1 |
378 |
julius |
/* Subroutines for insn-output.c for GNU compiler. OpenRISC 1000 version.
|
2 |
282 |
jeremybenn |
Copyright (C) 1987, 1992, 1997, 1999, 2000, 2001, 2002, 2003, 2004,
|
3 |
|
|
2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc
|
4 |
|
|
Copyright (C) 2010 Embecosm Limited
|
5 |
|
|
|
6 |
|
|
Contributed by Damjan Lampret <damjanl@bsemi.com> in 1999.
|
7 |
|
|
Major optimizations by Matjaz Breskvar <matjazb@bsemi.com> in 2005.
|
8 |
399 |
jeremybenn |
Updated for GCC 4.5 by Jeremy Bennett <jeremy.bennett@embecoms.com>
|
9 |
|
|
and Joern Rennecke <joern.rennecke@embecosm.com> in 2010.
|
10 |
282 |
jeremybenn |
|
11 |
|
|
This file is part of GNU CC.
|
12 |
|
|
|
13 |
|
|
This program is free software; you can redistribute it and/or modify it
|
14 |
|
|
under the terms of the GNU General Public License as published by the Free
|
15 |
|
|
Software Foundation; either version 3 of the License, or (at your option)
|
16 |
|
|
any later version.
|
17 |
|
|
|
18 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
19 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
20 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
21 |
|
|
more details.
|
22 |
|
|
|
23 |
|
|
You should have received a copy of the GNU General Public License along
|
24 |
|
|
with this program. If not, see <http://www.gnu.org/licenses/>. */
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "tree.h"
|
32 |
|
|
#include "obstack.h"
|
33 |
|
|
#include "regs.h"
|
34 |
|
|
#include "hard-reg-set.h"
|
35 |
|
|
#include "real.h"
|
36 |
|
|
#include "insn-config.h"
|
37 |
|
|
#include "conditions.h"
|
38 |
|
|
#include "output.h"
|
39 |
|
|
#include "insn-attr.h"
|
40 |
|
|
#include "flags.h"
|
41 |
|
|
#include "reload.h"
|
42 |
|
|
#include "function.h"
|
43 |
|
|
#include "expr.h"
|
44 |
|
|
#include "toplev.h"
|
45 |
|
|
#include "recog.h"
|
46 |
|
|
#include "ggc.h"
|
47 |
|
|
#include "except.h"
|
48 |
|
|
#include "integrate.h"
|
49 |
|
|
#include "tm_p.h"
|
50 |
|
|
#include "target.h"
|
51 |
|
|
#include "target-def.h"
|
52 |
|
|
#include "debug.h"
|
53 |
|
|
#include "langhooks.h"
|
54 |
|
|
#include "df.h"
|
55 |
|
|
#include "dwarf2.h"
|
56 |
|
|
|
57 |
|
|
|
58 |
332 |
jeremybenn |
/* ========================================================================== */
|
59 |
|
|
/* Local macros */
|
60 |
282 |
jeremybenn |
|
61 |
332 |
jeremybenn |
/* Construct a l.movhi instruction for the given reg and value */
|
62 |
|
|
#define OR32_MOVHI(rd, k) \
|
63 |
|
|
((0x6 << 26) | ((rd) << 21) | (k))
|
64 |
|
|
|
65 |
|
|
/* Construct a l.ori instruction for the given two regs and value */
|
66 |
|
|
#define OR32_ORI(rd, ra, k) \
|
67 |
|
|
((0x2a << 26) | ((rd) << 21) | ((ra) << 16) | (k))
|
68 |
|
|
|
69 |
|
|
/* Construct a l.lwz instruction for the given two registers and offset */
|
70 |
|
|
#define OR32_LWZ(rd, ra, i) \
|
71 |
|
|
((0x21 << 26) | ((rd) << 21) | ((ra) << 16) | (i))
|
72 |
|
|
|
73 |
|
|
/* Construct a l.jr instruction for the given register */
|
74 |
|
|
#define OR32_JR(rb) \
|
75 |
|
|
((0x11 << 26) | ((rb) << 11))
|
76 |
|
|
|
77 |
282 |
jeremybenn |
/* ========================================================================== */
|
78 |
|
|
/* Static variables (i.e. global to this file only. */
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
/* Save information from a "cmpxx" pattern until the branch or scc is
|
82 |
|
|
emitted. These record the two operands of the "cmpxx" */
|
83 |
|
|
rtx or32_compare_op0;
|
84 |
|
|
rtx or32_compare_op1;
|
85 |
|
|
|
86 |
|
|
/*!Stack layout we use for pushing and poping saved registers */
|
87 |
|
|
static struct
|
88 |
|
|
{
|
89 |
|
|
bool save_lr_p;
|
90 |
|
|
int lr_save_offset;
|
91 |
|
|
bool save_fp_p;
|
92 |
|
|
int fp_save_offset;
|
93 |
|
|
int gpr_size;
|
94 |
|
|
int gpr_offset;
|
95 |
|
|
int total_size;
|
96 |
|
|
int vars_size;
|
97 |
|
|
int args_size;
|
98 |
414 |
jeremybenn |
int gpr_frame;
|
99 |
|
|
int late_frame;
|
100 |
282 |
jeremybenn |
HOST_WIDE_INT mask;
|
101 |
|
|
} frame_info;
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
/* ========================================================================== */
|
105 |
|
|
/* Local (i.e. static) utility functions */
|
106 |
|
|
|
107 |
|
|
/* -------------------------------------------------------------------------- */
|
108 |
|
|
/*!Must the current function save a register?
|
109 |
|
|
|
110 |
|
|
@param[in] regno The register to consider.
|
111 |
|
|
|
112 |
|
|
@return Non-zero (TRUE) if current function must save "regno", zero
|
113 |
|
|
(FALSE) otherwise. */
|
114 |
|
|
/* -------------------------------------------------------------------------- */
|
115 |
|
|
static bool
|
116 |
|
|
or32_save_reg_p (int regno)
|
117 |
|
|
{
|
118 |
|
|
/* No need to save the faked cc0 register. */
|
119 |
|
|
if (regno == OR32_FLAGS_REG)
|
120 |
|
|
return false;
|
121 |
|
|
|
122 |
|
|
/* Check call-saved registers. */
|
123 |
|
|
if (df_regs_ever_live_p(regno) && !call_used_regs[regno])
|
124 |
|
|
return true;
|
125 |
|
|
|
126 |
|
|
/* We need to save the old frame pointer before setting up a new
|
127 |
|
|
one. */
|
128 |
399 |
jeremybenn |
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
|
129 |
282 |
jeremybenn |
return true;
|
130 |
|
|
|
131 |
|
|
/* We need to save the incoming return address if it is ever clobbered
|
132 |
|
|
within the function. */
|
133 |
|
|
if (regno == LINK_REGNUM && df_regs_ever_live_p(regno))
|
134 |
|
|
return true;
|
135 |
|
|
|
136 |
|
|
return false;
|
137 |
|
|
|
138 |
|
|
} /* or32_save_reg_p () */
|
139 |
|
|
|
140 |
399 |
jeremybenn |
bool
|
141 |
|
|
or32_save_reg_p_cached (int regno)
|
142 |
|
|
{
|
143 |
|
|
return (frame_info.mask & ((HOST_WIDE_INT) 1 << regno)) != 0;
|
144 |
|
|
}
|
145 |
|
|
|
146 |
|
|
/* N.B. contrary to the ISA documentation, the stack includes the outgoing
|
147 |
|
|
arguments. */
|
148 |
282 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
149 |
|
|
/*!Compute full frame size and layout.
|
150 |
|
|
|
151 |
|
|
Store information in "frame_info".
|
152 |
|
|
|
153 |
|
|
@param[in] size The size of the function's local variables.
|
154 |
|
|
|
155 |
|
|
@return Total size of stack frame. */
|
156 |
|
|
/* -------------------------------------------------------------------------- */
|
157 |
|
|
static HOST_WIDE_INT
|
158 |
|
|
or32_compute_frame_size (HOST_WIDE_INT size)
|
159 |
|
|
{
|
160 |
|
|
HOST_WIDE_INT args_size;
|
161 |
|
|
HOST_WIDE_INT vars_size;
|
162 |
|
|
HOST_WIDE_INT stack_offset;
|
163 |
414 |
jeremybenn |
HOST_WIDE_INT save_size;
|
164 |
399 |
jeremybenn |
bool interrupt_p = false;
|
165 |
282 |
jeremybenn |
|
166 |
|
|
int regno;
|
167 |
|
|
|
168 |
|
|
args_size = crtl->outgoing_args_size;
|
169 |
|
|
vars_size = OR32_ALIGN (size, 4);
|
170 |
|
|
|
171 |
|
|
frame_info.args_size = args_size;
|
172 |
|
|
frame_info.vars_size = vars_size;
|
173 |
414 |
jeremybenn |
frame_info.gpr_frame = interrupt_p ? or32_redzone : 0;
|
174 |
282 |
jeremybenn |
|
175 |
|
|
/* If the function has local variables, we're committed to
|
176 |
|
|
allocating it anyway. Otherwise reclaim it here. */
|
177 |
|
|
/* FIXME: Verify this. Got if from the MIPS port. */
|
178 |
|
|
if (vars_size == 0 && current_function_is_leaf)
|
179 |
|
|
args_size = 0;
|
180 |
|
|
|
181 |
399 |
jeremybenn |
stack_offset = 0;
|
182 |
282 |
jeremybenn |
|
183 |
399 |
jeremybenn |
/* Save link register right at the bottom. */
|
184 |
282 |
jeremybenn |
if (or32_save_reg_p (LINK_REGNUM))
|
185 |
|
|
{
|
186 |
399 |
jeremybenn |
stack_offset = stack_offset - UNITS_PER_WORD;
|
187 |
282 |
jeremybenn |
frame_info.lr_save_offset = stack_offset;
|
188 |
|
|
frame_info.save_lr_p = true;
|
189 |
|
|
}
|
190 |
|
|
else
|
191 |
|
|
frame_info.save_lr_p = false;
|
192 |
|
|
|
193 |
|
|
/* Save frame pointer right after possible link register. */
|
194 |
399 |
jeremybenn |
if (frame_pointer_needed)
|
195 |
282 |
jeremybenn |
{
|
196 |
399 |
jeremybenn |
stack_offset = stack_offset - UNITS_PER_WORD;
|
197 |
282 |
jeremybenn |
frame_info.fp_save_offset = stack_offset;
|
198 |
|
|
frame_info.save_fp_p = true;
|
199 |
|
|
}
|
200 |
|
|
else
|
201 |
|
|
frame_info.save_fp_p = false;
|
202 |
|
|
|
203 |
|
|
frame_info.gpr_size = 0;
|
204 |
|
|
frame_info.mask = 0;
|
205 |
|
|
|
206 |
399 |
jeremybenn |
for (regno = 0; regno <= OR32_LAST_ACTUAL_REG; regno++)
|
207 |
282 |
jeremybenn |
{
|
208 |
399 |
jeremybenn |
if (regno == LINK_REGNUM
|
209 |
|
|
|| (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM))
|
210 |
282 |
jeremybenn |
/* These have already been saved if so needed. */
|
211 |
|
|
continue;
|
212 |
|
|
|
213 |
|
|
if (or32_save_reg_p (regno))
|
214 |
|
|
{
|
215 |
|
|
frame_info.gpr_size += UNITS_PER_WORD;
|
216 |
399 |
jeremybenn |
frame_info.mask |= ((HOST_WIDE_INT) 1 << regno);
|
217 |
282 |
jeremybenn |
}
|
218 |
|
|
}
|
219 |
|
|
|
220 |
414 |
jeremybenn |
save_size = (frame_info.gpr_size
|
221 |
|
|
+ (frame_info.save_fp_p ? UNITS_PER_WORD : 0)
|
222 |
|
|
+ (frame_info.save_lr_p ? UNITS_PER_WORD : 0));
|
223 |
|
|
frame_info.total_size = save_size + vars_size + args_size;
|
224 |
399 |
jeremybenn |
gcc_assert (PROLOGUE_TMP != STATIC_CHAIN_REGNUM);
|
225 |
|
|
if (frame_info.total_size > 32767 && interrupt_p)
|
226 |
|
|
{
|
227 |
|
|
int n_extra
|
228 |
|
|
= (!!(~frame_info.mask && 1 << PROLOGUE_TMP)
|
229 |
|
|
+ !!(~frame_info.mask & 1 << EPILOGUE_TMP)) * UNITS_PER_WORD;
|
230 |
282 |
jeremybenn |
|
231 |
414 |
jeremybenn |
save_size += n_extra;
|
232 |
399 |
jeremybenn |
frame_info.gpr_size += n_extra;
|
233 |
|
|
frame_info.total_size += n_extra;
|
234 |
|
|
frame_info.mask |= (1 << PROLOGUE_TMP) | (1 << EPILOGUE_TMP);
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
stack_offset -= frame_info.gpr_size;
|
238 |
|
|
frame_info.gpr_offset = stack_offset;
|
239 |
414 |
jeremybenn |
frame_info.late_frame = frame_info.total_size;
|
240 |
399 |
jeremybenn |
|
241 |
414 |
jeremybenn |
if (save_size > or32_redzone
|
242 |
|
|
|| (frame_info.gpr_frame
|
243 |
|
|
&& (frame_info.gpr_frame + frame_info.late_frame <= 32767)))
|
244 |
|
|
{
|
245 |
|
|
if (frame_info.gpr_frame + frame_info.late_frame <= 32767)
|
246 |
|
|
save_size = frame_info.total_size;
|
247 |
|
|
frame_info.gpr_frame += save_size;
|
248 |
|
|
frame_info.lr_save_offset += save_size;
|
249 |
|
|
frame_info.fp_save_offset += save_size;
|
250 |
|
|
frame_info.gpr_offset += save_size;
|
251 |
|
|
frame_info.late_frame -= save_size;
|
252 |
|
|
/* FIXME: check in TARGET_OVERRIDE_OPTIONS for invalid or32_redzone. */
|
253 |
|
|
gcc_assert (frame_info.gpr_frame <= 32767);
|
254 |
|
|
gcc_assert ((frame_info.gpr_frame & 3) == 0);
|
255 |
|
|
}
|
256 |
|
|
|
257 |
282 |
jeremybenn |
return frame_info.total_size;
|
258 |
|
|
|
259 |
|
|
} /* or32_compute_frame_size () */
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
/* -------------------------------------------------------------------------- */
|
263 |
|
|
/*!Emit a frame related insn.
|
264 |
|
|
|
265 |
|
|
Same as emit_insn, but sets RTX_FRAME_RELATED_P to one. Getting this right
|
266 |
|
|
will matter for DWARF 2 output, if prologues are handled via the "prologue"
|
267 |
|
|
pattern rather than target hooks.
|
268 |
|
|
|
269 |
|
|
@param[in] insn The insn to emit.
|
270 |
|
|
|
271 |
|
|
@return The RTX for the emitted insn. */
|
272 |
|
|
/* -------------------------------------------------------------------------- */
|
273 |
|
|
static rtx
|
274 |
|
|
emit_frame_insn (rtx insn)
|
275 |
|
|
{
|
276 |
|
|
insn = emit_insn (insn);
|
277 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
278 |
|
|
return (insn);
|
279 |
|
|
|
280 |
|
|
} /* emit_frame_insn () */
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
/* -------------------------------------------------------------------------- */
|
284 |
399 |
jeremybenn |
/* Generate a RTX for the indexed memory address based on stack_pointer_rtx
|
285 |
|
|
and a displacement
|
286 |
282 |
jeremybenn |
|
287 |
|
|
@param[in] disp The displacement
|
288 |
|
|
|
289 |
|
|
@return The RTX for the generated address. */
|
290 |
|
|
/* -------------------------------------------------------------------------- */
|
291 |
|
|
static rtx
|
292 |
399 |
jeremybenn |
stack_disp_mem (HOST_WIDE_INT disp)
|
293 |
282 |
jeremybenn |
{
|
294 |
399 |
jeremybenn |
return gen_frame_mem (Pmode, plus_constant (stack_pointer_rtx, disp));
|
295 |
|
|
}
|
296 |
282 |
jeremybenn |
|
297 |
|
|
|
298 |
|
|
/* -------------------------------------------------------------------------- */
|
299 |
|
|
/*!Generate insn patterns to do an integer compare of operands.
|
300 |
|
|
|
301 |
|
|
@param[in] code RTX for the condition code.
|
302 |
|
|
@param[in] op0 RTX for the first operand.
|
303 |
|
|
@param[in] op1 RTX for the second operand.
