| 1 |
282 |
jeremybenn |
/* libgcc routines for 68000 w/o floating-point hardware.
|
| 2 |
|
|
Copyright (C) 1994, 1996, 1997, 1998, 2008, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GCC.
|
| 5 |
|
|
|
| 6 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 7 |
|
|
under the terms of the GNU General Public License as published by the
|
| 8 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 9 |
|
|
later version.
|
| 10 |
|
|
|
| 11 |
|
|
This file is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 17 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 18 |
|
|
3.1, as published by the Free Software Foundation.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License and
|
| 21 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 22 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 23 |
|
|
. */
|
| 24 |
|
|
|
| 25 |
|
|
/* Use this one for any 680x0; assumes no floating point hardware.
|
| 26 |
|
|
The trailing " '" appearing on some lines is for ANSI preprocessors. Yuk.
|
| 27 |
|
|
Some of this code comes from MINIX, via the folks at ericsson.
|
| 28 |
|
|
D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
|
| 29 |
|
|
*/
|
| 30 |
|
|
|
| 31 |
|
|
/* These are predefined by new versions of GNU cpp. */
|
| 32 |
|
|
|
| 33 |
|
|
#ifndef __USER_LABEL_PREFIX__
|
| 34 |
|
|
#define __USER_LABEL_PREFIX__ _
|
| 35 |
|
|
#endif
|
| 36 |
|
|
|
| 37 |
|
|
#ifndef __REGISTER_PREFIX__
|
| 38 |
|
|
#define __REGISTER_PREFIX__
|
| 39 |
|
|
#endif
|
| 40 |
|
|
|
| 41 |
|
|
#ifndef __IMMEDIATE_PREFIX__
|
| 42 |
|
|
#define __IMMEDIATE_PREFIX__ #
|
| 43 |
|
|
#endif
|
| 44 |
|
|
|
| 45 |
|
|
/* ANSI concatenation macros. */
|
| 46 |
|
|
|
| 47 |
|
|
#define CONCAT1(a, b) CONCAT2(a, b)
|
| 48 |
|
|
#define CONCAT2(a, b) a ## b
|
| 49 |
|
|
|
| 50 |
|
|
/* Use the right prefix for global labels. */
|
| 51 |
|
|
|
| 52 |
|
|
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
|
| 53 |
|
|
|
| 54 |
|
|
/* Note that X is a function. */
|
| 55 |
|
|
|
| 56 |
|
|
#ifdef __ELF__
|
| 57 |
|
|
#define FUNC(x) .type SYM(x),function
|
| 58 |
|
|
#else
|
| 59 |
|
|
/* The .proc pseudo-op is accepted, but ignored, by GAS. We could just
|
| 60 |
|
|
define this to the empty string for non-ELF systems, but defining it
|
| 61 |
|
|
to .proc means that the information is available to the assembler if
|
| 62 |
|
|
the need arises. */
|
| 63 |
|
|
#define FUNC(x) .proc
|
| 64 |
|
|
#endif
|
| 65 |
|
|
|
| 66 |
|
|
/* Use the right prefix for registers. */
|
| 67 |
|
|
|
| 68 |
|
|
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
|
| 69 |
|
|
|
| 70 |
|
|
/* Use the right prefix for immediate values. */
|
| 71 |
|
|
|
| 72 |
|
|
#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)
|
| 73 |
|
|
|
| 74 |
|
|
#define d0 REG (d0)
|
| 75 |
|
|
#define d1 REG (d1)
|
| 76 |
|
|
#define d2 REG (d2)
|
| 77 |
|
|
#define d3 REG (d3)
|
| 78 |
|
|
#define d4 REG (d4)
|
| 79 |
|
|
#define d5 REG (d5)
|
| 80 |
|
|
#define d6 REG (d6)
|
| 81 |
|
|
#define d7 REG (d7)
|
| 82 |
|
|
#define a0 REG (a0)
|
| 83 |
|
|
#define a1 REG (a1)
|
| 84 |
|
|
#define a2 REG (a2)
|
| 85 |
|
|
#define a3 REG (a3)
|
| 86 |
|
|
#define a4 REG (a4)
|
| 87 |
|
|
#define a5 REG (a5)
|
| 88 |
|
|
#define a6 REG (a6)
|
| 89 |
|
|
#define fp REG (fp)
|
| 90 |
|
|
#define sp REG (sp)
|
| 91 |
|
|
#define pc REG (pc)
|
| 92 |
|
|
|
| 93 |
|
|
/* Provide a few macros to allow for PIC code support.
|
| 94 |
|
|
* With PIC, data is stored A5 relative so we've got to take a bit of special
|
| 95 |
|
|
* care to ensure that all loads of global data is via A5. PIC also requires
|
| 96 |
|
|
* jumps and subroutine calls to be PC relative rather than absolute. We cheat
|
| 97 |
|
|
* a little on this and in the PIC case, we use short offset branches and
|
| 98 |
|
|
* hope that the final object code is within range (which it should be).
|
| 99 |
|
|
*/
|
| 100 |
|
|
#ifndef __PIC__
|
| 101 |
|
|
|
| 102 |
|
|
/* Non PIC (absolute/relocatable) versions */
|
| 103 |
|
|
|
| 104 |
|
|
.macro PICCALL addr
|
| 105 |
|
|
jbsr \addr
|
| 106 |
|
|
.endm
|
| 107 |
|
|
|
| 108 |
|
|
.macro PICJUMP addr
|
| 109 |
|
|
jmp \addr
|
| 110 |
|
|
.endm
|
| 111 |
|
|
|
| 112 |
|
|
.macro PICLEA sym, reg
|
| 113 |
|
|
lea \sym, \reg
|
| 114 |
|
|
.endm
|
| 115 |
|
|
|
| 116 |
|
|
.macro PICPEA sym, areg
|
| 117 |
|
|
pea \sym
|
| 118 |
|
|
.endm
|
| 119 |
|
|
|
| 120 |
|
|
#else /* __PIC__ */
|
| 121 |
|
|
|
| 122 |
|
|
# if defined (__uClinux__)
|
| 123 |
|
|
|
| 124 |
|
|
/* Versions for uClinux */
|
| 125 |
|
|
|
| 126 |
|
|
# if defined(__ID_SHARED_LIBRARY__)
|
| 127 |
|
|
|
| 128 |
|
|
/* -mid-shared-library versions */
|
| 129 |
|
|
|
| 130 |
|
|
.macro PICLEA sym, reg
|
| 131 |
|
|
movel a5@(_current_shared_library_a5_offset_), \reg
|
| 132 |
|
|
movel \sym@GOT(\reg), \reg
|
| 133 |
|
|
.endm
|
| 134 |
|
|
|
| 135 |
|
|
.macro PICPEA sym, areg
|
| 136 |
|
|
movel a5@(_current_shared_library_a5_offset_), \areg
|
| 137 |
|
|
movel \sym@GOT(\areg), sp@-
|
| 138 |
|
|
.endm
|
| 139 |
|
|
|
| 140 |
|
|
.macro PICCALL addr
|
| 141 |
|
|
PICLEA \addr,a0
|
| 142 |
|
|
jsr a0@
|
| 143 |
|
|
.endm
|
| 144 |
|
|
|
| 145 |
|
|
.macro PICJUMP addr
|
| 146 |
|
|
PICLEA \addr,a0
|
| 147 |
|
|
jmp a0@
|
| 148 |
|
|
.endm
|
| 149 |
|
|
|
| 150 |
|
|
# else /* !__ID_SHARED_LIBRARY__ */
|
| 151 |
|
|
|
| 152 |
|
|
/* Versions for -msep-data */
|
| 153 |
|
|
|
| 154 |
|
|
.macro PICLEA sym, reg
|
| 155 |
|
|
movel \sym@GOT(a5), \reg
|
| 156 |
|
|
.endm
|
| 157 |
|
|
|
| 158 |
|
|
.macro PICPEA sym, areg
|
| 159 |
|
|
movel \sym@GOT(a5), sp@-
|
| 160 |
|
|
.endm
|
| 161 |
|
|
|
| 162 |
|
|
.macro PICCALL addr
|
| 163 |
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
|
| 164 |
|
|
lea \addr-.-8,a0
|
| 165 |
|
|
jsr pc@(a0)
|
| 166 |
|
|
#else
|
| 167 |
|
|
jbsr \addr
|
| 168 |
|
|
#endif
|
| 169 |
|
|
.endm
|
| 170 |
|
|
|
| 171 |
|
|
.macro PICJUMP addr
|
| 172 |
|
|
/* ISA C has no bra.l instruction, and since this assembly file
|
| 173 |
|
|
gets assembled into multiple object files, we avoid the
|
| 174 |
|
|
bra instruction entirely. */
|
| 175 |
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__)
|
| 176 |
|
|
lea \addr-.-8,a0
|
| 177 |
|
|
jmp pc@(a0)
|
| 178 |
|
|
#else
|
| 179 |
|
|
bra \addr
|
| 180 |
|
|
#endif
|
| 181 |
|
|
.endm
|
| 182 |
|
|
|
| 183 |
|
|
# endif
|
| 184 |
|
|
|
| 185 |
|
|
# else /* !__uClinux__ */
|
| 186 |
|
|
|
| 187 |
|
|
/* Versions for Linux */
|
| 188 |
|
|
|
| 189 |
|
|
.macro PICLEA sym, reg
|
| 190 |
|
|
movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \reg
|
| 191 |
|
|
lea (-6, pc, \reg), \reg
|
| 192 |
|
|
movel \sym@GOT(\reg), \reg
|
| 193 |
|
|
.endm
|
| 194 |
|
|
|
| 195 |
|
|
.macro PICPEA sym, areg
|
| 196 |
|
|
movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \areg
|
| 197 |
|
|
lea (-6, pc, \areg), \areg
|
| 198 |
|
|
movel \sym@GOT(\areg), sp@-
|
| 199 |
|
|
.endm
|
| 200 |
|
|
|
| 201 |
|
|
.macro PICCALL addr
|
| 202 |
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
|
| 203 |
|
|
lea \addr-.-8,a0
|
| 204 |
|
|
jsr pc@(a0)
|
| 205 |
|
|
#else
|
| 206 |
|
|
jbsr \addr
|
| 207 |
|
|
#endif
|
| 208 |
|
|
.endm
|
| 209 |
|
|
|
| 210 |
|
|
.macro PICJUMP addr
|
| 211 |
|
|
/* ISA C has no bra.l instruction, and since this assembly file
|
| 212 |
|
|
gets assembled into multiple object files, we avoid the
|
| 213 |
|
|
bra instruction entirely. */
|
| 214 |
|
|
#if defined (__mcoldfire__) && !defined (__mcfisab__)
|
| 215 |
|
|
lea \addr-.-8,a0
|
| 216 |
|
|
jmp pc@(a0)
|
| 217 |
|
|
#else
|
| 218 |
|
|
bra \addr
|
| 219 |
|
|
#endif
|
| 220 |
|
|
.endm
|
| 221 |
|
|
|
| 222 |
|
|
# endif
|
| 223 |
|
|
#endif /* __PIC__ */
|
| 224 |
|
|
|
| 225 |
|
|
|
| 226 |
|
|
#ifdef L_floatex
|
| 227 |
|
|
|
| 228 |
|
|
| This is an attempt at a decent floating point (single, double and
|
| 229 |
|
|
| extended double) code for the GNU C compiler. It should be easy to
|
| 230 |
|
|
| adapt to other compilers (but beware of the local labels!).
|
| 231 |
|
|
|
| 232 |
|
|
| Starting date: 21 October, 1990
|
| 233 |
|
|
|
| 234 |
|
|
| It is convenient to introduce the notation (s,e,f) for a floating point
|
| 235 |
|
|
| number, where s=sign, e=exponent, f=fraction. We will call a floating
|
| 236 |
|
|
| point number fpn to abbreviate, independently of the precision.
|
| 237 |
|
|
| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023
|
| 238 |
|
|
| for doubles and 16383 for long doubles). We then have the following
|
| 239 |
|
|
| different cases:
|
| 240 |
|
|
| 1. Normalized fpns have 0 < e < MAX_EXP. They correspond to
|
| 241 |
|
|
| (-1)^s x 1.f x 2^(e-bias-1).
|
| 242 |
|
|
| 2. Denormalized fpns have e=0. They correspond to numbers of the form
|
| 243 |
|
|
| (-1)^s x 0.f x 2^(-bias).
|
| 244 |
|
|
| 3. +/-INFINITY have e=MAX_EXP, f=0.
|
| 245 |
|
|
| 4. Quiet NaN (Not a Number) have all bits set.
|
| 246 |
|
|
| 5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.
|
| 247 |
|
|
|
| 248 |
|
|
|=============================================================================
|
| 249 |
|
|
| exceptions
|
| 250 |
|
|
|=============================================================================
|
| 251 |
|
|
|
| 252 |
|
|
| This is the floating point condition code register (_fpCCR):
|
| 253 |
|
|
|
|
| 254 |
|
|
| struct {
|
| 255 |
|
|
| short _exception_bits;
|
| 256 |
|
|
| short _trap_enable_bits;
|
| 257 |
|
|
| short _sticky_bits;
|
| 258 |
|
|
| short _rounding_mode;
|
| 259 |
|
|
| short _format;
|
| 260 |
|
|
| short _last_operation;
|
| 261 |
|
|
| union {
|
| 262 |
|
|
| float sf;
|
| 263 |
|
|
| double df;
|
| 264 |
|
|
| } _operand1;
|
| 265 |
|
|
| union {
|
| 266 |
|
|
| float sf;
|
| 267 |
|
|
| double df;
|
| 268 |
|
|
| } _operand2;
|
| 269 |
|
|
| } _fpCCR;
|
| 270 |
|
|
|
| 271 |
|
|
.data
|
| 272 |
|
|
.even
|
| 273 |
|
|
|
| 274 |
|
|
.globl SYM (_fpCCR)
|
| 275 |
|
|
|
| 276 |
|
|
SYM (_fpCCR):
|
| 277 |
|
|
__exception_bits:
|
| 278 |
|
|
.word 0
|
| 279 |
|
|
__trap_enable_bits:
|
| 280 |
|
|
.word 0
|
| 281 |
|
|
__sticky_bits:
|
| 282 |
|
|
.word 0
|
| 283 |
|
|
__rounding_mode:
|
| 284 |
|
|
.word ROUND_TO_NEAREST
|
| 285 |
|
|
__format:
|
| 286 |
|
|
.word NIL
|
| 287 |
|
|
__last_operation:
|
| 288 |
|
|
.word NOOP
|
| 289 |
|
|
__operand1:
|
| 290 |
|
|
.long 0
|
| 291 |
|
|
.long 0
|
| 292 |
|
|
__operand2:
|
| 293 |
|
|
.long 0
|
| 294 |
|
|
.long 0
|
| 295 |
|
|
|
| 296 |
|
|
| Offsets:
|
| 297 |
|
|
EBITS = __exception_bits - SYM (_fpCCR)
|
| 298 |
|
|
TRAPE = __trap_enable_bits - SYM (_fpCCR)
|
| 299 |
|
|
STICK = __sticky_bits - SYM (_fpCCR)
|
| 300 |
|
|
ROUND = __rounding_mode - SYM (_fpCCR)
|
| 301 |
|
|
FORMT = __format - SYM (_fpCCR)
|
| 302 |
|
|
LASTO = __last_operation - SYM (_fpCCR)
|
| 303 |
|
|
OPER1 = __operand1 - SYM (_fpCCR)
|
| 304 |
|
|
OPER2 = __operand2 - SYM (_fpCCR)
|
| 305 |
|
|
|
| 306 |
|
|
| The following exception types are supported:
|
| 307 |
|
|
INEXACT_RESULT = 0x0001
|
| 308 |
|
|
UNDERFLOW = 0x0002
|
| 309 |
|
|
OVERFLOW = 0x0004
|
| 310 |
|
|
DIVIDE_BY_ZERO = 0x0008
|
| 311 |
|
|
INVALID_OPERATION = 0x0010
|
| 312 |
|
|
|
| 313 |
|
|
| The allowed rounding modes are:
|
| 314 |
|
|
UNKNOWN = -1
|
| 315 |
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
| 316 |
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
| 317 |
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
| 318 |
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
| 319 |
|
|
|
| 320 |
|
|
| The allowed values of format are:
|
| 321 |
|
|
NIL = 0
|
| 322 |
|
|
SINGLE_FLOAT = 1
|
| 323 |
|
|
DOUBLE_FLOAT = 2
|
| 324 |
|
|
LONG_FLOAT = 3
|
| 325 |
|
|
|
| 326 |
|
|
| The allowed values for the last operation are:
|
| 327 |
|
|
NOOP = 0
|
| 328 |
|
|
ADD = 1
|
| 329 |
|
|
MULTIPLY = 2
|
| 330 |
|
|
DIVIDE = 3
|
| 331 |
|
|
NEGATE = 4
|
| 332 |
|
|
COMPARE = 5
|
| 333 |
|
|
EXTENDSFDF = 6
|
| 334 |
|
|
TRUNCDFSF = 7
|
| 335 |
|
|
|
| 336 |
|
|
|=============================================================================
|
| 337 |
|
|
| __clear_sticky_bits
|
| 338 |
|
|
|=============================================================================
|
| 339 |
|
|
|
| 340 |
|
|
| The sticky bits are normally not cleared (thus the name), whereas the
|
| 341 |
|
|
| exception type and exception value reflect the last computation.
|
| 342 |
|
|
| This routine is provided to clear them (you can also write to _fpCCR,
|
| 343 |
|
|
| since it is globally visible).
|
| 344 |
|
|
|
| 345 |
|
|
.globl SYM (__clear_sticky_bit)
|
| 346 |
|
|
|
| 347 |
|
|
.text
|
| 348 |
|
|
.even
|
| 349 |
|
|
|
| 350 |
|
|
| void __clear_sticky_bits(void);
|
| 351 |
|
|
SYM (__clear_sticky_bit):
|
| 352 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 353 |
|
|
#ifndef __mcoldfire__
|
| 354 |
|
|
movew IMM (0),a0@(STICK)
|
| 355 |
|
|
#else
|
| 356 |
|
|
clr.w a0@(STICK)
|
| 357 |
|
|
#endif
|
| 358 |
|
|
rts
|
| 359 |
|
|
|
| 360 |
|
|
|=============================================================================
|
| 361 |
|
|
| $_exception_handler
|
| 362 |
|
|
|=============================================================================
|
| 363 |
|
|
|
| 364 |
|
|
.globl $_exception_handler
|
| 365 |
|
|
|
| 366 |
|
|
.text
|
| 367 |
|
|
.even
|
| 368 |
|
|
|
| 369 |
|
|
| This is the common exit point if an exception occurs.
|
| 370 |
|
|
| NOTE: it is NOT callable from C!
|
| 371 |
|
|
| It expects the exception type in d7, the format (SINGLE_FLOAT,
|
| 372 |
|
|
| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
|
| 373 |
|
|
| It sets the corresponding exception and sticky bits, and the format.
|
| 374 |
|
|
| Depending on the format if fills the corresponding slots for the
|
| 375 |
|
|
| operands which produced the exception (all this information is provided
|
| 376 |
|
|
| so if you write your own exception handlers you have enough information
|
| 377 |
|
|
| to deal with the problem).
|
| 378 |
|
|
| Then checks to see if the corresponding exception is trap-enabled,
|
| 379 |
|
|
| in which case it pushes the address of _fpCCR and traps through
|
| 380 |
|
|
| trap FPTRAP (15 for the moment).
|
| 381 |
|
|
|
| 382 |
|
|
FPTRAP = 15
|
| 383 |
|
|
|
| 384 |
|
|
$_exception_handler:
|
| 385 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 386 |
|
|
movew d7,a0@(EBITS) | set __exception_bits
|
| 387 |
|
|
#ifndef __mcoldfire__
|
| 388 |
|
|
orw d7,a0@(STICK) | and __sticky_bits
|
| 389 |
|
|
#else
|
| 390 |
|
|
movew a0@(STICK),d4
|
| 391 |
|
|
orl d7,d4
|
| 392 |
|
|
movew d4,a0@(STICK)
|
| 393 |
|
|
#endif
|
| 394 |
|
|
movew d6,a0@(FORMT) | and __format
|
| 395 |
|
|
movew d5,a0@(LASTO) | and __last_operation
|
| 396 |
|
|
|
| 397 |
|
|
| Now put the operands in place:
|
| 398 |
|
|
#ifndef __mcoldfire__
|
| 399 |
|
|
cmpw IMM (SINGLE_FLOAT),d6
|
| 400 |
|
|
#else
|
| 401 |
|
|
cmpl IMM (SINGLE_FLOAT),d6
|
| 402 |
|
|
#endif
|
| 403 |
|
|
beq 1f
|
| 404 |
|
|
movel a6@(8),a0@(OPER1)
|
| 405 |
|
|
movel a6@(12),a0@(OPER1+4)
|
| 406 |
|
|
movel a6@(16),a0@(OPER2)
|
| 407 |
|
|
movel a6@(20),a0@(OPER2+4)
|
| 408 |
|
|
bra 2f
|
| 409 |
|
|
1: movel a6@(8),a0@(OPER1)
|
| 410 |
|
|
movel a6@(12),a0@(OPER2)
|
| 411 |
|
|
2:
|
| 412 |
|
|
| And check whether the exception is trap-enabled:
|
| 413 |
|
|
#ifndef __mcoldfire__
|
| 414 |
|
|
andw a0@(TRAPE),d7 | is exception trap-enabled?
|
| 415 |
|
|
#else
|
| 416 |
|
|
clrl d6
|
| 417 |
|
|
movew a0@(TRAPE),d6
|
| 418 |
|
|
andl d6,d7
|
| 419 |
|
|
#endif
|
| 420 |
|
|
beq 1f | no, exit
|
| 421 |
|
|
PICPEA SYM (_fpCCR),a1 | yes, push address of _fpCCR
|
| 422 |
|
|
trap IMM (FPTRAP) | and trap
|
| 423 |
|
|
#ifndef __mcoldfire__
|
| 424 |
|
|
1: moveml sp@+,d2-d7 | restore data registers
|
| 425 |
|
|
#else
|
| 426 |
|
|
1: moveml sp@,d2-d7
|
| 427 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 428 |
|
|
| be adjusted here.
|
| 429 |
|
|
#endif
|
| 430 |
|
|
unlk a6 | and return
|
| 431 |
|
|
rts
|
| 432 |
|
|
#endif /* L_floatex */
|
| 433 |
|
|
|
| 434 |
|
|
#ifdef L_mulsi3
|
| 435 |
|
|
.text
|
| 436 |
|
|
FUNC(__mulsi3)
|
| 437 |
|
|
.globl SYM (__mulsi3)
|
| 438 |
|
|
SYM (__mulsi3):
|
| 439 |
|
|
movew sp@(4), d0 /* x0 -> d0 */
|
| 440 |
|
|
muluw sp@(10), d0 /* x0*y1 */
|
| 441 |
|
|
movew sp@(6), d1 /* x1 -> d1 */
|
| 442 |
|
|
muluw sp@(8), d1 /* x1*y0 */
|
| 443 |
|
|
#ifndef __mcoldfire__
|
| 444 |
|
|
addw d1, d0
|
| 445 |
|
|
#else
|
| 446 |
|
|
addl d1, d0
|
| 447 |
|
|
#endif
|
| 448 |
|
|
swap d0
|
| 449 |
|
|
clrw d0
|
| 450 |
|
|
movew sp@(6), d1 /* x1 -> d1 */
|
| 451 |
|
|
muluw sp@(10), d1 /* x1*y1 */
|
| 452 |
|
|
addl d1, d0
|
| 453 |
|
|
|
| 454 |
|
|
rts
|
| 455 |
|
|
#endif /* L_mulsi3 */
|
| 456 |
|
|
|
| 457 |
|
|
#ifdef L_udivsi3
|
| 458 |
|
|
.text
|
| 459 |
|
|
FUNC(__udivsi3)
|
| 460 |
|
|
.globl SYM (__udivsi3)
|
| 461 |
|
|
SYM (__udivsi3):
|
| 462 |
|
|
#ifndef __mcoldfire__
|
| 463 |
|
|
movel d2, sp@-
|
| 464 |
|
|
movel sp@(12), d1 /* d1 = divisor */
|
| 465 |
|
|
movel sp@(8), d0 /* d0 = dividend */
|
| 466 |
|
|
|
| 467 |
|
|
cmpl IMM (0x10000), d1 /* divisor >= 2 ^ 16 ? */
|
| 468 |
|
|
jcc L3 /* then try next algorithm */
|
| 469 |
|
|
movel d0, d2
|
| 470 |
|
|
clrw d2
|
| 471 |
|
|
swap d2
|
| 472 |
|
|
divu d1, d2 /* high quotient in lower word */
|
| 473 |
|
|
movew d2, d0 /* save high quotient */
|
| 474 |
|
|
swap d0
|
| 475 |
|
|
movew sp@(10), d2 /* get low dividend + high rest */
|
| 476 |
|
|
divu d1, d2 /* low quotient */
|
| 477 |
|
|
movew d2, d0
|
| 478 |
|
|
jra L6
|
| 479 |
|
|
|
| 480 |
|
|
L3: movel d1, d2 /* use d2 as divisor backup */
|
| 481 |
|
|
L4: lsrl IMM (1), d1 /* shift divisor */
|
| 482 |
|
|
lsrl IMM (1), d0 /* shift dividend */
|
| 483 |
|
|
cmpl IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ? */
|
| 484 |
|
|
jcc L4
|
| 485 |
|
|
divu d1, d0 /* now we have 16-bit divisor */
|
| 486 |
|
|
andl IMM (0xffff), d0 /* mask out divisor, ignore remainder */
|
| 487 |
|
|
|
| 488 |
|
|
/* Multiply the 16-bit tentative quotient with the 32-bit divisor. Because of
|
| 489 |
|
|
the operand ranges, this might give a 33-bit product. If this product is
|
| 490 |
|
|
greater than the dividend, the tentative quotient was too large. */
|
| 491 |
|
|
movel d2, d1
|
| 492 |
|
|
mulu d0, d1 /* low part, 32 bits */
|
| 493 |
|
|
swap d2
|
| 494 |
|
|
mulu d0, d2 /* high part, at most 17 bits */
|
| 495 |
|
|
swap d2 /* align high part with low part */
|
| 496 |
|
|
tstw d2 /* high part 17 bits? */
|
| 497 |
|
|
jne L5 /* if 17 bits, quotient was too large */
|
| 498 |
|
|
addl d2, d1 /* add parts */
|
| 499 |
|
|
jcs L5 /* if sum is 33 bits, quotient was too large */
|
| 500 |
|
|
cmpl sp@(8), d1 /* compare the sum with the dividend */
|
| 501 |
|
|
jls L6 /* if sum > dividend, quotient was too large */
|
| 502 |
|
|
L5: subql IMM (1), d0 /* adjust quotient */
|
| 503 |
|
|
|
| 504 |
|
|
L6: movel sp@+, d2
|
| 505 |
|
|
rts
|
| 506 |
|
|
|
| 507 |
|
|
#else /* __mcoldfire__ */
|
| 508 |
|
|
|
| 509 |
|
|
/* ColdFire implementation of non-restoring division algorithm from
|
| 510 |
|
|
Hennessy & Patterson, Appendix A. */
|
| 511 |
|
|
link a6,IMM (-12)
|
| 512 |
|
|
moveml d2-d4,sp@
|
| 513 |
|
|
movel a6@(8),d0
|
| 514 |
|
|
movel a6@(12),d1
|
| 515 |
|
|
clrl d2 | clear p
|
| 516 |
|
|
moveq IMM (31),d4
|
| 517 |
|
|
L1: addl d0,d0 | shift reg pair (p,a) one bit left
|
| 518 |
|
|
addxl d2,d2
|
| 519 |
|
|
movl d2,d3 | subtract b from p, store in tmp.
|
| 520 |
|
|
subl d1,d3
|
| 521 |
|
|
jcs L2 | if no carry,
|
| 522 |
|
|
bset IMM (0),d0 | set the low order bit of a to 1,
|
| 523 |
|
|
movl d3,d2 | and store tmp in p.
