OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [pa/] [milli64.S] - Blame information for rev 327

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* 32 and 64-bit millicode, original author Hewlett-Packard
2
   adapted for gcc by Paul Bame 
3
   and Alan Modra .
4
 
5
   Copyright 2001, 2002, 2003, 2007, 2009 Free Software Foundation, Inc.
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify it under
10
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12
version.
13
 
14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15
WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17
for more details.
18
 
19
Under Section 7 of GPL version 3, you are granted additional
20
permissions described in the GCC Runtime Library Exception, version
21
3.1, as published by the Free Software Foundation.
22
 
23
You should have received a copy of the GNU General Public License and
24
a copy of the GCC Runtime Library Exception along with this program;
25
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
26
.  */
27
 
28
#ifdef pa64
29
        .level  2.0w
30
#endif
31
 
32
/* Hardware General Registers.  */
33
r0:     .reg    %r0
34
r1:     .reg    %r1
35
r2:     .reg    %r2
36
r3:     .reg    %r3
37
r4:     .reg    %r4
38
r5:     .reg    %r5
39
r6:     .reg    %r6
40
r7:     .reg    %r7
41
r8:     .reg    %r8
42
r9:     .reg    %r9
43
r10:    .reg    %r10
44
r11:    .reg    %r11
45
r12:    .reg    %r12
46
r13:    .reg    %r13
47
r14:    .reg    %r14
48
r15:    .reg    %r15
49
r16:    .reg    %r16
50
r17:    .reg    %r17
51
r18:    .reg    %r18
52
r19:    .reg    %r19
53
r20:    .reg    %r20
54
r21:    .reg    %r21
55
r22:    .reg    %r22
56
r23:    .reg    %r23
57
r24:    .reg    %r24
58
r25:    .reg    %r25
59
r26:    .reg    %r26
60
r27:    .reg    %r27
61
r28:    .reg    %r28
62
r29:    .reg    %r29
63
r30:    .reg    %r30
64
r31:    .reg    %r31
65
 
66
/* Hardware Space Registers.  */
67
sr0:    .reg    %sr0
68
sr1:    .reg    %sr1
69
sr2:    .reg    %sr2
70
sr3:    .reg    %sr3
71
sr4:    .reg    %sr4
72
sr5:    .reg    %sr5
73
sr6:    .reg    %sr6
74
sr7:    .reg    %sr7
75
 
76
/* Hardware Floating Point Registers.  */
77
fr0:    .reg    %fr0
78
fr1:    .reg    %fr1
79
fr2:    .reg    %fr2
80
fr3:    .reg    %fr3
81
fr4:    .reg    %fr4
82
fr5:    .reg    %fr5
83
fr6:    .reg    %fr6
84
fr7:    .reg    %fr7
85
fr8:    .reg    %fr8
86
fr9:    .reg    %fr9
87
fr10:   .reg    %fr10
88
fr11:   .reg    %fr11
89
fr12:   .reg    %fr12
90
fr13:   .reg    %fr13
91
fr14:   .reg    %fr14
92
fr15:   .reg    %fr15
93
 
94
/* Hardware Control Registers.  */
95
cr11:   .reg    %cr11
96
sar:    .reg    %cr11   /* Shift Amount Register */
97
 
98
/* Software Architecture General Registers.  */
99
rp:     .reg    r2      /* return pointer */
100
#ifdef pa64
101
mrp:    .reg    r2      /* millicode return pointer */
102
#else
103
mrp:    .reg    r31     /* millicode return pointer */
104
#endif
105
ret0:   .reg    r28     /* return value */
106
ret1:   .reg    r29     /* return value (high part of double) */
107
sp:     .reg    r30     /* stack pointer */
108
dp:     .reg    r27     /* data pointer */
109
arg0:   .reg    r26     /* argument */
110
arg1:   .reg    r25     /* argument or high part of double argument */
111
arg2:   .reg    r24     /* argument */
112
arg3:   .reg    r23     /* argument or high part of double argument */
113
 
114
/* Software Architecture Space Registers.  */
115
/*              sr0     ; return link from BLE */
116
sret:   .reg    sr1     /* return value */
117
sarg:   .reg    sr1     /* argument */
118
/*              sr4     ; PC SPACE tracker */
119
/*              sr5     ; process private data */
120
 
121
/* Frame Offsets (millicode convention!)  Used when calling other
122
   millicode routines.  Stack unwinding is dependent upon these
123
   definitions.  */
124
r31_slot:       .equ    -20     /* "current RP" slot */
125
sr0_slot:       .equ    -16     /* "static link" slot */
126
#if defined(pa64)
127
mrp_slot:       .equ    -16     /* "current RP" slot */
128
psp_slot:       .equ    -8      /* "previous SP" slot */
129
#else
130
mrp_slot:       .equ    -20     /* "current RP" slot (replacing "r31_slot") */
131
#endif
132
 
133
 
134
#define DEFINE(name,value)name: .EQU    value
135
#define RDEFINE(name,value)name:        .REG    value
136
#ifdef milliext
137
#define MILLI_BE(lbl)   BE    lbl(sr7,r0)
138
#define MILLI_BEN(lbl)  BE,n  lbl(sr7,r0)
139
#define MILLI_BLE(lbl)  BLE   lbl(sr7,r0)
140
#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
141
#define MILLIRETN       BE,n  0(sr0,mrp)
142
#define MILLIRET        BE    0(sr0,mrp)
143
#define MILLI_RETN      BE,n  0(sr0,mrp)
144
#define MILLI_RET       BE    0(sr0,mrp)
145
#else
146
#define MILLI_BE(lbl)   B     lbl
147
#define MILLI_BEN(lbl)  B,n   lbl
148
#define MILLI_BLE(lbl)  BL    lbl,mrp
149
#define MILLI_BLEN(lbl) BL,n  lbl,mrp
150
#define MILLIRETN       BV,n  0(mrp)
151
#define MILLIRET        BV    0(mrp)
152
#define MILLI_RETN      BV,n  0(mrp)
153
#define MILLI_RET       BV    0(mrp)
154
#endif
155
 
156
#ifdef __STDC__
157
#define CAT(a,b)        a##b
158
#else
159
#define CAT(a,b)        a/**/b
160
#endif
161
 
162
#ifdef ELF
163
#define SUBSPA_MILLI     .section .text
164
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
165
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
166
#define ATTR_MILLI
167
#define SUBSPA_DATA      .section .data
168
#define ATTR_DATA
169
#define GLOBAL           $global$
170
#define GSYM(sym)        !sym:
171
#define LSYM(sym)        !CAT(.L,sym:)
172
#define LREF(sym)        CAT(.L,sym)
173
 
174
#else
175
 
176
#ifdef coff
177
/* This used to be .milli but since link32 places different named
178
   sections in different segments millicode ends up a long ways away
179
   from .text (1meg?).  This way they will be a lot closer.
180
 
181
   The SUBSPA_MILLI_* specify locality sets for certain millicode
182
   modules in order to ensure that modules that call one another are
183
   placed close together. Without locality sets this is unlikely to
184
   happen because of the Dynamite linker library search algorithm. We
185
   want these modules close together so that short calls always reach
186
   (we don't want to require long calls or use long call stubs).  */
187
 
188
#define SUBSPA_MILLI     .subspa .text
189
#define SUBSPA_MILLI_DIV .subspa .text$dv,align=16
190
#define SUBSPA_MILLI_MUL .subspa .text$mu,align=16
191
#define ATTR_MILLI       .attr code,read,execute
192
#define SUBSPA_DATA      .subspa .data
193
#define ATTR_DATA        .attr init_data,read,write
194
#define GLOBAL           _gp
195
#else
196
#define SUBSPA_MILLI     .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8
197
#define SUBSPA_MILLI_DIV SUBSPA_MILLI
198
#define SUBSPA_MILLI_MUL SUBSPA_MILLI
199
#define ATTR_MILLI
200
#define SUBSPA_DATA      .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero
201
#define ATTR_DATA
202
#define GLOBAL           $global$
203
#endif
204
#define SPACE_DATA       .space $PRIVATE$,spnum=1,sort=16
205
 
206
#define GSYM(sym)        !sym
207
#define LSYM(sym)        !CAT(L$,sym)
208
#define LREF(sym)        CAT(L$,sym)
209
#endif
210
 
211
#ifdef L_dyncall
212
        SUBSPA_MILLI
213
        ATTR_DATA
214
GSYM($$dyncall)
215
        .export $$dyncall,millicode
216
        .proc
217
        .callinfo       millicode
218
        .entry
219
        bb,>=,n %r22,30,LREF(1)         ; branch if not plabel address
220
        depi    0,31,2,%r22             ; clear the two least significant bits
221
        ldw     4(%r22),%r19            ; load new LTP value
222
        ldw     0(%r22),%r22            ; load address of target
223
LSYM(1)
224
#ifdef LINUX
225
        bv      %r0(%r22)               ; branch to the real target
226
#else
227
        ldsid   (%sr0,%r22),%r1         ; get the "space ident" selected by r22
228
        mtsp    %r1,%sr0                ; move that space identifier into sr0
229
        be      0(%sr0,%r22)            ; branch to the real target
230
#endif
231
        stw     %r2,-24(%r30)           ; save return address into frame marker
232
        .exit
233
        .procend
234
#endif
235
 
236
#ifdef L_divI
237
/* ROUTINES:    $$divI, $$divoI
238
 
239
   Single precision divide for signed binary integers.
240
 
241
   The quotient is truncated towards zero.
242
   The sign of the quotient is the XOR of the signs of the dividend and
243
   divisor.
244
   Divide by zero is trapped.
245
   Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
246
 
247
   INPUT REGISTERS:
248
   .    arg0 == dividend
249
   .    arg1 == divisor
250
   .    mrp  == return pc
251
   .    sr0  == return space when called externally
252
 
253
   OUTPUT REGISTERS:
254
   .    arg0 =  undefined
255
   .    arg1 =  undefined
256
   .    ret1 =  quotient
257
 
258
   OTHER REGISTERS AFFECTED:
259
   .    r1   =  undefined
260
 
261
   SIDE EFFECTS:
262
   .    Causes a trap under the following conditions:
263
   .            divisor is zero  (traps with ADDIT,=  0,25,0)
264
   .            dividend==-2**31  and divisor==-1 and routine is $$divoI
265
   .                             (traps with ADDO  26,25,0)
266
   .    Changes memory at the following places:
267
   .            NONE
268
 
269
   PERMISSIBLE CONTEXT:
270
   .    Unwindable.
271
   .    Suitable for internal or external millicode.
272
   .    Assumes the special millicode register conventions.
273
 
274
   DISCUSSION:
275
   .    Branchs to other millicode routines using BE
276
   .            $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
277
   .
278
   .    For selected divisors, calls a divide by constant routine written by
279
   .    Karl Pettis.  Eligible divisors are 1..15 excluding 11 and 13.
280
   .
281
   .    The only overflow case is -2**31 divided by -1.
282
   .    Both routines return -2**31 but only $$divoI traps.  */
283
 
