| 1 |
282 |
jeremybenn |
;; GCC machine description for picochip
|
| 2 |
|
|
;; Copyright (C) 2008, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
;; Contributed by picoChip Designs Ltd (http://www.picochip.com)
|
| 4 |
|
|
;; Maintained by Daniel Towner (dant@picochip.com) and Hariharan
|
| 5 |
|
|
;; Sandanagobalane (hariharan@picochip.com)
|
| 6 |
|
|
;;
|
| 7 |
|
|
;; This file is part of GCC.
|
| 8 |
|
|
;;
|
| 9 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
| 10 |
|
|
;; it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
| 12 |
|
|
;; any later version.
|
| 13 |
|
|
;;
|
| 14 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
| 15 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
;; GNU General Public License for more details.
|
| 18 |
|
|
;;
|
| 19 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 20 |
|
|
;; along with GCC; see the file COPYING3. If not, see
|
| 21 |
|
|
;; .
|
| 22 |
|
|
|
| 23 |
|
|
;; -------------------------------------------------------------------------
|
| 24 |
|
|
|
| 25 |
|
|
;; In addition to the normal output operand formats, the following
|
| 26 |
|
|
;; letter formats are also available:
|
| 27 |
|
|
;;
|
| 28 |
|
|
;; The following can be used for constants, or the constant part of a
|
| 29 |
|
|
;; memory offset.
|
| 30 |
|
|
;; Q - Output constant unaltered (byte mode).
|
| 31 |
|
|
;; M - Alias for Q, which only works with memory operands.
|
| 32 |
|
|
;; H - Divide constant by 2 (i.e., HImode is 2 bytes)
|
| 33 |
|
|
;; S - Divide constant by 4 (i.e., SImode is 4 bytes)
|
| 34 |
|
|
;;
|
| 35 |
|
|
;; The following can be used for two part addresses (i.e., base +
|
| 36 |
|
|
;; offset or base[offset]).
|
| 37 |
|
|
;; o - Output offset only.
|
| 38 |
|
|
;; b - Output base only.
|
| 39 |
|
|
;;
|
| 40 |
|
|
;; The following are used on SI registers and constants
|
| 41 |
|
|
;; R - Output register pair (i.e., R[n:m])
|
| 42 |
|
|
;; L - Output lower word/register
|
| 43 |
|
|
;; U - Output upper word/register
|
| 44 |
|
|
;;
|
| 45 |
|
|
;; The following are used on DI mode registers.
|
| 46 |
|
|
;; X - Output 3rd register
|
| 47 |
|
|
;; Y - Output 4th register
|
| 48 |
|
|
;;
|
| 49 |
|
|
;; Miscellaneous
|
| 50 |
|
|
;; | - Output VLIW separator
|
| 51 |
|
|
;; r - Output register value of memory operand.
|
| 52 |
|
|
;; I - Output an opcode (e.g., ADD for plus, LSL for lshift)
|
| 53 |
|
|
;; i - Output an opcode in symbolic notation (e.g., + for plus)
|
| 54 |
|
|
|
| 55 |
|
|
;; Define the length of an instruction. Used to allow different types
|
| 56 |
|
|
;; of branches to be used for different branch offsets. Default to 6
|
| 57 |
|
|
;; bytes, which is the longest possible single instruction.
|
| 58 |
|
|
(define_attr "length" "" (const_int 6))
|
| 59 |
|
|
|
| 60 |
|
|
;; Define some constants which are used in conjuction with branch
|
| 61 |
|
|
;; scheduling. Branches must be 10-bit signed, which equates to
|
| 62 |
|
|
;; [-512,511]. However, to compensate for the lack of branch alignment
|
| 63 |
|
|
;; these offsets are reduced by a factor of 2.
|
| 64 |
|
|
|
| 65 |
|
|
(define_constants
|
| 66 |
|
|
[
|
| 67 |
|
|
(MIN_BRANCH_OFFSET -256)
|
| 68 |
|
|
(MAX_BRANCH_OFFSET 255)
|
| 69 |
|
|
(SHORT_BRANCH_LENGTH 6) ; The size of a schedulable short branch.
|
| 70 |
|
|
(LONG_BRANCH_LENGTH 16) ; The size of an expanded JMP?? macro.
|
| 71 |
|
|
]
|
| 72 |
|
|
)
|
| 73 |
|
|
|
| 74 |
|
|
;; Define identifiers for various special instructions. These
|
| 75 |
|
|
;; instructions may then be used in RTL expansions, or builtins.
|
| 76 |
|
|
(define_constants
|
| 77 |
|
|
[
|
| 78 |
|
|
; Special instruction builtins.
|
| 79 |
|
|
(UNSPEC_SBC 0) ; Sign-bit count
|
| 80 |
|
|
(UNSPEC_ADDS 1) ; Saturating addition
|
| 81 |
|
|
(UNSPEC_SUBS 2) ; Saturating subtraction
|
| 82 |
|
|
(UNSPEC_BREV 3) ; Bit reversal
|
| 83 |
|
|
|
| 84 |
|
|
; Special internal instructions (only used by compiler)
|
| 85 |
|
|
(UNSPEC_COPYSW 5) ; Get status word
|
| 86 |
|
|
(UNSPEC_ADDC 6) ; Add with carry.