|
| 524 |
|
|
L2: subql IMM (1),d4
|
| 525 |
|
|
jcc L1
|
| 526 |
|
|
moveml sp@,d2-d4 | restore data registers
|
| 527 |
|
|
unlk a6 | and return
|
| 528 |
|
|
rts
|
| 529 |
|
|
#endif /* __mcoldfire__ */
|
| 530 |
|
|
|
| 531 |
|
|
#endif /* L_udivsi3 */
|
| 532 |
|
|
|
| 533 |
|
|
#ifdef L_divsi3
|
| 534 |
|
|
.text
|
| 535 |
|
|
FUNC(__divsi3)
|
| 536 |
|
|
.globl SYM (__divsi3)
|
| 537 |
|
|
SYM (__divsi3):
|
| 538 |
|
|
movel d2, sp@-
|
| 539 |
|
|
|
| 540 |
|
|
moveq IMM (1), d2 /* sign of result stored in d2 (=1 or =-1) */
|
| 541 |
|
|
movel sp@(12), d1 /* d1 = divisor */
|
| 542 |
|
|
jpl L1
|
| 543 |
|
|
negl d1
|
| 544 |
|
|
#ifndef __mcoldfire__
|
| 545 |
|
|
negb d2 /* change sign because divisor <0 */
|
| 546 |
|
|
#else
|
| 547 |
|
|
negl d2 /* change sign because divisor <0 */
|
| 548 |
|
|
#endif
|
| 549 |
|
|
L1: movel sp@(8), d0 /* d0 = dividend */
|
| 550 |
|
|
jpl L2
|
| 551 |
|
|
negl d0
|
| 552 |
|
|
#ifndef __mcoldfire__
|
| 553 |
|
|
negb d2
|
| 554 |
|
|
#else
|
| 555 |
|
|
negl d2
|
| 556 |
|
|
#endif
|
| 557 |
|
|
|
| 558 |
|
|
L2: movel d1, sp@-
|
| 559 |
|
|
movel d0, sp@-
|
| 560 |
|
|
PICCALL SYM (__udivsi3) /* divide abs(dividend) by abs(divisor) */
|
| 561 |
|
|
addql IMM (8), sp
|
| 562 |
|
|
|
| 563 |
|
|
tstb d2
|
| 564 |
|
|
jpl L3
|
| 565 |
|
|
negl d0
|
| 566 |
|
|
|
| 567 |
|
|
L3: movel sp@+, d2
|
| 568 |
|
|
rts
|
| 569 |
|
|
#endif /* L_divsi3 */
|
| 570 |
|
|
|
| 571 |
|
|
#ifdef L_umodsi3
|
| 572 |
|
|
.text
|
| 573 |
|
|
FUNC(__umodsi3)
|
| 574 |
|
|
.globl SYM (__umodsi3)
|
| 575 |
|
|
SYM (__umodsi3):
|
| 576 |
|
|
movel sp@(8), d1 /* d1 = divisor */
|
| 577 |
|
|
movel sp@(4), d0 /* d0 = dividend */
|
| 578 |
|
|
movel d1, sp@-
|
| 579 |
|
|
movel d0, sp@-
|
| 580 |
|
|
PICCALL SYM (__udivsi3)
|
| 581 |
|
|
addql IMM (8), sp
|
| 582 |
|
|
movel sp@(8), d1 /* d1 = divisor */
|
| 583 |
|
|
#ifndef __mcoldfire__
|
| 584 |
|
|
movel d1, sp@-
|
| 585 |
|
|
movel d0, sp@-
|
| 586 |
|
|
PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */
|
| 587 |
|
|
addql IMM (8), sp
|
| 588 |
|
|
#else
|
| 589 |
|
|
mulsl d1,d0
|
| 590 |
|
|
#endif
|
| 591 |
|
|
movel sp@(4), d1 /* d1 = dividend */
|
| 592 |
|
|
subl d0, d1 /* d1 = a - (a/b)*b */
|
| 593 |
|
|
movel d1, d0
|
| 594 |
|
|
rts
|
| 595 |
|
|
#endif /* L_umodsi3 */
|
| 596 |
|
|
|
| 597 |
|
|
#ifdef L_modsi3
|
| 598 |
|
|
.text
|
| 599 |
|
|
FUNC(__modsi3)
|
| 600 |
|
|
.globl SYM (__modsi3)
|
| 601 |
|
|
SYM (__modsi3):
|
| 602 |
|
|
movel sp@(8), d1 /* d1 = divisor */
|
| 603 |
|
|
movel sp@(4), d0 /* d0 = dividend */
|
| 604 |
|
|
movel d1, sp@-
|
| 605 |
|
|
movel d0, sp@-
|
| 606 |
|
|
PICCALL SYM (__divsi3)
|
| 607 |
|
|
addql IMM (8), sp
|
| 608 |
|
|
movel sp@(8), d1 /* d1 = divisor */
|
| 609 |
|
|
#ifndef __mcoldfire__
|
| 610 |
|
|
movel d1, sp@-
|
| 611 |
|
|
movel d0, sp@-
|
| 612 |
|
|
PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */
|
| 613 |
|
|
addql IMM (8), sp
|
| 614 |
|
|
#else
|
| 615 |
|
|
mulsl d1,d0
|
| 616 |
|
|
#endif
|
| 617 |
|
|
movel sp@(4), d1 /* d1 = dividend */
|
| 618 |
|
|
subl d0, d1 /* d1 = a - (a/b)*b */
|
| 619 |
|
|
movel d1, d0
|
| 620 |
|
|
rts
|
| 621 |
|
|
#endif /* L_modsi3 */
|
| 622 |
|
|
|
| 623 |
|
|
|
| 624 |
|
|
#ifdef L_double
|
| 625 |
|
|
|
| 626 |
|
|
.globl SYM (_fpCCR)
|
| 627 |
|
|
.globl $_exception_handler
|
| 628 |
|
|
|
| 629 |
|
|
QUIET_NaN = 0xffffffff
|
| 630 |
|
|
|
| 631 |
|
|
D_MAX_EXP = 0x07ff
|
| 632 |
|
|
D_BIAS = 1022
|
| 633 |
|
|
DBL_MAX_EXP = D_MAX_EXP - D_BIAS
|
| 634 |
|
|
DBL_MIN_EXP = 1 - D_BIAS
|
| 635 |
|
|
DBL_MANT_DIG = 53
|
| 636 |
|
|
|
| 637 |
|
|
INEXACT_RESULT = 0x0001
|
| 638 |
|
|
UNDERFLOW = 0x0002
|
| 639 |
|
|
OVERFLOW = 0x0004
|
| 640 |
|
|
DIVIDE_BY_ZERO = 0x0008
|
| 641 |
|
|
INVALID_OPERATION = 0x0010
|
| 642 |
|
|
|
| 643 |
|
|
DOUBLE_FLOAT = 2
|
| 644 |
|
|
|
| 645 |
|
|
NOOP = 0
|
| 646 |
|
|
ADD = 1
|
| 647 |
|
|
MULTIPLY = 2
|
| 648 |
|
|
DIVIDE = 3
|
| 649 |
|
|
NEGATE = 4
|
| 650 |
|
|
COMPARE = 5
|
| 651 |
|
|
EXTENDSFDF = 6
|
| 652 |
|
|
TRUNCDFSF = 7
|
| 653 |
|
|
|
| 654 |
|
|
UNKNOWN = -1
|
| 655 |
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
| 656 |
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
| 657 |
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
| 658 |
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
| 659 |
|
|
|
| 660 |
|
|
| Entry points:
|
| 661 |
|
|
|
| 662 |
|
|
.globl SYM (__adddf3)
|
| 663 |
|
|
.globl SYM (__subdf3)
|
| 664 |
|
|
.globl SYM (__muldf3)
|
| 665 |
|
|
.globl SYM (__divdf3)
|
| 666 |
|
|
.globl SYM (__negdf2)
|
| 667 |
|
|
.globl SYM (__cmpdf2)
|
| 668 |
|
|
.globl SYM (__cmpdf2_internal)
|
| 669 |
|
|
.hidden SYM (__cmpdf2_internal)
|
| 670 |
|
|
|
| 671 |
|
|
.text
|
| 672 |
|
|
.even
|
| 673 |
|
|
|
| 674 |
|
|
| These are common routines to return and signal exceptions.
|
| 675 |
|
|
|
| 676 |
|
|
Ld$den:
|
| 677 |
|
|
| Return and signal a denormalized number
|
| 678 |
|
|
orl d7,d0
|
| 679 |
|
|
movew IMM (INEXACT_RESULT+UNDERFLOW),d7
|
| 680 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 681 |
|
|
PICJUMP $_exception_handler
|
| 682 |
|
|
|
| 683 |
|
|
Ld$infty:
|
| 684 |
|
|
Ld$overflow:
|
| 685 |
|
|
| Return a properly signed INFINITY and set the exception flags
|
| 686 |
|
|
movel IMM (0x7ff00000),d0
|
| 687 |
|
|
movel IMM (0),d1
|
| 688 |
|
|
orl d7,d0
|
| 689 |
|
|
movew IMM (INEXACT_RESULT+OVERFLOW),d7
|
| 690 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 691 |
|
|
PICJUMP $_exception_handler
|
| 692 |
|
|
|
| 693 |
|
|
Ld$underflow:
|
| 694 |
|
|
| Return 0 and set the exception flags
|
| 695 |
|
|
movel IMM (0),d0
|
| 696 |
|
|
movel d0,d1
|
| 697 |
|
|
movew IMM (INEXACT_RESULT+UNDERFLOW),d7
|
| 698 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 699 |
|
|
PICJUMP $_exception_handler
|
| 700 |
|
|
|
| 701 |
|
|
Ld$inop:
|
| 702 |
|
|
| Return a quiet NaN and set the exception flags
|
| 703 |
|
|
movel IMM (QUIET_NaN),d0
|
| 704 |
|
|
movel d0,d1
|
| 705 |
|
|
movew IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
| 706 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 707 |
|
|
PICJUMP $_exception_handler
|
| 708 |
|
|
|
| 709 |
|
|
Ld$div$0:
|
| 710 |
|
|
| Return a properly signed INFINITY and set the exception flags
|
| 711 |
|
|
movel IMM (0x7ff00000),d0
|
| 712 |
|
|
movel IMM (0),d1
|
| 713 |
|
|
orl d7,d0
|
| 714 |
|
|
movew IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
|
| 715 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 716 |
|
|
PICJUMP $_exception_handler
|
| 717 |
|
|
|
| 718 |
|
|
|=============================================================================
|
| 719 |
|
|
|=============================================================================
|
| 720 |
|
|
| double precision routines
|
| 721 |
|
|
|=============================================================================
|
| 722 |
|
|
|=============================================================================
|
| 723 |
|
|
|
| 724 |
|
|
| A double precision floating point number (double) has the format:
|
| 725 |
|
|
|
|
| 726 |
|
|
| struct _double {
|
| 727 |
|
|
| unsigned int sign : 1; /* sign bit */
|
| 728 |
|
|
| unsigned int exponent : 11; /* exponent, shifted by 126 */
|
| 729 |
|
|
| unsigned int fraction : 52; /* fraction */
|
| 730 |
|
|
| } double;
|
| 731 |
|
|
|
|
| 732 |
|
|
| Thus sizeof(double) = 8 (64 bits).
|
| 733 |
|
|
|
|
| 734 |
|
|
| All the routines are callable from C programs, and return the result
|
| 735 |
|
|
| in the register pair d0-d1. They also preserve all registers except
|
| 736 |
|
|
| d0-d1 and a0-a1.
|
| 737 |
|
|
|
| 738 |
|
|
|=============================================================================
|
| 739 |
|
|
| __subdf3
|
| 740 |
|
|
|=============================================================================
|
| 741 |
|
|
|
| 742 |
|
|
| double __subdf3(double, double);
|
| 743 |
|
|
FUNC(__subdf3)
|
| 744 |
|
|
SYM (__subdf3):
|
| 745 |
|
|
bchg IMM (31),sp@(12) | change sign of second operand
|
| 746 |
|
|
| and fall through, so we always add
|
| 747 |
|
|
|=============================================================================
|
| 748 |
|
|
| __adddf3
|
| 749 |
|
|
|=============================================================================
|
| 750 |
|
|
|
| 751 |
|
|
| double __adddf3(double, double);
|
| 752 |
|
|
FUNC(__adddf3)
|
| 753 |
|
|
SYM (__adddf3):
|
| 754 |
|
|
#ifndef __mcoldfire__
|
| 755 |
|
|
link a6,IMM (0) | everything will be done in registers
|
| 756 |
|
|
moveml d2-d7,sp@- | save all data registers and a2 (but d0-d1)
|
| 757 |
|
|
#else
|
| 758 |
|
|
link a6,IMM (-24)
|
| 759 |
|
|
moveml d2-d7,sp@
|
| 760 |
|
|
#endif
|
| 761 |
|
|
movel a6@(8),d0 | get first operand
|
| 762 |
|
|
movel a6@(12),d1 |
|
| 763 |
|
|
movel a6@(16),d2 | get second operand
|
| 764 |
|
|
movel a6@(20),d3 |
|
| 765 |
|
|
|
| 766 |
|
|
movel d0,d7 | get d0's sign bit in d7 '
|
| 767 |
|
|
addl d1,d1 | check and clear sign bit of a, and gain one
|
| 768 |
|
|
addxl d0,d0 | bit of extra precision
|
| 769 |
|
|
beq Ladddf$b | if zero return second operand
|
| 770 |
|
|
|
| 771 |
|
|
movel d2,d6 | save sign in d6
|
| 772 |
|
|
addl d3,d3 | get rid of sign bit and gain one bit of
|
| 773 |
|
|
addxl d2,d2 | extra precision
|
| 774 |
|
|
beq Ladddf$a | if zero return first operand
|
| 775 |
|
|
|
| 776 |
|
|
andl IMM (0x80000000),d7 | isolate a's sign bit '
|
| 777 |
|
|
swap d6 | and also b's sign bit '
|
| 778 |
|
|
#ifndef __mcoldfire__
|
| 779 |
|
|
andw IMM (0x8000),d6 |
|
| 780 |
|
|
orw d6,d7 | and combine them into d7, so that a's sign '
|
| 781 |
|
|
| bit is in the high word and b's is in the '
|
| 782 |
|
|
| low word, so d6 is free to be used
|
| 783 |
|
|
#else
|
| 784 |
|
|
andl IMM (0x8000),d6
|
| 785 |
|
|
orl d6,d7
|
| 786 |
|
|
#endif
|
| 787 |
|
|
movel d7,a0 | now save d7 into a0, so d7 is free to
|
| 788 |
|
|
| be used also
|
| 789 |
|
|
|
| 790 |
|
|
| Get the exponents and check for denormalized and/or infinity.
|
| 791 |
|
|
|
| 792 |
|
|
movel IMM (0x001fffff),d6 | mask for the fraction
|
| 793 |
|
|
movel IMM (0x00200000),d7 | mask to put hidden bit back
|
| 794 |
|
|
|
| 795 |
|
|
movel d0,d4 |
|
| 796 |
|
|
andl d6,d0 | get fraction in d0
|
| 797 |
|
|
notl d6 | make d6 into mask for the exponent
|
| 798 |
|
|
andl d6,d4 | get exponent in d4
|
| 799 |
|
|
beq Ladddf$a$den | branch if a is denormalized
|
| 800 |
|
|
cmpl d6,d4 | check for INFINITY or NaN
|
| 801 |
|
|
beq Ladddf$nf |
|
| 802 |
|
|
orl d7,d0 | and put hidden bit back
|
| 803 |
|
|
Ladddf$1:
|
| 804 |
|
|
swap d4 | shift right exponent so that it starts
|
| 805 |
|
|
#ifndef __mcoldfire__
|
| 806 |
|
|
lsrw IMM (5),d4 | in bit 0 and not bit 20
|
| 807 |
|
|
#else
|
| 808 |
|
|
lsrl IMM (5),d4 | in bit 0 and not bit 20
|
| 809 |
|
|
#endif
|
| 810 |
|
|
| Now we have a's exponent in d4 and fraction in d0-d1 '
|
| 811 |
|
|
movel d2,d5 | save b to get exponent
|
| 812 |
|
|
andl d6,d5 | get exponent in d5
|
| 813 |
|
|
beq Ladddf$b$den | branch if b is denormalized
|
| 814 |
|
|
cmpl d6,d5 | check for INFINITY or NaN
|
| 815 |
|
|
beq Ladddf$nf
|
| 816 |
|
|
notl d6 | make d6 into mask for the fraction again
|
| 817 |
|
|
andl d6,d2 | and get fraction in d2
|
| 818 |
|
|
orl d7,d2 | and put hidden bit back
|
| 819 |
|
|
Ladddf$2:
|
| 820 |
|
|
swap d5 | shift right exponent so that it starts
|
| 821 |
|
|
#ifndef __mcoldfire__
|
| 822 |
|
|
lsrw IMM (5),d5 | in bit 0 and not bit 20
|
| 823 |
|
|
#else
|
| 824 |
|
|
lsrl IMM (5),d5 | in bit 0 and not bit 20
|
| 825 |
|
|
#endif
|
| 826 |
|
|
|
| 827 |
|
|
| Now we have b's exponent in d5 and fraction in d2-d3. '
|
| 828 |
|
|
|
| 829 |
|
|
| The situation now is as follows: the signs are combined in a0, the
|
| 830 |
|
|
| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
|
| 831 |
|
|
| and d5 (b). To do the rounding correctly we need to keep all the
|
| 832 |
|
|
| bits until the end, so we need to use d0-d1-d2-d3 for the first number
|
| 833 |
|
|
| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
|
| 834 |
|
|
| exponents in a2-a3.
|
| 835 |
|
|
|
| 836 |
|
|
#ifndef __mcoldfire__
|
| 837 |
|
|
moveml a2-a3,sp@- | save the address registers
|
| 838 |
|
|
#else
|
| 839 |
|
|
movel a2,sp@-
|
| 840 |
|
|
movel a3,sp@-
|
| 841 |
|
|
movel a4,sp@-
|
| 842 |
|
|
#endif
|
| 843 |
|
|
|
| 844 |
|
|
movel d4,a2 | save the exponents
|
| 845 |
|
|
movel d5,a3 |
|
| 846 |
|
|
|
| 847 |
|
|
movel IMM (0),d7 | and move the numbers around
|
| 848 |
|
|
movel d7,d6 |
|
| 849 |
|
|
movel d3,d5 |
|
| 850 |
|
|
movel d2,d4 |
|
| 851 |
|
|
movel d7,d3 |
|
| 852 |
|
|
movel d7,d2 |
|
| 853 |
|
|
|
| 854 |
|
|
| Here we shift the numbers until the exponents are the same, and put
|
| 855 |
|
|
| the largest exponent in a2.
|
| 856 |
|
|
#ifndef __mcoldfire__
|
| 857 |
|
|
exg d4,a2 | get exponents back
|
| 858 |
|
|
exg d5,a3 |
|
| 859 |
|
|
cmpw d4,d5 | compare the exponents
|
| 860 |
|
|
#else
|
| 861 |
|
|
movel d4,a4 | get exponents back
|
| 862 |
|
|
movel a2,d4
|
| 863 |
|
|
movel a4,a2
|
| 864 |
|
|
movel d5,a4
|
| 865 |
|
|
movel a3,d5
|
| 866 |
|
|
movel a4,a3
|
| 867 |
|
|
cmpl d4,d5 | compare the exponents
|
| 868 |
|
|
#endif
|
| 869 |
|
|
beq Ladddf$3 | if equal don't shift '
|
| 870 |
|
|
bhi 9f | branch if second exponent is higher
|
| 871 |
|
|
|
| 872 |
|
|
| Here we have a's exponent larger than b's, so we have to shift b. We do
|
| 873 |
|
|
| this by using as counter d2:
|
| 874 |
|
|
1: movew d4,d2 | move largest exponent to d2
|
| 875 |
|
|
#ifndef __mcoldfire__
|
| 876 |
|
|
subw d5,d2 | and subtract second exponent
|
| 877 |
|
|
exg d4,a2 | get back the longs we saved
|
| 878 |
|
|
exg d5,a3 |
|
| 879 |
|
|
#else
|
| 880 |
|
|
subl d5,d2 | and subtract second exponent
|
| 881 |
|
|
movel d4,a4 | get back the longs we saved
|
| 882 |
|
|
movel a2,d4
|
| 883 |
|
|
movel a4,a2
|
| 884 |
|
|
movel d5,a4
|
| 885 |
|
|
movel a3,d5
|
| 886 |
|
|
movel a4,a3
|
| 887 |
|
|
#endif
|
| 888 |
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
| 889 |
|
|
#ifndef __mcoldfire__
|
| 890 |
|
|
cmpw IMM (DBL_MANT_DIG+2),d2
|
| 891 |
|
|
#else
|
| 892 |
|
|
cmpl IMM (DBL_MANT_DIG+2),d2
|
| 893 |
|
|
#endif
|
| 894 |
|
|
bge Ladddf$b$small
|
| 895 |
|
|
#ifndef __mcoldfire__
|
| 896 |
|
|
cmpw IMM (32),d2 | if difference >= 32, shift by longs
|
| 897 |
|
|
#else
|
| 898 |
|
|
cmpl IMM (32),d2 | if difference >= 32, shift by longs
|
| 899 |
|
|
#endif
|
| 900 |
|
|
bge 5f
|
| 901 |
|
|
2:
|
| 902 |
|
|
#ifndef __mcoldfire__
|
| 903 |
|
|
cmpw IMM (16),d2 | if difference >= 16, shift by words
|
| 904 |
|
|
#else
|
| 905 |
|
|
cmpl IMM (16),d2 | if difference >= 16, shift by words
|
| 906 |
|
|
#endif
|
| 907 |
|
|
bge 6f
|
| 908 |
|
|
bra 3f | enter dbra loop
|
| 909 |
|
|
|
| 910 |
|
|
4:
|
| 911 |
|
|
#ifndef __mcoldfire__
|
| 912 |
|
|
lsrl IMM (1),d4
|
| 913 |
|
|
roxrl IMM (1),d5
|
| 914 |
|
|
roxrl IMM (1),d6
|
| 915 |
|
|
roxrl IMM (1),d7
|
| 916 |
|
|
#else
|
| 917 |
|
|
lsrl IMM (1),d7
|
| 918 |
|
|
btst IMM (0),d6
|
| 919 |
|
|
beq 10f
|
| 920 |
|
|
bset IMM (31),d7
|
| 921 |
|
|
10: lsrl IMM (1),d6
|
| 922 |
|
|
btst IMM (0),d5
|
| 923 |
|
|
beq 11f
|
| 924 |
|
|
bset IMM (31),d6
|
| 925 |
|
|
11: lsrl IMM (1),d5
|
| 926 |
|
|
btst IMM (0),d4
|
| 927 |
|
|
beq 12f
|
| 928 |
|
|
bset IMM (31),d5
|
| 929 |
|
|
12: lsrl IMM (1),d4
|
| 930 |
|
|
#endif
|
| 931 |
|
|
3:
|
| 932 |
|
|
#ifndef __mcoldfire__
|
| 933 |
|
|
dbra d2,4b
|
| 934 |
|
|
#else
|
| 935 |
|
|
subql IMM (1),d2
|
| 936 |
|
|
bpl 4b
|
| 937 |
|
|
#endif
|
| 938 |
|
|
movel IMM (0),d2
|
| 939 |
|
|
movel d2,d3
|
| 940 |
|
|
bra Ladddf$4
|
| 941 |
|
|
5:
|
| 942 |
|
|
movel d6,d7
|
| 943 |
|
|
movel d5,d6
|
| 944 |
|
|
movel d4,d5
|
| 945 |
|
|
movel IMM (0),d4
|
| 946 |
|
|
#ifndef __mcoldfire__
|
| 947 |
|
|
subw IMM (32),d2
|
| 948 |
|
|
#else
|
| 949 |
|
|
subl IMM (32),d2
|
| 950 |
|
|
#endif
|
| 951 |
|
|
bra 2b
|
| 952 |
|
|
6:
|
| 953 |
|
|
movew d6,d7
|
| 954 |
|
|
swap d7
|
| 955 |
|
|
movew d5,d6
|
| 956 |
|
|
swap d6
|
| 957 |
|
|
movew d4,d5
|
| 958 |
|
|
swap d5
|
| 959 |
|
|
movew IMM (0),d4
|
| 960 |
|
|
swap d4
|
| 961 |
|
|
#ifndef __mcoldfire__
|
| 962 |
|
|
subw IMM (16),d2
|
| 963 |
|
|
#else
|
| 964 |
|
|
subl IMM (16),d2
|
| 965 |
|
|
#endif
|
| 966 |
|
|
bra 3b
|
| 967 |
|
|
|
| 968 |
|
|
9:
|
| 969 |
|
|
#ifndef __mcoldfire__
|
| 970 |
|
|
exg d4,d5
|
| 971 |
|
|
movew d4,d6
|
| 972 |
|
|
subw d5,d6 | keep d5 (largest exponent) in d4
|
| 973 |
|
|
exg d4,a2
|
| 974 |
|
|
exg d5,a3
|
| 975 |
|
|
#else
|
| 976 |
|
|
movel d5,d6
|
| 977 |
|
|
movel d4,d5
|
| 978 |
|
|
movel d6,d4
|
| 979 |
|
|
subl d5,d6
|
| 980 |
|
|
movel d4,a4
|
| 981 |
|
|
movel a2,d4
|
| 982 |
|
|
movel a4,a2
|
| 983 |
|
|
movel d5,a4
|
| 984 |
|
|
movel a3,d5
|
| 985 |
|
|
movel a4,a3
|
| 986 |
|
|
#endif
|
| 987 |
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
| 988 |
|
|
#ifndef __mcoldfire__
|
| 989 |
|
|
cmpw IMM (DBL_MANT_DIG+2),d6
|
| 990 |
|
|
#else
|
| 991 |
|
|
cmpl IMM (DBL_MANT_DIG+2),d6
|
| 992 |
|
|
#endif
|
| 993 |
|
|
bge Ladddf$a$small
|
| 994 |
|
|
#ifndef __mcoldfire__
|
| 995 |
|
|
cmpw IMM (32),d6 | if difference >= 32, shift by longs
|
| 996 |
|
|
#else
|
| 997 |
|
|
cmpl IMM (32),d6 | if difference >= 32, shift by longs
|
| 998 |
|
|
#endif
|
| 999 |
|
|
bge 5f
|
| 1000 |
|
|
2:
|
| 1001 |
|
|
#ifndef __mcoldfire__
|
| 1002 |
|
|
cmpw IMM (16),d6 | if difference >= 16, shift by words
|
| 1003 |
|
|
#else
|
| 1004 |
|
|
cmpl IMM (16),d6 | if difference >= 16, shift by words
|
| 1005 |
|
|
#endif
|
| 1006 |
|
|
bge 6f
|
| 1007 |
|
|
bra 3f | enter dbra loop
|
| 1008 |
|
|
|
| 1009 |
|
|
4:
|
| 1010 |
|
|
#ifndef __mcoldfire__
|
| 1011 |
|
|
lsrl IMM (1),d0
|
| 1012 |
|
|
roxrl IMM (1),d1
|
| 1013 |
|
|
roxrl IMM (1),d2
|
| 1014 |
|
|
roxrl IMM (1),d3
|
| 1015 |
|
|
#else
|
| 1016 |
|
|
lsrl IMM (1),d3
|
| 1017 |
|
|
btst IMM (0),d2
|
| 1018 |
|
|
beq 10f
|
| 1019 |
|
|
bset IMM (31),d3
|
| 1020 |
|
|
10: lsrl IMM (1),d2
|
| 1021 |
|
|
btst IMM (0),d1
|
| 1022 |
|
|
beq 11f
|
| 1023 |
|
|
bset IMM (31),d2
|
| 1024 |
|
|
11: lsrl IMM (1),d1
|
| 1025 |
|
|
btst IMM (0),d0
|
| 1026 |
|
|
beq 12f
|
| 1027 |
|
|
bset IMM (31),d1
|
| 1028 |
|
|
12: lsrl IMM (1),d0
|
| 1029 |
|
|
#endif
|
| 1030 |
|
|
3:
|
| 1031 |
|
|
#ifndef __mcoldfire__
|
| 1032 |
|
|
dbra d6,4b
|
| 1033 |
|
|
#else
|
| 1034 |
|
|
subql IMM (1),d6
|
| 1035 |
|
|
bpl 4b
|
| 1036 |
|
|
#endif
|
| 1037 |
|
|
movel IMM (0),d7
|
| 1038 |
|
|
movel d7,d6
|
| 1039 |
|
|
bra Ladddf$4
|
| 1040 |
|
|
5:
|
| 1041 |
|
|
movel d2,d3
|
| 1042 |
|
|
movel d1,d2
|
| 1043 |
|
|
movel d0,d1
|
| 1044 |
|
|
movel IMM (0),d0
|
| 1045 |
|
|
#ifndef __mcoldfire__
|
| 1046 |
|
|
subw IMM (32),d6
|
| 1047 |
|
|
#else
|
| 1048 |
|
|
subl IMM (32),d6
|
| 1049 |
|
|
#endif
|
| 1050 |
|
|
bra 2b
|
| 1051 |
|
|
6:
|
| 1052 |
|
|
movew d2,d3
|
| 1053 |
|
|
swap d3
|
| 1054 |
|
|
movew d1,d2
|
| 1055 |
|
|
swap d2
|
| 1056 |
|
|
movew d0,d1
|
| 1057 |
|
|
swap d1
|
| 1058 |
|
|
movew IMM (0),d0
|
| 1059 |
|
|
swap d0
|
| 1060 |
|
|
#ifndef __mcoldfire__
|
| 1061 |
|
|
subw IMM (16),d6
|
| 1062 |
|
|
#else
|
| 1063 |
|
|
subl IMM (16),d6
|
| 1064 |
|
|
#endif
|
| 1065 |
|
|
bra 3b
|
| 1066 |
|
|
Ladddf$3:
|
| 1067 |
|
|
#ifndef __mcoldfire__
|
| 1068 |
|
|
exg d4,a2
|
| 1069 |
|
|
exg d5,a3
|
| 1070 |
|
|
#else
|
| 1071 |
|
|
movel d4,a4
|
| 1072 |
|
|
movel a2,d4
|
| 1073 |
|
|
movel a4,a2
|
| 1074 |
|
|
movel d5,a4
|
| 1075 |
|
|
movel a3,d5
|
| 1076 |
|
|
movel a4,a3
|
| 1077 |
|
|
#endif
|
| 1078 |
|
|
Ladddf$4:
|
| 1079 |
|
|
| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
|
| 1080 |
|
|
| the signs in a4.