284
RDEFINE(temp,r1)
285
RDEFINE(retreg,ret1)    /*  r29 */
286
RDEFINE(temp1,arg0)
287
        SUBSPA_MILLI_DIV
288
        ATTR_MILLI
289
        .import $$divI_2,millicode
290
        .import $$divI_3,millicode
291
        .import $$divI_4,millicode
292
        .import $$divI_5,millicode
293
        .import $$divI_6,millicode
294
        .import $$divI_7,millicode
295
        .import $$divI_8,millicode
296
        .import $$divI_9,millicode
297
        .import $$divI_10,millicode
298
        .import $$divI_12,millicode
299
        .import $$divI_14,millicode
300
        .import $$divI_15,millicode
301
        .export $$divI,millicode
302
        .export $$divoI,millicode
303
        .proc
304
        .callinfo       millicode
305
        .entry
306
GSYM($$divoI)
307
        comib,=,n  -1,arg1,LREF(negative1)      /*  when divisor == -1 */
308
GSYM($$divI)
309
        ldo     -1(arg1),temp           /*  is there at most one bit set ? */
310
        and,<>  arg1,temp,r0            /*  if not, don't use power of 2 divide */
311
        addi,>  0,arg1,r0               /*  if divisor > 0, use power of 2 divide */
312
        b,n     LREF(neg_denom)
313
LSYM(pow2)
314
        addi,>= 0,arg0,retreg           /*  if numerator is negative, add the */
315
        add     arg0,temp,retreg        /*  (denominaotr -1) to correct for shifts */
316
        extru,= arg1,15,16,temp         /*  test denominator with 0xffff0000 */
317
        extrs   retreg,15,16,retreg     /*  retreg = retreg >> 16 */
318
        or      arg1,temp,arg1          /*  arg1 = arg1 | (arg1 >> 16) */
319
        ldi     0xcc,temp1              /*  setup 0xcc in temp1 */
320
        extru,= arg1,23,8,temp          /*  test denominator with 0xff00 */
321
        extrs   retreg,23,24,retreg     /*  retreg = retreg >> 8 */
322
        or      arg1,temp,arg1          /*  arg1 = arg1 | (arg1 >> 8) */
323
        ldi     0xaa,temp               /*  setup 0xaa in temp */
324
        extru,= arg1,27,4,r0            /*  test denominator with 0xf0 */
325
        extrs   retreg,27,28,retreg     /*  retreg = retreg >> 4 */
326
        and,=   arg1,temp1,r0           /*  test denominator with 0xcc */
327
        extrs   retreg,29,30,retreg     /*  retreg = retreg >> 2 */
328
        and,=   arg1,temp,r0            /*  test denominator with 0xaa */
329
        extrs   retreg,30,31,retreg     /*  retreg = retreg >> 1 */
330
        MILLIRETN
331
LSYM(neg_denom)
332
        addi,<	0,arg1,r0		/*  if arg1 >= 0, it's not power of 2 */
333
        b,n     LREF(regular_seq)
334
        sub     r0,arg1,temp            /*  make denominator positive */
335
        comb,=,n  arg1,temp,LREF(regular_seq)   /*  test against 0x80000000 and 0 */
336
        ldo     -1(temp),retreg         /*  is there at most one bit set ? */
337
        and,=   temp,retreg,r0          /*  if so, the denominator is power of 2 */
338
        b,n     LREF(regular_seq)
339
        sub     r0,arg0,retreg          /*  negate numerator */
340
        comb,=,n arg0,retreg,LREF(regular_seq) /*  test against 0x80000000 */
341
        copy    retreg,arg0             /*  set up arg0, arg1 and temp  */
342
        copy    temp,arg1               /*  before branching to pow2 */
343
        b       LREF(pow2)
344
        ldo     -1(arg1),temp
345
LSYM(regular_seq)
346
        comib,>>=,n 15,arg1,LREF(small_divisor)
347
        add,>=  0,arg0,retreg           /*  move dividend, if retreg < 0, */
348
LSYM(normal)
349
        subi    0,retreg,retreg         /*    make it positive */
350
        sub     0,arg1,temp             /*  clear carry,  */
351
                                        /*    negate the divisor */
352
        ds      0,temp,0                /*  set V-bit to the comple- */
353
                                        /*    ment of the divisor sign */
354
        add     retreg,retreg,retreg    /*  shift msb bit into carry */
355
        ds      r0,arg1,temp            /*  1st divide step, if no carry */
356
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
357
        ds      temp,arg1,temp          /*  2nd divide step */
358
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
359
        ds      temp,arg1,temp          /*  3rd divide step */
360
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
361
        ds      temp,arg1,temp          /*  4th divide step */
362
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
363
        ds      temp,arg1,temp          /*  5th divide step */
364
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
365
        ds      temp,arg1,temp          /*  6th divide step */
366
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
367
        ds      temp,arg1,temp          /*  7th divide step */
368
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
369
        ds      temp,arg1,temp          /*  8th divide step */
370
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
371
        ds      temp,arg1,temp          /*  9th divide step */
372
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
373
        ds      temp,arg1,temp          /*  10th divide step */
374
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
375
        ds      temp,arg1,temp          /*  11th divide step */
376
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
377
        ds      temp,arg1,temp          /*  12th divide step */
378
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
379
        ds      temp,arg1,temp          /*  13th divide step */
380
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
381
        ds      temp,arg1,temp          /*  14th divide step */
382
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
383
        ds      temp,arg1,temp          /*  15th divide step */
384
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
385
        ds      temp,arg1,temp          /*  16th divide step */
386
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
387
        ds      temp,arg1,temp          /*  17th divide step */
388
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
389
        ds      temp,arg1,temp          /*  18th divide step */
390
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
391
        ds      temp,arg1,temp          /*  19th divide step */
392
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
393
        ds      temp,arg1,temp          /*  20th divide step */
394
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
395
        ds      temp,arg1,temp          /*  21st divide step */
396
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
397
        ds      temp,arg1,temp          /*  22nd divide step */
398
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
399
        ds      temp,arg1,temp          /*  23rd divide step */
400
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
401
        ds      temp,arg1,temp          /*  24th divide step */
402
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
403
        ds      temp,arg1,temp          /*  25th divide step */
404
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
405
        ds      temp,arg1,temp          /*  26th divide step */
406
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
407
        ds      temp,arg1,temp          /*  27th divide step */
408
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
409
        ds      temp,arg1,temp          /*  28th divide step */
410
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
411
        ds      temp,arg1,temp          /*  29th divide step */
412
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
413
        ds      temp,arg1,temp          /*  30th divide step */
414
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
415
        ds      temp,arg1,temp          /*  31st divide step */
416
        addc    retreg,retreg,retreg    /*  shift retreg with/into carry */
417
        ds      temp,arg1,temp          /*  32nd divide step, */
418
        addc    retreg,retreg,retreg    /*  shift last retreg bit into retreg */
419
        xor,>=  arg0,arg1,0             /*  get correct sign of quotient */
420
          sub   0,retreg,retreg         /*    based on operand signs */
421
        MILLIRETN
422
        nop
423
 
424
LSYM(small_divisor)
425
 
426
#if defined(pa64)
427
/*  Clear the upper 32 bits of the arg1 register.  We are working with  */
428
/*  small divisors (and 32-bit integers)   We must not be mislead  */
429
/*  by "1" bits left in the upper 32 bits.  */
430
        depd %r0,31,32,%r25
431
#endif
432
        blr,n   arg1,r0
433
        nop
434
/*  table for divisor == 0,1, ... ,15 */
435
        addit,= 0,arg1,r0       /*  trap if divisor == 0 */
436
        nop
437
        MILLIRET                /*  divisor == 1 */
438
        copy    arg0,retreg
439
        MILLI_BEN($$divI_2)     /*  divisor == 2 */
440
        nop
441
        MILLI_BEN($$divI_3)     /*  divisor == 3 */
442
        nop
443
        MILLI_BEN($$divI_4)     /*  divisor == 4 */
444
        nop
445
        MILLI_BEN($$divI_5)     /*  divisor == 5 */
446
        nop
447
        MILLI_BEN($$divI_6)     /*  divisor == 6 */
448
        nop
449
        MILLI_BEN($$divI_7)     /*  divisor == 7 */
450
        nop
451
        MILLI_BEN($$divI_8)     /*  divisor == 8 */
452
        nop
453
        MILLI_BEN($$divI_9)     /*  divisor == 9 */
454
        nop
455
        MILLI_BEN($$divI_10)    /*  divisor == 10 */
456
        nop
457
        b       LREF(normal)            /*  divisor == 11 */
458
        add,>=  0,arg0,retreg
459
        MILLI_BEN($$divI_12)    /*  divisor == 12 */
460
        nop
461
        b       LREF(normal)            /*  divisor == 13 */
462
        add,>=  0,arg0,retreg
463
        MILLI_BEN($$divI_14)    /*  divisor == 14 */
464
        nop
465
        MILLI_BEN($$divI_15)    /*  divisor == 15 */
466
        nop
467
 
468
LSYM(negative1)
469
        sub     0,arg0,retreg   /*  result is negation of dividend */
470
        MILLIRET
471
        addo    arg0,arg1,r0    /*  trap iff dividend==0x80000000 && divisor==-1 */
472
        .exit
473
        .procend
474
        .end
475
#endif
476
 
477
#ifdef L_divU
478
/* ROUTINE:     $$divU
479
   .
480
   .    Single precision divide for unsigned integers.
481
   .
482
   .    Quotient is truncated towards zero.
483
   .    Traps on divide by zero.
484
 
485
   INPUT REGISTERS:
486
   .    arg0 == dividend
487
   .    arg1 == divisor
488
   .    mrp  == return pc
489
   .    sr0  == return space when called externally
490
 
491
   OUTPUT REGISTERS:
492
   .    arg0 =  undefined
493
   .    arg1 =  undefined
494
   .    ret1 =  quotient
495
 
496
   OTHER REGISTERS AFFECTED:
497
   .    r1   =  undefined
498
 
499
   SIDE EFFECTS:
500
   .    Causes a trap under the following conditions:
501
   .            divisor is zero
502
   .    Changes memory at the following places:
503
   .            NONE
504
 
505
   PERMISSIBLE CONTEXT:
506
   .    Unwindable.
507
   .    Does not create a stack frame.
508
   .    Suitable for internal or external millicode.
509
   .    Assumes the special millicode register conventions.
510
 
511
   DISCUSSION:
512
   .    Branchs to other millicode routines using BE:
513
   .            $$divU_# for 3,5,6,7,9,10,12,14,15
514
   .
515
   .    For selected small divisors calls the special divide by constant
516
   .    routines written by Karl Pettis.  These are: 3,5,6,7,9,10,12,14,15.  */
517
 
518
RDEFINE(temp,r1)
519
RDEFINE(retreg,ret1)    /* r29 */
520
RDEFINE(temp1,arg0)
521
        SUBSPA_MILLI_DIV
522
        ATTR_MILLI
523
        .export $$divU,millicode
524
        .import $$divU_3,millicode
525
        .import $$divU_5,millicode
526
        .import $$divU_6,millicode
527
        .import $$divU_7,millicode
528
        .import $$divU_9,millicode
529
        .import $$divU_10,millicode
530
        .import $$divU_12,millicode
531
        .import $$divU_14,millicode
532
        .import $$divU_15,millicode
533
        .proc
534
        .callinfo       millicode
535
        .entry
536
GSYM($$divU)
537
/* The subtract is not nullified since it does no harm and can be used
538
   by the two cases that branch back to "normal".  */
539
        ldo     -1(arg1),temp           /* is there at most one bit set ? */
540
        and,=   arg1,temp,r0            /* if so, denominator is power of 2 */
541
        b       LREF(regular_seq)
542
        addit,= 0,arg1,0                /* trap for zero dvr */
543
        copy    arg0,retreg
544
        extru,= arg1,15,16,temp         /* test denominator with 0xffff0000 */
545
        extru   retreg,15,16,retreg     /* retreg = retreg >> 16 */
546
        or      arg1,temp,arg1          /* arg1 = arg1 | (arg1 >> 16) */
547
        ldi     0xcc,temp1              /* setup 0xcc in temp1 */
548
        extru,= arg1,23,8,temp          /* test denominator with 0xff00 */
549
        extru   retreg,23,24,retreg     /* retreg = retreg >> 8 */
550
        or      arg1,temp,arg1          /* arg1 = arg1 | (arg1 >> 8) */
551
        ldi     0xaa,temp               /* setup 0xaa in temp */
552
        extru,= arg1,27,4,r0            /* test denominator with 0xf0 */
553
        extru   retreg,27,28,retreg     /* retreg = retreg >> 4 */
554
        and,=   arg1,temp1,r0           /* test denominator with 0xcc */
555
        extru   retreg,29,30,retreg     /* retreg = retreg >> 2 */
556
        and,=   arg1,temp,r0            /* test denominator with 0xaa */
557
        extru   retreg,30,31,retreg     /* retreg = retreg >> 1 */
558
        MILLIRETN
559
        nop
560
LSYM(regular_seq)
561
        comib,>=  15,arg1,LREF(special_divisor)
562
        subi    0,arg1,temp             /* clear carry, negate the divisor */
563
        ds      r0,temp,r0              /* set V-bit to 1 */
564
LSYM(normal)
565
        add     arg0,arg0,retreg        /* shift msb bit into carry */
566
        ds      r0,arg1,temp            /* 1st divide step, if no carry */
567
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
568
        ds      temp,arg1,temp          /* 2nd divide step */
569
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
570
        ds      temp,arg1,temp          /* 3rd divide step */
571
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
572
        ds      temp,arg1,temp          /* 4th divide step */
573
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
574
        ds      temp,arg1,temp          /* 5th divide step */
575
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
576
        ds      temp,arg1,temp          /* 6th divide step */
577
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
578
        ds      temp,arg1,temp          /* 7th divide step */
579
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
580
        ds      temp,arg1,temp          /* 8th divide step */
581
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
582
        ds      temp,arg1,temp          /* 9th divide step */
583
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
584
        ds      temp,arg1,temp          /* 10th divide step */
585
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
586
        ds      temp,arg1,temp          /* 11th divide step */
587
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
588
        ds      temp,arg1,temp          /* 12th divide step */
589
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
590
        ds      temp,arg1,temp          /* 13th divide step */
591
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
592
        ds      temp,arg1,temp          /* 14th divide step */
593
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
594
        ds      temp,arg1,temp          /* 15th divide step */
595
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
596
        ds      temp,arg1,temp          /* 16th divide step */
597
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
598
        ds      temp,arg1,temp          /* 17th divide step */
599
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
600
        ds      temp,arg1,temp          /* 18th divide step */
601
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
602
        ds      temp,arg1,temp          /* 19th divide step */
603
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
604
        ds      temp,arg1,temp          /* 20th divide step */
605
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
606
        ds      temp,arg1,temp          /* 21st divide step */
607
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
608
        ds      temp,arg1,temp          /* 22nd divide step */
609
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
610
        ds      temp,arg1,temp          /* 23rd divide step */
611
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
612
        ds      temp,arg1,temp          /* 24th divide step */
613
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
614
        ds      temp,arg1,temp          /* 25th divide step */
615
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
616
        ds      temp,arg1,temp          /* 26th divide step */
617
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
618
        ds      temp,arg1,temp          /* 27th divide step */
619
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
620
        ds      temp,arg1,temp          /* 28th divide step */
621
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
622
        ds      temp,arg1,temp          /* 29th divide step */
623
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
624
        ds      temp,arg1,temp          /* 30th divide step */
625
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
626
        ds      temp,arg1,temp          /* 31st divide step */
627
        addc    retreg,retreg,retreg    /* shift retreg with/into carry */
628
        ds      temp,arg1,temp          /* 32nd divide step, */
629
        MILLIRET
630
        addc    retreg,retreg,retreg    /* shift last retreg bit into retreg */
631
 
632
/* Handle the cases where divisor is a small constant or has high bit on.  */
633
LSYM(special_divisor)
634
/*      blr     arg1,r0 */
635
/*      comib,>,n  0,arg1,LREF(big_divisor) ; nullify previous instruction */
636
 
637
/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
638
   generating such a blr, comib sequence. A problem in nullification. So I
639
   rewrote this code.  */
640
 
