| 1 |
282 |
jeremybenn |
/* mips16 floating point support code
|
| 2 |
|
|
Copyright (C) 1996, 1997, 1998, 2008, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Cygnus Support
|
| 4 |
|
|
|
| 5 |
|
|
This file is free software; you can redistribute it and/or modify it
|
| 6 |
|
|
under the terms of the GNU General Public License as published by the
|
| 7 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 8 |
|
|
later version.
|
| 9 |
|
|
|
| 10 |
|
|
This file is distributed in the hope that it will be useful, but
|
| 11 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 13 |
|
|
General Public License for more details.
|
| 14 |
|
|
|
| 15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 17 |
|
|
3.1, as published by the Free Software Foundation.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License and
|
| 20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 22 |
|
|
. */
|
| 23 |
|
|
|
| 24 |
|
|
/* This file contains mips16 floating point support functions. These
|
| 25 |
|
|
functions are called by mips16 code to handle floating point when
|
| 26 |
|
|
-msoft-float is not used. They accept the arguments and return
|
| 27 |
|
|
values using the soft-float calling convention, but do the actual
|
| 28 |
|
|
operation using the hard floating point instructions. */
|
| 29 |
|
|
|
| 30 |
|
|
#if defined _MIPS_SIM && (_MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIO64)
|
| 31 |
|
|
|
| 32 |
|
|
/* This file contains 32-bit assembly code. */
|
| 33 |
|
|
.set nomips16
|
| 34 |
|
|
|
| 35 |
|
|
/* Start a function. */
|
| 36 |
|
|
|
| 37 |
|
|
#define STARTFN(NAME) .globl NAME; .ent NAME; NAME:
|
| 38 |
|
|
|
| 39 |
|
|
/* Finish a function. */
|
| 40 |
|
|
|
| 41 |
|
|
#define ENDFN(NAME) .end NAME
|
| 42 |
|
|
|
| 43 |
|
|
/* ARG1
|
| 44 |
|
|
The FPR that holds the first floating-point argument.
|
| 45 |
|
|
|
| 46 |
|
|
ARG2
|
| 47 |
|
|
The FPR that holds the second floating-point argument.
|
| 48 |
|
|
|
| 49 |
|
|
RET
|
| 50 |
|
|
The FPR that holds a floating-point return value. */
|
| 51 |
|
|
|
| 52 |
|
|
#define RET $f0
|
| 53 |
|
|
#define ARG1 $f12
|
| 54 |
|
|
#ifdef __mips64
|
| 55 |
|
|
#define ARG2 $f13
|
| 56 |
|
|
#else
|
| 57 |
|
|
#define ARG2 $f14
|
| 58 |
|
|
#endif
|
| 59 |
|
|
|
| 60 |
|
|
/* Set 64-bit register GPR so that its high 32 bits contain HIGH_FPR
|
| 61 |
|
|
and so that its low 32 bits contain LOW_FPR. */
|
| 62 |
|
|
#define MERGE_GPRf(GPR, HIGH_FPR, LOW_FPR) \
|
| 63 |
|
|
.set noat; \
|
| 64 |
|
|
mfc1 GPR, HIGH_FPR; \
|
| 65 |
|
|
mfc1 $1, LOW_FPR; \
|
| 66 |
|
|
dsll GPR, GPR, 32; \
|
| 67 |
|
|
or GPR, GPR, $1; \
|
| 68 |
|
|
.set at
|
| 69 |
|
|
|
| 70 |
|
|
/* Move the high 32 bits of GPR to HIGH_FPR and the low 32 bits of
|
| 71 |
|
|
GPR to LOW_FPR. */
|
| 72 |
|
|
#define MERGE_GPRt(GPR, HIGH_FPR, LOW_FPR) \
|
| 73 |
|
|
.set noat; \
|
| 74 |
|
|
dsrl $1, GPR, 32; \
|
| 75 |
|
|
mtc1 GPR, LOW_FPR; \
|
| 76 |
|
|
mtc1 $1, HIGH_FPR; \
|
| 77 |
|
|
.set at
|
| 78 |
|
|
|
| 79 |
|
|
/* Jump to T, and use "OPCODE, OP2" to implement a delayed move. */
|
| 80 |
|
|
#define DELAYt(T, OPCODE, OP2) \
|
| 81 |
|
|
.set noreorder; \
|
| 82 |
|
|
jr T; \
|
| 83 |
|
|
OPCODE, OP2; \
|
| 84 |
|
|
.set reorder
|
| 85 |
|
|
|
| 86 |
|
|
/* Use "OPCODE. OP2" and jump to T. */
|
| 87 |
|
|
#define DELAYf(T, OPCODE, OP2) OPCODE, OP2; jr T
|
| 88 |
|
|
|
| 89 |
|
|
/* MOVE_SF_BYTE0(D)
|
| 90 |
|
|
Move the first single-precision floating-point argument between
|
| 91 |
|
|
GPRs and FPRs.
|
| 92 |
|
|
|
| 93 |
|
|
MOVE_SI_BYTE0(D)
|
| 94 |
|
|
Likewise the first single-precision integer argument.