|
| 1081 |
|
|
|
| 1082 |
|
|
| Here we have to decide whether to add or subtract the numbers:
|
| 1083 |
|
|
#ifndef __mcoldfire__
|
| 1084 |
|
|
exg d7,a0 | get the signs
|
| 1085 |
|
|
exg d6,a3 | a3 is free to be used
|
| 1086 |
|
|
#else
|
| 1087 |
|
|
movel d7,a4
|
| 1088 |
|
|
movel a0,d7
|
| 1089 |
|
|
movel a4,a0
|
| 1090 |
|
|
movel d6,a4
|
| 1091 |
|
|
movel a3,d6
|
| 1092 |
|
|
movel a4,a3
|
| 1093 |
|
|
#endif
|
| 1094 |
|
|
movel d7,d6 |
|
| 1095 |
|
|
movew IMM (0),d7 | get a's sign in d7 '
|
| 1096 |
|
|
swap d6 |
|
| 1097 |
|
|
movew IMM (0),d6 | and b's sign in d6 '
|
| 1098 |
|
|
eorl d7,d6 | compare the signs
|
| 1099 |
|
|
bmi Lsubdf$0 | if the signs are different we have
|
| 1100 |
|
|
| to subtract
|
| 1101 |
|
|
#ifndef __mcoldfire__
|
| 1102 |
|
|
exg d7,a0 | else we add the numbers
|
| 1103 |
|
|
exg d6,a3 |
|
| 1104 |
|
|
#else
|
| 1105 |
|
|
movel d7,a4
|
| 1106 |
|
|
movel a0,d7
|
| 1107 |
|
|
movel a4,a0
|
| 1108 |
|
|
movel d6,a4
|
| 1109 |
|
|
movel a3,d6
|
| 1110 |
|
|
movel a4,a3
|
| 1111 |
|
|
#endif
|
| 1112 |
|
|
addl d7,d3 |
|
| 1113 |
|
|
addxl d6,d2 |
|
| 1114 |
|
|
addxl d5,d1 |
|
| 1115 |
|
|
addxl d4,d0 |
|
| 1116 |
|
|
|
| 1117 |
|
|
movel a2,d4 | return exponent to d4
|
| 1118 |
|
|
movel a0,d7 |
|
| 1119 |
|
|
andl IMM (0x80000000),d7 | d7 now has the sign
|
| 1120 |
|
|
|
| 1121 |
|
|
#ifndef __mcoldfire__
|
| 1122 |
|
|
moveml sp@+,a2-a3
|
| 1123 |
|
|
#else
|
| 1124 |
|
|
movel sp@+,a4
|
| 1125 |
|
|
movel sp@+,a3
|
| 1126 |
|
|
movel sp@+,a2
|
| 1127 |
|
|
#endif
|
| 1128 |
|
|
|
| 1129 |
|
|
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
|
| 1130 |
|
|
| the case of denormalized numbers in the rounding routine itself).
|
| 1131 |
|
|
| As in the addition (not in the subtraction!) we could have set
|
| 1132 |
|
|
| one more bit we check this:
|
| 1133 |
|
|
btst IMM (DBL_MANT_DIG+1),d0
|
| 1134 |
|
|
beq 1f
|
| 1135 |
|
|
#ifndef __mcoldfire__
|
| 1136 |
|
|
lsrl IMM (1),d0
|
| 1137 |
|
|
roxrl IMM (1),d1
|
| 1138 |
|
|
roxrl IMM (1),d2
|
| 1139 |
|
|
roxrl IMM (1),d3
|
| 1140 |
|
|
addw IMM (1),d4
|
| 1141 |
|
|
#else
|
| 1142 |
|
|
lsrl IMM (1),d3
|
| 1143 |
|
|
btst IMM (0),d2
|
| 1144 |
|
|
beq 10f
|
| 1145 |
|
|
bset IMM (31),d3
|
| 1146 |
|
|
10: lsrl IMM (1),d2
|
| 1147 |
|
|
btst IMM (0),d1
|
| 1148 |
|
|
beq 11f
|
| 1149 |
|
|
bset IMM (31),d2
|
| 1150 |
|
|
11: lsrl IMM (1),d1
|
| 1151 |
|
|
btst IMM (0),d0
|
| 1152 |
|
|
beq 12f
|
| 1153 |
|
|
bset IMM (31),d1
|
| 1154 |
|
|
12: lsrl IMM (1),d0
|
| 1155 |
|
|
addl IMM (1),d4
|
| 1156 |
|
|
#endif
|
| 1157 |
|
|
1:
|
| 1158 |
|
|
lea pc@(Ladddf$5),a0 | to return from rounding routine
|
| 1159 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 1160 |
|
|
#ifdef __mcoldfire__
|
| 1161 |
|
|
clrl d6
|
| 1162 |
|
|
#endif
|
| 1163 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 1164 |
|
|
beq Lround$to$nearest
|
| 1165 |
|
|
#ifndef __mcoldfire__
|
| 1166 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 1167 |
|
|
#else
|
| 1168 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 1169 |
|
|
#endif
|
| 1170 |
|
|
bhi Lround$to$minus
|
| 1171 |
|
|
blt Lround$to$zero
|
| 1172 |
|
|
bra Lround$to$plus
|
| 1173 |
|
|
Ladddf$5:
|
| 1174 |
|
|
| Put back the exponent and check for overflow
|
| 1175 |
|
|
#ifndef __mcoldfire__
|
| 1176 |
|
|
cmpw IMM (0x7ff),d4 | is the exponent big?
|
| 1177 |
|
|
#else
|
| 1178 |
|
|
cmpl IMM (0x7ff),d4 | is the exponent big?
|
| 1179 |
|
|
#endif
|
| 1180 |
|
|
bge 1f
|
| 1181 |
|
|
bclr IMM (DBL_MANT_DIG-1),d0
|
| 1182 |
|
|
#ifndef __mcoldfire__
|
| 1183 |
|
|
lslw IMM (4),d4 | put exponent back into position
|
| 1184 |
|
|
#else
|
| 1185 |
|
|
lsll IMM (4),d4 | put exponent back into position
|
| 1186 |
|
|
#endif
|
| 1187 |
|
|
swap d0 |
|
| 1188 |
|
|
#ifndef __mcoldfire__
|
| 1189 |
|
|
orw d4,d0 |
|
| 1190 |
|
|
#else
|
| 1191 |
|
|
orl d4,d0 |
|
| 1192 |
|
|
#endif
|
| 1193 |
|
|
swap d0 |
|
| 1194 |
|
|
bra Ladddf$ret
|
| 1195 |
|
|
1:
|
| 1196 |
|
|
moveq IMM (ADD),d5
|
| 1197 |
|
|
bra Ld$overflow
|
| 1198 |
|
|
|
| 1199 |
|
|
Lsubdf$0:
|
| 1200 |
|
|
| Here we do the subtraction.
|
| 1201 |
|
|
#ifndef __mcoldfire__
|
| 1202 |
|
|
exg d7,a0 | put sign back in a0
|
| 1203 |
|
|
exg d6,a3 |
|
| 1204 |
|
|
#else
|
| 1205 |
|
|
movel d7,a4
|
| 1206 |
|
|
movel a0,d7
|
| 1207 |
|
|
movel a4,a0
|
| 1208 |
|
|
movel d6,a4
|
| 1209 |
|
|
movel a3,d6
|
| 1210 |
|
|
movel a4,a3
|
| 1211 |
|
|
#endif
|
| 1212 |
|
|
subl d7,d3 |
|
| 1213 |
|
|
subxl d6,d2 |
|
| 1214 |
|
|
subxl d5,d1 |
|
| 1215 |
|
|
subxl d4,d0 |
|
| 1216 |
|
|
beq Ladddf$ret$1 | if zero just exit
|
| 1217 |
|
|
bpl 1f | if positive skip the following
|
| 1218 |
|
|
movel a0,d7 |
|
| 1219 |
|
|
bchg IMM (31),d7 | change sign bit in d7
|
| 1220 |
|
|
movel d7,a0 |
|
| 1221 |
|
|
negl d3 |
|
| 1222 |
|
|
negxl d2 |
|
| 1223 |
|
|
negxl d1 | and negate result
|
| 1224 |
|
|
negxl d0 |
|
| 1225 |
|
|
1:
|
| 1226 |
|
|
movel a2,d4 | return exponent to d4
|
| 1227 |
|
|
movel a0,d7
|
| 1228 |
|
|
andl IMM (0x80000000),d7 | isolate sign bit
|
| 1229 |
|
|
#ifndef __mcoldfire__
|
| 1230 |
|
|
moveml sp@+,a2-a3 |
|
| 1231 |
|
|
#else
|
| 1232 |
|
|
movel sp@+,a4
|
| 1233 |
|
|
movel sp@+,a3
|
| 1234 |
|
|
movel sp@+,a2
|
| 1235 |
|
|
#endif
|
| 1236 |
|
|
|
| 1237 |
|
|
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
|
| 1238 |
|
|
| the case of denormalized numbers in the rounding routine itself).
|
| 1239 |
|
|
| As in the addition (not in the subtraction!) we could have set
|
| 1240 |
|
|
| one more bit we check this:
|
| 1241 |
|
|
btst IMM (DBL_MANT_DIG+1),d0
|
| 1242 |
|
|
beq 1f
|
| 1243 |
|
|
#ifndef __mcoldfire__
|
| 1244 |
|
|
lsrl IMM (1),d0
|
| 1245 |
|
|
roxrl IMM (1),d1
|
| 1246 |
|
|
roxrl IMM (1),d2
|
| 1247 |
|
|
roxrl IMM (1),d3
|
| 1248 |
|
|
addw IMM (1),d4
|
| 1249 |
|
|
#else
|
| 1250 |
|
|
lsrl IMM (1),d3
|
| 1251 |
|
|
btst IMM (0),d2
|
| 1252 |
|
|
beq 10f
|
| 1253 |
|
|
bset IMM (31),d3
|
| 1254 |
|
|
10: lsrl IMM (1),d2
|
| 1255 |
|
|
btst IMM (0),d1
|
| 1256 |
|
|
beq 11f
|
| 1257 |
|
|
bset IMM (31),d2
|
| 1258 |
|
|
11: lsrl IMM (1),d1
|
| 1259 |
|
|
btst IMM (0),d0
|
| 1260 |
|
|
beq 12f
|
| 1261 |
|
|
bset IMM (31),d1
|
| 1262 |
|
|
12: lsrl IMM (1),d0
|
| 1263 |
|
|
addl IMM (1),d4
|
| 1264 |
|
|
#endif
|
| 1265 |
|
|
1:
|
| 1266 |
|
|
lea pc@(Lsubdf$1),a0 | to return from rounding routine
|
| 1267 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 1268 |
|
|
#ifdef __mcoldfire__
|
| 1269 |
|
|
clrl d6
|
| 1270 |
|
|
#endif
|
| 1271 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 1272 |
|
|
beq Lround$to$nearest
|
| 1273 |
|
|
#ifndef __mcoldfire__
|
| 1274 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 1275 |
|
|
#else
|
| 1276 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 1277 |
|
|
#endif
|
| 1278 |
|
|
bhi Lround$to$minus
|
| 1279 |
|
|
blt Lround$to$zero
|
| 1280 |
|
|
bra Lround$to$plus
|
| 1281 |
|
|
Lsubdf$1:
|
| 1282 |
|
|
| Put back the exponent and sign (we don't have overflow). '
|
| 1283 |
|
|
bclr IMM (DBL_MANT_DIG-1),d0
|
| 1284 |
|
|
#ifndef __mcoldfire__
|
| 1285 |
|
|
lslw IMM (4),d4 | put exponent back into position
|
| 1286 |
|
|
#else
|
| 1287 |
|
|
lsll IMM (4),d4 | put exponent back into position
|
| 1288 |
|
|
#endif
|
| 1289 |
|
|
swap d0 |
|
| 1290 |
|
|
#ifndef __mcoldfire__
|
| 1291 |
|
|
orw d4,d0 |
|
| 1292 |
|
|
#else
|
| 1293 |
|
|
orl d4,d0 |
|
| 1294 |
|
|
#endif
|
| 1295 |
|
|
swap d0 |
|
| 1296 |
|
|
bra Ladddf$ret
|
| 1297 |
|
|
|
| 1298 |
|
|
| If one of the numbers was too small (difference of exponents >=
|
| 1299 |
|
|
| DBL_MANT_DIG+1) we return the other (and now we don't have to '
|
| 1300 |
|
|
| check for finiteness or zero).
|
| 1301 |
|
|
Ladddf$a$small:
|
| 1302 |
|
|
#ifndef __mcoldfire__
|
| 1303 |
|
|
moveml sp@+,a2-a3
|
| 1304 |
|
|
#else
|
| 1305 |
|
|
movel sp@+,a4
|
| 1306 |
|
|
movel sp@+,a3
|
| 1307 |
|
|
movel sp@+,a2
|
| 1308 |
|
|
#endif
|
| 1309 |
|
|
movel a6@(16),d0
|
| 1310 |
|
|
movel a6@(20),d1
|
| 1311 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 1312 |
|
|
movew IMM (0),a0@
|
| 1313 |
|
|
#ifndef __mcoldfire__
|
| 1314 |
|
|
moveml sp@+,d2-d7 | restore data registers
|
| 1315 |
|
|
#else
|
| 1316 |
|
|
moveml sp@,d2-d7
|
| 1317 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 1318 |
|
|
| be adjusted here.
|
| 1319 |
|
|
#endif
|
| 1320 |
|
|
unlk a6 | and return
|
| 1321 |
|
|
rts
|
| 1322 |
|
|
|
| 1323 |
|
|
Ladddf$b$small:
|
| 1324 |
|
|
#ifndef __mcoldfire__
|
| 1325 |
|
|
moveml sp@+,a2-a3
|
| 1326 |
|
|
#else
|
| 1327 |
|
|
movel sp@+,a4
|
| 1328 |
|
|
movel sp@+,a3
|
| 1329 |
|
|
movel sp@+,a2
|
| 1330 |
|
|
#endif
|
| 1331 |
|
|
movel a6@(8),d0
|
| 1332 |
|
|
movel a6@(12),d1
|
| 1333 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 1334 |
|
|
movew IMM (0),a0@
|
| 1335 |
|
|
#ifndef __mcoldfire__
|
| 1336 |
|
|
moveml sp@+,d2-d7 | restore data registers
|
| 1337 |
|
|
#else
|
| 1338 |
|
|
moveml sp@,d2-d7
|
| 1339 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 1340 |
|
|
| be adjusted here.
|
| 1341 |
|
|
#endif
|
| 1342 |
|
|
unlk a6 | and return
|
| 1343 |
|
|
rts
|
| 1344 |
|
|
|
| 1345 |
|
|
Ladddf$a$den:
|
| 1346 |
|
|
movel d7,d4 | d7 contains 0x00200000
|
| 1347 |
|
|
bra Ladddf$1
|
| 1348 |
|
|
|
| 1349 |
|
|
Ladddf$b$den:
|
| 1350 |
|
|
movel d7,d5 | d7 contains 0x00200000
|
| 1351 |
|
|
notl d6
|
| 1352 |
|
|
bra Ladddf$2
|
| 1353 |
|
|
|
| 1354 |
|
|
Ladddf$b:
|
| 1355 |
|
|
| Return b (if a is zero)
|
| 1356 |
|
|
movel d2,d0
|
| 1357 |
|
|
movel d3,d1
|
| 1358 |
|
|
bne 1f | Check if b is -0
|
| 1359 |
|
|
cmpl IMM (0x80000000),d0
|
| 1360 |
|
|
bne 1f
|
| 1361 |
|
|
andl IMM (0x80000000),d7 | Use the sign of a
|
| 1362 |
|
|
clrl d0
|
| 1363 |
|
|
bra Ladddf$ret
|
| 1364 |
|
|
Ladddf$a:
|
| 1365 |
|
|
movel a6@(8),d0
|
| 1366 |
|
|
movel a6@(12),d1
|
| 1367 |
|
|
1:
|
| 1368 |
|
|
moveq IMM (ADD),d5
|
| 1369 |
|
|
| Check for NaN and +/-INFINITY.
|
| 1370 |
|
|
movel d0,d7 |
|
| 1371 |
|
|
andl IMM (0x80000000),d7 |
|
| 1372 |
|
|
bclr IMM (31),d0 |
|
| 1373 |
|
|
cmpl IMM (0x7ff00000),d0 |
|
| 1374 |
|
|
bge 2f |
|
| 1375 |
|
|
movel d0,d0 | check for zero, since we don't '
|
| 1376 |
|
|
bne Ladddf$ret | want to return -0 by mistake
|
| 1377 |
|
|
bclr IMM (31),d7 |
|
| 1378 |
|
|
bra Ladddf$ret |
|
| 1379 |
|
|
2:
|
| 1380 |
|
|
andl IMM (0x000fffff),d0 | check for NaN (nonzero fraction)
|
| 1381 |
|
|
orl d1,d0 |
|
| 1382 |
|
|
bne Ld$inop |
|
| 1383 |
|
|
bra Ld$infty |
|
| 1384 |
|
|
|
| 1385 |
|
|
Ladddf$ret$1:
|
| 1386 |
|
|
#ifndef __mcoldfire__
|
| 1387 |
|
|
moveml sp@+,a2-a3 | restore regs and exit
|
| 1388 |
|
|
#else
|
| 1389 |
|
|
movel sp@+,a4
|
| 1390 |
|
|
movel sp@+,a3
|
| 1391 |
|
|
movel sp@+,a2
|
| 1392 |
|
|
#endif
|
| 1393 |
|
|
|
| 1394 |
|
|
Ladddf$ret:
|
| 1395 |
|
|
| Normal exit.
|
| 1396 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 1397 |
|
|
movew IMM (0),a0@
|
| 1398 |
|
|
orl d7,d0 | put sign bit back
|
| 1399 |
|
|
#ifndef __mcoldfire__
|
| 1400 |
|
|
moveml sp@+,d2-d7
|
| 1401 |
|
|
#else
|
| 1402 |
|
|
moveml sp@,d2-d7
|
| 1403 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 1404 |
|
|
| be adjusted here.
|
| 1405 |
|
|
#endif
|
| 1406 |
|
|
unlk a6
|
| 1407 |
|
|
rts
|
| 1408 |
|
|
|
| 1409 |
|
|
Ladddf$ret$den:
|
| 1410 |
|
|
| Return a denormalized number.
|
| 1411 |
|
|
#ifndef __mcoldfire__
|
| 1412 |
|
|
lsrl IMM (1),d0 | shift right once more
|
| 1413 |
|
|
roxrl IMM (1),d1 |
|
| 1414 |
|
|
#else
|
| 1415 |
|
|
lsrl IMM (1),d1
|
| 1416 |
|
|
btst IMM (0),d0
|
| 1417 |
|
|
beq 10f
|
| 1418 |
|
|
bset IMM (31),d1
|
| 1419 |
|
|
10: lsrl IMM (1),d0
|
| 1420 |
|
|
#endif
|
| 1421 |
|
|
bra Ladddf$ret
|
| 1422 |
|
|
|
| 1423 |
|
|
Ladddf$nf:
|
| 1424 |
|
|
moveq IMM (ADD),d5
|
| 1425 |
|
|
| This could be faster but it is not worth the effort, since it is not
|
| 1426 |
|
|
| executed very often. We sacrifice speed for clarity here.
|
| 1427 |
|
|
movel a6@(8),d0 | get the numbers back (remember that we
|
| 1428 |
|
|
movel a6@(12),d1 | did some processing already)
|
| 1429 |
|
|
movel a6@(16),d2 |
|
| 1430 |
|
|
movel a6@(20),d3 |
|
| 1431 |
|
|
movel IMM (0x7ff00000),d4 | useful constant (INFINITY)
|
| 1432 |
|
|
movel d0,d7 | save sign bits
|
| 1433 |
|
|
movel d2,d6 |
|
| 1434 |
|
|
bclr IMM (31),d0 | clear sign bits
|
| 1435 |
|
|
bclr IMM (31),d2 |
|
| 1436 |
|
|
| We know that one of them is either NaN of +/-INFINITY
|
| 1437 |
|
|
| Check for NaN (if either one is NaN return NaN)
|
| 1438 |
|
|
cmpl d4,d0 | check first a (d0)
|
| 1439 |
|
|
bhi Ld$inop | if d0 > 0x7ff00000 or equal and
|
| 1440 |
|
|
bne 2f
|
| 1441 |
|
|
tstl d1 | d1 > 0, a is NaN
|
| 1442 |
|
|
bne Ld$inop |
|
| 1443 |
|
|
2: cmpl d4,d2 | check now b (d1)
|
| 1444 |
|
|
bhi Ld$inop |
|
| 1445 |
|
|
bne 3f
|
| 1446 |
|
|
tstl d3 |
|
| 1447 |
|
|
bne Ld$inop |
|
| 1448 |
|
|
3:
|
| 1449 |
|
|
| Now comes the check for +/-INFINITY. We know that both are (maybe not
|
| 1450 |
|
|
| finite) numbers, but we have to check if both are infinite whether we
|
| 1451 |
|
|
| are adding or subtracting them.
|
| 1452 |
|
|
eorl d7,d6 | to check sign bits
|
| 1453 |
|
|
bmi 1f
|
| 1454 |
|
|
andl IMM (0x80000000),d7 | get (common) sign bit
|
| 1455 |
|
|
bra Ld$infty
|
| 1456 |
|
|
1:
|
| 1457 |
|
|
| We know one (or both) are infinite, so we test for equality between the
|
| 1458 |
|
|
| two numbers (if they are equal they have to be infinite both, so we
|
| 1459 |
|
|
| return NaN).
|
| 1460 |
|
|
cmpl d2,d0 | are both infinite?
|
| 1461 |
|
|
bne 1f | if d0 <> d2 they are not equal
|
| 1462 |
|
|
cmpl d3,d1 | if d0 == d2 test d3 and d1
|
| 1463 |
|
|
beq Ld$inop | if equal return NaN
|
| 1464 |
|
|
1:
|
| 1465 |
|
|
andl IMM (0x80000000),d7 | get a's sign bit '
|
| 1466 |
|
|
cmpl d4,d0 | test now for infinity
|
| 1467 |
|
|
beq Ld$infty | if a is INFINITY return with this sign
|
| 1468 |
|
|
bchg IMM (31),d7 | else we know b is INFINITY and has
|
| 1469 |
|
|
bra Ld$infty | the opposite sign
|
| 1470 |
|
|
|
| 1471 |
|
|
|=============================================================================
|
| 1472 |
|
|
| __muldf3
|
| 1473 |
|
|
|=============================================================================
|
| 1474 |
|
|
|
| 1475 |
|
|
| double __muldf3(double, double);
|
| 1476 |
|
|
FUNC(__muldf3)
|
| 1477 |
|
|
SYM (__muldf3):
|
| 1478 |
|
|
#ifndef __mcoldfire__
|
| 1479 |
|
|
link a6,IMM (0)
|
| 1480 |
|
|
moveml d2-d7,sp@-
|
| 1481 |
|
|
#else
|
| 1482 |
|
|
link a6,IMM (-24)
|
| 1483 |
|
|
moveml d2-d7,sp@
|
| 1484 |
|
|
#endif
|
| 1485 |
|
|
movel a6@(8),d0 | get a into d0-d1
|
| 1486 |
|
|
movel a6@(12),d1 |
|
| 1487 |
|
|
movel a6@(16),d2 | and b into d2-d3
|
| 1488 |
|
|
movel a6@(20),d3 |
|
| 1489 |
|
|
movel d0,d7 | d7 will hold the sign of the product
|
| 1490 |
|
|
eorl d2,d7 |
|
| 1491 |
|
|
andl IMM (0x80000000),d7 |
|
| 1492 |
|
|
movel d7,a0 | save sign bit into a0
|
| 1493 |
|
|
movel IMM (0x7ff00000),d7 | useful constant (+INFINITY)
|
| 1494 |
|
|
movel d7,d6 | another (mask for fraction)
|
| 1495 |
|
|
notl d6 |
|
| 1496 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
| 1497 |
|
|
movel d0,d4 |
|
| 1498 |
|
|
orl d1,d4 |
|
| 1499 |
|
|
beq Lmuldf$a$0 | branch if a is zero
|
| 1500 |
|
|
movel d0,d4 |
|
| 1501 |
|
|
bclr IMM (31),d2 | get rid of b's sign bit '
|
| 1502 |
|
|
movel d2,d5 |
|
| 1503 |
|
|
orl d3,d5 |
|
| 1504 |
|
|
beq Lmuldf$b$0 | branch if b is zero
|
| 1505 |
|
|
movel d2,d5 |
|
| 1506 |
|
|
cmpl d7,d0 | is a big?
|
| 1507 |
|
|
bhi Lmuldf$inop | if a is NaN return NaN
|
| 1508 |
|
|
beq Lmuldf$a$nf | we still have to check d1 and b ...
|
| 1509 |
|
|
cmpl d7,d2 | now compare b with INFINITY
|
| 1510 |
|
|
bhi Lmuldf$inop | is b NaN?
|
| 1511 |
|
|
beq Lmuldf$b$nf | we still have to check d3 ...
|
| 1512 |
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
| 1513 |
|
|
| Now we get the exponents into d4 and d5.
|
| 1514 |
|
|
andl d7,d4 | isolate exponent in d4
|
| 1515 |
|
|
beq Lmuldf$a$den | if exponent zero, have denormalized
|
| 1516 |
|
|
andl d6,d0 | isolate fraction
|
| 1517 |
|
|
orl IMM (0x00100000),d0 | and put hidden bit back
|
| 1518 |
|
|
swap d4 | I like exponents in the first byte
|
| 1519 |
|
|
#ifndef __mcoldfire__
|
| 1520 |
|
|
lsrw IMM (4),d4 |
|
| 1521 |
|
|
#else
|
| 1522 |
|
|
lsrl IMM (4),d4 |
|
| 1523 |
|
|
#endif
|
| 1524 |
|
|
Lmuldf$1:
|
| 1525 |
|
|
andl d7,d5 |
|
| 1526 |
|
|
beq Lmuldf$b$den |
|
| 1527 |
|
|
andl d6,d2 |
|
| 1528 |
|
|
orl IMM (0x00100000),d2 | and put hidden bit back
|
| 1529 |
|
|
swap d5 |
|
| 1530 |
|
|
#ifndef __mcoldfire__
|
| 1531 |
|
|
lsrw IMM (4),d5 |
|
| 1532 |
|
|
#else
|
| 1533 |
|
|
lsrl IMM (4),d5 |
|
| 1534 |
|
|
#endif
|
| 1535 |
|
|
Lmuldf$2: |
|
| 1536 |
|
|
#ifndef __mcoldfire__
|
| 1537 |
|
|
addw d5,d4 | add exponents
|
| 1538 |
|
|
subw IMM (D_BIAS+1),d4 | and subtract bias (plus one)
|
| 1539 |
|
|
#else
|
| 1540 |
|
|
addl d5,d4 | add exponents
|
| 1541 |
|
|
subl IMM (D_BIAS+1),d4 | and subtract bias (plus one)
|
| 1542 |
|
|
#endif
|
| 1543 |
|
|
|
| 1544 |
|
|
| We are now ready to do the multiplication. The situation is as follows:
|
| 1545 |
|
|
| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were
|
| 1546 |
|
|
| denormalized to start with!), which means that in the product bit 104
|
| 1547 |
|
|
| (which will correspond to bit 8 of the fourth long) is set.
|
| 1548 |
|
|
|
| 1549 |
|
|
| Here we have to do the product.
|
| 1550 |
|
|
| To do it we have to juggle the registers back and forth, as there are not
|
| 1551 |
|
|
| enough to keep everything in them. So we use the address registers to keep
|
| 1552 |
|
|
| some intermediate data.
