| 1 |
282 |
jeremybenn |
/* 32 and 64-bit millicode, original author Hewlett-Packard
|
| 2 |
|
|
adapted for gcc by Paul Bame
|
| 3 |
|
|
and Alan Modra .
|
| 4 |
|
|
|
| 5 |
|
|
Copyright 2001, 2002, 2003, 2007, 2009 Free Software Foundation, Inc.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 20 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 21 |
|
|
3.1, as published by the Free Software Foundation.
|
| 22 |
|
|
|
| 23 |
|
|
You should have received a copy of the GNU General Public License and
|
| 24 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 25 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 26 |
|
|
. */
|
| 27 |
|
|
|
| 28 |
|
|
#ifdef pa64
|
| 29 |
|
|
.level 2.0w
|
| 30 |
|
|
#endif
|
| 31 |
|
|
|
| 32 |
|
|
/* Hardware General Registers. */
|
| 33 |
|
|
r0: .reg %r0
|
| 34 |
|
|
r1: .reg %r1
|
| 35 |
|
|
r2: .reg %r2
|
| 36 |
|
|
r3: .reg %r3
|
| 37 |
|
|
r4: .reg %r4
|
| 38 |
|
|
r5: .reg %r5
|
| 39 |
|
|
r6: .reg %r6
|
| 40 |
|
|
r7: .reg %r7
|
| 41 |
|
|
r8: .reg %r8
|
| 42 |
|
|
r9: .reg %r9
|
| 43 |
|
|
r10: .reg %r10
|
| 44 |
|
|
r11: .reg %r11
|
| 45 |
|
|
r12: .reg %r12
|
| 46 |
|
|
r13: .reg %r13
|
| 47 |
|
|
r14: .reg %r14
|
| 48 |
|
|
r15: .reg %r15
|
| 49 |
|
|
r16: .reg %r16
|
| 50 |
|
|
r17: .reg %r17
|
| 51 |
|
|
r18: .reg %r18
|
| 52 |
|
|
r19: .reg %r19
|
| 53 |
|
|
r20: .reg %r20
|
| 54 |
|
|
r21: .reg %r21
|
| 55 |
|
|
r22: .reg %r22
|
| 56 |
|
|
r23: .reg %r23
|
| 57 |
|
|
r24: .reg %r24
|
| 58 |
|
|
r25: .reg %r25
|
| 59 |
|
|
r26: .reg %r26
|
| 60 |
|
|
r27: .reg %r27
|
| 61 |
|
|
r28: .reg %r28
|
| 62 |
|
|
r29: .reg %r29
|
| 63 |
|
|
r30: .reg %r30
|
| 64 |
|
|
r31: .reg %r31
|
| 65 |
|
|
|
| 66 |
|
|
/* Hardware Space Registers. */
|
| 67 |
|
|
sr0: .reg %sr0
|
| 68 |
|
|
sr1: .reg %sr1
|
| 69 |
|
|
sr2: .reg %sr2
|
| 70 |
|
|
sr3: .reg %sr3
|
| 71 |
|
|
sr4: .reg %sr4
|
| 72 |
|
|
sr5: .reg %sr5
|
| 73 |
|
|
sr6: .reg %sr6
|
| 74 |
|
|
sr7: .reg %sr7
|
| 75 |
|
|
|
| 76 |
|
|
/* Hardware Floating Point Registers. */
|
| 77 |
|
|
fr0: .reg %fr0
|
| 78 |
|
|
fr1: .reg %fr1
|
| 79 |
|
|
fr2: .reg %fr2
|
| 80 |
|
|
fr3: .reg %fr3
|
| 81 |
|
|
fr4: .reg %fr4
|
| 82 |
|
|
fr5: .reg %fr5
|
| 83 |
|
|
fr6: .reg %fr6
|
| 84 |
|
|
fr7: .reg %fr7
|
| 85 |
|
|
fr8: .reg %fr8
|
| 86 |
|
|
fr9: .reg %fr9
|
| 87 |
|
|
fr10: .reg %fr10
|
| 88 |
|
|
fr11: .reg %fr11
|
| 89 |
|
|
fr12: .reg %fr12
|
| 90 |
|
|
fr13: .reg %fr13
|
| 91 |
|
|
fr14: .reg %fr14
|
| 92 |
|
|
fr15: .reg %fr15
|
| 93 |
|
|
|
| 94 |
|
|
/* Hardware Control Registers. */
|
| 95 |
|
|
cr11: .reg %cr11
|
| 96 |
|
|
sar: .reg %cr11 /* Shift Amount Register */
|
| 97 |
|
|
|
| 98 |
|
|
/* Software Architecture General Registers. */
|
| 99 |
|
|
rp: .reg r2 /* return pointer */
|
| 100 |
|
|
#ifdef pa64
|
| 101 |
|
|
mrp: .reg r2 /* millicode return pointer */
|
| 102 |
|
|
#else
|
| 103 |
|
|
mrp: .reg r31 /* millicode return pointer */
|
| 104 |
|
|
#endif
|
| 105 |
|
|
ret0: .reg r28 /* return value */
|
| 106 |
|
|
ret1: .reg r29 /* return value (high part of double) */
|
| 107 |
|
|
sp: .reg r30 /* stack pointer */
|
| 108 |
|
|
dp: .reg r27 /* data pointer */
|
| 109 |
|
|
arg0: .reg r26 /* argument */
|
| 110 |
|
|
arg1: .reg r25 /* argument or high part of double argument */
|
| 111 |
|
|
arg2: .reg r24 /* argument */
|
| 112 |
|
|
arg3: .reg r23 /* argument or high part of double argument */
|
| 113 |
|
|
|
| 114 |
|
|
/* Software Architecture Space Registers. */
|
| 115 |
|
|
/* sr0 ; return link from BLE */
|
| 116 |
|
|
sret: .reg sr1 /* return value */
|
| 117 |
|
|
sarg: .reg sr1 /* argument */
|
| 118 |
|
|
/* sr4 ; PC SPACE tracker */
|
| 119 |
|
|
/* sr5 ; process private data */
|
| 120 |
|
|
|
| 121 |
|
|
/* Frame Offsets (millicode convention!) Used when calling other
|
| 122 |
|
|
millicode routines. Stack unwinding is dependent upon these
|
| 123 |
|
|
definitions. */
|
| 124 |
|
|
r31_slot: .equ -20 /* "current RP" slot */
|
| 125 |
|
|
sr0_slot: .equ -16 /* "static link" slot */
|
| 126 |
|
|
#if defined(pa64)
|
| 127 |
|
|
mrp_slot: .equ -16 /* "current RP" slot */
|
| 128 |
|
|
psp_slot: .equ -8 /* "previous SP" slot */
|
| 129 |
|
|
#else
|
| 130 |
|
|
mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
|
| 131 |
|
|
#endif
|
| 132 |
|
|
|
| 133 |
|
|
|
| 134 |
|
|
#define DEFINE(name,value)name: .EQU value
|
| 135 |
|
|
#define RDEFINE(name,value)name: .REG value
|
| 136 |
|
|
#ifdef milliext
|
| 137 |
|
|
#define MILLI_BE(lbl) BE lbl(sr7,r0)
|
| 138 |
|
|
#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
|
| 139 |
|
|
#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
|
| 140 |
|
|
#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
|
| 141 |
|
|
#define MILLIRETN BE,n 0(sr0,mrp)
|
| 142 |
|
|
#define MILLIRET BE 0(sr0,mrp)
|
| 143 |
|
|
#define MILLI_RETN BE,n 0(sr0,mrp)
|
| 144 |
|
|
#define MILLI_RET BE 0(sr0,mrp)
|
| 145 |
|
|
#else
|
| 146 |
|
|
#define MILLI_BE(lbl) B lbl
|
| 147 |
|
|
#define MILLI_BEN(lbl) B,n lbl
|
| 148 |
|
|
#define MILLI_BLE(lbl) BL lbl,mrp
|
| 149 |
|
|
#define MILLI_BLEN(lbl) BL,n lbl,mrp
|
| 150 |
|
|
#define MILLIRETN BV,n 0(mrp)
|
| 151 |
|
|
#define MILLIRET BV 0(mrp)
|
| 152 |
|
|
#define MILLI_RETN BV,n 0(mrp)
|
| 153 |
|
|
#define MILLI_RET BV 0(mrp)
|
| 154 |
|
|
#endif
|
| 155 |
|
|
|
| 156 |
|
|
#ifdef __STDC__
|
| 157 |
|
|
#define CAT(a,b) a##b
|
| 158 |
|
|
#else
|
| 159 |
|
|
#define CAT(a,b) a/**/b
|
| 160 |
|
|
#endif
|
| 161 |
|
|
|
| 162 |
|
|
#ifdef ELF
|
| 163 |
|
|
#define SUBSPA_MILLI .section .text
|
| 164 |
|
|
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
|
| 165 |
|
|
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
|
| 166 |
|
|
#define ATTR_MILLI
|
| 167 |
|
|
#define SUBSPA_DATA .section .data
|
| 168 |
|
|
#define ATTR_DATA
|
| 169 |
|
|
#define GLOBAL $global$
|
| 170 |
|
|
#define GSYM(sym) !sym:
|
| 171 |
|
|
#define LSYM(sym) !CAT(.L,sym:)
|
| 172 |
|
|
#define LREF(sym) CAT(.L,sym)
|
| 173 |
|
|
|
| 174 |
|
|
#else
|
| 175 |
|
|
|
| 176 |
|
|
#ifdef coff
|
| 177 |
|
|
/* This used to be .milli but since link32 places different named
|
| 178 |
|
|
sections in different segments millicode ends up a long ways away
|
| 179 |
|
|
from .text (1meg?). This way they will be a lot closer.
|
| 180 |
|
|
|
| 181 |
|
|
The SUBSPA_MILLI_* specify locality sets for certain millicode
|
| 182 |
|
|
modules in order to ensure that modules that call one another are
|
| 183 |
|
|
placed close together. Without locality sets this is unlikely to
|
| 184 |
|
|
happen because of the Dynamite linker library search algorithm. We
|
| 185 |
|
|
want these modules close together so that short calls always reach
|
| 186 |
|
|
(we don't want to require long calls or use long call stubs). */
|
| 187 |
|
|
|
| 188 |
|
|
#define SUBSPA_MILLI .subspa .text
|
| 189 |
|
|
#define SUBSPA_MILLI_DIV .subspa .text$dv,align=16
|
| 190 |
|
|
#define SUBSPA_MILLI_MUL .subspa .text$mu,align=16
|
| 191 |
|
|
#define ATTR_MILLI .attr code,read,execute
|
| 192 |
|
|
#define SUBSPA_DATA .subspa .data
|
| 193 |
|
|
#define ATTR_DATA .attr init_data,read,write
|
| 194 |
|
|
#define GLOBAL _gp
|
| 195 |
|
|
#else
|
| 196 |
|
|
#define SUBSPA_MILLI .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8
|
| 197 |
|
|
#define SUBSPA_MILLI_DIV SUBSPA_MILLI
|
| 198 |
|
|
#define SUBSPA_MILLI_MUL SUBSPA_MILLI
|
| 199 |
|
|
#define ATTR_MILLI
|
| 200 |
|
|
#define SUBSPA_DATA .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero
|
| 201 |
|
|
#define ATTR_DATA
|
| 202 |
|
|
#define GLOBAL $global$
|
| 203 |
|
|
#endif
|
| 204 |
|
|
#define SPACE_DATA .space $PRIVATE$,spnum=1,sort=16
|
| 205 |
|
|
|
| 206 |
|
|
#define GSYM(sym) !sym
|
| 207 |
|
|
#define LSYM(sym) !CAT(L$,sym)
|
| 208 |
|
|
#define LREF(sym) CAT(L$,sym)
|
| 209 |
|
|
#endif
|
| 210 |
|
|
|
| 211 |
|
|
#ifdef L_dyncall
|
| 212 |
|
|
SUBSPA_MILLI
|
| 213 |
|
|
ATTR_DATA
|
| 214 |
|
|
GSYM($$dyncall)
|
| 215 |
|
|
.export $$dyncall,millicode
|
| 216 |
|
|
.proc
|
| 217 |
|
|
.callinfo millicode
|
| 218 |
|
|
.entry
|
| 219 |
|
|
bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
|
| 220 |
|
|
depi 0,31,2,%r22 ; clear the two least significant bits
|
| 221 |
|
|
ldw 4(%r22),%r19 ; load new LTP value
|
| 222 |
|
|
ldw 0(%r22),%r22 ; load address of target
|
| 223 |
|
|
LSYM(1)
|
| 224 |
|
|
#ifdef LINUX
|
| 225 |
|
|
bv %r0(%r22) ; branch to the real target
|
| 226 |
|
|
#else
|
| 227 |
|
|
ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22
|
| 228 |
|
|
mtsp %r1,%sr0 ; move that space identifier into sr0
|
| 229 |
|
|
be 0(%sr0,%r22) ; branch to the real target
|
| 230 |
|
|
#endif
|
| 231 |
|
|
stw %r2,-24(%r30) ; save return address into frame marker
|
| 232 |
|
|
.exit
|
| 233 |
|
|
.procend
|
| 234 |
|
|
#endif
|
| 235 |
|
|
|
| 236 |
|
|
#ifdef L_divI
|
| 237 |
|
|
/* ROUTINES: $$divI, $$divoI
|
| 238 |
|
|
|
| 239 |
|
|
Single precision divide for signed binary integers.
|
| 240 |
|
|
|
| 241 |
|
|
The quotient is truncated towards zero.
|
| 242 |
|
|
The sign of the quotient is the XOR of the signs of the dividend and
|
| 243 |
|
|
divisor.
|
| 244 |
|
|
Divide by zero is trapped.