|
| 95 |
|
|
|
| 96 |
|
|
MOVE_SF_BYTE4(D)
|
| 97 |
|
|
Move the second single-precision floating-point argument between
|
| 98 |
|
|
GPRs and FPRs, given that the first argument occupies 4 bytes.
|
| 99 |
|
|
|
| 100 |
|
|
MOVE_SF_BYTE8(D)
|
| 101 |
|
|
Move the second single-precision floating-point argument between
|
| 102 |
|
|
GPRs and FPRs, given that the first argument occupies 8 bytes.
|
| 103 |
|
|
|
| 104 |
|
|
MOVE_DF_BYTE0(D)
|
| 105 |
|
|
Move the first double-precision floating-point argument between
|
| 106 |
|
|
GPRs and FPRs.
|
| 107 |
|
|
|
| 108 |
|
|
MOVE_DF_BYTE8(D)
|
| 109 |
|
|
Likewise the second double-precision floating-point argument.
|
| 110 |
|
|
|
| 111 |
|
|
MOVE_SF_RET(D, T)
|
| 112 |
|
|
Likewise a single-precision floating-point return value,
|
| 113 |
|
|
then jump to T.
|
| 114 |
|
|
|
| 115 |
|
|
MOVE_SC_RET(D, T)
|
| 116 |
|
|
Likewise a complex single-precision floating-point return value.
|
| 117 |
|
|
|
| 118 |
|
|
MOVE_DF_RET(D, T)
|
| 119 |
|
|
Likewise a double-precision floating-point return value.
|
| 120 |
|
|
|
| 121 |
|
|
MOVE_DC_RET(D, T)
|
| 122 |
|
|
Likewise a complex double-precision floating-point return value.
|
| 123 |
|
|
|
| 124 |
|
|
MOVE_SI_RET(D, T)
|
| 125 |
|
|
Likewise a single-precision integer return value.
|
| 126 |
|
|
|
| 127 |
|
|
The D argument is "t" to move to FPRs and "f" to move from FPRs.
|
| 128 |
|
|
The return macros may assume that the target of the jump does not
|
| 129 |
|
|
use a floating-point register. */
|
| 130 |
|
|
|
| 131 |
|
|
#define MOVE_SF_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
|
| 132 |
|
|
#define MOVE_SI_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
|
| 133 |
|
|
|
| 134 |
|
|
#if defined(__mips64) && defined(__MIPSEB__)
|
| 135 |
|
|
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f0, $f1); jr T
|
| 136 |
|
|
#elif defined(__mips64)
|
| 137 |
|
|
/* The high 32 bits of $2 correspond to the second word in memory;
|
| 138 |
|
|
i.e. the imaginary part. */
|
| 139 |
|
|
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f1, $f0); jr T
|
| 140 |
|
|
#elif __mips_fpr == 64
|
| 141 |
|
|
#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
|
| 142 |
|
|
#else
|
| 143 |
|
|
#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f2)
|
| 144 |
|
|
#endif
|
| 145 |
|
|
|
| 146 |
|
|
#if defined(__mips64)
|
| 147 |
|
|
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
|
| 148 |
|
|
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f13
|
| 149 |
|
|
#define MOVE_SF_BYTE8(D) m##D##c1 $5,$f13
|
| 150 |
|
|
#else
|
| 151 |
|
|
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
|
| 152 |
|
|
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f14
|
| 153 |
|
|
#define MOVE_SF_BYTE8(D) m##D##c1 $6,$f14
|
| 154 |
|
|
#endif
|
| 155 |
|
|
#define MOVE_SI_BYTE0(D) MOVE_SF_BYTE0(D)
|
| 156 |
|
|
|
| 157 |
|
|
#if defined(__mips64)
|
| 158 |
|
|
#define MOVE_DF_BYTE0(D) dm##D##c1 $4,$f12
|
| 159 |
|
|
#define MOVE_DF_BYTE8(D) dm##D##c1 $5,$f13
|
| 160 |
|
|
#define MOVE_DF_RET(D, T) DELAY##D (T, dm##D##c1 $2,$f0)
|
| 161 |
|
|
#define MOVE_DC_RET(D, T) dm##D##c1 $3,$f1; MOVE_DF_RET (D, T)
|
| 162 |
|
|
#elif __mips_fpr == 64 && defined(__MIPSEB__)
|
| 163 |
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $5,$f12; m##D##hc1 $4,$f12
|
| 164 |
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $7,$f14; m##D##hc1 $6,$f14