641
#if defined(pa64)
642
/* Clear the upper 32 bits of the arg1 register.  We are working with
643
   small divisors (and 32-bit unsigned integers)   We must not be mislead
644
   by "1" bits left in the upper 32 bits.  */
645
        depd %r0,31,32,%r25
646
#endif
647
        comib,> 0,arg1,LREF(big_divisor)
648
        nop
649
        blr     arg1,r0
650
        nop
651
 
652
LSYM(zero_divisor)      /* this label is here to provide external visibility */
653
        addit,= 0,arg1,0                /* trap for zero dvr */
654
        nop
655
        MILLIRET                        /* divisor == 1 */
656
        copy    arg0,retreg
657
        MILLIRET                        /* divisor == 2 */
658
        extru   arg0,30,31,retreg
659
        MILLI_BEN($$divU_3)             /* divisor == 3 */
660
        nop
661
        MILLIRET                        /* divisor == 4 */
662
        extru   arg0,29,30,retreg
663
        MILLI_BEN($$divU_5)             /* divisor == 5 */
664
        nop
665
        MILLI_BEN($$divU_6)             /* divisor == 6 */
666
        nop
667
        MILLI_BEN($$divU_7)             /* divisor == 7 */
668
        nop
669
        MILLIRET                        /* divisor == 8 */
670
        extru   arg0,28,29,retreg
671
        MILLI_BEN($$divU_9)             /* divisor == 9 */
672
        nop
673
        MILLI_BEN($$divU_10)            /* divisor == 10 */
674
        nop
675
        b       LREF(normal)            /* divisor == 11 */
676
        ds      r0,temp,r0              /* set V-bit to 1 */
677
        MILLI_BEN($$divU_12)            /* divisor == 12 */
678
        nop
679
        b       LREF(normal)            /* divisor == 13 */
680
        ds      r0,temp,r0              /* set V-bit to 1 */
681
        MILLI_BEN($$divU_14)            /* divisor == 14 */
682
        nop
683
        MILLI_BEN($$divU_15)            /* divisor == 15 */
684
        nop
685
 
686
/* Handle the case where the high bit is on in the divisor.
687
   Compute:     if( dividend>=divisor) quotient=1; else quotient=0;
688
   Note:        dividend>==divisor iff dividend-divisor does not borrow
689
   and          not borrow iff carry.  */
690
LSYM(big_divisor)
691
        sub     arg0,arg1,r0
692
        MILLIRET
693
        addc    r0,r0,retreg
694
        .exit
695
        .procend
696
        .end
697
#endif
698
 
699
#ifdef L_remI
700
/* ROUTINE:     $$remI
701
 
702
   DESCRIPTION:
703
   .    $$remI returns the remainder of the division of two signed 32-bit
704
   .    integers.  The sign of the remainder is the same as the sign of
705
   .    the dividend.
706
 
707
 
708
   INPUT REGISTERS:
709
   .    arg0 == dividend
710
   .    arg1 == divisor
711
   .    mrp  == return pc
712
   .    sr0  == return space when called externally
713
 
714
   OUTPUT REGISTERS:
715
   .    arg0 = destroyed
716
   .    arg1 = destroyed
717
   .    ret1 = remainder
718
 
719
   OTHER REGISTERS AFFECTED:
720
   .    r1   = undefined
721
 
722
   SIDE EFFECTS:
723
   .    Causes a trap under the following conditions:  DIVIDE BY ZERO
724
   .    Changes memory at the following places:  NONE
725
 
726
   PERMISSIBLE CONTEXT:
727
   .    Unwindable
728
   .    Does not create a stack frame
729
   .    Is usable for internal or external microcode
730
 
731
   DISCUSSION:
732
   .    Calls other millicode routines via mrp:  NONE
733
   .    Calls other millicode routines:  NONE  */
734
 
735
RDEFINE(tmp,r1)
736
RDEFINE(retreg,ret1)
737
 
738
        SUBSPA_MILLI
739
        ATTR_MILLI
740
        .proc
741
        .callinfo millicode
742
        .entry
743
GSYM($$remI)
744
GSYM($$remoI)
745
        .export $$remI,MILLICODE
746
        .export $$remoI,MILLICODE
747
        ldo             -1(arg1),tmp            /*  is there at most one bit set ? */
748
        and,<>          arg1,tmp,r0             /*  if not, don't use power of 2 */
749
        addi,>          0,arg1,r0               /*  if denominator > 0, use power */
750
                                                /*  of 2 */
751
        b,n             LREF(neg_denom)
752
LSYM(pow2)
753
        comb,>,n        0,arg0,LREF(neg_num)    /*  is numerator < 0 ? */
754
        and             arg0,tmp,retreg         /*  get the result */
755
        MILLIRETN
756
LSYM(neg_num)
757
        subi            0,arg0,arg0             /*  negate numerator */
758
        and             arg0,tmp,retreg         /*  get the result */
759
        subi            0,retreg,retreg         /*  negate result */
760
        MILLIRETN
761
LSYM(neg_denom)
762
        addi,<		0,arg1,r0		/*  if arg1 >= 0, it's not power */
763
                                                /*  of 2 */
764
        b,n             LREF(regular_seq)
765
        sub             r0,arg1,tmp             /*  make denominator positive */
766
        comb,=,n        arg1,tmp,LREF(regular_seq) /*  test against 0x80000000 and 0 */
767
        ldo             -1(tmp),retreg          /*  is there at most one bit set ? */
768
        and,=           tmp,retreg,r0           /*  if not, go to regular_seq */
769
        b,n             LREF(regular_seq)
770
        comb,>,n        0,arg0,LREF(neg_num_2)  /*  if arg0 < 0, negate it  */
771
        and             arg0,retreg,retreg
772
        MILLIRETN
773
LSYM(neg_num_2)
774
        subi            0,arg0,tmp              /*  test against 0x80000000 */
775
        and             tmp,retreg,retreg
776
        subi            0,retreg,retreg
777
        MILLIRETN
778
LSYM(regular_seq)
779
        addit,=         0,arg1,0                /*  trap if div by zero */
780
        add,>=          0,arg0,retreg           /*  move dividend, if retreg < 0, */
781
        sub             0,retreg,retreg         /*    make it positive */
782
        sub             0,arg1, tmp             /*  clear carry,  */
783
                                                /*    negate the divisor */
784
        ds              0, tmp,0                /*  set V-bit to the comple- */
785
                                                /*    ment of the divisor sign */
786
        or              0,0, tmp                /*  clear  tmp */
787
        add             retreg,retreg,retreg    /*  shift msb bit into carry */
788
        ds               tmp,arg1, tmp          /*  1st divide step, if no carry */
789
                                                /*    out, msb of quotient = 0 */
790
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
791
LSYM(t1)
792
        ds               tmp,arg1, tmp          /*  2nd divide step */
793
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
794
        ds               tmp,arg1, tmp          /*  3rd divide step */
795
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
796
        ds               tmp,arg1, tmp          /*  4th divide step */
797
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
798
        ds               tmp,arg1, tmp          /*  5th divide step */
799
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
800
        ds               tmp,arg1, tmp          /*  6th divide step */
801
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
802
        ds               tmp,arg1, tmp          /*  7th divide step */
803
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
804
        ds               tmp,arg1, tmp          /*  8th divide step */
805
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
806
        ds               tmp,arg1, tmp          /*  9th divide step */
807
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
808
        ds               tmp,arg1, tmp          /*  10th divide step */
809
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
810
        ds               tmp,arg1, tmp          /*  11th divide step */
811
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
812
        ds               tmp,arg1, tmp          /*  12th divide step */
813
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
814
        ds               tmp,arg1, tmp          /*  13th divide step */
815
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
816
        ds               tmp,arg1, tmp          /*  14th divide step */
817
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
818
        ds               tmp,arg1, tmp          /*  15th divide step */
819
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
820
        ds               tmp,arg1, tmp          /*  16th divide step */
821
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
822
        ds               tmp,arg1, tmp          /*  17th divide step */
823
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
824
        ds               tmp,arg1, tmp          /*  18th divide step */
825
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
826
        ds               tmp,arg1, tmp          /*  19th divide step */
827
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
828
        ds               tmp,arg1, tmp          /*  20th divide step */
829
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
830
        ds               tmp,arg1, tmp          /*  21st divide step */
831
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
832
        ds               tmp,arg1, tmp          /*  22nd divide step */
833
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
834
        ds               tmp,arg1, tmp          /*  23rd divide step */
835
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
836
        ds               tmp,arg1, tmp          /*  24th divide step */
837
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
838
        ds               tmp,arg1, tmp          /*  25th divide step */
839
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
840
        ds               tmp,arg1, tmp          /*  26th divide step */
841
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
842
        ds               tmp,arg1, tmp          /*  27th divide step */
843
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
844
        ds               tmp,arg1, tmp          /*  28th divide step */
845
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
846
        ds               tmp,arg1, tmp          /*  29th divide step */
847
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
848
        ds               tmp,arg1, tmp          /*  30th divide step */
849
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
850
        ds               tmp,arg1, tmp          /*  31st divide step */
851
        addc            retreg,retreg,retreg    /*  shift retreg with/into carry */
852
        ds               tmp,arg1, tmp          /*  32nd divide step, */
853
        addc            retreg,retreg,retreg    /*  shift last bit into retreg */
854
        movb,>=,n        tmp,retreg,LREF(finish) /*  branch if pos.  tmp */
855
        add,<		arg1,0,0		/*  if arg1 > 0, add arg1 */
856
        add,tr           tmp,arg1,retreg        /*    for correcting remainder tmp */
857
        sub              tmp,arg1,retreg        /*  else add absolute value arg1 */
858
LSYM(finish)
859
        add,>=          arg0,0,0                /*  set sign of remainder */
860
        sub             0,retreg,retreg         /*    to sign of dividend */
861
        MILLIRET
862
        nop
863
        .exit
864
        .procend
865
#ifdef milliext
866
        .origin 0x00000200
867
#endif
868
        .end
869
#endif
870
 
871
#ifdef L_remU
872
/* ROUTINE:     $$remU
873
   .    Single precision divide for remainder with unsigned binary integers.
874
   .
875
   .    The remainder must be dividend-(dividend/divisor)*divisor.
876
   .    Divide by zero is trapped.
877
 
878
   INPUT REGISTERS:
879
   .    arg0 == dividend
880
   .    arg1 == divisor
881
   .    mrp  == return pc
882
   .    sr0  == return space when called externally
883
 
884
   OUTPUT REGISTERS:
885
   .    arg0 =  undefined
886
   .    arg1 =  undefined
887
   .    ret1 =  remainder
888
 
889
   OTHER REGISTERS AFFECTED:
890
   .    r1   =  undefined
891
 
892
   SIDE EFFECTS:
893
   .    Causes a trap under the following conditions:  DIVIDE BY ZERO
894
   .    Changes memory at the following places:  NONE
895
 
896
   PERMISSIBLE CONTEXT:
897
   .    Unwindable.
898
   .    Does not create a stack frame.
899
   .    Suitable for internal or external millicode.
900
   .    Assumes the special millicode register conventions.
901
 
902
   DISCUSSION:
903
   .    Calls other millicode routines using mrp: NONE
904
   .    Calls other millicode routines: NONE  */
905
 