|
| 1553 |
|
|
|
| 1554 |
|
|
#ifndef __mcoldfire__
|
| 1555 |
|
|
moveml a2-a3,sp@- | save a2 and a3 for temporary use
|
| 1556 |
|
|
#else
|
| 1557 |
|
|
movel a2,sp@-
|
| 1558 |
|
|
movel a3,sp@-
|
| 1559 |
|
|
movel a4,sp@-
|
| 1560 |
|
|
#endif
|
| 1561 |
|
|
movel IMM (0),a2 | a2 is a null register
|
| 1562 |
|
|
movel d4,a3 | and a3 will preserve the exponent
|
| 1563 |
|
|
|
| 1564 |
|
|
| First, shift d2-d3 so bit 20 becomes bit 31:
|
| 1565 |
|
|
#ifndef __mcoldfire__
|
| 1566 |
|
|
rorl IMM (5),d2 | rotate d2 5 places right
|
| 1567 |
|
|
swap d2 | and swap it
|
| 1568 |
|
|
rorl IMM (5),d3 | do the same thing with d3
|
| 1569 |
|
|
swap d3 |
|
| 1570 |
|
|
movew d3,d6 | get the rightmost 11 bits of d3
|
| 1571 |
|
|
andw IMM (0x07ff),d6 |
|
| 1572 |
|
|
orw d6,d2 | and put them into d2
|
| 1573 |
|
|
andw IMM (0xf800),d3 | clear those bits in d3
|
| 1574 |
|
|
#else
|
| 1575 |
|
|
moveq IMM (11),d7 | left shift d2 11 bits
|
| 1576 |
|
|
lsll d7,d2
|
| 1577 |
|
|
movel d3,d6 | get a copy of d3
|
| 1578 |
|
|
lsll d7,d3 | left shift d3 11 bits
|
| 1579 |
|
|
andl IMM (0xffe00000),d6 | get the top 11 bits of d3
|
| 1580 |
|
|
moveq IMM (21),d7 | right shift them 21 bits
|
| 1581 |
|
|
lsrl d7,d6
|
| 1582 |
|
|
orl d6,d2 | stick them at the end of d2
|
| 1583 |
|
|
#endif
|
| 1584 |
|
|
|
| 1585 |
|
|
movel d2,d6 | move b into d6-d7
|
| 1586 |
|
|
movel d3,d7 | move a into d4-d5
|
| 1587 |
|
|
movel d0,d4 | and clear d0-d1-d2-d3 (to put result)
|
| 1588 |
|
|
movel d1,d5 |
|
| 1589 |
|
|
movel IMM (0),d3 |
|
| 1590 |
|
|
movel d3,d2 |
|
| 1591 |
|
|
movel d3,d1 |
|
| 1592 |
|
|
movel d3,d0 |
|
| 1593 |
|
|
|
| 1594 |
|
|
| We use a1 as counter:
|
| 1595 |
|
|
movel IMM (DBL_MANT_DIG-1),a1
|
| 1596 |
|
|
#ifndef __mcoldfire__
|
| 1597 |
|
|
exg d7,a1
|
| 1598 |
|
|
#else
|
| 1599 |
|
|
movel d7,a4
|
| 1600 |
|
|
movel a1,d7
|
| 1601 |
|
|
movel a4,a1
|
| 1602 |
|
|
#endif
|
| 1603 |
|
|
|
| 1604 |
|
|
1:
|
| 1605 |
|
|
#ifndef __mcoldfire__
|
| 1606 |
|
|
exg d7,a1 | put counter back in a1
|
| 1607 |
|
|
#else
|
| 1608 |
|
|
movel d7,a4
|
| 1609 |
|
|
movel a1,d7
|
| 1610 |
|
|
movel a4,a1
|
| 1611 |
|
|
#endif
|
| 1612 |
|
|
addl d3,d3 | shift sum once left
|
| 1613 |
|
|
addxl d2,d2 |
|
| 1614 |
|
|
addxl d1,d1 |
|
| 1615 |
|
|
addxl d0,d0 |
|
| 1616 |
|
|
addl d7,d7 |
|
| 1617 |
|
|
addxl d6,d6 |
|
| 1618 |
|
|
bcc 2f | if bit clear skip the following
|
| 1619 |
|
|
#ifndef __mcoldfire__
|
| 1620 |
|
|
exg d7,a2 |
|
| 1621 |
|
|
#else
|
| 1622 |
|
|
movel d7,a4
|
| 1623 |
|
|
movel a2,d7
|
| 1624 |
|
|
movel a4,a2
|
| 1625 |
|
|
#endif
|
| 1626 |
|
|
addl d5,d3 | else add a to the sum
|
| 1627 |
|
|
addxl d4,d2 |
|
| 1628 |
|
|
addxl d7,d1 |
|
| 1629 |
|
|
addxl d7,d0 |
|
| 1630 |
|
|
#ifndef __mcoldfire__
|
| 1631 |
|
|
exg d7,a2 |
|
| 1632 |
|
|
#else
|
| 1633 |
|
|
movel d7,a4
|
| 1634 |
|
|
movel a2,d7
|
| 1635 |
|
|
movel a4,a2
|
| 1636 |
|
|
#endif
|
| 1637 |
|
|
2:
|
| 1638 |
|
|
#ifndef __mcoldfire__
|
| 1639 |
|
|
exg d7,a1 | put counter in d7
|
| 1640 |
|
|
dbf d7,1b | decrement and branch
|
| 1641 |
|
|
#else
|
| 1642 |
|
|
movel d7,a4
|
| 1643 |
|
|
movel a1,d7
|
| 1644 |
|
|
movel a4,a1
|
| 1645 |
|
|
subql IMM (1),d7
|
| 1646 |
|
|
bpl 1b
|
| 1647 |
|
|
#endif
|
| 1648 |
|
|
|
| 1649 |
|
|
movel a3,d4 | restore exponent
|
| 1650 |
|
|
#ifndef __mcoldfire__
|
| 1651 |
|
|
moveml sp@+,a2-a3
|
| 1652 |
|
|
#else
|
| 1653 |
|
|
movel sp@+,a4
|
| 1654 |
|
|
movel sp@+,a3
|
| 1655 |
|
|
movel sp@+,a2
|
| 1656 |
|
|
#endif
|
| 1657 |
|
|
|
| 1658 |
|
|
| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The
|
| 1659 |
|
|
| first thing to do now is to normalize it so bit 8 becomes bit
|
| 1660 |
|
|
| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
|
| 1661 |
|
|
swap d0
|
| 1662 |
|
|
swap d1
|
| 1663 |
|
|
movew d1,d0
|
| 1664 |
|
|
swap d2
|
| 1665 |
|
|
movew d2,d1
|
| 1666 |
|
|
swap d3
|
| 1667 |
|
|
movew d3,d2
|
| 1668 |
|
|
movew IMM (0),d3
|
| 1669 |
|
|
#ifndef __mcoldfire__
|
| 1670 |
|
|
lsrl IMM (1),d0
|
| 1671 |
|
|
roxrl IMM (1),d1
|
| 1672 |
|
|
roxrl IMM (1),d2
|
| 1673 |
|
|
roxrl IMM (1),d3
|
| 1674 |
|
|
lsrl IMM (1),d0
|
| 1675 |
|
|
roxrl IMM (1),d1
|
| 1676 |
|
|
roxrl IMM (1),d2
|
| 1677 |
|
|
roxrl IMM (1),d3
|
| 1678 |
|
|
lsrl IMM (1),d0
|
| 1679 |
|
|
roxrl IMM (1),d1
|
| 1680 |
|
|
roxrl IMM (1),d2
|
| 1681 |
|
|
roxrl IMM (1),d3
|
| 1682 |
|
|
#else
|
| 1683 |
|
|
moveq IMM (29),d6
|
| 1684 |
|
|
lsrl IMM (3),d3
|
| 1685 |
|
|
movel d2,d7
|
| 1686 |
|
|
lsll d6,d7
|
| 1687 |
|
|
orl d7,d3
|
| 1688 |
|
|
lsrl IMM (3),d2
|
| 1689 |
|
|
movel d1,d7
|
| 1690 |
|
|
lsll d6,d7
|
| 1691 |
|
|
orl d7,d2
|
| 1692 |
|
|
lsrl IMM (3),d1
|
| 1693 |
|
|
movel d0,d7
|
| 1694 |
|
|
lsll d6,d7
|
| 1695 |
|
|
orl d7,d1
|
| 1696 |
|
|
lsrl IMM (3),d0
|
| 1697 |
|
|
#endif
|
| 1698 |
|
|
|
| 1699 |
|
|
| Now round, check for over- and underflow, and exit.
|
| 1700 |
|
|
movel a0,d7 | get sign bit back into d7
|
| 1701 |
|
|
moveq IMM (MULTIPLY),d5
|
| 1702 |
|
|
|
| 1703 |
|
|
btst IMM (DBL_MANT_DIG+1-32),d0
|
| 1704 |
|
|
beq Lround$exit
|
| 1705 |
|
|
#ifndef __mcoldfire__
|
| 1706 |
|
|
lsrl IMM (1),d0
|
| 1707 |
|
|
roxrl IMM (1),d1
|
| 1708 |
|
|
addw IMM (1),d4
|
| 1709 |
|
|
#else
|
| 1710 |
|
|
lsrl IMM (1),d1
|
| 1711 |
|
|
btst IMM (0),d0
|
| 1712 |
|
|
beq 10f
|
| 1713 |
|
|
bset IMM (31),d1
|
| 1714 |
|
|
10: lsrl IMM (1),d0
|
| 1715 |
|
|
addl IMM (1),d4
|
| 1716 |
|
|
#endif
|
| 1717 |
|
|
bra Lround$exit
|
| 1718 |
|
|
|
| 1719 |
|
|
Lmuldf$inop:
|
| 1720 |
|
|
moveq IMM (MULTIPLY),d5
|
| 1721 |
|
|
bra Ld$inop
|
| 1722 |
|
|
|
| 1723 |
|
|
Lmuldf$b$nf:
|
| 1724 |
|
|
moveq IMM (MULTIPLY),d5
|
| 1725 |
|
|
movel a0,d7 | get sign bit back into d7
|
| 1726 |
|
|
tstl d3 | we know d2 == 0x7ff00000, so check d3
|
| 1727 |
|
|
bne Ld$inop | if d3 <> 0 b is NaN
|
| 1728 |
|
|
bra Ld$overflow | else we have overflow (since a is finite)
|
| 1729 |
|
|
|
| 1730 |
|
|
Lmuldf$a$nf:
|
| 1731 |
|
|
moveq IMM (MULTIPLY),d5
|
| 1732 |
|
|
movel a0,d7 | get sign bit back into d7
|
| 1733 |
|
|
tstl d1 | we know d0 == 0x7ff00000, so check d1
|
| 1734 |
|
|
bne Ld$inop | if d1 <> 0 a is NaN
|
| 1735 |
|
|
bra Ld$overflow | else signal overflow
|
| 1736 |
|
|
|
| 1737 |
|
|
| If either number is zero return zero, unless the other is +/-INFINITY or
|
| 1738 |
|
|
| NaN, in which case we return NaN.
|
| 1739 |
|
|
Lmuldf$b$0:
|
| 1740 |
|
|
moveq IMM (MULTIPLY),d5
|
| 1741 |
|
|
#ifndef __mcoldfire__
|
| 1742 |
|
|
exg d2,d0 | put b (==0) into d0-d1
|
| 1743 |
|
|
exg d3,d1 | and a (with sign bit cleared) into d2-d3
|
| 1744 |
|
|
movel a0,d0 | set result sign
|
| 1745 |
|
|
#else
|
| 1746 |
|
|
movel d0,d2 | put a into d2-d3
|
| 1747 |
|
|
movel d1,d3
|
| 1748 |
|
|
movel a0,d0 | put result zero into d0-d1
|
| 1749 |
|
|
movq IMM(0),d1
|
| 1750 |
|
|
#endif
|
| 1751 |
|
|
bra 1f
|
| 1752 |
|
|
Lmuldf$a$0:
|
| 1753 |
|
|
movel a0,d0 | set result sign
|
| 1754 |
|
|
movel a6@(16),d2 | put b into d2-d3 again
|
| 1755 |
|
|
movel a6@(20),d3 |
|
| 1756 |
|
|
bclr IMM (31),d2 | clear sign bit
|
| 1757 |
|
|
1: cmpl IMM (0x7ff00000),d2 | check for non-finiteness
|
| 1758 |
|
|
bge Ld$inop | in case NaN or +/-INFINITY return NaN
|
| 1759 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 1760 |
|
|
movew IMM (0),a0@
|
| 1761 |
|
|
#ifndef __mcoldfire__
|
| 1762 |
|
|
moveml sp@+,d2-d7
|
| 1763 |
|
|
#else
|
| 1764 |
|
|
moveml sp@,d2-d7
|
| 1765 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 1766 |
|
|
| be adjusted here.
|
| 1767 |
|
|
#endif
|
| 1768 |
|
|
unlk a6
|
| 1769 |
|
|
rts
|
| 1770 |
|
|
|
| 1771 |
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
| 1772 |
|
|
| hidden bit back into the fraction; instead we shift left until bit 21
|
| 1773 |
|
|
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
|
| 1774 |
|
|
| to ensure that the product of the fractions is close to 1.
|
| 1775 |
|
|
Lmuldf$a$den:
|
| 1776 |
|
|
movel IMM (1),d4
|
| 1777 |
|
|
andl d6,d0
|
| 1778 |
|
|
1: addl d1,d1 | shift a left until bit 20 is set
|
| 1779 |
|
|
addxl d0,d0 |
|
| 1780 |
|
|
#ifndef __mcoldfire__
|
| 1781 |
|
|
subw IMM (1),d4 | and adjust exponent
|
| 1782 |
|
|
#else
|
| 1783 |
|
|
subl IMM (1),d4 | and adjust exponent
|
| 1784 |
|
|
#endif
|
| 1785 |
|
|
btst IMM (20),d0 |
|
| 1786 |
|
|
bne Lmuldf$1 |
|
| 1787 |
|
|
bra 1b
|
| 1788 |
|
|
|
| 1789 |
|
|
Lmuldf$b$den:
|
| 1790 |
|
|
movel IMM (1),d5
|
| 1791 |
|
|
andl d6,d2
|
| 1792 |
|
|
1: addl d3,d3 | shift b left until bit 20 is set
|
| 1793 |
|
|
addxl d2,d2 |
|
| 1794 |
|
|
#ifndef __mcoldfire__
|
| 1795 |
|
|
subw IMM (1),d5 | and adjust exponent
|
| 1796 |
|
|
#else
|
| 1797 |
|
|
subql IMM (1),d5 | and adjust exponent
|
| 1798 |
|
|
#endif
|
| 1799 |
|
|
btst IMM (20),d2 |
|
| 1800 |
|
|
bne Lmuldf$2 |
|
| 1801 |
|
|
bra 1b
|
| 1802 |
|
|
|
| 1803 |
|
|
|
| 1804 |
|
|
|=============================================================================
|
| 1805 |
|
|
| __divdf3
|
| 1806 |
|
|
|=============================================================================
|
| 1807 |
|
|
|
| 1808 |
|
|
| double __divdf3(double, double);
|
| 1809 |
|
|
FUNC(__divdf3)
|
| 1810 |
|
|
SYM (__divdf3):
|
| 1811 |
|
|
#ifndef __mcoldfire__
|
| 1812 |
|
|
link a6,IMM (0)
|
| 1813 |
|
|
moveml d2-d7,sp@-
|
| 1814 |
|
|
#else
|
| 1815 |
|
|
link a6,IMM (-24)
|
| 1816 |
|
|
moveml d2-d7,sp@
|
| 1817 |
|
|
#endif
|
| 1818 |
|
|
movel a6@(8),d0 | get a into d0-d1
|
| 1819 |
|
|
movel a6@(12),d1 |
|
| 1820 |
|
|
movel a6@(16),d2 | and b into d2-d3
|
| 1821 |
|
|
movel a6@(20),d3 |
|
| 1822 |
|
|
movel d0,d7 | d7 will hold the sign of the result
|
| 1823 |
|
|
eorl d2,d7 |
|
| 1824 |
|
|
andl IMM (0x80000000),d7
|
| 1825 |
|
|
movel d7,a0 | save sign into a0
|
| 1826 |
|
|
movel IMM (0x7ff00000),d7 | useful constant (+INFINITY)
|
| 1827 |
|
|
movel d7,d6 | another (mask for fraction)
|
| 1828 |
|
|
notl d6 |
|
| 1829 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
| 1830 |
|
|
movel d0,d4 |
|
| 1831 |
|
|
orl d1,d4 |
|
| 1832 |
|
|
beq Ldivdf$a$0 | branch if a is zero
|
| 1833 |
|
|
movel d0,d4 |
|
| 1834 |
|
|
bclr IMM (31),d2 | get rid of b's sign bit '
|
| 1835 |
|
|
movel d2,d5 |
|
| 1836 |
|
|
orl d3,d5 |
|
| 1837 |
|
|
beq Ldivdf$b$0 | branch if b is zero
|
| 1838 |
|
|
movel d2,d5
|
| 1839 |
|
|
cmpl d7,d0 | is a big?
|
| 1840 |
|
|
bhi Ldivdf$inop | if a is NaN return NaN
|
| 1841 |
|
|
beq Ldivdf$a$nf | if d0 == 0x7ff00000 we check d1
|
| 1842 |
|
|
cmpl d7,d2 | now compare b with INFINITY
|
| 1843 |
|
|
bhi Ldivdf$inop | if b is NaN return NaN
|
| 1844 |
|
|
beq Ldivdf$b$nf | if d2 == 0x7ff00000 we check d3
|
| 1845 |
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
| 1846 |
|
|
| Now we get the exponents into d4 and d5 and normalize the numbers to
|
| 1847 |
|
|
| ensure that the ratio of the fractions is around 1. We do this by
|
| 1848 |
|
|
| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
|
| 1849 |
|
|
| set, even if they were denormalized to start with.
|
| 1850 |
|
|
| Thus, the result will satisfy: 2 > result > 1/2.
|
| 1851 |
|
|
andl d7,d4 | and isolate exponent in d4
|
| 1852 |
|
|
beq Ldivdf$a$den | if exponent is zero we have a denormalized
|
| 1853 |
|
|
andl d6,d0 | and isolate fraction
|
| 1854 |
|
|
orl IMM (0x00100000),d0 | and put hidden bit back
|
| 1855 |
|
|
swap d4 | I like exponents in the first byte
|
| 1856 |
|
|
#ifndef __mcoldfire__
|
| 1857 |
|
|
lsrw IMM (4),d4 |
|
| 1858 |
|
|
#else
|
| 1859 |
|
|
lsrl IMM (4),d4 |
|
| 1860 |
|
|
#endif
|
| 1861 |
|
|
Ldivdf$1: |
|
| 1862 |
|
|
andl d7,d5 |
|
| 1863 |
|
|
beq Ldivdf$b$den |
|
| 1864 |
|
|
andl d6,d2 |
|
| 1865 |
|
|
orl IMM (0x00100000),d2
|
| 1866 |
|
|
swap d5 |
|
| 1867 |
|
|
#ifndef __mcoldfire__
|
| 1868 |
|
|
lsrw IMM (4),d5 |
|
| 1869 |
|
|
#else
|
| 1870 |
|
|
lsrl IMM (4),d5 |
|
| 1871 |
|
|
#endif
|
| 1872 |
|
|
Ldivdf$2: |
|
| 1873 |
|
|
#ifndef __mcoldfire__
|
| 1874 |
|
|
subw d5,d4 | subtract exponents
|
| 1875 |
|
|
addw IMM (D_BIAS),d4 | and add bias
|
| 1876 |
|
|
#else
|
| 1877 |
|
|
subl d5,d4 | subtract exponents
|
| 1878 |
|
|
addl IMM (D_BIAS),d4 | and add bias
|
| 1879 |
|
|
#endif
|
| 1880 |
|
|
|
| 1881 |
|
|
| We are now ready to do the division. We have prepared things in such a way
|
| 1882 |
|
|
| that the ratio of the fractions will be less than 2 but greater than 1/2.
|
| 1883 |
|
|
| At this point the registers in use are:
|
| 1884 |
|
|
| d0-d1 hold a (first operand, bit DBL_MANT_DIG-32=0, bit
|
| 1885 |
|
|
| DBL_MANT_DIG-1-32=1)
|
| 1886 |
|
|
| d2-d3 hold b (second operand, bit DBL_MANT_DIG-32=1)
|
| 1887 |
|
|
| d4 holds the difference of the exponents, corrected by the bias
|
| 1888 |
|
|
| a0 holds the sign of the ratio
|
| 1889 |
|
|
|
| 1890 |
|
|
| To do the rounding correctly we need to keep information about the
|
| 1891 |
|
|
| nonsignificant bits. One way to do this would be to do the division
|
| 1892 |
|
|
| using four registers; another is to use two registers (as originally
|
| 1893 |
|
|
| I did), but use a sticky bit to preserve information about the
|
| 1894 |
|
|
| fractional part. Note that we can keep that info in a1, which is not
|
| 1895 |
|
|
| used.
|
| 1896 |
|
|
movel IMM (0),d6 | d6-d7 will hold the result
|
| 1897 |
|
|
movel d6,d7 |
|
| 1898 |
|
|
movel IMM (0),a1 | and a1 will hold the sticky bit
|
| 1899 |
|
|
|
| 1900 |
|
|
movel IMM (DBL_MANT_DIG-32+1),d5
|
| 1901 |
|
|
|
| 1902 |
|
|
1: cmpl d0,d2 | is a < b?
|
| 1903 |
|
|
bhi 3f | if b > a skip the following
|
| 1904 |
|
|
beq 4f | if d0==d2 check d1 and d3
|
| 1905 |
|
|
2: subl d3,d1 |
|
| 1906 |
|
|
subxl d2,d0 | a <-- a - b
|
| 1907 |
|
|
bset d5,d6 | set the corresponding bit in d6
|
| 1908 |
|
|
3: addl d1,d1 | shift a by 1
|
| 1909 |
|
|
addxl d0,d0 |
|
| 1910 |
|
|
#ifndef __mcoldfire__
|
| 1911 |
|
|
dbra d5,1b | and branch back
|
| 1912 |
|
|
#else
|
| 1913 |
|
|
subql IMM (1), d5
|
| 1914 |
|
|
bpl 1b
|
| 1915 |
|
|
#endif
|
| 1916 |
|
|
bra 5f
|
| 1917 |
|
|
4: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
| 1918 |
|
|
bhi 3b | if d1 > d2 skip the subtraction
|
| 1919 |
|
|
bra 2b | else go do it
|
| 1920 |
|
|
5:
|
| 1921 |
|
|
| Here we have to start setting the bits in the second long.
|
| 1922 |
|
|
movel IMM (31),d5 | again d5 is counter
|
| 1923 |
|
|
|
| 1924 |
|
|
1: cmpl d0,d2 | is a < b?
|
| 1925 |
|
|
bhi 3f | if b > a skip the following
|
| 1926 |
|
|
beq 4f | if d0==d2 check d1 and d3
|
| 1927 |
|
|
2: subl d3,d1 |
|
| 1928 |
|
|
subxl d2,d0 | a <-- a - b
|
| 1929 |
|
|
bset d5,d7 | set the corresponding bit in d7
|
| 1930 |
|
|
3: addl d1,d1 | shift a by 1
|
| 1931 |
|
|
addxl d0,d0 |
|
| 1932 |
|
|
#ifndef __mcoldfire__
|
| 1933 |
|
|
dbra d5,1b | and branch back
|
| 1934 |
|
|
#else
|
| 1935 |
|
|
subql IMM (1), d5
|
| 1936 |
|
|
bpl 1b
|
| 1937 |
|
|
#endif
|
| 1938 |
|
|
bra 5f
|
| 1939 |
|
|
4: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
| 1940 |
|
|
bhi 3b | if d1 > d2 skip the subtraction
|
| 1941 |
|
|
bra 2b | else go do it
|
| 1942 |
|
|
5:
|
| 1943 |
|
|
| Now go ahead checking until we hit a one, which we store in d2.
|
| 1944 |
|
|
movel IMM (DBL_MANT_DIG),d5
|
| 1945 |
|
|
1: cmpl d2,d0 | is a < b?
|
| 1946 |
|
|
bhi 4f | if b < a, exit
|
| 1947 |
|
|
beq 3f | if d0==d2 check d1 and d3
|
| 1948 |
|
|
2: addl d1,d1 | shift a by 1
|
| 1949 |
|
|
addxl d0,d0 |
|
| 1950 |
|
|
#ifndef __mcoldfire__
|
| 1951 |
|
|
dbra d5,1b | and branch back
|
| 1952 |
|
|
#else
|
| 1953 |
|
|
subql IMM (1), d5
|
| 1954 |
|
|
bpl 1b
|
| 1955 |
|
|
#endif
|
| 1956 |
|
|
movel IMM (0),d2 | here no sticky bit was found
|
| 1957 |
|
|
movel d2,d3
|
| 1958 |
|
|
bra 5f
|
| 1959 |
|
|
3: cmpl d1,d3 | here d0==d2, so check d1 and d3
|
| 1960 |
|
|
bhi 2b | if d1 > d2 go back
|
| 1961 |
|
|
4:
|
| 1962 |
|
|
| Here put the sticky bit in d2-d3 (in the position which actually corresponds
|
| 1963 |
|
|
| to it; if you don't do this the algorithm loses in some cases). '
|
| 1964 |
|
|
movel IMM (0),d2
|
| 1965 |
|
|
movel d2,d3
|
| 1966 |
|
|
#ifndef __mcoldfire__
|
| 1967 |
|
|
subw IMM (DBL_MANT_DIG),d5
|
| 1968 |
|
|
addw IMM (63),d5
|
| 1969 |
|
|
cmpw IMM (31),d5
|
| 1970 |
|
|
#else
|
| 1971 |
|
|
subl IMM (DBL_MANT_DIG),d5
|
| 1972 |
|
|
addl IMM (63),d5
|
| 1973 |
|
|
cmpl IMM (31),d5
|
| 1974 |
|
|
#endif
|
| 1975 |
|
|
bhi 2f
|
| 1976 |
|
|
1: bset d5,d3
|
| 1977 |
|
|
bra 5f
|
| 1978 |
|
|
#ifndef __mcoldfire__
|
| 1979 |
|
|
subw IMM (32),d5
|
| 1980 |
|
|
#else
|
| 1981 |
|
|
subl IMM (32),d5
|
| 1982 |
|
|
#endif
|
| 1983 |
|
|
2: bset d5,d2
|
| 1984 |
|
|
5:
|
| 1985 |
|
|
| Finally we are finished! Move the longs in the address registers to
|
| 1986 |
|
|
| their final destination:
|
| 1987 |
|
|
movel d6,d0
|
| 1988 |
|
|
movel d7,d1
|
| 1989 |
|
|
movel IMM (0),d3
|
| 1990 |
|
|
|
| 1991 |
|
|
| Here we have finished the division, with the result in d0-d1-d2-d3, with
|
| 1992 |
|
|
| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
|
| 1993 |
|
|
| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
|
| 1994 |
|
|
| not set:
|
| 1995 |
|
|
btst IMM (DBL_MANT_DIG-32+1),d0
|
| 1996 |
|
|
beq 1f
|
| 1997 |
|
|
#ifndef __mcoldfire__
|
| 1998 |
|
|
lsrl IMM (1),d0
|
| 1999 |
|
|
roxrl IMM (1),d1
|
| 2000 |
|
|
roxrl IMM (1),d2
|
| 2001 |
|
|
roxrl IMM (1),d3
|
| 2002 |
|
|
addw IMM (1),d4
|
| 2003 |
|
|
#else
|
| 2004 |
|
|
lsrl IMM (1),d3
|
| 2005 |
|
|
btst IMM (0),d2
|
| 2006 |
|
|
beq 10f
|
| 2007 |
|
|
bset IMM (31),d3
|
| 2008 |
|
|
10: lsrl IMM (1),d2
|
| 2009 |
|
|
btst IMM (0),d1
|
| 2010 |
|
|
beq 11f
|
| 2011 |
|
|
bset IMM (31),d2
|
| 2012 |
|
|
11: lsrl IMM (1),d1
|
| 2013 |
|
|
btst IMM (0),d0
|
| 2014 |
|
|
beq 12f
|
| 2015 |
|
|
bset IMM (31),d1
|
| 2016 |
|
|
12: lsrl IMM (1),d0
|
| 2017 |
|
|
addl IMM (1),d4
|
| 2018 |
|
|
#endif
|
| 2019 |
|
|
1:
|
| 2020 |
|
|
| Now round, check for over- and underflow, and exit.
|
| 2021 |
|
|
movel a0,d7 | restore sign bit to d7
|
| 2022 |
|
|
moveq IMM (DIVIDE),d5
|
| 2023 |
|
|
bra Lround$exit
|
| 2024 |
|
|
|
| 2025 |
|
|
Ldivdf$inop:
|
| 2026 |
|
|
moveq IMM (DIVIDE),d5
|
| 2027 |
|
|
bra Ld$inop
|
| 2028 |
|
|
|
| 2029 |
|
|
Ldivdf$a$0:
|
| 2030 |
|
|
| If a is zero check to see whether b is zero also. In that case return
|
| 2031 |
|
|
| NaN; then check if b is NaN, and return NaN also in that case. Else
|
| 2032 |
|
|
| return a properly signed zero.
|
| 2033 |
|
|
moveq IMM (DIVIDE),d5
|
| 2034 |
|
|
bclr IMM (31),d2 |
|
| 2035 |
|
|
movel d2,d4 |
|
| 2036 |
|
|
orl d3,d4 |
|
| 2037 |
|
|
beq Ld$inop | if b is also zero return NaN
|
| 2038 |
|
|
cmpl IMM (0x7ff00000),d2 | check for NaN
|
| 2039 |
|
|
bhi Ld$inop |
|
| 2040 |
|
|
blt 1f |
|
| 2041 |
|
|
tstl d3 |
|
| 2042 |
|
|
bne Ld$inop |
|
| 2043 |
|
|
1: movel a0,d0 | else return signed zero
|
| 2044 |
|
|
moveq IMM(0),d1 |
|
| 2045 |
|
|
PICLEA SYM (_fpCCR),a0 | clear exception flags
|
| 2046 |
|
|
movew IMM (0),a0@ |
|
| 2047 |
|
|
#ifndef __mcoldfire__
|
| 2048 |
|
|
moveml sp@+,d2-d7 |
|
| 2049 |
|
|
#else
|
| 2050 |
|
|
moveml sp@,d2-d7 |
|
| 2051 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2052 |
|
|
| be adjusted here.
|
| 2053 |
|
|
#endif
|
| 2054 |
|
|
unlk a6 |
|
| 2055 |
|
|
rts |
|
| 2056 |
|
|
|
| 2057 |
|
|
Ldivdf$b$0:
|
| 2058 |
|
|
moveq IMM (DIVIDE),d5
|
| 2059 |
|
|
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
|
| 2060 |
|
|
| else return +/-INFINITY. Remember that a is in d0 with the sign bit
|
| 2061 |
|
|
| cleared already.
|
| 2062 |
|
|
movel a0,d7 | put a's sign bit back in d7 '
|
| 2063 |
|
|
cmpl IMM (0x7ff00000),d0 | compare d0 with INFINITY
|
| 2064 |
|
|
bhi Ld$inop | if larger it is NaN
|
| 2065 |
|
|
tstl d1 |
|
| 2066 |
|
|
bne Ld$inop |
|
| 2067 |
|
|
bra Ld$div$0 | else signal DIVIDE_BY_ZERO
|
| 2068 |
|
|
|
| 2069 |
|
|
Ldivdf$b$nf:
|
| 2070 |
|
|
moveq IMM (DIVIDE),d5
|
| 2071 |
|
|
| If d2 == 0x7ff00000 we have to check d3.
|
| 2072 |
|
|
tstl d3 |
|
| 2073 |
|
|
bne Ld$inop | if d3 <> 0, b is NaN
|
| 2074 |
|
|
bra Ld$underflow | else b is +/-INFINITY, so signal underflow
|
| 2075 |
|
|
|
| 2076 |
|
|
Ldivdf$a$nf:
|
| 2077 |
|
|
moveq IMM (DIVIDE),d5
|
| 2078 |
|
|
| If d0 == 0x7ff00000 we have to check d1.
|
| 2079 |
|
|
tstl d1 |
|
| 2080 |
|
|
bne Ld$inop | if d1 <> 0, a is NaN
|
| 2081 |
|
|
| If a is INFINITY we have to check b
|
| 2082 |
|
|
cmpl d7,d2 | compare b with INFINITY
|
| 2083 |
|
|
bge Ld$inop | if b is NaN or INFINITY return NaN
|
| 2084 |
|
|
tstl d3 |
|
| 2085 |
|
|
bne Ld$inop |
|
| 2086 |
|
|
bra Ld$overflow | else return overflow
|
| 2087 |
|
|
|
| 2088 |
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
| 2089 |
|
|
| bit back into the fraction.