|
| 87 |
|
|
|
| 88 |
|
|
; Scalar port communication builtins
|
| 89 |
|
|
(UNSPEC_PUT 7) ; Communication (put): port[op0] := op1
|
| 90 |
|
|
(UNSPEC_GET 8) ; Communication (get): op0 := get_port[op1]
|
| 91 |
|
|
(UNSPEC_TESTPORT 9) ; Communication (test): op0 := testport[op1]
|
| 92 |
|
|
|
| 93 |
|
|
; Array port communication builtins. These all take extra
|
| 94 |
|
|
; arguments giving information about the array access being used.
|
| 95 |
|
|
(UNSPEC_PUT_ARRAY 10) ; Array put
|
| 96 |
|
|
(UNSPEC_GET_ARRAY 11) ; Array get
|
| 97 |
|
|
(UNSPEC_TESTPORT_ARRAY 12) ; Array test port
|
| 98 |
|
|
|
| 99 |
|
|
;; Array port expansions
|
| 100 |
|
|
(UNSPEC_CALL_GET_ARRAY 13) ;
|
| 101 |
|
|
(UNSPEC_CALL_PUT_ARRAY 14) ;
|
| 102 |
|
|
(UNSPEC_CALL_TESTPORT_ARRAY 15) ;
|
| 103 |
|
|
|
| 104 |
|
|
; Array port low-level fn calls
|
| 105 |
|
|
(UNSPEC_CALL_GET_FN 16)
|
| 106 |
|
|
(UNSPEC_CALL_TESTPORT_FN 17)
|
| 107 |
|
|
|
| 108 |
|
|
; Halt instruction.
|
| 109 |
|
|
(UNSPEC_HALT 18)
|
| 110 |
|
|
|
| 111 |
|
|
; Internal TSTPORT instruction, used to generate a single TSTPORT
|
| 112 |
|
|
; instruction for use in the testport branch split.
|
| 113 |
|
|
(UNSPEC_INTERNAL_TESTPORT 19)
|
| 114 |
|
|
]
|
| 115 |
|
|
)
|
| 116 |
|
|
|
| 117 |
|
|
;; Register ID's
|
| 118 |
|
|
(define_constants
|
| 119 |
|
|
[
|
| 120 |
|
|
(LINK_REGNUM 12) ; Function link register.
|
| 121 |
|
|
(CC_REGNUM 17) ; Condition flags.
|
| 122 |
|
|
(ACC_REGNUM 16) ; Condition flags.
|
| 123 |
|
|
]
|
| 124 |
|
|
)
|
| 125 |
|
|
|
| 126 |
|
|
;;============================================================================
|
| 127 |
|
|
;; Predicates and constraints
|
| 128 |
|
|
;;============================================================================
|
| 129 |
|
|
|
| 130 |
|
|
(include "predicates.md")
|
| 131 |
|
|
(include "constraints.md")
|
| 132 |
|
|
|
| 133 |
|
|
;;============================================================================
|
| 134 |
|
|
;; First operand shifting patterns. These allow certain instructions
|
| 135 |
|
|
;; (e.g., add, and, or, xor, sub) to apply a shift-by-constant to
|
| 136 |
|
|
;; their first operand.
|
| 137 |
|
|
;;
|
| 138 |
|
|
;; Note that only the first operand is matched by the shift, to ensure
|
| 139 |
|
|
;; that non-commutative instructions (like subtract) work
|
| 140 |
|
|
;; properly. When a commutative instruction, with a shift in the
|
| 141 |
|
|
;; second operand is found, the compiler will reorder the operands to
|
| 142 |
|
|
;; match.
|
| 143 |
|
|
;;============================================================================
|
| 144 |
|
|
|
| 145 |
|
|
(define_insn "*firstOpGenericAshift"
|
| 146 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 147 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
| 148 |
|
|
[(ashift:HI
|
| 149 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
| 150 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
| 151 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
| 152 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 153 |
|
|
""
|
| 154 |
|
|
"%I1.0 [LSL %2,%3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
|
| 155 |
|
|
[(set_attr "type" "picoAlu")
|
| 156 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
| 157 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
| 158 |
|
|
;; immediate. Note that the following condition is written in the
|
| 159 |
|
|
;; way which uses the least number of predicates.
|
| 160 |
|
|
(set (attr "longConstant")
|
| 161 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
| 162 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
| 163 |
|
|
(match_operand 1 "picochip_J_operand")))
|
| 164 |
|
|
(const_string "false")]
|
| 165 |
|
|
(const_string "true")))])
|
| 166 |
|
|
|
| 167 |
|
|
;; During combine, ashift gets converted into a multiply, necessitating the following pattern.
|
| 168 |
|
|
;; Note that we do a log_2(imm) to get the actual LSL operand.
|
| 169 |
|
|
|
| 170 |
|
|
(define_insn "*firstOpGenericAshift"
|
| 171 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 172 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
| 173 |
|
|
[(mult:HI
|
| 174 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
| 175 |
|
|
(match_operand:HI 3 "power_of_2_imm_operand" "n"))
|
| 176 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
| 177 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 178 |
|
|
""
|
| 179 |
|
|
"%I1.0 [LSL %2,%P3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
|
| 180 |
|
|
[(set_attr "type" "picoAlu")
|
| 181 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
| 182 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
| 183 |
|
|
;; immediate. Note that the following condition is written in the
|
| 184 |
|
|
;; way which uses the least number of predicates.