|
| 165 |
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $3,$f0; DELAY##D (T, m##D##hc1 $2,$f0)
|
| 166 |
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $5,$f1; m##D##hc1 $4,$f1; MOVE_DF_RET (D, T)
|
| 167 |
|
|
#elif __mips_fpr == 64
|
| 168 |
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##hc1 $5,$f12
|
| 169 |
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##hc1 $7,$f14
|
| 170 |
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##hc1 $3,$f0)
|
| 171 |
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f1; m##D##hc1 $5,$f1; MOVE_DF_RET (D, T)
|
| 172 |
|
|
#elif defined(__MIPSEB__)
|
| 173 |
|
|
/* FPRs are little-endian. */
|
| 174 |
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f13; m##D##c1 $5,$f12
|
| 175 |
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f15; m##D##c1 $7,$f14
|
| 176 |
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f1; DELAY##D (T, m##D##c1 $3,$f0)
|
| 177 |
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f3; m##D##c1 $5,$f2; MOVE_DF_RET (D, T)
|
| 178 |
|
|
#else
|
| 179 |
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##c1 $5,$f13
|
| 180 |
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##c1 $7,$f15
|
| 181 |
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
|
| 182 |
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##c1 $5,$f3; MOVE_DF_RET (D, T)
|
| 183 |
|
|
#endif
|
| 184 |
|
|
|
| 185 |
|
|
/* Single-precision math. */
|
| 186 |
|
|
|
| 187 |
|
|
/* Define a function NAME that loads two single-precision values,
|
| 188 |
|
|
performs FPU operation OPCODE on them, and returns the single-
|
| 189 |
|
|
precision result. */
|
| 190 |
|
|
|
| 191 |
|
|
#define OPSF3(NAME, OPCODE) \
|
| 192 |
|
|
STARTFN (NAME); \
|
| 193 |
|
|
MOVE_SF_BYTE0 (t); \
|
| 194 |
|
|
MOVE_SF_BYTE4 (t); \
|
| 195 |
|
|
OPCODE RET,ARG1,ARG2; \
|
| 196 |
|
|
MOVE_SF_RET (f, $31); \
|
| 197 |
|
|
ENDFN (NAME)
|
| 198 |
|
|
|
| 199 |
|
|
#ifdef L_m16addsf3
|
| 200 |
|
|
OPSF3 (__mips16_addsf3, add.s)
|
| 201 |
|
|
#endif
|
| 202 |
|
|
#ifdef L_m16subsf3
|
| 203 |
|
|
OPSF3 (__mips16_subsf3, sub.s)
|
| 204 |
|
|
#endif
|
| 205 |
|
|
#ifdef L_m16mulsf3
|
| 206 |
|
|
OPSF3 (__mips16_mulsf3, mul.s)
|
| 207 |
|
|
#endif
|
| 208 |
|
|
#ifdef L_m16divsf3
|
| 209 |
|
|
OPSF3 (__mips16_divsf3, div.s)
|
| 210 |
|
|
#endif
|
| 211 |
|
|
|
| 212 |
|
|
/* Define a function NAME that loads a single-precision value,
|
| 213 |
|
|
performs FPU operation OPCODE on it, and returns the single-
|
| 214 |
|
|
precision result. */
|
| 215 |
|
|
|
| 216 |
|
|
#define OPSF2(NAME, OPCODE) \
|
| 217 |
|
|
STARTFN (NAME); \
|
| 218 |
|
|
MOVE_SF_BYTE0 (t); \
|
| 219 |
|
|
OPCODE RET,ARG1; \
|
| 220 |
|
|
MOVE_SF_RET (f, $31); \
|
| 221 |
|
|
ENDFN (NAME)
|
| 222 |
|
|
|
| 223 |
|
|
#ifdef L_m16negsf2
|
| 224 |
|
|
OPSF2 (__mips16_negsf2, neg.s)
|
| 225 |
|
|
#endif
|
| 226 |
|
|
#ifdef L_m16abssf2
|
| 227 |
|
|
OPSF2 (__mips16_abssf2, abs.s)
|
| 228 |
|
|
#endif
|
| 229 |
|
|
|
| 230 |
|
|
/* Single-precision comparisons. */
|
| 231 |
|
|
|
| 232 |
|
|
/* Define a function NAME that loads two single-precision values,
|
| 233 |
|
|
performs floating point comparison OPCODE, and returns TRUE or
|
| 234 |
|
|
FALSE depending on the result. */
|
| 235 |
|
|
|
| 236 |
|
|
#define CMPSF(NAME, OPCODE, TRUE, FALSE) \
|
| 237 |
|
|
STARTFN (NAME); \
|
| 238 |
|
|
MOVE_SF_BYTE0 (t); \
|
| 239 |
|
|