|
304 |
|
|
|
305 |
|
|
@return RTX for the comparison. */
|
306 |
|
|
/* -------------------------------------------------------------------------- */
|
307 |
|
|
static rtx
|
308 |
|
|
or32_expand_int_compare (enum rtx_code code,
|
309 |
|
|
rtx op0,
|
310 |
|
|
rtx op1)
|
311 |
|
|
{
|
312 |
|
|
enum machine_mode cmpmode;
|
313 |
|
|
rtx tmp, flags;
|
314 |
|
|
|
315 |
|
|
cmpmode = SELECT_CC_MODE (code, op0, op1);
|
316 |
|
|
flags = gen_rtx_REG (cmpmode, OR32_FLAGS_REG);
|
317 |
|
|
|
318 |
|
|
/* This is very simple, but making the interface the same as in the
|
319 |
|
|
FP case makes the rest of the code easier. */
|
320 |
|
|
tmp = gen_rtx_COMPARE (cmpmode, op0, op1);
|
321 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, flags, tmp));
|
322 |
|
|
|
323 |
|
|
/* Return the test that should be put into the flags user, i.e.
|
324 |
|
|
the bcc, scc, or cmov instruction. */
|
325 |
|
|
return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx);
|
326 |
|
|
|
327 |
|
|
} /* or32_expand_int_compare () */
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
/* -------------------------------------------------------------------------- */
|
331 |
|
|
/*!Generate insn patterns to do an integer compare of operands.
|
332 |
|
|
|
333 |
|
|
We only deal with the case where the comparison is an integer
|
334 |
|
|
comparison. This wrapper function potentially allows reuse for non-integer
|
335 |
|
|
comparison in the future.
|
336 |
|
|
|
337 |
|
|
@param[in] code RTX for the condition code.
|
338 |
|
|
@param[in] op0 RTX for the first operand.
|
339 |
|
|
@param[in] op1 RTX for the second operand.
|
340 |
|
|
|
341 |
|
|
@return RTX for the comparison. */
|
342 |
|
|
/* -------------------------------------------------------------------------- */
|
343 |
|
|
static rtx
|
344 |
|
|
or32_expand_compare (enum rtx_code code, rtx op0, rtx op1)
|
345 |
|
|
{
|
346 |
|
|
return or32_expand_int_compare (code, op0, op1);
|
347 |
|
|
|
348 |
|
|
} /* or32_expand_compare () */
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
/* -------------------------------------------------------------------------- */
|
352 |
|
|
/*!Emit insns to use the l.cmov instruction
|
353 |
|
|
|
354 |
|
|
Emit a compare and then cmov. Only works for integer first operand.
|
355 |
|
|
|
356 |
|
|
@param[in] dest RTX for the destination operand.
|
357 |
|
|
@param[in] op RTX for the comparison operation
|
358 |
|
|
@param[in] true_cond RTX to move to dest if condition is TRUE.
|
359 |
|
|
@param[in] false_cond RTX to move to dest if condition is FALSE.
|
360 |
|
|
|
361 |
|
|
@return Non-zero (TRUE) if insns were emitted, zero (FALSE) otherwise. */
|
362 |
|
|
/* -------------------------------------------------------------------------- */
|
363 |
|
|
static int
|
364 |
|
|
or32_emit_int_cmove (rtx dest,
|
365 |
|
|
rtx op,
|
366 |
|
|
rtx true_cond,
|
367 |
|
|
rtx false_cond)
|
368 |
|
|
{
|
369 |
|
|
rtx condition_rtx, cr;
|
370 |
|
|
|
371 |
|
|
if ((GET_MODE (or32_compare_op0) != SImode) &&
|
372 |
|
|
(GET_MODE (or32_compare_op0) != HImode) &&
|
373 |
|
|
(GET_MODE (or32_compare_op0) != QImode))
|
374 |
|
|
{
|
375 |
|
|
return 0;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* We still have to do the compare, because cmov doesn't do a compare, it
|
379 |
|
|
just looks at the FLAG bit set by a previous compare instruction. */
|
380 |
|
|
condition_rtx = or32_expand_compare (GET_CODE (op),
|
381 |
|
|
or32_compare_op0, or32_compare_op1);
|
382 |
|
|
|
383 |
|
|
cr = XEXP (condition_rtx, 0);
|
384 |
|
|
|
385 |
|
|
emit_insn (gen_cmov (dest, condition_rtx, true_cond, false_cond, cr));
|
386 |
|
|
|
387 |
|
|
return 1;
|
388 |
|
|
|
389 |
|
|
} /* or32_emit_int_cmove () */
|
390 |
|
|
|
391 |
|
|
|
392 |
|
|
/* -------------------------------------------------------------------------- */
|
393 |
|
|
/*!Calculate stack size for current function.
|
394 |
|
|
|
395 |
|
|
We need space for:
|
396 |
|
|
- any callee-saved registers that are live in the function
|
397 |
|
|
- any local variables
|
398 |
|
|
- the return address (if saved)
|
399 |
|
|
- the frame pointer (if saved)
|
400 |
|
|
- any outgoing arguments.
|
401 |
|
|
|
402 |
|
|
We also return information on whether the return address and frame pointer
|
403 |
|
|
must be saved, the space required to save callee-saved registers and the
|
404 |
|
|
sapce required to save the return address, frame pointer and outgoing
|
405 |
|
|
arguments.
|
406 |
|
|
|
407 |
|
|
Throughout adjust for OR32 alignment requirements.
|
408 |
|
|
|
409 |
|
|
@param[in] vars Bytes required for local variables (if any).
|
410 |
|
|
@param[out] lr_save_area Space required for return address (if any).
|
411 |
|
|
@param[out] fp_save_area Space required for frame pointer (if any).
|
412 |
|
|
@param[out] gpr_save_area Space required for callee-saved registers (if
|
413 |
|
|
any).
|
414 |
|
|
@param[out] save_area Space required for outgoing arguments (if any) +
|
415 |
|
|
return address (if any) and frame pointer (if
|
416 |
|
|
any).
|
417 |
|
|
|
418 |
|
|
@return Total space required (if any). */
|
419 |
|
|
/* -------------------------------------------------------------------------- */
|
420 |
|
|
static int
|
421 |
|
|
calculate_stack_size (int vars,
|
422 |
|
|
int *lr_save_area,
|
423 |
|
|
int *fp_save_area,
|
424 |
|
|
int *gpr_save_area,
|
425 |
|
|
int *save_area)
|
426 |
|
|
{
|
427 |
|
|
int regno;
|
428 |
|
|
|
429 |
|
|
*gpr_save_area = 0;
|
430 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
431 |
|
|
{
|
432 |
|
|
if (df_regs_ever_live_p(regno) && !call_used_regs[regno])
|
433 |
|
|
*gpr_save_area += 4;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
*lr_save_area = (!current_function_is_leaf
|
437 |
|
|
|| df_regs_ever_live_p(LINK_REGNUM)) ? 4 : 0;
|
438 |
|
|
*fp_save_area = frame_pointer_needed ? 4 : 0;
|
439 |
|
|
*save_area = (OR32_ALIGN (crtl->outgoing_args_size, 4)
|
440 |
|
|
+ *lr_save_area + *fp_save_area);
|
441 |
|
|
|
442 |
|
|
return *save_area + *gpr_save_area + OR32_ALIGN (vars, 4);
|
443 |
|
|
|
444 |
|
|
} /* calculate_stack_size () */
|
445 |
|
|
|
446 |
|
|
|
447 |
|
|
/* -------------------------------------------------------------------------- */
|
448 |
|
|
/*!Is this a value suitable for an OR32 address displacement?
|
449 |
|
|
|
450 |
|
|
Must be an integer (signed) which fits into 16-bits. If the result is a
|
451 |
|
|
double word, we had better also check that we can also get at the second
|
452 |
|
|
word.
|
453 |
|
|
|
454 |
|
|
@param[in] mode Mode of the result for which this displacement will be
|
455 |
|
|
used.
|
456 |
|
|
@param[in] x RTX for an expression.
|
457 |
|
|
|
458 |
|
|
@return Non-zero (TRUE) if this is a valid 16-bit offset, zero (FALSE)
|
459 |
|
|
otherwise. */
|
460 |
|
|
/* -------------------------------------------------------------------------- */
|
461 |
|
|
static int
|
462 |
|
|
or32_legitimate_displacement_p (enum machine_mode mode,
|
463 |
|
|
rtx x)
|
464 |
|
|
{
|
465 |
|
|
if (CONST_INT == GET_CODE(x))
|
466 |
|
|
{
|
467 |
|
|
HOST_WIDE_INT disp = INTVAL (x);
|
468 |
|
|
|
469 |
|
|
/* Allow for a second access 4 bytes further on if double. */
|
470 |
|
|
if ((DFmode == mode) || (DImode == mode))
|
471 |
|
|
{
|
472 |
|
|
return (-32768 < disp) && (disp <= 32763);
|
473 |
|
|
}
|
474 |
|
|
else
|
475 |
|
|
{
|
476 |
|
|
return (-32768 < disp) && (disp <= 32767);
|
477 |
|
|
}
|
478 |
|
|
}
|
479 |
|
|
else
|
480 |
|
|
{
|
481 |
|
|
return 0;
|
482 |
|
|
}
|
483 |
|
|
} /* or32_legitimate_displacement_p () */
|
484 |
|
|
|
485 |
|
|
|
486 |
|
|
/* -------------------------------------------------------------------------- */
|
487 |
|
|
/*!Can this register be used as a base register?
|
488 |
|
|
|
489 |
|
|
We need a strict version, for which the register must either be a hard
|
490 |
|
|
register, or already renumbered to a hard register.
|
491 |
|
|
|
492 |
|
|
For the non-strict version, any register (other than the flag register will
|
493 |
|
|
do).
|
494 |
|
|
|
495 |
|
|
@todo The code from the old port does not allow r0 as a base when strict,
|
496 |
|
|
and does when non-strict. Surely it is always a valid register?
|
497 |
|
|
|
498 |
|
|
@param[in] regno The register to test
|
499 |
|
|
@param[in] strict Non-zero (TRUE) if this is a strict check, zero (FALSE)
|
500 |
|
|
otherwise.
|
501 |
|
|
|
502 |
|
|
@return Non-zero (TRUE) if this register can be used as a base register,
|
503 |
|
|
zero (FALSE) otherwise. */
|
504 |
|
|
/* -------------------------------------------------------------------------- */
|
505 |
|
|
static bool
|
506 |
|
|
or32_regnum_ok_for_base_p (HOST_WIDE_INT num,
|
507 |
|
|
bool strict)
|
508 |
|
|
{
|
509 |
|
|
if (strict)
|
510 |
|
|
{
|
511 |
|
|
return (num < FIRST_PSEUDO_REGISTER)
|
512 |
|
|
? (num > 0) && (num <= OR32_LAST_INT_REG)
|
513 |
|
|
: (reg_renumber[num] > 0) && (reg_renumber[num] <= OR32_LAST_INT_REG);
|
514 |
|
|
}
|
515 |
|
|
else
|
516 |
|
|
{
|
517 |
|
|
return (num <= OR32_LAST_INT_REG) || (num >= FIRST_PSEUDO_REGISTER);
|
518 |
|
|
}
|
519 |
|
|
} /* or32_regnum_ok_for_base_p () */
|
520 |
|
|
|
521 |
|
|
|
522 |
332 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
523 |
|
|
/*!Emit a move from SRC to DEST.
|
524 |
|
|
|
525 |
|
|
Assume that the move expanders can handle all moves if !can_create_pseudo_p
|
526 |
|
|
(). The distinction is important because, unlike emit_move_insn, the move
|
527 |
|
|
expanders know how to force Pmode objects into the constant pool even when
|
528 |
|
|
the constant pool address is not itself legitimate.
|
529 |
|
|
|
530 |
|
|
@param[in] dest Destination of the move.
|
531 |
|
|
@param[in] src Source for the move.
|
532 |
|
|
|
533 |
|
|
@return RTX for the move. */
|
534 |
|
|
/* -------------------------------------------------------------------------- */
|
535 |
399 |
jeremybenn |
static rtx
|
536 |
332 |
jeremybenn |
or32_emit_move (rtx dest, rtx src)
|
537 |
|
|
{
|
538 |
|
|
return (can_create_pseudo_p ()
|
539 |
|
|
? emit_move_insn (dest, src)
|
540 |
|
|
: emit_move_insn_1 (dest, src));
|
541 |
|
|
|
542 |
|
|
} /* or32_emit_move () */
|
543 |
|
|
|
544 |
|
|
|
545 |
|
|
/* -------------------------------------------------------------------------- */
|
546 |
|
|
/*!Emit an instruction of the form (set TARGET (CODE OP0 OP1)).
|
547 |
|
|
|
548 |
|
|
@param[in] code The code for the operation.
|
549 |
|
|
@param[in] target Destination for the set operation.
|
550 |
|
|
@param[in] op0 First operand.
|
551 |
|
|
@param[in] op1 Second operand. */
|
552 |
|
|
/* -------------------------------------------------------------------------- */
|
553 |
|
|
static void
|
554 |
|
|
or32_emit_binary (enum rtx_code code,
|
555 |
|
|
rtx target,
|
556 |
|
|
rtx op0,
|
557 |
|
|
rtx op1)
|
558 |
|
|
{
|
559 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, target,
|
560 |
|
|
gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
|
561 |
|
|
|
562 |
|
|
} /* or32_emit_binary () */
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
/* -------------------------------------------------------------------------- */
|
566 |
|
|
/*!Compute the result of an operation into a new register.
|
567 |
|
|
|
568 |
|
|
Compute ("code" "op0" "op1") and store the result in a new register of mode
|
569 |
|
|
"mode".
|
570 |
|
|
|
571 |
|
|
@param[in] mode Mode of the result
|
572 |
|
|
@parma[in] code RTX for the operation to perform
|
573 |
|
|
@param[in] op0 RTX for the first operand
|
574 |
|
|
@param[in] op1 RTX for the second operand
|
575 |
|
|
|
576 |
|
|
@return The RTX for the new register. */
|
577 |
|
|
/* -------------------------------------------------------------------------- */
|
578 |
|
|
static rtx
|
579 |
|
|
or32_force_binary (enum machine_mode mode,
|
580 |
|
|
enum rtx_code code,
|
581 |
|
|
rtx op0,
|
582 |
|
|
rtx op1)
|
583 |
|
|
{
|
584 |
|
|
rtx reg;
|
585 |
|
|
|
586 |
|
|
reg = gen_reg_rtx (mode);
|
587 |
|
|
or32_emit_binary (code, reg, op0, op1);
|
588 |
|
|
|
589 |
|
|
return reg;
|
590 |
|
|
|
591 |
|
|
} /* or32_force_binary () */
|
592 |
|
|
|
593 |
|
|
|
594 |
282 |
jeremybenn |
/* ========================================================================== */
|
595 |
332 |
jeremybenn |
/* Global support functions */
|
596 |
|
|
|
597 |
|
|
/* -------------------------------------------------------------------------- */
|
598 |
|
|
/* Return the size in bytes of the trampoline code.
|
599 |
|
|
|
600 |
|
|
Padded to TRAMPOLINE_ALIGNMENT bits. The code sequence is documented in
|
601 |
|
|
or32_trampoline_init ().
|
602 |
|
|
|
603 |
|
|
This is just the code size. the static chain pointer and target function
|
604 |
|
|
address immediately follow.
|
605 |
|
|
|
606 |
|
|
@return The size of the trampoline code in bytes. */
|
607 |
|
|
/* -------------------------------------------------------------------------- */
|
608 |
|
|
int
|
609 |
|
|
or32_trampoline_code_size (void)
|
610 |
|
|
{
|
611 |
|
|
const int TRAMP_BYTE_ALIGN = TRAMPOLINE_ALIGNMENT / 8;
|
612 |
|
|
|
613 |
|
|
/* Five 32-bit code words are needed */
|
614 |
|
|
return (5 * 4 + TRAMP_BYTE_ALIGN - 1) / TRAMP_BYTE_ALIGN * TRAMP_BYTE_ALIGN;
|
615 |
|
|
|
616 |
|
|
} /* or32_trampoline_code_size () */
|
617 |
|
|
|
618 |
|
|
|
619 |
|
|
/* ========================================================================== */
|
620 |
282 |
jeremybenn |
/* Functions to support the Machine Description */
|
621 |
|
|
|
622 |
|
|
|
623 |
|
|
/* -------------------------------------------------------------------------- */
|
624 |
|
|
/*!Expand a prologue pattern.
|
625 |
|
|
|
626 |
|
|
Called after register allocation to add any instructions needed for the
|
627 |
|
|
prologue. Using a prologue insn is favored compared to putting all of the
|
628 |
|
|
instructions in output_function_prologue(), since it allows the scheduler
|
629 |
|
|
to intermix instructions with the saves of the caller saved registers. In
|
630 |
|
|
some cases, it might be necessary to emit a barrier instruction as the last
|
631 |
|
|
insn to prevent such scheduling.