|
| 2090 |
|
|
Ldivdf$a$den:
|
| 2091 |
|
|
movel IMM (1),d4
|
| 2092 |
|
|
andl d6,d0
|
| 2093 |
|
|
1: addl d1,d1 | shift a left until bit 20 is set
|
| 2094 |
|
|
addxl d0,d0
|
| 2095 |
|
|
#ifndef __mcoldfire__
|
| 2096 |
|
|
subw IMM (1),d4 | and adjust exponent
|
| 2097 |
|
|
#else
|
| 2098 |
|
|
subl IMM (1),d4 | and adjust exponent
|
| 2099 |
|
|
#endif
|
| 2100 |
|
|
btst IMM (DBL_MANT_DIG-32-1),d0
|
| 2101 |
|
|
bne Ldivdf$1
|
| 2102 |
|
|
bra 1b
|
| 2103 |
|
|
|
| 2104 |
|
|
Ldivdf$b$den:
|
| 2105 |
|
|
movel IMM (1),d5
|
| 2106 |
|
|
andl d6,d2
|
| 2107 |
|
|
1: addl d3,d3 | shift b left until bit 20 is set
|
| 2108 |
|
|
addxl d2,d2
|
| 2109 |
|
|
#ifndef __mcoldfire__
|
| 2110 |
|
|
subw IMM (1),d5 | and adjust exponent
|
| 2111 |
|
|
#else
|
| 2112 |
|
|
subql IMM (1),d5 | and adjust exponent
|
| 2113 |
|
|
#endif
|
| 2114 |
|
|
btst IMM (DBL_MANT_DIG-32-1),d2
|
| 2115 |
|
|
bne Ldivdf$2
|
| 2116 |
|
|
bra 1b
|
| 2117 |
|
|
|
| 2118 |
|
|
Lround$exit:
|
| 2119 |
|
|
| This is a common exit point for __muldf3 and __divdf3. When they enter
|
| 2120 |
|
|
| this point the sign of the result is in d7, the result in d0-d1, normalized
|
| 2121 |
|
|
| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.
|
| 2122 |
|
|
|
| 2123 |
|
|
| First check for underlow in the exponent:
|
| 2124 |
|
|
#ifndef __mcoldfire__
|
| 2125 |
|
|
cmpw IMM (-DBL_MANT_DIG-1),d4
|
| 2126 |
|
|
#else
|
| 2127 |
|
|
cmpl IMM (-DBL_MANT_DIG-1),d4
|
| 2128 |
|
|
#endif
|
| 2129 |
|
|
blt Ld$underflow
|
| 2130 |
|
|
| It could happen that the exponent is less than 1, in which case the
|
| 2131 |
|
|
| number is denormalized. In this case we shift right and adjust the
|
| 2132 |
|
|
| exponent until it becomes 1 or the fraction is zero (in the latter case
|
| 2133 |
|
|
| we signal underflow and return zero).
|
| 2134 |
|
|
movel d7,a0 |
|
| 2135 |
|
|
movel IMM (0),d6 | use d6-d7 to collect bits flushed right
|
| 2136 |
|
|
movel d6,d7 | use d6-d7 to collect bits flushed right
|
| 2137 |
|
|
#ifndef __mcoldfire__
|
| 2138 |
|
|
cmpw IMM (1),d4 | if the exponent is less than 1 we
|
| 2139 |
|
|
#else
|
| 2140 |
|
|
cmpl IMM (1),d4 | if the exponent is less than 1 we
|
| 2141 |
|
|
#endif
|
| 2142 |
|
|
bge 2f | have to shift right (denormalize)
|
| 2143 |
|
|
1:
|
| 2144 |
|
|
#ifndef __mcoldfire__
|
| 2145 |
|
|
addw IMM (1),d4 | adjust the exponent
|
| 2146 |
|
|
lsrl IMM (1),d0 | shift right once
|
| 2147 |
|
|
roxrl IMM (1),d1 |
|
| 2148 |
|
|
roxrl IMM (1),d2 |
|
| 2149 |
|
|
roxrl IMM (1),d3 |
|
| 2150 |
|
|
roxrl IMM (1),d6 |
|
| 2151 |
|
|
roxrl IMM (1),d7 |
|
| 2152 |
|
|
cmpw IMM (1),d4 | is the exponent 1 already?
|
| 2153 |
|
|
#else
|
| 2154 |
|
|
addl IMM (1),d4 | adjust the exponent
|
| 2155 |
|
|
lsrl IMM (1),d7
|
| 2156 |
|
|
btst IMM (0),d6
|
| 2157 |
|
|
beq 13f
|
| 2158 |
|
|
bset IMM (31),d7
|
| 2159 |
|
|
13: lsrl IMM (1),d6
|
| 2160 |
|
|
btst IMM (0),d3
|
| 2161 |
|
|
beq 14f
|
| 2162 |
|
|
bset IMM (31),d6
|
| 2163 |
|
|
14: lsrl IMM (1),d3
|
| 2164 |
|
|
btst IMM (0),d2
|
| 2165 |
|
|
beq 10f
|
| 2166 |
|
|
bset IMM (31),d3
|
| 2167 |
|
|
10: lsrl IMM (1),d2
|
| 2168 |
|
|
btst IMM (0),d1
|
| 2169 |
|
|
beq 11f
|
| 2170 |
|
|
bset IMM (31),d2
|
| 2171 |
|
|
11: lsrl IMM (1),d1
|
| 2172 |
|
|
btst IMM (0),d0
|
| 2173 |
|
|
beq 12f
|
| 2174 |
|
|
bset IMM (31),d1
|
| 2175 |
|
|
12: lsrl IMM (1),d0
|
| 2176 |
|
|
cmpl IMM (1),d4 | is the exponent 1 already?
|
| 2177 |
|
|
#endif
|
| 2178 |
|
|
beq 2f | if not loop back
|
| 2179 |
|
|
bra 1b |
|
| 2180 |
|
|
bra Ld$underflow | safety check, shouldn't execute '
|
| 2181 |
|
|
2: orl d6,d2 | this is a trick so we don't lose '
|
| 2182 |
|
|
orl d7,d3 | the bits which were flushed right
|
| 2183 |
|
|
movel a0,d7 | get back sign bit into d7
|
| 2184 |
|
|
| Now call the rounding routine (which takes care of denormalized numbers):
|
| 2185 |
|
|
lea pc@(Lround$0),a0 | to return from rounding routine
|
| 2186 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 2187 |
|
|
#ifdef __mcoldfire__
|
| 2188 |
|
|
clrl d6
|
| 2189 |
|
|
#endif
|
| 2190 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 2191 |
|
|
beq Lround$to$nearest
|
| 2192 |
|
|
#ifndef __mcoldfire__
|
| 2193 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 2194 |
|
|
#else
|
| 2195 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 2196 |
|
|
#endif
|
| 2197 |
|
|
bhi Lround$to$minus
|
| 2198 |
|
|
blt Lround$to$zero
|
| 2199 |
|
|
bra Lround$to$plus
|
| 2200 |
|
|
Lround$0:
|
| 2201 |
|
|
| Here we have a correctly rounded result (either normalized or denormalized).
|
| 2202 |
|
|
|
| 2203 |
|
|
| Here we should have either a normalized number or a denormalized one, and
|
| 2204 |
|
|
| the exponent is necessarily larger or equal to 1 (so we don't have to '
|
| 2205 |
|
|
| check again for underflow!). We have to check for overflow or for a
|
| 2206 |
|
|
| denormalized number (which also signals underflow).
|
| 2207 |
|
|
| Check for overflow (i.e., exponent >= 0x7ff).
|
| 2208 |
|
|
#ifndef __mcoldfire__
|
| 2209 |
|
|
cmpw IMM (0x07ff),d4
|
| 2210 |
|
|
#else
|
| 2211 |
|
|
cmpl IMM (0x07ff),d4
|
| 2212 |
|
|
#endif
|
| 2213 |
|
|
bge Ld$overflow
|
| 2214 |
|
|
| Now check for a denormalized number (exponent==0):
|
| 2215 |
|
|
movew d4,d4
|
| 2216 |
|
|
beq Ld$den
|
| 2217 |
|
|
1:
|
| 2218 |
|
|
| Put back the exponents and sign and return.
|
| 2219 |
|
|
#ifndef __mcoldfire__
|
| 2220 |
|
|
lslw IMM (4),d4 | exponent back to fourth byte
|
| 2221 |
|
|
#else
|
| 2222 |
|
|
lsll IMM (4),d4 | exponent back to fourth byte
|
| 2223 |
|
|
#endif
|
| 2224 |
|
|
bclr IMM (DBL_MANT_DIG-32-1),d0
|
| 2225 |
|
|
swap d0 | and put back exponent
|
| 2226 |
|
|
#ifndef __mcoldfire__
|
| 2227 |
|
|
orw d4,d0 |
|
| 2228 |
|
|
#else
|
| 2229 |
|
|
orl d4,d0 |
|
| 2230 |
|
|
#endif
|
| 2231 |
|
|
swap d0 |
|
| 2232 |
|
|
orl d7,d0 | and sign also
|
| 2233 |
|
|
|
| 2234 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 2235 |
|
|
movew IMM (0),a0@
|
| 2236 |
|
|
#ifndef __mcoldfire__
|
| 2237 |
|
|
moveml sp@+,d2-d7
|
| 2238 |
|
|
#else
|
| 2239 |
|
|
moveml sp@,d2-d7
|
| 2240 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2241 |
|
|
| be adjusted here.
|
| 2242 |
|
|
#endif
|
| 2243 |
|
|
unlk a6
|
| 2244 |
|
|
rts
|
| 2245 |
|
|
|
| 2246 |
|
|
|=============================================================================
|
| 2247 |
|
|
| __negdf2
|
| 2248 |
|
|
|=============================================================================
|
| 2249 |
|
|
|
| 2250 |
|
|
| double __negdf2(double, double);
|
| 2251 |
|
|
FUNC(__negdf2)
|
| 2252 |
|
|
SYM (__negdf2):
|
| 2253 |
|
|
#ifndef __mcoldfire__
|
| 2254 |
|
|
link a6,IMM (0)
|
| 2255 |
|
|
moveml d2-d7,sp@-
|
| 2256 |
|
|
#else
|
| 2257 |
|
|
link a6,IMM (-24)
|
| 2258 |
|
|
moveml d2-d7,sp@
|
| 2259 |
|
|
#endif
|
| 2260 |
|
|
moveq IMM (NEGATE),d5
|
| 2261 |
|
|
movel a6@(8),d0 | get number to negate in d0-d1
|
| 2262 |
|
|
movel a6@(12),d1 |
|
| 2263 |
|
|
bchg IMM (31),d0 | negate
|
| 2264 |
|
|
movel d0,d2 | make a positive copy (for the tests)
|
| 2265 |
|
|
bclr IMM (31),d2 |
|
| 2266 |
|
|
movel d2,d4 | check for zero
|
| 2267 |
|
|
orl d1,d4 |
|
| 2268 |
|
|
beq 2f | if zero (either sign) return +zero
|
| 2269 |
|
|
cmpl IMM (0x7ff00000),d2 | compare to +INFINITY
|
| 2270 |
|
|
blt 1f | if finite, return
|
| 2271 |
|
|
bhi Ld$inop | if larger (fraction not zero) is NaN
|
| 2272 |
|
|
tstl d1 | if d2 == 0x7ff00000 check d1
|
| 2273 |
|
|
bne Ld$inop |
|
| 2274 |
|
|
movel d0,d7 | else get sign and return INFINITY
|
| 2275 |
|
|
andl IMM (0x80000000),d7
|
| 2276 |
|
|
bra Ld$infty
|
| 2277 |
|
|
1: PICLEA SYM (_fpCCR),a0
|
| 2278 |
|
|
movew IMM (0),a0@
|
| 2279 |
|
|
#ifndef __mcoldfire__
|
| 2280 |
|
|
moveml sp@+,d2-d7
|
| 2281 |
|
|
#else
|
| 2282 |
|
|
moveml sp@,d2-d7
|
| 2283 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2284 |
|
|
| be adjusted here.
|
| 2285 |
|
|
#endif
|
| 2286 |
|
|
unlk a6
|
| 2287 |
|
|
rts
|
| 2288 |
|
|
2: bclr IMM (31),d0
|
| 2289 |
|
|
bra 1b
|
| 2290 |
|
|
|
| 2291 |
|
|
|=============================================================================
|
| 2292 |
|
|
| __cmpdf2
|
| 2293 |
|
|
|=============================================================================
|
| 2294 |
|
|
|
| 2295 |
|
|
GREATER = 1
|
| 2296 |
|
|
LESS = -1
|
| 2297 |
|
|
EQUAL = 0
|
| 2298 |
|
|
|
| 2299 |
|
|
| int __cmpdf2_internal(double, double, int);
|
| 2300 |
|
|
SYM (__cmpdf2_internal):
|
| 2301 |
|
|
#ifndef __mcoldfire__
|
| 2302 |
|
|
link a6,IMM (0)
|
| 2303 |
|
|
moveml d2-d7,sp@- | save registers
|
| 2304 |
|
|
#else
|
| 2305 |
|
|
link a6,IMM (-24)
|
| 2306 |
|
|
moveml d2-d7,sp@
|
| 2307 |
|
|
#endif
|
| 2308 |
|
|
moveq IMM (COMPARE),d5
|
| 2309 |
|
|
movel a6@(8),d0 | get first operand
|
| 2310 |
|
|
movel a6@(12),d1 |
|
| 2311 |
|
|
movel a6@(16),d2 | get second operand
|
| 2312 |
|
|
movel a6@(20),d3 |
|
| 2313 |
|
|
| First check if a and/or b are (+/-) zero and in that case clear
|
| 2314 |
|
|
| the sign bit.
|
| 2315 |
|
|
movel d0,d6 | copy signs into d6 (a) and d7(b)
|
| 2316 |
|
|
bclr IMM (31),d0 | and clear signs in d0 and d2
|
| 2317 |
|
|
movel d2,d7 |
|
| 2318 |
|
|
bclr IMM (31),d2 |
|
| 2319 |
|
|
cmpl IMM (0x7ff00000),d0 | check for a == NaN
|
| 2320 |
|
|
bhi Lcmpd$inop | if d0 > 0x7ff00000, a is NaN
|
| 2321 |
|
|
beq Lcmpdf$a$nf | if equal can be INFINITY, so check d1
|
| 2322 |
|
|
movel d0,d4 | copy into d4 to test for zero
|
| 2323 |
|
|
orl d1,d4 |
|
| 2324 |
|
|
beq Lcmpdf$a$0 |
|
| 2325 |
|
|
Lcmpdf$0:
|
| 2326 |
|
|
cmpl IMM (0x7ff00000),d2 | check for b == NaN
|
| 2327 |
|
|
bhi Lcmpd$inop | if d2 > 0x7ff00000, b is NaN
|
| 2328 |
|
|
beq Lcmpdf$b$nf | if equal can be INFINITY, so check d3
|
| 2329 |
|
|
movel d2,d4 |
|
| 2330 |
|
|
orl d3,d4 |
|
| 2331 |
|
|
beq Lcmpdf$b$0 |
|
| 2332 |
|
|
Lcmpdf$1:
|
| 2333 |
|
|
| Check the signs
|
| 2334 |
|
|
eorl d6,d7
|
| 2335 |
|
|
bpl 1f
|
| 2336 |
|
|
| If the signs are not equal check if a >= 0
|
| 2337 |
|
|
tstl d6
|
| 2338 |
|
|
bpl Lcmpdf$a$gt$b | if (a >= 0 && b < 0) => a > b
|
| 2339 |
|
|
bmi Lcmpdf$b$gt$a | if (a < 0 && b >= 0) => a < b
|
| 2340 |
|
|
1:
|
| 2341 |
|
|
| If the signs are equal check for < 0
|
| 2342 |
|
|
tstl d6
|
| 2343 |
|
|
bpl 1f
|
| 2344 |
|
|
| If both are negative exchange them
|
| 2345 |
|
|
#ifndef __mcoldfire__
|
| 2346 |
|
|
exg d0,d2
|
| 2347 |
|
|
exg d1,d3
|
| 2348 |
|
|
#else
|
| 2349 |
|
|
movel d0,d7
|
| 2350 |
|
|
movel d2,d0
|
| 2351 |
|
|
movel d7,d2
|
| 2352 |
|
|
movel d1,d7
|
| 2353 |
|
|
movel d3,d1
|
| 2354 |
|
|
movel d7,d3
|
| 2355 |
|
|
#endif
|
| 2356 |
|
|
1:
|
| 2357 |
|
|
| Now that they are positive we just compare them as longs (does this also
|
| 2358 |
|
|
| work for denormalized numbers?).
|
| 2359 |
|
|
cmpl d0,d2
|
| 2360 |
|
|
bhi Lcmpdf$b$gt$a | |b| > |a|
|
| 2361 |
|
|
bne Lcmpdf$a$gt$b | |b| < |a|
|
| 2362 |
|
|
| If we got here d0 == d2, so we compare d1 and d3.
|
| 2363 |
|
|
cmpl d1,d3
|
| 2364 |
|
|
bhi Lcmpdf$b$gt$a | |b| > |a|
|
| 2365 |
|
|
bne Lcmpdf$a$gt$b | |b| < |a|
|
| 2366 |
|
|
| If we got here a == b.
|
| 2367 |
|
|
movel IMM (EQUAL),d0
|
| 2368 |
|
|
#ifndef __mcoldfire__
|
| 2369 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 2370 |
|
|
#else
|
| 2371 |
|
|
moveml sp@,d2-d7
|
| 2372 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2373 |
|
|
| be adjusted here.
|
| 2374 |
|
|
#endif
|
| 2375 |
|
|
unlk a6
|
| 2376 |
|
|
rts
|
| 2377 |
|
|
Lcmpdf$a$gt$b:
|
| 2378 |
|
|
movel IMM (GREATER),d0
|
| 2379 |
|
|
#ifndef __mcoldfire__
|
| 2380 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 2381 |
|
|
#else
|
| 2382 |
|
|
moveml sp@,d2-d7
|
| 2383 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2384 |
|
|
| be adjusted here.
|
| 2385 |
|
|
#endif
|
| 2386 |
|
|
unlk a6
|
| 2387 |
|
|
rts
|
| 2388 |
|
|
Lcmpdf$b$gt$a:
|
| 2389 |
|
|
movel IMM (LESS),d0
|
| 2390 |
|
|
#ifndef __mcoldfire__
|
| 2391 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 2392 |
|
|
#else
|
| 2393 |
|
|
moveml sp@,d2-d7
|
| 2394 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 2395 |
|
|
| be adjusted here.
|
| 2396 |
|
|
#endif
|
| 2397 |
|
|
unlk a6
|
| 2398 |
|
|
rts
|
| 2399 |
|
|
|
| 2400 |
|
|
Lcmpdf$a$0:
|
| 2401 |
|
|
bclr IMM (31),d6
|
| 2402 |
|
|
bra Lcmpdf$0
|
| 2403 |
|
|
Lcmpdf$b$0:
|
| 2404 |
|
|
bclr IMM (31),d7
|
| 2405 |
|
|
bra Lcmpdf$1
|
| 2406 |
|
|
|
| 2407 |
|
|
Lcmpdf$a$nf:
|
| 2408 |
|
|
tstl d1
|
| 2409 |
|
|
bne Ld$inop
|
| 2410 |
|
|
bra Lcmpdf$0
|
| 2411 |
|
|
|
| 2412 |
|
|
Lcmpdf$b$nf:
|
| 2413 |
|
|
tstl d3
|
| 2414 |
|
|
bne Ld$inop
|
| 2415 |
|
|
bra Lcmpdf$1
|
| 2416 |
|
|
|
| 2417 |
|
|
Lcmpd$inop:
|
| 2418 |
|
|
movl a6@(24),d0
|
| 2419 |
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
| 2420 |
|
|
moveq IMM (DOUBLE_FLOAT),d6
|
| 2421 |
|
|
PICJUMP $_exception_handler
|
| 2422 |
|
|
|
| 2423 |
|
|
| int __cmpdf2(double, double);
|
| 2424 |
|
|
FUNC(__cmpdf2)
|
| 2425 |
|
|
SYM (__cmpdf2):
|
| 2426 |
|
|
link a6,IMM (0)
|
| 2427 |
|
|
pea 1
|
| 2428 |
|
|
movl a6@(20),sp@-
|
| 2429 |
|
|
movl a6@(16),sp@-
|
| 2430 |
|
|
movl a6@(12),sp@-
|
| 2431 |
|
|
movl a6@(8),sp@-
|
| 2432 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 2433 |
|
|
unlk a6
|
| 2434 |
|
|
rts
|
| 2435 |
|
|
|
| 2436 |
|
|
|=============================================================================
|
| 2437 |
|
|
| rounding routines
|
| 2438 |
|
|
|=============================================================================
|
| 2439 |
|
|
|
| 2440 |
|
|
| The rounding routines expect the number to be normalized in registers
|
| 2441 |
|
|
| d0-d1-d2-d3, with the exponent in register d4. They assume that the
|
| 2442 |
|
|
| exponent is larger or equal to 1. They return a properly normalized number
|
| 2443 |
|
|
| if possible, and a denormalized number otherwise. The exponent is returned
|
| 2444 |
|
|
| in d4.
|
| 2445 |
|
|
|
| 2446 |
|
|
Lround$to$nearest:
|
| 2447 |
|
|
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
|
| 2448 |
|
|
| Here we assume that the exponent is not too small (this should be checked
|
| 2449 |
|
|
| before entering the rounding routine), but the number could be denormalized.
|
| 2450 |
|
|
|
| 2451 |
|
|
| Check for denormalized numbers:
|
| 2452 |
|
|
1: btst IMM (DBL_MANT_DIG-32),d0
|
| 2453 |
|
|
bne 2f | if set the number is normalized
|
| 2454 |
|
|
| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent
|
| 2455 |
|
|
| is one (remember that a denormalized number corresponds to an
|
| 2456 |
|
|
| exponent of -D_BIAS+1).
|
| 2457 |
|
|
#ifndef __mcoldfire__
|
| 2458 |
|
|
cmpw IMM (1),d4 | remember that the exponent is at least one
|
| 2459 |
|
|
#else
|
| 2460 |
|
|
cmpl IMM (1),d4 | remember that the exponent is at least one
|
| 2461 |
|
|
#endif
|
| 2462 |
|
|
beq 2f | an exponent of one means denormalized
|
| 2463 |
|
|
addl d3,d3 | else shift and adjust the exponent
|
| 2464 |
|
|
addxl d2,d2 |
|
| 2465 |
|
|
addxl d1,d1 |
|
| 2466 |
|
|
addxl d0,d0 |
|
| 2467 |
|
|
#ifndef __mcoldfire__
|
| 2468 |
|
|
dbra d4,1b |
|
| 2469 |
|
|
#else
|
| 2470 |
|
|
subql IMM (1), d4
|
| 2471 |
|
|
bpl 1b
|
| 2472 |
|
|
#endif
|
| 2473 |
|
|
2:
|
| 2474 |
|
|
| Now round: we do it as follows: after the shifting we can write the
|
| 2475 |
|
|
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
|
| 2476 |
|
|
| If delta < 1, do nothing. If delta > 1, add 1 to f.
|
| 2477 |
|
|
| If delta == 1, we make sure the rounded number will be even (odd?)
|
| 2478 |
|
|
| (after shifting).
|
| 2479 |
|
|
btst IMM (0),d1 | is delta < 1?
|
| 2480 |
|
|
beq 2f | if so, do not do anything
|
| 2481 |
|
|
orl d2,d3 | is delta == 1?
|
| 2482 |
|
|
bne 1f | if so round to even
|
| 2483 |
|
|
movel d1,d3 |
|
| 2484 |
|
|
andl IMM (2),d3 | bit 1 is the last significant bit
|
| 2485 |
|
|
movel IMM (0),d2 |
|
| 2486 |
|
|
addl d3,d1 |
|
| 2487 |
|
|
addxl d2,d0 |
|
| 2488 |
|
|
bra 2f |
|
| 2489 |
|
|
1: movel IMM (1),d3 | else add 1
|
| 2490 |
|
|
movel IMM (0),d2 |
|
| 2491 |
|
|
addl d3,d1 |
|
| 2492 |
|
|
addxl d2,d0
|
| 2493 |
|
|
| Shift right once (because we used bit #DBL_MANT_DIG-32!).
|
| 2494 |
|
|
2:
|
| 2495 |
|
|
#ifndef __mcoldfire__
|
| 2496 |
|
|
lsrl IMM (1),d0
|
| 2497 |
|
|
roxrl IMM (1),d1
|
| 2498 |
|
|
#else
|
| 2499 |
|
|
lsrl IMM (1),d1
|
| 2500 |
|
|
btst IMM (0),d0
|
| 2501 |
|
|
beq 10f
|
| 2502 |
|
|
bset IMM (31),d1
|
| 2503 |
|
|
10: lsrl IMM (1),d0
|
| 2504 |
|
|
#endif
|
| 2505 |
|
|
|
| 2506 |
|
|
| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
|
| 2507 |
|
|
| 'fraction overflow' ...).
|
| 2508 |
|
|
btst IMM (DBL_MANT_DIG-32),d0
|
| 2509 |
|
|
beq 1f
|
| 2510 |
|
|
#ifndef __mcoldfire__
|
| 2511 |
|
|
lsrl IMM (1),d0
|
| 2512 |
|
|
roxrl IMM (1),d1
|
| 2513 |
|
|
addw IMM (1),d4
|
| 2514 |
|
|
#else
|
| 2515 |
|
|
lsrl IMM (1),d1
|
| 2516 |
|
|
btst IMM (0),d0
|
| 2517 |
|
|
beq 10f
|
| 2518 |
|
|
bset IMM (31),d1
|
| 2519 |
|
|
10: lsrl IMM (1),d0
|
| 2520 |
|
|
addl IMM (1),d4
|
| 2521 |
|
|
#endif
|
| 2522 |
|
|
1:
|
| 2523 |
|
|
| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we
|
| 2524 |
|
|
| have to put the exponent to zero and return a denormalized number.
|
| 2525 |
|
|
btst IMM (DBL_MANT_DIG-32-1),d0
|
| 2526 |
|
|
beq 1f
|
| 2527 |
|
|
jmp a0@
|
| 2528 |
|
|
1: movel IMM (0),d4
|
| 2529 |
|
|
jmp a0@
|
| 2530 |
|
|
|
| 2531 |
|
|
Lround$to$zero:
|
| 2532 |
|
|
Lround$to$plus:
|
| 2533 |
|
|
Lround$to$minus:
|
| 2534 |
|
|
jmp a0@
|
| 2535 |
|
|
#endif /* L_double */
|
| 2536 |
|
|
|
| 2537 |
|
|
#ifdef L_float
|
| 2538 |
|
|
|
| 2539 |
|
|
.globl SYM (_fpCCR)
|
| 2540 |
|
|
.globl $_exception_handler
|
| 2541 |
|
|
|
| 2542 |
|
|
QUIET_NaN = 0xffffffff
|
| 2543 |
|
|
SIGNL_NaN = 0x7f800001
|
| 2544 |
|
|
INFINITY = 0x7f800000
|
| 2545 |
|
|
|
| 2546 |
|
|
F_MAX_EXP = 0xff
|
| 2547 |
|
|
F_BIAS = 126
|
| 2548 |
|
|
FLT_MAX_EXP = F_MAX_EXP - F_BIAS
|
| 2549 |
|
|
FLT_MIN_EXP = 1 - F_BIAS
|
| 2550 |
|
|
FLT_MANT_DIG = 24
|
| 2551 |
|
|
|
| 2552 |
|
|
INEXACT_RESULT = 0x0001
|
| 2553 |
|
|
UNDERFLOW = 0x0002
|
| 2554 |
|
|
OVERFLOW = 0x0004
|
| 2555 |
|
|
DIVIDE_BY_ZERO = 0x0008
|
| 2556 |
|
|
INVALID_OPERATION = 0x0010
|
| 2557 |
|
|
|
| 2558 |
|
|
SINGLE_FLOAT = 1
|
| 2559 |
|
|
|
| 2560 |
|
|
NOOP = 0
|
| 2561 |
|
|
ADD = 1
|
| 2562 |
|
|
MULTIPLY = 2
|
| 2563 |
|
|
DIVIDE = 3
|
| 2564 |
|
|
NEGATE = 4
|
| 2565 |
|
|
COMPARE = 5
|
| 2566 |
|
|
EXTENDSFDF = 6
|
| 2567 |
|
|
TRUNCDFSF = 7
|
| 2568 |
|
|
|
| 2569 |
|
|
UNKNOWN = -1
|
| 2570 |
|
|
ROUND_TO_NEAREST = 0 | round result to nearest representable value
|
| 2571 |
|
|
ROUND_TO_ZERO = 1 | round result towards zero
|
| 2572 |
|
|
ROUND_TO_PLUS = 2 | round result towards plus infinity
|
| 2573 |
|
|
ROUND_TO_MINUS = 3 | round result towards minus infinity
|
| 2574 |
|
|
|
| 2575 |
|
|
| Entry points:
|
| 2576 |
|
|
|
| 2577 |
|
|
.globl SYM (__addsf3)
|
| 2578 |
|
|
.globl SYM (__subsf3)
|
| 2579 |
|
|
.globl SYM (__mulsf3)
|
| 2580 |
|
|
.globl SYM (__divsf3)
|
| 2581 |
|
|
.globl SYM (__negsf2)
|
| 2582 |
|
|
.globl SYM (__cmpsf2)
|
| 2583 |
|
|
.globl SYM (__cmpsf2_internal)
|
| 2584 |
|
|
.hidden SYM (__cmpsf2_internal)
|
| 2585 |
|
|
|
| 2586 |
|
|
| These are common routines to return and signal exceptions.