906
 
907
RDEFINE(temp,r1)
908
RDEFINE(rmndr,ret1)     /*  r29 */
909
        SUBSPA_MILLI
910
        ATTR_MILLI
911
        .export $$remU,millicode
912
        .proc
913
        .callinfo       millicode
914
        .entry
915
GSYM($$remU)
916
        ldo     -1(arg1),temp           /*  is there at most one bit set ? */
917
        and,=   arg1,temp,r0            /*  if not, don't use power of 2 */
918
        b       LREF(regular_seq)
919
        addit,= 0,arg1,r0               /*  trap on div by zero */
920
        and     arg0,temp,rmndr         /*  get the result for power of 2 */
921
        MILLIRETN
922
LSYM(regular_seq)
923
        comib,>=,n  0,arg1,LREF(special_case)
924
        subi    0,arg1,rmndr            /*  clear carry, negate the divisor */
925
        ds      r0,rmndr,r0             /*  set V-bit to 1 */
926
        add     arg0,arg0,temp          /*  shift msb bit into carry */
927
        ds      r0,arg1,rmndr           /*  1st divide step, if no carry */
928
        addc    temp,temp,temp          /*  shift temp with/into carry */
929
        ds      rmndr,arg1,rmndr                /*  2nd divide step */
930
        addc    temp,temp,temp          /*  shift temp with/into carry */
931
        ds      rmndr,arg1,rmndr                /*  3rd divide step */
932
        addc    temp,temp,temp          /*  shift temp with/into carry */
933
        ds      rmndr,arg1,rmndr                /*  4th divide step */
934
        addc    temp,temp,temp          /*  shift temp with/into carry */
935
        ds      rmndr,arg1,rmndr                /*  5th divide step */
936
        addc    temp,temp,temp          /*  shift temp with/into carry */
937
        ds      rmndr,arg1,rmndr                /*  6th divide step */
938
        addc    temp,temp,temp          /*  shift temp with/into carry */
939
        ds      rmndr,arg1,rmndr                /*  7th divide step */
940
        addc    temp,temp,temp          /*  shift temp with/into carry */
941
        ds      rmndr,arg1,rmndr                /*  8th divide step */
942
        addc    temp,temp,temp          /*  shift temp with/into carry */
943
        ds      rmndr,arg1,rmndr                /*  9th divide step */
944
        addc    temp,temp,temp          /*  shift temp with/into carry */
945
        ds      rmndr,arg1,rmndr                /*  10th divide step */
946
        addc    temp,temp,temp          /*  shift temp with/into carry */
947
        ds      rmndr,arg1,rmndr                /*  11th divide step */
948
        addc    temp,temp,temp          /*  shift temp with/into carry */
949
        ds      rmndr,arg1,rmndr                /*  12th divide step */
950
        addc    temp,temp,temp          /*  shift temp with/into carry */
951
        ds      rmndr,arg1,rmndr                /*  13th divide step */
952
        addc    temp,temp,temp          /*  shift temp with/into carry */
953
        ds      rmndr,arg1,rmndr                /*  14th divide step */
954
        addc    temp,temp,temp          /*  shift temp with/into carry */
955
        ds      rmndr,arg1,rmndr                /*  15th divide step */
956
        addc    temp,temp,temp          /*  shift temp with/into carry */
957
        ds      rmndr,arg1,rmndr                /*  16th divide step */
958
        addc    temp,temp,temp          /*  shift temp with/into carry */
959
        ds      rmndr,arg1,rmndr                /*  17th divide step */
960
        addc    temp,temp,temp          /*  shift temp with/into carry */
961
        ds      rmndr,arg1,rmndr                /*  18th divide step */
962
        addc    temp,temp,temp          /*  shift temp with/into carry */
963
        ds      rmndr,arg1,rmndr                /*  19th divide step */
964
        addc    temp,temp,temp          /*  shift temp with/into carry */
965
        ds      rmndr,arg1,rmndr                /*  20th divide step */
966
        addc    temp,temp,temp          /*  shift temp with/into carry */
967
        ds      rmndr,arg1,rmndr                /*  21st divide step */
968
        addc    temp,temp,temp          /*  shift temp with/into carry */
969
        ds      rmndr,arg1,rmndr                /*  22nd divide step */
970
        addc    temp,temp,temp          /*  shift temp with/into carry */
971
        ds      rmndr,arg1,rmndr                /*  23rd divide step */
972
        addc    temp,temp,temp          /*  shift temp with/into carry */
973
        ds      rmndr,arg1,rmndr                /*  24th divide step */
974
        addc    temp,temp,temp          /*  shift temp with/into carry */
975
        ds      rmndr,arg1,rmndr                /*  25th divide step */
976
        addc    temp,temp,temp          /*  shift temp with/into carry */
977
        ds      rmndr,arg1,rmndr                /*  26th divide step */
978
        addc    temp,temp,temp          /*  shift temp with/into carry */
979
        ds      rmndr,arg1,rmndr                /*  27th divide step */
980
        addc    temp,temp,temp          /*  shift temp with/into carry */
981
        ds      rmndr,arg1,rmndr                /*  28th divide step */
982
        addc    temp,temp,temp          /*  shift temp with/into carry */
983
        ds      rmndr,arg1,rmndr                /*  29th divide step */
984
        addc    temp,temp,temp          /*  shift temp with/into carry */
985
        ds      rmndr,arg1,rmndr                /*  30th divide step */
986
        addc    temp,temp,temp          /*  shift temp with/into carry */
987
        ds      rmndr,arg1,rmndr                /*  31st divide step */
988
        addc    temp,temp,temp          /*  shift temp with/into carry */
989
        ds      rmndr,arg1,rmndr                /*  32nd divide step, */
990
        comiclr,<= 0,rmndr,r0
991
          add   rmndr,arg1,rmndr        /*  correction */
992
        MILLIRETN
993
        nop
994
 
995
/* Putting >= on the last DS and deleting COMICLR does not work!  */
996
LSYM(special_case)
997
        sub,>>= arg0,arg1,rmndr
998
          copy  arg0,rmndr
999
        MILLIRETN
1000
        nop
1001
        .exit
1002
        .procend
1003
        .end
1004
#endif
1005
 
1006
#ifdef L_div_const
1007
/* ROUTINE:     $$divI_2
1008
   .            $$divI_3        $$divU_3
1009
   .            $$divI_4
1010
   .            $$divI_5        $$divU_5
1011
   .            $$divI_6        $$divU_6
1012
   .            $$divI_7        $$divU_7
1013
   .            $$divI_8
1014
   .            $$divI_9        $$divU_9
1015
   .            $$divI_10       $$divU_10
1016
   .
1017
   .            $$divI_12       $$divU_12
1018
   .
1019
   .            $$divI_14       $$divU_14
1020
   .            $$divI_15       $$divU_15
1021
   .            $$divI_16
1022
   .            $$divI_17       $$divU_17
1023
   .
1024
   .    Divide by selected constants for single precision binary integers.
1025
 
1026
   INPUT REGISTERS:
1027
   .    arg0 == dividend
1028
   .    mrp  == return pc
1029
   .    sr0  == return space when called externally
1030
 
1031
   OUTPUT REGISTERS:
1032
   .    arg0 =  undefined
1033
   .    arg1 =  undefined
1034
   .    ret1 =  quotient
1035
 
1036
   OTHER REGISTERS AFFECTED:
1037
   .    r1   =  undefined
1038
 
1039
   SIDE EFFECTS:
1040
   .    Causes a trap under the following conditions: NONE
1041
   .    Changes memory at the following places:  NONE
1042
 
1043
   PERMISSIBLE CONTEXT:
1044
   .    Unwindable.
1045
   .    Does not create a stack frame.
1046
   .    Suitable for internal or external millicode.
1047
   .    Assumes the special millicode register conventions.
1048
 
1049
   DISCUSSION:
1050
   .    Calls other millicode routines using mrp:  NONE
1051
   .    Calls other millicode routines:  NONE  */
1052
 
1053
 
1054
/* TRUNCATED DIVISION BY SMALL INTEGERS
1055
 
1056
   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
1057
   (with y fixed).
1058
 
1059
   Let a = floor(z/y), for some choice of z.  Note that z will be
1060
   chosen so that division by z is cheap.
1061
 
1062
   Let r be the remainder(z/y).  In other words, r = z - ay.
1063
 
1064
   Now, our method is to choose a value for b such that
1065
 
1066
   q'(x) = floor((ax+b)/z)
1067
 
1068
   is equal to q(x) over as large a range of x as possible.  If the
1069
   two are equal over a sufficiently large range, and if it is easy to
1070
   form the product (ax), and it is easy to divide by z, then we can
1071
   perform the division much faster than the general division algorithm.
1072
 
1073
   So, we want the following to be true:
1074
 
1075
   .    For x in the following range:
1076
   .
1077
   .        ky <= x < (k+1)y
1078
   .
1079
   .    implies that
1080
   .
1081
   .        k <= (ax+b)/z < (k+1)
1082
 
1083
   We want to determine b such that this is true for all k in the
1084
   range {0..K} for some maximum K.
1085
 
1086
   Since (ax+b) is an increasing function of x, we can take each
1087
   bound separately to determine the "best" value for b.
1088
 
1089
   (ax+b)/z < (k+1)            implies
1090
 
1091
   (a((k+1)y-1)+b < (k+1)z     implies
1092
 
1093
   b < a + (k+1)(z-ay)         implies
1094
 
1095
   b < a + (k+1)r
1096
 
1097
   This needs to be true for all k in the range {0..K}.  In
1098
   particular, it is true for k = 0 and this leads to a maximum
1099
   acceptable value for b.
1100
 
1101
   b < a+r   or   b <= a+r-1
1102
 
1103
   Taking the other bound, we have
1104
 
1105
   k <= (ax+b)/z               implies
1106
 
1107
   k <= (aky+b)/z              implies
1108
 
1109
   k(z-ay) <= b                implies
1110
 
1111
   kr <= b
1112
 
1113
   Clearly, the largest range for k will be achieved by maximizing b,
1114
   when r is not zero.  When r is zero, then the simplest choice for b
1115
   is 0.  When r is not 0, set
1116
 
1117
   .    b = a+r-1
1118
 
1119
   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
1120
   for all x in the range:
1121
 
1122
   .    0 <= x < (K+1)y
1123
 
1124
   We need to determine what K is.  Of our two bounds,
1125
 
1126
   .    b < a+(k+1)r	is satisfied for all k >= 0, by construction.
1127
 
1128
   The other bound is
1129
 
1130
   .    kr <= b
1131
 
1132
   This is always true if r = 0.  If r is not 0 (the usual case), then
1133
   K = floor((a+r-1)/r), is the maximum value for k.
1134
 
1135
   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
1136
   answer for q(x) = floor(x/y) when x is in the range
1137
 
1138
   (0,(K+1)y-1)        K = floor((a+r-1)/r)
1139
 
1140
   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
1141
   the formula for q'(x) yields the correct value of q(x) for all x
1142
   representable by a single word in HPPA.
1143
 
1144
   We are also constrained in that computing the product (ax), adding
1145
   b, and dividing by z must all be done quickly, otherwise we will be
1146
   better off going through the general algorithm using the DS
1147
   instruction, which uses approximately 70 cycles.
1148
 
1149
   For each y, there is a choice of z which satisfies the constraints
1150
   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
1151
   timing constraints for arbitrary y.  It seems that z being equal to
1152
   a power of 2 or a power of 2 minus 1 is as good as we can do, since
1153
   it minimizes the time to do division by z.  We want the choice of z
1154
   to also result in a value for (a) that minimizes the computation of
1155
   the product (ax).  This is best achieved if (a) has a regular bit
1156
   pattern (so the multiplication can be done with shifts and adds).
1157
   The value of (a) also needs to be less than 2**32 so the product is
1158
   always guaranteed to fit in 2 words.
1159
 
1160
   In actual practice, the following should be done:
1161
 
1162
   1) For negative x, you should take the absolute value and remember
1163
   .  the fact so that the result can be negated.  This obviously does
1164
   .  not apply in the unsigned case.
1165
   2) For even y, you should factor out the power of 2 that divides y
1166
   .  and divide x by it.  You can then proceed by dividing by the
1167
   .  odd factor of y.
1168
 
1169
   Here is a table of some odd values of y, and corresponding choices
1170
   for z which are "good".
1171
 
1172
    y     z       r      a (hex)     max x (hex)
1173
 
1174
    3   2**32     1     55555555      100000001
1175
    5   2**32     1     33333333      100000003
1176
    7  2**24-1    0       249249     (infinite)
1177
    9  2**24-1    0       1c71c7     (infinite)
1178
   11  2**20-1    0        1745d     (infinite)
1179
   13  2**24-1    0       13b13b     (infinite)
1180
   15   2**32     1     11111111      10000000d
1181
   17   2**32     1      f0f0f0f      10000000f
1182
 
1183
   If r is 1, then b = a+r-1 = a.  This simplifies the computation
1184
   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
1185
   then b = 0 is ok to use which simplifies (ax+b).
1186
 
1187
   The bit patterns for 55555555, 33333333, and 11111111 are obviously
1188
   very regular.  The bit patterns for the other values of a above are:
1189
 
1190
    y      (hex)          (binary)
1191
 
1192
    7     249249  001001001001001001001001  << regular >>
1193
    9     1c71c7  000111000111000111000111  << regular >>
1194
   11      1745d  000000010111010001011101  << irregular >>
1195
   13     13b13b  000100111011000100111011  << irregular >>
1196
 
1197
   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
1198
   too irregular to warrant using this method.
1199
 
1200
   When z is a power of 2 minus 1, then the division by z is slightly
1201
   more complicated, involving an iterative solution.
1202
 
1203
   The code presented here solves division by 1 through 17, except for
1204
   11 and 13. There are algorithms for both signed and unsigned
1205
   quantities given.
1206
 
1207
   TIMINGS (cycles)
1208
 
1209
   divisor  positive  negative  unsigned
1210
 
1211
   .   1        2          2         2
1212
   .   2        4          4         2
1213
   .   3       19         21        19
1214
   .   4        4          4         2
1215
   .   5       18         22        19
1216
   .   6       19         22        19
1217
   .   8        4          4         2
1218
   .  10       18         19        17
1219
   .  12       18         20        18
1220
   .  15       16         18        16
1221
   .  16        4          4         2
1222
   .  17       16         18        16
1223
 
1224
   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
1225
   a loop body is executed until the tentative quotient is 0.  The
1226
   number of times the loop body is executed varies depending on the
1227
   dividend, but is never more than two times.  If the dividend is
1228
   less than the divisor, then the loop body is not executed at all.
1229
   Each iteration adds 4 cycles to the timings.
1230
 
1231
   divisor  positive  negative  unsigned
1232
 
1233
   .   7       19+4n     20+4n     20+4n    n = number of iterations
1234
   .   9       21+4n     22+4n     21+4n
1235
   .  14       21+4n     22+4n     20+4n
1236
 
1237
   To give an idea of how the number of iterations varies, here is a
1238
   table of dividend versus number of iterations when dividing by 7.
1239
 
1240
   smallest      largest       required
1241
   dividend     dividend      iterations
1242
 
1243
   .    0             6              0
1244
   .    7        0x6ffffff          1
1245
   0x1000006    0xffffffff          2
1246
 
1247
   There is some overlap in the range of numbers requiring 1 and 2
1248
   iterations.  */
1249
 
1250
RDEFINE(t2,r1)
1251
RDEFINE(x2,arg0)        /*  r26 */
1252
RDEFINE(t1,arg1)        /*  r25 */
1253
RDEFINE(x1,ret1)        /*  r29 */
1254
 
1255
        SUBSPA_MILLI_DIV
1256
        ATTR_MILLI
1257
 
1258
        .proc
1259
        .callinfo       millicode
1260
        .entry
1261
/* NONE of these routines require a stack frame
1262
   ALL of these routines are unwindable from millicode  */
1263
 
1264
GSYM($$divide_by_constant)
1265
        .export $$divide_by_constant,millicode
1266
/*  Provides a "nice" label for the code covered by the unwind descriptor
1267
    for things like gprof.  */
1268
 