|
632 |
|
|
|
633 |
|
|
For the OR32 this is currently controlled by the -mlogue option. It should
|
634 |
|
|
be the default, once it is proved to work. */
|
635 |
|
|
/* -------------------------------------------------------------------------- */
|
636 |
|
|
void
|
637 |
|
|
or32_expand_prologue (void)
|
638 |
|
|
{
|
639 |
|
|
int total_size = or32_compute_frame_size (get_frame_size ());
|
640 |
399 |
jeremybenn |
rtx insn;
|
641 |
282 |
jeremybenn |
|
642 |
|
|
if (!total_size)
|
643 |
|
|
/* No frame needed. */
|
644 |
|
|
return;
|
645 |
|
|
|
646 |
414 |
jeremybenn |
if (frame_info.gpr_frame)
|
647 |
|
|
emit_frame_insn (gen_add2_insn (stack_pointer_rtx,
|
648 |
|
|
GEN_INT (-frame_info.gpr_frame)));
|
649 |
282 |
jeremybenn |
if (frame_info.save_fp_p)
|
650 |
|
|
{
|
651 |
399 |
jeremybenn |
emit_frame_insn (gen_rtx_SET (Pmode,
|
652 |
|
|
stack_disp_mem (frame_info.fp_save_offset),
|
653 |
|
|
hard_frame_pointer_rtx));
|
654 |
282 |
jeremybenn |
|
655 |
|
|
emit_frame_insn
|
656 |
399 |
jeremybenn |
(gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, const0_rtx));
|
657 |
282 |
jeremybenn |
}
|
658 |
|
|
if (frame_info.save_lr_p)
|
659 |
|
|
{
|
660 |
|
|
|
661 |
|
|
emit_frame_insn
|
662 |
399 |
jeremybenn |
(gen_rtx_SET (Pmode, stack_disp_mem (frame_info.lr_save_offset),
|
663 |
282 |
jeremybenn |
gen_rtx_REG (Pmode, LINK_REGNUM)));
|
664 |
|
|
}
|
665 |
|
|
if (frame_info.gpr_size)
|
666 |
|
|
{
|
667 |
|
|
int offset = 0;
|
668 |
|
|
int regno;
|
669 |
|
|
|
670 |
399 |
jeremybenn |
for (regno = 0; regno <= OR32_LAST_ACTUAL_REG; regno++)
|
671 |
282 |
jeremybenn |
{
|
672 |
399 |
jeremybenn |
if (!(frame_info.mask & ((HOST_WIDE_INT) 1 << regno)))
|
673 |
282 |
jeremybenn |
continue;
|
674 |
|
|
|
675 |
|
|
emit_frame_insn
|
676 |
|
|
(gen_rtx_SET (Pmode,
|
677 |
399 |
jeremybenn |
stack_disp_mem (frame_info.gpr_offset + offset),
|
678 |
282 |
jeremybenn |
gen_rtx_REG (Pmode, regno)));
|
679 |
|
|
offset = offset + UNITS_PER_WORD;
|
680 |
|
|
}
|
681 |
|
|
}
|
682 |
399 |
jeremybenn |
|
683 |
|
|
/* Update the stack pointer to reflect frame size. */
|
684 |
414 |
jeremybenn |
total_size = frame_info.late_frame;
|
685 |
399 |
jeremybenn |
insn = gen_add2_insn (stack_pointer_rtx, GEN_INT (-total_size));
|
686 |
414 |
jeremybenn |
if (total_size > 32768)
|
687 |
399 |
jeremybenn |
{
|
688 |
|
|
rtx note = insn;
|
689 |
|
|
rtx value_rtx = gen_rtx_REG (Pmode, PROLOGUE_TMP);
|
690 |
|
|
|
691 |
|
|
or32_emit_set_const32 (value_rtx, GEN_INT (-total_size));
|
692 |
|
|
insn = emit_frame_insn (gen_add2_insn (stack_pointer_rtx, value_rtx));
|
693 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
|
694 |
|
|
}
|
695 |
414 |
jeremybenn |
else if (total_size)
|
696 |
399 |
jeremybenn |
emit_frame_insn (insn);
|
697 |
|
|
|
698 |
282 |
jeremybenn |
} /* or32_expand_prologue () */
|
699 |
|
|
|
700 |
|
|
|
701 |
|
|
/* -------------------------------------------------------------------------- */
|
702 |
|
|
/*!Expand an epilogue pattern.
|
703 |
|
|
|
704 |
|
|
Called after register allocation to add any instructions needed for the
|
705 |
|
|
epilogue. Using an epilogue insn is favored compared to putting all of the
|
706 |
|
|
instructions in output_function_epilogue(), since it allows the scheduler
|
707 |
|
|
to intermix instructions with the restores of the caller saved registers.
|
708 |
|
|
In some cases, it might be necessary to emit a barrier instruction as the
|
709 |
|
|
first insn to prevent such scheduling.
|
710 |
|
|
|
711 |
|
|
For the OR32 this is currently controlled by the -mlogue option. It should
|
712 |
|
|
be the default, once it is proved to work.
|
713 |
|
|
|
714 |
399 |
jeremybenn |
@param[in] sibcall The sibcall epilogue insn if this is a sibcall return,
|
715 |
|
|
NULL_RTX otherwise. */
|
716 |
282 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
717 |
|
|
void
|
718 |
399 |
jeremybenn |
or32_expand_epilogue (rtx sibcall)
|
719 |
282 |
jeremybenn |
{
|
720 |
|
|
int total_size = or32_compute_frame_size (get_frame_size ());
|
721 |
399 |
jeremybenn |
int sibcall_regno = FIRST_PSEUDO_REGISTER;
|
722 |
282 |
jeremybenn |
|
723 |
399 |
jeremybenn |
if (sibcall)
|
724 |
282 |
jeremybenn |
{
|
725 |
399 |
jeremybenn |
sibcall = next_nonnote_insn (sibcall);
|
726 |
|
|
gcc_assert (CALL_P (sibcall) && SIBLING_CALL_P (sibcall));
|
727 |
|
|
sibcall = XVECEXP (PATTERN (sibcall), 0, 0);
|
728 |
|
|
if (GET_CODE (sibcall) == SET)
|
729 |
|
|
sibcall = SET_SRC (sibcall);
|
730 |
|
|
gcc_assert (GET_CODE (sibcall) == CALL);
|
731 |
|
|
sibcall = XEXP (sibcall, 0);
|
732 |
|
|
gcc_assert (MEM_P (sibcall));
|
733 |
|
|
sibcall = XEXP (sibcall, 0);
|
734 |
|
|
if (REG_P (sibcall))
|
735 |
|
|
sibcall_regno = REGNO (sibcall);
|
736 |
|
|
else
|
737 |
|
|
gcc_assert (CONSTANT_P (sibcall));
|
738 |
282 |
jeremybenn |
}
|
739 |
399 |
jeremybenn |
if (frame_info.save_fp_p)
|
740 |
|
|
{
|
741 |
414 |
jeremybenn |
emit_insn (gen_frame_dealloc_fp ());
|
742 |
399 |
jeremybenn |
emit_insn
|
743 |
|
|
(gen_rtx_SET (Pmode, hard_frame_pointer_rtx,
|
744 |
|
|
stack_disp_mem (frame_info.fp_save_offset)));
|
745 |
|
|
}
|
746 |
282 |
jeremybenn |
else
|
747 |
399 |
jeremybenn |
{
|
748 |
|
|
rtx value_rtx;
|
749 |
282 |
jeremybenn |
|
750 |
414 |
jeremybenn |
total_size = frame_info.late_frame;
|
751 |
399 |
jeremybenn |
if (total_size > 32767)
|
752 |
|
|
{
|
753 |
|
|
value_rtx = gen_rtx_REG (Pmode, EPILOGUE_TMP);
|
754 |
|
|
or32_emit_set_const32 (value_rtx, GEN_INT (total_size));
|
755 |
|
|
}
|
756 |
414 |
jeremybenn |
else if (frame_info.late_frame)
|
757 |
399 |
jeremybenn |
value_rtx = GEN_INT (total_size);
|
758 |
|
|
if (total_size)
|
759 |
414 |
jeremybenn |
emit_insn (gen_frame_dealloc_sp (value_rtx));
|
760 |
399 |
jeremybenn |
}
|
761 |
|
|
|
762 |
282 |
jeremybenn |
if (frame_info.save_lr_p)
|
763 |
|
|
{
|
764 |
|
|
emit_insn
|
765 |
|
|
(gen_rtx_SET (Pmode, gen_rtx_REG (Pmode, LINK_REGNUM),
|
766 |
399 |
jeremybenn |
stack_disp_mem (frame_info.lr_save_offset)));
|
767 |
282 |
jeremybenn |
}
|
768 |
|
|
|
769 |
|
|
if (frame_info.gpr_size)
|
770 |
|
|
{
|
771 |
|
|
int offset = 0;
|
772 |
|
|
int regno;
|
773 |
|
|
|
774 |
399 |
jeremybenn |
for (regno = 0; regno <= OR32_LAST_ACTUAL_REG; regno++)
|
775 |
282 |
jeremybenn |
{
|
776 |
399 |
jeremybenn |
if (!(frame_info.mask & ((HOST_WIDE_INT) 1 << regno)))
|
777 |
282 |
jeremybenn |
continue;
|
778 |
|
|
|
779 |
399 |
jeremybenn |
if (regno != sibcall_regno)
|
780 |
|
|
emit_insn
|
781 |
|
|
(gen_rtx_SET (Pmode, gen_rtx_REG (Pmode, regno),
|
782 |
|
|
stack_disp_mem (frame_info.gpr_offset + offset)));
|
783 |
282 |
jeremybenn |
offset = offset + UNITS_PER_WORD;
|
784 |
|
|
}
|
785 |
|
|
}
|
786 |
|
|
|
787 |
414 |
jeremybenn |
if (frame_info.gpr_frame)
|
788 |
|
|
emit_insn (gen_add2_insn (stack_pointer_rtx,
|
789 |
|
|
GEN_INT (frame_info.gpr_frame)));
|
790 |
282 |
jeremybenn |
if (!sibcall)
|
791 |
399 |
jeremybenn |
emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, 9)));
|
792 |
282 |
jeremybenn |
|
793 |
|
|
} /* or32_expand_epilogue () */
|
794 |
|
|
|
795 |
399 |
jeremybenn |
/* We are outputting a jump which needs JUMP_ADDRESS, which is the
|
796 |
|
|
register it uses as jump destination, restored,
|
797 |
|
|
e.g. a sibcall using a callee-saved register.
|
798 |
|
|
Emit the register restore as delay slot insn. */
|
799 |
|
|
void
|
800 |
|
|
or32_print_jump_restore (rtx jump_address)
|
801 |
|
|
{
|
802 |
|
|
int regno, jump_regno;
|
803 |
|
|
HOST_WIDE_INT offset = frame_info.gpr_offset;
|
804 |
282 |
jeremybenn |
|
805 |
399 |
jeremybenn |
gcc_assert (REG_P (jump_address));
|
806 |
|
|
jump_regno = REGNO (jump_address);
|
807 |
|
|
for (regno = 0; regno != jump_regno; regno++)
|
808 |
|
|
{
|
809 |
|
|
gcc_assert (regno <= OR32_LAST_ACTUAL_REG);
|
810 |
|
|
if (!(frame_info.mask & ((HOST_WIDE_INT) 1 << regno)))
|
811 |
|
|
continue;
|
812 |
|
|
offset = offset + UNITS_PER_WORD;
|
813 |
|
|
}
|
814 |
|
|
asm_fprintf (asm_out_file, "\n\tl.lwz\tr%d,"HOST_WIDE_INT_PRINT_DEC"(r1)\n",
|
815 |
|
|
jump_regno, offset);
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
|
819 |
282 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
820 |
|
|
/*!Generate assembler code for a movdi/movdf pattern
|
821 |
|
|
|
822 |
|
|
@param[in] operands Operands to the movdx pattern.
|
823 |
|
|
|
824 |
|
|
@return The assembler string to output (always "", since we've done the
|
825 |
|
|
output here). */
|
826 |
|
|
/* -------------------------------------------------------------------------- */
|
827 |
|
|
const char *
|
828 |
|
|
or32_output_move_double (rtx *operands)
|
829 |
|
|
{
|
830 |
|
|
rtx xoperands[3];
|
831 |
|
|
|
832 |
|
|
switch (GET_CODE (operands[0]))
|
833 |
|
|
{
|
834 |
|
|
case REG:
|
835 |
|
|
if (GET_CODE (operands[1]) == REG)
|
836 |
|
|
{
|
837 |
|
|
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
|
838 |
|
|
{
|
839 |
|
|
output_asm_insn ("\tl.or \t%H0, %H1, r0", operands);
|
840 |
|
|
output_asm_insn ("\tl.or \t%0, %1, r0", operands);
|
841 |
|
|
return "";
|
842 |
|
|
}
|
843 |
|
|
else
|
844 |
|
|
{
|
845 |
|
|
output_asm_insn ("\tl.or \t%0, %1, r0", operands);
|
846 |
|
|
output_asm_insn ("\tl.or \t%H0, %H1, r0", operands);
|
847 |
|
|
return "";
|
848 |
|
|
}
|
849 |
|
|
}
|
850 |
|
|
else if (GET_CODE (operands[1]) == MEM)
|
851 |
|
|
{
|
852 |
|
|
xoperands[1] = XEXP (operands[1], 0);
|
853 |
|
|
if (GET_CODE (xoperands[1]) == REG)
|
854 |
|
|
{
|
855 |
|
|
xoperands[0] = operands[0];
|
856 |
|
|
if (REGNO (xoperands[0]) == REGNO (xoperands[1]))
|
857 |
|
|
{
|
858 |
|
|
output_asm_insn ("\tl.lwz \t%H0, 4(%1)", xoperands);
|
859 |
|
|
output_asm_insn ("\tl.lwz \t%0, 0(%1)", xoperands);
|
860 |
|
|
return "";
|
861 |
|
|
}
|
862 |
|
|
else
|
863 |
|
|
{
|
864 |
|
|
output_asm_insn ("\tl.lwz \t%0, 0(%1)", xoperands);
|
865 |
|
|
output_asm_insn ("\tl.lwz \t%H0, 4(%1)", xoperands);
|
866 |
|
|
return "";
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
else if (GET_CODE (xoperands[1]) == PLUS)
|
870 |
|
|
{
|
871 |
|
|
if (GET_CODE (xoperands[2] = XEXP (xoperands[1], 1)) == REG)
|
872 |
|
|
{
|
873 |
|
|
xoperands[0] = operands[0];
|
874 |
|
|
xoperands[1] = XEXP (xoperands[1], 0);
|
875 |
|
|
if (REGNO (xoperands[0]) == REGNO (xoperands[2]))
|
876 |
|
|
{
|
877 |
|
|
output_asm_insn ("\tl.lwz \t%H0, %1+4(%2)",
|
878 |
|
|
xoperands);
|
879 |
|
|
output_asm_insn ("\tl.lwz \t%0, %1(%2)", xoperands);
|
880 |
|
|
return "";
|
881 |
|
|
}
|
882 |
|
|
else
|
883 |
|
|
{
|
884 |
|
|
output_asm_insn ("\tl.lwz \t%0, %1(%2)", xoperands);
|
885 |
|
|
output_asm_insn ("\tl.lwz \t%H0, %1+4(%2)",
|
886 |
|
|
xoperands);
|
887 |
|
|
return "";
|
888 |
|
|
}
|
889 |
|
|
}
|
890 |
|
|
else if (GET_CODE (xoperands[2] = XEXP (xoperands[1], 0)) ==
|
891 |
|
|
REG)
|
892 |
|
|
{
|
893 |
|
|
xoperands[0] = operands[0];
|
894 |
|
|
xoperands[1] = XEXP (xoperands[1], 1);
|
895 |
|
|
if (REGNO (xoperands[0]) == REGNO (xoperands[2]))
|
896 |
|
|
{
|
897 |
|
|
output_asm_insn ("\tl.lwz \t%H0, %1+4(%2)",
|
898 |
|
|
xoperands);
|
899 |
|
|
output_asm_insn ("\tl.lwz \t%0, %1(%2)", xoperands);
|
900 |
|
|
return "";
|
901 |
|
|
}
|
902 |
|
|
else
|
903 |
|
|
{
|
904 |
|
|
output_asm_insn ("\tl.lwz \t%0, %1(%2)", xoperands);
|
905 |
|
|
output_asm_insn ("\tl.lwz \t%H0, %1+4(%2)",
|
906 |
|
|
xoperands);
|
907 |
|
|
return "";
|
908 |
|
|
}
|
909 |
|
|
}
|
910 |
|
|
else
|
911 |
|
|
abort ();
|
912 |
|
|
}
|
913 |
|
|
else
|
914 |
|
|
abort ();
|
915 |
|
|
}
|
916 |
|
|
else if (GET_CODE (operands[1]) == CONST_INT)
|
917 |
|
|
{
|
918 |
|
|
if (INTVAL (operands[1]) < 0)
|
919 |
|
|
output_asm_insn ("\tl.addi \t%0, r0, -1", operands);
|
920 |
|
|
else
|
921 |
|
|
output_asm_insn ("\tl.or \t%0, r0, r0", operands);
|
922 |
|
|
output_asm_insn ("\tl.movhi \t%H0, hi(%1)", operands);
|
923 |
|
|
output_asm_insn ("\tl.ori \t%H0, %H0, lo(%1)", operands);
|
924 |
|
|
return "";
|
925 |
|
|
}
|
926 |
|
|
else
|
927 |
|
|
abort ();
|
928 |
|
|
case MEM:
|
929 |
|
|
xoperands[0] = XEXP (operands[0], 0);
|
930 |
|
|
if (GET_CODE (xoperands[0]) == REG)
|
931 |
|
|
{
|
932 |
|
|
xoperands[1] = operands[1];
|
933 |
|
|
output_asm_insn ("\tl.sw \t0(%0), %1", xoperands);
|
934 |
|
|
output_asm_insn ("\tl.sw \t4(%0), %H1", xoperands);
|
935 |
|
|
return "";
|
936 |
|
|
}
|
937 |
|
|
else if (GET_CODE (xoperands[0]) == PLUS)
|
938 |
|
|
{
|
939 |
|
|
if (GET_CODE (xoperands[1] = XEXP (xoperands[0], 1)) == REG)
|
940 |
|
|
{
|
941 |
|
|
xoperands[0] = XEXP (xoperands[0], 0);
|
942 |
|
|
xoperands[2] = operands[1];
|
943 |
|
|
output_asm_insn ("\tl.sw \t%0(%1), %2", xoperands);
|
944 |
|
|
output_asm_insn ("\tl.sw \t%0+4(%1), %H2", xoperands);
|
945 |
|
|
return "";
|
946 |
|
|
}
|
947 |
|
|
else if (GET_CODE (xoperands[1] = XEXP (xoperands[0], 0)) == REG)
|
948 |
|
|
{
|
949 |
|
|
xoperands[0] = XEXP (xoperands[0], 1);
|
950 |
|
|
xoperands[2] = operands[1];
|
951 |
|
|
output_asm_insn ("\tl.sw \t%0(%1), %2", xoperands);
|
952 |
|
|
output_asm_insn ("\tl.sw \t%0+4(%1), %H2", xoperands);
|
953 |
|
|
return "";
|
954 |
|
|
}
|
955 |
|
|
else
|
956 |
|
|
abort ();
|
957 |
|
|
}
|
958 |
|
|
else
|
959 |
|
|
{
|
960 |
|
|
fprintf (stderr, " O/p error %s\n",
|
961 |
|
|
GET_RTX_NAME (GET_CODE (xoperands[0])));
|
962 |
|
|
return "";
|
963 |
|
|
/* abort (); */
|
964 |
|
|
}
|
965 |
|
|
default:
|
966 |
|
|
abort ();
|
967 |
|
|
}
|
968 |
|
|
} /* or32_output_move_double () */
|
969 |
|
|
|
970 |
|
|
|
971 |
|
|
/* -------------------------------------------------------------------------- */
|
972 |
|
|
/*!Expand a conditional branch
|
973 |
|
|
|
974 |
|
|
@param[in] operands Operands to the branch.
