that argument.  Once this is done, the variable CUM is
1127
   suitable for analyzing the *following* argument with `FUNCTION_ARG'.  */
1128
 
1129
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1130
 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1131
 
1132
/* If defined, a C expression that gives the alignment boundary, in bits, of an
1133
   argument with the specified mode and type.  */
1134
 
1135
/* Return the alignment boundary in bits for an argument with a specified
1136
   mode and type.  */
1137
 
1138
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1139
  ia64_function_arg_boundary (MODE, TYPE)
1140
 
1141
/* A C expression that is nonzero if REGNO is the number of a hard register in
1142
   which function arguments are sometimes passed.  This does *not* include
1143
   implicit arguments such as the static chain and the structure-value address.
1144
   On many machines, no registers can be used for this purpose since all
1145
   function arguments are pushed on the stack.  */
1146
#define FUNCTION_ARG_REGNO_P(REGNO) \
1147
(((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1148
 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1149
 
1150
/* How Scalar Function Values are Returned */
1151
 
1152
/* A C expression to create an RTX representing the place where a function
1153
   returns a value of data type VALTYPE.  */
1154
 
1155
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1156
  ia64_function_value (VALTYPE, FUNC)
1157
 
1158
/* A C expression to create an RTX representing the place where a library
1159
   function returns a value of mode MODE.  */
1160
 
1161
#define LIBCALL_VALUE(MODE) \
1162
  gen_rtx_REG (MODE,                                                    \
1163
               (((GET_MODE_CLASS (MODE) == MODE_FLOAT                   \
1164
                 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) &&     \
1165
                      (MODE) != TFmode) \
1166
                ? FR_RET_FIRST : GR_RET_FIRST))
1167
 
1168
/* A C expression that is nonzero if REGNO is the number of a hard register in
1169
   which the values of called function may come back.  */
1170
 
1171
#define FUNCTION_VALUE_REGNO_P(REGNO)                           \
1172
  (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST)          \
1173
   || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1174
 
1175
 
1176
/* How Large Values are Returned */
1177
 
1178
#define DEFAULT_PCC_STRUCT_RETURN 0
1179
 
1180
 
1181
/* Caller-Saves Register Allocation */
1182
 
1183
/* A C expression to determine whether it is worthwhile to consider placing a
1184
   pseudo-register in a call-clobbered hard register and saving and restoring
1185
   it around each function call.  The expression should be 1 when this is worth
1186
   doing, and 0 otherwise.
1187
 
1188
   If you don't define this macro, a default is used which is good on most
1189
   machines: `4 * CALLS < REFS'.  */
1190
/* ??? Investigate.  */
1191
/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1192
 
1193
 
1194
/* Function Entry and Exit */
1195
 
1196
/* Define this macro as a C expression that is nonzero if the return
1197
   instruction or the function epilogue ignores the value of the stack pointer;
1198
   in other words, if it is safe to delete an instruction to adjust the stack
1199
   pointer before a return from the function.  */
1200
 
1201
#define EXIT_IGNORE_STACK 1
1202
 
1203
/* Define this macro as a C expression that is nonzero for registers
1204
   used by the epilogue or the `return' pattern.  */
1205
 
1206
#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1207
 
1208
/* Nonzero for registers used by the exception handling mechanism.  */
1209
 
1210
#define EH_USES(REGNO) ia64_eh_uses (REGNO)
1211
 
1212
/* Output part N of a function descriptor for DECL.  For ia64, both
1213
   words are emitted with a single relocation, so ignore N > 0.  */
1214
#define ASM_OUTPUT_FDESC(FILE, DECL, PART)                              \
1215
do {                                                                    \
1216
  if ((PART) == 0)                                                       \
1217
    {                                                                   \
1218
      if (TARGET_ILP32)                                                 \
1219
        fputs ("\tdata8.ua @iplt(", FILE);                              \
1220
      else                                                              \
1221
        fputs ("\tdata16.ua @iplt(", FILE);                             \
1222
      mark_decl_referenced (DECL);                                      \
1223
      assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));  \
1224
      fputs (")\n", FILE);                                              \
1225
      if (TARGET_ILP32)                                                 \
1226
        fputs ("\tdata8.ua 0\n", FILE);                                 \
1227
    }                                                                   \
1228
} while (0)
1229
 