1269
/* DIVISION BY 2 (shift by 1) */
1270
GSYM($$divI_2)
1271
        .export         $$divI_2,millicode
1272
        comclr,>=       arg0,0,0
1273
        addi            1,arg0,arg0
1274
        MILLIRET
1275
        extrs           arg0,30,31,ret1
1276
 
1277
 
1278
/* DIVISION BY 4 (shift by 2) */
1279
GSYM($$divI_4)
1280
        .export         $$divI_4,millicode
1281
        comclr,>=       arg0,0,0
1282
        addi            3,arg0,arg0
1283
        MILLIRET
1284
        extrs           arg0,29,30,ret1
1285
 
1286
 
1287
/* DIVISION BY 8 (shift by 3) */
1288
GSYM($$divI_8)
1289
        .export         $$divI_8,millicode
1290
        comclr,>=       arg0,0,0
1291
        addi            7,arg0,arg0
1292
        MILLIRET
1293
        extrs           arg0,28,29,ret1
1294
 
1295
/* DIVISION BY 16 (shift by 4) */
1296
GSYM($$divI_16)
1297
        .export         $$divI_16,millicode
1298
        comclr,>=       arg0,0,0
1299
        addi            15,arg0,arg0
1300
        MILLIRET
1301
        extrs           arg0,27,28,ret1
1302
 
1303
/****************************************************************************
1304
*
1305
*       DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
1306
*
1307
*       includes 3,5,15,17 and also 6,10,12
1308
*
1309
****************************************************************************/
1310
 
1311
/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
1312
 
1313
GSYM($$divI_3)
1314
        .export         $$divI_3,millicode
1315
        comb,<,N        x2,0,LREF(neg3)
1316
 
1317
        addi            1,x2,x2         /* this cannot overflow */
1318
        extru           x2,1,2,x1       /* multiply by 5 to get started */
1319
        sh2add          x2,x2,x2
1320
        b               LREF(pos)
1321
        addc            x1,0,x1
1322
 
1323
LSYM(neg3)
1324
        subi            1,x2,x2         /* this cannot overflow */
1325
        extru           x2,1,2,x1       /* multiply by 5 to get started */
1326
        sh2add          x2,x2,x2
1327
        b               LREF(neg)
1328
        addc            x1,0,x1
1329
 
1330
GSYM($$divU_3)
1331
        .export         $$divU_3,millicode
1332
        addi            1,x2,x2         /* this CAN overflow */
1333
        addc            0,0,x1
1334
        shd             x1,x2,30,t1     /* multiply by 5 to get started */
1335
        sh2add          x2,x2,x2
1336
        b               LREF(pos)
1337
        addc            x1,t1,x1
1338
 
1339
/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
1340
 
1341
GSYM($$divI_5)
1342
        .export         $$divI_5,millicode
1343
        comb,<,N        x2,0,LREF(neg5)
1344
 
1345
        addi            3,x2,t1         /* this cannot overflow */
1346
        sh1add          x2,t1,x2        /* multiply by 3 to get started */
1347
        b               LREF(pos)
1348
        addc            0,0,x1
1349
 
1350
LSYM(neg5)
1351
        sub             0,x2,x2         /* negate x2                    */
1352
        addi            1,x2,x2         /* this cannot overflow */
1353
        shd             0,x2,31,x1      /* get top bit (can be 1)       */
1354
        sh1add          x2,x2,x2        /* multiply by 3 to get started */
1355
        b               LREF(neg)
1356
        addc            x1,0,x1
1357
 
1358
GSYM($$divU_5)
1359
        .export         $$divU_5,millicode
1360
        addi            1,x2,x2         /* this CAN overflow */
1361
        addc            0,0,x1
1362
        shd             x1,x2,31,t1     /* multiply by 3 to get started */
1363
        sh1add          x2,x2,x2
1364
        b               LREF(pos)
1365
        addc            t1,x1,x1
1366
 
1367
/* DIVISION BY  6 (shift to divide by 2 then divide by 3) */
1368
GSYM($$divI_6)
1369
        .export         $$divI_6,millicode
1370
        comb,<,N        x2,0,LREF(neg6)
1371
        extru           x2,30,31,x2     /* divide by 2                  */
1372
        addi            5,x2,t1         /* compute 5*(x2+1) = 5*x2+5    */
1373
        sh2add          x2,t1,x2        /* multiply by 5 to get started */
1374
        b               LREF(pos)
1375
        addc            0,0,x1
1376
 
1377
LSYM(neg6)
1378
        subi            2,x2,x2         /* negate, divide by 2, and add 1 */
1379
                                        /* negation and adding 1 are done */
1380
                                        /* at the same time by the SUBI   */
1381
        extru           x2,30,31,x2
1382
        shd             0,x2,30,x1
1383
        sh2add          x2,x2,x2        /* multiply by 5 to get started */
1384
        b               LREF(neg)
1385
        addc            x1,0,x1
1386
 
1387
GSYM($$divU_6)
1388
        .export         $$divU_6,millicode
1389
        extru           x2,30,31,x2     /* divide by 2 */
1390
        addi            1,x2,x2         /* cannot carry */
1391
        shd             0,x2,30,x1      /* multiply by 5 to get started */
1392
        sh2add          x2,x2,x2
1393
        b               LREF(pos)
1394
        addc            x1,0,x1
1395
 
1396
/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
1397
GSYM($$divU_10)
1398
        .export         $$divU_10,millicode
1399
        extru           x2,30,31,x2     /* divide by 2 */
1400
        addi            3,x2,t1         /* compute 3*(x2+1) = (3*x2)+3  */
1401
        sh1add          x2,t1,x2        /* multiply by 3 to get started */
1402
        addc            0,0,x1
1403
LSYM(pos)
1404
        shd             x1,x2,28,t1     /* multiply by 0x11 */
1405
        shd             x2,0,28,t2
1406
        add             x2,t2,x2
1407
        addc            x1,t1,x1
1408
LSYM(pos_for_17)
1409
        shd             x1,x2,24,t1     /* multiply by 0x101 */
1410
        shd             x2,0,24,t2
1411
        add             x2,t2,x2
1412
        addc            x1,t1,x1
1413
 
1414
        shd             x1,x2,16,t1     /* multiply by 0x10001 */
1415
        shd             x2,0,16,t2
1416
        add             x2,t2,x2
1417
        MILLIRET
1418
        addc            x1,t1,x1
1419
 
1420
GSYM($$divI_10)
1421
        .export         $$divI_10,millicode
1422
        comb,<          x2,0,LREF(neg10)
1423
        copy            0,x1
1424
        extru           x2,30,31,x2     /* divide by 2 */
1425
        addib,TR        1,x2,LREF(pos)  /* add 1 (cannot overflow)     */
1426
        sh1add          x2,x2,x2        /* multiply by 3 to get started */
1427
 
1428
LSYM(neg10)
1429
        subi            2,x2,x2         /* negate, divide by 2, and add 1 */
1430
                                        /* negation and adding 1 are done */
1431
                                        /* at the same time by the SUBI   */
1432
        extru           x2,30,31,x2
1433
        sh1add          x2,x2,x2        /* multiply by 3 to get started */
1434
LSYM(neg)
1435
        shd             x1,x2,28,t1     /* multiply by 0x11 */
1436
        shd             x2,0,28,t2
1437
        add             x2,t2,x2
1438
        addc            x1,t1,x1
1439
LSYM(neg_for_17)
1440
        shd             x1,x2,24,t1     /* multiply by 0x101 */
1441
        shd             x2,0,24,t2
1442
        add             x2,t2,x2
1443
        addc            x1,t1,x1
1444
 
1445
        shd             x1,x2,16,t1     /* multiply by 0x10001 */
1446
        shd             x2,0,16,t2
1447
        add             x2,t2,x2
1448
        addc            x1,t1,x1
1449
        MILLIRET
1450
        sub             0,x1,x1
1451
 
1452
/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
1453
GSYM($$divI_12)
1454
        .export         $$divI_12,millicode
1455
        comb,<          x2,0,LREF(neg12)
1456
        copy            0,x1
1457
        extru           x2,29,30,x2     /* divide by 4                  */
1458
        addib,tr        1,x2,LREF(pos)  /* compute 5*(x2+1) = 5*x2+5    */
1459
        sh2add          x2,x2,x2        /* multiply by 5 to get started */
1460
 
1461
LSYM(neg12)
1462
        subi            4,x2,x2         /* negate, divide by 4, and add 1 */
1463
                                        /* negation and adding 1 are done */
1464
                                        /* at the same time by the SUBI   */
1465
        extru           x2,29,30,x2
1466
        b               LREF(neg)
1467
        sh2add          x2,x2,x2        /* multiply by 5 to get started */
1468
 
1469
GSYM($$divU_12)
1470
        .export         $$divU_12,millicode
1471
        extru           x2,29,30,x2     /* divide by 4   */
1472
        addi            5,x2,t1         /* cannot carry */
1473
        sh2add          x2,t1,x2        /* multiply by 5 to get started */
1474
        b               LREF(pos)
1475
        addc            0,0,x1
1476
 
1477
/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
1478
GSYM($$divI_15)
1479
        .export         $$divI_15,millicode
1480
        comb,<          x2,0,LREF(neg15)
1481
        copy            0,x1
1482
        addib,tr        1,x2,LREF(pos)+4
1483
        shd             x1,x2,28,t1
1484
 
1485
LSYM(neg15)
1486
        b               LREF(neg)
1487
        subi            1,x2,x2
1488
 
1489
GSYM($$divU_15)
1490
        .export         $$divU_15,millicode
1491
        addi            1,x2,x2         /* this CAN overflow */
1492
        b               LREF(pos)
1493
        addc            0,0,x1
1494
 
1495
/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
1496
GSYM($$divI_17)
1497
        .export         $$divI_17,millicode
1498
        comb,<,n        x2,0,LREF(neg17)
1499
        addi            1,x2,x2         /* this cannot overflow */
1500
        shd             0,x2,28,t1      /* multiply by 0xf to get started */
1501
        shd             x2,0,28,t2
1502
        sub             t2,x2,x2
1503
        b               LREF(pos_for_17)
1504
        subb            t1,0,x1
1505
 
1506
LSYM(neg17)
1507
        subi            1,x2,x2         /* this cannot overflow */
1508
        shd             0,x2,28,t1      /* multiply by 0xf to get started */
1509
        shd             x2,0,28,t2
1510
        sub             t2,x2,x2
1511
        b               LREF(neg_for_17)
1512
        subb            t1,0,x1
1513
 
1514
GSYM($$divU_17)
1515
        .export         $$divU_17,millicode
1516
        addi            1,x2,x2         /* this CAN overflow */
1517
        addc            0,0,x1
1518
        shd             x1,x2,28,t1     /* multiply by 0xf to get started */
1519
LSYM(u17)
1520
        shd             x2,0,28,t2
1521
        sub             t2,x2,x2
1522
        b               LREF(pos_for_17)
1523
        subb            t1,x1,x1
1524
 
1525
 
1526
/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
1527
   includes 7,9 and also 14
1528
 
1529
 
1530
   z = 2**24-1
1531
   r = z mod x = 0
1532
 
1533
   so choose b = 0
1534
 
1535
   Also, in order to divide by z = 2**24-1, we approximate by dividing
1536
   by (z+1) = 2**24 (which is easy), and then correcting.
1537
 
1538
   (ax) = (z+1)q' + r
1539
   .    = zq' + (q'+r)
1540
 
1541
   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
1542
   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
1543
   with this new remainder, adding the tentative quotients together,
1544
   until a tentative quotient is 0 (and then we are done).  There is
1545
   one last correction to be done.  It is possible that (q'+r) = z.
1546
   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.  But,
1547
   in fact, we need to add 1 more to the quotient.  Now, it turns
1548
   out that this happens if and only if the original value x is
1549
   an exact multiple of y.  So, to avoid a three instruction test at
1550
   the end, instead use 1 instruction to add 1 to x at the beginning.  */
1551
 
1552
/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
1553
GSYM($$divI_7)
1554
        .export         $$divI_7,millicode
1555
        comb,<,n        x2,0,LREF(neg7)
1556
LSYM(7)
1557
        addi            1,x2,x2         /* cannot overflow */
1558
        shd             0,x2,29,x1
1559
        sh3add          x2,x2,x2
1560
        addc            x1,0,x1
1561
LSYM(pos7)
1562
        shd             x1,x2,26,t1
1563
        shd             x2,0,26,t2
1564
        add             x2,t2,x2
1565
        addc            x1,t1,x1
1566
 
1567
        shd             x1,x2,20,t1
1568
        shd             x2,0,20,t2
1569
        add             x2,t2,x2
1570
        addc            x1,t1,t1
1571
 
1572
        /* computed .  Now divide it by (2**24 - 1)     */
1573
 
1574
        copy            0,x1
1575
        shd,=           t1,x2,24,t1     /* tentative quotient  */
1576
LSYM(1)
1577
        addb,tr         t1,x1,LREF(2)   /* add to previous quotient   */
1578
        extru           x2,31,24,x2     /* new remainder (unadjusted) */
1579
 
1580
        MILLIRETN
1581
 
1582
LSYM(2)
1583
        addb,tr         t1,x2,LREF(1)   /* adjust remainder */
1584
        extru,=         x2,7,8,t1       /* new quotient     */
1585
 
1586
LSYM(neg7)
1587
        subi            1,x2,x2         /* negate x2 and add 1 */
1588
LSYM(8)
1589
        shd             0,x2,29,x1
1590
        sh3add          x2,x2,x2
1591
        addc            x1,0,x1
1592
 
1593
LSYM(neg7_shift)
1594
        shd             x1,x2,26,t1
1595
        shd             x2,0,26,t2
1596
        add             x2,t2,x2
1597
        addc            x1,t1,x1
1598
 