|
| 245 |
|
|
Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
|
| 246 |
|
|
|
| 247 |
|
|
INPUT REGISTERS:
|
| 248 |
|
|
. arg0 == dividend
|
| 249 |
|
|
. arg1 == divisor
|
| 250 |
|
|
. mrp == return pc
|
| 251 |
|
|
. sr0 == return space when called externally
|
| 252 |
|
|
|
| 253 |
|
|
OUTPUT REGISTERS:
|
| 254 |
|
|
. arg0 = undefined
|
| 255 |
|
|
. arg1 = undefined
|
| 256 |
|
|
. ret1 = quotient
|
| 257 |
|
|
|
| 258 |
|
|
OTHER REGISTERS AFFECTED:
|
| 259 |
|
|
. r1 = undefined
|
| 260 |
|
|
|
| 261 |
|
|
SIDE EFFECTS:
|
| 262 |
|
|
. Causes a trap under the following conditions:
|
| 263 |
|
|
. divisor is zero (traps with ADDIT,= 0,25,0)
|
| 264 |
|
|
. dividend==-2**31 and divisor==-1 and routine is $$divoI
|
| 265 |
|
|
. (traps with ADDO 26,25,0)
|
| 266 |
|
|
. Changes memory at the following places:
|
| 267 |
|
|
. NONE
|
| 268 |
|
|
|
| 269 |
|
|
PERMISSIBLE CONTEXT:
|
| 270 |
|
|
. Unwindable.
|
| 271 |
|
|
. Suitable for internal or external millicode.
|
| 272 |
|
|
. Assumes the special millicode register conventions.
|
| 273 |
|
|
|
| 274 |
|
|
DISCUSSION:
|
| 275 |
|
|
. Branchs to other millicode routines using BE
|
| 276 |
|
|
. $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
|
| 277 |
|
|
.
|
| 278 |
|
|
. For selected divisors, calls a divide by constant routine written by
|
| 279 |
|
|
. Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
|
| 280 |
|
|
.
|
| 281 |
|
|
. The only overflow case is -2**31 divided by -1.
|
| 282 |
|
|
. Both routines return -2**31 but only $$divoI traps. */
|
| 283 |
|
|
|
| 284 |
|
|
RDEFINE(temp,r1)
|
| 285 |
|
|
RDEFINE(retreg,ret1) /* r29 */
|
| 286 |
|
|
RDEFINE(temp1,arg0)
|
| 287 |
|
|
SUBSPA_MILLI_DIV
|
| 288 |
|
|
ATTR_MILLI
|
| 289 |
|
|
.import $$divI_2,millicode
|
| 290 |
|
|
.import $$divI_3,millicode
|
| 291 |
|
|
.import $$divI_4,millicode
|
| 292 |
|
|
.import $$divI_5,millicode
|
| 293 |
|
|
.import $$divI_6,millicode
|
| 294 |
|
|
.import $$divI_7,millicode
|
| 295 |
|
|
.import $$divI_8,millicode
|
| 296 |
|
|
.import $$divI_9,millicode
|
| 297 |
|
|
.import $$divI_10,millicode
|
| 298 |
|
|
.import $$divI_12,millicode
|
| 299 |
|
|
.import $$divI_14,millicode
|
| 300 |
|
|
.import $$divI_15,millicode
|
| 301 |
|
|
.export $$divI,millicode
|
| 302 |
|
|
.export $$divoI,millicode
|
| 303 |
|
|
.proc
|
| 304 |
|
|
.callinfo millicode
|
| 305 |
|
|
.entry
|
| 306 |
|
|
GSYM($$divoI)
|
| 307 |
|
|
comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
|
| 308 |
|
|
GSYM($$divI)
|
| 309 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
| 310 |
|
|
and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
|
| 311 |
|
|
addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
|
| 312 |
|
|
b,n LREF(neg_denom)
|
| 313 |
|
|
LSYM(pow2)
|
| 314 |
|
|
addi,>= 0,arg0,retreg /* if numerator is negative, add the */
|
| 315 |
|
|
add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
|
| 316 |
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
| 317 |
|
|
extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
|
| 318 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
| 319 |
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
| 320 |
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
| 321 |
|
|
extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
|
| 322 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
| 323 |
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
| 324 |
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
| 325 |
|
|
extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
|
| 326 |
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
| 327 |
|
|
extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
|
| 328 |
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
| 329 |
|
|
extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
|
| 330 |
|
|
MILLIRETN
|
| 331 |
|
|
LSYM(neg_denom)
|
| 332 |
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
|
| 333 |
|
|
b,n LREF(regular_seq)
|
| 334 |
|
|
sub r0,arg1,temp /* make denominator positive */
|
| 335 |
|
|
comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
| 336 |
|
|
ldo -1(temp),retreg /* is there at most one bit set ? */
|
| 337 |
|
|
and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
|
| 338 |
|
|
b,n LREF(regular_seq)
|
| 339 |
|
|
sub r0,arg0,retreg /* negate numerator */
|
| 340 |
|
|
comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
|
| 341 |
|
|
copy retreg,arg0 /* set up arg0, arg1 and temp */
|
| 342 |
|
|
copy temp,arg1 /* before branching to pow2 */
|
| 343 |
|
|
b LREF(pow2)
|
| 344 |
|
|
ldo -1(arg1),temp
|
| 345 |
|
|
LSYM(regular_seq)
|
| 346 |
|
|
comib,>>=,n 15,arg1,LREF(small_divisor)
|
| 347 |
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
| 348 |
|
|
LSYM(normal)
|
| 349 |
|
|
subi 0,retreg,retreg /* make it positive */
|
| 350 |
|
|
sub 0,arg1,temp /* clear carry, */
|
| 351 |
|
|
/* negate the divisor */
|
| 352 |
|
|
ds 0,temp,0 /* set V-bit to the comple- */
|
| 353 |
|
|
/* ment of the divisor sign */
|
| 354 |
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
| 355 |
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
| 356 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 357 |
|
|
ds temp,arg1,temp /* 2nd divide step */
|
| 358 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 359 |
|
|
ds temp,arg1,temp /* 3rd divide step */
|
| 360 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 361 |
|
|
ds temp,arg1,temp /* 4th divide step */
|
| 362 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 363 |
|
|
ds temp,arg1,temp /* 5th divide step */
|
| 364 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 365 |
|
|
ds temp,arg1,temp /* 6th divide step */
|
| 366 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 367 |
|
|
ds temp,arg1,temp /* 7th divide step */
|
| 368 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 369 |
|
|
ds temp,arg1,temp /* 8th divide step */
|
| 370 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 371 |
|
|
ds temp,arg1,temp /* 9th divide step */
|
| 372 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 373 |
|
|
ds temp,arg1,temp /* 10th divide step */
|
| 374 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 375 |
|
|
ds temp,arg1,temp /* 11th divide step */
|
| 376 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 377 |
|
|
ds temp,arg1,temp /* 12th divide step */
|
| 378 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 379 |
|
|
ds temp,arg1,temp /* 13th divide step */
|
| 380 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 381 |
|
|
ds temp,arg1,temp /* 14th divide step */
|
| 382 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 383 |
|
|
ds temp,arg1,temp /* 15th divide step */
|
| 384 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 385 |
|
|
ds temp,arg1,temp /* 16th divide step */
|
| 386 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 387 |
|
|
ds temp,arg1,temp /* 17th divide step */
|
| 388 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 389 |
|
|
ds temp,arg1,temp /* 18th divide step */
|
| 390 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 391 |
|
|
ds temp,arg1,temp /* 19th divide step */
|
| 392 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 393 |
|
|
ds temp,arg1,temp /* 20th divide step */
|
| 394 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 395 |
|
|
ds temp,arg1,temp /* 21st divide step */
|
| 396 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 397 |
|
|
ds temp,arg1,temp /* 22nd divide step */
|
| 398 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 399 |
|
|
ds temp,arg1,temp /* 23rd divide step */
|
| 400 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 401 |
|
|
ds temp,arg1,temp /* 24th divide step */
|
| 402 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 403 |
|
|
ds temp,arg1,temp /* 25th divide step */
|
| 404 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 405 |
|
|
ds temp,arg1,temp /* 26th divide step */
|
| 406 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 407 |
|
|
ds temp,arg1,temp /* 27th divide step */
|
| 408 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 409 |
|
|
ds temp,arg1,temp /* 28th divide step */
|
| 410 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 411 |
|
|
ds temp,arg1,temp /* 29th divide step */
|
| 412 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 413 |
|
|
ds temp,arg1,temp /* 30th divide step */
|
| 414 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 415 |
|
|
ds temp,arg1,temp /* 31st divide step */
|
| 416 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 417 |
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
| 418 |
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
| 419 |
|
|
xor,>= arg0,arg1,0 /* get correct sign of quotient */
|
| 420 |
|
|
sub 0,retreg,retreg /* based on operand signs */
|
| 421 |
|
|
MILLIRETN
|
| 422 |
|
|
nop
|
| 423 |
|
|
|
| 424 |
|
|
LSYM(small_divisor)
|
| 425 |
|
|
|
| 426 |
|
|
#if defined(pa64)
|
| 427 |
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with */
|
| 428 |
|
|
/* small divisors (and 32-bit integers) We must not be mislead */
|
| 429 |
|
|
/* by "1" bits left in the upper 32 bits. */
|
| 430 |
|
|
depd %r0,31,32,%r25
|
| 431 |
|
|
#endif
|
| 432 |
|
|
blr,n arg1,r0
|
| 433 |
|
|
nop
|
| 434 |
|
|
/* table for divisor == 0,1, ... ,15 */
|
| 435 |
|
|
addit,= 0,arg1,r0 /* trap if divisor == 0 */
|
| 436 |
|
|
nop
|
| 437 |
|
|
MILLIRET /* divisor == 1 */
|
| 438 |
|
|
copy arg0,retreg
|
| 439 |
|
|
MILLI_BEN($$divI_2) /* divisor == 2 */
|
| 440 |
|
|
nop
|
| 441 |
|
|
MILLI_BEN($$divI_3) /* divisor == 3 */
|
| 442 |
|
|
nop
|
| 443 |
|
|
MILLI_BEN($$divI_4) /* divisor == 4 */
|
| 444 |
|
|
nop
|
| 445 |
|
|
MILLI_BEN($$divI_5) /* divisor == 5 */
|
| 446 |
|
|
nop
|
| 447 |
|
|
MILLI_BEN($$divI_6) /* divisor == 6 */
|
| 448 |
|
|
nop
|
| 449 |
|
|
MILLI_BEN($$divI_7) /* divisor == 7 */
|
| 450 |
|
|
nop
|
| 451 |
|
|
MILLI_BEN($$divI_8) /* divisor == 8 */
|
| 452 |
|
|
nop
|
| 453 |
|
|
MILLI_BEN($$divI_9) /* divisor == 9 */
|
| 454 |
|
|
nop
|
| 455 |
|
|
MILLI_BEN($$divI_10) /* divisor == 10 */
|
| 456 |
|
|
nop
|
| 457 |
|
|
b LREF(normal) /* divisor == 11 */
|
| 458 |
|
|
add,>= 0,arg0,retreg
|
| 459 |
|
|
MILLI_BEN($$divI_12) /* divisor == 12 */
|
| 460 |
|
|
nop
|
| 461 |
|
|
b LREF(normal) /* divisor == 13 */
|
| 462 |
|
|
add,>= 0,arg0,retreg
|
| 463 |
|
|
MILLI_BEN($$divI_14) /* divisor == 14 */
|
| 464 |
|
|
nop
|
| 465 |
|
|
MILLI_BEN($$divI_15) /* divisor == 15 */
|
| 466 |
|
|
nop
|
| 467 |
|
|
|
| 468 |
|
|
LSYM(negative1)
|
| 469 |
|
|
sub 0,arg0,retreg /* result is negation of dividend */
|
| 470 |
|
|
MILLIRET
|
| 471 |
|
|
addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
|
| 472 |
|
|
.exit
|
| 473 |
|
|
.procend
|
| 474 |
|
|
.end
|
| 475 |
|
|
#endif
|
| 476 |
|
|
|
| 477 |
|
|
#ifdef L_divU
|
| 478 |
|
|
/* ROUTINE: $$divU
|
| 479 |
|
|
.
|
| 480 |
|
|
. Single precision divide for unsigned integers.
|
| 481 |
|
|
.
|
| 482 |
|
|
. Quotient is truncated towards zero.
|
| 483 |
|
|
. Traps on divide by zero.
|
| 484 |
|
|
|
| 485 |
|
|
INPUT REGISTERS:
|
| 486 |
|
|
. arg0 == dividend
|
| 487 |
|
|
. arg1 == divisor
|
| 488 |
|
|
. mrp == return pc
|
| 489 |
|
|
. sr0 == return space when called externally
|
| 490 |
|
|
|
| 491 |
|
|
OUTPUT REGISTERS:
|
| 492 |
|
|
. arg0 = undefined
|
| 493 |
|
|
. arg1 = undefined
|
| 494 |
|
|
. ret1 = quotient
|
| 495 |
|
|
|
| 496 |
|
|
OTHER REGISTERS AFFECTED:
|
| 497 |
|
|
. r1 = undefined
|
| 498 |
|
|
|
| 499 |
|
|
SIDE EFFECTS:
|
| 500 |
|
|
. Causes a trap under the following conditions:
|
| 501 |
|
|
. divisor is zero
|
| 502 |
|
|
. Changes memory at the following places:
|
| 503 |
|
|
. NONE
|
| 504 |
|
|
|
| 505 |
|
|
PERMISSIBLE CONTEXT:
|
| 506 |
|
|
. Unwindable.
|
| 507 |
|
|
. Does not create a stack frame.
|
| 508 |
|
|
. Suitable for internal or external millicode.
|
| 509 |
|
|
. Assumes the special millicode register conventions.
|
| 510 |
|
|
|
| 511 |
|
|
DISCUSSION:
|
| 512 |
|
|
. Branchs to other millicode routines using BE:
|
| 513 |
|
|
. $$divU_# for 3,5,6,7,9,10,12,14,15
|
| 514 |
|
|
.