1230
/* Generating Code for Profiling.  */
1231
 
1232
/* A C statement or compound statement to output to FILE some assembler code to
1233
   call the profiling subroutine `mcount'.  */
1234
 
1235
#undef FUNCTION_PROFILER
1236
#define FUNCTION_PROFILER(FILE, LABELNO) \
1237
  ia64_output_function_profiler(FILE, LABELNO)
1238
 
1239
/* Neither hpux nor linux use profile counters.  */
1240
#define NO_PROFILE_COUNTERS 1
1241
 
1242
/* Trampolines for Nested Functions.  */
1243
 
1244
/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1245
   the function containing a non-local goto target.  */
1246
 
1247
#define STACK_SAVEAREA_MODE(LEVEL) \
1248
  ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1249
 
1250
/* A C expression for the size in bytes of the trampoline, as an integer.  */
1251
 
1252
#define TRAMPOLINE_SIZE         32
1253
 
1254
/* Alignment required for trampolines, in bits.  */
1255
 
1256
#define TRAMPOLINE_ALIGNMENT    64
1257
 
1258
/* Addressing Modes */
1259
 
1260
/* Define this macro if the machine supports post-increment addressing.  */
1261
 
1262
#define HAVE_POST_INCREMENT 1
1263
#define HAVE_POST_DECREMENT 1
1264
#define HAVE_POST_MODIFY_DISP 1
1265
#define HAVE_POST_MODIFY_REG 1
1266
 
1267
/* A C expression that is 1 if the RTX X is a constant which is a valid
1268
   address.  */
1269
 
1270
#define CONSTANT_ADDRESS_P(X) 0
1271
 
1272
/* The max number of registers that can appear in a valid memory address.  */
1273
 
1274
#define MAX_REGS_PER_ADDRESS 2
1275
 
1276
/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1277
   RTX) is a legitimate memory address on the target machine for a memory
1278
   operand of mode MODE.  */
1279
 
1280
#define LEGITIMATE_ADDRESS_REG(X)                                       \
1281
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                       \
1282
   || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG           \
1283
       && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1284
 
1285
#define LEGITIMATE_ADDRESS_DISP(R, X)                                   \
1286
  (GET_CODE (X) == PLUS                                                 \
1287
   && rtx_equal_p (R, XEXP (X, 0))                                       \
1288
   && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1))                             \
1289
       || (GET_CODE (XEXP (X, 1)) == CONST_INT                          \
1290
           && INTVAL (XEXP (X, 1)) >= -256                              \
1291
           && INTVAL (XEXP (X, 1)) < 256)))
1292
 
1293
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)                        \
1294
do {                                                                    \
1295
  if (LEGITIMATE_ADDRESS_REG (X))                                       \
1296
    goto LABEL;                                                         \
1297
  else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC)       \
1298
           && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))                       \
1299
           && XEXP (X, 0) != arg_pointer_rtx)                            \
1300
    goto LABEL;                                                         \
1301
  else if (GET_CODE (X) == POST_MODIFY                                  \
1302
           && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))                       \
1303
           && XEXP (X, 0) != arg_pointer_rtx                             \
1304
           && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1)))        \
1305
    goto LABEL;                                                         \
1306
} while (0)
1307
 
1308
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1309
   use as a base register.  */
1310
 
1311
#ifdef REG_OK_STRICT
1312
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1313
#else
1314
#define REG_OK_FOR_BASE_P(X) \
1315
  (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1316
#endif
1317
 
1318
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1319
   use as an index register.  This is needed for POST_MODIFY.  */
1320
 
1321
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1322
 
1323
/* A C expression that is nonzero if X is a legitimate constant for an
1324
   immediate operand on the target machine.  */
1325
 
1326
#define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1327
 
1328
/* Condition Code Status */
1329
 
1330
/* One some machines not all possible comparisons are defined, but you can
1331
   convert an invalid comparison into a valid one.  */
1332
/* ??? Investigate.  See the alpha definition.  */
1333
/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1334
 