MOVE_SF_BYTE4 (t); \
|
| 240 |
|
|
OPCODE ARG1,ARG2; \
|
| 241 |
|
|
li $2,TRUE; \
|
| 242 |
|
|
bc1t 1f; \
|
| 243 |
|
|
li $2,FALSE; \
|
| 244 |
|
|
1:; \
|
| 245 |
|
|
j $31; \
|
| 246 |
|
|
ENDFN (NAME)
|
| 247 |
|
|
|
| 248 |
|
|
/* Like CMPSF, but reverse the comparison operands. */
|
| 249 |
|
|
|
| 250 |
|
|
#define REVCMPSF(NAME, OPCODE, TRUE, FALSE) \
|
| 251 |
|
|
STARTFN (NAME); \
|
| 252 |
|
|
MOVE_SF_BYTE0 (t); \
|
| 253 |
|
|
MOVE_SF_BYTE4 (t); \
|
| 254 |
|
|
OPCODE ARG2,ARG1; \
|
| 255 |
|
|
li $2,TRUE; \
|
| 256 |
|
|
bc1t 1f; \
|
| 257 |
|
|
li $2,FALSE; \
|
| 258 |
|
|
1:; \
|
| 259 |
|
|
j $31; \
|
| 260 |
|
|
ENDFN (NAME)
|
| 261 |
|
|
|
| 262 |
|
|
#ifdef L_m16eqsf2
|
| 263 |
|
|
CMPSF (__mips16_eqsf2, c.eq.s, 0, 1)
|
| 264 |
|
|
#endif
|
| 265 |
|
|
#ifdef L_m16nesf2
|
| 266 |
|
|
CMPSF (__mips16_nesf2, c.eq.s, 0, 1)
|
| 267 |
|
|
#endif
|
| 268 |
|
|
#ifdef L_m16gtsf2
|
| 269 |
|
|
REVCMPSF (__mips16_gtsf2, c.lt.s, 1, 0)
|
| 270 |
|
|
#endif
|
| 271 |
|
|
#ifdef L_m16gesf2
|
| 272 |
|
|
REVCMPSF (__mips16_gesf2, c.le.s, 0, -1)
|
| 273 |
|
|
#endif
|
| 274 |
|
|
#ifdef L_m16lesf2
|
| 275 |
|
|
CMPSF (__mips16_lesf2, c.le.s, 0, 1)
|
| 276 |
|
|
#endif
|
| 277 |
|
|
#ifdef L_m16ltsf2
|
| 278 |
|
|
CMPSF (__mips16_ltsf2, c.lt.s, -1, 0)
|
| 279 |
|
|
#endif
|
| 280 |
|
|
#ifdef L_m16unordsf2
|
| 281 |
|
|
CMPSF(__mips16_unordsf2, c.un.s, 1, 0)
|
| 282 |
|
|
#endif
|
| 283 |
|
|
|
| 284 |
|
|
|
| 285 |
|
|
/* Single-precision conversions. */
|
| 286 |
|
|
|
| 287 |
|
|
#ifdef L_m16fltsisf
|
| 288 |
|
|
STARTFN (__mips16_floatsisf)
|
| 289 |
|
|
MOVE_SF_BYTE0 (t)
|
| 290 |
|
|
cvt.s.w RET,ARG1
|
| 291 |
|
|
MOVE_SF_RET (f, $31)
|
| 292 |
|
|
ENDFN (__mips16_floatsisf)
|
| 293 |
|
|
#endif
|
| 294 |
|
|
|
| 295 |
|
|
#ifdef L_m16fltunsisf
|
| 296 |
|
|
STARTFN (__mips16_floatunsisf)
|
| 297 |
|
|
.set noreorder
|
| 298 |
|
|
bltz $4,1f
|
| 299 |
|
|
MOVE_SF_BYTE0 (t)
|
| 300 |
|
|
.set reorder
|
| 301 |
|
|
cvt.s.w RET,ARG1
|
| 302 |
|
|
MOVE_SF_RET (f, $31)
|
| 303 |
|
|
1:
|
| 304 |
|
|
and $2,$4,1
|
| 305 |
|
|
srl $3,$4,1
|
| 306 |
|
|
or $2,$2,$3
|
| 307 |
|
|
mtc1 $2,RET
|
| 308 |
|
|
cvt.s.w RET,RET
|
| 309 |
|
|
add.s RET,RET,RET
|
| 310 |
|
|
MOVE_SF_RET (f, $31)
|
| 311 |
|
|
ENDFN (__mips16_floatunsisf)
|
| 312 |
|
|
#endif
|
| 313 |
|
|
|
| 314 |
|
|
#ifdef L_m16fix_truncsfsi
|
| 315 |
|
|
STARTFN (__mips16_fix_truncsfsi)
|
| 316 |
|
|
MOVE_SF_BYTE0 (t)
|
| 317 |
|
|
trunc.w.s RET,ARG1,$4
|
| 318 |
|
|
MOVE_SI_RET (f, $31)
|
| 319 |
|
|
ENDFN (__mips16_fix_truncsfsi)
|
| 320 |
|
|
#endif
|
| 321 |
|
|
|
| 322 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 323 |
|
|
|
| 324 |
|
|
/* Double-precision math. */
|
| 325 |
|
|
|
| 326 |
|
|
/* Define a function NAME that loads two double-precision values,
|
| 327 |
|
|
performs FPU operation OPCODE on them, and returns the double-
|
| 328 |
|
|
precision result. */
|
| 329 |
|
|
|
| 330 |
|
|
#define OPDF3(NAME, OPCODE) \
|
| 331 |
|
|
STARTFN (NAME); \
|
| 332 |
|
|
MOVE_DF_BYTE0 (t); \
|
| 333 |
|
|
MOVE_DF_BYTE8 (t); \
|
| 334 |
|
|
OPCODE RET,ARG1,ARG2; \
|
| 335 |
|
|
MOVE_DF_RET (f, $31); \
|
| 336 |
|
|
ENDFN (NAME)
|
| 337 |
|
|
|
| 338 |
|
|
#ifdef L_m16adddf3
|
| 339 |
|
|
OPDF3 (__mips16_adddf3, add.d)
|
| 340 |
|
|
#endif
|
| 341 |
|
|
#ifdef L_m16subdf3
|
| 342 |
|
|
OPDF3 (__mips16_subdf3, sub.d)
|
| 343 |
|
|
#endif
|
| 344 |
|
|
#ifdef L_m16muldf3