|
| 515 |
|
|
. For selected small divisors calls the special divide by constant
|
| 516 |
|
|
. routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
|
| 517 |
|
|
|
| 518 |
|
|
RDEFINE(temp,r1)
|
| 519 |
|
|
RDEFINE(retreg,ret1) /* r29 */
|
| 520 |
|
|
RDEFINE(temp1,arg0)
|
| 521 |
|
|
SUBSPA_MILLI_DIV
|
| 522 |
|
|
ATTR_MILLI
|
| 523 |
|
|
.export $$divU,millicode
|
| 524 |
|
|
.import $$divU_3,millicode
|
| 525 |
|
|
.import $$divU_5,millicode
|
| 526 |
|
|
.import $$divU_6,millicode
|
| 527 |
|
|
.import $$divU_7,millicode
|
| 528 |
|
|
.import $$divU_9,millicode
|
| 529 |
|
|
.import $$divU_10,millicode
|
| 530 |
|
|
.import $$divU_12,millicode
|
| 531 |
|
|
.import $$divU_14,millicode
|
| 532 |
|
|
.import $$divU_15,millicode
|
| 533 |
|
|
.proc
|
| 534 |
|
|
.callinfo millicode
|
| 535 |
|
|
.entry
|
| 536 |
|
|
GSYM($$divU)
|
| 537 |
|
|
/* The subtract is not nullified since it does no harm and can be used
|
| 538 |
|
|
by the two cases that branch back to "normal". */
|
| 539 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
| 540 |
|
|
and,= arg1,temp,r0 /* if so, denominator is power of 2 */
|
| 541 |
|
|
b LREF(regular_seq)
|
| 542 |
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
| 543 |
|
|
copy arg0,retreg
|
| 544 |
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
| 545 |
|
|
extru retreg,15,16,retreg /* retreg = retreg >> 16 */
|
| 546 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
| 547 |
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
| 548 |
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
| 549 |
|
|
extru retreg,23,24,retreg /* retreg = retreg >> 8 */
|
| 550 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
| 551 |
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
| 552 |
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
| 553 |
|
|
extru retreg,27,28,retreg /* retreg = retreg >> 4 */
|
| 554 |
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
| 555 |
|
|
extru retreg,29,30,retreg /* retreg = retreg >> 2 */
|
| 556 |
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
| 557 |
|
|
extru retreg,30,31,retreg /* retreg = retreg >> 1 */
|
| 558 |
|
|
MILLIRETN
|
| 559 |
|
|
nop
|
| 560 |
|
|
LSYM(regular_seq)
|
| 561 |
|
|
comib,>= 15,arg1,LREF(special_divisor)
|
| 562 |
|
|
subi 0,arg1,temp /* clear carry, negate the divisor */
|
| 563 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
| 564 |
|
|
LSYM(normal)
|
| 565 |
|
|
add arg0,arg0,retreg /* shift msb bit into carry */
|
| 566 |
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
| 567 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 568 |
|
|
ds temp,arg1,temp /* 2nd divide step */
|
| 569 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 570 |
|
|
ds temp,arg1,temp /* 3rd divide step */
|
| 571 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 572 |
|
|
ds temp,arg1,temp /* 4th divide step */
|
| 573 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 574 |
|
|
ds temp,arg1,temp /* 5th divide step */
|
| 575 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 576 |
|
|
ds temp,arg1,temp /* 6th divide step */
|
| 577 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 578 |
|
|
ds temp,arg1,temp /* 7th divide step */
|
| 579 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 580 |
|
|
ds temp,arg1,temp /* 8th divide step */
|
| 581 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 582 |
|
|
ds temp,arg1,temp /* 9th divide step */
|
| 583 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 584 |
|
|
ds temp,arg1,temp /* 10th divide step */
|
| 585 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 586 |
|
|
ds temp,arg1,temp /* 11th divide step */
|
| 587 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 588 |
|
|
ds temp,arg1,temp /* 12th divide step */
|
| 589 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 590 |
|
|
ds temp,arg1,temp /* 13th divide step */
|
| 591 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 592 |
|
|
ds temp,arg1,temp /* 14th divide step */
|
| 593 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 594 |
|
|
ds temp,arg1,temp /* 15th divide step */
|
| 595 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 596 |
|
|
ds temp,arg1,temp /* 16th divide step */
|
| 597 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 598 |
|
|
ds temp,arg1,temp /* 17th divide step */
|
| 599 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 600 |
|
|
ds temp,arg1,temp /* 18th divide step */
|
| 601 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 602 |
|
|
ds temp,arg1,temp /* 19th divide step */
|
| 603 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 604 |
|
|
ds temp,arg1,temp /* 20th divide step */
|
| 605 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 606 |
|
|
ds temp,arg1,temp /* 21st divide step */
|
| 607 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 608 |
|
|
ds temp,arg1,temp /* 22nd divide step */
|
| 609 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 610 |
|
|
ds temp,arg1,temp /* 23rd divide step */
|
| 611 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 612 |
|
|
ds temp,arg1,temp /* 24th divide step */
|
| 613 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 614 |
|
|
ds temp,arg1,temp /* 25th divide step */
|
| 615 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 616 |
|
|
ds temp,arg1,temp /* 26th divide step */
|
| 617 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 618 |
|
|
ds temp,arg1,temp /* 27th divide step */
|
| 619 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 620 |
|
|
ds temp,arg1,temp /* 28th divide step */
|
| 621 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 622 |
|
|
ds temp,arg1,temp /* 29th divide step */
|
| 623 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 624 |
|
|
ds temp,arg1,temp /* 30th divide step */
|
| 625 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 626 |
|
|
ds temp,arg1,temp /* 31st divide step */
|
| 627 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 628 |
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
| 629 |
|
|
MILLIRET
|
| 630 |
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
| 631 |
|
|
|
| 632 |
|
|
/* Handle the cases where divisor is a small constant or has high bit on. */
|
| 633 |
|
|
LSYM(special_divisor)
|
| 634 |
|
|
/* blr arg1,r0 */
|
| 635 |
|
|
/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
|
| 636 |
|
|
|
| 637 |
|
|
/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
|
| 638 |
|
|
generating such a blr, comib sequence. A problem in nullification. So I
|
| 639 |
|
|
rewrote this code. */
|
| 640 |
|
|
|
| 641 |
|
|
#if defined(pa64)
|
| 642 |
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with
|
| 643 |
|
|
small divisors (and 32-bit unsigned integers) We must not be mislead
|
| 644 |
|
|
by "1" bits left in the upper 32 bits. */
|
| 645 |
|
|
depd %r0,31,32,%r25
|
| 646 |
|
|
#endif
|
| 647 |
|
|
comib,> 0,arg1,LREF(big_divisor)
|
| 648 |
|
|
nop
|
| 649 |
|
|
blr arg1,r0
|
| 650 |
|
|
nop
|
| 651 |
|
|
|
| 652 |
|
|
LSYM(zero_divisor) /* this label is here to provide external visibility */
|
| 653 |
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
| 654 |
|
|
nop
|
| 655 |
|
|
MILLIRET /* divisor == 1 */
|
| 656 |
|
|
copy arg0,retreg
|
| 657 |
|
|
MILLIRET /* divisor == 2 */
|
| 658 |
|
|
extru arg0,30,31,retreg
|
| 659 |
|
|
MILLI_BEN($$divU_3) /* divisor == 3 */
|
| 660 |
|
|
nop
|
| 661 |
|
|
MILLIRET /* divisor == 4 */
|
| 662 |
|
|
extru arg0,29,30,retreg
|
| 663 |
|
|
MILLI_BEN($$divU_5) /* divisor == 5 */
|
| 664 |
|
|
nop
|
| 665 |
|
|
MILLI_BEN($$divU_6) /* divisor == 6 */
|
| 666 |
|
|
nop
|
| 667 |
|
|
MILLI_BEN($$divU_7) /* divisor == 7 */
|
| 668 |
|
|
nop
|
| 669 |
|
|
MILLIRET /* divisor == 8 */
|
| 670 |
|
|
extru arg0,28,29,retreg
|
| 671 |
|
|
MILLI_BEN($$divU_9) /* divisor == 9 */
|
| 672 |
|
|
nop
|
| 673 |
|
|
MILLI_BEN($$divU_10) /* divisor == 10 */
|
| 674 |
|
|
nop
|
| 675 |
|
|
b LREF(normal) /* divisor == 11 */
|
| 676 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
| 677 |
|
|
MILLI_BEN($$divU_12) /* divisor == 12 */
|
| 678 |
|
|
nop
|
| 679 |
|
|
b LREF(normal) /* divisor == 13 */
|
| 680 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
| 681 |
|
|
MILLI_BEN($$divU_14) /* divisor == 14 */
|
| 682 |
|
|
nop
|
| 683 |
|
|
MILLI_BEN($$divU_15) /* divisor == 15 */
|
| 684 |
|
|
nop
|
| 685 |
|
|
|
| 686 |
|
|
/* Handle the case where the high bit is on in the divisor.
|
| 687 |
|
|
Compute: if( dividend>=divisor) quotient=1; else quotient=0;
|
| 688 |
|
|
Note: dividend>==divisor iff dividend-divisor does not borrow
|
| 689 |
|
|
and not borrow iff carry. */
|
| 690 |
|
|
LSYM(big_divisor)
|
| 691 |
|
|
sub arg0,arg1,r0
|
| 692 |
|
|
MILLIRET
|
| 693 |
|
|
addc r0,r0,retreg
|
| 694 |
|
|
.exit
|
| 695 |
|
|
.procend
|
| 696 |
|
|
.end
|
| 697 |
|
|
#endif
|
| 698 |
|
|
|
| 699 |
|
|
#ifdef L_remI
|
| 700 |
|
|
/* ROUTINE: $$remI
|
| 701 |
|
|
|
| 702 |
|
|
DESCRIPTION:
|
| 703 |
|
|
. $$remI returns the remainder of the division of two signed 32-bit
|
| 704 |
|
|
. integers. The sign of the remainder is the same as the sign of
|
| 705 |
|
|
. the dividend.
|
| 706 |
|
|
|
| 707 |
|
|
|
| 708 |
|
|
INPUT REGISTERS:
|
| 709 |
|
|
. arg0 == dividend
|
| 710 |
|
|
. arg1 == divisor
|
| 711 |
|
|
. mrp == return pc
|
| 712 |
|
|
. sr0 == return space when called externally
|
| 713 |
|
|
|
| 714 |
|
|
OUTPUT REGISTERS:
|
| 715 |
|
|
. arg0 = destroyed
|
| 716 |
|
|
. arg1 = destroyed
|
| 717 |
|
|
. ret1 = remainder
|
| 718 |
|
|
|
| 719 |
|
|
OTHER REGISTERS AFFECTED:
|
| 720 |
|
|
. r1 = undefined
|
| 721 |
|
|
|
| 722 |
|
|
SIDE EFFECTS:
|
| 723 |
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
| 724 |
|
|
. Changes memory at the following places: NONE
|
| 725 |
|
|
|
| 726 |
|
|
PERMISSIBLE CONTEXT:
|
| 727 |
|
|
. Unwindable
|
| 728 |
|
|
. Does not create a stack frame
|
| 729 |
|
|
. Is usable for internal or external microcode
|
| 730 |
|
|
|
| 731 |
|
|
DISCUSSION:
|
| 732 |
|
|
. Calls other millicode routines via mrp: NONE
|
| 733 |
|
|
. Calls other millicode routines: NONE */
|
| 734 |
|
|
|
| 735 |
|
|
RDEFINE(tmp,r1)
|
| 736 |
|
|
RDEFINE(retreg,ret1)
|
| 737 |
|
|
|
| 738 |
|
|
SUBSPA_MILLI
|
| 739 |
|
|
ATTR_MILLI
|
| 740 |
|
|
.proc
|
| 741 |
|
|
.callinfo millicode
|
| 742 |
|
|
.entry
|
| 743 |
|
|
GSYM($$remI)
|
| 744 |
|
|
GSYM($$remoI)
|
| 745 |
|
|
.export $$remI,MILLICODE
|
| 746 |
|
|
.export $$remoI,MILLICODE
|
| 747 |
|
|
ldo -1(arg1),tmp /* is there at most one bit set ? */
|
| 748 |
|
|
and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
|
| 749 |
|
|
addi,> 0,arg1,r0 /* if denominator > 0, use power */
|
| 750 |
|
|
/* of 2 */
|
| 751 |
|
|
b,n LREF(neg_denom)
|
| 752 |
|
|
LSYM(pow2)
|
| 753 |
|
|
comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
|
| 754 |
|
|
and arg0,tmp,retreg /* get the result */
|
| 755 |
|
|
MILLIRETN
|
| 756 |
|
|
LSYM(neg_num)
|
| 757 |
|
|
subi 0,arg0,arg0 /* negate numerator */
|
| 758 |
|
|
and arg0,tmp,retreg /* get the result */
|
| 759 |
|
|
subi 0,retreg,retreg /* negate result */
|
| 760 |
|
|
MILLIRETN
|
| 761 |
|
|
LSYM(neg_denom)
|
| 762 |
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
|
| 763 |
|
|
/* of 2 */
|
| 764 |
|
|
b,n LREF(regular_seq)
|
| 765 |
|
|
sub r0,arg1,tmp /* make denominator positive */
|
| 766 |
|
|
comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
| 767 |
|
|
ldo -1(tmp),retreg /* is there at most one bit set ? */
|
| 768 |
|
|
and,= tmp,retreg,r0 /* if not, go to regular_seq */
|
| 769 |
|
|
b,n LREF(regular_seq)
|
| 770 |
|
|
comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
|
| 771 |
|
|
and arg0,retreg,retreg
|
| 772 |
|
|
MILLIRETN
|
| 773 |
|
|
LSYM(neg_num_2)
|
| 774 |
|
|
subi 0,arg0,tmp /* test against 0x80000000 */
|
| 775 |
|
|
and tmp,retreg,retreg
|
| 776 |
|
|
subi 0,retreg,retreg
|
| 777 |
|
|
MILLIRETN
|
| 778 |
|
|
LSYM(regular_seq)
|
| 779 |
|
|
addit,= 0,arg1,0 /* trap if div by zero */
|
| 780 |
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
| 781 |
|
|
sub 0,retreg,retreg /* make it positive */
|
| 782 |
|
|
sub 0,arg1, tmp /* clear carry, */
|
| 783 |
|
|
/* negate the divisor */
|
| 784 |
|
|
ds 0, tmp,0 /* set V-bit to the comple- */
|
| 785 |
|
|
/* ment of the divisor sign */
|
| 786 |
|
|
or 0,0, tmp /* clear tmp */
|
| 787 |
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
| 788 |
|
|