1335
 
1336
/* Describing Relative Costs of Operations */
1337
 
1338
/* A C expression for the cost of moving data from a register in class FROM to
1339
   one in class TO, using MODE.  */
1340
 
1341
#define REGISTER_MOVE_COST  ia64_register_move_cost
1342
 
1343
/* A C expression for the cost of moving data of mode M between a
1344
   register and memory.  */
1345
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1346
  ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1347
   || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1348
 
1349
/* A C expression for the cost of a branch instruction.  A value of 1 is the
1350
   default; other values are interpreted relative to that.  Used by the
1351
   if-conversion code as max instruction count.  */
1352
/* ??? This requires investigation.  The primary effect might be how
1353
   many additional insn groups we run into, vs how good the dynamic
1354
   branch predictor is.  */
1355
 
1356
#define BRANCH_COST(speed_p, predictable_p) 6
1357
 
1358
/* Define this macro as a C expression which is nonzero if accessing less than
1359
   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1360
   word of memory.  */
1361
 
1362
#define SLOW_BYTE_ACCESS 1
1363
 
1364
/* Define this macro if it is as good or better to call a constant function
1365
   address than to call an address kept in a register.
1366
 
1367
   Indirect function calls are more expensive that direct function calls, so
1368
   don't cse function addresses.  */
1369
 
1370
#define NO_FUNCTION_CSE
1371
 
1372
 
1373
/* Dividing the output into sections.  */
1374
 
1375
/* A C expression whose value is a string containing the assembler operation
1376
   that should precede instructions and read-only data.  */
1377
 
1378
#define TEXT_SECTION_ASM_OP "\t.text"
1379
 
1380
/* A C expression whose value is a string containing the assembler operation to
1381
   identify the following data as writable initialized data.  */
1382
 
1383
#define DATA_SECTION_ASM_OP "\t.data"
1384
 
1385
/* If defined, a C expression whose value is a string containing the assembler
1386
   operation to identify the following data as uninitialized global data.  */
1387
 
1388
#define BSS_SECTION_ASM_OP "\t.bss"
1389
 
1390
#define IA64_DEFAULT_GVALUE 8
1391
 
1392
/* Position Independent Code.  */
1393
 
1394
/* The register number of the register used to address a table of static data
1395
   addresses in memory.  */
1396
 
1397
/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1398
   gen_rtx_REG (DImode, 1).  */
1399
 
1400
/* ??? Should we set flag_pic?  Probably need to define
1401
   LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1402
 
1403
#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1404
 
1405
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1406
   clobbered by calls.  */
1407
 
1408
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1409
 
1410
 
1411
/* The Overall Framework of an Assembler File.  */
1412
 
1413
/* A C string constant describing how to begin a comment in the target
1414
   assembler language.  The compiler assumes that the comment will end at the
1415
   end of the line.  */
1416
 
1417
#define ASM_COMMENT_START "//"
1418
 
1419
/* A C string constant for text to be output before each `asm' statement or
1420
   group of consecutive ones.  */
1421
 
1422
#define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1423
 
1424
/* A C string constant for text to be output after each `asm' statement or
1425
   group of consecutive ones.  */
1426
 
1427
#define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1428
 
1429
/* Output of Uninitialized Variables.  */
1430
 
1431
/* This is all handled by svr4.h.  */
1432
 
1433
 
1434
/* Output and Generation of Labels.  */
1435
 
1436
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1437
   assembler definition of a label named NAME.  */
1438
 
1439
/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1440
   why ia64_asm_output_label exists.  */
1441
 
1442
extern int ia64_asm_output_label;
1443
#define ASM_OUTPUT_LABEL(STREAM, NAME)                                  \
1444
do {                                                                    \
1445
  ia64_asm_output_label = 1;                                            \
1446
  assemble_name (STREAM, NAME);                                         \
1447
  fputs (":\n", STREAM);                                                \
1448
  ia64_asm_output_label = 0;                                             \
1449
} while (0)
1450
 