|
| 345 |
|
|
OPDF3 (__mips16_muldf3, mul.d)
|
| 346 |
|
|
#endif
|
| 347 |
|
|
#ifdef L_m16divdf3
|
| 348 |
|
|
OPDF3 (__mips16_divdf3, div.d)
|
| 349 |
|
|
#endif
|
| 350 |
|
|
|
| 351 |
|
|
/* Define a function NAME that loads a double-precision value,
|
| 352 |
|
|
performs FPU operation OPCODE on it, and returns the double-
|
| 353 |
|
|
precision result. */
|
| 354 |
|
|
|
| 355 |
|
|
#define OPDF2(NAME, OPCODE) \
|
| 356 |
|
|
STARTFN (NAME); \
|
| 357 |
|
|
MOVE_DF_BYTE0 (t); \
|
| 358 |
|
|
OPCODE RET,ARG1; \
|
| 359 |
|
|
MOVE_DF_RET (f, $31); \
|
| 360 |
|
|
ENDFN (NAME)
|
| 361 |
|
|
|
| 362 |
|
|
#ifdef L_m16negdf2
|
| 363 |
|
|
OPDF2 (__mips16_negdf2, neg.d)
|
| 364 |
|
|
#endif
|
| 365 |
|
|
#ifdef L_m16absdf2
|
| 366 |
|
|
OPDF2 (__mips16_absdf2, abs.d)
|
| 367 |
|
|
#endif
|
| 368 |
|
|
|
| 369 |
|
|
/* Conversions between single and double precision. */
|
| 370 |
|
|
|
| 371 |
|
|
#ifdef L_m16extsfdf2
|
| 372 |
|
|
STARTFN (__mips16_extendsfdf2)
|
| 373 |
|
|
MOVE_SF_BYTE0 (t)
|
| 374 |
|
|
cvt.d.s RET,ARG1
|
| 375 |
|
|
MOVE_DF_RET (f, $31)
|
| 376 |
|
|
ENDFN (__mips16_extendsfdf2)
|
| 377 |
|
|
#endif
|
| 378 |
|
|
|
| 379 |
|
|
#ifdef L_m16trdfsf2
|
| 380 |
|
|
STARTFN (__mips16_truncdfsf2)
|
| 381 |
|
|
MOVE_DF_BYTE0 (t)
|
| 382 |
|
|
cvt.s.d RET,ARG1
|
| 383 |
|
|
MOVE_SF_RET (f, $31)
|
| 384 |
|
|
ENDFN (__mips16_truncdfsf2)
|
| 385 |
|
|
#endif
|
| 386 |
|
|
|
| 387 |
|
|
/* Double-precision comparisons. */
|
| 388 |
|
|
|
| 389 |
|
|
/* Define a function NAME that loads two double-precision values,
|
| 390 |
|
|
performs floating point comparison OPCODE, and returns TRUE or
|
| 391 |
|
|
FALSE depending on the result. */
|
| 392 |
|
|
|
| 393 |
|
|
#define CMPDF(NAME, OPCODE, TRUE, FALSE) \
|
| 394 |
|
|
STARTFN (NAME); \
|
| 395 |
|
|
MOVE_DF_BYTE0 (t); \
|
| 396 |
|
|
MOVE_DF_BYTE8 (t); \
|
| 397 |
|
|
OPCODE ARG1,ARG2; \
|
| 398 |
|
|
li $2,TRUE; \
|
| 399 |
|
|
bc1t 1f; \
|
| 400 |
|
|
li $2,FALSE; \
|
| 401 |
|
|
1:; \
|
| 402 |
|
|
j $31; \
|
| 403 |
|
|
ENDFN (NAME)
|
| 404 |
|
|
|
| 405 |
|
|
/* Like CMPDF, but reverse the comparison operands. */
|
| 406 |
|
|
|
| 407 |
|
|
#define REVCMPDF(NAME, OPCODE, TRUE, FALSE) \
|
| 408 |
|
|
STARTFN (NAME); \
|
| 409 |
|
|
MOVE_DF_BYTE0 (t); \
|
| 410 |
|
|
MOVE_DF_BYTE8 (t); \
|
| 411 |
|
|
OPCODE ARG2,ARG1; \
|
| 412 |
|
|
li $2,TRUE; \
|
| 413 |
|
|
bc1t 1f; \
|
| 414 |
|
|
li $2,FALSE; \
|
| 415 |
|
|
1:; \
|
| 416 |
|
|
j $31; \
|
| 417 |
|
|
ENDFN (NAME)
|
| 418 |
|
|
|
| 419 |
|
|
#ifdef L_m16eqdf2
|
| 420 |
|
|
CMPDF (__mips16_eqdf2, c.eq.d, 0, 1)
|
| 421 |
|
|
#endif
|
| 422 |
|
|
#ifdef L_m16nedf2
|
| 423 |
|
|
CMPDF (__mips16_nedf2, c.eq.d, 0, 1)
|
| 424 |
|
|
#endif
|
| 425 |
|
|
#ifdef L_m16gtdf2
|
| 426 |
|
|
REVCMPDF (__mips16_gtdf2, c.lt.d, 1, 0)
|
| 427 |
|
|
#endif
|
| 428 |
|
|
#ifdef L_m16gedf2
|
| 429 |
|
|
REVCMPDF (__mips16_gedf2, c.le.d, 0, -1)
|
| 430 |
|
|
#endif
|
| 431 |
|
|
#ifdef L_m16ledf2
|
| 432 |
|
|
CMPDF (__mips16_ledf2, c.le.d, 0, 1)
|
| 433 |
|
|
#endif
|
| 434 |
|
|
#ifdef L_m16ltdf2
|
| 435 |
|
|
CMPDF (__mips16_ltdf2, c.lt.d, -1, 0)
|
| 436 |
|
|
#endif
|
| 437 |
|
|
#ifdef L_m16unorddf2
|
| 438 |
|
|
CMPDF(__mips16_unorddf2, c.un.d, 1, 0)
|
| 439 |
|
|
#endif
|
| 440 |
|
|
|
| 441 |
|
|
/* Double-precision conversions. */
|
| 442 |
|
|
|
| 443 |
|
|
#ifdef L_m16fltsidf
|
| 444 |
|
|
STARTFN (__mips16_floatsidf)
|