1599
        shd             x1,x2,20,t1
1600
        shd             x2,0,20,t2
1601
        add             x2,t2,x2
1602
        addc            x1,t1,t1
1603
 
1604
        /* computed .  Now divide it by (2**24 - 1)     */
1605
 
1606
        copy            0,x1
1607
        shd,=           t1,x2,24,t1     /* tentative quotient  */
1608
LSYM(3)
1609
        addb,tr         t1,x1,LREF(4)   /* add to previous quotient   */
1610
        extru           x2,31,24,x2     /* new remainder (unadjusted) */
1611
 
1612
        MILLIRET
1613
        sub             0,x1,x1         /* negate result    */
1614
 
1615
LSYM(4)
1616
        addb,tr         t1,x2,LREF(3)   /* adjust remainder */
1617
        extru,=         x2,7,8,t1       /* new quotient     */
1618
 
1619
GSYM($$divU_7)
1620
        .export         $$divU_7,millicode
1621
        addi            1,x2,x2         /* can carry */
1622
        addc            0,0,x1
1623
        shd             x1,x2,29,t1
1624
        sh3add          x2,x2,x2
1625
        b               LREF(pos7)
1626
        addc            t1,x1,x1
1627
 
1628
/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
1629
GSYM($$divI_9)
1630
        .export         $$divI_9,millicode
1631
        comb,<,n        x2,0,LREF(neg9)
1632
        addi            1,x2,x2         /* cannot overflow */
1633
        shd             0,x2,29,t1
1634
        shd             x2,0,29,t2
1635
        sub             t2,x2,x2
1636
        b               LREF(pos7)
1637
        subb            t1,0,x1
1638
 
1639
LSYM(neg9)
1640
        subi            1,x2,x2         /* negate and add 1 */
1641
        shd             0,x2,29,t1
1642
        shd             x2,0,29,t2
1643
        sub             t2,x2,x2
1644
        b               LREF(neg7_shift)
1645
        subb            t1,0,x1
1646
 
1647
GSYM($$divU_9)
1648
        .export         $$divU_9,millicode
1649
        addi            1,x2,x2         /* can carry */
1650
        addc            0,0,x1
1651
        shd             x1,x2,29,t1
1652
        shd             x2,0,29,t2
1653
        sub             t2,x2,x2
1654
        b               LREF(pos7)
1655
        subb            t1,x1,x1
1656
 
1657
/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
1658
GSYM($$divI_14)
1659
        .export         $$divI_14,millicode
1660
        comb,<,n        x2,0,LREF(neg14)
1661
GSYM($$divU_14)
1662
        .export         $$divU_14,millicode
1663
        b               LREF(7)         /* go to 7 case */
1664
        extru           x2,30,31,x2     /* divide by 2  */
1665
 
1666
LSYM(neg14)
1667
        subi            2,x2,x2         /* negate (and add 2) */
1668
        b               LREF(8)
1669
        extru           x2,30,31,x2     /* divide by 2        */
1670
        .exit
1671
        .procend
1672
        .end
1673
#endif
1674
 
1675
#ifdef L_mulI
1676
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
1677
/******************************************************************************
1678
This routine is used on PA2.0 processors when gcc -mno-fpregs is used
1679
 
1680
ROUTINE:        $$mulI
1681
 
1682
 
1683
DESCRIPTION:
1684
 
1685
        $$mulI multiplies two single word integers, giving a single
1686
        word result.
1687
 
1688
 
1689
INPUT REGISTERS:
1690
 
1691
        arg0 = Operand 1
1692
        arg1 = Operand 2
1693
        r31  == return pc
1694
        sr0  == return space when called externally
1695
 
1696
 
1697
OUTPUT REGISTERS:
1698
 
1699
        arg0 = undefined
1700
        arg1 = undefined
1701
        ret1 = result
1702
 
1703
OTHER REGISTERS AFFECTED:
1704
 
1705
        r1   = undefined
1706
 
1707
SIDE EFFECTS:
1708
 
1709
        Causes a trap under the following conditions:  NONE
1710
        Changes memory at the following places:  NONE
1711
 
1712
PERMISSIBLE CONTEXT:
1713
 
1714
        Unwindable
1715
        Does not create a stack frame
1716
        Is usable for internal or external microcode
1717
 
1718
DISCUSSION:
1719
 
1720
        Calls other millicode routines via mrp:  NONE
1721
        Calls other millicode routines:  NONE
1722
 
1723
***************************************************************************/
1724
 
1725
 
1726
#define a0      %arg0
1727
#define a1      %arg1
1728
#define t0      %r1
1729
#define r       %ret1
1730
 
1731
#define a0__128a0       zdep    a0,24,25,a0
1732
#define a0__256a0       zdep    a0,23,24,a0
1733
#define a1_ne_0_b_l0    comb,<> a1,0,LREF(l0)
1734
#define a1_ne_0_b_l1    comb,<> a1,0,LREF(l1)
1735
#define a1_ne_0_b_l2    comb,<> a1,0,LREF(l2)
1736
#define b_n_ret_t0      b,n     LREF(ret_t0)
1737
#define b_e_shift       b       LREF(e_shift)
1738
#define b_e_t0ma0       b       LREF(e_t0ma0)
1739
#define b_e_t0          b       LREF(e_t0)
1740
#define b_e_t0a0        b       LREF(e_t0a0)
1741
#define b_e_t02a0       b       LREF(e_t02a0)
1742
#define b_e_t04a0       b       LREF(e_t04a0)
1743
#define b_e_2t0         b       LREF(e_2t0)
1744
#define b_e_2t0a0       b       LREF(e_2t0a0)
1745
#define b_e_2t04a0      b       LREF(e2t04a0)
1746
#define b_e_3t0         b       LREF(e_3t0)
1747
#define b_e_4t0         b       LREF(e_4t0)
1748
#define b_e_4t0a0       b       LREF(e_4t0a0)
1749
#define b_e_4t08a0      b       LREF(e4t08a0)
1750
#define b_e_5t0         b       LREF(e_5t0)
1751
#define b_e_8t0         b       LREF(e_8t0)
1752
#define b_e_8t0a0       b       LREF(e_8t0a0)
1753
#define r__r_a0         add     r,a0,r
1754
#define r__r_2a0        sh1add  a0,r,r
1755
#define r__r_4a0        sh2add  a0,r,r
1756
#define r__r_8a0        sh3add  a0,r,r
1757
#define r__r_t0         add     r,t0,r
1758
#define r__r_2t0        sh1add  t0,r,r
1759
#define r__r_4t0        sh2add  t0,r,r
1760
#define r__r_8t0        sh3add  t0,r,r
1761
#define t0__3a0         sh1add  a0,a0,t0
1762
#define t0__4a0         sh2add  a0,0,t0
1763
#define t0__5a0         sh2add  a0,a0,t0
1764
#define t0__8a0         sh3add  a0,0,t0
1765
#define t0__9a0         sh3add  a0,a0,t0
1766
#define t0__16a0        zdep    a0,27,28,t0
1767
#define t0__32a0        zdep    a0,26,27,t0
1768
#define t0__64a0        zdep    a0,25,26,t0
1769
#define t0__128a0       zdep    a0,24,25,t0
1770
#define t0__t0ma0       sub     t0,a0,t0
1771
#define t0__t0_a0       add     t0,a0,t0
1772
#define t0__t0_2a0      sh1add  a0,t0,t0
1773
#define t0__t0_4a0      sh2add  a0,t0,t0
1774
#define t0__t0_8a0      sh3add  a0,t0,t0
1775
#define t0__2t0_a0      sh1add  t0,a0,t0
1776
#define t0__3t0         sh1add  t0,t0,t0
1777
#define t0__4t0         sh2add  t0,0,t0
1778
#define t0__4t0_a0      sh2add  t0,a0,t0
1779
#define t0__5t0         sh2add  t0,t0,t0
1780
#define t0__8t0         sh3add  t0,0,t0
1781
#define t0__8t0_a0      sh3add  t0,a0,t0
1782
#define t0__9t0         sh3add  t0,t0,t0
1783
#define t0__16t0        zdep    t0,27,28,t0
1784
#define t0__32t0        zdep    t0,26,27,t0
1785
#define t0__256a0       zdep    a0,23,24,t0
1786
 
1787
 
1788
        SUBSPA_MILLI
1789
        ATTR_MILLI
1790
        .align 16
1791
        .proc
1792
        .callinfo millicode
1793
        .export $$mulI,millicode
1794
GSYM($$mulI)
1795
        combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
1796
        copy            0,r             /* zero out the result */
1797
        xor             a0,a1,a0        /* swap a0 & a1 using the */
1798
        xor             a0,a1,a1        /*  old xor trick */
1799
        xor             a0,a1,a0
1800
LSYM(l4)
1801
        combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
1802
        zdep            a1,30,8,t0      /* t0 = (a1&0xff)<<1 ********* */
1803
        sub,>           0,a1,t0         /* otherwise negate both and */
1804
        combt,<=,n      a0,t0,LREF(l2)  /*  swap back if |a0|<|a1| */
1805
        sub             0,a0,a1
1806
        movb,tr,n       t0,a0,LREF(l2)  /* 10th inst.  */
1807
 
1808
LSYM(l0)        r__r_t0                         /* add in this partial product */
1809
LSYM(l1)        a0__256a0                       /* a0 <<= 8 ****************** */
1810
LSYM(l2)        zdep            a1,30,8,t0      /* t0 = (a1&0xff)<<1 ********* */
1811
LSYM(l3)        blr             t0,0            /* case on these 8 bits ****** */
1812
                extru           a1,23,24,a1     /* a1 >>= 8 ****************** */
1813
 