1451
/* Globalizing directive for a label.  */
1452
#define GLOBAL_ASM_OP "\t.global "
1453
 
1454
/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1455
   necessary for declaring the name of an external symbol named NAME which is
1456
   referenced in this compilation but not defined.  */
1457
 
1458
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1459
  ia64_asm_output_external (FILE, DECL, NAME)
1460
 
1461
/* A C statement to store into the string STRING a label whose name is made
1462
   from the string PREFIX and the number NUM.  */
1463
 
1464
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1465
do {                                                                    \
1466
  sprintf (LABEL, "*.%s%d", PREFIX, NUM);                               \
1467
} while (0)
1468
 
1469
/* ??? Not sure if using a ? in the name for Intel as is safe.  */
1470
 
1471
#define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1472
 
1473
/* A C statement to output to the stdio stream STREAM assembler code which
1474
   defines (equates) the symbol NAME to have the value VALUE.  */
1475
 
1476
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1477
do {                                                                    \
1478
  assemble_name (STREAM, NAME);                                         \
1479
  fputs (" = ", STREAM);                                                \
1480
  if (ISDIGIT (*VALUE))                                                 \
1481
    ia64_asm_output_label = 1;                                          \
1482
  assemble_name (STREAM, VALUE);                                        \
1483
  fputc ('\n', STREAM);                                                 \
1484
  ia64_asm_output_label = 0;                                             \
1485
} while (0)
1486
 
1487
 
1488
/* Macros Controlling Initialization Routines.  */
1489
 
1490
/* This is handled by svr4.h and sysv4.h.  */
1491
 
1492
 
1493
/* Output of Assembler Instructions.  */
1494
 
1495
/* A C initializer containing the assembler's names for the machine registers,
1496
   each one as a C string constant.  */
1497
 
1498
#define REGISTER_NAMES \
1499
{                                                                       \
1500
  /* General registers.  */                                             \
1501
  "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",           \
1502
  "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1503
  "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1504
  "r30", "r31",                                                         \
1505
  /* Local registers.  */                                               \
1506
  "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",       \
1507
  "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",      \
1508
  "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",      \
1509
  "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",      \
1510
  "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",      \
1511
  "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",      \
1512
  "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",      \
1513
  "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",      \
1514
  "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",      \
1515
  "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",      \
1516
  /* Input registers.  */                                               \
1517
  "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",        \
1518
  /* Output registers.  */                                              \
1519
  "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",       \
1520
  /* Floating-point registers.  */                                      \
1521
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",           \
1522
  "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1523
  "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1524
  "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1525
  "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1526
  "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1527
  "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1528
  "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1529
  "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1530
  "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1531
  "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1532
  "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1533
  "f120","f121","f122","f123","f124","f125","f126","f127",              \
1534
  /* Predicate registers.  */                                           \
1535
  "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",           \
1536
  "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1537
  "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1538
  "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1539
  "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1540
  "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1541
  "p60", "p61", "p62", "p63",                                           \
1542
  /* Branch registers.  */                                              \
1543
  "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",                       \
1544
  /* Frame pointer.  Application registers.  */                         \
1545
  "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",       \
1546
}
1547
 
1548
/* If defined, a C initializer for an array of structures containing a name and
1549
   a register number.  This macro defines additional names for hard registers,
1550
   thus allowing the `asm' option in declarations to refer to registers using
1551
   alternate names.  */
1552
 