| 445 |
|
|
MOVE_SI_BYTE0 (t)
|
| 446 |
|
|
cvt.d.w RET,ARG1
|
| 447 |
|
|
MOVE_DF_RET (f, $31)
|
| 448 |
|
|
ENDFN (__mips16_floatsidf)
|
| 449 |
|
|
#endif
|
| 450 |
|
|
|
| 451 |
|
|
#ifdef L_m16fltunsidf
|
| 452 |
|
|
STARTFN (__mips16_floatunsidf)
|
| 453 |
|
|
MOVE_SI_BYTE0 (t)
|
| 454 |
|
|
cvt.d.w RET,ARG1
|
| 455 |
|
|
bgez $4,1f
|
| 456 |
|
|
li.d ARG1, 4.294967296e+9
|
| 457 |
|
|
add.d RET, RET, ARG1
|
| 458 |
|
|
1: MOVE_DF_RET (f, $31)
|
| 459 |
|
|
ENDFN (__mips16_floatunsidf)
|
| 460 |
|
|
#endif
|
| 461 |
|
|
|
| 462 |
|
|
#ifdef L_m16fix_truncdfsi
|
| 463 |
|
|
STARTFN (__mips16_fix_truncdfsi)
|
| 464 |
|
|
MOVE_DF_BYTE0 (t)
|
| 465 |
|
|
trunc.w.d RET,ARG1,$4
|
| 466 |
|
|
MOVE_SI_RET (f, $31)
|
| 467 |
|
|
ENDFN (__mips16_fix_truncdfsi)
|
| 468 |
|
|
#endif
|
| 469 |
|
|
#endif /* !__mips_single_float */
|
| 470 |
|
|
|
| 471 |
|
|
/* Define a function NAME that moves a return value of mode MODE from
|
| 472 |
|
|
FPRs to GPRs. */
|
| 473 |
|
|
|
| 474 |
|
|
#define RET_FUNCTION(NAME, MODE) \
|
| 475 |
|
|
STARTFN (NAME); \
|
| 476 |
|
|
MOVE_##MODE##_RET (t, $31); \
|
| 477 |
|
|
ENDFN (NAME)
|
| 478 |
|
|
|
| 479 |
|
|
#ifdef L_m16retsf
|
| 480 |
|
|
RET_FUNCTION (__mips16_ret_sf, SF)
|
| 481 |
|
|
#endif
|
| 482 |
|
|
|
| 483 |
|
|
#ifdef L_m16retsc
|
| 484 |
|
|
RET_FUNCTION (__mips16_ret_sc, SC)
|
| 485 |
|
|
#endif
|
| 486 |
|
|
|
| 487 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 488 |
|
|
#ifdef L_m16retdf
|
| 489 |
|
|
RET_FUNCTION (__mips16_ret_df, DF)
|
| 490 |
|
|
#endif
|
| 491 |
|
|
|
| 492 |
|
|
#ifdef L_m16retdc
|
| 493 |
|
|
RET_FUNCTION (__mips16_ret_dc, DC)
|
| 494 |
|
|
#endif
|
| 495 |
|
|
#endif /* !__mips_single_float */
|
| 496 |
|
|
|
| 497 |
|
|
/* STUB_ARGS_X copies the arguments from GPRs to FPRs for argument
|
| 498 |
|
|
code X. X is calculated as ARG1 + ARG2 * 4, where ARG1 and ARG2
|
| 499 |
|
|
classify the first and second arguments as follows:
|
| 500 |
|
|
|
| 501 |
|
|
1: a single-precision argument
|
| 502 |
|
|
2: a double-precision argument
|
| 503 |
|
|
0: no argument, or not one of the above. */
|
| 504 |
|
|
|
| 505 |
|
|
#define STUB_ARGS_0 /* () */
|
| 506 |
|
|
#define STUB_ARGS_1 MOVE_SF_BYTE0 (t) /* (sf) */
|
| 507 |
|
|
#define STUB_ARGS_5 MOVE_SF_BYTE0 (t); MOVE_SF_BYTE4 (t) /* (sf, sf) */
|
| 508 |
|
|
#define STUB_ARGS_9 MOVE_SF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (sf, df) */
|
| 509 |
|
|
#define STUB_ARGS_2 MOVE_DF_BYTE0 (t) /* (df) */
|
| 510 |
|
|
#define STUB_ARGS_6 MOVE_DF_BYTE0 (t); MOVE_SF_BYTE8 (t) /* (df, sf) */
|
| 511 |
|
|
#define STUB_ARGS_10 MOVE_DF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (df, df) */
|
| 512 |
|
|
|
| 513 |
|
|
/* These functions are used by 16-bit code when calling via a function
|
| 514 |
|
|
pointer. They must copy the floating point arguments from the GPRs
|
| 515 |
|
|
to FPRs and then call function $2. */
|
| 516 |
|
|
|
| 517 |
|
|
#define CALL_STUB_NO_RET(NAME, CODE) \
|
| 518 |
|
|
STARTFN (NAME); \
|
| 519 |
|
|
STUB_ARGS_##CODE; \
|
| 520 |
|
|
.set noreorder; \
|
| 521 |
|
|
jr $2; \
|
| 522 |
|
|
move $25,$2; \
|
| 523 |
|
|
.set reorder; \
|
| 524 |
|
|
ENDFN (NAME)
|
| 525 |
|
|
|
| 526 |
|
|
#ifdef L_m16stub1
|
| 527 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_1, 1)
|
| 528 |
|
|
#endif
|
| 529 |
|
|
|
| 530 |
|
|
#ifdef L_m16stub5
|
| 531 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_5, 5)