|
975 |
|
|
@param[in] mode Mode of the comparison. */
|
976 |
|
|
/* -------------------------------------------------------------------------- */
|
977 |
|
|
void
|
978 |
|
|
or32_expand_conditional_branch (rtx *operands,
|
979 |
|
|
enum machine_mode mode)
|
980 |
|
|
{
|
981 |
|
|
rtx tmp;
|
982 |
|
|
enum rtx_code test_code = GET_CODE(operands[0]);
|
983 |
|
|
|
984 |
|
|
switch (mode)
|
985 |
|
|
{
|
986 |
|
|
case SImode:
|
987 |
|
|
tmp = or32_expand_compare (test_code, operands[1], operands[2]);
|
988 |
|
|
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode,
|
989 |
|
|
tmp,
|
990 |
|
|
gen_rtx_LABEL_REF (VOIDmode, operands[3]),
|
991 |
|
|
pc_rtx);
|
992 |
|
|
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
|
993 |
|
|
return;
|
994 |
|
|
|
995 |
|
|
case SFmode:
|
996 |
|
|
tmp = or32_expand_compare (test_code, operands[1], operands[2]);
|
997 |
|
|
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode,
|
998 |
|
|
tmp,
|
999 |
|
|
gen_rtx_LABEL_REF (VOIDmode, operands[3]),
|
1000 |
|
|
pc_rtx);
|
1001 |
|
|
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
|
1002 |
|
|
return;
|
1003 |
|
|
|
1004 |
|
|
default:
|
1005 |
|
|
abort ();
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
} /* or32_expand_conditional_branch () */
|
1009 |
|
|
|
1010 |
|
|
|
1011 |
|
|
/* -------------------------------------------------------------------------- */
|
1012 |
|
|
/*!Emit a conditional move
|
1013 |
|
|
|
1014 |
|
|
move "true_cond" to "dest" if "op" of the operands of the last comparison
|
1015 |
|
|
is nonzero/true, "false_cond" if it is zero/false.
|
1016 |
|
|
|
1017 |
|
|
@param[in] dest RTX for the destination operand.
|
1018 |
|
|
@param[in] op RTX for the comparison operation
|
1019 |
|
|
@param[in] true_cond RTX to move to dest if condition is TRUE.
|
1020 |
|
|
@param[in] false_cond RTX to move to dest if condition is FALSE.
|
1021 |
|
|
|
1022 |
|
|
@return Non-zero (TRUE) if the hardware supports such an operation, zero
|
1023 |
|
|
(FALSE) otherwise. */
|
1024 |
|
|
/* -------------------------------------------------------------------------- */
|
1025 |
|
|
int
|
1026 |
|
|
or32_emit_cmove (rtx dest,
|
1027 |
|
|
rtx op,
|
1028 |
|
|
rtx true_cond,
|
1029 |
|
|
rtx false_cond)
|
1030 |
|
|
{
|
1031 |
|
|
enum machine_mode result_mode = GET_MODE (dest);
|
1032 |
|
|
|
1033 |
|
|
if (GET_MODE (true_cond) != result_mode)
|
1034 |
|
|
return 0;
|
1035 |
|
|
|
1036 |
|
|
if (GET_MODE (false_cond) != result_mode)
|
1037 |
|
|
return 0;
|
1038 |
|
|
|
1039 |
|
|
/* First, work out if the hardware can do this at all */
|
1040 |
|
|
return or32_emit_int_cmove (dest, op, true_cond, false_cond);
|
1041 |
|
|
|
1042 |
|
|
} /* or32_emit_cmove () */
|
1043 |
|
|
|
1044 |
|
|
|
1045 |
|
|
/* -------------------------------------------------------------------------- */
|
1046 |
|
|
/*!Output the assembler for a branch on flag instruction.
|
1047 |
|
|
|
1048 |
|
|
@param[in] operands Operands to the branch.
|
1049 |
|
|
|
1050 |
|
|
@return The assembler string to use. */
|
1051 |
|
|
/* -------------------------------------------------------------------------- */
|
1052 |
|
|
const char *
|
1053 |
|
|
or32_output_bf (rtx * operands)
|
1054 |
|
|
{
|
1055 |
|
|
enum rtx_code code;
|
1056 |
|
|
enum machine_mode mode_calc, mode_got;
|
1057 |
|
|
|
1058 |
|
|
code = GET_CODE (operands[1]);
|
1059 |
|
|
mode_calc = SELECT_CC_MODE (code, or32_compare_op0, or32_compare_op1);
|
1060 |
|
|
mode_got = GET_MODE (operands[2]);
|
1061 |
|
|
|
1062 |
399 |
jeremybenn |
if (mode_calc != mode_got)
|
1063 |
|
|
return "l.bnf\t%l0%(";
|
1064 |
282 |
jeremybenn |
else
|
1065 |
399 |
jeremybenn |
return "l.bf\t%l0%(";
|
1066 |
282 |
jeremybenn |
} /* or32_output_bf () */
|
1067 |
|
|
|
1068 |
|
|
|
1069 |
|
|
/* -------------------------------------------------------------------------- */
|
1070 |
|
|
/*!Output the assembler for a conditional move instruction.
|
1071 |
|
|
|
1072 |
|
|
@param[in] operands Operands to the conditional move.
|
1073 |
|
|
|
1074 |
|
|
@return The assembler string to use. */
|
1075 |
|
|
/* -------------------------------------------------------------------------- */
|
1076 |
|
|
const char *
|
1077 |
|
|
or32_output_cmov (rtx * operands)
|
1078 |
|
|
{
|
1079 |
|
|
enum rtx_code code;
|
1080 |
|
|
enum machine_mode mode_calc, mode_got;
|
1081 |
|
|
|
1082 |
|
|
code = GET_CODE (operands[1]);
|
1083 |
|
|
mode_calc = SELECT_CC_MODE (code, or32_compare_op0, or32_compare_op1);
|
1084 |
|
|
mode_got = GET_MODE (operands[4]);
|
1085 |
|
|
|
1086 |
|
|
if (mode_calc != mode_got)
|
1087 |
|
|
return "\tl.cmov\t%0,%3,%2"; /* reversed */
|
1088 |
|
|
else
|
1089 |
|
|
return "\tl.cmov\t%0,%2,%3";
|
1090 |
|
|
|
1091 |
|
|
} /* or32_output_cmov () */
|
1092 |
|
|
|
1093 |
|
|
|
1094 |
|
|
/* -------------------------------------------------------------------------- */
|
1095 |
|
|
/*!Expand a sibcall pattern.
|
1096 |
|
|
|
1097 |
|
|
For now this is very simple way for sibcall support (i.e tail call
|
1098 |
|
|
optimization).
|
1099 |
|
|
|
1100 |
|
|
@param[in] result Not sure. RTX for the result location?
|
1101 |
|
|
@param[in] addr Not sure. RXT for the address to call?
|
1102 |
|
|
@param[in] args_size Not sure. RTX for the size of the args (in bytes?)? */
|
1103 |
|
|
/* -------------------------------------------------------------------------- */
|
1104 |
|
|
void
|
1105 |
|
|
or32_expand_sibcall (rtx result ATTRIBUTE_UNUSED,
|
1106 |
|
|
rtx addr,
|
1107 |
|
|
rtx args_size)
|
1108 |
|
|
{
|
1109 |
|
|
emit_call_insn (gen_sibcall_internal (addr, args_size));
|
1110 |
|
|
|
1111 |
|
|
} /* or32_expand_sibcall () */
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
/* -------------------------------------------------------------------------- */
|
1115 |
|
|
/*!Load a 32-bit constant.
|
1116 |
|
|
|
1117 |
|
|
We know it can't be done in one insn when we get here, the movsi expander
|
1118 |
|
|
guarantees this.
|
1119 |
|
|
|
1120 |
|
|
@param[in] op0 RTX for the destination.
|
1121 |
|
|
@param[in] op1 RTX for the (constant) source. */
|
1122 |
|
|
/* -------------------------------------------------------------------------- */
|
1123 |
|
|
void
|
1124 |
|
|
or32_emit_set_const32 (rtx op0,
|
1125 |
|
|
rtx op1)
|
1126 |
|
|
{
|
1127 |
|
|
enum machine_mode mode = GET_MODE (op0);
|
1128 |
|
|
rtx temp;
|
1129 |
|
|
|
1130 |
|
|
/* Sanity check that we really can't do it in one instruction. I.e that we
|
1131 |
|
|
don't have a 16-bit constant. */
|
1132 |
|
|
if (GET_CODE (op1) == CONST_INT)
|
1133 |
|
|
{
|
1134 |
|
|
HOST_WIDE_INT val = INTVAL (op1) & GET_MODE_MASK (mode);
|
1135 |
|
|
|
1136 |
|
|
if ((-32768 <= val) && (val <= 32767))
|
1137 |
|
|
{
|
1138 |
|
|
abort ();
|
1139 |
|
|
}
|
1140 |
|
|
}
|
1141 |
|
|
|
1142 |
|
|
/* Full 2-insn decomposition is needed. */
|
1143 |
|
|
if (reload_in_progress || reload_completed)
|
1144 |
|
|
temp = op0;
|
1145 |
|
|
else
|
1146 |
|
|
temp = gen_reg_rtx (mode);
|
1147 |
|
|
|
1148 |
|
|
if (GET_CODE (op1) == CONST_INT)
|
1149 |
|
|
{
|
1150 |
|
|
/* Emit them as real moves instead of a HIGH/LO_SUM,
|
1151 |
|
|
this way CSE can see everything and reuse intermediate
|
1152 |
|
|
values if it wants. */
|
1153 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp,
|
1154 |
|
|
GEN_INT (INTVAL (op1)
|
1155 |
|
|
& ~(HOST_WIDE_INT) 0xffff)));
|
1156 |
|
|
|
1157 |
|
|
emit_insn (gen_rtx_SET (VOIDmode,
|
1158 |
|
|
op0,
|
1159 |
|
|
gen_rtx_IOR (mode, temp,
|
1160 |
|
|
GEN_INT (INTVAL (op1) & 0xffff))));
|
1161 |
|
|
}
|
1162 |
|
|
else
|
1163 |
|
|
{
|
1164 |
|
|
/* since or32 bfd can not deal with relocs that are not of type
|
1165 |
|
|
OR32_CONSTH_RELOC + OR32_CONST_RELOC (ie move high must be
|
1166 |
|
|
followed by exactly one lo_sum)
|
1167 |
|
|
*/
|
1168 |
|
|
emit_insn (gen_movsi_insn_big (op0, op1));
|
1169 |
|
|
}
|
1170 |
|
|
} /* or32_emit_set_const32 () */
|
1171 |
|
|
|
1172 |
|
|
|
1173 |
|
|
/* ========================================================================== */
|
1174 |
|
|
/* Target hook functions.
|
1175 |
|
|
|
1176 |
|
|
These are initialized at the end of this file, to avoid having to
|
1177 |
|
|
predeclare all the functions. They are only needed here, so are static. */
|
1178 |
|
|
|
1179 |
|
|
|
1180 |
|
|
/* -------------------------------------------------------------------------- */
|
1181 |
|
|
/*!Set up the stack and frame pointer (if desired) for the function.
|
1182 |
|
|
|
1183 |
|
|
If defined, a function that outputs the assembler code for entry to a
|
1184 |
|
|
function. The prologue is responsible for setting up the stack frame,
|
1185 |
|
|
initializing the frame pointer register, saving registers that must be
|
1186 |
|
|
saved, and allocating "size" additional bytes of storage for the local
|
1187 |
|
|
variables. "size" is an integer. "file" is a stdio stream to which the
|
1188 |
|
|
assembler code should be output.
|
1189 |
|
|
|
1190 |
|
|
The label for the beginning of the function need not be output by this
|
1191 |
|
|
macro. That has already been done when the macro is run.
|
1192 |
|
|
|
1193 |
|
|
To determine which registers to save, the macro can refer to the array
|
1194 |
|
|
"regs_ever_live": element "r" is nonzero if hard register "r" is used
|
1195 |
|
|
anywhere within the function. This implies the function prologue should
|
1196 |
|
|
save register r, provided it is not one of the call-used
|
1197 |
|
|
registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use
|
1198 |
|
|
"regs_ever_live".)
|
1199 |
|
|
|
1200 |
|
|
On machines that have "register windows", the function entry code does not
|
1201 |
|
|
save on the stack the registers that are in the windows, even if they are
|
1202 |
|
|
supposed to be preserved by function calls; instead it takes appropriate
|
1203 |
|
|
steps to “push” the register stack, if any non-call-used registers are used
|
1204 |
|
|
in the function.
|
1205 |
|
|
|
1206 |
|
|
On machines where functions may or may not have frame-pointers, the
|
1207 |
|
|
function entry code must vary accordingly; it must set up the frame pointer
|
1208 |
|
|
if one is wanted, and not otherwise. To determine whether a frame pointer
|
1209 |
|
|
is in wanted, the macro can refer to the variable frame_pointer_needed. The
|
1210 |
|
|
variable’s value will be 1 at run time in a function that needs a frame
|
1211 |
|
|
pointer. See the section on "Eliminating Frame Pointer and Arg Pointer" in
|
1212 |
|
|
the "Target Description Macros and Functions" chapter of the GCC internals
|
1213 |
|
|
manual.
|
1214 |
|
|
|
1215 |
|
|
The function entry code is responsible for allocating any stack space
|
1216 |
|
|
required for the function. This stack space consists of the regions listed
|
1217 |
|
|
below. In most cases, these regions are allocated in the order listed, with
|
1218 |
|
|
the last listed region closest to the top of the stack (the lowest address
|
1219 |
|
|
if STACK_GROWS_DOWNWARD is defined, and the highest address if it is not
|
1220 |
|
|
defined). You can use a different order for a machine if doing so is more
|
1221 |
|
|
convenient or required for compatibility reasons. Except in cases where
|
1222 |
|
|
required by standard or by a debugger, there is no reason why the stack
|
1223 |
|
|
layout used by GCC need agree with that used by other compilers for a
|
1224 |
|
|
machine.
|
1225 |
|
|
|
1226 |
|
|
@param[in] file File handle for any generated code.