1814
/*16 insts before this.  */
1815
/*                        a0 <<= 8 ************************** */
1816
LSYM(x0)        a1_ne_0_b_l2    ! a0__256a0     ! MILLIRETN     ! nop
1817
LSYM(x1)        a1_ne_0_b_l1    ! r__r_a0       ! MILLIRETN     ! nop
1818
LSYM(x2)        a1_ne_0_b_l1    ! r__r_2a0      ! MILLIRETN     ! nop
1819
LSYM(x3)        a1_ne_0_b_l0    ! t0__3a0       ! MILLIRET      ! r__r_t0
1820
LSYM(x4)        a1_ne_0_b_l1    ! r__r_4a0      ! MILLIRETN     ! nop
1821
LSYM(x5)        a1_ne_0_b_l0    ! t0__5a0       ! MILLIRET      ! r__r_t0
1822
LSYM(x6)        t0__3a0         ! a1_ne_0_b_l1  ! r__r_2t0      ! MILLIRETN
1823
LSYM(x7)        t0__3a0         ! a1_ne_0_b_l0  ! r__r_4a0      ! b_n_ret_t0
1824
LSYM(x8)        a1_ne_0_b_l1    ! r__r_8a0      ! MILLIRETN     ! nop
1825
LSYM(x9)        a1_ne_0_b_l0    ! t0__9a0       ! MILLIRET      ! r__r_t0
1826
LSYM(x10)       t0__5a0         ! a1_ne_0_b_l1  ! r__r_2t0      ! MILLIRETN
1827
LSYM(x11)       t0__3a0         ! a1_ne_0_b_l0  ! r__r_8a0      ! b_n_ret_t0
1828
LSYM(x12)       t0__3a0         ! a1_ne_0_b_l1  ! r__r_4t0      ! MILLIRETN
1829
LSYM(x13)       t0__5a0         ! a1_ne_0_b_l0  ! r__r_8a0      ! b_n_ret_t0
1830
LSYM(x14)       t0__3a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_2t0
1831
LSYM(x15)       t0__5a0         ! a1_ne_0_b_l0  ! t0__3t0       ! b_n_ret_t0
1832
LSYM(x16)       t0__16a0        ! a1_ne_0_b_l1  ! r__r_t0       ! MILLIRETN
1833
LSYM(x17)       t0__9a0         ! a1_ne_0_b_l0  ! t0__t0_8a0    ! b_n_ret_t0
1834
LSYM(x18)       t0__9a0         ! a1_ne_0_b_l1  ! r__r_2t0      ! MILLIRETN
1835
LSYM(x19)       t0__9a0         ! a1_ne_0_b_l0  ! t0__2t0_a0    ! b_n_ret_t0
1836
LSYM(x20)       t0__5a0         ! a1_ne_0_b_l1  ! r__r_4t0      ! MILLIRETN
1837
LSYM(x21)       t0__5a0         ! a1_ne_0_b_l0  ! t0__4t0_a0    ! b_n_ret_t0
1838
LSYM(x22)       t0__5a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_2t0
1839
LSYM(x23)       t0__5a0         ! t0__2t0_a0    ! b_e_t0        ! t0__2t0_a0
1840
LSYM(x24)       t0__3a0         ! a1_ne_0_b_l1  ! r__r_8t0      ! MILLIRETN
1841
LSYM(x25)       t0__5a0         ! a1_ne_0_b_l0  ! t0__5t0       ! b_n_ret_t0
1842
LSYM(x26)       t0__3a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_2t0
1843
LSYM(x27)       t0__3a0         ! a1_ne_0_b_l0  ! t0__9t0       ! b_n_ret_t0
1844
LSYM(x28)       t0__3a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_4t0
1845
LSYM(x29)       t0__3a0         ! t0__2t0_a0    ! b_e_t0        ! t0__4t0_a0
1846
LSYM(x30)       t0__5a0         ! t0__3t0       ! b_e_shift     ! r__r_2t0
1847
LSYM(x31)       t0__32a0        ! a1_ne_0_b_l0  ! t0__t0ma0     ! b_n_ret_t0
1848
LSYM(x32)       t0__32a0        ! a1_ne_0_b_l1  ! r__r_t0       ! MILLIRETN
1849
LSYM(x33)       t0__8a0         ! a1_ne_0_b_l0  ! t0__4t0_a0    ! b_n_ret_t0
1850
LSYM(x34)       t0__16a0        ! t0__t0_a0     ! b_e_shift     ! r__r_2t0
1851
LSYM(x35)       t0__9a0         ! t0__3t0       ! b_e_t0        ! t0__t0_8a0
1852
LSYM(x36)       t0__9a0         ! a1_ne_0_b_l1  ! r__r_4t0      ! MILLIRETN
1853
LSYM(x37)       t0__9a0         ! a1_ne_0_b_l0  ! t0__4t0_a0    ! b_n_ret_t0
1854
LSYM(x38)       t0__9a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_2t0
1855
LSYM(x39)       t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__2t0_a0
1856
LSYM(x40)       t0__5a0         ! a1_ne_0_b_l1  ! r__r_8t0      ! MILLIRETN
1857
LSYM(x41)       t0__5a0         ! a1_ne_0_b_l0  ! t0__8t0_a0    ! b_n_ret_t0
1858
LSYM(x42)       t0__5a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_2t0
1859
LSYM(x43)       t0__5a0         ! t0__4t0_a0    ! b_e_t0        ! t0__2t0_a0
1860
LSYM(x44)       t0__5a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_4t0
1861
LSYM(x45)       t0__9a0         ! a1_ne_0_b_l0  ! t0__5t0       ! b_n_ret_t0
1862
LSYM(x46)       t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__t0_a0
1863
LSYM(x47)       t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__t0_2a0
1864
LSYM(x48)       t0__3a0         ! a1_ne_0_b_l0  ! t0__16t0      ! b_n_ret_t0
1865
LSYM(x49)       t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__t0_4a0
1866
LSYM(x50)       t0__5a0         ! t0__5t0       ! b_e_shift     ! r__r_2t0
1867
LSYM(x51)       t0__9a0         ! t0__t0_8a0    ! b_e_t0        ! t0__3t0
1868
LSYM(x52)       t0__3a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_4t0
1869
LSYM(x53)       t0__3a0         ! t0__4t0_a0    ! b_e_t0        ! t0__4t0_a0
1870
LSYM(x54)       t0__9a0         ! t0__3t0       ! b_e_shift     ! r__r_2t0
1871
LSYM(x55)       t0__9a0         ! t0__3t0       ! b_e_t0        ! t0__2t0_a0
1872
LSYM(x56)       t0__3a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_8t0
1873
LSYM(x57)       t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__3t0
1874
LSYM(x58)       t0__3a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__4t0_a0
1875
LSYM(x59)       t0__9a0         ! t0__2t0_a0    ! b_e_t02a0     ! t0__3t0
1876
LSYM(x60)       t0__5a0         ! t0__3t0       ! b_e_shift     ! r__r_4t0
1877
LSYM(x61)       t0__5a0         ! t0__3t0       ! b_e_t0        ! t0__4t0_a0
1878
LSYM(x62)       t0__32a0        ! t0__t0ma0     ! b_e_shift     ! r__r_2t0
1879
LSYM(x63)       t0__64a0        ! a1_ne_0_b_l0  ! t0__t0ma0     ! b_n_ret_t0
1880
LSYM(x64)       t0__64a0        ! a1_ne_0_b_l1  ! r__r_t0       ! MILLIRETN
1881
LSYM(x65)       t0__8a0         ! a1_ne_0_b_l0  ! t0__8t0_a0    ! b_n_ret_t0
1882
LSYM(x66)       t0__32a0        ! t0__t0_a0     ! b_e_shift     ! r__r_2t0
1883
LSYM(x67)       t0__8a0         ! t0__4t0_a0    ! b_e_t0        ! t0__2t0_a0
1884
LSYM(x68)       t0__8a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_4t0
1885
LSYM(x69)       t0__8a0         ! t0__2t0_a0    ! b_e_t0        ! t0__4t0_a0
1886
LSYM(x70)       t0__64a0        ! t0__t0_4a0    ! b_e_t0        ! t0__t0_2a0
1887
LSYM(x71)       t0__9a0         ! t0__8t0       ! b_e_t0        ! t0__t0ma0
1888
LSYM(x72)       t0__9a0         ! a1_ne_0_b_l1  ! r__r_8t0      ! MILLIRETN
1889
LSYM(x73)       t0__9a0         ! t0__8t0_a0    ! b_e_shift     ! r__r_t0
1890
LSYM(x74)       t0__9a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_2t0
1891
LSYM(x75)       t0__9a0         ! t0__4t0_a0    ! b_e_t0        ! t0__2t0_a0
1892
LSYM(x76)       t0__9a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_4t0
1893
LSYM(x77)       t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__4t0_a0
1894
LSYM(x78)       t0__9a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__2t0_a0
1895
LSYM(x79)       t0__16a0        ! t0__5t0       ! b_e_t0        ! t0__t0ma0
1896
LSYM(x80)       t0__16a0        ! t0__5t0       ! b_e_shift     ! r__r_t0
1897
LSYM(x81)       t0__9a0         ! t0__9t0       ! b_e_shift     ! r__r_t0
1898
LSYM(x82)       t0__5a0         ! t0__8t0_a0    ! b_e_shift     ! r__r_2t0
1899
LSYM(x83)       t0__5a0         ! t0__8t0_a0    ! b_e_t0        ! t0__2t0_a0
1900
LSYM(x84)       t0__5a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_4t0
1901
LSYM(x85)       t0__8a0         ! t0__2t0_a0    ! b_e_t0        ! t0__5t0
1902
LSYM(x86)       t0__5a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__2t0_a0
1903
LSYM(x87)       t0__9a0         ! t0__9t0       ! b_e_t02a0     ! t0__t0_4a0
1904
LSYM(x88)       t0__5a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_8t0
1905
LSYM(x89)       t0__5a0         ! t0__2t0_a0    ! b_e_t0        ! t0__8t0_a0
1906
LSYM(x90)       t0__9a0         ! t0__5t0       ! b_e_shift     ! r__r_2t0
1907
LSYM(x91)       t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__2t0_a0
1908
LSYM(x92)       t0__5a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__2t0_a0
1909
LSYM(x93)       t0__32a0        ! t0__t0ma0     ! b_e_t0        ! t0__3t0
1910
LSYM(x94)       t0__9a0         ! t0__5t0       ! b_e_2t0       ! t0__t0_2a0
1911
LSYM(x95)       t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__5t0
1912
LSYM(x96)       t0__8a0         ! t0__3t0       ! b_e_shift     ! r__r_4t0
1913
LSYM(x97)       t0__8a0         ! t0__3t0       ! b_e_t0        ! t0__4t0_a0
1914
LSYM(x98)       t0__32a0        ! t0__3t0       ! b_e_t0        ! t0__t0_2a0
1915
LSYM(x99)       t0__8a0         ! t0__4t0_a0    ! b_e_t0        ! t0__3t0
1916
LSYM(x100)      t0__5a0         ! t0__5t0       ! b_e_shift     ! r__r_4t0
1917
LSYM(x101)      t0__5a0         ! t0__5t0       ! b_e_t0        ! t0__4t0_a0
1918
LSYM(x102)      t0__32a0        ! t0__t0_2a0    ! b_e_t0        ! t0__3t0
1919
LSYM(x103)      t0__5a0         ! t0__5t0       ! b_e_t02a0     ! t0__4t0_a0
1920
LSYM(x104)      t0__3a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_8t0
1921
LSYM(x105)      t0__5a0         ! t0__4t0_a0    ! b_e_t0        ! t0__5t0
1922
LSYM(x106)      t0__3a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__4t0_a0
1923
LSYM(x107)      t0__9a0         ! t0__t0_4a0    ! b_e_t02a0     ! t0__8t0_a0
1924
LSYM(x108)      t0__9a0         ! t0__3t0       ! b_e_shift     ! r__r_4t0
1925
LSYM(x109)      t0__9a0         ! t0__3t0       ! b_e_t0        ! t0__4t0_a0
1926
LSYM(x110)      t0__9a0         ! t0__3t0       ! b_e_2t0       ! t0__2t0_a0
1927
LSYM(x111)      t0__9a0         ! t0__4t0_a0    ! b_e_t0        ! t0__3t0
1928
LSYM(x112)      t0__3a0         ! t0__2t0_a0    ! b_e_t0        ! t0__16t0
1929
LSYM(x113)      t0__9a0         ! t0__4t0_a0    ! b_e_t02a0     ! t0__3t0
1930
LSYM(x114)      t0__9a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__3t0
1931
LSYM(x115)      t0__9a0         ! t0__2t0_a0    ! b_e_2t0a0     ! t0__3t0
1932
LSYM(x116)      t0__3a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__4t0_a0
1933
LSYM(x117)      t0__3a0         ! t0__4t0_a0    ! b_e_t0        ! t0__9t0
1934
LSYM(x118)      t0__3a0         ! t0__4t0_a0    ! b_e_t0a0      ! t0__9t0
1935
LSYM(x119)      t0__3a0         ! t0__4t0_a0    ! b_e_t02a0     ! t0__9t0
1936
LSYM(x120)      t0__5a0         ! t0__3t0       ! b_e_shift     ! r__r_8t0
1937
LSYM(x121)      t0__5a0         ! t0__3t0       ! b_e_t0        ! t0__8t0_a0
1938
LSYM(x122)      t0__5a0         ! t0__3t0       ! b_e_2t0       ! t0__4t0_a0
1939
LSYM(x123)      t0__5a0         ! t0__8t0_a0    ! b_e_t0        ! t0__3t0
1940
LSYM(x124)      t0__32a0        ! t0__t0ma0     ! b_e_shift     ! r__r_4t0
1941
LSYM(x125)      t0__5a0         ! t0__5t0       ! b_e_t0        ! t0__5t0
1942
LSYM(x126)      t0__64a0        ! t0__t0ma0     ! b_e_shift     ! r__r_2t0
1943
LSYM(x127)      t0__128a0       ! a1_ne_0_b_l0  ! t0__t0ma0     ! b_n_ret_t0
1944
LSYM(x128)      t0__128a0       ! a1_ne_0_b_l1  ! r__r_t0       ! MILLIRETN
1945
LSYM(x129)      t0__128a0       ! a1_ne_0_b_l0  ! t0__t0_a0     ! b_n_ret_t0
1946
LSYM(x130)      t0__64a0        ! t0__t0_a0     ! b_e_shift     ! r__r_2t0
1947
LSYM(x131)      t0__8a0         ! t0__8t0_a0    ! b_e_t0        ! t0__2t0_a0
1948
LSYM(x132)      t0__8a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_4t0
1949
LSYM(x133)      t0__8a0         ! t0__4t0_a0    ! b_e_t0        ! t0__4t0_a0
1950
LSYM(x134)      t0__8a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__2t0_a0
1951
LSYM(x135)      t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__3t0
1952
LSYM(x136)      t0__8a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_8t0
1953