|
| 185 |
|
|
(set (attr "longConstant")
|
| 186 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
| 187 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
| 188 |
|
|
(match_operand 1 "picochip_J_operand")))
|
| 189 |
|
|
(const_string "false")]
|
| 190 |
|
|
(const_string "true")))])
|
| 191 |
|
|
|
| 192 |
|
|
(define_insn "*firstOpGenericAshiftrt"
|
| 193 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 194 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
| 195 |
|
|
[(ashiftrt:HI
|
| 196 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
| 197 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
| 198 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
| 199 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 200 |
|
|
""
|
| 201 |
|
|
"%I1.0 [ASR %2,%3],%4,%0\t// %0 := (%2 >>{arith} %3) %i1 %4"
|
| 202 |
|
|
[(set_attr "type" "picoAlu")
|
| 203 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
| 204 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
| 205 |
|
|
;; immediate. Note that the following condition is written in the
|
| 206 |
|
|
;; way which uses the least number of predicates.
|
| 207 |
|
|
(set (attr "longConstant")
|
| 208 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
| 209 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
| 210 |
|
|
(match_operand 1 "picochip_J_operand")))
|
| 211 |
|
|
(const_string "false")]
|
| 212 |
|
|
(const_string "true")))])
|
| 213 |
|
|
|
| 214 |
|
|
(define_insn "*firstOpGenericLshiftrt"
|
| 215 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 216 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
| 217 |
|
|
[(lshiftrt:HI
|
| 218 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
| 219 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
| 220 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
| 221 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 222 |
|
|
""
|
| 223 |
|
|
"%I1.0 [LSR %2,%3],%4,%0\t// %0 := (%2 >> %3) %i1 %4"
|
| 224 |
|
|
[(set_attr "type" "picoAlu")
|
| 225 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
| 226 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
| 227 |
|
|
;; immediate. Note that the following condition is written in the
|
| 228 |
|
|
;; way which uses the least number of predicates.
|
| 229 |
|
|
(set (attr "longConstant")
|
| 230 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
| 231 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
| 232 |
|
|
(match_operand 1 "picochip_J_operand")))
|
| 233 |
|
|
(const_string "false")]
|
| 234 |
|
|
(const_string "true")))])
|
| 235 |
|
|
|
| 236 |
|
|
;;===========================================================================
|
| 237 |
|
|
;; Jump instructions.
|
| 238 |
|
|
;;===========================================================================
|
| 239 |
|
|
|
| 240 |
|
|
(define_insn "indirect_jump"
|
| 241 |
|
|
[(set (pc) (match_operand:HI 0 "register_operand" "r"))]
|
| 242 |
|
|
""
|
| 243 |
|
|
"JR (%0)\t// Indirect_jump to %0 %>"
|
| 244 |
|
|
[(set_attr "type" "realBranch")
|
| 245 |
|
|
(set_attr "length" "3")])
|
| 246 |
|
|
|
| 247 |
|
|
(define_insn "jump"
|
| 248 |
|
|
[(set (pc)
|
| 249 |
|
|
(label_ref (match_operand 0 "" "")))]
|
| 250 |
|
|
""
|
| 251 |
|
|
"* return picochip_output_jump(insn);"
|
| 252 |
|
|
[(set (attr "length")
|
| 253 |
|
|
(if_then_else
|
| 254 |
|
|
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
|
| 255 |
|
|
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
|
| 256 |
|
|
(const_int SHORT_BRANCH_LENGTH)
|
| 257 |
|
|
(const_int LONG_BRANCH_LENGTH)))
|
| 258 |
|
|
(set (attr "type")
|
| 259 |
|
|
(if_then_else
|
| 260 |
|
|
(eq_attr "length" "6")
|
| 261 |
|
|
(const_string "realBranch")
|
| 262 |
|
|
(const_string "unknown")))])
|
| 263 |
|
|
|
| 264 |
|
|
(define_insn "*fn_return"
|
| 265 |
|
|
[(return)
|
| 266 |
|
|
(use (reg:HI LINK_REGNUM))]
|
| 267 |
|
|
""
|
| 268 |
|
|
"JR (R12)\t// Return to caller %>"
|
| 269 |
|
|
[(set_attr "length" "2")
|
| 270 |
|
|
(set_attr "type" "realBranch")
|
| 271 |
|
|
(set_attr "longConstant" "false")])
|
| 272 |
|
|
|
| 273 |
|
|
;; Peephole either 2 LDWs or STWs into LDL/STL.