|
1227 |
|
|
@param[in] size Number of bytes of storage needed for local variables. */
|
1228 |
|
|
/* -------------------------------------------------------------------------- */
|
1229 |
|
|
static void
|
1230 |
|
|
or32_output_function_prologue (FILE *file,
|
1231 |
|
|
HOST_WIDE_INT size)
|
1232 |
|
|
{
|
1233 |
|
|
int save_area;
|
1234 |
|
|
int gpr_save_area;
|
1235 |
|
|
int lr_save_area;
|
1236 |
|
|
int fp_save_area;
|
1237 |
|
|
int stack_size;
|
1238 |
|
|
int regno;
|
1239 |
|
|
|
1240 |
|
|
/* If we are doing the prologue using the "prologue" pattern in the machine
|
1241 |
|
|
description, do nothing more here.
|
1242 |
|
|
|
1243 |
|
|
JPB 30-Aug-10: Surely that is not correct. If this option is set, we
|
1244 |
|
|
should never even be called! */
|
1245 |
399 |
jeremybenn |
if (TARGET_SCHED_LOGUE)
|
1246 |
282 |
jeremybenn |
return;
|
1247 |
|
|
|
1248 |
|
|
if (size < 0)
|
1249 |
|
|
abort ();
|
1250 |
|
|
|
1251 |
|
|
/* Work out and log the frame size */
|
1252 |
|
|
stack_size = calculate_stack_size (size, &lr_save_area, &fp_save_area,
|
1253 |
|
|
&gpr_save_area, &save_area);
|
1254 |
|
|
|
1255 |
|
|
fprintf (file,
|
1256 |
|
|
"\n\t# gpr_save_area %d size %ld crtl->outgoing_args_size %d\n",
|
1257 |
|
|
gpr_save_area, size, crtl->outgoing_args_size);
|
1258 |
|
|
|
1259 |
|
|
/* Decrement the stack pointer by the total frame size (if we have a
|
1260 |
|
|
frame). */
|
1261 |
|
|
if (stack_size > 0)
|
1262 |
|
|
{
|
1263 |
|
|
/* Special code for large stack frames */
|
1264 |
|
|
if (stack_size >= 0x8000)
|
1265 |
|
|
{
|
1266 |
|
|
fprintf (file, "\tl.movhi\tr%d,hi(%d)\n", GP_ARG_RETURN, stack_size);
|
1267 |
|
|
fprintf (file, "\tl.ori\tr%d,r%d,lo(%d)\n", GP_ARG_RETURN,
|
1268 |
|
|
GP_ARG_RETURN, stack_size);
|
1269 |
|
|
fprintf (file, "\tl.sub\tr%d,r%d,r%d\n", STACK_POINTER_REGNUM,
|
1270 |
|
|
STACK_POINTER_REGNUM, GP_ARG_RETURN);
|
1271 |
|
|
}
|
1272 |
|
|
else
|
1273 |
|
|
{
|
1274 |
|
|
fprintf (file, "\tl.addi\tr%d,r%d,%d\n", STACK_POINTER_REGNUM,
|
1275 |
|
|
STACK_POINTER_REGNUM, -stack_size);
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
/* Update the DWARF2 CFA using the new stack pointer. After this the CFA
|
1279 |
|
|
will be the SP + frame size, i.e. the FP (or start of frame if we
|
1280 |
|
|
don't actually have a FP). All register refs should relate to this. */
|
1281 |
|
|
if (dwarf2out_do_frame ())
|
1282 |
|
|
{
|
1283 |
|
|
char *l = dwarf2out_cfi_label (false);
|
1284 |
|
|
|
1285 |
|
|
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, stack_size);
|
1286 |
|
|
}
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* Update the frame pointer if necessary */
|
1290 |
|
|
if (fp_save_area)
|
1291 |
|
|
{
|
1292 |
|
|
char *l = dwarf2out_cfi_label (false);
|
1293 |
|
|
int offset = OR32_ALIGN (crtl->outgoing_args_size, 4) + lr_save_area;
|
1294 |
|
|
|
1295 |
|
|
fprintf (file, "\tl.sw\t%d(r%d),r%d\n", offset,
|
1296 |
399 |
jeremybenn |
STACK_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM);
|
1297 |
282 |
jeremybenn |
|
1298 |
|
|
if (stack_size >= 0x8000)
|
1299 |
399 |
jeremybenn |
fprintf (file, "\tl.add\tr%d,r%d,r%d\n", HARD_FRAME_POINTER_REGNUM,
|
1300 |
282 |
jeremybenn |
STACK_POINTER_REGNUM, GP_ARG_RETURN);
|
1301 |
|
|
else
|
1302 |
399 |
jeremybenn |
fprintf (file, "\tl.addi\tr%d,r%d,%d\n", HARD_FRAME_POINTER_REGNUM,
|
1303 |
282 |
jeremybenn |
STACK_POINTER_REGNUM, stack_size);
|
1304 |
|
|
|
1305 |
|
|
/* The CFA is already pointing at the start of our frame (i.e. the new
|
1306 |
|
|
FP). The old FP has been saved relative to the SP, so we need to use
|
1307 |
|
|
stack_size to work out where. */
|
1308 |
399 |
jeremybenn |
dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM, offset - stack_size);
|
1309 |
282 |
jeremybenn |
}
|
1310 |
|
|
|
1311 |
|
|
/* Save the return address if necessary */
|
1312 |
|
|
if (lr_save_area)
|
1313 |
|
|
{
|
1314 |
|
|
char *l = dwarf2out_cfi_label (false);
|
1315 |
|
|
int offset = OR32_ALIGN (crtl->outgoing_args_size, 4);
|
1316 |
|
|
|
1317 |
|
|
fprintf (file, "\tl.sw\t%d(r%d),r%d\n", offset, STACK_POINTER_REGNUM,
|
1318 |
|
|
LINK_REGNUM);
|
1319 |
|
|
|
1320 |
|
|
/* The CFA is already pointing at the start of our frame (i.e. the new
|
1321 |
|
|
FP). The LR has been saved relative to the SP, so we need to use
|
1322 |
|
|
stack_size to work out where. */
|
1323 |
399 |
jeremybenn |
dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM, offset - stack_size);
|
1324 |
282 |
jeremybenn |
}
|
1325 |
|
|
|
1326 |
|
|
save_area = (OR32_ALIGN (crtl->outgoing_args_size, 4)
|
1327 |
|
|
+ lr_save_area + fp_save_area);
|
1328 |
|
|
|
1329 |
|
|
/* Save any callee saved registers */
|
1330 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
1331 |
|
|
{
|
1332 |
|
|
if (df_regs_ever_live_p(regno) && !call_used_regs[regno])
|
1333 |
|
|
{
|
1334 |
|
|
char *l = dwarf2out_cfi_label (false);
|
1335 |
|
|
|
1336 |
|
|
fprintf (file, "\tl.sw\t%d(r%d),r%d\n", save_area,
|
1337 |
|
|
STACK_POINTER_REGNUM, regno);
|
1338 |
|
|
|
1339 |
|
|
/* The CFA is already pointing at the start of our frame (i.e. the
|
1340 |
|
|
new FP). The register has been saved relative to the SP, so we
|
1341 |
|
|
need to use stack_size to work out where. */
|
1342 |
399 |
jeremybenn |
dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM,
|
1343 |
|
|
save_area - stack_size);
|
1344 |
282 |
jeremybenn |
save_area += 4;
|
1345 |
|
|
}
|
1346 |
|
|
}
|
1347 |
|
|
} /* or32_output_function_prologue () */
|
1348 |
|
|
|
1349 |
|
|
|
1350 |
|
|
/* -------------------------------------------------------------------------- */
|
1351 |
|
|
/*!Do any necessary cleanup after a function to restore stack, frame, and regs.
|
1352 |
|
|
|
1353 |
|
|
This is a function that outputs the assembler code for exit from a
|
1354 |
|
|
function. The epilogue is responsible for restoring the saved registers and
|
1355 |
|
|
stack pointer to their values when the function was called, and returning
|
1356 |
|
|
control to the caller. This macro takes the same arguments as the macro
|
1357 |
|
|
TARGET_ASM_FUNCTION_PROLOGUE, and the registers to restore are determined
|
1358 |
|
|
from regs_ever_live and CALL_USED_REGISTERS in the same way (@see
|
1359 |
|
|
or32_output_function_prologue ()) .
|
1360 |
|
|
|
1361 |
|
|
On some machines, there is a single instruction that does all the work of
|
1362 |
|
|
returning from the function. On these machines, give that instruction the
|
1363 |
|
|
name "return" (in the machine definition) and do not define the macro
|
1364 |
|
|
TARGET_ASM_FUNCTION_EPILOGUE at all.
|
1365 |
|
|
|
1366 |
|
|
Do not define a pattern named "return" if you want the
|
1367 |
|
|
TARGET_ASM_FUNCTION_EPILOGUE to be used. If you want the target switches to
|
1368 |
|
|
control whether return instructions or epilogues are used, define a
|
1369 |
|
|
"return" pattern with a validity condition that tests the target switches
|
1370 |
|
|
appropriately. If the "return" pattern’s validity condition is false,
|
1371 |
|
|
epilogues will be used.
|
1372 |
|
|
|
1373 |
|
|
On machines where functions may or may not have frame-pointers, the
|
1374 |
|
|
function exit code must vary accordingly. Sometimes the code for these two
|
1375 |
|
|
cases is completely different. To determine whether a frame pointer is
|
1376 |
|
|
wanted, the macro can refer to the variable frame_pointer_needed. The
|
1377 |
|
|
variable’s value will be 1 when compiling a function that needs a frame
|
1378 |
|
|
pointer.
|
1379 |
|
|
|
1380 |
|
|
Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE
|
1381 |
|
|
must treat leaf functions specially. The C variable
|
1382 |
|
|
"current_function_is_leaf" is nonzero for such a function. See "Handling
|
1383 |
|
|
Leaf Functions" in the "Target Description Macros and Functions" section of
|
1384 |
|
|
the GCC internals manual.
|
1385 |
|
|
|
1386 |
|
|
On some machines, some functions pop their arguments on exit while others
|
1387 |
|
|
leave that for the caller to do. For example, the 68020 when given "-mrtd"
|
1388 |
|
|
pops arguments in functions that take a fixed number of arguments.
|
1389 |
|
|
|
1390 |
|
|
Your definition of the macro RETURN_POPS_ARGS decides which functions pop
|
1391 |
|
|
their own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was
|
1392 |
|
|
decided. The number of bytes of the current function’s arguments that this
|
1393 |
|
|
function should pop is available in "crtl->args.pops_args". See "How Scalar
|
1394 |
|
|
Function Values Are Returned" in the "Target Description Macros and
|
1395 |
|
|
Functions" section of the GCC internals manual.
|
1396 |
|
|
|
1397 |
|
|
@param[in] file File handle for any generated code.
|
1398 |
|
|
@param[in] size Number of bytes of storage needed for local variables. */
|
1399 |
|
|
/* -------------------------------------------------------------------------- */
|
1400 |
|
|
static void
|
1401 |
|
|
or32_output_function_epilogue (FILE * file, HOST_WIDE_INT size)
|
1402 |
|
|
{
|
1403 |
|
|
int save_area;
|
1404 |
|
|
int gpr_save_area;
|
1405 |
|
|
int lr_save_area;
|
1406 |
|
|
int fp_save_area;
|
1407 |
|
|
int stack_size;
|
1408 |
|
|
int regno;
|
1409 |
|
|
|
1410 |
|
|
/* If we are doing the epilogue using the "epilogue" pattern in the machine
|
1411 |
|
|
description, do nothing more here.
|
1412 |
|
|
|
1413 |
|
|
JPB 30-Aug-10: Surely that is not correct. If this option is set, we
|
1414 |
|
|
should never even be called! */
|
1415 |
399 |
jeremybenn |
if (TARGET_SCHED_LOGUE)
|
1416 |
282 |
jeremybenn |
return;
|
1417 |
|
|
|
1418 |
|
|
/* Work out the frame size */
|
1419 |
|
|
stack_size = calculate_stack_size (size, &lr_save_area, &fp_save_area,
|
1420 |
|
|
&gpr_save_area, &save_area);
|
1421 |
|
|
|
1422 |
|
|
/* Restore the return address if necessary */
|
1423 |
|
|
if (lr_save_area)
|
1424 |
|
|
{
|
1425 |
|
|
fprintf (file, "\tl.lwz\tr%d,%d(r%d)\n", LINK_REGNUM,
|
1426 |
|
|
OR32_ALIGN (crtl->outgoing_args_size, 4),
|
1427 |
|
|
STACK_POINTER_REGNUM);
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
/* Restore the frame pointer if necessary */
|
1431 |
|
|
if (fp_save_area)
|
1432 |
|
|
{
|
1433 |
399 |
jeremybenn |
fprintf (file, "\tl.lwz\tr%d,%d(r%d)\n", HARD_FRAME_POINTER_REGNUM,
|
1434 |
282 |
jeremybenn |
OR32_ALIGN (crtl->outgoing_args_size, 4)
|
1435 |
|
|
+ lr_save_area, STACK_POINTER_REGNUM);
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
save_area = (OR32_ALIGN (crtl->outgoing_args_size, 4)
|
1439 |
|
|
+ lr_save_area + fp_save_area);
|
1440 |
|
|
|
1441 |
|
|
/* Restore any callee-saved registers */
|
1442 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
1443 |
|
|
{
|
1444 |
|
|
if (df_regs_ever_live_p(regno) && !call_used_regs[regno])
|
1445 |
|
|
{
|
1446 |
|
|
fprintf (file, "\tl.lwz\tr%d,%d(r%d)\n", regno, save_area,
|
1447 |
|
|
STACK_POINTER_REGNUM);
|
1448 |
|
|
save_area += 4;
|
1449 |
|
|
}
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
/* Restore the stack pointer (if necessary) */
|
1453 |
|
|
if (stack_size >= 0x8000)
|
1454 |
|
|
{
|
1455 |
|
|
fprintf (file, "\tl.movhi\tr3,hi(%d)\n", stack_size);
|
1456 |
|
|
fprintf (file, "\tl.ori\tr3,r3,lo(%d)\n", stack_size);
|
1457 |
|
|
|
1458 |
399 |
jeremybenn |
fprintf (file, "\tl.jr\tr%d\n", LINK_REGNUM);
|
1459 |
282 |
jeremybenn |
|
1460 |
|
|
fprintf (file, "\tl.add\tr%d,r%d,r3\n", STACK_POINTER_REGNUM,
|
1461 |
|
|
STACK_POINTER_REGNUM);
|
1462 |
|
|
}
|
1463 |
|
|
else if (stack_size > 0)
|
1464 |
|
|
{
|
1465 |
399 |
jeremybenn |
fprintf (file, "\tl.jr\tr%d\n", LINK_REGNUM);
|
1466 |
282 |
jeremybenn |
|
1467 |
|
|
fprintf (file, "\tl.addi\tr%d,r%d,%d\n", STACK_POINTER_REGNUM,
|
1468 |
|
|
STACK_POINTER_REGNUM, stack_size);
|
1469 |
|
|
}
|
1470 |
|
|
else
|
1471 |
|
|
{
|
1472 |
399 |
jeremybenn |
fprintf (file, "\tl.jr\tr%d\n", LINK_REGNUM);
|
1473 |
282 |
jeremybenn |
|
1474 |
|
|
fprintf (file, "\tl.nop\n"); /* Delay slot */
|
1475 |
|
|
}
|
1476 |
|
|
} /* or32_output_function_epilogue () */
|
1477 |
|
|
|
1478 |
|
|
|
1479 |
|
|
/* -------------------------------------------------------------------------- */
|
1480 |
|
|
/*!Define where a function returns values.
|
1481 |
|
|
|
1482 |
|
|
Define this to return an RTX representing the place where a function
|
1483 |
|
|
returns or receives a value of data type ret type, a tree node representing
|
1484 |
|
|
a data type. "func" is a tree node representing FUNCTION_DECL or
|
1485 |
|
|
FUNCTION_TYPE of a function being called. If "outgoing" is false, the hook
|
1486 |
|
|
should compute the register in which the caller will see the return
|
1487 |
|
|
value. Otherwise, the hook should return an RTX representing the place
|
1488 |
|
|
where a function returns a value.
|
1489 |
|
|
|
1490 |
|
|
On many machines, only TYPE_MODE ("ret_type") is relevant. (Actually, on
|
1491 |
|
|
most machines, scalar values are returned in the same place regardless of
|
1492 |
|
|
mode.) The value of the expression is usually a reg RTX for the hard
|
1493 |
|
|
register where the return value is stored. The value can also be a parallel
|
1494 |
|
|
RTX, if the return value is in multiple places. See FUNCTION_ARG for an
|
1495 |
|
|
explanation of the parallel form. Note that the callee will populate every
|
1496 |
|
|
location specified in the parallel, but if the first element of the
|
1497 |
|
|
parallel contains the whole return value, callers will use that element as
|
1498 |
|
|
the canonical location and ignore the others. The m68k port uses this type
|
1499 |
|
|
of parallel to return pointers in both ‘%a0’ (the canonical location) and
|
1500 |
|
|
‘%d0’.