|
| 2587 |
|
|
|
| 2588 |
|
|
.text
|
| 2589 |
|
|
.even
|
| 2590 |
|
|
|
| 2591 |
|
|
Lf$den:
|
| 2592 |
|
|
| Return and signal a denormalized number
|
| 2593 |
|
|
orl d7,d0
|
| 2594 |
|
|
moveq IMM (INEXACT_RESULT+UNDERFLOW),d7
|
| 2595 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 2596 |
|
|
PICJUMP $_exception_handler
|
| 2597 |
|
|
|
| 2598 |
|
|
Lf$infty:
|
| 2599 |
|
|
Lf$overflow:
|
| 2600 |
|
|
| Return a properly signed INFINITY and set the exception flags
|
| 2601 |
|
|
movel IMM (INFINITY),d0
|
| 2602 |
|
|
orl d7,d0
|
| 2603 |
|
|
moveq IMM (INEXACT_RESULT+OVERFLOW),d7
|
| 2604 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 2605 |
|
|
PICJUMP $_exception_handler
|
| 2606 |
|
|
|
| 2607 |
|
|
Lf$underflow:
|
| 2608 |
|
|
| Return 0 and set the exception flags
|
| 2609 |
|
|
moveq IMM (0),d0
|
| 2610 |
|
|
moveq IMM (INEXACT_RESULT+UNDERFLOW),d7
|
| 2611 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 2612 |
|
|
PICJUMP $_exception_handler
|
| 2613 |
|
|
|
| 2614 |
|
|
Lf$inop:
|
| 2615 |
|
|
| Return a quiet NaN and set the exception flags
|
| 2616 |
|
|
movel IMM (QUIET_NaN),d0
|
| 2617 |
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
| 2618 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 2619 |
|
|
PICJUMP $_exception_handler
|
| 2620 |
|
|
|
| 2621 |
|
|
Lf$div$0:
|
| 2622 |
|
|
| Return a properly signed INFINITY and set the exception flags
|
| 2623 |
|
|
movel IMM (INFINITY),d0
|
| 2624 |
|
|
orl d7,d0
|
| 2625 |
|
|
moveq IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
|
| 2626 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 2627 |
|
|
PICJUMP $_exception_handler
|
| 2628 |
|
|
|
| 2629 |
|
|
|=============================================================================
|
| 2630 |
|
|
|=============================================================================
|
| 2631 |
|
|
| single precision routines
|
| 2632 |
|
|
|=============================================================================
|
| 2633 |
|
|
|=============================================================================
|
| 2634 |
|
|
|
| 2635 |
|
|
| A single precision floating point number (float) has the format:
|
| 2636 |
|
|
|
|
| 2637 |
|
|
| struct _float {
|
| 2638 |
|
|
| unsigned int sign : 1; /* sign bit */
|
| 2639 |
|
|
| unsigned int exponent : 8; /* exponent, shifted by 126 */
|
| 2640 |
|
|
| unsigned int fraction : 23; /* fraction */
|
| 2641 |
|
|
| } float;
|
| 2642 |
|
|
|
|
| 2643 |
|
|
| Thus sizeof(float) = 4 (32 bits).
|
| 2644 |
|
|
|
|
| 2645 |
|
|
| All the routines are callable from C programs, and return the result
|
| 2646 |
|
|
| in the single register d0. They also preserve all registers except
|
| 2647 |
|
|
| d0-d1 and a0-a1.
|
| 2648 |
|
|
|
| 2649 |
|
|
|=============================================================================
|
| 2650 |
|
|
| __subsf3
|
| 2651 |
|
|
|=============================================================================
|
| 2652 |
|
|
|
| 2653 |
|
|
| float __subsf3(float, float);
|
| 2654 |
|
|
FUNC(__subsf3)
|
| 2655 |
|
|
SYM (__subsf3):
|
| 2656 |
|
|
bchg IMM (31),sp@(8) | change sign of second operand
|
| 2657 |
|
|
| and fall through
|
| 2658 |
|
|
|=============================================================================
|
| 2659 |
|
|
| __addsf3
|
| 2660 |
|
|
|=============================================================================
|
| 2661 |
|
|
|
| 2662 |
|
|
| float __addsf3(float, float);
|
| 2663 |
|
|
FUNC(__addsf3)
|
| 2664 |
|
|
SYM (__addsf3):
|
| 2665 |
|
|
#ifndef __mcoldfire__
|
| 2666 |
|
|
link a6,IMM (0) | everything will be done in registers
|
| 2667 |
|
|
moveml d2-d7,sp@- | save all data registers but d0-d1
|
| 2668 |
|
|
#else
|
| 2669 |
|
|
link a6,IMM (-24)
|
| 2670 |
|
|
moveml d2-d7,sp@
|
| 2671 |
|
|
#endif
|
| 2672 |
|
|
movel a6@(8),d0 | get first operand
|
| 2673 |
|
|
movel a6@(12),d1 | get second operand
|
| 2674 |
|
|
movel d0,a0 | get d0's sign bit '
|
| 2675 |
|
|
addl d0,d0 | check and clear sign bit of a
|
| 2676 |
|
|
beq Laddsf$b | if zero return second operand
|
| 2677 |
|
|
movel d1,a1 | save b's sign bit '
|
| 2678 |
|
|
addl d1,d1 | get rid of sign bit
|
| 2679 |
|
|
beq Laddsf$a | if zero return first operand
|
| 2680 |
|
|
|
| 2681 |
|
|
| Get the exponents and check for denormalized and/or infinity.
|
| 2682 |
|
|
|
| 2683 |
|
|
movel IMM (0x00ffffff),d4 | mask to get fraction
|
| 2684 |
|
|
movel IMM (0x01000000),d5 | mask to put hidden bit back
|
| 2685 |
|
|
|
| 2686 |
|
|
movel d0,d6 | save a to get exponent
|
| 2687 |
|
|
andl d4,d0 | get fraction in d0
|
| 2688 |
|
|
notl d4 | make d4 into a mask for the exponent
|
| 2689 |
|
|
andl d4,d6 | get exponent in d6
|
| 2690 |
|
|
beq Laddsf$a$den | branch if a is denormalized
|
| 2691 |
|
|
cmpl d4,d6 | check for INFINITY or NaN
|
| 2692 |
|
|
beq Laddsf$nf
|
| 2693 |
|
|
swap d6 | put exponent into first word
|
| 2694 |
|
|
orl d5,d0 | and put hidden bit back
|
| 2695 |
|
|
Laddsf$1:
|
| 2696 |
|
|
| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
|
| 2697 |
|
|
movel d1,d7 | get exponent in d7
|
| 2698 |
|
|
andl d4,d7 |
|
| 2699 |
|
|
beq Laddsf$b$den | branch if b is denormalized
|
| 2700 |
|
|
cmpl d4,d7 | check for INFINITY or NaN
|
| 2701 |
|
|
beq Laddsf$nf
|
| 2702 |
|
|
swap d7 | put exponent into first word
|
| 2703 |
|
|
notl d4 | make d4 into a mask for the fraction
|
| 2704 |
|
|
andl d4,d1 | get fraction in d1
|
| 2705 |
|
|
orl d5,d1 | and put hidden bit back
|
| 2706 |
|
|
Laddsf$2:
|
| 2707 |
|
|
| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '
|
| 2708 |
|
|
|
| 2709 |
|
|
| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we
|
| 2710 |
|
|
| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
|
| 2711 |
|
|
| bit).
|
| 2712 |
|
|
|
| 2713 |
|
|
movel d1,d2 | move b to d2, since we want to use
|
| 2714 |
|
|
| two registers to do the sum
|
| 2715 |
|
|
movel IMM (0),d1 | and clear the new ones
|
| 2716 |
|
|
movel d1,d3 |
|
| 2717 |
|
|
|
| 2718 |
|
|
| Here we shift the numbers in registers d0 and d1 so the exponents are the
|
| 2719 |
|
|
| same, and put the largest exponent in d6. Note that we are using two
|
| 2720 |
|
|
| registers for each number (see the discussion by D. Knuth in "Seminumerical
|
| 2721 |
|
|
| Algorithms").
|
| 2722 |
|
|
#ifndef __mcoldfire__
|
| 2723 |
|
|
cmpw d6,d7 | compare exponents
|
| 2724 |
|
|
#else
|
| 2725 |
|
|
cmpl d6,d7 | compare exponents
|
| 2726 |
|
|
#endif
|
| 2727 |
|
|
beq Laddsf$3 | if equal don't shift '
|
| 2728 |
|
|
bhi 5f | branch if second exponent largest
|
| 2729 |
|
|
1:
|
| 2730 |
|
|
subl d6,d7 | keep the largest exponent
|
| 2731 |
|
|
negl d7
|
| 2732 |
|
|
#ifndef __mcoldfire__
|
| 2733 |
|
|
lsrw IMM (8),d7 | put difference in lower byte
|
| 2734 |
|
|
#else
|
| 2735 |
|
|
lsrl IMM (8),d7 | put difference in lower byte
|
| 2736 |
|
|
#endif
|
| 2737 |
|
|
| if difference is too large we don't shift (actually, we can just exit) '
|
| 2738 |
|
|
#ifndef __mcoldfire__
|
| 2739 |
|
|
cmpw IMM (FLT_MANT_DIG+2),d7
|
| 2740 |
|
|
#else
|
| 2741 |
|
|
cmpl IMM (FLT_MANT_DIG+2),d7
|
| 2742 |
|
|
#endif
|
| 2743 |
|
|
bge Laddsf$b$small
|
| 2744 |
|
|
#ifndef __mcoldfire__
|
| 2745 |
|
|
cmpw IMM (16),d7 | if difference >= 16 swap
|
| 2746 |
|
|
#else
|
| 2747 |
|
|
cmpl IMM (16),d7 | if difference >= 16 swap
|
| 2748 |
|
|
#endif
|
| 2749 |
|
|
bge 4f
|
| 2750 |
|
|
2:
|
| 2751 |
|
|
#ifndef __mcoldfire__
|
| 2752 |
|
|
subw IMM (1),d7
|
| 2753 |
|
|
#else
|
| 2754 |
|
|
subql IMM (1), d7
|
| 2755 |
|
|
#endif
|
| 2756 |
|
|
3:
|
| 2757 |
|
|
#ifndef __mcoldfire__
|
| 2758 |
|
|
lsrl IMM (1),d2 | shift right second operand
|
| 2759 |
|
|
roxrl IMM (1),d3
|
| 2760 |
|
|
dbra d7,3b
|
| 2761 |
|
|
#else
|
| 2762 |
|
|
lsrl IMM (1),d3
|
| 2763 |
|
|
btst IMM (0),d2
|
| 2764 |
|
|
beq 10f
|
| 2765 |
|
|
bset IMM (31),d3
|
| 2766 |
|
|
10: lsrl IMM (1),d2
|
| 2767 |
|
|
subql IMM (1), d7
|
| 2768 |
|
|
bpl 3b
|
| 2769 |
|
|
#endif
|
| 2770 |
|
|
bra Laddsf$3
|
| 2771 |
|
|
4:
|
| 2772 |
|
|
movew d2,d3
|
| 2773 |
|
|
swap d3
|
| 2774 |
|
|
movew d3,d2
|
| 2775 |
|
|
swap d2
|
| 2776 |
|
|
#ifndef __mcoldfire__
|
| 2777 |
|
|
subw IMM (16),d7
|
| 2778 |
|
|
#else
|
| 2779 |
|
|
subl IMM (16),d7
|
| 2780 |
|
|
#endif
|
| 2781 |
|
|
bne 2b | if still more bits, go back to normal case
|
| 2782 |
|
|
bra Laddsf$3
|
| 2783 |
|
|
5:
|
| 2784 |
|
|
#ifndef __mcoldfire__
|
| 2785 |
|
|
exg d6,d7 | exchange the exponents
|
| 2786 |
|
|
#else
|
| 2787 |
|
|
eorl d6,d7
|
| 2788 |
|
|
eorl d7,d6
|
| 2789 |
|
|
eorl d6,d7
|
| 2790 |
|
|
#endif
|
| 2791 |
|
|
subl d6,d7 | keep the largest exponent
|
| 2792 |
|
|
negl d7 |
|
| 2793 |
|
|
#ifndef __mcoldfire__
|
| 2794 |
|
|
lsrw IMM (8),d7 | put difference in lower byte
|
| 2795 |
|
|
#else
|
| 2796 |
|
|
lsrl IMM (8),d7 | put difference in lower byte
|
| 2797 |
|
|
#endif
|
| 2798 |
|
|
| if difference is too large we don't shift (and exit!) '
|
| 2799 |
|
|
#ifndef __mcoldfire__
|
| 2800 |
|
|
cmpw IMM (FLT_MANT_DIG+2),d7
|
| 2801 |
|
|
#else
|
| 2802 |
|
|
cmpl IMM (FLT_MANT_DIG+2),d7
|
| 2803 |
|
|
#endif
|
| 2804 |
|
|
bge Laddsf$a$small
|
| 2805 |
|
|
#ifndef __mcoldfire__
|
| 2806 |
|
|
cmpw IMM (16),d7 | if difference >= 16 swap
|
| 2807 |
|
|
#else
|
| 2808 |
|
|
cmpl IMM (16),d7 | if difference >= 16 swap
|
| 2809 |
|
|
#endif
|
| 2810 |
|
|
bge 8f
|
| 2811 |
|
|
6:
|
| 2812 |
|
|
#ifndef __mcoldfire__
|
| 2813 |
|
|
subw IMM (1),d7
|
| 2814 |
|
|
#else
|
| 2815 |
|
|
subl IMM (1),d7
|
| 2816 |
|
|
#endif
|
| 2817 |
|
|
7:
|
| 2818 |
|
|
#ifndef __mcoldfire__
|
| 2819 |
|
|
lsrl IMM (1),d0 | shift right first operand
|
| 2820 |
|
|
roxrl IMM (1),d1
|
| 2821 |
|
|
dbra d7,7b
|
| 2822 |
|
|
#else
|
| 2823 |
|
|
lsrl IMM (1),d1
|
| 2824 |
|
|
btst IMM (0),d0
|
| 2825 |
|
|
beq 10f
|
| 2826 |
|
|
bset IMM (31),d1
|
| 2827 |
|
|
10: lsrl IMM (1),d0
|
| 2828 |
|
|
subql IMM (1),d7
|
| 2829 |
|
|
bpl 7b
|
| 2830 |
|
|
#endif
|
| 2831 |
|
|
bra Laddsf$3
|
| 2832 |
|
|
8:
|
| 2833 |
|
|
movew d0,d1
|
| 2834 |
|
|
swap d1
|
| 2835 |
|
|
movew d1,d0
|
| 2836 |
|
|
swap d0
|
| 2837 |
|
|
#ifndef __mcoldfire__
|
| 2838 |
|
|
subw IMM (16),d7
|
| 2839 |
|
|
#else
|
| 2840 |
|
|
subl IMM (16),d7
|
| 2841 |
|
|
#endif
|
| 2842 |
|
|
bne 6b | if still more bits, go back to normal case
|
| 2843 |
|
|
| otherwise we fall through
|
| 2844 |
|
|
|
| 2845 |
|
|
| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
|
| 2846 |
|
|
| signs are stored in a0 and a1).
|
| 2847 |
|
|
|
| 2848 |
|
|
Laddsf$3:
|
| 2849 |
|
|
| Here we have to decide whether to add or subtract the numbers
|
| 2850 |
|
|
#ifndef __mcoldfire__
|
| 2851 |
|
|
exg d6,a0 | get signs back
|
| 2852 |
|
|
exg d7,a1 | and save the exponents
|
| 2853 |
|
|
#else
|
| 2854 |
|
|
movel d6,d4
|
| 2855 |
|
|
movel a0,d6
|
| 2856 |
|
|
movel d4,a0
|
| 2857 |
|
|
movel d7,d4
|
| 2858 |
|
|
movel a1,d7
|
| 2859 |
|
|
movel d4,a1
|
| 2860 |
|
|
#endif
|
| 2861 |
|
|
eorl d6,d7 | combine sign bits
|
| 2862 |
|
|
bmi Lsubsf$0 | if negative a and b have opposite
|
| 2863 |
|
|
| sign so we actually subtract the
|
| 2864 |
|
|
| numbers
|
| 2865 |
|
|
|
| 2866 |
|
|
| Here we have both positive or both negative
|
| 2867 |
|
|
#ifndef __mcoldfire__
|
| 2868 |
|
|
exg d6,a0 | now we have the exponent in d6
|
| 2869 |
|
|
#else
|
| 2870 |
|
|
movel d6,d4
|
| 2871 |
|
|
movel a0,d6
|
| 2872 |
|
|
movel d4,a0
|
| 2873 |
|
|
#endif
|
| 2874 |
|
|
movel a0,d7 | and sign in d7
|
| 2875 |
|
|
andl IMM (0x80000000),d7
|
| 2876 |
|
|
| Here we do the addition.
|
| 2877 |
|
|
addl d3,d1
|
| 2878 |
|
|
addxl d2,d0
|
| 2879 |
|
|
| Note: now we have d2, d3, d4 and d5 to play with!
|
| 2880 |
|
|
|
| 2881 |
|
|
| Put the exponent, in the first byte, in d2, to use the "standard" rounding
|
| 2882 |
|
|
| routines:
|
| 2883 |
|
|
movel d6,d2
|
| 2884 |
|
|
#ifndef __mcoldfire__
|
| 2885 |
|
|
lsrw IMM (8),d2
|
| 2886 |
|
|
#else
|
| 2887 |
|
|
lsrl IMM (8),d2
|
| 2888 |
|
|
#endif
|
| 2889 |
|
|
|
| 2890 |
|
|
| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
|
| 2891 |
|
|
| the case of denormalized numbers in the rounding routine itself).
|
| 2892 |
|
|
| As in the addition (not in the subtraction!) we could have set
|
| 2893 |
|
|
| one more bit we check this:
|
| 2894 |
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
| 2895 |
|
|
beq 1f
|
| 2896 |
|
|
#ifndef __mcoldfire__
|
| 2897 |
|
|
lsrl IMM (1),d0
|
| 2898 |
|
|
roxrl IMM (1),d1
|
| 2899 |
|
|
#else
|
| 2900 |
|
|
lsrl IMM (1),d1
|
| 2901 |
|
|
btst IMM (0),d0
|
| 2902 |
|
|
beq 10f
|
| 2903 |
|
|
bset IMM (31),d1
|
| 2904 |
|
|
10: lsrl IMM (1),d0
|
| 2905 |
|
|
#endif
|
| 2906 |
|
|
addl IMM (1),d2
|
| 2907 |
|
|
1:
|
| 2908 |
|
|
lea pc@(Laddsf$4),a0 | to return from rounding routine
|
| 2909 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 2910 |
|
|
#ifdef __mcoldfire__
|
| 2911 |
|
|
clrl d6
|
| 2912 |
|
|
#endif
|
| 2913 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 2914 |
|
|
beq Lround$to$nearest
|
| 2915 |
|
|
#ifndef __mcoldfire__
|
| 2916 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 2917 |
|
|
#else
|
| 2918 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 2919 |
|
|
#endif
|
| 2920 |
|
|
bhi Lround$to$minus
|
| 2921 |
|
|
blt Lround$to$zero
|
| 2922 |
|
|
bra Lround$to$plus
|
| 2923 |
|
|
Laddsf$4:
|
| 2924 |
|
|
| Put back the exponent, but check for overflow.
|
| 2925 |
|
|
#ifndef __mcoldfire__
|
| 2926 |
|
|
cmpw IMM (0xff),d2
|
| 2927 |
|
|
#else
|
| 2928 |
|
|
cmpl IMM (0xff),d2
|
| 2929 |
|
|
#endif
|
| 2930 |
|
|
bhi 1f
|
| 2931 |
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
| 2932 |
|
|
#ifndef __mcoldfire__
|
| 2933 |
|
|
lslw IMM (7),d2
|
| 2934 |
|
|
#else
|
| 2935 |
|
|
lsll IMM (7),d2
|
| 2936 |
|
|
#endif
|
| 2937 |
|
|
swap d2
|
| 2938 |
|
|
orl d2,d0
|
| 2939 |
|
|
bra Laddsf$ret
|
| 2940 |
|
|
1:
|
| 2941 |
|
|
moveq IMM (ADD),d5
|
| 2942 |
|
|
bra Lf$overflow
|
| 2943 |
|
|
|
| 2944 |
|
|
Lsubsf$0:
|
| 2945 |
|
|
| We are here if a > 0 and b < 0 (sign bits cleared).
|
| 2946 |
|
|
| Here we do the subtraction.
|
| 2947 |
|
|
movel d6,d7 | put sign in d7
|
| 2948 |
|
|
andl IMM (0x80000000),d7
|
| 2949 |
|
|
|
| 2950 |
|
|
subl d3,d1 | result in d0-d1
|
| 2951 |
|
|
subxl d2,d0 |
|
| 2952 |
|
|
beq Laddsf$ret | if zero just exit
|
| 2953 |
|
|
bpl 1f | if positive skip the following
|
| 2954 |
|
|
bchg IMM (31),d7 | change sign bit in d7
|
| 2955 |
|
|
negl d1
|
| 2956 |
|
|
negxl d0
|
| 2957 |
|
|
1:
|
| 2958 |
|
|
#ifndef __mcoldfire__
|
| 2959 |
|
|
exg d2,a0 | now we have the exponent in d2
|
| 2960 |
|
|
lsrw IMM (8),d2 | put it in the first byte
|
| 2961 |
|
|
#else
|
| 2962 |
|
|
movel d2,d4
|
| 2963 |
|
|
movel a0,d2
|
| 2964 |
|
|
movel d4,a0
|
| 2965 |
|
|
lsrl IMM (8),d2 | put it in the first byte
|
| 2966 |
|
|
#endif
|
| 2967 |
|
|
|
| 2968 |
|
|
| Now d0-d1 is positive and the sign bit is in d7.
|
| 2969 |
|
|
|
| 2970 |
|
|
| Note that we do not have to normalize, since in the subtraction bit
|
| 2971 |
|
|
| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
|
| 2972 |
|
|
| the rounding routines themselves.
|
| 2973 |
|
|
lea pc@(Lsubsf$1),a0 | to return from rounding routine
|
| 2974 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 2975 |
|
|
#ifdef __mcoldfire__
|
| 2976 |
|
|
clrl d6
|
| 2977 |
|
|
#endif
|
| 2978 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 2979 |
|
|
beq Lround$to$nearest
|
| 2980 |
|
|
#ifndef __mcoldfire__
|
| 2981 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 2982 |
|
|
#else
|
| 2983 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 2984 |
|
|
#endif
|
| 2985 |
|
|
bhi Lround$to$minus
|
| 2986 |
|
|
blt Lround$to$zero
|
| 2987 |
|
|
bra Lround$to$plus
|
| 2988 |
|
|
Lsubsf$1:
|
| 2989 |
|
|
| Put back the exponent (we can't have overflow!). '
|
| 2990 |
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
| 2991 |
|
|
#ifndef __mcoldfire__
|
| 2992 |
|
|
lslw IMM (7),d2
|
| 2993 |
|
|
#else
|
| 2994 |
|
|
lsll IMM (7),d2
|
| 2995 |
|
|
#endif
|
| 2996 |
|
|
swap d2
|
| 2997 |
|
|
orl d2,d0
|
| 2998 |
|
|
bra Laddsf$ret
|
| 2999 |
|
|
|
| 3000 |
|
|
| If one of the numbers was too small (difference of exponents >=
|
| 3001 |
|
|
| FLT_MANT_DIG+2) we return the other (and now we don't have to '
|
| 3002 |
|
|
| check for finiteness or zero).
|
| 3003 |
|
|
Laddsf$a$small:
|
| 3004 |
|
|
movel a6@(12),d0
|
| 3005 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 3006 |
|
|
movew IMM (0),a0@
|
| 3007 |
|
|
#ifndef __mcoldfire__
|
| 3008 |
|
|
moveml sp@+,d2-d7 | restore data registers
|
| 3009 |
|
|
#else
|
| 3010 |
|
|
moveml sp@,d2-d7
|
| 3011 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3012 |
|
|
| be adjusted here.
|
| 3013 |
|
|
#endif
|
| 3014 |
|
|
unlk a6 | and return
|
| 3015 |
|
|
rts
|
| 3016 |
|
|
|
| 3017 |
|
|
Laddsf$b$small:
|
| 3018 |
|
|
movel a6@(8),d0
|
| 3019 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 3020 |
|
|
movew IMM (0),a0@
|
| 3021 |
|
|
#ifndef __mcoldfire__
|
| 3022 |
|
|
moveml sp@+,d2-d7 | restore data registers
|
| 3023 |
|
|
#else
|
| 3024 |
|
|
moveml sp@,d2-d7
|
| 3025 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3026 |
|
|
| be adjusted here.
|
| 3027 |
|
|
#endif
|
| 3028 |
|
|
unlk a6 | and return
|
| 3029 |
|
|
rts
|
| 3030 |
|
|
|
| 3031 |
|
|
| If the numbers are denormalized remember to put exponent equal to 1.
|
| 3032 |
|
|
|
| 3033 |
|
|
Laddsf$a$den:
|
| 3034 |
|
|
movel d5,d6 | d5 contains 0x01000000
|
| 3035 |
|
|
swap d6
|
| 3036 |
|
|
bra Laddsf$1
|
| 3037 |
|
|
|
| 3038 |
|
|
Laddsf$b$den:
|
| 3039 |
|
|
movel d5,d7
|
| 3040 |
|
|
swap d7
|
| 3041 |
|
|
notl d4 | make d4 into a mask for the fraction
|
| 3042 |
|
|
| (this was not executed after the jump)
|
| 3043 |
|
|
bra Laddsf$2
|
| 3044 |
|
|
|
| 3045 |
|
|
| The rest is mainly code for the different results which can be
|
| 3046 |
|
|
| returned (checking always for +/-INFINITY and NaN).
|
| 3047 |
|
|
|
| 3048 |
|
|
Laddsf$b:
|
| 3049 |
|
|
| Return b (if a is zero).
|
| 3050 |
|
|
movel a6@(12),d0
|
| 3051 |
|
|
cmpl IMM (0x80000000),d0 | Check if b is -0
|
| 3052 |
|
|
bne 1f
|
| 3053 |
|
|
movel a0,d7
|
| 3054 |
|
|
andl IMM (0x80000000),d7 | Use the sign of a
|
| 3055 |
|
|
clrl d0
|
| 3056 |
|
|
bra Laddsf$ret
|
| 3057 |
|
|
Laddsf$a:
|
| 3058 |
|
|
| Return a (if b is zero).
|
| 3059 |
|
|
movel a6@(8),d0
|
| 3060 |
|
|
1:
|
| 3061 |
|
|
moveq IMM (ADD),d5
|
| 3062 |
|
|
| We have to check for NaN and +/-infty.
|
| 3063 |
|
|
movel d0,d7
|
| 3064 |
|
|
andl IMM (0x80000000),d7 | put sign in d7
|
| 3065 |
|
|
bclr IMM (31),d0 | clear sign
|
| 3066 |
|
|
cmpl IMM (INFINITY),d0 | check for infty or NaN
|
| 3067 |
|
|
bge 2f
|
| 3068 |
|
|
movel d0,d0 | check for zero (we do this because we don't '
|
| 3069 |
|
|
bne Laddsf$ret | want to return -0 by mistake
|
| 3070 |
|
|
bclr IMM (31),d7 | if zero be sure to clear sign
|
| 3071 |
|
|
bra Laddsf$ret | if everything OK just return
|
| 3072 |
|
|
2:
|
| 3073 |
|
|
| The value to be returned is either +/-infty or NaN
|
| 3074 |
|
|
andl IMM (0x007fffff),d0 | check for NaN
|
| 3075 |
|
|
bne Lf$inop | if mantissa not zero is NaN
|
| 3076 |
|
|
bra Lf$infty
|
| 3077 |
|
|
|
| 3078 |
|
|
Laddsf$ret:
|
| 3079 |
|
|
| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
|
| 3080 |
|
|
| We have to clear the exception flags (just the exception type).
|
| 3081 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 3082 |
|
|
movew IMM (0),a0@
|
| 3083 |
|
|
orl d7,d0 | put sign bit
|
| 3084 |
|
|
#ifndef __mcoldfire__
|
| 3085 |
|
|
moveml sp@+,d2-d7 | restore data registers
|
| 3086 |
|
|
#else
|
| 3087 |
|
|
moveml sp@,d2-d7
|
| 3088 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3089 |
|
|
| be adjusted here.
|
| 3090 |
|
|
#endif
|
| 3091 |
|
|
unlk a6 | and return
|
| 3092 |
|
|
rts
|
| 3093 |
|
|
|
| 3094 |
|
|
Laddsf$ret$den:
|
| 3095 |
|
|
| Return a denormalized number (for addition we don't signal underflow) '
|
| 3096 |
|
|
lsrl IMM (1),d0 | remember to shift right back once
|
| 3097 |
|
|
bra Laddsf$ret | and return
|
| 3098 |
|
|
|
| 3099 |
|
|
| Note: when adding two floats of the same sign if either one is
|
| 3100 |
|
|
| NaN we return NaN without regard to whether the other is finite or
|
| 3101 |
|
|
| not. When subtracting them (i.e., when adding two numbers of
|
| 3102 |
|
|
| opposite signs) things are more complicated: if both are INFINITY
|
| 3103 |
|
|
| we return NaN, if only one is INFINITY and the other is NaN we return
|
| 3104 |
|
|
| NaN, but if it is finite we return INFINITY with the corresponding sign.
|
| 3105 |
|
|
|
| 3106 |
|
|
Laddsf$nf:
|
| 3107 |
|
|
moveq IMM (ADD),d5
|
| 3108 |
|
|
| This could be faster but it is not worth the effort, since it is not
|
| 3109 |
|
|
| executed very often. We sacrifice speed for clarity here.
|
| 3110 |
|
|
movel a6@(8),d0 | get the numbers back (remember that we
|
| 3111 |
|
|
movel a6@(12),d1 | did some processing already)
|
| 3112 |
|
|
movel IMM (INFINITY),d4 | useful constant (INFINITY)
|
| 3113 |
|
|
movel d0,d2 | save sign bits
|
| 3114 |
|
|
movel d1,d3
|
| 3115 |
|
|
bclr IMM (31),d0 | clear sign bits
|
| 3116 |
|
|
bclr IMM (31),d1
|
| 3117 |
|
|
| We know that one of them is either NaN of +/-INFINITY
|
| 3118 |
|
|
| Check for NaN (if either one is NaN return NaN)
|
| 3119 |
|
|
cmpl d4,d0 | check first a (d0)
|
| 3120 |
|
|
bhi Lf$inop
|
| 3121 |
|
|
cmpl d4,d1 | check now b (d1)
|
| 3122 |
|
|
bhi Lf$inop
|
| 3123 |
|
|
| Now comes the check for +/-INFINITY. We know that both are (maybe not
|
| 3124 |
|
|
| finite) numbers, but we have to check if both are infinite whether we
|
| 3125 |
|
|
| are adding or subtracting them.