|
| 532 |
|
|
#endif
|
| 533 |
|
|
|
| 534 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 535 |
|
|
|
| 536 |
|
|
#ifdef L_m16stub2
|
| 537 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_2, 2)
|
| 538 |
|
|
#endif
|
| 539 |
|
|
|
| 540 |
|
|
#ifdef L_m16stub6
|
| 541 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_6, 6)
|
| 542 |
|
|
#endif
|
| 543 |
|
|
|
| 544 |
|
|
#ifdef L_m16stub9
|
| 545 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_9, 9)
|
| 546 |
|
|
#endif
|
| 547 |
|
|
|
| 548 |
|
|
#ifdef L_m16stub10
|
| 549 |
|
|
CALL_STUB_NO_RET (__mips16_call_stub_10, 10)
|
| 550 |
|
|
#endif
|
| 551 |
|
|
#endif /* !__mips_single_float */
|
| 552 |
|
|
|
| 553 |
|
|
/* Now we have the same set of functions, except that this time the
|
| 554 |
|
|
function being called returns an SFmode, SCmode, DFmode or DCmode
|
| 555 |
|
|
value; we need to instantiate a set for each case. The calling
|
| 556 |
|
|
function will arrange to preserve $18, so these functions are free
|
| 557 |
|
|
to use it to hold the return address.
|
| 558 |
|
|
|
| 559 |
|
|
Note that we do not know whether the function we are calling is 16
|
| 560 |
|
|
bit or 32 bit. However, it does not matter, because 16-bit
|
| 561 |
|
|
functions always return floating point values in both the gp and
|
| 562 |
|
|
the fp regs. It would be possible to check whether the function
|
| 563 |
|
|
being called is 16 bits, in which case the copy is unnecessary;
|
| 564 |
|
|
however, it's faster to always do the copy. */
|
| 565 |
|
|
|
| 566 |
|
|
#define CALL_STUB_RET(NAME, CODE, MODE) \
|
| 567 |
|
|
STARTFN (NAME); \
|
| 568 |
|
|
move $18,$31; \
|
| 569 |
|
|
STUB_ARGS_##CODE; \
|
| 570 |
|
|
.set noreorder; \
|
| 571 |
|
|
jalr $2; \
|
| 572 |
|
|
move $25,$2; \
|
| 573 |
|
|
.set reorder; \
|
| 574 |
|
|
MOVE_##MODE##_RET (f, $18); \
|
| 575 |
|
|
ENDFN (NAME)
|
| 576 |
|
|
|
| 577 |
|
|
/* First, instantiate the single-float set. */
|
| 578 |
|
|
|
| 579 |
|
|
#ifdef L_m16stubsf0
|
| 580 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_0, 0, SF)
|
| 581 |
|
|
#endif
|
| 582 |
|
|
|
| 583 |
|
|
#ifdef L_m16stubsf1
|
| 584 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_1, 1, SF)
|
| 585 |
|
|
#endif
|
| 586 |
|
|
|
| 587 |
|
|
#ifdef L_m16stubsf5
|
| 588 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_5, 5, SF)
|
| 589 |
|
|
#endif
|
| 590 |
|
|
|
| 591 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 592 |
|
|
#ifdef L_m16stubsf2
|
| 593 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_2, 2, SF)
|
| 594 |
|
|
#endif
|
| 595 |
|
|
|
| 596 |
|
|
#ifdef L_m16stubsf6
|
| 597 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_6, 6, SF)
|
| 598 |
|
|
#endif
|
| 599 |
|
|
|
| 600 |
|
|
#ifdef L_m16stubsf9
|
| 601 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_9, 9, SF)
|
| 602 |
|
|
#endif
|
| 603 |
|
|
|
| 604 |
|
|
#ifdef L_m16stubsf10
|
| 605 |
|
|
CALL_STUB_RET (__mips16_call_stub_sf_10, 10, SF)
|
| 606 |
|
|
#endif
|
| 607 |
|
|
#endif /* !__mips_single_float */
|
| 608 |
|
|
|
| 609 |
|
|
|
| 610 |
|
|
/* Now we have the same set of functions again, except that this time
|
| 611 |
|
|
the function being called returns an DFmode value. */
|
| 612 |
|
|
|
| 613 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 614 |
|
|
#ifdef L_m16stubdf0
|
| 615 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_0, 0, DF)