|
| 274 |
|
|
(define_peephole2
|
| 275 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
| 276 |
|
|
(match_operand:HI 1 "memory_operand" ""))
|
| 277 |
|
|
(set (match_operand:HI 2 "register_operand" "")
|
| 278 |
|
|
(match_operand:HI 3 "memory_operand" ""))]
|
| 279 |
|
|
"ok_to_peephole_ldw(operands[0],operands[1],operands[2],operands[3])"
|
| 280 |
|
|
[(set (match_dup 4) (match_dup 5))]
|
| 281 |
|
|
"{
|
| 282 |
|
|
operands[4] = gen_min_reg(operands[0],operands[2]);
|
| 283 |
|
|
operands[5] = gen_SImode_mem(operands[1],operands[3]);
|
| 284 |
|
|
}")
|
| 285 |
|
|
|
| 286 |
|
|
(define_peephole2
|
| 287 |
|
|
[(set (match_operand:HI 0 "memory_operand" "")
|
| 288 |
|
|
(match_operand:HI 1 "register_operand" ""))
|
| 289 |
|
|
(set (match_operand:HI 2 "memory_operand" "")
|
| 290 |
|
|
(match_operand:HI 3 "register_operand" ""))]
|
| 291 |
|
|
"ok_to_peephole_stw(operands[0],operands[1],operands[2],operands[3])"
|
| 292 |
|
|
[(set (match_dup 4) (match_dup 5))]
|
| 293 |
|
|
"{
|
| 294 |
|
|
operands[4] = gen_SImode_mem(operands[0],operands[2]);
|
| 295 |
|
|
operands[5] = gen_min_reg(operands[1],operands[3]);
|
| 296 |
|
|
}")
|
| 297 |
|
|
|
| 298 |
|
|
|
| 299 |
|
|
;; We have instructions like add,subtract,ior,and that set condition
|
| 300 |
|
|
;; codes if they are executed on slot 0. If we have
|
| 301 |
|
|
;; add a = b + c
|
| 302 |
|
|
;; if (a!=0)
|
| 303 |
|
|
;; {}
|
| 304 |
|
|
;; We would have RTL sequence like
|
| 305 |
|
|
;; add.# rb,rc,ra # will be replaced by slot no, after scheduling
|
| 306 |
|
|
;; sub.0 ra,0,r15
|
| 307 |
|
|
;; bnz
|
| 308 |
|
|
;; Instead, we can just do
|
| 309 |
|
|
;; add.0 rb,rc,ra
|
| 310 |
|
|
;; bnz
|
| 311 |
|
|
|
| 312 |
|
|
(define_peephole2
|
| 313 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
| 314 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "")
|
| 315 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 316 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 317 |
|
|
(parallel [(set (pc)
|
| 318 |
|
|
(if_then_else
|
| 319 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 320 |
|
|
[(match_dup 0) (const_int 0)])
|
| 321 |
|
|
(label_ref (match_operand 6 "" ""))
|
| 322 |
|
|
(pc)))
|
| 323 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 324 |
|
|
""
|
| 325 |
|
|
[(parallel [(set (match_dup 0)
|
| 326 |
|
|
(plus:HI (match_dup 1) (match_dup 2)))
|
| 327 |
|
|
(set (reg:CC CC_REGNUM)
|
| 328 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 329 |
|
|
(parallel [(set (pc)
|
| 330 |
|
|
(if_then_else
|
| 331 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 332 |
|
|
(label_ref (match_dup 6))
|
| 333 |
|
|
(pc)))
|
| 334 |
|
|
(use (match_dup 7))])]
|
| 335 |
|
|
"{
|
| 336 |
|
|
operands[7] = GEN_INT(0);
|
| 337 |
|
|
}")
|
| 338 |
|
|
|
| 339 |
|
|
(define_peephole2
|
| 340 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
| 341 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "")
|
| 342 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 343 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 344 |
|
|
(set (reg:CC CC_REGNUM)
|
| 345 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 346 |
|
|
[(match_dup 0) (const_int 0)]))
|
| 347 |
|
|
(parallel [(set (pc)
|
| 348 |
|
|
(if_then_else
|
| 349 |
|
|
(match_operator 4 "comparison_operator"
|
| 350 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 351 |
|
|
(label_ref (match_operand 5 "" ""))
|
| 352 |
|
|
(pc)))
|
| 353 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
| 354 |
|
|
""
|
| 355 |
|
|
[(parallel [(set (match_dup 0)
|
| 356 |
|
|
(plus:HI (match_dup 1) (match_dup 2)))
|
| 357 |
|
|
(set (reg:CC CC_REGNUM)
|
| 358 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 359 |
|
|
(parallel [(set (pc)
|
| 360 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 361 |
|
|
(label_ref (match_dup 5))
|
| 362 |
|
|
(pc)))
|
| 363 |
|
|
(use (match_dup 6))])]
|
| 364 |
|
|
"{
|
| 365 |
|
|
operands[7] = GEN_INT(0);
|
| 366 |
|
|
}")
|
| 367 |
|
|
|
| 368 |
|
|
|
| 369 |
|
|
;; If peephole happens before the cbranch split
|
| 370 |
|
|
|
| 371 |
|
|
(define_peephole2
|
| 372 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
| 373 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "")
|
| 374 |
|
|
(match_operand:HI 2 "register_operand" "")))
|
| 375 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 376 |
|
|
(parallel [(set (pc)
|
| 377 |
|
|
(if_then_else
|
| 378 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 379 |
|
|
[(match_dup 0) (const_int 0)])
|
| 380 |
|
|
(label_ref (match_operand 6 "" ""))
|
| 381 |
|
|
(pc)))
|
| 382 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 383 |
|
|
""
|
| 384 |
|
|
[(parallel [(set (match_dup 0)
|
| 385 |
|
|
(minus:HI (match_dup 1) (match_dup 2)))
|
| 386 |
|
|
(set (reg:CC CC_REGNUM)
|
| 387 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 388 |
|
|
(parallel [(set (pc)
|
| 389 |
|
|
(if_then_else
|
| 390 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 391 |
|
|
(label_ref (match_dup 6))
|
| 392 |
|
|
(pc)))
|
| 393 |
|
|
(use (match_dup 7))])]
|
| 394 |
|
|
"{
|
| 395 |
|
|
operands[7] = GEN_INT(0);
|
| 396 |
|
|
}")
|
| 397 |
|
|
|
| 398 |
|
|
|
| 399 |
|
|
;; If peephole happens after the cbranch split
|
| 400 |
|
|
|
| 401 |
|
|
(define_peephole2
|
| 402 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
| 403 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "")
|
| 404 |
|
|
(match_operand:HI 2 "register_operand" "")))
|
| 405 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 406 |
|
|
(set (reg:CC CC_REGNUM)
|
| 407 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 408 |
|
|
[(match_dup 0) (const_int 0)]))
|
| 409 |
|
|
(parallel [(set (pc)
|
| 410 |
|
|
(if_then_else
|