LSYM(x137)      t0__8a0         ! t0__2t0_a0    ! b_e_t0        ! t0__8t0_a0
1954
LSYM(x138)      t0__8a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__4t0_a0
1955
LSYM(x139)      t0__8a0         ! t0__2t0_a0    ! b_e_2t0a0     ! t0__4t0_a0
1956
LSYM(x140)      t0__3a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__5t0
1957
LSYM(x141)      t0__8a0         ! t0__2t0_a0    ! b_e_4t0a0     ! t0__2t0_a0
1958
LSYM(x142)      t0__9a0         ! t0__8t0       ! b_e_2t0       ! t0__t0ma0
1959
LSYM(x143)      t0__16a0        ! t0__9t0       ! b_e_t0        ! t0__t0ma0
1960
LSYM(x144)      t0__9a0         ! t0__8t0       ! b_e_shift     ! r__r_2t0
1961
LSYM(x145)      t0__9a0         ! t0__8t0       ! b_e_t0        ! t0__2t0_a0
1962
LSYM(x146)      t0__9a0         ! t0__8t0_a0    ! b_e_shift     ! r__r_2t0
1963
LSYM(x147)      t0__9a0         ! t0__8t0_a0    ! b_e_t0        ! t0__2t0_a0
1964
LSYM(x148)      t0__9a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_4t0
1965
LSYM(x149)      t0__9a0         ! t0__4t0_a0    ! b_e_t0        ! t0__4t0_a0
1966
LSYM(x150)      t0__9a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__2t0_a0
1967
LSYM(x151)      t0__9a0         ! t0__4t0_a0    ! b_e_2t0a0     ! t0__2t0_a0
1968
LSYM(x152)      t0__9a0         ! t0__2t0_a0    ! b_e_shift     ! r__r_8t0
1969
LSYM(x153)      t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__8t0_a0
1970
LSYM(x154)      t0__9a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__4t0_a0
1971
LSYM(x155)      t0__32a0        ! t0__t0ma0     ! b_e_t0        ! t0__5t0
1972
LSYM(x156)      t0__9a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__2t0_a0
1973
LSYM(x157)      t0__32a0        ! t0__t0ma0     ! b_e_t02a0     ! t0__5t0
1974
LSYM(x158)      t0__16a0        ! t0__5t0       ! b_e_2t0       ! t0__t0ma0
1975
LSYM(x159)      t0__32a0        ! t0__5t0       ! b_e_t0        ! t0__t0ma0
1976
LSYM(x160)      t0__5a0         ! t0__4t0       ! b_e_shift     ! r__r_8t0
1977
LSYM(x161)      t0__8a0         ! t0__5t0       ! b_e_t0        ! t0__4t0_a0
1978
LSYM(x162)      t0__9a0         ! t0__9t0       ! b_e_shift     ! r__r_2t0
1979
LSYM(x163)      t0__9a0         ! t0__9t0       ! b_e_t0        ! t0__2t0_a0
1980
LSYM(x164)      t0__5a0         ! t0__8t0_a0    ! b_e_shift     ! r__r_4t0
1981
LSYM(x165)      t0__8a0         ! t0__4t0_a0    ! b_e_t0        ! t0__5t0
1982
LSYM(x166)      t0__5a0         ! t0__8t0_a0    ! b_e_2t0       ! t0__2t0_a0
1983
LSYM(x167)      t0__5a0         ! t0__8t0_a0    ! b_e_2t0a0     ! t0__2t0_a0
1984
LSYM(x168)      t0__5a0         ! t0__4t0_a0    ! b_e_shift     ! r__r_8t0
1985
LSYM(x169)      t0__5a0         ! t0__4t0_a0    ! b_e_t0        ! t0__8t0_a0
1986
LSYM(x170)      t0__32a0        ! t0__t0_2a0    ! b_e_t0        ! t0__5t0
1987
LSYM(x171)      t0__9a0         ! t0__2t0_a0    ! b_e_t0        ! t0__9t0
1988
LSYM(x172)      t0__5a0         ! t0__4t0_a0    ! b_e_4t0       ! t0__2t0_a0
1989
LSYM(x173)      t0__9a0         ! t0__2t0_a0    ! b_e_t02a0     ! t0__9t0
1990
LSYM(x174)      t0__32a0        ! t0__t0_2a0    ! b_e_t04a0     ! t0__5t0
1991
LSYM(x175)      t0__8a0         ! t0__2t0_a0    ! b_e_5t0       ! t0__2t0_a0
1992
LSYM(x176)      t0__5a0         ! t0__4t0_a0    ! b_e_8t0       ! t0__t0_a0
1993
LSYM(x177)      t0__5a0         ! t0__4t0_a0    ! b_e_8t0a0     ! t0__t0_a0
1994
LSYM(x178)      t0__5a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__8t0_a0
1995
LSYM(x179)      t0__5a0         ! t0__2t0_a0    ! b_e_2t0a0     ! t0__8t0_a0
1996
LSYM(x180)      t0__9a0         ! t0__5t0       ! b_e_shift     ! r__r_4t0
1997
LSYM(x181)      t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__4t0_a0
1998
LSYM(x182)      t0__9a0         ! t0__5t0       ! b_e_2t0       ! t0__2t0_a0
1999
LSYM(x183)      t0__9a0         ! t0__5t0       ! b_e_2t0a0     ! t0__2t0_a0
2000
LSYM(x184)      t0__5a0         ! t0__9t0       ! b_e_4t0       ! t0__t0_a0
2001
LSYM(x185)      t0__9a0         ! t0__4t0_a0    ! b_e_t0        ! t0__5t0
2002
LSYM(x186)      t0__32a0        ! t0__t0ma0     ! b_e_2t0       ! t0__3t0
2003
LSYM(x187)      t0__9a0         ! t0__4t0_a0    ! b_e_t02a0     ! t0__5t0
2004
LSYM(x188)      t0__9a0         ! t0__5t0       ! b_e_4t0       ! t0__t0_2a0
2005
LSYM(x189)      t0__5a0         ! t0__4t0_a0    ! b_e_t0        ! t0__9t0
2006
LSYM(x190)      t0__9a0         ! t0__2t0_a0    ! b_e_2t0       ! t0__5t0
2007
LSYM(x191)      t0__64a0        ! t0__3t0       ! b_e_t0        ! t0__t0ma0
2008
LSYM(x192)      t0__8a0         ! t0__3t0       ! b_e_shift     ! r__r_8t0
2009
LSYM(x193)      t0__8a0         ! t0__3t0       ! b_e_t0        ! t0__8t0_a0
2010
LSYM(x194)      t0__8a0         ! t0__3t0       ! b_e_2t0       ! t0__4t0_a0
2011
LSYM(x195)      t0__8a0         ! t0__8t0_a0    ! b_e_t0        ! t0__3t0
2012
LSYM(x196)      t0__8a0         ! t0__3t0       ! b_e_4t0       ! t0__2t0_a0
2013
LSYM(x197)      t0__8a0         ! t0__3t0       ! b_e_4t0a0     ! t0__2t0_a0
2014
LSYM(x198)      t0__64a0        ! t0__t0_2a0    ! b_e_t0        ! t0__3t0
2015
LSYM(x199)      t0__8a0         ! t0__4t0_a0    ! b_e_2t0a0     ! t0__3t0
2016
LSYM(x200)      t0__5a0         ! t0__5t0       ! b_e_shift     ! r__r_8t0
2017
LSYM(x201)      t0__5a0         ! t0__5t0       ! b_e_t0        ! t0__8t0_a0
2018
LSYM(x202)      t0__5a0         ! t0__5t0       ! b_e_2t0       ! t0__4t0_a0
2019
LSYM(x203)      t0__5a0         ! t0__5t0       ! b_e_2t0a0     ! t0__4t0_a0
2020
LSYM(x204)      t0__8a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__3t0
2021
LSYM(x205)      t0__5a0         ! t0__8t0_a0    ! b_e_t0        ! t0__5t0
2022
LSYM(x206)      t0__64a0        ! t0__t0_4a0    ! b_e_t02a0     ! t0__3t0
2023
LSYM(x207)      t0__8a0         ! t0__2t0_a0    ! b_e_3t0       ! t0__4t0_a0
2024
LSYM(x208)      t0__5a0         ! t0__5t0       ! b_e_8t0       ! t0__t0_a0
2025
LSYM(x209)      t0__5a0         ! t0__5t0       ! b_e_8t0a0     ! t0__t0_a0
2026
LSYM(x210)      t0__5a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__5t0
2027
LSYM(x211)      t0__5a0         ! t0__4t0_a0    ! b_e_2t0a0     ! t0__5t0
2028
LSYM(x212)      t0__3a0         ! t0__4t0_a0    ! b_e_4t0       ! t0__4t0_a0
2029
LSYM(x213)      t0__3a0         ! t0__4t0_a0    ! b_e_4t0a0     ! t0__4t0_a0
2030
LSYM(x214)      t0__9a0         ! t0__t0_4a0    ! b_e_2t04a0    ! t0__8t0_a0
2031
LSYM(x215)      t0__5a0         ! t0__4t0_a0    ! b_e_5t0       ! t0__2t0_a0
2032
LSYM(x216)      t0__9a0         ! t0__3t0       ! b_e_shift     ! r__r_8t0
2033
LSYM(x217)      t0__9a0         ! t0__3t0       ! b_e_t0        ! t0__8t0_a0
2034
LSYM(x218)      t0__9a0         ! t0__3t0       ! b_e_2t0       ! t0__4t0_a0
2035
LSYM(x219)      t0__9a0         ! t0__8t0_a0    ! b_e_t0        ! t0__3t0
2036
LSYM(x220)      t0__3a0         ! t0__9t0       ! b_e_4t0       ! t0__2t0_a0
2037
LSYM(x221)      t0__3a0         ! t0__9t0       ! b_e_4t0a0     ! t0__2t0_a0
2038
LSYM(x222)      t0__9a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__3t0
2039
LSYM(x223)      t0__9a0         ! t0__4t0_a0    ! b_e_2t0a0     ! t0__3t0
2040
LSYM(x224)      t0__9a0         ! t0__3t0       ! b_e_8t0       ! t0__t0_a0
2041
LSYM(x225)      t0__9a0         ! t0__5t0       ! b_e_t0        ! t0__5t0
2042
LSYM(x226)      t0__3a0         ! t0__2t0_a0    ! b_e_t02a0     ! t0__32t0
2043
LSYM(x227)      t0__9a0         ! t0__5t0       ! b_e_t02a0     ! t0__5t0
2044
LSYM(x228)      t0__9a0         ! t0__2t0_a0    ! b_e_4t0       ! t0__3t0
2045
LSYM(x229)      t0__9a0         ! t0__2t0_a0    ! b_e_4t0a0     ! t0__3t0
2046
LSYM(x230)      t0__9a0         ! t0__5t0       ! b_e_5t0       ! t0__t0_a0
2047
LSYM(x231)      t0__9a0         ! t0__2t0_a0    ! b_e_3t0       ! t0__4t0_a0
2048
LSYM(x232)      t0__3a0         ! t0__2t0_a0    ! b_e_8t0       ! t0__4t0_a0
2049
LSYM(x233)      t0__3a0         ! t0__2t0_a0    ! b_e_8t0a0     ! t0__4t0_a0
2050
LSYM(x234)      t0__3a0         ! t0__4t0_a0    ! b_e_2t0       ! t0__9t0
2051
LSYM(x235)      t0__3a0         ! t0__4t0_a0    ! b_e_2t0a0     ! t0__9t0
2052
LSYM(x236)      t0__9a0         ! t0__2t0_a0    ! b_e_4t08a0    ! t0__3t0
2053
LSYM(x237)      t0__16a0        ! t0__5t0       ! b_e_3t0       ! t0__t0ma0
2054
LSYM(x238)      t0__3a0         ! t0__4t0_a0    ! b_e_2t04a0    ! t0__9t0
2055
LSYM(x239)      t0__16a0        ! t0__5t0       ! b_e_t0ma0     ! t0__3t0
2056
LSYM(x240)      t0__9a0         ! t0__t0_a0     ! b_e_8t0       ! t0__3t0
2057
LSYM(x241)      t0__9a0         ! t0__t0_a0     ! b_e_8t0a0     ! t0__3t0
2058
LSYM(x242)      t0__5a0         ! t0__3t0       ! b_e_2t0       ! t0__8t0_a0
2059
LSYM(x243)      t0__9a0         ! t0__9t0       ! b_e_t0        ! t0__3t0
2060
LSYM(x244)      t0__5a0         ! t0__3t0       ! b_e_4t0       ! t0__4t0_a0
2061
LSYM(x245)      t0__8a0         ! t0__3t0       ! b_e_5t0       ! t0__2t0_a0
2062
LSYM(x246)      t0__5a0         ! t0__8t0_a0    ! b_e_2t0       ! t0__3t0
2063
LSYM(x247)      t0__5a0         ! t0__8t0_a0    ! b_e_2t0a0     ! t0__3t0
2064
LSYM(x248)      t0__32a0        ! t0__t0ma0     ! b_e_shift     ! r__r_8t0
2065
LSYM(x249)      t0__32a0        ! t0__t0ma0     ! b_e_t0        ! t0__8t0_a0
2066
LSYM(x250)      t0__5a0         ! t0__5t0       ! b_e_2t0       ! t0__5t0
2067
LSYM(x251)      t0__5a0         ! t0__5t0       ! b_e_2t0a0     ! t0__5t0
2068
LSYM(x252)      t0__64a0        ! t0__t0ma0     ! b_e_shift     ! r__r_4t0
2069
LSYM(x253)      t0__64a0        ! t0__t0ma0     ! b_e_t0        ! t0__4t0_a0
2070
LSYM(x254)      t0__128a0       ! t0__t0ma0     ! b_e_shift     ! r__r_2t0
2071
LSYM(x255)      t0__256a0       ! a1_ne_0_b_l0  ! t0__t0ma0     ! b_n_ret_t0
2072
/*1040 insts before this.  */
2073
LSYM(ret_t0)    MILLIRET
2074
LSYM(e_t0)      r__r_t0
2075
LSYM(e_shift)   a1_ne_0_b_l2
2076
        a0__256a0       /* a0 <<= 8 *********** */
2077
        MILLIRETN
2078
LSYM(e_t0ma0)   a1_ne_0_b_l0
2079
        t0__t0ma0
2080
        MILLIRET
2081
        r__r_t0
2082
LSYM(e_t0a0)    a1_ne_0_b_l0
2083
        t0__t0_a0
2084
        MILLIRET
2085
        r__r_t0
2086
LSYM(e_t02a0)   a1_ne_0_b_l0
2087
        t0__t0_2a0
2088
        MILLIRET
2089
        r__r_t0
2090
LSYM(e_t04a0)   a1_ne_0_b_l0
2091
        t0__t0_4a0
2092
        MILLIRET
2093
        r__r_t0
2094
LSYM(e_2t0)     a1_ne_0_b_l1
2095
        r__r_2t0
2096
        MILLIRETN
2097
LSYM(e_2t0a0)   a1_ne_0_b_l0
2098
        t0__2t0_a0
2099
        MILLIRET
2100
        r__r_t0
2101
LSYM(e2t04a0)   t0__t0_2a0
2102
        a1_ne_0_b_l1
2103
        r__r_2t0
2104
        MILLIRETN
2105
LSYM(e_3t0)     a1_ne_0_b_l0
2106
        t0__3t0
2107
        MILLIRET
2108
        r__r_t0
2109
LSYM(e_4t0)     a1_ne_0_b_l1
2110
        r__r_4t0
2111
        MILLIRETN
2112
LSYM(e_4t0a0)   a1_ne_0_b_l0
2113
        t0__4t0_a0
2114
        MILLIRET
2115
        r__r_t0
2116
LSYM(e4t08a0)   t0__t0_2a0
2117
        a1_ne_0_b_l1
2118
        r__r_4t0
2119
        MILLIRETN
2120
LSYM(e_5t0)     a1_ne_0_b_l0
2121
        t0__5t0
2122
        MILLIRET
2123
        r__r_t0
2124
LSYM(e_8t0)     a1_ne_0_b_l1
2125
        r__r_8t0
2126
        MILLIRETN
2127
LSYM(e_8t0a0)   a1_ne_0_b_l0
2128
        t0__8t0_a0
2129
        MILLIRET
2130
        r__r_t0
2131
 
2132
        .procend
2133
        .end
2134
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.