|
1501 |
|
|
|
1502 |
|
|
If TARGET_PROMOTE_FUNCTION_RETURN returns true, you must apply the same
|
1503 |
|
|
promotion rules specified in PROMOTE_MODE if valtype is a scalar type.
|
1504 |
|
|
|
1505 |
|
|
If the precise function being called is known, "func" is a tree node
|
1506 |
|
|
(FUNCTION_DECL) for it; otherwise, "func" is a null pointer. This makes it
|
1507 |
|
|
possible to use a different value-returning convention for specific
|
1508 |
|
|
functions when all their calls are known.
|
1509 |
|
|
|
1510 |
|
|
Some target machines have "register windows" so that the register in which
|
1511 |
|
|
a function returns its value is not the same as the one in which the caller
|
1512 |
|
|
sees the value. For such machines, you should return different RTX
|
1513 |
|
|
depending on outgoing.
|
1514 |
|
|
|
1515 |
|
|
TARGET_FUNCTION_VALUE is not used for return values with aggregate data
|
1516 |
|
|
types, because these are returned in another way. See
|
1517 |
|
|
TARGET_STRUCT_VALUE_RTX and related macros.
|
1518 |
|
|
|
1519 |
|
|
For the OR32, we can just use the result of LIBCALL_VALUE, since all
|
1520 |
|
|
functions return their result in the same place (register rv = r11).
|
1521 |
|
|
|
1522 |
|
|
JPB 30-Aug-10: What about 64-bit scalar returns (long long int, double),
|
1523 |
|
|
which also use rvh (=r12)?
|
1524 |
|
|
|
1525 |
|
|
@param[in] ret_type The return type of the function.
|
1526 |
|
|
@param[in] func Tree representing function being called.
|
1527 |
|
|
@param[in] outgoing Non-zero (TRUE) if the result represents where the
|
1528 |
|
|
function places the results, zero (FALSE) if the
|
1529 |
|
|
result represents where the caller sees the result.
|
1530 |
|
|
|
1531 |
|
|
@return A RTX representing where the result can be found. */
|
1532 |
|
|
/* -------------------------------------------------------------------------- */
|
1533 |
|
|
static rtx
|
1534 |
|
|
or32_function_value (const_tree ret_type,
|
1535 |
|
|
const_tree func ATTRIBUTE_UNUSED,
|
1536 |
|
|
bool outgoing ATTRIBUTE_UNUSED)
|
1537 |
|
|
{
|
1538 |
|
|
return LIBCALL_VALUE (TYPE_MODE(ret_type));
|
1539 |
|
|
|
1540 |
|
|
} /* or32_function_value () */
|
1541 |
|
|
|
1542 |
|
|
|
1543 |
|
|
/* -------------------------------------------------------------------------- */
|
1544 |
|
|
/*!Check if a function is suitable for tail call optimization.
|
1545 |
|
|
|
1546 |
|
|
True if it is OK to do sibling call optimization for the specified call
|
1547 |
|
|
expression "exp". "decl" will be the called function, or NULL if this is an
|
1548 |
|
|
indirect call.
|
1549 |
|
|
|
1550 |
|
|
It is not uncommon for limitations of calling conventions to prevent tail
|
1551 |
|
|
calls to functions outside the current unit of translation, or during PIC
|
1552 |
|
|
compilation. The hook is used to enforce these restrictions, as the sibcall
|
1553 |
|
|
md pattern can not fail, or fall over to a “normal” call. The criteria for
|
1554 |
|
|
successful sibling call optimization may vary greatly between different
|
1555 |
|
|
architectures.
|
1556 |
|
|
|
1557 |
399 |
jeremybenn |
For the OR32, we currently allow sibcall optimization whenever
|
1558 |
|
|
-foptimize-sibling-calls is enabled.
|
1559 |
282 |
jeremybenn |
|
1560 |
|
|
@param[in] decl The function for which we may optimize
|
1561 |
|
|
@param[in] exp The call expression which is candidate for optimization.
|
1562 |
|
|
|
1563 |
|
|
@return Non-zero (TRUE) if sibcall optimization is permitted, zero (FALSE)
|
1564 |
|
|
otherwise. */
|
1565 |
|
|
/* -------------------------------------------------------------------------- */
|
1566 |
|
|
static bool
|
1567 |
|
|
or32_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
|
1568 |
|
|
tree exp ATTRIBUTE_UNUSED)
|
1569 |
|
|
{
|
1570 |
414 |
jeremybenn |
/* Assume up to 31 registers of 4 bytes might be saved. */
|
1571 |
|
|
return or32_redzone >= 31 * 4;
|
1572 |
282 |
jeremybenn |
} /* or32_function_ok_for_sibcall () */
|
1573 |
|
|
|
1574 |
|
|
|
1575 |
|
|
/* -------------------------------------------------------------------------- */
|
1576 |
|
|
/*!Should an argument be passed by reference.
|
1577 |
|
|
|
1578 |
|
|
This target hook should return true if an argument at the position
|
1579 |
|
|
indicated by "cum" should be passed by reference. This predicate is queried
|
1580 |
|
|
after target independent reasons for being passed by reference, such as
|
1581 |
|
|
TREE_ADDRESSABLE ("type").
|
1582 |
|
|
|
1583 |
|
|
If the hook returns TRUE, a copy of that argument is made in memory and a
|
1584 |
|
|
pointer to the argument is passed instead of the argument itself. The
|
1585 |
|
|
pointer is passed in whatever way is appropriate for passing a pointer to
|
1586 |
|
|
that type.
|
1587 |
|
|
|
1588 |
|
|
For the OR32, all aggregates and arguments greater than 8 bytes are passed
|
1589 |
|
|
this way.
|
1590 |
|
|
|
1591 |
|
|
@param[in] cum Position of argument under consideration.
|
1592 |
|
|
@param[in[ mode Not sure what this relates to.
|
1593 |
|
|
@param[in] type Type of the argument.
|
1594 |
|
|
@param[in] named Not sure what this relates to.
|
1595 |
|
|
|
1596 |
|
|
@return Non-zero (TRUE) if the argument should be passed by reference,
|
1597 |
|
|
zero (FALSE) otherwise. */
|
1598 |
|
|
/* -------------------------------------------------------------------------- */
|
1599 |
|
|
static bool
|
1600 |
|
|
or32_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
|
1601 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
1602 |
|
|
const_tree type,
|
1603 |
|
|
bool named ATTRIBUTE_UNUSED)
|
1604 |
|
|
{
|
1605 |
|
|
return (type && (AGGREGATE_TYPE_P (type) || int_size_in_bytes (type) > 8));
|
1606 |
|
|
|
1607 |
|
|
} /* or32_pass_by_reference () */
|
1608 |
|
|
|
1609 |
|
|
|
1610 |
399 |
jeremybenn |
#if 0
|
1611 |
282 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
1612 |
|
|
/*!Is a frame pointer required?
|
1613 |
|
|
|
1614 |
|
|
This target hook should return TRUE if a function must have and use a frame
|
1615 |
|
|
pointer. This target hook is called in the reload pass. If its return
|
1616 |
|
|
value is TRUE the function will have a frame pointer.
|
1617 |
|
|
|
1618 |
|
|
This target hook can in principle examine the current function and decide
|
1619 |
|
|
according to the facts, but on most machines the constant false or the
|
1620 |
|
|
constant true suffices. Use FALSE when the machine allows code to be
|
1621 |
|
|
generated with no frame pointer, and doing so saves some time or space. Use
|
1622 |
|
|
TRUE when there is no possible advantage to avoiding a frame pointer.
|
1623 |
|
|
|
1624 |
|
|
In certain cases, the compiler does not know how to produce valid code
|
1625 |
|
|
without a frame pointer. The compiler recognizes those cases and
|
1626 |
|
|
automatically gives the function a frame pointer regardless of what
|
1627 |
|
|
TARGET_FRAME_POINTER_REQUIRED returns. You don’t need to worry about them.
|
1628 |
|
|
|
1629 |
|
|
In a function that does not require a frame pointer, the frame pointer
|
1630 |
|
|
register can be allocated for ordinary usage, unless you mark it as a fixed
|
1631 |
|
|
register. See FIXED_REGISTERS for more information.
|
1632 |
|
|
|
1633 |
|
|
Default return value is false.
|
1634 |
|
|
|
1635 |
|
|
For the OR32 we do not need the frame pointer, so the default would have
|
1636 |
|
|
sufficed.
|
1637 |
|
|
|
1638 |
|
|
JPB 30-Aug-10: The version supplied returned TRUE, which is patently the
|
1639 |
|
|
wrong answer. This function really could be eliminated and
|
1640 |
|
|
the default used.
|
1641 |
|
|
|
1642 |
|
|
@return Non-zero (TRUE) if a frame pointer is not required, zero (FALSE)
|
1643 |
|
|
otherwise. */
|
1644 |
|
|
/* -------------------------------------------------------------------------- */
|
1645 |
|
|
static bool
|
1646 |
|
|
or32_frame_pointer_required (void)
|
1647 |
|
|
{
|
1648 |
|
|
return 1;
|
1649 |
|
|
|
1650 |
|
|
} /* or32_frame_pointer_required () */
|
1651 |
399 |
jeremybenn |
#endif
|
1652 |
282 |
jeremybenn |
|
1653 |
399 |
jeremybenn |
int
|
1654 |
|
|
or32_initial_elimination_offset(int from, int to)
|
1655 |
|
|
{
|
1656 |
|
|
or32_compute_frame_size (get_frame_size ());
|
1657 |
414 |
jeremybenn |
return ((from == FRAME_POINTER_REGNUM
|
1658 |
|
|
? frame_info.gpr_offset : frame_info.gpr_frame)
|
1659 |
|
|
+ (to == STACK_POINTER_REGNUM ? frame_info.late_frame : 0));
|
1660 |
399 |
jeremybenn |
}
|
1661 |
282 |
jeremybenn |
|
1662 |
399 |
jeremybenn |
|
1663 |
282 |
jeremybenn |
/* -------------------------------------------------------------------------- */
|
1664 |
|
|
/*!How many bytes at the beginning of an argument must be put into registers.
|
1665 |
|
|
|
1666 |
|
|
This target hook returns the number of bytes at the beginning of an
|
1667 |
|
|
argument that must be put in registers. The value must be zero for
|
1668 |
|
|
arguments that are passed entirely in registers or that are entirely pushed
|
1669 |
|
|
on the stack.
|
1670 |
|
|
|
1671 |
|
|
On some machines, certain arguments must be passed partially in registers
|
1672 |
|
|
and partially in memory. On these machines, typically the first few words
|
1673 |
|
|
of arguments a re passed in registers, and the rest on the stack. If a
|
1674 |
|
|
multi-word argument (a double or a structure) crosses that boundary, its
|
1675 |
|
|
first few words must be passed in registers and the rest must be
|
1676 |
|
|
pushed. This macro tells the compiler when this occurs, and how many bytes
|
1677 |
|
|
should go in registers.
|
1678 |
|
|
|
1679 |
|
|
FUNCTION_ARG for these arguments should return the first register to be
|
1680 |
|
|
used by the caller for this argument; likewise FUNCTION_INCOMING_ARG, for
|
1681 |
|
|
the called function.
|
1682 |
|
|
|
1683 |
|
|
On the OR32 we never split argumetns between registers and memory.
|
1684 |
|
|
|
1685 |
|
|
JPB 30-Aug-10: Is this correct? Surely we should allow this. The ABI spec
|
1686 |
|
|
is incomplete on this point.
|
1687 |
|
|
|
1688 |
|
|
@param[in] cum Position of argument under consideration.
|
1689 |
|
|
@param[in[ mode Not sure what this relates to.
|
1690 |
|
|
@param[in] type Type of the argument.
|
1691 |
|
|
@param[in] named Not sure what this relates to.
|
1692 |
|
|
|
1693 |
|
|
@return The number of bytes of the argument to go into registers */
|
1694 |
|
|
/* -------------------------------------------------------------------------- */
|
1695 |
|
|
static int
|
1696 |
|
|
or32_arg_partial_bytes (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
|
1697 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
1698 |
|
|
tree type ATTRIBUTE_UNUSED,
|
1699 |
|
|
bool named ATTRIBUTE_UNUSED)
|
1700 |
|
|
{
|
1701 |
|
|
return 0;
|
1702 |
|
|
|
1703 |
|
|
} /* or32_arg_partial_bytes () */
|
1704 |
|
|
|
1705 |
|
|
|
1706 |
|
|
/* -------------------------------------------------------------------------- */
|
1707 |
|
|
/*!Promote the mode of a function's arguments/return value.
|
1708 |
|
|
|
1709 |
|
|
Like PROMOTE_MODE, but it is applied to outgoing function arguments or
|
1710 |
|
|
function return values. The target hook should return the new mode and
|
1711 |
|
|
possibly change "*punsignedp" if the promotion should change
|
1712 |
|
|
signedness. This function is called only for scalar or pointer types.
|
1713 |
|
|
|
1714 |
|
|
"for_return" allows to distinguish the promotion of arguments and return
|
1715 |
|
|
values. If it is 1, a return value is being promoted and
|
1716 |
|
|
TARGET_FUNCTION_VALUE must perform the same promotions done here. If it is
|
1717 |
|
|
2, the returned mode should be that of the register in which an incoming
|
1718 |
|
|
parameter is copied, or the outgoing result is computed; then the hook
|
1719 |
|
|
should return the same mode as PROMOTE_MODE, though the signedness may be
|
1720 |
|
|
different.
|
1721 |
|
|
|
1722 |
|
|
The default is to not promote arguments and return values. You can also
|
1723 |
|
|
define the hook to "default_promote_function_mode_always_promote" if you
|
1724 |
|
|
would like to apply the same rules given by PROMOTE_MODE.
|
1725 |
|
|
|
1726 |
|
|
For the OR32, if the size of the mode is integral and less than 4, we
|
1727 |
|
|
promote to SImode, otherwise we return the mode we are supplied.
|
1728 |
|
|
|
1729 |
|
|
@param[in] type Not sure. Type of the argument?
|
1730 |
|
|
@param[in] mode The mode of argument/return value to consider.
|
1731 |
|
|
@param[out] punsignedp Signedness of the value.
|
1732 |
|
|
@param[in] fntype Not sure. Type of the function?
|
1733 |
|
|
@param[in] for_return 1 if a return value, 2 if an incoming value.
|
1734 |
|
|
|
1735 |
|
|
@return The new mode. */
|
1736 |
|
|
/* -------------------------------------------------------------------------- */
|
1737 |
|
|
static enum machine_mode
|
1738 |
|
|
or32_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
|
1739 |
|
|
enum machine_mode mode,
|
1740 |
|
|
int *punsignedp ATTRIBUTE_UNUSED,
|
1741 |
|
|
const_tree fntype ATTRIBUTE_UNUSED,
|
1742 |
|
|
int for_return ATTRIBUTE_UNUSED)
|
1743 |
|
|
{
|
1744 |
|
|
return ( (GET_MODE_CLASS (mode) == MODE_INT)
|
1745 |
|
|
&& (GET_MODE_SIZE (mode) < 4)) ? SImode : mode;
|
1746 |
|
|
|
1747 |
|
|
} /* or32_promote_function_mode () */
|
1748 |
|
|
|
1749 |
|
|
|
1750 |
|
|
/* -------------------------------------------------------------------------- */
|
1751 |
|
|
/*!Is this a legitimate address?
|
1752 |
|
|
|
1753 |
|
|
A function that returns whether x (an RTX) is a legitimate memory address on
|
1754 |
|
|
the target machine for a memory operand of mode mode.
|
1755 |
|
|
|
1756 |
|
|
Legitimate addresses are defined in two variants: a strict variant and a
|
1757 |
|
|
non-strict one. The strict parameter chooses which variant is desired by
|
1758 |
|
|
the caller.
|
1759 |
|
|
|
1760 |
|
|
The strict variant is used in the reload pass. It must be defined so that
|
1761 |
|
|
any pseudo- register that has not been allocated a hard register is
|
1762 |
|
|
considered a memory reference. This is because in contexts where some kind
|
1763 |
|
|
of register is required, a pseudo-register with no hard register must be
|
1764 |
|
|
rejected. For non-hard registers, the strict variant should look up the
|
1765 |
|
|
reg_renumber array; it should then proceed using the hard register number in
|
1766 |
|
|
the array, or treat the pseudo as a memory reference if the array holds -1.
|
1767 |
|
|
|
1768 |
|
|
The non-strict variant is used in other passes. It must be defined to accept
|
1769 |
|
|
all pseudo-registers in every context where some kind of register is
|
1770 |
|
|
required.
|
1771 |
|
|
|
1772 |
|
|
Normally, constant addresses which are the sum of a symbol_ref and an
|
1773 |
|
|
integer are stored inside a const RTX to mark them as constant. Therefore,
|
1774 |
|
|
there is no need to recognize such sums specifically as legitimate
|
1775 |
|
|
addresses. Normally you would simply recognize any const as legitimate.