| 411 |
|
|
(match_operator 4 "comparison_operator"
|
| 412 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 413 |
|
|
(label_ref (match_operand 5 "" ""))
|
| 414 |
|
|
(pc)))
|
| 415 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
| 416 |
|
|
""
|
| 417 |
|
|
[(parallel [(set (match_dup 0)
|
| 418 |
|
|
(minus:HI (match_dup 1) (match_dup 2)))
|
| 419 |
|
|
(set (reg:CC CC_REGNUM)
|
| 420 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 421 |
|
|
(parallel [(set (pc)
|
| 422 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 423 |
|
|
(label_ref (match_dup 5))
|
| 424 |
|
|
(pc)))
|
| 425 |
|
|
(use (match_dup 6))])]
|
| 426 |
|
|
"{
|
| 427 |
|
|
operands[7] = GEN_INT(0);
|
| 428 |
|
|
}")
|
| 429 |
|
|
|
| 430 |
|
|
;; If peephole happens before the cbranch split
|
| 431 |
|
|
|
| 432 |
|
|
(define_peephole2
|
| 433 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
| 434 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "")
|
| 435 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 436 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 437 |
|
|
(parallel [(set (pc)
|
| 438 |
|
|
(if_then_else
|
| 439 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 440 |
|
|
[(match_dup 0) (const_int 0)])
|
| 441 |
|
|
(label_ref (match_operand 6 "" ""))
|
| 442 |
|
|
(pc)))
|
| 443 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 444 |
|
|
""
|
| 445 |
|
|
[(parallel [(set (match_dup 0)
|
| 446 |
|
|
(and:HI (match_dup 1) (match_dup 2)))
|
| 447 |
|
|
(set (reg:CC CC_REGNUM)
|
| 448 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 449 |
|
|
(parallel [(set (pc)
|
| 450 |
|
|
(if_then_else
|
| 451 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 452 |
|
|
(label_ref (match_dup 6))
|
| 453 |
|
|
(pc)))
|
| 454 |
|
|
(use (match_dup 7))])]
|
| 455 |
|
|
"{
|
| 456 |
|
|
operands[7] = GEN_INT(0);
|
| 457 |
|
|
}")
|
| 458 |
|
|
|
| 459 |
|
|
(define_peephole2
|
| 460 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
| 461 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "")
|
| 462 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 463 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 464 |
|
|
(set (reg:CC CC_REGNUM)
|
| 465 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 466 |
|
|
[(match_dup 0) (const_int 0)]))
|
| 467 |
|
|
(parallel [(set (pc)
|
| 468 |
|
|
(if_then_else
|
| 469 |
|
|
(match_operator 4 "comparison_operator"
|
| 470 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 471 |
|
|
(label_ref (match_operand 5 "" ""))
|
| 472 |
|
|
(pc)))
|
| 473 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
| 474 |
|
|
""
|
| 475 |
|
|
[(parallel [(set (match_dup 0)
|
| 476 |
|
|
(and:HI (match_dup 1) (match_dup 2)))
|
| 477 |
|
|
(set (reg:CC CC_REGNUM)
|
| 478 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 479 |
|
|
(parallel [(set (pc)
|
| 480 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 481 |
|
|
(label_ref (match_dup 5))
|
| 482 |
|
|
(pc)))
|
| 483 |
|
|
(use (match_dup 6))])]
|
| 484 |
|
|
"{
|
| 485 |
|
|
operands[7] = GEN_INT(0);
|
| 486 |
|
|
}")
|
| 487 |
|
|
|
| 488 |
|
|
;; If peephole happens before the cbranch split
|
| 489 |
|
|
|
| 490 |
|
|
(define_peephole2
|
| 491 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
| 492 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "")
|
| 493 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 494 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 495 |
|
|
(parallel [(set (pc)
|
| 496 |
|
|
(if_then_else
|
| 497 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 498 |
|
|
[(match_dup 0) (const_int 0)])
|
| 499 |
|
|
(label_ref (match_operand 6 "" ""))
|
| 500 |
|
|
(pc)))
|
| 501 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 502 |
|
|
""
|
| 503 |
|
|
[(parallel [(set (match_dup 0)
|
| 504 |
|
|
(ior:HI (match_dup 1) (match_dup 2)))
|
| 505 |
|
|
(set (reg:CC CC_REGNUM)
|
| 506 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 507 |
|
|
(parallel [(set (pc)
|
| 508 |
|
|
(if_then_else
|
| 509 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 510 |
|
|
(label_ref (match_dup 6))
|
| 511 |
|
|
(pc)))
|
| 512 |
|
|
(use (match_dup 7))])]
|
| 513 |
|
|
"{
|
| 514 |
|
|
operands[7] = GEN_INT(0);
|
| 515 |
|
|
}")
|
| 516 |
|
|
|
| 517 |
|
|
(define_peephole2
|
| 518 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
| 519 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "")
|
| 520 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
| 521 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 522 |
|
|
(set (reg:CC CC_REGNUM)
|
| 523 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 524 |
|
|
[(match_dup 0) (const_int 0)]))
|
| 525 |
|
|
(parallel [(set (pc)
|
| 526 |
|
|
(if_then_else
|
| 527 |
|
|
(match_operator 4 "comparison_operator"
|
| 528 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 529 |
|
|
(label_ref (match_operand 5 "" ""))
|
| 530 |
|
|
(pc)))
|
| 531 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
| 532 |
|
|
""
|
| 533 |
|
|
[(parallel [(set (match_dup 0)
|
| 534 |
|
|
(ior:HI (match_dup 1) (match_dup 2)))
|
| 535 |
|
|
(set (reg:CC CC_REGNUM)
|
| 536 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
| 537 |
|
|
(parallel [(set (pc)
|
| 538 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 539 |
|
|
(label_ref (match_dup 5))
|
| 540 |
|
|
(pc)))
|
| 541 |
|
|
(use (match_dup 6))])]
|
| 542 |
|
|
"{
|
| 543 |
|
|
operands[7] = GEN_INT(0);
|
| 544 |
|
|
}")
|
| 545 |
|
|
|
| 546 |
|
|
;; Conditional branch (HI). This is split into separate compare and
|
| 547 |
|
|
;; branch instructions if scheduling is enabled. The branch
|
| 548 |
|
|
;; instruction is supplied with the type of comparison on which the
|
| 549 |
|
|
;; branch should occur.