|
| 3126 |
|
|
eorl d3,d2 | to check sign bits
|
| 3127 |
|
|
bmi 1f
|
| 3128 |
|
|
movel d0,d7
|
| 3129 |
|
|
andl IMM (0x80000000),d7 | get (common) sign bit
|
| 3130 |
|
|
bra Lf$infty
|
| 3131 |
|
|
1:
|
| 3132 |
|
|
| We know one (or both) are infinite, so we test for equality between the
|
| 3133 |
|
|
| two numbers (if they are equal they have to be infinite both, so we
|
| 3134 |
|
|
| return NaN).
|
| 3135 |
|
|
cmpl d1,d0 | are both infinite?
|
| 3136 |
|
|
beq Lf$inop | if so return NaN
|
| 3137 |
|
|
|
| 3138 |
|
|
movel d0,d7
|
| 3139 |
|
|
andl IMM (0x80000000),d7 | get a's sign bit '
|
| 3140 |
|
|
cmpl d4,d0 | test now for infinity
|
| 3141 |
|
|
beq Lf$infty | if a is INFINITY return with this sign
|
| 3142 |
|
|
bchg IMM (31),d7 | else we know b is INFINITY and has
|
| 3143 |
|
|
bra Lf$infty | the opposite sign
|
| 3144 |
|
|
|
| 3145 |
|
|
|=============================================================================
|
| 3146 |
|
|
| __mulsf3
|
| 3147 |
|
|
|=============================================================================
|
| 3148 |
|
|
|
| 3149 |
|
|
| float __mulsf3(float, float);
|
| 3150 |
|
|
FUNC(__mulsf3)
|
| 3151 |
|
|
SYM (__mulsf3):
|
| 3152 |
|
|
#ifndef __mcoldfire__
|
| 3153 |
|
|
link a6,IMM (0)
|
| 3154 |
|
|
moveml d2-d7,sp@-
|
| 3155 |
|
|
#else
|
| 3156 |
|
|
link a6,IMM (-24)
|
| 3157 |
|
|
moveml d2-d7,sp@
|
| 3158 |
|
|
#endif
|
| 3159 |
|
|
movel a6@(8),d0 | get a into d0
|
| 3160 |
|
|
movel a6@(12),d1 | and b into d1
|
| 3161 |
|
|
movel d0,d7 | d7 will hold the sign of the product
|
| 3162 |
|
|
eorl d1,d7 |
|
| 3163 |
|
|
andl IMM (0x80000000),d7
|
| 3164 |
|
|
movel IMM (INFINITY),d6 | useful constant (+INFINITY)
|
| 3165 |
|
|
movel d6,d5 | another (mask for fraction)
|
| 3166 |
|
|
notl d5 |
|
| 3167 |
|
|
movel IMM (0x00800000),d4 | this is to put hidden bit back
|
| 3168 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
| 3169 |
|
|
movel d0,d2 |
|
| 3170 |
|
|
beq Lmulsf$a$0 | branch if a is zero
|
| 3171 |
|
|
bclr IMM (31),d1 | get rid of b's sign bit '
|
| 3172 |
|
|
movel d1,d3 |
|
| 3173 |
|
|
beq Lmulsf$b$0 | branch if b is zero
|
| 3174 |
|
|
cmpl d6,d0 | is a big?
|
| 3175 |
|
|
bhi Lmulsf$inop | if a is NaN return NaN
|
| 3176 |
|
|
beq Lmulsf$inf | if a is INFINITY we have to check b
|
| 3177 |
|
|
cmpl d6,d1 | now compare b with INFINITY
|
| 3178 |
|
|
bhi Lmulsf$inop | is b NaN?
|
| 3179 |
|
|
beq Lmulsf$overflow | is b INFINITY?
|
| 3180 |
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
| 3181 |
|
|
| Now we get the exponents into d2 and d3.
|
| 3182 |
|
|
andl d6,d2 | and isolate exponent in d2
|
| 3183 |
|
|
beq Lmulsf$a$den | if exponent is zero we have a denormalized
|
| 3184 |
|
|
andl d5,d0 | and isolate fraction
|
| 3185 |
|
|
orl d4,d0 | and put hidden bit back
|
| 3186 |
|
|
swap d2 | I like exponents in the first byte
|
| 3187 |
|
|
#ifndef __mcoldfire__
|
| 3188 |
|
|
lsrw IMM (7),d2 |
|
| 3189 |
|
|
#else
|
| 3190 |
|
|
lsrl IMM (7),d2 |
|
| 3191 |
|
|
#endif
|
| 3192 |
|
|
Lmulsf$1: | number
|
| 3193 |
|
|
andl d6,d3 |
|
| 3194 |
|
|
beq Lmulsf$b$den |
|
| 3195 |
|
|
andl d5,d1 |
|
| 3196 |
|
|
orl d4,d1 |
|
| 3197 |
|
|
swap d3 |
|
| 3198 |
|
|
#ifndef __mcoldfire__
|
| 3199 |
|
|
lsrw IMM (7),d3 |
|
| 3200 |
|
|
#else
|
| 3201 |
|
|
lsrl IMM (7),d3 |
|
| 3202 |
|
|
#endif
|
| 3203 |
|
|
Lmulsf$2: |
|
| 3204 |
|
|
#ifndef __mcoldfire__
|
| 3205 |
|
|
addw d3,d2 | add exponents
|
| 3206 |
|
|
subw IMM (F_BIAS+1),d2 | and subtract bias (plus one)
|
| 3207 |
|
|
#else
|
| 3208 |
|
|
addl d3,d2 | add exponents
|
| 3209 |
|
|
subl IMM (F_BIAS+1),d2 | and subtract bias (plus one)
|
| 3210 |
|
|
#endif
|
| 3211 |
|
|
|
| 3212 |
|
|
| We are now ready to do the multiplication. The situation is as follows:
|
| 3213 |
|
|
| both a and b have bit FLT_MANT_DIG-1 set (even if they were
|
| 3214 |
|
|
| denormalized to start with!), which means that in the product
|
| 3215 |
|
|
| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the
|
| 3216 |
|
|
| high long) is set.
|
| 3217 |
|
|
|
| 3218 |
|
|
| To do the multiplication let us move the number a little bit around ...
|
| 3219 |
|
|
movel d1,d6 | second operand in d6
|
| 3220 |
|
|
movel d0,d5 | first operand in d4-d5
|
| 3221 |
|
|
movel IMM (0),d4
|
| 3222 |
|
|
movel d4,d1 | the sums will go in d0-d1
|
| 3223 |
|
|
movel d4,d0
|
| 3224 |
|
|
|
| 3225 |
|
|
| now bit FLT_MANT_DIG-1 becomes bit 31:
|
| 3226 |
|
|
lsll IMM (31-FLT_MANT_DIG+1),d6
|
| 3227 |
|
|
|
| 3228 |
|
|
| Start the loop (we loop #FLT_MANT_DIG times):
|
| 3229 |
|
|
moveq IMM (FLT_MANT_DIG-1),d3
|
| 3230 |
|
|
1: addl d1,d1 | shift sum
|
| 3231 |
|
|
addxl d0,d0
|
| 3232 |
|
|
lsll IMM (1),d6 | get bit bn
|
| 3233 |
|
|
bcc 2f | if not set skip sum
|
| 3234 |
|
|
addl d5,d1 | add a
|
| 3235 |
|
|
addxl d4,d0
|
| 3236 |
|
|
2:
|
| 3237 |
|
|
#ifndef __mcoldfire__
|
| 3238 |
|
|
dbf d3,1b | loop back
|
| 3239 |
|
|
#else
|
| 3240 |
|
|
subql IMM (1),d3
|
| 3241 |
|
|
bpl 1b
|
| 3242 |
|
|
#endif
|
| 3243 |
|
|
|
| 3244 |
|
|
| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
|
| 3245 |
|
|
| (mod 32) of d0 set. The first thing to do now is to normalize it so bit
|
| 3246 |
|
|
| FLT_MANT_DIG is set (to do the rounding).
|
| 3247 |
|
|
#ifndef __mcoldfire__
|
| 3248 |
|
|
rorl IMM (6),d1
|
| 3249 |
|
|
swap d1
|
| 3250 |
|
|
movew d1,d3
|
| 3251 |
|
|
andw IMM (0x03ff),d3
|
| 3252 |
|
|
andw IMM (0xfd00),d1
|
| 3253 |
|
|
#else
|
| 3254 |
|
|
movel d1,d3
|
| 3255 |
|
|
lsll IMM (8),d1
|
| 3256 |
|
|
addl d1,d1
|
| 3257 |
|
|
addl d1,d1
|
| 3258 |
|
|
moveq IMM (22),d5
|
| 3259 |
|
|
lsrl d5,d3
|
| 3260 |
|
|
orl d3,d1
|
| 3261 |
|
|
andl IMM (0xfffffd00),d1
|
| 3262 |
|
|
#endif
|
| 3263 |
|
|
lsll IMM (8),d0
|
| 3264 |
|
|
addl d0,d0
|
| 3265 |
|
|
addl d0,d0
|
| 3266 |
|
|
#ifndef __mcoldfire__
|
| 3267 |
|
|
orw d3,d0
|
| 3268 |
|
|
#else
|
| 3269 |
|
|
orl d3,d0
|
| 3270 |
|
|
#endif
|
| 3271 |
|
|
|
| 3272 |
|
|
moveq IMM (MULTIPLY),d5
|
| 3273 |
|
|
|
| 3274 |
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
| 3275 |
|
|
beq Lround$exit
|
| 3276 |
|
|
#ifndef __mcoldfire__
|
| 3277 |
|
|
lsrl IMM (1),d0
|
| 3278 |
|
|
roxrl IMM (1),d1
|
| 3279 |
|
|
addw IMM (1),d2
|
| 3280 |
|
|
#else
|
| 3281 |
|
|
lsrl IMM (1),d1
|
| 3282 |
|
|
btst IMM (0),d0
|
| 3283 |
|
|
beq 10f
|
| 3284 |
|
|
bset IMM (31),d1
|
| 3285 |
|
|
10: lsrl IMM (1),d0
|
| 3286 |
|
|
addql IMM (1),d2
|
| 3287 |
|
|
#endif
|
| 3288 |
|
|
bra Lround$exit
|
| 3289 |
|
|
|
| 3290 |
|
|
Lmulsf$inop:
|
| 3291 |
|
|
moveq IMM (MULTIPLY),d5
|
| 3292 |
|
|
bra Lf$inop
|
| 3293 |
|
|
|
| 3294 |
|
|
Lmulsf$overflow:
|
| 3295 |
|
|
moveq IMM (MULTIPLY),d5
|
| 3296 |
|
|
bra Lf$overflow
|
| 3297 |
|
|
|
| 3298 |
|
|
Lmulsf$inf:
|
| 3299 |
|
|
moveq IMM (MULTIPLY),d5
|
| 3300 |
|
|
| If either is NaN return NaN; else both are (maybe infinite) numbers, so
|
| 3301 |
|
|
| return INFINITY with the correct sign (which is in d7).
|
| 3302 |
|
|
cmpl d6,d1 | is b NaN?
|
| 3303 |
|
|
bhi Lf$inop | if so return NaN
|
| 3304 |
|
|
bra Lf$overflow | else return +/-INFINITY
|
| 3305 |
|
|
|
| 3306 |
|
|
| If either number is zero return zero, unless the other is +/-INFINITY,
|
| 3307 |
|
|
| or NaN, in which case we return NaN.
|
| 3308 |
|
|
Lmulsf$b$0:
|
| 3309 |
|
|
| Here d1 (==b) is zero.
|
| 3310 |
|
|
movel a6@(8),d1 | get a again to check for non-finiteness
|
| 3311 |
|
|
bra 1f
|
| 3312 |
|
|
Lmulsf$a$0:
|
| 3313 |
|
|
movel a6@(12),d1 | get b again to check for non-finiteness
|
| 3314 |
|
|
1: bclr IMM (31),d1 | clear sign bit
|
| 3315 |
|
|
cmpl IMM (INFINITY),d1 | and check for a large exponent
|
| 3316 |
|
|
bge Lf$inop | if b is +/-INFINITY or NaN return NaN
|
| 3317 |
|
|
movel d7,d0 | else return signed zero
|
| 3318 |
|
|
PICLEA SYM (_fpCCR),a0 |
|
| 3319 |
|
|
movew IMM (0),a0@ |
|
| 3320 |
|
|
#ifndef __mcoldfire__
|
| 3321 |
|
|
moveml sp@+,d2-d7 |
|
| 3322 |
|
|
#else
|
| 3323 |
|
|
moveml sp@,d2-d7
|
| 3324 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3325 |
|
|
| be adjusted here.
|
| 3326 |
|
|
#endif
|
| 3327 |
|
|
unlk a6 |
|
| 3328 |
|
|
rts |
|
| 3329 |
|
|
|
| 3330 |
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
| 3331 |
|
|
| hidden bit back into the fraction; instead we shift left until bit 23
|
| 3332 |
|
|
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
|
| 3333 |
|
|
| to ensure that the product of the fractions is close to 1.
|
| 3334 |
|
|
Lmulsf$a$den:
|
| 3335 |
|
|
movel IMM (1),d2
|
| 3336 |
|
|
andl d5,d0
|
| 3337 |
|
|
1: addl d0,d0 | shift a left (until bit 23 is set)
|
| 3338 |
|
|
#ifndef __mcoldfire__
|
| 3339 |
|
|
subw IMM (1),d2 | and adjust exponent
|
| 3340 |
|
|
#else
|
| 3341 |
|
|
subql IMM (1),d2 | and adjust exponent
|
| 3342 |
|
|
#endif
|
| 3343 |
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
| 3344 |
|
|
bne Lmulsf$1 |
|
| 3345 |
|
|
bra 1b | else loop back
|
| 3346 |
|
|
|
| 3347 |
|
|
Lmulsf$b$den:
|
| 3348 |
|
|
movel IMM (1),d3
|
| 3349 |
|
|
andl d5,d1
|
| 3350 |
|
|
1: addl d1,d1 | shift b left until bit 23 is set
|
| 3351 |
|
|
#ifndef __mcoldfire__
|
| 3352 |
|
|
subw IMM (1),d3 | and adjust exponent
|
| 3353 |
|
|
#else
|
| 3354 |
|
|
subql IMM (1),d3 | and adjust exponent
|
| 3355 |
|
|
#endif
|
| 3356 |
|
|
btst IMM (FLT_MANT_DIG-1),d1
|
| 3357 |
|
|
bne Lmulsf$2 |
|
| 3358 |
|
|
bra 1b | else loop back
|
| 3359 |
|
|
|
| 3360 |
|
|
|=============================================================================
|
| 3361 |
|
|
| __divsf3
|
| 3362 |
|
|
|=============================================================================
|
| 3363 |
|
|
|
| 3364 |
|
|
| float __divsf3(float, float);
|
| 3365 |
|
|
FUNC(__divsf3)
|
| 3366 |
|
|
SYM (__divsf3):
|
| 3367 |
|
|
#ifndef __mcoldfire__
|
| 3368 |
|
|
link a6,IMM (0)
|
| 3369 |
|
|
moveml d2-d7,sp@-
|
| 3370 |
|
|
#else
|
| 3371 |
|
|
link a6,IMM (-24)
|
| 3372 |
|
|
moveml d2-d7,sp@
|
| 3373 |
|
|
#endif
|
| 3374 |
|
|
movel a6@(8),d0 | get a into d0
|
| 3375 |
|
|
movel a6@(12),d1 | and b into d1
|
| 3376 |
|
|
movel d0,d7 | d7 will hold the sign of the result
|
| 3377 |
|
|
eorl d1,d7 |
|
| 3378 |
|
|
andl IMM (0x80000000),d7 |
|
| 3379 |
|
|
movel IMM (INFINITY),d6 | useful constant (+INFINITY)
|
| 3380 |
|
|
movel d6,d5 | another (mask for fraction)
|
| 3381 |
|
|
notl d5 |
|
| 3382 |
|
|
movel IMM (0x00800000),d4 | this is to put hidden bit back
|
| 3383 |
|
|
bclr IMM (31),d0 | get rid of a's sign bit '
|
| 3384 |
|
|
movel d0,d2 |
|
| 3385 |
|
|
beq Ldivsf$a$0 | branch if a is zero
|
| 3386 |
|
|
bclr IMM (31),d1 | get rid of b's sign bit '
|
| 3387 |
|
|
movel d1,d3 |
|
| 3388 |
|
|
beq Ldivsf$b$0 | branch if b is zero
|
| 3389 |
|
|
cmpl d6,d0 | is a big?
|
| 3390 |
|
|
bhi Ldivsf$inop | if a is NaN return NaN
|
| 3391 |
|
|
beq Ldivsf$inf | if a is INFINITY we have to check b
|
| 3392 |
|
|
cmpl d6,d1 | now compare b with INFINITY
|
| 3393 |
|
|
bhi Ldivsf$inop | if b is NaN return NaN
|
| 3394 |
|
|
beq Ldivsf$underflow
|
| 3395 |
|
|
| Here we have both numbers finite and nonzero (and with no sign bit).
|
| 3396 |
|
|
| Now we get the exponents into d2 and d3 and normalize the numbers to
|
| 3397 |
|
|
| ensure that the ratio of the fractions is close to 1. We do this by
|
| 3398 |
|
|
| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
|
| 3399 |
|
|
andl d6,d2 | and isolate exponent in d2
|
| 3400 |
|
|
beq Ldivsf$a$den | if exponent is zero we have a denormalized
|
| 3401 |
|
|
andl d5,d0 | and isolate fraction
|
| 3402 |
|
|
orl d4,d0 | and put hidden bit back
|
| 3403 |
|
|
swap d2 | I like exponents in the first byte
|
| 3404 |
|
|
#ifndef __mcoldfire__
|
| 3405 |
|
|
lsrw IMM (7),d2 |
|
| 3406 |
|
|
#else
|
| 3407 |
|
|
lsrl IMM (7),d2 |
|
| 3408 |
|
|
#endif
|
| 3409 |
|
|
Ldivsf$1: |
|
| 3410 |
|
|
andl d6,d3 |
|
| 3411 |
|
|
beq Ldivsf$b$den |
|
| 3412 |
|
|
andl d5,d1 |
|
| 3413 |
|
|
orl d4,d1 |
|
| 3414 |
|
|
swap d3 |
|
| 3415 |
|
|
#ifndef __mcoldfire__
|
| 3416 |
|
|
lsrw IMM (7),d3 |
|
| 3417 |
|
|
#else
|
| 3418 |
|
|
lsrl IMM (7),d3 |
|
| 3419 |
|
|
#endif
|
| 3420 |
|
|
Ldivsf$2: |
|
| 3421 |
|
|
#ifndef __mcoldfire__
|
| 3422 |
|
|
subw d3,d2 | subtract exponents
|
| 3423 |
|
|
addw IMM (F_BIAS),d2 | and add bias
|
| 3424 |
|
|
#else
|
| 3425 |
|
|
subl d3,d2 | subtract exponents
|
| 3426 |
|
|
addl IMM (F_BIAS),d2 | and add bias
|
| 3427 |
|
|
#endif
|
| 3428 |
|
|
|
| 3429 |
|
|
| We are now ready to do the division. We have prepared things in such a way
|
| 3430 |
|
|
| that the ratio of the fractions will be less than 2 but greater than 1/2.
|
| 3431 |
|
|
| At this point the registers in use are:
|
| 3432 |
|
|
| d0 holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
|
| 3433 |
|
|
| d1 holds b (second operand, bit FLT_MANT_DIG=1)
|
| 3434 |
|
|
| d2 holds the difference of the exponents, corrected by the bias
|
| 3435 |
|
|
| d7 holds the sign of the ratio
|
| 3436 |
|
|
| d4, d5, d6 hold some constants
|
| 3437 |
|
|
movel d7,a0 | d6-d7 will hold the ratio of the fractions
|
| 3438 |
|
|
movel IMM (0),d6 |
|
| 3439 |
|
|
movel d6,d7
|
| 3440 |
|
|
|
| 3441 |
|
|
moveq IMM (FLT_MANT_DIG+1),d3
|
| 3442 |
|
|
1: cmpl d0,d1 | is a < b?
|
| 3443 |
|
|
bhi 2f |
|
| 3444 |
|
|
bset d3,d6 | set a bit in d6
|
| 3445 |
|
|
subl d1,d0 | if a >= b a <-- a-b
|
| 3446 |
|
|
beq 3f | if a is zero, exit
|
| 3447 |
|
|
2: addl d0,d0 | multiply a by 2
|
| 3448 |
|
|
#ifndef __mcoldfire__
|
| 3449 |
|
|
dbra d3,1b
|
| 3450 |
|
|
#else
|
| 3451 |
|
|
subql IMM (1),d3
|
| 3452 |
|
|
bpl 1b
|
| 3453 |
|
|
#endif
|
| 3454 |
|
|
|
| 3455 |
|
|
| Now we keep going to set the sticky bit ...
|
| 3456 |
|
|
moveq IMM (FLT_MANT_DIG),d3
|
| 3457 |
|
|
1: cmpl d0,d1
|
| 3458 |
|
|
ble 2f
|
| 3459 |
|
|
addl d0,d0
|
| 3460 |
|
|
#ifndef __mcoldfire__
|
| 3461 |
|
|
dbra d3,1b
|
| 3462 |
|
|
#else
|
| 3463 |
|
|
subql IMM(1),d3
|
| 3464 |
|
|
bpl 1b
|
| 3465 |
|
|
#endif
|
| 3466 |
|
|
movel IMM (0),d1
|
| 3467 |
|
|
bra 3f
|
| 3468 |
|
|
2: movel IMM (0),d1
|
| 3469 |
|
|
#ifndef __mcoldfire__
|
| 3470 |
|
|
subw IMM (FLT_MANT_DIG),d3
|
| 3471 |
|
|
addw IMM (31),d3
|
| 3472 |
|
|
#else
|
| 3473 |
|
|
subl IMM (FLT_MANT_DIG),d3
|
| 3474 |
|
|
addl IMM (31),d3
|
| 3475 |
|
|
#endif
|
| 3476 |
|
|
bset d3,d1
|
| 3477 |
|
|
3:
|
| 3478 |
|
|
movel d6,d0 | put the ratio in d0-d1
|
| 3479 |
|
|
movel a0,d7 | get sign back
|
| 3480 |
|
|
|
| 3481 |
|
|
| Because of the normalization we did before we are guaranteed that
|
| 3482 |
|
|
| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
|
| 3483 |
|
|
| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
|
| 3484 |
|
|
btst IMM (FLT_MANT_DIG+1),d0
|
| 3485 |
|
|
beq 1f | if it is not set, then bit 24 is set
|
| 3486 |
|
|
lsrl IMM (1),d0 |
|
| 3487 |
|
|
#ifndef __mcoldfire__
|
| 3488 |
|
|
addw IMM (1),d2 |
|
| 3489 |
|
|
#else
|
| 3490 |
|
|
addl IMM (1),d2 |
|
| 3491 |
|
|
#endif
|
| 3492 |
|
|
1:
|
| 3493 |
|
|
| Now round, check for over- and underflow, and exit.
|
| 3494 |
|
|
moveq IMM (DIVIDE),d5
|
| 3495 |
|
|
bra Lround$exit
|
| 3496 |
|
|
|
| 3497 |
|
|
Ldivsf$inop:
|
| 3498 |
|
|
moveq IMM (DIVIDE),d5
|
| 3499 |
|
|
bra Lf$inop
|
| 3500 |
|
|
|
| 3501 |
|
|
Ldivsf$overflow:
|
| 3502 |
|
|
moveq IMM (DIVIDE),d5
|
| 3503 |
|
|
bra Lf$overflow
|
| 3504 |
|
|
|
| 3505 |
|
|
Ldivsf$underflow:
|
| 3506 |
|
|
moveq IMM (DIVIDE),d5
|
| 3507 |
|
|
bra Lf$underflow
|
| 3508 |
|
|
|
| 3509 |
|
|
Ldivsf$a$0:
|
| 3510 |
|
|
moveq IMM (DIVIDE),d5
|
| 3511 |
|
|
| If a is zero check to see whether b is zero also. In that case return
|
| 3512 |
|
|
| NaN; then check if b is NaN, and return NaN also in that case. Else
|
| 3513 |
|
|
| return a properly signed zero.
|
| 3514 |
|
|
andl IMM (0x7fffffff),d1 | clear sign bit and test b
|
| 3515 |
|
|
beq Lf$inop | if b is also zero return NaN
|
| 3516 |
|
|
cmpl IMM (INFINITY),d1 | check for NaN
|
| 3517 |
|
|
bhi Lf$inop |
|
| 3518 |
|
|
movel d7,d0 | else return signed zero
|
| 3519 |
|
|
PICLEA SYM (_fpCCR),a0 |
|
| 3520 |
|
|
movew IMM (0),a0@ |
|
| 3521 |
|
|
#ifndef __mcoldfire__
|
| 3522 |
|
|
moveml sp@+,d2-d7 |
|
| 3523 |
|
|
#else
|
| 3524 |
|
|
moveml sp@,d2-d7 |
|
| 3525 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3526 |
|
|
| be adjusted here.
|
| 3527 |
|
|
#endif
|
| 3528 |
|
|
unlk a6 |
|
| 3529 |
|
|
rts |
|
| 3530 |
|
|
|
| 3531 |
|
|
Ldivsf$b$0:
|
| 3532 |
|
|
moveq IMM (DIVIDE),d5
|
| 3533 |
|
|
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
|
| 3534 |
|
|
| else return +/-INFINITY. Remember that a is in d0 with the sign bit
|
| 3535 |
|
|
| cleared already.
|
| 3536 |
|
|
cmpl IMM (INFINITY),d0 | compare d0 with INFINITY
|
| 3537 |
|
|
bhi Lf$inop | if larger it is NaN
|
| 3538 |
|
|
bra Lf$div$0 | else signal DIVIDE_BY_ZERO
|
| 3539 |
|
|
|
| 3540 |
|
|
Ldivsf$inf:
|
| 3541 |
|
|
moveq IMM (DIVIDE),d5
|
| 3542 |
|
|
| If a is INFINITY we have to check b
|
| 3543 |
|
|
cmpl IMM (INFINITY),d1 | compare b with INFINITY
|
| 3544 |
|
|
bge Lf$inop | if b is NaN or INFINITY return NaN
|
| 3545 |
|
|
bra Lf$overflow | else return overflow
|
| 3546 |
|
|
|
| 3547 |
|
|
| If a number is denormalized we put an exponent of 1 but do not put the
|
| 3548 |
|
|
| bit back into the fraction.
|
| 3549 |
|
|
Ldivsf$a$den:
|
| 3550 |
|
|
movel IMM (1),d2
|
| 3551 |
|
|
andl d5,d0
|
| 3552 |
|
|
1: addl d0,d0 | shift a left until bit FLT_MANT_DIG-1 is set
|
| 3553 |
|
|
#ifndef __mcoldfire__
|
| 3554 |
|
|
subw IMM (1),d2 | and adjust exponent
|
| 3555 |
|
|
#else
|
| 3556 |
|
|
subl IMM (1),d2 | and adjust exponent
|
| 3557 |
|
|
#endif
|
| 3558 |
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
| 3559 |
|
|
bne Ldivsf$1
|
| 3560 |
|
|
bra 1b
|
| 3561 |
|
|
|
| 3562 |
|
|
Ldivsf$b$den:
|
| 3563 |
|
|
movel IMM (1),d3
|
| 3564 |
|
|
andl d5,d1
|
| 3565 |
|
|
1: addl d1,d1 | shift b left until bit FLT_MANT_DIG is set
|
| 3566 |
|
|
#ifndef __mcoldfire__
|
| 3567 |
|
|
subw IMM (1),d3 | and adjust exponent
|
| 3568 |
|
|
#else
|
| 3569 |
|
|
subl IMM (1),d3 | and adjust exponent
|
| 3570 |
|
|
#endif
|
| 3571 |
|
|
btst IMM (FLT_MANT_DIG-1),d1
|
| 3572 |
|
|
bne Ldivsf$2
|
| 3573 |
|
|
bra 1b
|
| 3574 |
|
|
|
| 3575 |
|
|
Lround$exit:
|
| 3576 |
|
|
| This is a common exit point for __mulsf3 and __divsf3.
|
| 3577 |
|
|
|
| 3578 |
|
|
| First check for underlow in the exponent:
|
| 3579 |
|
|
#ifndef __mcoldfire__
|
| 3580 |
|
|
cmpw IMM (-FLT_MANT_DIG-1),d2
|
| 3581 |
|
|
#else
|
| 3582 |
|
|
cmpl IMM (-FLT_MANT_DIG-1),d2
|
| 3583 |
|
|
#endif
|
| 3584 |
|
|
blt Lf$underflow
|
| 3585 |
|
|
| It could happen that the exponent is less than 1, in which case the
|
| 3586 |
|
|
| number is denormalized. In this case we shift right and adjust the
|
| 3587 |
|
|
| exponent until it becomes 1 or the fraction is zero (in the latter case
|
| 3588 |
|
|
| we signal underflow and return zero).
|
| 3589 |
|
|
movel IMM (0),d6 | d6 is used temporarily
|
| 3590 |
|
|
#ifndef __mcoldfire__
|
| 3591 |
|
|
cmpw IMM (1),d2 | if the exponent is less than 1 we
|
| 3592 |
|
|
#else
|
| 3593 |
|
|
cmpl IMM (1),d2 | if the exponent is less than 1 we
|
| 3594 |
|
|
#endif
|
| 3595 |
|
|
bge 2f | have to shift right (denormalize)
|
| 3596 |
|
|
1:
|
| 3597 |
|
|
#ifndef __mcoldfire__
|
| 3598 |
|
|
addw IMM (1),d2 | adjust the exponent
|
| 3599 |
|
|
lsrl IMM (1),d0 | shift right once
|
| 3600 |
|
|
roxrl IMM (1),d1 |
|
| 3601 |
|
|
roxrl IMM (1),d6 | d6 collect bits we would lose otherwise
|
| 3602 |
|
|
cmpw IMM (1),d2 | is the exponent 1 already?