ds tmp,arg1, tmp /* 1st divide step, if no carry */
|
| 789 |
|
|
/* out, msb of quotient = 0 */
|
| 790 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 791 |
|
|
LSYM(t1)
|
| 792 |
|
|
ds tmp,arg1, tmp /* 2nd divide step */
|
| 793 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 794 |
|
|
ds tmp,arg1, tmp /* 3rd divide step */
|
| 795 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 796 |
|
|
ds tmp,arg1, tmp /* 4th divide step */
|
| 797 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 798 |
|
|
ds tmp,arg1, tmp /* 5th divide step */
|
| 799 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 800 |
|
|
ds tmp,arg1, tmp /* 6th divide step */
|
| 801 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 802 |
|
|
ds tmp,arg1, tmp /* 7th divide step */
|
| 803 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 804 |
|
|
ds tmp,arg1, tmp /* 8th divide step */
|
| 805 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 806 |
|
|
ds tmp,arg1, tmp /* 9th divide step */
|
| 807 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 808 |
|
|
ds tmp,arg1, tmp /* 10th divide step */
|
| 809 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 810 |
|
|
ds tmp,arg1, tmp /* 11th divide step */
|
| 811 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 812 |
|
|
ds tmp,arg1, tmp /* 12th divide step */
|
| 813 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 814 |
|
|
ds tmp,arg1, tmp /* 13th divide step */
|
| 815 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 816 |
|
|
ds tmp,arg1, tmp /* 14th divide step */
|
| 817 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 818 |
|
|
ds tmp,arg1, tmp /* 15th divide step */
|
| 819 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 820 |
|
|
ds tmp,arg1, tmp /* 16th divide step */
|
| 821 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 822 |
|
|
ds tmp,arg1, tmp /* 17th divide step */
|
| 823 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 824 |
|
|
ds tmp,arg1, tmp /* 18th divide step */
|
| 825 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 826 |
|
|
ds tmp,arg1, tmp /* 19th divide step */
|
| 827 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 828 |
|
|
ds tmp,arg1, tmp /* 20th divide step */
|
| 829 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 830 |
|
|
ds tmp,arg1, tmp /* 21st divide step */
|
| 831 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 832 |
|
|
ds tmp,arg1, tmp /* 22nd divide step */
|
| 833 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 834 |
|
|
ds tmp,arg1, tmp /* 23rd divide step */
|
| 835 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 836 |
|
|
ds tmp,arg1, tmp /* 24th divide step */
|
| 837 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 838 |
|
|
ds tmp,arg1, tmp /* 25th divide step */
|
| 839 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 840 |
|
|
ds tmp,arg1, tmp /* 26th divide step */
|
| 841 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 842 |
|
|
ds tmp,arg1, tmp /* 27th divide step */
|
| 843 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 844 |
|
|
ds tmp,arg1, tmp /* 28th divide step */
|
| 845 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 846 |
|
|
ds tmp,arg1, tmp /* 29th divide step */
|
| 847 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 848 |
|
|
ds tmp,arg1, tmp /* 30th divide step */
|
| 849 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 850 |
|
|
ds tmp,arg1, tmp /* 31st divide step */
|
| 851 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
| 852 |
|
|
ds tmp,arg1, tmp /* 32nd divide step, */
|
| 853 |
|
|
addc retreg,retreg,retreg /* shift last bit into retreg */
|
| 854 |
|
|
movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
|
| 855 |
|
|
add,< arg1,0,0 /* if arg1 > 0, add arg1 */
|
| 856 |
|
|
add,tr tmp,arg1,retreg /* for correcting remainder tmp */
|
| 857 |
|
|
sub tmp,arg1,retreg /* else add absolute value arg1 */
|
| 858 |
|
|
LSYM(finish)
|
| 859 |
|
|
add,>= arg0,0,0 /* set sign of remainder */
|
| 860 |
|
|
sub 0,retreg,retreg /* to sign of dividend */
|
| 861 |
|
|
MILLIRET
|
| 862 |
|
|
nop
|
| 863 |
|
|
.exit
|
| 864 |
|
|
.procend
|
| 865 |
|
|
#ifdef milliext
|
| 866 |
|
|
.origin 0x00000200
|
| 867 |
|
|
#endif
|
| 868 |
|
|
.end
|
| 869 |
|
|
#endif
|
| 870 |
|
|
|
| 871 |
|
|
#ifdef L_remU
|
| 872 |
|
|
/* ROUTINE: $$remU
|
| 873 |
|
|
. Single precision divide for remainder with unsigned binary integers.
|
| 874 |
|
|
.
|
| 875 |
|
|
. The remainder must be dividend-(dividend/divisor)*divisor.
|
| 876 |
|
|
. Divide by zero is trapped.
|
| 877 |
|
|
|
| 878 |
|
|
INPUT REGISTERS:
|
| 879 |
|
|
. arg0 == dividend
|
| 880 |
|
|
. arg1 == divisor
|
| 881 |
|
|
. mrp == return pc
|
| 882 |
|
|
. sr0 == return space when called externally
|
| 883 |
|
|
|
| 884 |
|
|
OUTPUT REGISTERS:
|
| 885 |
|
|
. arg0 = undefined
|
| 886 |
|
|
. arg1 = undefined
|
| 887 |
|
|
. ret1 = remainder
|
| 888 |
|
|
|
| 889 |
|
|
OTHER REGISTERS AFFECTED:
|
| 890 |
|
|
. r1 = undefined
|
| 891 |
|
|
|
| 892 |
|
|
SIDE EFFECTS:
|
| 893 |
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
| 894 |
|
|
. Changes memory at the following places: NONE
|
| 895 |
|
|
|
| 896 |
|
|
PERMISSIBLE CONTEXT:
|
| 897 |
|
|
. Unwindable.
|
| 898 |
|
|
. Does not create a stack frame.
|
| 899 |
|
|
. Suitable for internal or external millicode.
|
| 900 |
|
|
. Assumes the special millicode register conventions.
|
| 901 |
|
|
|
| 902 |
|
|
DISCUSSION:
|
| 903 |
|
|
. Calls other millicode routines using mrp: NONE
|
| 904 |
|
|
. Calls other millicode routines: NONE */
|
| 905 |
|
|
|
| 906 |
|
|
|
| 907 |
|
|
RDEFINE(temp,r1)
|
| 908 |
|
|
RDEFINE(rmndr,ret1) /* r29 */
|
| 909 |
|
|
SUBSPA_MILLI
|
| 910 |
|
|
ATTR_MILLI
|
| 911 |
|
|
.export $$remU,millicode
|
| 912 |
|
|
.proc
|
| 913 |
|
|
.callinfo millicode
|
| 914 |
|
|
.entry
|
| 915 |
|
|
GSYM($$remU)
|
| 916 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
| 917 |
|
|
and,= arg1,temp,r0 /* if not, don't use power of 2 */
|
| 918 |
|
|
b LREF(regular_seq)
|
| 919 |
|
|
addit,= 0,arg1,r0 /* trap on div by zero */
|
| 920 |
|
|
and arg0,temp,rmndr /* get the result for power of 2 */
|
| 921 |
|
|
MILLIRETN
|
| 922 |
|
|
LSYM(regular_seq)
|
| 923 |
|
|
comib,>=,n 0,arg1,LREF(special_case)
|
| 924 |
|
|
subi 0,arg1,rmndr /* clear carry, negate the divisor */
|
| 925 |
|
|
ds r0,rmndr,r0 /* set V-bit to 1 */
|
| 926 |
|
|
add arg0,arg0,temp /* shift msb bit into carry */
|
| 927 |
|
|
ds r0,arg1,rmndr /* 1st divide step, if no carry */
|
| 928 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 929 |
|
|
ds rmndr,arg1,rmndr /* 2nd divide step */
|
| 930 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 931 |
|
|
ds rmndr,arg1,rmndr /* 3rd divide step */
|
| 932 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 933 |
|
|
ds rmndr,arg1,rmndr /* 4th divide step */
|
| 934 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 935 |
|
|
ds rmndr,arg1,rmndr /* 5th divide step */
|
| 936 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 937 |
|
|
ds rmndr,arg1,rmndr /* 6th divide step */
|
| 938 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 939 |
|
|
ds rmndr,arg1,rmndr /* 7th divide step */
|
| 940 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 941 |
|
|
ds rmndr,arg1,rmndr /* 8th divide step */
|
| 942 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 943 |
|
|
ds rmndr,arg1,rmndr /* 9th divide step */
|
| 944 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 945 |
|
|
ds rmndr,arg1,rmndr /* 10th divide step */
|
| 946 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 947 |
|
|
ds rmndr,arg1,rmndr /* 11th divide step */
|
| 948 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 949 |
|
|
ds rmndr,arg1,rmndr /* 12th divide step */
|
| 950 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 951 |
|
|
ds rmndr,arg1,rmndr /* 13th divide step */
|
| 952 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 953 |
|
|
ds rmndr,arg1,rmndr /* 14th divide step */
|
| 954 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 955 |
|
|
ds rmndr,arg1,rmndr /* 15th divide step */
|
| 956 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 957 |
|
|
ds rmndr,arg1,rmndr /* 16th divide step */
|
| 958 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 959 |
|
|
ds rmndr,arg1,rmndr /* 17th divide step */
|
| 960 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 961 |
|
|
ds rmndr,arg1,rmndr /* 18th divide step */
|
| 962 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 963 |
|
|
ds rmndr,arg1,rmndr /* 19th divide step */
|
| 964 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 965 |
|
|
ds rmndr,arg1,rmndr /* 20th divide step */
|
| 966 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 967 |
|
|
ds rmndr,arg1,rmndr /* 21st divide step */
|
| 968 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 969 |
|
|
ds rmndr,arg1,rmndr /* 22nd divide step */
|
| 970 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 971 |
|
|
ds rmndr,arg1,rmndr /* 23rd divide step */
|
| 972 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 973 |
|
|
ds rmndr,arg1,rmndr /* 24th divide step */
|
| 974 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 975 |
|
|
ds rmndr,arg1,rmndr /* 25th divide step */
|
| 976 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 977 |
|
|
ds rmndr,arg1,rmndr /* 26th divide step */
|
| 978 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 979 |
|
|
ds rmndr,arg1,rmndr /* 27th divide step */
|
| 980 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 981 |
|
|
ds rmndr,arg1,rmndr /* 28th divide step */
|
| 982 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 983 |
|
|
ds rmndr,arg1,rmndr /* 29th divide step */
|
| 984 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 985 |
|
|
ds rmndr,arg1,rmndr /* 30th divide step */
|
| 986 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 987 |
|
|
ds rmndr,arg1,rmndr /* 31st divide step */
|
| 988 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
| 989 |
|
|
ds rmndr,arg1,rmndr /* 32nd divide step, */
|
| 990 |
|
|
comiclr,<= 0,rmndr,r0
|
| 991 |
|
|
add rmndr,arg1,rmndr /* correction */
|
| 992 |
|
|
MILLIRETN
|
| 993 |
|
|
nop
|
| 994 |
|
|
|
| 995 |
|
|
/* Putting >= on the last DS and deleting COMICLR does not work! */
|
| 996 |
|
|
LSYM(special_case)
|
| 997 |
|
|
sub,>>= arg0,arg1,rmndr
|
| 998 |
|
|
copy arg0,rmndr
|
| 999 |
|
|
MILLIRETN
|
| 1000 |
|
|
nop
|
| 1001 |
|
|
.exit
|
| 1002 |
|
|
.procend
|
| 1003 |
|
|
.end
|
| 1004 |
|
|
#endif
|
| 1005 |
|
|
|
| 1006 |
|
|
#ifdef L_div_const
|
| 1007 |
|
|
/* ROUTINE: $$divI_2
|
| 1008 |
|
|
. $$divI_3 $$divU_3
|
| 1009 |
|
|
. $$divI_4
|
| 1010 |
|
|
. $$divI_5 $$divU_5
|
| 1011 |
|
|
. $$divI_6 $$divU_6
|
| 1012 |
|
|
. $$divI_7 $$divU_7
|
| 1013 |
|
|
. $$divI_8
|
| 1014 |
|
|
. $$divI_9 $$divU_9
|
| 1015 |
|
|
. $$divI_10 $$divU_10
|
| 1016 |
|
|
.
|
| 1017 |
|
|
. $$divI_12 $$divU_12
|
| 1018 |
|
|
.
|
| 1019 |
|
|
. $$divI_14 $$divU_14
|
| 1020 |
|
|
. $$divI_15 $$divU_15
|
| 1021 |
|
|
. $$divI_16
|
| 1022 |
|
|
. $$divI_17 $$divU_17
|
| 1023 |
|
|
.
|
| 1024 |
|
|
. Divide by selected constants for single precision binary integers.
|
| 1025 |
|
|
|
| 1026 |
|
|
INPUT REGISTERS:
|
| 1027 |
|
|
. arg0 == dividend
|
| 1028 |
|
|
. mrp == return pc
|
| 1029 |
|
|
. sr0 == return space when called externally
|
| 1030 |
|
|
|
| 1031 |
|
|
OUTPUT REGISTERS:
|
| 1032 |
|
|
. arg0 = undefined
|
| 1033 |
|
|
. arg1 = undefined
|
| 1034 |
|
|
. ret1 = quotient
|
| 1035 |
|
|
|
| 1036 |
|
|
OTHER REGISTERS AFFECTED:
|
| 1037 |
|
|
. r1 = undefined
|
| 1038 |
|
|
|
| 1039 |
|
|
SIDE EFFECTS:
|
| 1040 |
|
|
. Causes a trap under the following conditions: NONE
|
| 1041 |
|
|
. Changes memory at the following places: NONE
|
| 1042 |
|
|
|
| 1043 |
|
|
PERMISSIBLE CONTEXT:
|
| 1044 |
|
|
. Unwindable.
|
| 1045 |
|
|
. Does not create a stack frame.
|
| 1046 |
|
|
. Suitable for internal or external millicode.
|
| 1047 |
|
|
. Assumes the special millicode register conventions.
|
| 1048 |
|
|
|
| 1049 |
|
|
DISCUSSION:
|
| 1050 |
|
|
. Calls other millicode routines using mrp: NONE
|
| 1051 |
|
|
. Calls other millicode routines: NONE */
|
| 1052 |
|
|
|
| 1053 |
|
|
|
| 1054 |
|
|
/* TRUNCATED DIVISION BY SMALL INTEGERS
|
| 1055 |
|
|
|
| 1056 |
|
|
We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
|
| 1057 |
|
|
(with y fixed).