|
| 616 |
|
|
#endif
|
| 617 |
|
|
|
| 618 |
|
|
#ifdef L_m16stubdf1
|
| 619 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_1, 1, DF)
|
| 620 |
|
|
#endif
|
| 621 |
|
|
|
| 622 |
|
|
#ifdef L_m16stubdf5
|
| 623 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_5, 5, DF)
|
| 624 |
|
|
#endif
|
| 625 |
|
|
|
| 626 |
|
|
#ifdef L_m16stubdf2
|
| 627 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_2, 2, DF)
|
| 628 |
|
|
#endif
|
| 629 |
|
|
|
| 630 |
|
|
#ifdef L_m16stubdf6
|
| 631 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_6, 6, DF)
|
| 632 |
|
|
#endif
|
| 633 |
|
|
|
| 634 |
|
|
#ifdef L_m16stubdf9
|
| 635 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_9, 9, DF)
|
| 636 |
|
|
#endif
|
| 637 |
|
|
|
| 638 |
|
|
#ifdef L_m16stubdf10
|
| 639 |
|
|
CALL_STUB_RET (__mips16_call_stub_df_10, 10, DF)
|
| 640 |
|
|
#endif
|
| 641 |
|
|
#endif /* !__mips_single_float */
|
| 642 |
|
|
|
| 643 |
|
|
|
| 644 |
|
|
/* Ho hum. Here we have the same set of functions again, this time
|
| 645 |
|
|
for when the function being called returns an SCmode value. */
|
| 646 |
|
|
|
| 647 |
|
|
#ifdef L_m16stubsc0
|
| 648 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_0, 0, SC)
|
| 649 |
|
|
#endif
|
| 650 |
|
|
|
| 651 |
|
|
#ifdef L_m16stubsc1
|
| 652 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_1, 1, SC)
|
| 653 |
|
|
#endif
|
| 654 |
|
|
|
| 655 |
|
|
#ifdef L_m16stubsc5
|
| 656 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_5, 5, SC)
|
| 657 |
|
|
#endif
|
| 658 |
|
|
|
| 659 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 660 |
|
|
#ifdef L_m16stubsc2
|
| 661 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_2, 2, SC)
|
| 662 |
|
|
#endif
|
| 663 |
|
|
|
| 664 |
|
|
#ifdef L_m16stubsc6
|
| 665 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_6, 6, SC)
|
| 666 |
|
|
#endif
|
| 667 |
|
|
|
| 668 |
|
|
#ifdef L_m16stubsc9
|
| 669 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_9, 9, SC)
|
| 670 |
|
|
#endif
|
| 671 |
|
|
|
| 672 |
|
|
#ifdef L_m16stubsc10
|
| 673 |
|
|
CALL_STUB_RET (__mips16_call_stub_sc_10, 10, SC)
|
| 674 |
|
|
#endif
|
| 675 |
|
|
#endif /* !__mips_single_float */
|
| 676 |
|
|
|
| 677 |
|
|
|
| 678 |
|
|
/* Finally, another set of functions for DCmode. */
|
| 679 |
|
|
|
| 680 |
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
| 681 |
|
|
#ifdef L_m16stubdc0
|
| 682 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_0, 0, DC)
|
| 683 |
|
|
#endif
|
| 684 |
|
|
|
| 685 |
|
|
#ifdef L_m16stubdc1
|
| 686 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_1, 1, DC)
|
| 687 |
|
|
#endif
|
| 688 |
|
|
|
| 689 |
|
|
#ifdef L_m16stubdc5
|
| 690 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_5, 5, DC)
|
| 691 |
|
|
#endif
|
| 692 |
|
|
|
| 693 |
|
|
#ifdef L_m16stubdc2
|
| 694 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_2, 2, DC)
|
| 695 |
|
|
#endif
|
| 696 |
|
|
|
| 697 |
|
|
#ifdef L_m16stubdc6
|
| 698 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_6, 6, DC)
|
| 699 |
|
|
#endif
|
| 700 |
|
|
|
| 701 |
|
|
#ifdef L_m16stubdc9
|
| 702 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_9, 9, DC)
|
| 703 |
|
|
#endif
|
| 704 |
|
|
|
| 705 |
|
|
#ifdef L_m16stubdc10
|
| 706 |
|
|
CALL_STUB_RET (__mips16_call_stub_dc_10, 10, DC)
|
| 707 |
|
|
#endif
|
| 708 |
|
|
#endif /* !__mips_single_float */
|
| 709 |
|
|
#endif
|