|
| 3603 |
|
|
#else
|
| 3604 |
|
|
addql IMM (1),d2 | adjust the exponent
|
| 3605 |
|
|
lsrl IMM (1),d6
|
| 3606 |
|
|
btst IMM (0),d1
|
| 3607 |
|
|
beq 11f
|
| 3608 |
|
|
bset IMM (31),d6
|
| 3609 |
|
|
11: lsrl IMM (1),d1
|
| 3610 |
|
|
btst IMM (0),d0
|
| 3611 |
|
|
beq 10f
|
| 3612 |
|
|
bset IMM (31),d1
|
| 3613 |
|
|
10: lsrl IMM (1),d0
|
| 3614 |
|
|
cmpl IMM (1),d2 | is the exponent 1 already?
|
| 3615 |
|
|
#endif
|
| 3616 |
|
|
beq 2f | if not loop back
|
| 3617 |
|
|
bra 1b |
|
| 3618 |
|
|
bra Lf$underflow | safety check, shouldn't execute '
|
| 3619 |
|
|
2: orl d6,d1 | this is a trick so we don't lose '
|
| 3620 |
|
|
| the extra bits which were flushed right
|
| 3621 |
|
|
| Now call the rounding routine (which takes care of denormalized numbers):
|
| 3622 |
|
|
lea pc@(Lround$0),a0 | to return from rounding routine
|
| 3623 |
|
|
PICLEA SYM (_fpCCR),a1 | check the rounding mode
|
| 3624 |
|
|
#ifdef __mcoldfire__
|
| 3625 |
|
|
clrl d6
|
| 3626 |
|
|
#endif
|
| 3627 |
|
|
movew a1@(6),d6 | rounding mode in d6
|
| 3628 |
|
|
beq Lround$to$nearest
|
| 3629 |
|
|
#ifndef __mcoldfire__
|
| 3630 |
|
|
cmpw IMM (ROUND_TO_PLUS),d6
|
| 3631 |
|
|
#else
|
| 3632 |
|
|
cmpl IMM (ROUND_TO_PLUS),d6
|
| 3633 |
|
|
#endif
|
| 3634 |
|
|
bhi Lround$to$minus
|
| 3635 |
|
|
blt Lround$to$zero
|
| 3636 |
|
|
bra Lround$to$plus
|
| 3637 |
|
|
Lround$0:
|
| 3638 |
|
|
| Here we have a correctly rounded result (either normalized or denormalized).
|
| 3639 |
|
|
|
| 3640 |
|
|
| Here we should have either a normalized number or a denormalized one, and
|
| 3641 |
|
|
| the exponent is necessarily larger or equal to 1 (so we don't have to '
|
| 3642 |
|
|
| check again for underflow!). We have to check for overflow or for a
|
| 3643 |
|
|
| denormalized number (which also signals underflow).
|
| 3644 |
|
|
| Check for overflow (i.e., exponent >= 255).
|
| 3645 |
|
|
#ifndef __mcoldfire__
|
| 3646 |
|
|
cmpw IMM (0x00ff),d2
|
| 3647 |
|
|
#else
|
| 3648 |
|
|
cmpl IMM (0x00ff),d2
|
| 3649 |
|
|
#endif
|
| 3650 |
|
|
bge Lf$overflow
|
| 3651 |
|
|
| Now check for a denormalized number (exponent==0).
|
| 3652 |
|
|
movew d2,d2
|
| 3653 |
|
|
beq Lf$den
|
| 3654 |
|
|
1:
|
| 3655 |
|
|
| Put back the exponents and sign and return.
|
| 3656 |
|
|
#ifndef __mcoldfire__
|
| 3657 |
|
|
lslw IMM (7),d2 | exponent back to fourth byte
|
| 3658 |
|
|
#else
|
| 3659 |
|
|
lsll IMM (7),d2 | exponent back to fourth byte
|
| 3660 |
|
|
#endif
|
| 3661 |
|
|
bclr IMM (FLT_MANT_DIG-1),d0
|
| 3662 |
|
|
swap d0 | and put back exponent
|
| 3663 |
|
|
#ifndef __mcoldfire__
|
| 3664 |
|
|
orw d2,d0 |
|
| 3665 |
|
|
#else
|
| 3666 |
|
|
orl d2,d0
|
| 3667 |
|
|
#endif
|
| 3668 |
|
|
swap d0 |
|
| 3669 |
|
|
orl d7,d0 | and sign also
|
| 3670 |
|
|
|
| 3671 |
|
|
PICLEA SYM (_fpCCR),a0
|
| 3672 |
|
|
movew IMM (0),a0@
|
| 3673 |
|
|
#ifndef __mcoldfire__
|
| 3674 |
|
|
moveml sp@+,d2-d7
|
| 3675 |
|
|
#else
|
| 3676 |
|
|
moveml sp@,d2-d7
|
| 3677 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3678 |
|
|
| be adjusted here.
|
| 3679 |
|
|
#endif
|
| 3680 |
|
|
unlk a6
|
| 3681 |
|
|
rts
|
| 3682 |
|
|
|
| 3683 |
|
|
|=============================================================================
|
| 3684 |
|
|
| __negsf2
|
| 3685 |
|
|
|=============================================================================
|
| 3686 |
|
|
|
| 3687 |
|
|
| This is trivial and could be shorter if we didn't bother checking for NaN '
|
| 3688 |
|
|
| and +/-INFINITY.
|
| 3689 |
|
|
|
| 3690 |
|
|
| float __negsf2(float);
|
| 3691 |
|
|
FUNC(__negsf2)
|
| 3692 |
|
|
SYM (__negsf2):
|
| 3693 |
|
|
#ifndef __mcoldfire__
|
| 3694 |
|
|
link a6,IMM (0)
|
| 3695 |
|
|
moveml d2-d7,sp@-
|
| 3696 |
|
|
#else
|
| 3697 |
|
|
link a6,IMM (-24)
|
| 3698 |
|
|
moveml d2-d7,sp@
|
| 3699 |
|
|
#endif
|
| 3700 |
|
|
moveq IMM (NEGATE),d5
|
| 3701 |
|
|
movel a6@(8),d0 | get number to negate in d0
|
| 3702 |
|
|
bchg IMM (31),d0 | negate
|
| 3703 |
|
|
movel d0,d1 | make a positive copy
|
| 3704 |
|
|
bclr IMM (31),d1 |
|
| 3705 |
|
|
tstl d1 | check for zero
|
| 3706 |
|
|
beq 2f | if zero (either sign) return +zero
|
| 3707 |
|
|
cmpl IMM (INFINITY),d1 | compare to +INFINITY
|
| 3708 |
|
|
blt 1f |
|
| 3709 |
|
|
bhi Lf$inop | if larger (fraction not zero) is NaN
|
| 3710 |
|
|
movel d0,d7 | else get sign and return INFINITY
|
| 3711 |
|
|
andl IMM (0x80000000),d7
|
| 3712 |
|
|
bra Lf$infty
|
| 3713 |
|
|
1: PICLEA SYM (_fpCCR),a0
|
| 3714 |
|
|
movew IMM (0),a0@
|
| 3715 |
|
|
#ifndef __mcoldfire__
|
| 3716 |
|
|
moveml sp@+,d2-d7
|
| 3717 |
|
|
#else
|
| 3718 |
|
|
moveml sp@,d2-d7
|
| 3719 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3720 |
|
|
| be adjusted here.
|
| 3721 |
|
|
#endif
|
| 3722 |
|
|
unlk a6
|
| 3723 |
|
|
rts
|
| 3724 |
|
|
2: bclr IMM (31),d0
|
| 3725 |
|
|
bra 1b
|
| 3726 |
|
|
|
| 3727 |
|
|
|=============================================================================
|
| 3728 |
|
|
| __cmpsf2
|
| 3729 |
|
|
|=============================================================================
|
| 3730 |
|
|
|
| 3731 |
|
|
GREATER = 1
|
| 3732 |
|
|
LESS = -1
|
| 3733 |
|
|
EQUAL = 0
|
| 3734 |
|
|
|
| 3735 |
|
|
| int __cmpsf2_internal(float, float, int);
|
| 3736 |
|
|
SYM (__cmpsf2_internal):
|
| 3737 |
|
|
#ifndef __mcoldfire__
|
| 3738 |
|
|
link a6,IMM (0)
|
| 3739 |
|
|
moveml d2-d7,sp@- | save registers
|
| 3740 |
|
|
#else
|
| 3741 |
|
|
link a6,IMM (-24)
|
| 3742 |
|
|
moveml d2-d7,sp@
|
| 3743 |
|
|
#endif
|
| 3744 |
|
|
moveq IMM (COMPARE),d5
|
| 3745 |
|
|
movel a6@(8),d0 | get first operand
|
| 3746 |
|
|
movel a6@(12),d1 | get second operand
|
| 3747 |
|
|
| Check if either is NaN, and in that case return garbage and signal
|
| 3748 |
|
|
| INVALID_OPERATION. Check also if either is zero, and clear the signs
|
| 3749 |
|
|
| if necessary.
|
| 3750 |
|
|
movel d0,d6
|
| 3751 |
|
|
andl IMM (0x7fffffff),d0
|
| 3752 |
|
|
beq Lcmpsf$a$0
|
| 3753 |
|
|
cmpl IMM (0x7f800000),d0
|
| 3754 |
|
|
bhi Lcmpf$inop
|
| 3755 |
|
|
Lcmpsf$1:
|
| 3756 |
|
|
movel d1,d7
|
| 3757 |
|
|
andl IMM (0x7fffffff),d1
|
| 3758 |
|
|
beq Lcmpsf$b$0
|
| 3759 |
|
|
cmpl IMM (0x7f800000),d1
|
| 3760 |
|
|
bhi Lcmpf$inop
|
| 3761 |
|
|
Lcmpsf$2:
|
| 3762 |
|
|
| Check the signs
|
| 3763 |
|
|
eorl d6,d7
|
| 3764 |
|
|
bpl 1f
|
| 3765 |
|
|
| If the signs are not equal check if a >= 0
|
| 3766 |
|
|
tstl d6
|
| 3767 |
|
|
bpl Lcmpsf$a$gt$b | if (a >= 0 && b < 0) => a > b
|
| 3768 |
|
|
bmi Lcmpsf$b$gt$a | if (a < 0 && b >= 0) => a < b
|
| 3769 |
|
|
1:
|
| 3770 |
|
|
| If the signs are equal check for < 0
|
| 3771 |
|
|
tstl d6
|
| 3772 |
|
|
bpl 1f
|
| 3773 |
|
|
| If both are negative exchange them
|
| 3774 |
|
|
#ifndef __mcoldfire__
|
| 3775 |
|
|
exg d0,d1
|
| 3776 |
|
|
#else
|
| 3777 |
|
|
movel d0,d7
|
| 3778 |
|
|
movel d1,d0
|
| 3779 |
|
|
movel d7,d1
|
| 3780 |
|
|
#endif
|
| 3781 |
|
|
1:
|
| 3782 |
|
|
| Now that they are positive we just compare them as longs (does this also
|
| 3783 |
|
|
| work for denormalized numbers?).
|
| 3784 |
|
|
cmpl d0,d1
|
| 3785 |
|
|
bhi Lcmpsf$b$gt$a | |b| > |a|
|
| 3786 |
|
|
bne Lcmpsf$a$gt$b | |b| < |a|
|
| 3787 |
|
|
| If we got here a == b.
|
| 3788 |
|
|
movel IMM (EQUAL),d0
|
| 3789 |
|
|
#ifndef __mcoldfire__
|
| 3790 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 3791 |
|
|
#else
|
| 3792 |
|
|
moveml sp@,d2-d7
|
| 3793 |
|
|
#endif
|
| 3794 |
|
|
unlk a6
|
| 3795 |
|
|
rts
|
| 3796 |
|
|
Lcmpsf$a$gt$b:
|
| 3797 |
|
|
movel IMM (GREATER),d0
|
| 3798 |
|
|
#ifndef __mcoldfire__
|
| 3799 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 3800 |
|
|
#else
|
| 3801 |
|
|
moveml sp@,d2-d7
|
| 3802 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3803 |
|
|
| be adjusted here.
|
| 3804 |
|
|
#endif
|
| 3805 |
|
|
unlk a6
|
| 3806 |
|
|
rts
|
| 3807 |
|
|
Lcmpsf$b$gt$a:
|
| 3808 |
|
|
movel IMM (LESS),d0
|
| 3809 |
|
|
#ifndef __mcoldfire__
|
| 3810 |
|
|
moveml sp@+,d2-d7 | put back the registers
|
| 3811 |
|
|
#else
|
| 3812 |
|
|
moveml sp@,d2-d7
|
| 3813 |
|
|
| XXX if frame pointer is ever removed, stack pointer must
|
| 3814 |
|
|
| be adjusted here.
|
| 3815 |
|
|
#endif
|
| 3816 |
|
|
unlk a6
|
| 3817 |
|
|
rts
|
| 3818 |
|
|
|
| 3819 |
|
|
Lcmpsf$a$0:
|
| 3820 |
|
|
bclr IMM (31),d6
|
| 3821 |
|
|
bra Lcmpsf$1
|
| 3822 |
|
|
Lcmpsf$b$0:
|
| 3823 |
|
|
bclr IMM (31),d7
|
| 3824 |
|
|
bra Lcmpsf$2
|
| 3825 |
|
|
|
| 3826 |
|
|
Lcmpf$inop:
|
| 3827 |
|
|
movl a6@(16),d0
|
| 3828 |
|
|
moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7
|
| 3829 |
|
|
moveq IMM (SINGLE_FLOAT),d6
|
| 3830 |
|
|
PICJUMP $_exception_handler
|
| 3831 |
|
|
|
| 3832 |
|
|
| int __cmpsf2(float, float);
|
| 3833 |
|
|
FUNC(__cmpsf2)
|
| 3834 |
|
|
SYM (__cmpsf2):
|
| 3835 |
|
|
link a6,IMM (0)
|
| 3836 |
|
|
pea 1
|
| 3837 |
|
|
movl a6@(12),sp@-
|
| 3838 |
|
|
movl a6@(8),sp@-
|
| 3839 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 3840 |
|
|
unlk a6
|
| 3841 |
|
|
rts
|
| 3842 |
|
|
|
| 3843 |
|
|
|=============================================================================
|
| 3844 |
|
|
| rounding routines
|
| 3845 |
|
|
|=============================================================================
|
| 3846 |
|
|
|
| 3847 |
|
|
| The rounding routines expect the number to be normalized in registers
|
| 3848 |
|
|
| d0-d1, with the exponent in register d2. They assume that the
|
| 3849 |
|
|
| exponent is larger or equal to 1. They return a properly normalized number
|
| 3850 |
|
|
| if possible, and a denormalized number otherwise. The exponent is returned
|
| 3851 |
|
|
| in d2.
|
| 3852 |
|
|
|
| 3853 |
|
|
Lround$to$nearest:
|
| 3854 |
|
|
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
|
| 3855 |
|
|
| Here we assume that the exponent is not too small (this should be checked
|
| 3856 |
|
|
| before entering the rounding routine), but the number could be denormalized.
|
| 3857 |
|
|
|
| 3858 |
|
|
| Check for denormalized numbers:
|
| 3859 |
|
|
1: btst IMM (FLT_MANT_DIG),d0
|
| 3860 |
|
|
bne 2f | if set the number is normalized
|
| 3861 |
|
|
| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent
|
| 3862 |
|
|
| is one (remember that a denormalized number corresponds to an
|
| 3863 |
|
|
| exponent of -F_BIAS+1).
|
| 3864 |
|
|
#ifndef __mcoldfire__
|
| 3865 |
|
|
cmpw IMM (1),d2 | remember that the exponent is at least one
|
| 3866 |
|
|
#else
|
| 3867 |
|
|
cmpl IMM (1),d2 | remember that the exponent is at least one
|
| 3868 |
|
|
#endif
|
| 3869 |
|
|
beq 2f | an exponent of one means denormalized
|
| 3870 |
|
|
addl d1,d1 | else shift and adjust the exponent
|
| 3871 |
|
|
addxl d0,d0 |
|
| 3872 |
|
|
#ifndef __mcoldfire__
|
| 3873 |
|
|
dbra d2,1b |
|
| 3874 |
|
|
#else
|
| 3875 |
|
|
subql IMM (1),d2
|
| 3876 |
|
|
bpl 1b
|
| 3877 |
|
|
#endif
|
| 3878 |
|
|
2:
|
| 3879 |
|
|
| Now round: we do it as follows: after the shifting we can write the
|
| 3880 |
|
|
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
|
| 3881 |
|
|
| If delta < 1, do nothing. If delta > 1, add 1 to f.
|
| 3882 |
|
|
| If delta == 1, we make sure the rounded number will be even (odd?)
|
| 3883 |
|
|
| (after shifting).
|
| 3884 |
|
|
btst IMM (0),d0 | is delta < 1?
|
| 3885 |
|
|
beq 2f | if so, do not do anything
|
| 3886 |
|
|
tstl d1 | is delta == 1?
|
| 3887 |
|
|
bne 1f | if so round to even
|
| 3888 |
|
|
movel d0,d1 |
|
| 3889 |
|
|
andl IMM (2),d1 | bit 1 is the last significant bit
|
| 3890 |
|
|
addl d1,d0 |
|
| 3891 |
|
|
bra 2f |
|
| 3892 |
|
|
1: movel IMM (1),d1 | else add 1
|
| 3893 |
|
|
addl d1,d0 |
|
| 3894 |
|
|
| Shift right once (because we used bit #FLT_MANT_DIG!).
|
| 3895 |
|
|
2: lsrl IMM (1),d0
|
| 3896 |
|
|
| Now check again bit #FLT_MANT_DIG (rounding could have produced a
|
| 3897 |
|
|
| 'fraction overflow' ...).
|
| 3898 |
|
|
btst IMM (FLT_MANT_DIG),d0
|
| 3899 |
|
|
beq 1f
|
| 3900 |
|
|
lsrl IMM (1),d0
|
| 3901 |
|
|
#ifndef __mcoldfire__
|
| 3902 |
|
|
addw IMM (1),d2
|
| 3903 |
|
|
#else
|
| 3904 |
|
|
addql IMM (1),d2
|
| 3905 |
|
|
#endif
|
| 3906 |
|
|
1:
|
| 3907 |
|
|
| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we
|
| 3908 |
|
|
| have to put the exponent to zero and return a denormalized number.
|
| 3909 |
|
|
btst IMM (FLT_MANT_DIG-1),d0
|
| 3910 |
|
|
beq 1f
|
| 3911 |
|
|
jmp a0@
|
| 3912 |
|
|
1: movel IMM (0),d2
|
| 3913 |
|
|
jmp a0@
|
| 3914 |
|
|
|
| 3915 |
|
|
Lround$to$zero:
|
| 3916 |
|
|
Lround$to$plus:
|
| 3917 |
|
|
Lround$to$minus:
|
| 3918 |
|
|
jmp a0@
|
| 3919 |
|
|
#endif /* L_float */
|
| 3920 |
|
|
|
| 3921 |
|
|
| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
|
| 3922 |
|
|
| __ledf2, __ltdf2 to all return the same value as a direct call to
|
| 3923 |
|
|
| __cmpdf2 would. In this implementation, each of these routines
|
| 3924 |
|
|
| simply calls __cmpdf2. It would be more efficient to give the
|
| 3925 |
|
|
| __cmpdf2 routine several names, but separating them out will make it
|
| 3926 |
|
|
| easier to write efficient versions of these routines someday.
|
| 3927 |
|
|
| If the operands recompare unordered unordered __gtdf2 and __gedf2 return -1.
|
| 3928 |
|
|
| The other routines return 1.
|
| 3929 |
|
|
|
| 3930 |
|
|
#ifdef L_eqdf2
|
| 3931 |
|
|
.text
|
| 3932 |
|
|
FUNC(__eqdf2)
|
| 3933 |
|
|
.globl SYM (__eqdf2)
|
| 3934 |
|
|
SYM (__eqdf2):
|
| 3935 |
|
|
link a6,IMM (0)
|
| 3936 |
|
|
pea 1
|
| 3937 |
|
|
movl a6@(20),sp@-
|
| 3938 |
|
|
movl a6@(16),sp@-
|
| 3939 |
|
|
movl a6@(12),sp@-
|
| 3940 |
|
|
movl a6@(8),sp@-
|
| 3941 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 3942 |
|
|
unlk a6
|
| 3943 |
|
|
rts
|
| 3944 |
|
|
#endif /* L_eqdf2 */
|
| 3945 |
|
|
|
| 3946 |
|
|
#ifdef L_nedf2
|
| 3947 |
|
|
.text
|
| 3948 |
|
|
FUNC(__nedf2)
|
| 3949 |
|
|
.globl SYM (__nedf2)
|
| 3950 |
|
|
SYM (__nedf2):
|
| 3951 |
|
|
link a6,IMM (0)
|
| 3952 |
|
|
pea 1
|
| 3953 |
|
|
movl a6@(20),sp@-
|
| 3954 |
|
|
movl a6@(16),sp@-
|
| 3955 |
|
|
movl a6@(12),sp@-
|
| 3956 |
|
|
movl a6@(8),sp@-
|
| 3957 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 3958 |
|
|
unlk a6
|
| 3959 |
|
|
rts
|
| 3960 |
|
|
#endif /* L_nedf2 */
|
| 3961 |
|
|
|
| 3962 |
|
|
#ifdef L_gtdf2
|
| 3963 |
|
|
.text
|
| 3964 |
|
|
FUNC(__gtdf2)
|
| 3965 |
|
|
.globl SYM (__gtdf2)
|
| 3966 |
|
|
SYM (__gtdf2):
|
| 3967 |
|
|
link a6,IMM (0)
|
| 3968 |
|
|
pea -1
|
| 3969 |
|
|
movl a6@(20),sp@-
|
| 3970 |
|
|
movl a6@(16),sp@-
|
| 3971 |
|
|
movl a6@(12),sp@-
|
| 3972 |
|
|
movl a6@(8),sp@-
|
| 3973 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 3974 |
|
|
unlk a6
|
| 3975 |
|
|
rts
|
| 3976 |
|
|
#endif /* L_gtdf2 */
|
| 3977 |
|
|
|
| 3978 |
|
|
#ifdef L_gedf2
|
| 3979 |
|
|
.text
|
| 3980 |
|
|
FUNC(__gedf2)
|
| 3981 |
|
|
.globl SYM (__gedf2)
|
| 3982 |
|
|
SYM (__gedf2):
|
| 3983 |
|
|
link a6,IMM (0)
|
| 3984 |
|
|
pea -1
|
| 3985 |
|
|
movl a6@(20),sp@-
|
| 3986 |
|
|
movl a6@(16),sp@-
|
| 3987 |
|
|
movl a6@(12),sp@-
|
| 3988 |
|
|
movl a6@(8),sp@-
|
| 3989 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 3990 |
|
|
unlk a6
|
| 3991 |
|
|
rts
|
| 3992 |
|
|
#endif /* L_gedf2 */
|
| 3993 |
|
|
|
| 3994 |
|
|
#ifdef L_ltdf2
|
| 3995 |
|
|
.text
|
| 3996 |
|
|
FUNC(__ltdf2)
|
| 3997 |
|
|
.globl SYM (__ltdf2)
|
| 3998 |
|
|
SYM (__ltdf2):
|
| 3999 |
|
|
link a6,IMM (0)
|
| 4000 |
|
|
pea 1
|
| 4001 |
|
|
movl a6@(20),sp@-
|
| 4002 |
|
|
movl a6@(16),sp@-
|
| 4003 |
|
|
movl a6@(12),sp@-
|
| 4004 |
|
|
movl a6@(8),sp@-
|
| 4005 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 4006 |
|
|
unlk a6
|
| 4007 |
|
|
rts
|
| 4008 |
|
|
#endif /* L_ltdf2 */
|
| 4009 |
|
|
|
| 4010 |
|
|
#ifdef L_ledf2
|
| 4011 |
|
|
.text
|
| 4012 |
|
|
FUNC(__ledf2)
|
| 4013 |
|
|
.globl SYM (__ledf2)
|
| 4014 |
|
|
SYM (__ledf2):
|
| 4015 |
|
|
link a6,IMM (0)
|
| 4016 |
|
|
pea 1
|
| 4017 |
|
|
movl a6@(20),sp@-
|
| 4018 |
|
|
movl a6@(16),sp@-
|
| 4019 |
|
|
movl a6@(12),sp@-
|
| 4020 |
|
|
movl a6@(8),sp@-
|
| 4021 |
|
|
PICCALL SYM (__cmpdf2_internal)
|
| 4022 |
|
|
unlk a6
|
| 4023 |
|
|
rts
|
| 4024 |
|
|
#endif /* L_ledf2 */
|
| 4025 |
|
|
|
| 4026 |
|
|
| The comments above about __eqdf2, et. al., also apply to __eqsf2,
|
| 4027 |
|
|
| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.
|
| 4028 |
|
|
|
| 4029 |
|
|
#ifdef L_eqsf2
|
| 4030 |
|
|
.text
|
| 4031 |
|
|
FUNC(__eqsf2)
|
| 4032 |
|
|
.globl SYM (__eqsf2)
|
| 4033 |
|
|
SYM (__eqsf2):
|
| 4034 |
|
|
link a6,IMM (0)
|
| 4035 |
|
|
pea 1
|
| 4036 |
|
|
movl a6@(12),sp@-
|
| 4037 |
|
|
movl a6@(8),sp@-
|
| 4038 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4039 |
|
|
unlk a6
|
| 4040 |
|
|
rts
|
| 4041 |
|
|
#endif /* L_eqsf2 */
|
| 4042 |
|
|
|
| 4043 |
|
|
#ifdef L_nesf2
|
| 4044 |
|
|
.text
|
| 4045 |
|
|
FUNC(__nesf2)
|
| 4046 |
|
|
.globl SYM (__nesf2)
|
| 4047 |
|
|
SYM (__nesf2):
|
| 4048 |
|
|
link a6,IMM (0)
|
| 4049 |
|
|
pea 1
|
| 4050 |
|
|
movl a6@(12),sp@-
|
| 4051 |
|
|
movl a6@(8),sp@-
|
| 4052 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4053 |
|
|
unlk a6
|
| 4054 |
|
|
rts
|
| 4055 |
|
|
#endif /* L_nesf2 */
|
| 4056 |
|
|
|
| 4057 |
|
|
#ifdef L_gtsf2
|
| 4058 |
|
|
.text
|
| 4059 |
|
|
FUNC(__gtsf2)
|
| 4060 |
|
|
.globl SYM (__gtsf2)
|
| 4061 |
|
|
SYM (__gtsf2):
|
| 4062 |
|
|
link a6,IMM (0)
|
| 4063 |
|
|
pea -1
|
| 4064 |
|
|
movl a6@(12),sp@-
|
| 4065 |
|
|
movl a6@(8),sp@-
|
| 4066 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4067 |
|
|
unlk a6
|
| 4068 |
|
|
rts
|
| 4069 |
|
|
#endif /* L_gtsf2 */
|
| 4070 |
|
|
|
| 4071 |
|
|
#ifdef L_gesf2
|
| 4072 |
|
|
.text
|
| 4073 |
|
|
FUNC(__gesf2)
|
| 4074 |
|
|
.globl SYM (__gesf2)
|
| 4075 |
|
|
SYM (__gesf2):
|
| 4076 |
|
|
link a6,IMM (0)
|
| 4077 |
|
|
pea -1
|
| 4078 |
|
|
movl a6@(12),sp@-
|
| 4079 |
|
|
movl a6@(8),sp@-
|
| 4080 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4081 |
|
|
unlk a6
|
| 4082 |
|
|
rts
|
| 4083 |
|
|
#endif /* L_gesf2 */
|
| 4084 |
|
|
|
| 4085 |
|
|
#ifdef L_ltsf2
|
| 4086 |
|
|
.text
|
| 4087 |
|
|
FUNC(__ltsf2)
|
| 4088 |
|
|
.globl SYM (__ltsf2)
|
| 4089 |
|
|
SYM (__ltsf2):
|
| 4090 |
|
|
link a6,IMM (0)
|
| 4091 |
|
|
pea 1
|
| 4092 |
|
|
movl a6@(12),sp@-
|
| 4093 |
|
|
movl a6@(8),sp@-
|
| 4094 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4095 |
|
|
unlk a6
|
| 4096 |
|
|
rts
|
| 4097 |
|
|
#endif /* L_ltsf2 */
|
| 4098 |
|
|
|
| 4099 |
|
|
#ifdef L_lesf2
|
| 4100 |
|
|
.text
|
| 4101 |
|
|
FUNC(__lesf2)
|
| 4102 |
|
|
.globl SYM (__lesf2)
|
| 4103 |
|
|
SYM (__lesf2):
|
| 4104 |
|
|
link a6,IMM (0)
|
| 4105 |
|
|
pea 1
|
| 4106 |
|
|
movl a6@(12),sp@-
|
| 4107 |
|
|
movl a6@(8),sp@-
|
| 4108 |
|
|
PICCALL SYM (__cmpsf2_internal)
|
| 4109 |
|
|
unlk a6
|
| 4110 |
|
|
rts
|
| 4111 |
|
|
#endif /* L_lesf2 */
|
| 4112 |
|
|
|
| 4113 |
|
|
#if defined (__ELF__) && defined (__linux__)
|
| 4114 |
|
|
/* Make stack non-executable for ELF linux targets. */
|
| 4115 |
|
|
.section .note.GNU-stack,"",@progbits
|
| 4116 |
|
|
#endif
|