|
| 1058 |
|
|
|
| 1059 |
|
|
Let a = floor(z/y), for some choice of z. Note that z will be
|
| 1060 |
|
|
chosen so that division by z is cheap.
|
| 1061 |
|
|
|
| 1062 |
|
|
Let r be the remainder(z/y). In other words, r = z - ay.
|
| 1063 |
|
|
|
| 1064 |
|
|
Now, our method is to choose a value for b such that
|
| 1065 |
|
|
|
| 1066 |
|
|
q'(x) = floor((ax+b)/z)
|
| 1067 |
|
|
|
| 1068 |
|
|
is equal to q(x) over as large a range of x as possible. If the
|
| 1069 |
|
|
two are equal over a sufficiently large range, and if it is easy to
|
| 1070 |
|
|
form the product (ax), and it is easy to divide by z, then we can
|
| 1071 |
|
|
perform the division much faster than the general division algorithm.
|
| 1072 |
|
|
|
| 1073 |
|
|
So, we want the following to be true:
|
| 1074 |
|
|
|
| 1075 |
|
|
. For x in the following range:
|
| 1076 |
|
|
.
|
| 1077 |
|
|
. ky <= x < (k+1)y
|
| 1078 |
|
|
.
|
| 1079 |
|
|
. implies that
|
| 1080 |
|
|
.
|
| 1081 |
|
|
. k <= (ax+b)/z < (k+1)
|
| 1082 |
|
|
|
| 1083 |
|
|
We want to determine b such that this is true for all k in the
|
| 1084 |
|
|
range {0..K} for some maximum K.
|
| 1085 |
|
|
|
| 1086 |
|
|
Since (ax+b) is an increasing function of x, we can take each
|
| 1087 |
|
|
bound separately to determine the "best" value for b.
|
| 1088 |
|
|
|
| 1089 |
|
|
(ax+b)/z < (k+1) implies
|
| 1090 |
|
|
|
| 1091 |
|
|
(a((k+1)y-1)+b < (k+1)z implies
|
| 1092 |
|
|
|
| 1093 |
|
|
b < a + (k+1)(z-ay) implies
|
| 1094 |
|
|
|
| 1095 |
|
|
b < a + (k+1)r
|
| 1096 |
|
|
|
| 1097 |
|
|
This needs to be true for all k in the range {0..K}. In
|
| 1098 |
|
|
particular, it is true for k = 0 and this leads to a maximum
|
| 1099 |
|
|
acceptable value for b.
|
| 1100 |
|
|
|
| 1101 |
|
|
b < a+r or b <= a+r-1
|
| 1102 |
|
|
|
| 1103 |
|
|
Taking the other bound, we have
|
| 1104 |
|
|
|
| 1105 |
|
|
k <= (ax+b)/z implies
|
| 1106 |
|
|
|
| 1107 |
|
|
k <= (aky+b)/z implies
|
| 1108 |
|
|
|
| 1109 |
|
|
k(z-ay) <= b implies
|
| 1110 |
|
|
|
| 1111 |
|
|
kr <= b
|
| 1112 |
|
|
|
| 1113 |
|
|
Clearly, the largest range for k will be achieved by maximizing b,
|
| 1114 |
|
|
when r is not zero. When r is zero, then the simplest choice for b
|
| 1115 |
|
|
is 0. When r is not 0, set
|
| 1116 |
|
|
|
| 1117 |
|
|
. b = a+r-1
|
| 1118 |
|
|
|
| 1119 |
|
|
Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
|
| 1120 |
|
|
for all x in the range:
|
| 1121 |
|
|
|
| 1122 |
|
|
. 0 <= x < (K+1)y
|
| 1123 |
|
|
|
| 1124 |
|
|
We need to determine what K is. Of our two bounds,
|
| 1125 |
|
|
|
| 1126 |
|
|
. b < a+(k+1)r is satisfied for all k >= 0, by construction.
|
| 1127 |
|
|
|
| 1128 |
|
|
The other bound is
|
| 1129 |
|
|
|
| 1130 |
|
|
. kr <= b
|
| 1131 |
|
|
|
| 1132 |
|
|
This is always true if r = 0. If r is not 0 (the usual case), then
|
| 1133 |
|
|
K = floor((a+r-1)/r), is the maximum value for k.
|
| 1134 |
|
|
|
| 1135 |
|
|
Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
|
| 1136 |
|
|
answer for q(x) = floor(x/y) when x is in the range
|
| 1137 |
|
|
|
| 1138 |
|
|
(0,(K+1)y-1) K = floor((a+r-1)/r)
|
| 1139 |
|
|
|
| 1140 |
|
|
To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
|
| 1141 |
|
|
the formula for q'(x) yields the correct value of q(x) for all x
|
| 1142 |
|
|
representable by a single word in HPPA.
|
| 1143 |
|
|
|
| 1144 |
|
|
We are also constrained in that computing the product (ax), adding
|
| 1145 |
|
|
b, and dividing by z must all be done quickly, otherwise we will be
|
| 1146 |
|
|
better off going through the general algorithm using the DS
|
| 1147 |
|
|
instruction, which uses approximately 70 cycles.
|
| 1148 |
|
|
|
| 1149 |
|
|
For each y, there is a choice of z which satisfies the constraints
|
| 1150 |
|
|
for (K+1)y >= 2**32. We may not, however, be able to satisfy the
|
| 1151 |
|
|
timing constraints for arbitrary y. It seems that z being equal to
|
| 1152 |
|
|
a power of 2 or a power of 2 minus 1 is as good as we can do, since
|
| 1153 |
|
|
it minimizes the time to do division by z. We want the choice of z
|
| 1154 |
|
|
to also result in a value for (a) that minimizes the computation of
|
| 1155 |
|
|
the product (ax). This is best achieved if (a) has a regular bit
|
| 1156 |
|
|
pattern (so the multiplication can be done with shifts and adds).
|
| 1157 |
|
|
The value of (a) also needs to be less than 2**32 so the product is
|
| 1158 |
|
|
always guaranteed to fit in 2 words.
|
| 1159 |
|
|
|
| 1160 |
|
|
In actual practice, the following should be done:
|
| 1161 |
|
|
|
| 1162 |
|
|
1) For negative x, you should take the absolute value and remember
|
| 1163 |
|
|
. the fact so that the result can be negated. This obviously does
|
| 1164 |
|
|
. not apply in the unsigned case.
|
| 1165 |
|
|
2) For even y, you should factor out the power of 2 that divides y
|
| 1166 |
|
|
. and divide x by it. You can then proceed by dividing by the
|
| 1167 |
|
|
. odd factor of y.
|
| 1168 |
|
|
|
| 1169 |
|
|
Here is a table of some odd values of y, and corresponding choices
|
| 1170 |
|
|
for z which are "good".
|
| 1171 |
|
|
|
| 1172 |
|
|
y z r a (hex) max x (hex)
|
| 1173 |
|
|
|
| 1174 |
|
|
3 2**32 1 55555555 100000001
|
| 1175 |
|
|
5 2**32 1 33333333 100000003
|
| 1176 |
|
|
7 2**24-1 0 249249 (infinite)
|
| 1177 |
|
|
9 2**24-1 0 1c71c7 (infinite)
|
| 1178 |
|
|
11 2**20-1 0 1745d (infinite)
|
| 1179 |
|
|
13 2**24-1 0 13b13b (infinite)
|
| 1180 |
|
|
15 2**32 1 11111111 10000000d
|
| 1181 |
|
|
17 2**32 1 f0f0f0f 10000000f
|
| 1182 |
|
|
|
| 1183 |
|
|
If r is 1, then b = a+r-1 = a. This simplifies the computation
|
| 1184 |
|
|
of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
|
| 1185 |
|
|
then b = 0 is ok to use which simplifies (ax+b).
|
| 1186 |
|
|
|
| 1187 |
|
|
The bit patterns for 55555555, 33333333, and 11111111 are obviously
|
| 1188 |
|
|
very regular. The bit patterns for the other values of a above are:
|
| 1189 |
|
|
|
| 1190 |
|
|
y (hex) (binary)
|
| 1191 |
|
|
|
| 1192 |
|
|
7 249249 001001001001001001001001 << regular >>
|
| 1193 |
|
|
9 1c71c7 000111000111000111000111 << regular >>
|
| 1194 |
|
|
11 1745d 000000010111010001011101 << irregular >>
|
| 1195 |
|
|
13 13b13b 000100111011000100111011 << irregular >>
|
| 1196 |
|
|
|
| 1197 |
|
|
The bit patterns for (a) corresponding to (y) of 11 and 13 may be
|
| 1198 |
|
|
too irregular to warrant using this method.
|
| 1199 |
|
|
|
| 1200 |
|
|
When z is a power of 2 minus 1, then the division by z is slightly
|
| 1201 |
|
|
more complicated, involving an iterative solution.
|
| 1202 |
|
|
|
| 1203 |
|
|
The code presented here solves division by 1 through 17, except for
|
| 1204 |
|
|
11 and 13. There are algorithms for both signed and unsigned
|
| 1205 |
|
|
quantities given.
|
| 1206 |
|
|
|
| 1207 |
|
|
TIMINGS (cycles)
|
| 1208 |
|
|
|
| 1209 |
|
|
divisor positive negative unsigned
|
| 1210 |
|
|
|
| 1211 |
|
|
. 1 2 2 2
|
| 1212 |
|
|
. 2 4 4 2
|
| 1213 |
|
|
. 3 19 21 19
|
| 1214 |
|
|
. 4 4 4 2
|
| 1215 |
|
|
. 5 18 22 19
|
| 1216 |
|
|
. 6 19 22 19
|
| 1217 |
|
|
. 8 4 4 2
|
| 1218 |
|
|
. 10 18 19 17
|
| 1219 |
|
|
. 12 18 20 18
|
| 1220 |
|
|
. 15 16 18 16
|
| 1221 |
|
|
. 16 4 4 2
|
| 1222 |
|
|
. 17 16 18 16
|
| 1223 |
|
|
|
| 1224 |
|
|
Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
|
| 1225 |
|
|
a loop body is executed until the tentative quotient is 0. The
|
| 1226 |
|
|
number of times the loop body is executed varies depending on the
|
| 1227 |
|
|
dividend, but is never more than two times. If the dividend is
|
| 1228 |
|
|
less than the divisor, then the loop body is not executed at all.
|
| 1229 |
|
|
Each iteration adds 4 cycles to the timings.
|
| 1230 |
|
|
|
| 1231 |
|
|
divisor positive negative unsigned
|
| 1232 |
|
|
|
| 1233 |
|
|
. 7 19+4n 20+4n 20+4n n = number of iterations
|
| 1234 |
|
|
. 9 21+4n 22+4n 21+4n
|
| 1235 |
|
|
. 14 21+4n 22+4n 20+4n
|
| 1236 |
|
|
|
| 1237 |
|
|
To give an idea of how the number of iterations varies, here is a
|
| 1238 |
|
|
table of dividend versus number of iterations when dividing by 7.