|
| 550 |
|
|
|
| 551 |
|
|
(define_insn_and_split "cbranchhi4"
|
| 552 |
|
|
[(set (pc)
|
| 553 |
|
|
(if_then_else
|
| 554 |
|
|
(match_operator:CC 0 "ordered_comparison_operator"
|
| 555 |
|
|
[(match_operand:HI 1 "register_operand" "r")
|
| 556 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "ri")])
|
| 557 |
|
|
(label_ref (match_operand 3 "" ""))
|
| 558 |
|
|
(pc)))
|
| 559 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 560 |
|
|
""
|
| 561 |
|
|
"* return picochip_output_cbranch(operands);"
|
| 562 |
|
|
"reload_completed
|
| 563 |
|
|
&& (picochip_schedule_type != DFA_TYPE_NONE || flag_delayed_branch)"
|
| 564 |
|
|
[(set (reg:CC CC_REGNUM) (match_dup 0))
|
| 565 |
|
|
(parallel [(set (pc)
|
| 566 |
|
|
(if_then_else (match_op_dup:HI 0 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 567 |
|
|
(label_ref (match_dup 3))
|
| 568 |
|
|
(pc)))
|
| 569 |
|
|
(use (match_dup 4))])]
|
| 570 |
|
|
"{
|
| 571 |
|
|
operands[4] = GEN_INT(GET_CODE(operands[0]));
|
| 572 |
|
|
}")
|
| 573 |
|
|
|
| 574 |
|
|
;; The only difference between this and the next pattern is that the next pattern
|
| 575 |
|
|
;; might introduce subtracts whose first operand is a constant. This would have to
|
| 576 |
|
|
;; be a longConstant. But, we know that such a situation wouldnt arise for supported
|
| 577 |
|
|
;; comparison operator and hence this pattern assumes that the second constraint combo
|
| 578 |
|
|
;; would still generate a normal instruction.
|
| 579 |
|
|
|
| 580 |
|
|
(define_insn "*supported_compare"
|
| 581 |
|
|
[(set (reg:CC CC_REGNUM)
|
| 582 |
|
|
(match_operator:CC 0 "picochip_supported_comparison_operator"
|
| 583 |
|
|
[(match_operand:HI 1 "register_operand" "r,r,r")
|
| 584 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
|
| 585 |
|
|
""
|
| 586 |
|
|
"* return picochip_output_compare(operands);"
|
| 587 |
|
|
[; Must be picoAlu because it sets the condition flags.
|
| 588 |
|
|
(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
| 589 |
|
|
(set_attr "longConstant" "false,false,true")
|
| 590 |
|
|
(set_attr "length" "2,2,4")
|
| 591 |
|
|
])
|
| 592 |
|
|
|
| 593 |
|
|
(define_insn "*compare"
|
| 594 |
|
|
[(set (reg:CC CC_REGNUM)
|
| 595 |
|
|
(match_operator:CC 0 "comparison_operator"
|
| 596 |
|
|
[(match_operand:HI 1 "register_operand" "r,r,r")
|
| 597 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "r,M,i")]))]
|
| 598 |
|
|
""
|
| 599 |
|
|
"* return picochip_output_compare(operands);"
|
| 600 |
|
|
[; Must be picoAlu because it sets the condition flags.
|
| 601 |
|
|
(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
| 602 |
|
|
(set_attr "longConstant" "false,true,true")
|
| 603 |
|
|
(set_attr "length" "2,4,4")
|
| 604 |
|
|
])
|
| 605 |
|
|
|
| 606 |
|
|
; Match a branch instruction, created from a tstport/cbranch split.
|
| 607 |
|
|
; We use a "use" clause so GCC doesnt try to use this pattern generally.