1553
#define ADDITIONAL_REGISTER_NAMES \
1554
{                                                                       \
1555
  { "gp", R_GR (1) },                                                   \
1556
  { "sp", R_GR (12) },                                                  \
1557
  { "in0", IN_REG (0) },                                         \
1558
  { "in1", IN_REG (1) },                                                \
1559
  { "in2", IN_REG (2) },                                                \
1560
  { "in3", IN_REG (3) },                                                \
1561
  { "in4", IN_REG (4) },                                                \
1562
  { "in5", IN_REG (5) },                                                \
1563
  { "in6", IN_REG (6) },                                                \
1564
  { "in7", IN_REG (7) },                                                \
1565
  { "out0", OUT_REG (0) },                                               \
1566
  { "out1", OUT_REG (1) },                                              \
1567
  { "out2", OUT_REG (2) },                                              \
1568
  { "out3", OUT_REG (3) },                                              \
1569
  { "out4", OUT_REG (4) },                                              \
1570
  { "out5", OUT_REG (5) },                                              \
1571
  { "out6", OUT_REG (6) },                                              \
1572
  { "out7", OUT_REG (7) },                                              \
1573
  { "loc0", LOC_REG (0) },                                               \
1574
  { "loc1", LOC_REG (1) },                                              \
1575
  { "loc2", LOC_REG (2) },                                              \
1576
  { "loc3", LOC_REG (3) },                                              \
1577
  { "loc4", LOC_REG (4) },                                              \
1578
  { "loc5", LOC_REG (5) },                                              \
1579
  { "loc6", LOC_REG (6) },                                              \
1580
  { "loc7", LOC_REG (7) },                                              \
1581
  { "loc8", LOC_REG (8) },                                              \
1582
  { "loc9", LOC_REG (9) },                                              \
1583
  { "loc10", LOC_REG (10) },                                            \
1584
  { "loc11", LOC_REG (11) },                                            \
1585
  { "loc12", LOC_REG (12) },                                            \
1586
  { "loc13", LOC_REG (13) },                                            \
1587
  { "loc14", LOC_REG (14) },                                            \
1588
  { "loc15", LOC_REG (15) },                                            \
1589
  { "loc16", LOC_REG (16) },                                            \
1590
  { "loc17", LOC_REG (17) },                                            \
1591
  { "loc18", LOC_REG (18) },                                            \
1592
  { "loc19", LOC_REG (19) },                                            \
1593
  { "loc20", LOC_REG (20) },                                            \
1594
  { "loc21", LOC_REG (21) },                                            \
1595
  { "loc22", LOC_REG (22) },                                            \
1596
  { "loc23", LOC_REG (23) },                                            \
1597
  { "loc24", LOC_REG (24) },                                            \
1598
  { "loc25", LOC_REG (25) },                                            \
1599
  { "loc26", LOC_REG (26) },                                            \
1600
  { "loc27", LOC_REG (27) },                                            \
1601
  { "loc28", LOC_REG (28) },                                            \
1602
  { "loc29", LOC_REG (29) },                                            \
1603
  { "loc30", LOC_REG (30) },                                            \
1604
  { "loc31", LOC_REG (31) },                                            \
1605
  { "loc32", LOC_REG (32) },                                            \
1606
  { "loc33", LOC_REG (33) },                                            \
1607
  { "loc34", LOC_REG (34) },                                            \
1608
  { "loc35", LOC_REG (35) },                                            \
1609
  { "loc36", LOC_REG (36) },                                            \
1610
  { "loc37", LOC_REG (37) },                                            \
1611
  { "loc38", LOC_REG (38) },                                            \
1612
  { "loc39", LOC_REG (39) },                                            \
1613
  { "loc40", LOC_REG (40) },                                            \
1614
  { "loc41", LOC_REG (41) },                                            \
1615
  { "loc42", LOC_REG (42) },                                            \
1616
  { "loc43", LOC_REG (43) },                                            \
1617
  { "loc44", LOC_REG (44) },                                            \
1618
  { "loc45", LOC_REG (45) },                                            \
1619
  { "loc46", LOC_REG (46) },                                            \
1620
  { "loc47", LOC_REG (47) },                                            \
1621
  { "loc48", LOC_REG (48) },                                            \
1622
  { "loc49", LOC_REG (49) },                                            \
1623
  { "loc50", LOC_REG (50) },                                            \
1624
  { "loc51", LOC_REG (51) },                                            \
1625
  { "loc52", LOC_REG (52) },                                            \
1626
  { "loc53", LOC_REG (53) },                                            \
1627
  { "loc54", LOC_REG (54) },                                            \
1628
  { "loc55", LOC_REG (55) },                                            \
1629
  { "loc56", LOC_REG (56) },                                            \
1630
  { "loc57", LOC_REG (57) },                                            \
1631
  { "loc58", LOC_REG (58) },                                            \
1632
  { "loc59", LOC_REG (59) },                                            \
1633
  { "loc60", LOC_REG (60) },                                            \
1634
  { "loc61", LOC_REG (61) },                                            \
1635
  { "loc62", LOC_REG (62) },                                            \
1636
  { "loc63", LOC_REG (63) },                                            \
1637
  { "loc64", LOC_REG (64) },                                            \
1638
  { "loc65", LOC_REG (65) },                                            \
1639
  { "loc66", LOC_REG (66) },                                            \
1640
  { "loc67", LOC_REG (67) },                                            \
1641
  { "loc68", LOC_REG (68) },                                            \
1642
  { "loc69", LOC_REG (69) },                                            \
1643
  { "loc70", LOC_REG (70) },                                            \
1644
  { "loc71", LOC_REG (71) },                                            \
1645
  { "loc72", LOC_REG (72) },                                            \
1646
  { "loc73", LOC_REG (73) },                                            \
1647
  { "loc74", LOC_REG (74) },                                            \
1648
  { "loc75", LOC_REG (75) },                                            \
1649
  { "loc76", LOC_REG (76) },                                            \
1650
  { "loc77", LOC_REG (77) },                                            \
1651
  { "loc78", LOC_REG (78) },                                            \
1652
  { "loc79", LOC_REG (79) },                                            \
1653
}
1654
 