|
1776 |
|
|
|
1777 |
|
|
Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that
|
1778 |
|
|
are not marked with const. It assumes that a naked plus indicates
|
1779 |
|
|
indexing. If so, then you must reject such naked constant sums as
|
1780 |
|
|
illegitimate addresses, so that none of them will be given to
|
1781 |
|
|
PRINT_OPERAND_ADDRESS.
|
1782 |
|
|
|
1783 |
|
|
On some machines, whether a symbolic address is legitimate depends on the
|
1784 |
|
|
section that the address refers to. On these machines, define the target
|
1785 |
|
|
hook TARGET_ENCODE_ SECTION_INFO to store the information into the
|
1786 |
|
|
symbol_ref, and then check for it here. When you see a const, you will have
|
1787 |
|
|
to look inside it to find the symbol_ref in order to determine the
|
1788 |
|
|
section. See the internals manual section on "Assembler Format" for more
|
1789 |
|
|
info.
|
1790 |
|
|
|
1791 |
|
|
Some ports are still using a deprecated legacy substitute for this hook, the
|
1792 |
|
|
GO_IF_LEGITIMATE_ADDRESS macro. This macro has this syntax:
|
1793 |
|
|
|
1794 |
|
|
#define GO_IF_LEGITIMATE_ADDRESS (mode, x, label )
|
1795 |
|
|
|
1796 |
|
|
and should goto label if the address x is a valid address on the target
|
1797 |
|
|
machine for a memory operand of mode mode. Whether the strict or non-strict
|
1798 |
|
|
variants are desired is defined by the REG_OK_STRICT macro introduced
|
1799 |
|
|
earlier in this section. Using the hook is usually simpler because it limits
|
1800 |
|
|
the number of files that are recompiled when changes are made.
|
1801 |
|
|
|
1802 |
|
|
The OR32 only has a single addressing mode, which is a base register with
|
1803 |
|
|
16-bit displacement. We can accept just 16-bit constants as addresses (they
|
1804 |
|
|
can use r0 as base address, and we can accept plain registers as addresses
|
1805 |
|
|
(they can use a displacement of zero).
|
1806 |
|
|
|
1807 |
|
|
@param[in] mode The mode of the address
|
1808 |
|
|
@param[in] x The address (RTX)
|
1809 |
|
|
@param[in] strict Non-zero (TRUE) if we are in "strict" mode, zero (FALSE)
|
1810 |
|
|
otherwise.
|
1811 |
|
|
|
1812 |
|
|
@return Non-zero (TRUE) if this is a legitimate address, zero (FALSE)
|
1813 |
|
|
otherwise. */
|
1814 |
|
|
/* -------------------------------------------------------------------------- */
|
1815 |
|
|
static bool
|
1816 |
378 |
julius |
or32_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
|
1817 |
282 |
jeremybenn |
rtx x,
|
1818 |
|
|
bool strict)
|
1819 |
|
|
{
|
1820 |
|
|
/* You might think 16-bit constants are suitable. They can be built into
|
1821 |
|
|
addresses using r0 as the base. However this seems to lead to defective
|
1822 |
|
|
code. So for now this is a placeholder, and this code is not used.
|
1823 |
|
|
|
1824 |
|
|
if (or32_legitimate_displacement_p (mode, x))
|
1825 |
|
|
{
|
1826 |
|
|
return 1;
|
1827 |
|
|
}
|
1828 |
|
|
*/
|
1829 |
|
|
|
1830 |
|
|
/* Addresses consisting of a register and 16-bit displacement are also
|
1831 |
|
|
suitable. We need the mode, since for double words, we had better be
|
1832 |
|
|
able to address the full 8 bytes. */
|
1833 |
|
|
if (GET_CODE(x) == PLUS)
|
1834 |
|
|
{
|
1835 |
|
|
rtx reg = XEXP(x,0);
|
1836 |
|
|
|
1837 |
|
|
/* If valid register... */
|
1838 |
|
|
if ((GET_CODE(reg) == REG)
|
1839 |
377 |
julius |
&& or32_regnum_ok_for_base_p (REGNO (reg), strict))
|
1840 |
282 |
jeremybenn |
{
|
1841 |
|
|
rtx offset = XEXP(x,1);
|
1842 |
|
|
|
1843 |
|
|
/* ...and valid offset */
|
1844 |
|
|
if (or32_legitimate_displacement_p (mode, offset))
|
1845 |
|
|
{
|
1846 |
|
|
return 1;
|
1847 |
|
|
}
|
1848 |
|
|
}
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
/* Addresses consisting of just a register are OK. They can be built into
|
1852 |
|
|
addresses using an offset of zero (and an offset of four if double
|
1853 |
|
|
word). */
|
1854 |
378 |
julius |
if (GET_CODE(x) == REG
|
1855 |
|
|
&& or32_regnum_ok_for_base_p(REGNO(x),strict)) {
|
1856 |
282 |
jeremybenn |
return 1;
|
1857 |
378 |
julius |
}
|
1858 |
282 |
jeremybenn |
|
1859 |
|
|
return 0;
|
1860 |
378 |
julius |
}
|
1861 |
282 |
jeremybenn |
|
1862 |
|
|
/* -------------------------------------------------------------------------- */
|
1863 |
332 |
jeremybenn |
/*!Initialize a trampoline for nested functions.
|
1864 |
|
|
|
1865 |
|
|
A nested function is defined by *two* pieces of information, the address of
|
1866 |
|
|
the function (like any other function) and a pointer to the frame of the
|
1867 |
|
|
enclosing function. The latter is required to allow the nested function to
|
1868 |
|
|
access local variables in the enclosing function's frame.
|
1869 |
|
|
|
1870 |
|
|
This represents a problem, since a function in C is represented as an
|
1871 |
|
|
address that can be held in a single variable as a pointer. Requiring two
|
1872 |
|
|
pointers will not fit.
|
1873 |
|
|
|
1874 |
|
|
The solution is documented in "Lexical Closures for C++" by Thomas
|
1875 |
|
|
M. Breuel (USENIX C++ Conference Proceedings, October 17-21, 1988). The
|
1876 |
|
|
nested function is represented by a small block of code and data on the
|
1877 |
|
|
enclosing function's stack frame, which sets up a pointer to the enclosing
|
1878 |
|
|
function's stack frame (the static chain pointer) in a register defined by
|
1879 |
|
|
the ABI, and then jumps to the code of the function proper.
|
1880 |
|
|
|
1881 |
|
|
The function can be represented as a single pointer to this block of code,
|
1882 |
|
|
known as a trampoline, which when called generates both pointers
|
1883 |
|
|
needed. The nested function (which knows it is a nested function at compile
|
1884 |
|
|
time) can then generate code to access the enclosing frame via the static
|
1885 |
|
|
chain register.
|
1886 |
|
|
|
1887 |
|
|
There is a catch that the trampoline is set up as data, but executed as
|
1888 |
|
|
instructions. The former will be via the data cache, the latter via the
|
1889 |
|
|
instruction cache. There is a risk that a later trampoline will not be seen
|
1890 |
|
|
by the instruction cache, so the wrong code will be executed. So the
|
1891 |
|
|
instruction cache should be flushed for the trampoline address range.
|
1892 |
|
|
|
1893 |
|
|
This hook is called to initialize a trampoline. "m_tramp" is an RTX for the
|
1894 |
|
|
memory block for the trampoline; "fndecl" is the FUNCTION_DECL for the
|
1895 |
|
|
nested function; "static_chain" is an RTX for the static chain value that
|
1896 |
|
|
should be passed to the function when it is called.
|
1897 |
|
|
|
1898 |
|
|
If the target defines TARGET_ASM_TRAMPOLINE_TEMPLATE, then the first thing
|
1899 |
|
|
this hook should do is emit a block move into "m_tramp" from the memory
|
1900 |
|
|
block returned by assemble_trampoline_template. Note that the block move
|
1901 |
|
|
need only cover the constant parts of the trampoline. If the target
|
1902 |
|
|
isolates the variable parts of the trampoline to the end, not all
|
1903 |
|
|
TRAMPOLINE_SIZE bytes need be copied.
|
1904 |
|
|
|
1905 |
|
|
If the target requires any other actions, such as flushing caches or
|
1906 |
|
|
enabling stack execution, these actions should be performed after
|
1907 |
|
|
initializing the trampoline proper.
|
1908 |
|
|
|
1909 |
|
|
For the OR32, no static chain register is used. We choose to use the return
|
1910 |
399 |
jeremybenn |
value (rv) register. The code is based on that for MIPS.
|
1911 |
|
|
The trampoline code is:
|
1912 |
332 |
jeremybenn |
|
1913 |
399 |
jeremybenn |
l.movhi r11,hi(end_addr)
|
1914 |
|
|
l.ori r11,lo(end_addr)
|
1915 |
|
|
l.lwz r13,4(r11)
|
1916 |
332 |
jeremybenn |
l.jr r13
|
1917 |
399 |
jeremybenn |
l.lwz r11,0(r11)
|
1918 |
332 |
jeremybenn |
end_addr:
|
1919 |
|
|
.word <static chain>
|
1920 |
|
|
.word <nested_function>
|
1921 |
|
|
|
1922 |
|
|
@note For the OR32 we need to flush the instruction cache, which is a
|
1923 |
|
|
privileged operation. Needs fixing.
|
1924 |
|
|
|
1925 |
|
|
@param[in] m_tramp The lowest address of the trampoline on the stack.
|
1926 |
|
|
@param[in] fndecl Declaration of the enclosing function.
|
1927 |
|
|
@param[in] chain_value Static chain pointer to pass to the nested
|
1928 |
|
|
function. */
|
1929 |
|
|
/* -------------------------------------------------------------------------- */
|
1930 |
|
|
static void
|
1931 |
|
|
or32_trampoline_init (rtx m_tramp,
|
1932 |
|
|
tree fndecl,
|
1933 |
|
|
rtx chain_value)
|
1934 |
|
|
{
|
1935 |
|
|
rtx addr; /* Start address of the trampoline */
|
1936 |
|
|
rtx end_addr; /* End address of the code block */
|
1937 |
|
|
|
1938 |
|
|
rtx high; /* RTX for the high part of end_addr */
|
1939 |
|
|
rtx low; /* RTX for the low part of end_addr */
|
1940 |
|
|
rtx opcode; /* RTX for generated opcodes */
|
1941 |
|
|
rtx mem; /* RTX for trampoline memory */
|
1942 |
|
|
|
1943 |
|
|
rtx trampoline[5]; /* The trampoline code */
|
1944 |
|
|
|
1945 |
|
|
unsigned int i; /* Index into trampoline */
|
1946 |
|
|
unsigned int j; /* General counter */
|
1947 |
|
|
|
1948 |
|
|
HOST_WIDE_INT end_addr_offset; /* Offset to end of code */
|
1949 |
|
|
HOST_WIDE_INT static_chain_offset; /* Offset to stack chain word */
|
1950 |
|
|
HOST_WIDE_INT target_function_offset; /* Offset to func address word */
|
1951 |
|
|
|
1952 |
|
|
/* Work out the offsets of the pointers from the start of the trampoline
|
1953 |
|
|
code. */
|
1954 |
|
|
end_addr_offset = or32_trampoline_code_size ();
|
1955 |
|
|
static_chain_offset = end_addr_offset;
|
1956 |
|
|
target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
|
1957 |
|
|
|
1958 |
|
|
/* Get pointers in registers to the beginning and end of the code block. */
|
1959 |
|
|
addr = force_reg (Pmode, XEXP (m_tramp, 0));
|
1960 |
|
|
end_addr = or32_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset));
|
1961 |
|
|
|
1962 |
|
|
/* Build up the code in TRAMPOLINE.
|
1963 |
|
|
|
1964 |
399 |
jeremybenn |
l.movhi r11,hi(end_addr)
|
1965 |
|
|
l.ori r11,lo(end_addr)
|
1966 |
|
|
l.lwz r13,4(r11)
|
1967 |
332 |
jeremybenn |
l.jr r13
|
1968 |
399 |
jeremybenn |
l.lwz r11,0(r11)
|
1969 |
332 |
jeremybenn |
end_addr:
|
1970 |
|
|
*/
|
1971 |
|
|
|
1972 |
|
|
i = 0;
|
1973 |
|
|
|
1974 |
|
|
/* Break out the high and low parts of the end_addr */
|
1975 |
|
|
high = expand_simple_binop (SImode, LSHIFTRT, end_addr, GEN_INT (16),
|
1976 |
|
|
NULL, false, OPTAB_WIDEN);
|
1977 |
|
|
low = convert_to_mode (SImode, gen_lowpart (HImode, end_addr), true);
|
1978 |
|
|
|
1979 |
|
|
/* Emit the l.movhi, adding an operation to OR in the high bits from the
|
1980 |
|
|
RTX. */
|
1981 |
399 |
jeremybenn |
opcode = gen_int_mode (OR32_MOVHI (11, 0), SImode);
|
1982 |
332 |
jeremybenn |
trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, high, NULL,
|
1983 |
|
|
false, OPTAB_WIDEN);
|
1984 |
|
|
|
1985 |
|
|
/* Emit the l.ori, adding an operations to OR in the low bits from the
|
1986 |
|
|
RTX. */
|
1987 |
399 |
jeremybenn |
opcode = gen_int_mode (OR32_ORI (11, 11, 0), SImode);
|
1988 |
332 |
jeremybenn |
trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low, NULL,
|
1989 |
|
|
false, OPTAB_WIDEN);
|
1990 |
|
|
|
1991 |
|
|
/* Emit the l.lwz of the function address. No bits to OR in here, so we can
|
1992 |
|
|
do the opcode directly. */
|
1993 |
|
|
trampoline[i++] =
|
1994 |
399 |
jeremybenn |
gen_int_mode (OR32_LWZ (13, 11, target_function_offset - end_addr_offset),
|
1995 |
332 |
jeremybenn |
SImode);
|
1996 |
|
|
|
1997 |
|
|
/* Emit the l.jr of the function. No bits to OR in here, so we can do the
|
1998 |
|
|
opcode directly. */
|
1999 |
|
|
trampoline[i++] = gen_int_mode (OR32_JR (13), SImode);
|
2000 |
|
|
|
2001 |
|
|
/* Emit the l.lwz of the static chain. No bits to OR in here, so we can
|
2002 |
|
|
do the opcode directly. */
|
2003 |
|
|
trampoline[i++] =
|
2004 |
399 |
jeremybenn |
gen_int_mode (OR32_LWZ (STATIC_CHAIN_REGNUM, 11,
|
2005 |
332 |
jeremybenn |
static_chain_offset - end_addr_offset), SImode);
|
2006 |
|
|
|
2007 |
|
|
/* Copy the trampoline code. Leave any padding uninitialized. */
|
2008 |
|
|
for (j = 0; j < i; j++)
|
2009 |
|
|
{
|
2010 |
|
|
mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode));
|
2011 |
|
|
or32_emit_move (mem, trampoline[j]);
|
2012 |
|
|
}
|
2013 |
|
|
|
2014 |
|
|
/* Set up the static chain pointer field. */
|
2015 |
|
|
mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
|
2016 |
|
|
or32_emit_move (mem, chain_value);
|
2017 |
|
|
|
2018 |
|
|
/* Set up the target function field. */
|
2019 |
|
|
mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
|
2020 |
|
|
or32_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
|
2021 |
|
|
|
2022 |
|
|
/* Flushing the trampoline from the instruction cache needs to be done
|
2023 |
|
|
here. */
|
2024 |
|
|
|
2025 |
|
|
} /* or32_trampoline_init () */
|
2026 |
|
|
|
2027 |
|
|
|
2028 |
|
|
/* -------------------------------------------------------------------------- */
|
2029 |
282 |
jeremybenn |
/*!Provide support for DW_AT_calling_convention
|
2030 |
|
|
|
2031 |
|
|
Define this to enable the dwarf attribute DW_AT_calling_convention to be
|
2032 |
|
|
emitted for each function. Instead of an integer return the enum value for
|
2033 |
|
|
the DW_CC_ tag.
|
2034 |
|
|
|
2035 |
|
|
To support optional call frame debugging information, you must also define
|
2036 |
|
|
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the prologue
|
2037 |
|
|
insns if you use RTL for the prologue, or call "dwarf2out_def_cfa" and
|
2038 |
|
|
"dwarf2out_reg_save" as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if
|
2039 |
|
|
you don’t.
|
2040 |
|
|
|
2041 |
|
|
For the OR32, it should be sufficient to return DW_CC_normal in all cases.