|
| 608 |
|
|
(define_insn "*branch"
|
| 609 |
|
|
[(set (pc)
|
| 610 |
|
|
(if_then_else
|
| 611 |
|
|
(match_operator 2 "comparison_operator"
|
| 612 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 613 |
|
|
(label_ref (match_operand 0 "" ""))
|
| 614 |
|
|
(pc)))
|
| 615 |
|
|
(use (match_operand:HI 1 "const_int_operand" ""))]
|
| 616 |
|
|
""
|
| 617 |
|
|
"* return picochip_output_branch(operands, insn);"
|
| 618 |
|
|
[(set (attr "length")
|
| 619 |
|
|
(if_then_else
|
| 620 |
|
|
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
|
| 621 |
|
|
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
|
| 622 |
|
|
(const_int SHORT_BRANCH_LENGTH)
|
| 623 |
|
|
(const_int LONG_BRANCH_LENGTH)))
|
| 624 |
|
|
(set (attr "type")
|
| 625 |
|
|
(if_then_else
|
| 626 |
|
|
(eq_attr "length" "6")
|
| 627 |
|
|
(const_string "realBranch")
|
| 628 |
|
|
(const_string "unknown")))])
|
| 629 |
|
|
|
| 630 |
|
|
;; If a movqi is used which accesses memory on a machine which doesn't
|
| 631 |
|
|
;; have byte addressing, synthesise the instruction using word load/store
|
| 632 |
|
|
;; operations. The movqi's that are required during reload phase are
|
| 633 |
|
|
;; handled using reload_inqi/reload_outqi.
|
| 634 |
|
|
|
| 635 |
|
|
(define_expand "movqi"
|
| 636 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "")
|
| 637 |
|
|
(match_operand:QI 1 "general_operand" ""))]
|
| 638 |
|
|
""
|
| 639 |
|
|
{
|
| 640 |
|
|
|
| 641 |
|
|
if (!reload_completed &&
|
| 642 |
|
|
!TARGET_HAS_BYTE_ACCESS &&
|
| 643 |
|
|
(MEM == GET_CODE(operands[0]) || MEM == GET_CODE(operands[1])))
|
| 644 |
|
|
{
|
| 645 |
|
|
rtx address;
|
| 646 |
|
|
rtx wordAddress;
|
| 647 |
|
|
rtx const1;
|
| 648 |
|
|
rtx shiftVal;
|
| 649 |
|
|
rtx loadedValue;
|
| 650 |
|
|
rtx addressMask;
|
| 651 |
|
|
|
| 652 |
|
|
warn_of_byte_access();
|
| 653 |
|
|
|
| 654 |
|
|
/* Load the constant 1 into a register. */
|
| 655 |
|
|
const1 = gen_reg_rtx(HImode);
|
| 656 |
|
|
emit_insn(gen_rtx_SET(HImode, const1, GEN_INT(1)));
|
| 657 |
|
|
|
| 658 |
|
|
/* Load the address mask with the bitwise complement of 1. */
|
| 659 |
|
|
addressMask = gen_reg_rtx(HImode);
|
| 660 |
|
|
emit_insn(gen_rtx_SET(HImode, addressMask, GEN_INT(-2)));
|
| 661 |
|
|
|
| 662 |
|
|
/* Handle loads first, in case we are dealing with a mem := mem
|
| 663 |
|
|
* instruction. */
|
| 664 |
|
|
if (MEM == GET_CODE(operands[1]))
|
| 665 |
|
|
{
|
| 666 |
|
|
/* Loads work as follows. The entire word containing the desired byte
|
| 667 |
|
|
* is loaded. The bottom bit of the address indicates which
|
| 668 |
|
|
* byte is required. The desired byte is moved into the most
|
| 669 |
|
|
* significant byte, and then an arithmetic shift right
|
| 670 |
|
|
* invoked to achieve sign extension. The desired byte is
|
| 671 |
|
|
* moved to the MSB by XOR'ing the bottom address bit by 1,
|
| 672 |
|
|
* multiplying the result by 8, and then shifting left by
|
| 673 |
|
|
* that amount. Note that shifts only operate on the bottom
|
| 674 |
|
|
* 4-bits of the source offset, so although the XOR may
|
| 675 |
|
|
* produce a value which has its upper bits set, only bit 4
|
| 676 |
|
|
* (i.e., the inverted, shifted bottom address bit) actually
|
| 677 |
|
|
* gets used.
|
| 678 |
|
|
*/
|
| 679 |
|
|
|
| 680 |
|
|
/* Ensure the address is in a register. */
|
| 681 |
|
|
address = gen_reg_rtx(HImode);
|
| 682 |
|
|
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[1], 0)));
|
| 683 |
|
|
|
| 684 |
|
|
/* Compute the word address by masking out the bottom bit. */
|
| 685 |
|
|
wordAddress = gen_reg_rtx(HImode);
|
| 686 |
|
|
emit_insn(gen_andhi3(wordAddress, address, addressMask));
|
| 687 |
|
|
|
| 688 |
|
|
/* Compute the shift value. This is the bottom address bit,
|
| 689 |
|
|
* inverted, and multiplied by 8. */
|
| 690 |
|
|
shiftVal = gen_reg_rtx(HImode);
|
| 691 |
|
|
emit_insn(gen_xorhi3(shiftVal, address, const1));
|
| 692 |
|
|
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
|
| 693 |
|
|
|
| 694 |
|
|
/* Emit the memory load. */
|
| 695 |
|
|
loadedValue = gen_reg_rtx(HImode);
|
| 696 |
|
|