1655
/* A C compound statement to output to stdio stream STREAM the assembler syntax
1656
   for an instruction operand X.  X is an RTL expression.  */
1657
 
1658
#define PRINT_OPERAND(STREAM, X, CODE) \
1659
  ia64_print_operand (STREAM, X, CODE)
1660
 
1661
/* A C expression which evaluates to true if CODE is a valid punctuation
1662
   character for use in the `PRINT_OPERAND' macro.  */
1663
 
1664
/* ??? Keep this around for now, as we might need it later.  */
1665
 
1666
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1667
  ((CODE) == '+' || (CODE) == ',')
1668
 
1669
/* A C compound statement to output to stdio stream STREAM the assembler syntax
1670
   for an instruction operand that is a memory reference whose address is X.  X
1671
   is an RTL expression.  */
1672
 
1673
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
1674
  ia64_print_operand_address (STREAM, X)
1675
 
1676
/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1677
   `%I' options of `asm_fprintf' (see `final.c').  */
1678
 
1679
#define REGISTER_PREFIX ""
1680
#define LOCAL_LABEL_PREFIX "."
1681
#define USER_LABEL_PREFIX ""
1682
#define IMMEDIATE_PREFIX ""
1683
 
1684
 
1685
/* Output of dispatch tables.  */
1686
 
1687
/* This macro should be provided on machines where the addresses in a dispatch
1688
   table are relative to the table's own address.  */
1689
 
1690
/* ??? Depends on the pointer size.  */
1691
 
1692
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)      \
1693
  do {                                                          \
1694
  if (TARGET_ILP32)                                             \
1695
    fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);          \
1696
  else                                                          \
1697
    fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);          \
1698
  } while (0)
1699
 
1700
/* Jump tables only need 8 byte alignment.  */
1701
 
1702
#define ADDR_VEC_ALIGN(ADDR_VEC) 3
1703
 
1704
 
1705
/* Assembler Commands for Exception Regions.  */
1706
 
1707
/* Select a format to encode pointers in exception handling data.  CODE
1708
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1709
   true if the symbol may be affected by dynamic relocations.  */
1710
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)       \
1711
  (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)  \
1712
   | ((GLOBAL) ? DW_EH_PE_indirect : 0)                  \
1713
   | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1714
 