|
| 1239 |
|
|
|
| 1240 |
|
|
smallest largest required
|
| 1241 |
|
|
dividend dividend iterations
|
| 1242 |
|
|
|
| 1243 |
|
|
. 0 6 0
|
| 1244 |
|
|
. 7 0x6ffffff 1
|
| 1245 |
|
|
0x1000006 0xffffffff 2
|
| 1246 |
|
|
|
| 1247 |
|
|
There is some overlap in the range of numbers requiring 1 and 2
|
| 1248 |
|
|
iterations. */
|
| 1249 |
|
|
|
| 1250 |
|
|
RDEFINE(t2,r1)
|
| 1251 |
|
|
RDEFINE(x2,arg0) /* r26 */
|
| 1252 |
|
|
RDEFINE(t1,arg1) /* r25 */
|
| 1253 |
|
|
RDEFINE(x1,ret1) /* r29 */
|
| 1254 |
|
|
|
| 1255 |
|
|
SUBSPA_MILLI_DIV
|
| 1256 |
|
|
ATTR_MILLI
|
| 1257 |
|
|
|
| 1258 |
|
|
.proc
|
| 1259 |
|
|
.callinfo millicode
|
| 1260 |
|
|
.entry
|
| 1261 |
|
|
/* NONE of these routines require a stack frame
|
| 1262 |
|
|
ALL of these routines are unwindable from millicode */
|
| 1263 |
|
|
|
| 1264 |
|
|
GSYM($$divide_by_constant)
|
| 1265 |
|
|
.export $$divide_by_constant,millicode
|
| 1266 |
|
|
/* Provides a "nice" label for the code covered by the unwind descriptor
|
| 1267 |
|
|
for things like gprof. */
|
| 1268 |
|
|
|
| 1269 |
|
|
/* DIVISION BY 2 (shift by 1) */
|
| 1270 |
|
|
GSYM($$divI_2)
|
| 1271 |
|
|
.export $$divI_2,millicode
|
| 1272 |
|
|
comclr,>= arg0,0,0
|
| 1273 |
|
|
addi 1,arg0,arg0
|
| 1274 |
|
|
MILLIRET
|
| 1275 |
|
|
extrs arg0,30,31,ret1
|
| 1276 |
|
|
|
| 1277 |
|
|
|
| 1278 |
|
|
/* DIVISION BY 4 (shift by 2) */
|
| 1279 |
|
|
GSYM($$divI_4)
|
| 1280 |
|
|
.export $$divI_4,millicode
|
| 1281 |
|
|
comclr,>= arg0,0,0
|
| 1282 |
|
|
addi 3,arg0,arg0
|
| 1283 |
|
|
MILLIRET
|
| 1284 |
|
|
extrs arg0,29,30,ret1
|
| 1285 |
|
|
|
| 1286 |
|
|
|
| 1287 |
|
|
/* DIVISION BY 8 (shift by 3) */
|
| 1288 |
|
|
GSYM($$divI_8)
|
| 1289 |
|
|
.export $$divI_8,millicode
|
| 1290 |
|
|
comclr,>= arg0,0,0
|
| 1291 |
|
|
addi 7,arg0,arg0
|
| 1292 |
|
|
MILLIRET
|
| 1293 |
|
|
extrs arg0,28,29,ret1
|
| 1294 |
|
|
|
| 1295 |
|
|
/* DIVISION BY 16 (shift by 4) */
|
| 1296 |
|
|
GSYM($$divI_16)
|
| 1297 |
|
|
.export $$divI_16,millicode
|
| 1298 |
|
|
comclr,>= arg0,0,0
|
| 1299 |
|
|
addi 15,arg0,arg0
|
| 1300 |
|
|
MILLIRET
|
| 1301 |
|
|
extrs arg0,27,28,ret1
|
| 1302 |
|
|
|
| 1303 |
|
|
/****************************************************************************
|
| 1304 |
|
|
*
|
| 1305 |
|
|
* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
|
| 1306 |
|
|
*
|
| 1307 |
|
|
* includes 3,5,15,17 and also 6,10,12
|
| 1308 |
|
|
*
|
| 1309 |
|
|
****************************************************************************/
|
| 1310 |
|
|
|
| 1311 |
|
|
/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
|
| 1312 |
|
|
|
| 1313 |
|
|
GSYM($$divI_3)
|
| 1314 |
|
|
.export $$divI_3,millicode
|
| 1315 |
|
|
comb,<,N x2,0,LREF(neg3)
|
| 1316 |
|
|
|
| 1317 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
| 1318 |
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
| 1319 |
|
|
sh2add x2,x2,x2
|
| 1320 |
|
|
b LREF(pos)
|
| 1321 |
|
|
addc x1,0,x1
|
| 1322 |
|
|
|
| 1323 |
|
|
LSYM(neg3)
|
| 1324 |
|
|
subi 1,x2,x2 /* this cannot overflow */
|
| 1325 |
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
| 1326 |
|
|
sh2add x2,x2,x2
|
| 1327 |
|
|
b LREF(neg)
|
| 1328 |
|
|
addc x1,0,x1
|
| 1329 |
|
|
|
| 1330 |
|
|
GSYM($$divU_3)
|
| 1331 |
|
|
.export $$divU_3,millicode
|
| 1332 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
| 1333 |
|
|
addc 0,0,x1
|
| 1334 |
|
|
shd x1,x2,30,t1 /* multiply by 5 to get started */
|
| 1335 |
|
|
sh2add x2,x2,x2
|
| 1336 |
|
|
b LREF(pos)
|
| 1337 |
|
|
addc x1,t1,x1
|
| 1338 |
|
|
|
| 1339 |
|
|
/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
|
| 1340 |
|
|
|
| 1341 |
|
|
GSYM($$divI_5)
|
| 1342 |
|
|
.export $$divI_5,millicode
|
| 1343 |
|
|
comb,<,N x2,0,LREF(neg5)
|
| 1344 |
|
|
|
| 1345 |
|
|
addi 3,x2,t1 /* this cannot overflow */
|
| 1346 |
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
| 1347 |
|
|
b LREF(pos)
|
| 1348 |
|
|
addc 0,0,x1
|
| 1349 |
|
|
|
| 1350 |
|
|
LSYM(neg5)
|
| 1351 |
|
|
sub 0,x2,x2 /* negate x2 */
|
| 1352 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
| 1353 |
|
|
shd 0,x2,31,x1 /* get top bit (can be 1) */
|
| 1354 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
| 1355 |
|
|
b LREF(neg)
|
| 1356 |
|
|
addc x1,0,x1
|
| 1357 |
|
|
|
| 1358 |
|
|
GSYM($$divU_5)
|
| 1359 |
|
|
.export $$divU_5,millicode
|
| 1360 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
| 1361 |
|
|
addc 0,0,x1
|
| 1362 |
|
|
shd x1,x2,31,t1 /* multiply by 3 to get started */
|
| 1363 |
|
|
sh1add x2,x2,x2
|
| 1364 |
|
|
b LREF(pos)
|
| 1365 |
|
|
addc t1,x1,x1
|
| 1366 |
|
|
|
| 1367 |
|
|
/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
|
| 1368 |
|
|
GSYM($$divI_6)
|
| 1369 |
|
|
.export $$divI_6,millicode
|
| 1370 |
|
|
comb,<,N x2,0,LREF(neg6)
|
| 1371 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1372 |
|
|
addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
|
| 1373 |
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
| 1374 |
|
|
b LREF(pos)
|
| 1375 |
|
|
addc 0,0,x1
|
| 1376 |
|
|
|
| 1377 |
|
|
LSYM(neg6)
|
| 1378 |
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
| 1379 |
|
|
/* negation and adding 1 are done */
|
| 1380 |
|
|
/* at the same time by the SUBI */
|
| 1381 |
|
|
extru x2,30,31,x2
|
| 1382 |
|
|
shd 0,x2,30,x1
|
| 1383 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
| 1384 |
|
|
b LREF(neg)
|
| 1385 |
|
|
addc x1,0,x1
|
| 1386 |
|
|
|
| 1387 |
|
|
GSYM($$divU_6)
|
| 1388 |
|
|
.export $$divU_6,millicode
|
| 1389 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1390 |
|
|
addi 1,x2,x2 /* cannot carry */
|
| 1391 |
|
|
shd 0,x2,30,x1 /* multiply by 5 to get started */
|
| 1392 |
|
|
sh2add x2,x2,x2
|
| 1393 |
|
|
b LREF(pos)
|
| 1394 |
|
|
addc x1,0,x1
|
| 1395 |
|
|
|
| 1396 |
|
|
/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
|
| 1397 |
|
|
GSYM($$divU_10)
|
| 1398 |
|
|
.export $$divU_10,millicode
|
| 1399 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1400 |
|
|
addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
|
| 1401 |
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
| 1402 |
|
|
addc 0,0,x1
|
| 1403 |
|
|
LSYM(pos)
|
| 1404 |
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
| 1405 |
|
|
shd x2,0,28,t2
|
| 1406 |
|
|
add x2,t2,x2
|
| 1407 |
|
|
addc x1,t1,x1
|
| 1408 |
|
|
LSYM(pos_for_17)
|
| 1409 |
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
| 1410 |
|
|
shd x2,0,24,t2
|
| 1411 |
|
|
add x2,t2,x2
|
| 1412 |
|
|
addc x1,t1,x1
|
| 1413 |
|
|
|
| 1414 |
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
| 1415 |
|
|
shd x2,0,16,t2
|
| 1416 |
|
|
add x2,t2,x2
|
| 1417 |
|
|
MILLIRET
|
| 1418 |
|
|
addc x1,t1,x1
|
| 1419 |
|
|
|
| 1420 |
|
|
GSYM($$divI_10)
|
| 1421 |
|
|
.export $$divI_10,millicode
|
| 1422 |
|
|
comb,< x2,0,LREF(neg10)
|
| 1423 |
|
|
copy 0,x1
|
| 1424 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1425 |
|
|
addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
|
| 1426 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
| 1427 |
|
|
|
| 1428 |
|
|
LSYM(neg10)
|
| 1429 |
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
| 1430 |
|
|
/* negation and adding 1 are done */
|
| 1431 |
|
|
/* at the same time by the SUBI */
|
| 1432 |
|
|
extru x2,30,31,x2
|
| 1433 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
| 1434 |
|
|
LSYM(neg)
|
| 1435 |
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
| 1436 |
|
|
shd x2,0,28,t2
|
| 1437 |
|
|
add x2,t2,x2
|
| 1438 |
|
|
addc x1,t1,x1
|
| 1439 |
|
|
LSYM(neg_for_17)
|
| 1440 |
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
| 1441 |
|
|
shd x2,0,24,t2
|
| 1442 |
|
|
add x2,t2,x2
|
| 1443 |
|
|
addc x1,t1,x1
|
| 1444 |
|
|
|
| 1445 |
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
| 1446 |
|
|
shd x2,0,16,t2
|
| 1447 |
|
|
add x2,t2,x2
|
| 1448 |
|
|
addc x1,t1,x1
|
| 1449 |
|
|
MILLIRET
|
| 1450 |
|
|
sub 0,x1,x1
|
| 1451 |
|
|
|
| 1452 |
|
|
/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
|
| 1453 |
|
|
GSYM($$divI_12)
|
| 1454 |
|
|
.export $$divI_12,millicode
|
| 1455 |
|
|
comb,< x2,0,LREF(neg12)
|
| 1456 |
|
|
copy 0,x1
|
| 1457 |
|
|
extru x2,29,30,x2 /* divide by 4 */
|
| 1458 |
|
|
addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
|
| 1459 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
| 1460 |
|
|
|
| 1461 |
|
|
LSYM(neg12)
|
| 1462 |
|
|
subi 4,x2,x2 /* negate, divide by 4, and add 1 */
|
| 1463 |
|
|
/* negation and adding 1 are done */
|
| 1464 |
|
|
/* at the same time by the SUBI */
|
| 1465 |
|
|
extru x2,29,30,x2
|
| 1466 |
|
|
b LREF(neg)
|
| 1467 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
| 1468 |
|
|
|
| 1469 |
|
|
GSYM($$divU_12)
|
| 1470 |
|
|
.export $$divU_12,millicode
|
| 1471 |
|
|
extru x2,29,30,x2 /* divide by 4 */
|
| 1472 |
|
|
addi 5,x2,t1 /* cannot carry */
|
| 1473 |
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
| 1474 |
|
|
b LREF(pos)
|
| 1475 |
|
|
addc 0,0,x1
|
| 1476 |
|
|
|
| 1477 |
|
|
/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
|
| 1478 |
|
|
GSYM($$divI_15)
|
| 1479 |
|
|
.export $$divI_15,millicode
|
| 1480 |
|
|
comb,< x2,0,LREF(neg15)
|
| 1481 |
|
|
copy 0,x1
|
| 1482 |
|
|
addib,tr 1,x2,LREF(pos)+4
|
| 1483 |
|
|
shd x1,x2,28,t1
|
| 1484 |
|
|
|
| 1485 |
|
|
LSYM(neg15)
|
| 1486 |
|
|
b LREF(neg)
|
| 1487 |
|
|
subi 1,x2,x2
|
| 1488 |
|
|
|
| 1489 |
|
|
GSYM($$divU_15)
|
| 1490 |
|
|
.export $$divU_15,millicode
|
| 1491 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
| 1492 |
|
|
b LREF(pos)
|
| 1493 |
|
|
addc 0,0,x1
|
| 1494 |
|
|
|
| 1495 |
|
|
/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
|
| 1496 |
|
|
GSYM($$divI_17)
|
| 1497 |
|
|
.export $$divI_17,millicode
|
| 1498 |
|
|
comb,<,n x2,0,LREF(neg17)
|
| 1499 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
| 1500 |
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
| 1501 |
|
|
shd x2,0,28,t2
|
| 1502 |
|
|
sub t2,x2,x2
|
| 1503 |
|
|
b LREF(pos_for_17)
|
| 1504 |
|
|
subb t1,0,x1
|
| 1505 |
|
|
|
| 1506 |
|
|
LSYM(neg17)
|
| 1507 |
|
|
subi 1,x2,x2 /* this cannot overflow */
|
| 1508 |
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
| 1509 |
|
|
shd x2,0,28,t2
|
| 1510 |
|
|
sub t2,x2,x2
|
| 1511 |
|
|
b LREF(neg_for_17)
|
| 1512 |
|
|
subb t1,0,x1
|
| 1513 |
|
|
|
| 1514 |
|
|
GSYM($$divU_17)
|
| 1515 |
|
|
.export $$divU_17,millicode
|
| 1516 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
| 1517 |
|
|
addc 0,0,x1
|
| 1518 |
|
|
shd x1,x2,28,t1 /* multiply by 0xf to get started */
|
| 1519 |
|
|
LSYM(u17)
|
| 1520 |
|
|
shd x2,0,28,t2
|
| 1521 |
|
|
sub t2,x2,x2
|
| 1522 |
|
|
b LREF(pos_for_17)
|
| 1523 |
|
|
subb t1,x1,x1
|
| 1524 |
|
|
|
| 1525 |
|
|
|
| 1526 |
|
|
/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
|
| 1527 |
|
|
includes 7,9 and also 14
|
| 1528 |
|
|
|
| 1529 |
|
|
|
| 1530 |
|
|
z = 2**24-1
|
| 1531 |
|
|
r = z mod x = 0
|
| 1532 |
|
|
|
| 1533 |
|
|
so choose b = 0
|
| 1534 |
|
|
|
| 1535 |
|
|
Also, in order to divide by z = 2**24-1, we approximate by dividing
|
| 1536 |
|
|
by (z+1) = 2**24 (which is easy), and then correcting.
|
| 1537 |
|
|
|
| 1538 |
|
|
(ax) = (z+1)q' + r
|
| 1539 |
|
|
. = zq' + (q'+r)
|
| 1540 |
|
|
|
| 1541 |
|
|
So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
|
| 1542 |
|
|
Then the true remainder of (ax)/z is (q'+r). Repeat the process
|
| 1543 |
|
|
with this new remainder, adding the tentative quotients together,
|
| 1544 |
|
|
until a tentative quotient is 0 (and then we are done). There is
|
| 1545 |
|
|
one last correction to be done. It is possible that (q'+r) = z.