|
2042 |
|
|
|
2043 |
|
|
@param[in] function The function requiring debug information
|
2044 |
|
|
|
2045 |
|
|
@return The enum of the DW_CC tag. */
|
2046 |
|
|
/* -------------------------------------------------------------------------- */
|
2047 |
|
|
static int
|
2048 |
|
|
or32_dwarf_calling_convention (const_tree function ATTRIBUTE_UNUSED)
|
2049 |
|
|
{
|
2050 |
|
|
return DW_CC_normal;
|
2051 |
|
|
|
2052 |
|
|
} /* or32_dwarf_calling_convention () */
|
2053 |
|
|
|
2054 |
399 |
jeremybenn |
/* If DELTA doesn't fit into a 16 bit signed number, emit instructions to
|
2055 |
|
|
add the highpart to DST; return the signed-16-bit lowpart of DELTA.
|
2056 |
|
|
TMP_REGNO is a register that may be used to load a constant. */
|
2057 |
|
|
static HOST_WIDE_INT
|
2058 |
|
|
or32_output_highadd (FILE *file,
|
2059 |
|
|
const char *dst, int tmp_regno, HOST_WIDE_INT delta)
|
2060 |
|
|
{
|
2061 |
|
|
if (delta < -32768 || delta > 32767)
|
2062 |
|
|
{
|
2063 |
|
|
if (delta >= -65536 && delta < 65534)
|
2064 |
|
|
{
|
2065 |
|
|
asm_fprintf (file, "\tl.addi\t%s,%s,%d\n",
|
2066 |
|
|
dst, dst, (int) (delta + 1) >> 1);
|
2067 |
|
|
delta >>= 1;
|
2068 |
|
|
}
|
2069 |
|
|
else
|
2070 |
|
|
{
|
2071 |
|
|
const char *tmp = reg_names[tmp_regno];
|
2072 |
|
|
HOST_WIDE_INT high = (delta + 0x8000) >> 16;
|
2073 |
282 |
jeremybenn |
|
2074 |
399 |
jeremybenn |
gcc_assert (call_used_regs[tmp_regno]);
|
2075 |
|
|
asm_fprintf (file, "\tl.movhi\t%s,%d\n" "\tl.add\t%s,%s,%s\n",
|
2076 |
|
|
tmp, (int) high,
|
2077 |
|
|
dst, dst, tmp);
|
2078 |
|
|
delta -= high << 16;
|
2079 |
|
|
}
|
2080 |
|
|
}
|
2081 |
|
|
return delta;
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
/* Output a tailcall to FUNCTION. The caller will fill in the delay slot. */
|
2085 |
402 |
jeremybenn |
static void
|
2086 |
399 |
jeremybenn |
or32_output_tailcall (FILE *file, tree function)
|
2087 |
|
|
{
|
2088 |
|
|
/* We'll need to add more code if we want to fully support PIC. */
|
2089 |
|
|
gcc_assert (!flag_pic || (*targetm.binds_local_p) (function));
|
2090 |
|
|
|
2091 |
|
|
fputs ("\tl.j\t", file);
|
2092 |
|
|
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
|
2093 |
|
|
fputc ('\n', file);
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
static void
|
2097 |
|
|
or32_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
|
2098 |
|
|
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
|
2099 |
|
|
tree function)
|
2100 |
|
|
{
|
2101 |
|
|
int this_regno
|
2102 |
|
|
= aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? 4 : 3;
|
2103 |
|
|
const char *this_name = reg_names[this_regno];
|
2104 |
|
|
|
2105 |
|
|
|
2106 |
|
|
delta = or32_output_highadd (file, this_name, PROLOGUE_TMP, delta);
|
2107 |
|
|
if (!vcall_offset)
|
2108 |
|
|
or32_output_tailcall (file, function);
|
2109 |
|
|
if (delta || !vcall_offset)
|
2110 |
|
|
asm_fprintf (file, "\tl.addi\t%s,%s,%d\n",
|
2111 |
|
|
this_name, this_name, (int) delta);
|
2112 |
|
|
|
2113 |
|
|
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
|
2114 |
|
|
if (vcall_offset != 0)
|
2115 |
|
|
{
|
2116 |
|
|
const char *tmp_name = reg_names[PROLOGUE_TMP];
|
2117 |
|
|
|
2118 |
|
|
/* l.lwz tmp,0(this) --> tmp = *this
|
2119 |
|
|
l.lwz tmp,vcall_offset(tmp) --> tmp = *(*this + vcall_offset)
|
2120 |
|
|
add this,this,tmp --> this += *(*this + vcall_offset) */
|
2121 |
|
|
|
2122 |
|
|
asm_fprintf (file, "\tl.lwz\t%s,0(%s)\n",
|
2123 |
|
|
tmp_name, this_name);
|
2124 |
|
|
vcall_offset = or32_output_highadd (file, tmp_name,
|
2125 |
|
|
STATIC_CHAIN_REGNUM, vcall_offset);
|
2126 |
|
|
asm_fprintf (file, "\tl.lwz\t%s,%d(%s)\n",
|
2127 |
|
|
tmp_name, (int) vcall_offset, tmp_name);
|
2128 |
|
|
or32_output_tailcall (file, function);
|
2129 |
|
|
asm_fprintf (file, "\tl.add\t%s,%s,%s\n", this_name, this_name, tmp_name);
|
2130 |
|
|
}
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
452 |
jeremybenn |
static bool
|
2134 |
|
|
or32_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED,
|
2135 |
|
|
int value ATTRIBUTE_UNUSED)
|
2136 |
|
|
{
|
2137 |
|
|
switch (code)
|
2138 |
|
|
{
|
2139 |
|
|
case OPT_mnewlib:
|
2140 |
|
|
or32_libc = or32_libc_newlib;
|
2141 |
|
|
return true;
|
2142 |
|
|
case OPT_muclibc:
|
2143 |
|
|
or32_libc = or32_libc_uclibc;
|
2144 |
|
|
return true;
|
2145 |
|
|
case OPT_mglibc:
|
2146 |
|
|
or32_libc = or32_libc_glibc;
|
2147 |
|
|
return false;
|
2148 |
|
|
default:
|
2149 |
|
|
return true;
|
2150 |
|
|
}
|
2151 |
|
|
}
|
2152 |
399 |
jeremybenn |
|
2153 |
452 |
jeremybenn |
|
2154 |
282 |
jeremybenn |
/* ========================================================================== */
|
2155 |
|
|
/* Target hook initialization.
|
2156 |
|
|
|
2157 |
|
|
In most cases these use the static functions declared above. They have
|
2158 |
|
|
defaults, so must be undefined first, before being redefined.
|
2159 |
|
|
|
2160 |
333 |
jeremybenn |
The description of what they do is found with the function above, unless it
|
2161 |
|
|
is a standard function or a constant, in which case it is defined here (as
|
2162 |
|
|
with TARGET_ASM_NAMED_SECTION).
|
2163 |
282 |
jeremybenn |
|
2164 |
|
|
The final declaration is of the global "targetm" structure. */
|
2165 |
|
|
|
2166 |
|
|
|
2167 |
333 |
jeremybenn |
/* Default target_flags if no switches specified. */
|
2168 |
|
|
#undef TARGET_DEFAULT_TARGET_FLAGS
|
2169 |
399 |
jeremybenn |
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_HARD_MUL | MASK_SCHED_LOGUE)
|
2170 |
333 |
jeremybenn |
|
2171 |
452 |
jeremybenn |
#undef TARGET_HANDLE_OPTION
|
2172 |
|
|
#define TARGET_HANDLE_OPTION or32_handle_option
|
2173 |
|
|
|
2174 |
282 |
jeremybenn |
/* Output assembly directives to switch to section name. The section should
|
2175 |
|
|
have attributes as specified by flags, which is a bit mask of the SECTION_*
|
2176 |
|
|
flags defined in ‘output.h’. If decl is non-NULL, it is the VAR_DECL or
|
2177 |
|
|
FUNCTION_DECL with which this section is associated.
|
2178 |
|
|
|
2179 |
|
|
For OR32, we use the default ELF sectioning. */
|
2180 |
332 |
jeremybenn |
#undef TARGET_ASM_NAMED_SECTION
|
2181 |
282 |
jeremybenn |
#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
|
2182 |
|
|
|
2183 |
332 |
jeremybenn |
#undef TARGET_ASM_FUNCTION_PROLOGUE
|
2184 |
282 |
jeremybenn |
#define TARGET_ASM_FUNCTION_PROLOGUE or32_output_function_prologue
|
2185 |
|
|
|
2186 |
332 |
jeremybenn |
#undef TARGET_ASM_FUNCTION_EPILOGUE
|
2187 |
282 |
jeremybenn |
#define TARGET_ASM_FUNCTION_EPILOGUE or32_output_function_epilogue
|
2188 |
|
|
|
2189 |
332 |
jeremybenn |
#undef TARGET_FUNCTION_VALUE
|
2190 |
282 |
jeremybenn |
#define TARGET_FUNCTION_VALUE or32_function_value
|
2191 |
|
|
|
2192 |
332 |
jeremybenn |
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
2193 |
282 |
jeremybenn |
#define TARGET_FUNCTION_OK_FOR_SIBCALL or32_function_ok_for_sibcall
|
2194 |
|
|
|
2195 |
332 |
jeremybenn |
#undef TARGET_PASS_BY_REFERENCE
|
2196 |
282 |
jeremybenn |
#define TARGET_PASS_BY_REFERENCE or32_pass_by_reference
|
2197 |
|
|
|
2198 |
332 |
jeremybenn |
#undef TARGET_ARG_PARTIAL_BYTES
|
2199 |
282 |
jeremybenn |
#define TARGET_ARG_PARTIAL_BYTES or32_arg_partial_bytes
|
2200 |
|
|
|
2201 |
|
|
/* This target hook returns TRUE if an argument declared in a prototype as an
|
2202 |
|
|
integral type smaller than int should actually be passed as an int. In
|
2203 |
|
|
addition to avoiding errors in certain cases of mismatch, it also makes for
|
2204 |
|
|
better code on certain machines.
|
2205 |
|
|
|
2206 |
|
|
The default is to not promote prototypes.
|
2207 |
|
|
|
2208 |
|
|
For the OR32 we do require this, so use a utility hook, which always
|
2209 |
|
|
returns TRUE. */
|
2210 |
332 |
jeremybenn |
#undef TARGET_PROMOTE_PROTOTYPES
|
2211 |
282 |
jeremybenn |
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
|
2212 |
|
|
|
2213 |
332 |
jeremybenn |
#undef TARGET_PROMOTE_FUNCTION_MODE
|
2214 |
282 |
jeremybenn |
#define TARGET_PROMOTE_FUNCTION_MODE or32_promote_function_mode
|
2215 |
|
|
|
2216 |
332 |
jeremybenn |
#undef TARGET_LEGITIMATE_ADDRESS_P
|
2217 |
282 |
jeremybenn |
#define TARGET_LEGITIMATE_ADDRESS_P or32_legitimate_address_p
|
2218 |
|
|
|
2219 |
332 |
jeremybenn |
#undef TARGET_TRAMPOLINE_INIT
|
2220 |
|
|
#define TARGET_TRAMPOLINE_INIT or32_trampoline_init
|
2221 |
|
|
|
2222 |
282 |
jeremybenn |
#undef TARGET_DWARF_CALLING_CONVENTION
|
2223 |
|
|
#define TARGET_DWARF_CALLING_CONVENTION or32_dwarf_calling_convention
|
2224 |
|
|
|
2225 |
399 |
jeremybenn |
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
2226 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK or32_output_mi_thunk
|
2227 |
|
|
|
2228 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
2229 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
|
2230 |
|
|
|
2231 |
444 |
jeremybenn |
/* uClibc has some instances where (non-coforming to ISO C) a non-varargs
|
2232 |
|
|
prototype is in scope when calling that function which is implemented
|
2233 |
|
|
as varargs. We want this to work at least where none of the anonymous
|
2234 |
|
|
arguments are used. I.e. we want the last named argument to be known
|
2235 |
|
|
as named so it can be passed in a register, varars funtion or not. */
|
2236 |
|
|
#undef TARGET_STRICT_ARGUMENT_NAMING
|
2237 |
|
|
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
|
2238 |
|
|
|
2239 |
282 |
jeremybenn |
/* Trampoline stubs are yet to be written. */
|
2240 |
|
|
/* #define TARGET_ASM_TRAMPOLINE_TEMPLATE */
|
2241 |
|
|
/* #define TARGET_TRAMPOLINE_INIT */
|
2242 |
|
|
|
2243 |
|
|
/* Initialize the GCC target structure. */
|
2244 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
2245 |
399 |
jeremybenn |
|
2246 |
|
|
/* Lay out structs with increased alignment so that they can be accessed
|
2247 |
|
|
more efficiently. But don't increase the size of one or two byte
|
2248 |
|
|
structs. */
|
2249 |
|
|
int
|
2250 |
|
|
or32_struct_alignment (tree t)
|
2251 |
|
|
{
|
2252 |
|
|
unsigned HOST_WIDE_INT total = 0;
|
2253 |
402 |
jeremybenn |
int default_align_fields = 0;
|
2254 |
|
|
int special_align_fields = 0;
|
2255 |
399 |
jeremybenn |
tree field;
|
2256 |
|
|
unsigned max_align
|
2257 |
|
|
= maximum_field_alignment ? maximum_field_alignment : BIGGEST_ALIGNMENT;
|
2258 |
|
|
bool struct_p;
|
2259 |
|
|
|
2260 |
|
|
switch (TREE_CODE (t))
|
2261 |
|
|
{
|
2262 |
|
|
case RECORD_TYPE:
|
2263 |
|
|
struct_p = true; break;
|
2264 |
|
|
case UNION_TYPE: case QUAL_UNION_TYPE:
|
2265 |
|
|
struct_p = false; break;
|
2266 |
|
|
default: gcc_unreachable ();
|
2267 |
|
|
}
|
2268 |
|
|
/* Skip all non field decls */
|
2269 |
|
|
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
2270 |
|
|
{
|
2271 |
|
|
unsigned HOST_WIDE_INT field_size;
|
2272 |
|
|
|
2273 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
2274 |
|
|
continue;
|
2275 |
402 |
jeremybenn |
/* If this is a field in a non-qualified union, or the sole field in
|
2276 |
|
|
a struct, and the alignment was set by the user, don't change the
|
2277 |
|
|
alignment.
|
2278 |
|
|
If the field is a struct/union in a non-qualified union, we already
|
2279 |
|
|
had sufficient opportunity to pad it - if we didn't, that'd be
|
2280 |
|
|
because the alignment was set as above.
|
2281 |
|
|
Likewise if the field is a struct/union and the sole field in a
|
2282 |
|
|
struct. */
|
2283 |
|
|
if (DECL_USER_ALIGN (field)
|
2284 |
|
|
|| TYPE_USER_ALIGN (TREE_TYPE (field))
|
2285 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE
|
2286 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
|
2287 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
|
2288 |
|
|
{
|
2289 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
2290 |
|
|
return 0;
|
2291 |
|
|
special_align_fields++;
|
2292 |
|
|
}
|
2293 |
|
|
else if (DECL_PACKED (field))
|
2294 |
|
|
special_align_fields++;
|
2295 |
|
|
else
|
2296 |
|
|
default_align_fields++;
|
2297 |
399 |
jeremybenn |
if (!host_integerp (DECL_SIZE (field), 1))
|
2298 |
402 |
jeremybenn |
field_size = max_align;
|
2299 |
|
|
else
|
2300 |
|
|
field_size = tree_low_cst (DECL_SIZE (field), 1);
|
2301 |
399 |
jeremybenn |
if (field_size >= BIGGEST_ALIGNMENT)
|
2302 |
402 |
jeremybenn |
total = max_align;
|
2303 |
399 |
jeremybenn |
if (struct_p)
|
2304 |
|
|
total += field_size;
|
2305 |
|
|
else
|
2306 |
|
|
total = MAX (total, field_size);
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
402 |
jeremybenn |
if (!default_align_fields
|
2310 |
|
|
&& (TREE_CODE (t) != RECORD_TYPE || special_align_fields <= 1))
|
2311 |
|
|
return 0;
|
2312 |
399 |
jeremybenn |
return total < max_align ? (1U << ceil_log2 (total)) : max_align;
|
2313 |
|
|
}
|
2314 |
|
|
|
2315 |
|
|
/* Increase the alignment of objects so that they are easier to copy.
|
2316 |
|
|
Note that this can cause more struct copies to be inlined, so code
|
2317 |
|
|
size might increase, but so should perfromance. */
|
2318 |
|
|
int
|
2319 |
|
|
or32_data_alignment (tree t, int align)
|
2320 |
|
|
{
|
2321 |
|
|
if (align < FASTEST_ALIGNMENT && TREE_CODE (t) == ARRAY_TYPE)
|
2322 |
|
|
{
|
2323 |
|
|
int size = int_size_in_bytes (t);
|
2324 |
|
|
|
2325 |
|
|
return (size > 0 && size < FASTEST_ALIGNMENT / BITS_PER_UNIT
|
2326 |
|
|
? (1 << floor_log2 (size)) * BITS_PER_UNIT
|
2327 |
|
|
: FASTEST_ALIGNMENT);
|
2328 |
|
|
}
|
2329 |
|
|
return align;
|
2330 |
|
|
}
|