1715
/* Handle special EH pointer encodings.  Absolute, pc-relative, and
1716
   indirect are handled automatically.  */
1717
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1718
  do {                                                                  \
1719
    const char *reltag = NULL;                                          \
1720
    if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)                        \
1721
      reltag = "@segrel(";                                              \
1722
    else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)                   \
1723
      reltag = "@gprel(";                                               \
1724
    if (reltag)                                                         \
1725
      {                                                                 \
1726
        fputs (integer_asm_op (SIZE, FALSE), FILE);                     \
1727
        fputs (reltag, FILE);                                           \
1728
        assemble_name (FILE, XSTR (ADDR, 0));                            \
1729
        fputc (')', FILE);                                              \
1730
        goto DONE;                                                      \
1731
      }                                                                 \
1732
  } while (0)
1733
 
1734
 
1735
/* Assembler Commands for Alignment.  */
1736
 
1737
/* ??? Investigate.  */
1738
 
1739
/* The alignment (log base 2) to put in front of LABEL, which follows
1740
   a BARRIER.  */
1741
 
1742
/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1743
 
1744
/* The desired alignment for the location counter at the beginning
1745
   of a loop.  */
1746
 
1747
/* #define LOOP_ALIGN(LABEL) */
1748
 
1749
/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1750
   section because it fails put zeros in the bytes that are skipped.  */
1751
 
1752
#define ASM_NO_SKIP_IN_TEXT 1
1753
 
1754
/* A C statement to output to the stdio stream STREAM an assembler command to
1755
   advance the location counter to a multiple of 2 to the POWER bytes.  */
1756
 
1757
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1758
  fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1759
 
1760
 
1761
/* Macros Affecting all Debug Formats.  */
1762
 
1763
/* This is handled in svr4.h and sysv4.h.  */
1764
 
1765
 
1766
/* Specific Options for DBX Output.  */
1767
 
1768
/* This is handled by dbxelf.h which is included by svr4.h.  */
1769
 
1770
 
1771
/* Open ended Hooks for DBX Output.  */
1772
 
1773
/* Likewise.  */
1774
 
1775
 
1776
/* File names in DBX format.  */
1777
 
1778
/* Likewise.  */
1779
 
1780
 
1781
/* Macros for SDB and Dwarf Output.  */
1782
 
1783
/* Define this macro if GCC should produce dwarf version 2 format debugging
1784
   output in response to the `-g' option.  */
1785
 
1786
#define DWARF2_DEBUGGING_INFO 1
1787
 
1788
/* We do not want call-frame info to be output, since debuggers are
1789
   supposed to use the target unwind info.  Leave this undefined it
1790
   TARGET_UNWIND_INFO might ever be false.  */
1791
 
1792
#define DWARF2_FRAME_INFO 0
1793
 
1794
#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1795
 
1796
/* Use tags for debug info labels, so that they don't break instruction
1797
   bundles.  This also avoids getting spurious DV warnings from the
1798
   assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1799
   add brackets around the label.  */
1800
 
1801
#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1802
  fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1803
 
1804
/* Use section-relative relocations for debugging offsets.  Unlike other
1805
   targets that fake this by putting the section VMA at 0, IA-64 has
1806
   proper relocations for them.  */
1807
#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION)     \
1808
  do {                                                          \
1809
    fputs (integer_asm_op (SIZE, FALSE), FILE);                 \
1810
    fputs ("@secrel(", FILE);                                   \
1811
    assemble_name (FILE, LABEL);                                \
1812
    fputc (')', FILE);                                          \
1813
  } while (0)
1814
 
1815
/* Emit a PC-relative relocation.  */
1816
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1817
  do {                                                  \
1818
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1819
    fputs ("@pcrel(", FILE);                            \
1820
    assemble_name (FILE, LABEL);                        \
1821
    fputc (')', FILE);                                  \
1822
  } while (0)
1823
 
1824
/* Register Renaming Parameters.  */
1825
 
1826
/* A C expression that is nonzero if hard register number REGNO2 can be
1827
   considered for use as a rename register for REGNO1 */
1828
 
1829
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1830
  ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1831
 
1832
 
1833
/* Miscellaneous Parameters.  */
1834
 
1835
/* Flag to mark data that is in the small address area (addressable
1836
   via "addl", that is, within a 2MByte offset of 0.  */
1837
#define SYMBOL_FLAG_SMALL_ADDR          (SYMBOL_FLAG_MACH_DEP << 0)
1838
#define SYMBOL_REF_SMALL_ADDR_P(X)      \
1839
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1840
 