|
| 1546 |
|
|
If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
|
| 1547 |
|
|
in fact, we need to add 1 more to the quotient. Now, it turns
|
| 1548 |
|
|
out that this happens if and only if the original value x is
|
| 1549 |
|
|
an exact multiple of y. So, to avoid a three instruction test at
|
| 1550 |
|
|
the end, instead use 1 instruction to add 1 to x at the beginning. */
|
| 1551 |
|
|
|
| 1552 |
|
|
/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
|
| 1553 |
|
|
GSYM($$divI_7)
|
| 1554 |
|
|
.export $$divI_7,millicode
|
| 1555 |
|
|
comb,<,n x2,0,LREF(neg7)
|
| 1556 |
|
|
LSYM(7)
|
| 1557 |
|
|
addi 1,x2,x2 /* cannot overflow */
|
| 1558 |
|
|
shd 0,x2,29,x1
|
| 1559 |
|
|
sh3add x2,x2,x2
|
| 1560 |
|
|
addc x1,0,x1
|
| 1561 |
|
|
LSYM(pos7)
|
| 1562 |
|
|
shd x1,x2,26,t1
|
| 1563 |
|
|
shd x2,0,26,t2
|
| 1564 |
|
|
add x2,t2,x2
|
| 1565 |
|
|
addc x1,t1,x1
|
| 1566 |
|
|
|
| 1567 |
|
|
shd x1,x2,20,t1
|
| 1568 |
|
|
shd x2,0,20,t2
|
| 1569 |
|
|
add x2,t2,x2
|
| 1570 |
|
|
addc x1,t1,t1
|
| 1571 |
|
|
|
| 1572 |
|
|
/* computed . Now divide it by (2**24 - 1) */
|
| 1573 |
|
|
|
| 1574 |
|
|
copy 0,x1
|
| 1575 |
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
| 1576 |
|
|
LSYM(1)
|
| 1577 |
|
|
addb,tr t1,x1,LREF(2) /* add to previous quotient */
|
| 1578 |
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
| 1579 |
|
|
|
| 1580 |
|
|
MILLIRETN
|
| 1581 |
|
|
|
| 1582 |
|
|
LSYM(2)
|
| 1583 |
|
|
addb,tr t1,x2,LREF(1) /* adjust remainder */
|
| 1584 |
|
|
extru,= x2,7,8,t1 /* new quotient */
|
| 1585 |
|
|
|
| 1586 |
|
|
LSYM(neg7)
|
| 1587 |
|
|
subi 1,x2,x2 /* negate x2 and add 1 */
|
| 1588 |
|
|
LSYM(8)
|
| 1589 |
|
|
shd 0,x2,29,x1
|
| 1590 |
|
|
sh3add x2,x2,x2
|
| 1591 |
|
|
addc x1,0,x1
|
| 1592 |
|
|
|
| 1593 |
|
|
LSYM(neg7_shift)
|
| 1594 |
|
|
shd x1,x2,26,t1
|
| 1595 |
|
|
shd x2,0,26,t2
|
| 1596 |
|
|
add x2,t2,x2
|
| 1597 |
|
|
addc x1,t1,x1
|
| 1598 |
|
|
|
| 1599 |
|
|
shd x1,x2,20,t1
|
| 1600 |
|
|
shd x2,0,20,t2
|
| 1601 |
|
|
add x2,t2,x2
|
| 1602 |
|
|
addc x1,t1,t1
|
| 1603 |
|
|
|
| 1604 |
|
|
/* computed . Now divide it by (2**24 - 1) */
|
| 1605 |
|
|
|
| 1606 |
|
|
copy 0,x1
|
| 1607 |
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
| 1608 |
|
|
LSYM(3)
|
| 1609 |
|
|
addb,tr t1,x1,LREF(4) /* add to previous quotient */
|
| 1610 |
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
| 1611 |
|
|
|
| 1612 |
|
|
MILLIRET
|
| 1613 |
|
|
sub 0,x1,x1 /* negate result */
|
| 1614 |
|
|
|
| 1615 |
|
|
LSYM(4)
|
| 1616 |
|
|
addb,tr t1,x2,LREF(3) /* adjust remainder */
|
| 1617 |
|
|
extru,= x2,7,8,t1 /* new quotient */
|
| 1618 |
|
|
|
| 1619 |
|
|
GSYM($$divU_7)
|
| 1620 |
|
|
.export $$divU_7,millicode
|
| 1621 |
|
|
addi 1,x2,x2 /* can carry */
|
| 1622 |
|
|
addc 0,0,x1
|
| 1623 |
|
|
shd x1,x2,29,t1
|
| 1624 |
|
|
sh3add x2,x2,x2
|
| 1625 |
|
|
b LREF(pos7)
|
| 1626 |
|
|
addc t1,x1,x1
|
| 1627 |
|
|
|
| 1628 |
|
|
/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
|
| 1629 |
|
|
GSYM($$divI_9)
|
| 1630 |
|
|
.export $$divI_9,millicode
|
| 1631 |
|
|
comb,<,n x2,0,LREF(neg9)
|
| 1632 |
|
|
addi 1,x2,x2 /* cannot overflow */
|
| 1633 |
|
|
shd 0,x2,29,t1
|
| 1634 |
|
|
shd x2,0,29,t2
|
| 1635 |
|
|
sub t2,x2,x2
|
| 1636 |
|
|
b LREF(pos7)
|
| 1637 |
|
|
subb t1,0,x1
|
| 1638 |
|
|
|
| 1639 |
|
|
LSYM(neg9)
|
| 1640 |
|
|
subi 1,x2,x2 /* negate and add 1 */
|
| 1641 |
|
|
shd 0,x2,29,t1
|
| 1642 |
|
|
shd x2,0,29,t2
|
| 1643 |
|
|
sub t2,x2,x2
|
| 1644 |
|
|
b LREF(neg7_shift)
|
| 1645 |
|
|
subb t1,0,x1
|
| 1646 |
|
|
|
| 1647 |
|
|
GSYM($$divU_9)
|
| 1648 |
|
|
.export $$divU_9,millicode
|
| 1649 |
|
|
addi 1,x2,x2 /* can carry */
|
| 1650 |
|
|
addc 0,0,x1
|
| 1651 |
|
|
shd x1,x2,29,t1
|
| 1652 |
|
|
shd x2,0,29,t2
|
| 1653 |
|
|
sub t2,x2,x2
|
| 1654 |
|
|
b LREF(pos7)
|
| 1655 |
|
|
subb t1,x1,x1
|
| 1656 |
|
|
|
| 1657 |
|
|
/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
|
| 1658 |
|
|
GSYM($$divI_14)
|
| 1659 |
|
|
.export $$divI_14,millicode
|
| 1660 |
|
|
comb,<,n x2,0,LREF(neg14)
|
| 1661 |
|
|
GSYM($$divU_14)
|
| 1662 |
|
|
.export $$divU_14,millicode
|
| 1663 |
|
|
b LREF(7) /* go to 7 case */
|
| 1664 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1665 |
|
|
|
| 1666 |
|
|
LSYM(neg14)
|
| 1667 |
|
|
subi 2,x2,x2 /* negate (and add 2) */
|
| 1668 |
|
|
b LREF(8)
|
| 1669 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
| 1670 |
|
|
.exit
|
| 1671 |
|
|
.procend
|
| 1672 |
|
|
.end
|
| 1673 |
|
|
#endif
|
| 1674 |
|
|
|
| 1675 |
|
|
#ifdef L_mulI
|
| 1676 |
|
|
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
|
| 1677 |
|
|
/******************************************************************************
|
| 1678 |
|
|
This routine is used on PA2.0 processors when gcc -mno-fpregs is used
|
| 1679 |
|
|
|
| 1680 |
|
|
ROUTINE: $$mulI
|
| 1681 |
|
|
|
| 1682 |
|
|
|
| 1683 |
|
|
DESCRIPTION:
|
| 1684 |
|
|
|
| 1685 |
|
|
$$mulI multiplies two single word integers, giving a single
|
| 1686 |
|
|
word result.
|
| 1687 |
|
|
|
| 1688 |
|
|
|
| 1689 |
|
|
INPUT REGISTERS:
|
| 1690 |
|
|
|
| 1691 |
|
|
arg0 = Operand 1
|
| 1692 |
|
|
arg1 = Operand 2
|
| 1693 |
|
|
r31 == return pc
|
| 1694 |
|
|
sr0 == return space when called externally
|
| 1695 |
|
|
|
| 1696 |
|
|
|
| 1697 |
|
|
OUTPUT REGISTERS:
|
| 1698 |
|
|
|
| 1699 |
|
|
arg0 = undefined
|
| 1700 |
|
|
arg1 = undefined
|
| 1701 |
|
|
ret1 = result
|
| 1702 |
|
|
|
| 1703 |
|
|
OTHER REGISTERS AFFECTED:
|
| 1704 |
|
|
|
| 1705 |
|
|
r1 = undefined
|
| 1706 |
|
|
|
| 1707 |
|
|
SIDE EFFECTS:
|
| 1708 |
|
|
|
| 1709 |
|
|
Causes a trap under the following conditions: NONE
|
| 1710 |
|
|
Changes memory at the following places: NONE
|
| 1711 |
|
|
|
| 1712 |
|
|
PERMISSIBLE CONTEXT:
|
| 1713 |
|
|
|
| 1714 |
|
|
Unwindable
|
| 1715 |
|
|
Does not create a stack frame
|
| 1716 |
|
|
Is usable for internal or external microcode
|
| 1717 |
|
|
|
| 1718 |
|
|
DISCUSSION:
|
| 1719 |
|
|
|
| 1720 |
|
|
Calls other millicode routines via mrp: NONE
|
| 1721 |
|
|
Calls other millicode routines: NONE
|
| 1722 |
|
|
|
| 1723 |
|
|
***************************************************************************/
|
| 1724 |
|
|
|
| 1725 |
|
|
|
| 1726 |
|
|
#define a0 %arg0
|
| 1727 |
|
|
#define a1 %arg1
|
| 1728 |
|
|
#define t0 %r1
|
| 1729 |
|
|
#define r %ret1
|
| 1730 |
|
|
|
| 1731 |
|
|
#define a0__128a0 zdep a0,24,25,a0
|
| 1732 |
|
|
#define a0__256a0 zdep a0,23,24,a0
|
| 1733 |
|
|
#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
|
| 1734 |
|
|
#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
|
| 1735 |
|
|
#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
|
| 1736 |
|
|
#define b_n_ret_t0 b,n LREF(ret_t0)
|
| 1737 |
|
|
#define b_e_shift b LREF(e_shift)
|
| 1738 |
|
|
#define b_e_t0ma0 b LREF(e_t0ma0)
|
| 1739 |
|
|
#define b_e_t0 b LREF(e_t0)
|
| 1740 |
|
|
#define b_e_t0a0 b LREF(e_t0a0)
|
| 1741 |
|
|
#define b_e_t02a0 b LREF(e_t02a0)
|
| 1742 |
|
|
#define b_e_t04a0 b LREF(e_t04a0)
|
| 1743 |
|
|
#define b_e_2t0 b LREF(e_2t0)
|
| 1744 |
|
|
#define b_e_2t0a0 b LREF(e_2t0a0)
|
| 1745 |
|
|
#define b_e_2t04a0 b LREF(e2t04a0)
|
| 1746 |
|
|
#define b_e_3t0 b LREF(e_3t0)
|
| 1747 |
|
|
#define b_e_4t0 b LREF(e_4t0)
|
| 1748 |
|
|
#define b_e_4t0a0 b LREF(e_4t0a0)
|
| 1749 |
|
|
#define b_e_4t08a0 b LREF(e4t08a0)
|
| 1750 |
|
|
#define b_e_5t0 b LREF(e_5t0)
|
| 1751 |
|
|
#define b_e_8t0 b LREF(e_8t0)
|
| 1752 |
|
|
#define b_e_8t0a0 b LREF(e_8t0a0)
|
| 1753 |
|
|
#define r__r_a0 add r,a0,r
|
| 1754 |
|
|
#define r__r_2a0 sh1add a0,r,r
|
| 1755 |
|
|
#define r__r_4a0 sh2add a0,r,r
|
| 1756 |
|
|
#define r__r_8a0 sh3add a0,r,r
|
| 1757 |
|
|
#define r__r_t0 add r,t0,r
|
| 1758 |
|
|
#define r__r_2t0 sh1add t0,r,r
|
| 1759 |
|
|
#define r__r_4t0 sh2add t0,r,r
|
| 1760 |
|
|
#define r__r_8t0 sh3add t0,r,r
|
| 1761 |
|
|
#define t0__3a0 sh1add a0,a0,t0
|
| 1762 |
|
|
#define t0__4a0 sh2add a0,0,t0
|
| 1763 |
|
|
#define t0__5a0 sh2add a0,a0,t0
|
| 1764 |
|
|
#define t0__8a0 sh3add a0,0,t0
|
| 1765 |
|
|
#define t0__9a0 sh3add a0,a0,t0
|
| 1766 |
|
|
#define t0__16a0 zdep a0,27,28,t0
|
| 1767 |
|
|
#define t0__32a0 zdep a0,26,27,t0
|
| 1768 |
|
|
#define t0__64a0 zdep a0,25,26,t0
|
| 1769 |
|
|
#define t0__128a0 zdep a0,24,25,t0
|
| 1770 |
|
|
#define t0__t0ma0 sub t0,a0,t0
|
| 1771 |
|
|
#define t0__t0_a0 add t0,a0,t0
|
| 1772 |
|
|
#define t0__t0_2a0 sh1add a0,t0,t0
|
| 1773 |
|
|
#define t0__t0_4a0 sh2add a0,t0,t0
|
| 1774 |
|
|
#define t0__t0_8a0 sh3add a0,t0,t0
|
| 1775 |
|
|
#define t0__2t0_a0 sh1add t0,a0,t0
|
| 1776 |
|
|
#define t0__3t0 sh1add t0,t0,t0
|
| 1777 |
|
|
#define t0__4t0 sh2add t0,0,t0
|
| 1778 |
|
|
#define t0__4t0_a0 sh2add t0,a0,t0
|
| 1779 |
|
|
#define t0__5t0 sh2add t0,t0,t0
|
| 1780 |
|
|
#define t0__8t0 sh3add t0,0,t0
|
| 1781 |
|
|
#define t0__8t0_a0 sh3add t0,a0,t0
|
| 1782 |
|
|
#define t0__9t0 sh3add t0,t0,t0
|
| 1783 |
|
|
#define t0__16t0 zdep t0,27,28,t0
|
| 1784 |
|
|
#define t0__32t0 zdep t0,26,27,t0
|
| 1785 |
|
|
#define t0__256a0 zdep a0,23,24,t0
|
| 1786 |
|
|
|
| 1787 |
|
|
|
| 1788 |
|
|
SUBSPA_MILLI
|
| 1789 |
|
|
ATTR_MILLI
|
| 1790 |
|
|
.align 16
|
| 1791 |
|
|
.proc
|
| 1792 |
|
|
.callinfo millicode
|
| 1793 |
|
|
.export $$mulI,millicode
|
| 1794 |
|
|
GSYM($$mulI)
|
| 1795 |
|
|
combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
|
| 1796 |
|
|
copy 0,r /* zero out the result */
|
| 1797 |
|
|
xor a0,a1,a0 /* swap a0 & a1 using the */
|
| 1798 |
|
|
xor a0,a1,a1 /* old xor trick */
|
| 1799 |
|
|
xor a0,a1,a0
|
| 1800 |
|
|
LSYM(l4)
|
| 1801 |
|
|
combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
|
| 1802 |
|
|
zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
| 1803 |
|
|
sub,> 0,a1,t0 /* otherwise negate both and */
|
| 1804 |
|
|
combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
|
| 1805 |
|
|
sub 0,a0,a1
|
| 1806 |
|
|
movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
|
| 1807 |
|
|
|
| 1808 |
|
|
LSYM(l0) r__r_t0 /* add in this partial product */
|
| 1809 |
|
|
LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
|
| 1810 |
|
|
LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
| 1811 |
|
|
LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
|
| 1812 |
|
|
extru a1,23,24,a1 /* a1 >>= 8 ****************** */
|
| 1813 |
|
|
|
| 1814 |
|
|
/*16 insts before this. */
|
| 1815 |
|
|
/* a0 <<= 8 ************************** */
|
| 1816 |
|
|
LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
|
| 1817 |
|
|
LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
|
| 1818 |
|
|
LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
|
| 1819 |
|
|
LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
|
| 1820 |
|
|
LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
|
| 1821 |
|
|
LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
|
| 1822 |
|
|
LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
| 1823 |
|
|
LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
|
| 1824 |
|
|
LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
|
| 1825 |
|
|
LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
|
| 1826 |
|
|
LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
| 1827 |
|
|
LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
| 1828 |
|
|
LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
| 1829 |
|
|
LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
| 1830 |
|
|
LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
| 1831 |
|
|
LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
|
| 1832 |
|
|
LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
| 1833 |
|
|
LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
|
| 1834 |
|
|
LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
| 1835 |
|
|
LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
|
| 1836 |
|
|
LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
| 1837 |
|
|
LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
| 1838 |
|
|
LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
| 1839 |
|
|
LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1840 |
|
|
LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
| 1841 |
|
|
LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
| 1842 |
|
|
LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
| 1843 |
|
|
LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
|
| 1844 |
|
|
LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
| 1845 |
|
|
LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1846 |
|
|
LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
| 1847 |
|
|
LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
| 1848 |
|
|
LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
| 1849 |
|
|
LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
| 1850 |
|
|
LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
| 1851 |
|
|
LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
|
| 1852 |
|
|
LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
| 1853 |
|
|
LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
| 1854 |
|
|
LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
| 1855 |
|
|
LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1856 |
|
|
LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
| 1857 |
|
|
LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
| 1858 |
|
|
LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
| 1859 |
|
|
LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1860 |
|
|
LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
| 1861 |
|
|
LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
| 1862 |
|
|
LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
|
| 1863 |
|
|
LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
|
| 1864 |
|
|
LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
|
| 1865 |
|
|
LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
|
| 1866 |
|
|
LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
| 1867 |
|
|
LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
|
| 1868 |
|
|
LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
| 1869 |
|
|
LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1870 |
|
|
LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
| 1871 |
|
|
LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
|
| 1872 |
|
|
LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
| 1873 |
|
|
LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
|
| 1874 |
|
|
LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
| 1875 |
|
|
LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
|
| 1876 |
|
|
LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
| 1877 |
|
|
LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
| 1878 |
|
|
LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
| 1879 |
|
|
LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
| 1880 |
|
|
LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
| 1881 |
|
|
LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
| 1882 |
|
|
LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
| 1883 |
|
|
LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1884 |
|
|
LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
| 1885 |
|
|
LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1886 |
|
|
LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
|
| 1887 |
|
|
LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
|
| 1888 |
|
|
LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
| 1889 |
|
|
LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
|
| 1890 |
|
|
LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
| 1891 |
|
|
LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1892 |
|
|
LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
| 1893 |
|
|
LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1894 |
|
|
LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
| 1895 |
|
|
LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
| 1896 |
|
|
LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
|
| 1897 |
|
|
LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
|
| 1898 |
|
|
LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
| 1899 |
|
|
LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1900 |
|
|
LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
| 1901 |
|
|
LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
| 1902 |
|
|
LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
| 1903 |
|
|
LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
|
| 1904 |
|
|
LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
| 1905 |
|
|
LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
| 1906 |
|
|
LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
| 1907 |
|
|
LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
|
| 1908 |
|
|
LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
| 1909 |
|
|
LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
|
| 1910 |
|
|
LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
|
| 1911 |
|
|
LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
| 1912 |
|
|
LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
| 1913 |
|
|
LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
| 1914 |
|
|
LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
|
| 1915 |
|
|
LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
| 1916 |
|
|
LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
| 1917 |
|
|
LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
| 1918 |
|
|
LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
| 1919 |
|
|
LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
|
| 1920 |
|
|
LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
| 1921 |
|
|
LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
| 1922 |
|
|
LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
| 1923 |
|
|
LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
|
| 1924 |
|
|
LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
| 1925 |
|
|
LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
| 1926 |
|
|
LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
|
| 1927 |
|
|
LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
| 1928 |
|
|
LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
|
| 1929 |
|
|
LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
|
| 1930 |
|
|
LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
|
| 1931 |
|
|
LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
|
| 1932 |
|
|
LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
| 1933 |
|
|
LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
| 1934 |
|
|
LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
|
| 1935 |
|
|
LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
|
| 1936 |
|
|
LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
| 1937 |
|
|
LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
| 1938 |
|
|
LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
| 1939 |
|
|
LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
| 1940 |
|
|
LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
| 1941 |
|
|
LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
| 1942 |
|
|
LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
| 1943 |
|
|
LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
| 1944 |
|
|
LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
| 1945 |
|
|
LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
|
| 1946 |
|
|
LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
| 1947 |
|
|
LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1948 |
|
|
LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
| 1949 |
|
|
LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1950 |
|
|
LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
| 1951 |
|
|
LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
|
| 1952 |
|
|
LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
| 1953 |
|
|
LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
| 1954 |
|
|
LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
| 1955 |
|
|
LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
|
| 1956 |
|
|
LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
|
| 1957 |
|
|
LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
|
| 1958 |
|
|
LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
|
| 1959 |
|
|
LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
|
| 1960 |
|
|
LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
|
| 1961 |
|
|
LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
|
| 1962 |
|
|
LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
| 1963 |
|
|
LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
| 1964 |
|
|
LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
| 1965 |
|
|
LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
| 1966 |
|
|
LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
| 1967 |
|
|
LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
| 1968 |
|
|
LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
| 1969 |
|
|
LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
| 1970 |
|
|
LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
| 1971 |
|
|
LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
|
| 1972 |
|
|
LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
| 1973 |
|
|
LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
|
| 1974 |
|
|
LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
|
| 1975 |
|
|
LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
| 1976 |
|
|
LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
|
| 1977 |
|
|
LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
| 1978 |
|
|
LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
|
| 1979 |
|
|
LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
|
| 1980 |
|
|
LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
|
| 1981 |
|
|
LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
| 1982 |
|
|
LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
| 1983 |
|
|
LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
| 1984 |
|
|
LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
| 1985 |
|
|
LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
|
| 1986 |
|
|
LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
|
| 1987 |
|
|
LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
|
| 1988 |
|
|
LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
| 1989 |
|
|
LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
|
| 1990 |
|
|
LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
|
| 1991 |
|
|
LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
| 1992 |
|
|
LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
|
| 1993 |
|
|
LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
|
| 1994 |
|
|
LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
|
| 1995 |
|
|
LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
|
| 1996 |
|
|
LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
| 1997 |
|
|
LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
| 1998 |
|
|
LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
|
| 1999 |
|
|
LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
|
| 2000 |
|
|
LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
|
| 2001 |
|
|
LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
| 2002 |
|
|
LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
|
| 2003 |
|
|
LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
|
| 2004 |
|
|
LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
|
| 2005 |
|
|
LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
| 2006 |
|
|
LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
|
| 2007 |
|
|
LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
|
| 2008 |
|
|
LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
| 2009 |
|
|
LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
| 2010 |
|
|
LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
| 2011 |
|
|
LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
| 2012 |
|
|
LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
|
| 2013 |
|
|
LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
|
| 2014 |
|
|
LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
| 2015 |
|
|
LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
| 2016 |
|
|
LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
|
| 2017 |
|
|
LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
|
| 2018 |
|
|
LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
|
| 2019 |
|
|
LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
|
| 2020 |
|
|
LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
| 2021 |
|
|
LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
|
| 2022 |
|
|
LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
|
| 2023 |
|
|
LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
| 2024 |
|
|
LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
|
| 2025 |
|
|
LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
|
| 2026 |
|
|
LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
|
| 2027 |
|
|
LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
|
| 2028 |
|
|
LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
| 2029 |
|
|
LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
|
| 2030 |
|
|
LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
|
| 2031 |
|
|
LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
| 2032 |
|
|
LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
| 2033 |
|
|
LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
| 2034 |
|
|
LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
| 2035 |
|
|
LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
| 2036 |
|
|
LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
|
| 2037 |
|
|
LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
|
| 2038 |
|
|
LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
|
| 2039 |
|
|
LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
| 2040 |
|
|
LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
|
| 2041 |
|
|
LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
| 2042 |
|
|
LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
|
| 2043 |
|
|
LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
|
| 2044 |
|
|
LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
| 2045 |
|
|
LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
|
| 2046 |
|
|
LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
|
| 2047 |
|
|
LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
| 2048 |
|
|
LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
|
| 2049 |
|
|
LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
|
| 2050 |
|
|
LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
|
| 2051 |
|
|
LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
|
| 2052 |
|
|
LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
|
| 2053 |
|
|
LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
|
| 2054 |
|
|
LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
|
| 2055 |
|
|
LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
|
| 2056 |
|
|
LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
|
| 2057 |
|
|
LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
|
| 2058 |
|
|
LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
|
| 2059 |
|
|
LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
|
| 2060 |
|
|
LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
|
| 2061 |
|
|
LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
|
| 2062 |
|
|
LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
|
| 2063 |
|
|
LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
|
| 2064 |
|
|
LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
|
| 2065 |
|
|
LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
|
| 2066 |
|
|
LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
|
| 2067 |
|
|
LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
|
| 2068 |
|
|
LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
| 2069 |
|
|
LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
|
| 2070 |
|
|
LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
| 2071 |
|
|
LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
| 2072 |
|
|
/*1040 insts before this. */
|
| 2073 |
|
|
LSYM(ret_t0) MILLIRET
|
| 2074 |
|
|
LSYM(e_t0) r__r_t0
|
| 2075 |
|
|
LSYM(e_shift) a1_ne_0_b_l2
|
| 2076 |
|
|
a0__256a0 /* a0 <<= 8 *********** */
|
| 2077 |
|
|
MILLIRETN
|
| 2078 |
|
|
LSYM(e_t0ma0) a1_ne_0_b_l0
|
| 2079 |
|
|
t0__t0ma0
|
| 2080 |
|
|
MILLIRET
|
| 2081 |
|
|
r__r_t0
|
| 2082 |
|
|
LSYM(e_t0a0) a1_ne_0_b_l0
|
| 2083 |
|
|
t0__t0_a0
|
| 2084 |
|
|
MILLIRET
|
| 2085 |
|
|
r__r_t0
|
| 2086 |
|
|
LSYM(e_t02a0) a1_ne_0_b_l0
|
| 2087 |
|
|
t0__t0_2a0
|
| 2088 |
|
|
MILLIRET
|
| 2089 |
|
|
r__r_t0
|
| 2090 |
|
|
LSYM(e_t04a0) a1_ne_0_b_l0
|
| 2091 |
|
|
t0__t0_4a0
|
| 2092 |
|
|
MILLIRET
|
| 2093 |
|
|
r__r_t0
|
| 2094 |
|
|
LSYM(e_2t0) a1_ne_0_b_l1
|
| 2095 |
|
|
r__r_2t0
|
| 2096 |
|
|
MILLIRETN
|
| 2097 |
|
|
LSYM(e_2t0a0) a1_ne_0_b_l0
|
| 2098 |
|
|
t0__2t0_a0
|
| 2099 |
|
|
MILLIRET
|
| 2100 |
|
|
r__r_t0
|
| 2101 |
|
|
LSYM(e2t04a0) t0__t0_2a0
|
| 2102 |
|
|
a1_ne_0_b_l1
|
| 2103 |
|
|
r__r_2t0
|
| 2104 |
|
|
MILLIRETN
|
| 2105 |
|
|
LSYM(e_3t0) a1_ne_0_b_l0
|
| 2106 |
|
|
t0__3t0
|
| 2107 |
|
|
MILLIRET
|
| 2108 |
|
|
r__r_t0
|
| 2109 |
|
|
LSYM(e_4t0) a1_ne_0_b_l1
|
| 2110 |
|
|
r__r_4t0
|
| 2111 |
|
|
MILLIRETN
|
| 2112 |
|
|
LSYM(e_4t0a0) a1_ne_0_b_l0
|
| 2113 |
|
|
t0__4t0_a0
|
| 2114 |
|
|
MILLIRET
|
| 2115 |
|
|
r__r_t0
|
| 2116 |
|
|
LSYM(e4t08a0) t0__t0_2a0
|
| 2117 |
|
|
a1_ne_0_b_l1
|
| 2118 |
|
|
r__r_4t0
|
| 2119 |
|
|
MILLIRETN
|
| 2120 |
|
|
LSYM(e_5t0) a1_ne_0_b_l0
|
| 2121 |
|
|
t0__5t0
|
| 2122 |
|
|
MILLIRET
|
| 2123 |
|
|
r__r_t0
|
| 2124 |
|
|
LSYM(e_8t0) a1_ne_0_b_l1
|
| 2125 |
|
|
r__r_8t0
|
| 2126 |
|
|
MILLIRETN
|
| 2127 |
|
|
LSYM(e_8t0a0) a1_ne_0_b_l0
|
| 2128 |
|
|
t0__8t0_a0
|
| 2129 |
|
|
MILLIRET
|
| 2130 |
|
|
r__r_t0
|
| 2131 |
|
|
|
| 2132 |
|
|
.procend
|
| 2133 |
|
|
.end
|
| 2134 |
|
|
#endif
|