1841
/* An alias for a machine mode name.  This is the machine mode that elements of
1842
   a jump-table should have.  */
1843
 
1844
#define CASE_VECTOR_MODE ptr_mode
1845
 
1846
/* Define as C expression which evaluates to nonzero if the tablejump
1847
   instruction expects the table to contain offsets from the address of the
1848
   table.  */
1849
 
1850
#define CASE_VECTOR_PC_RELATIVE 1
1851
 
1852
/* Define this macro if operations between registers with integral mode smaller
1853
   than a word are always performed on the entire register.  */
1854
 
1855
#define WORD_REGISTER_OPERATIONS
1856
 
1857
/* Define this macro to be a C expression indicating when insns that read
1858
   memory in MODE, an integral mode narrower than a word, set the bits outside
1859
   of MODE to be either the sign-extension or the zero-extension of the data
1860
   read.  */
1861
 
1862
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1863
 
1864
/* The maximum number of bytes that a single instruction can move quickly from
1865
   memory to memory.  */
1866
#define MOVE_MAX 8
1867
 
1868
/* A C expression which is nonzero if on this machine it is safe to "convert"
1869
   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1870
   than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1871
 
1872
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1873
 
1874
/* A C expression describing the value returned by a comparison operator with
1875
   an integral mode and stored by a store-flag instruction (`sCOND') when the
1876
   condition is true.  */
1877
 
1878
/* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1879
 
1880
/* An alias for the machine mode for pointers.  */
1881
 
1882
/* ??? This would change if we had ILP32 support.  */
1883
 
1884
#define Pmode DImode
1885
 
1886
/* An alias for the machine mode used for memory references to functions being
1887
   called, in `call' RTL expressions.  */
1888
 
1889
#define FUNCTION_MODE Pmode
1890
 
1891
/* Define this macro to handle System V style pragmas: #pragma pack and
1892
   #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
1893
   defined.  */
1894
 
1895
#define HANDLE_SYSV_PRAGMA 1
1896
 
1897
/* A C expression for the maximum number of instructions to execute via
1898
   conditional execution instructions instead of a branch.  A value of
1899
   BRANCH_COST+1 is the default if the machine does not use
1900
   cc0, and 1 if it does use cc0.  */
1901
/* ??? Investigate.  */
1902
#define MAX_CONDITIONAL_EXECUTE 12
1903
 
1904
extern int ia64_final_schedule;
1905
 
1906
#define TARGET_UNWIND_INFO      1
1907
 
1908
#define TARGET_UNWIND_TABLES_DEFAULT true
1909
 
1910
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1911
 
1912
/* This function contains machine specific function data.  */
1913
struct GTY(()) machine_function
1914
{
1915
  /* The new stack pointer when unwinding from EH.  */
1916
  rtx ia64_eh_epilogue_sp;
1917
 
1918
  /* The new bsp value when unwinding from EH.  */
1919
  rtx ia64_eh_epilogue_bsp;
1920
 
1921
  /* The GP value save register.  */
1922
  rtx ia64_gp_save;
1923
 
1924
  /* The number of varargs registers to save.  */
1925
  int n_varargs;
1926
 
1927
  /* The number of the next unwind state to copy.  */
1928
  int state_num;
1929
};
1930
 
1931
#define DONT_USE_BUILTIN_SETJMP
1932
 
1933
/* Output any profiling code before the prologue.  */
1934
 
1935
#undef  PROFILE_BEFORE_PROLOGUE
1936
#define PROFILE_BEFORE_PROLOGUE 1
1937
 
1938
/* Initialize library function table. */
1939
#undef TARGET_INIT_LIBFUNCS
1940
#define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1941
 
1942
 
1943
/* Switch on code for querying unit reservations.  */
1944
#define CPU_UNITS_QUERY 1
1945
 
1946
/* Define this to change the optimizations performed by default.  */
1947
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
1948
  ia64_optimization_options ((LEVEL), (SIZE))
1949
 
1950
/* End of ia64.h */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.