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
|
| 697 |
|
|
|
| 698 |
|
|
/* Shift the desired byte to the most significant byte. */
|
| 699 |
|
|
rtx topByteValue = gen_reg_rtx (HImode);
|
| 700 |
|
|
emit_insn (gen_ashlhi3 (topByteValue, loadedValue, shiftVal));
|
| 701 |
|
|
|
| 702 |
|
|
/* Sign extend the top-byte back into the bottom byte. */
|
| 703 |
|
|
rtx signExtendedValue = gen_reg_rtx(HImode);
|
| 704 |
|
|
emit_insn(gen_ashrhi3(signExtendedValue, topByteValue, GEN_INT(8)));
|
| 705 |
|
|
|
| 706 |
|
|
/* Final extraction of QI mode register. */
|
| 707 |
|
|
operands[1] = gen_rtx_SUBREG(QImode, signExtendedValue, 0);
|
| 708 |
|
|
|
| 709 |
|
|
}
|
| 710 |
|
|
|
| 711 |
|
|
if (MEM == GET_CODE(operands[0]) && GET_CODE(operands[1]) != MEM)
|
| 712 |
|
|
{
|
| 713 |
|
|
rtx zeroingByteMask;
|
| 714 |
|
|
rtx temp;
|
| 715 |
|
|
rtx tempQiMode;
|
| 716 |
|
|
rtx tempHiMode;
|
| 717 |
|
|
|
| 718 |
|
|
/* Get the address. */
|
| 719 |
|
|
address = gen_reg_rtx(HImode);
|
| 720 |
|
|
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[0], 0)));
|
| 721 |
|
|
|
| 722 |
|
|
/* Compute the word aligned address. */
|
| 723 |
|
|
wordAddress = gen_reg_rtx(HImode);
|
| 724 |
|
|
emit_insn(gen_andhi3(wordAddress, address, addressMask));
|
| 725 |
|
|
|
| 726 |
|
|
/* Compute the shift value. */
|
| 727 |
|
|
shiftVal = gen_reg_rtx(HImode);
|
| 728 |
|
|
emit_insn(gen_andhi3(shiftVal, address, const1));
|
| 729 |
|
|
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
|
| 730 |
|
|
|
| 731 |
|
|
/* Emit the memory load. */
|
| 732 |
|
|
loadedValue = gen_reg_rtx(HImode);
|
| 733 |
|
|
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
|
| 734 |
|
|
|
| 735 |
|
|
/* Zero out the destination bits by AND'ing with 0xFF00
|
| 736 |
|
|
* shifted appropriately. */
|
| 737 |
|
|
zeroingByteMask = gen_reg_rtx(HImode);
|
| 738 |
|
|
emit_insn(gen_rtx_SET(HImode, zeroingByteMask, GEN_INT(-256)));
|
| 739 |
|
|
emit_insn(gen_lshrhi3(zeroingByteMask, zeroingByteMask, shiftVal));
|
| 740 |
|
|
emit_insn(gen_andhi3(loadedValue, loadedValue, zeroingByteMask));
|
| 741 |
|
|
|
| 742 |
|
|
/* Grab the incoming QI register, and ensure that the top bits
|
| 743 |
|
|
* are zeroed out. This is because the register may be
|
| 744 |
|
|
* storing a signed value, in which case the top-bits will be
|
| 745 |
|
|
* sign bits. These must be removed to ensure that the
|
| 746 |
|
|
* read-modify-write (which uses an OR) doesn't pick up those
|
| 747 |
|
|
* bits, instead of the original memory value which is being
|
| 748 |
|
|
* modified.
|
| 749 |
|
|
*/
|
| 750 |
|
|
/*if (register_operand(operands[1],QImode))
|
| 751 |
|
|
{
|
| 752 |
|
|
tempHiMode = XEXP(operands[1], 0);
|
| 753 |
|
|
}
|
| 754 |
|
|
else
|
| 755 |
|
|
{
|
| 756 |
|
|
tempHiMode = operands[1];
|
| 757 |
|
|
}*/
|
| 758 |
|
|
//tempHiMode = force_reg(QImode, operands[1]);
|
| 759 |
|
|
tempHiMode = simplify_gen_subreg(HImode, operands[1], QImode, 0);
|
| 760 |
|
|
temp = gen_reg_rtx(HImode);
|
| 761 |
|
|
emit_insn(gen_rtx_SET(HImode, temp, tempHiMode));
|
| 762 |
|
|
rtx lsbByteMask = gen_reg_rtx (HImode);
|
| 763 |
|
|
emit_insn (gen_rtx_SET (HImode, lsbByteMask, GEN_INT (0xFF)));
|
| 764 |
|
|
emit_insn (gen_andhi3 (temp, temp, lsbByteMask));
|
| 765 |
|
|
|
| 766 |
|
|
/* Shift the incoming byte value by the appropriate amount,
|
| 767 |
|
|
* and OR into the load value. */
|
| 768 |
|
|
emit_insn(gen_ashlhi3(temp, temp, shiftVal));
|
| 769 |
|
|
emit_insn(gen_iorhi3(loadedValue, loadedValue, temp));
|
| 770 |
|
|
|
| 771 |
|
|
/* Rewrite the original assignment, to assign the new value
|
| 772 |
|
|
* to the word address. */
|
| 773 |
|
|
operands[0] = gen_rtx_MEM(HImode, wordAddress);
|
| 774 |
|
|
operands[1] = loadedValue;
|
| 775 |
|
|
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
}
|
| 779 |
|
|
})
|
| 780 |
|
|
|
| 781 |
|
|
(define_insn "*movqi_sign_extend"
|
| 782 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 783 |
|
|
(sign_extend:HI (match_operand:QI 1 "memory_operand" "a,m")))]
|
| 784 |
|
|
"TARGET_HAS_BYTE_ACCESS"
|
| 785 |
|
|
"@
|
| 786 |
|
|
LDB (%a1),%0\t\t// %0 = Mem(%a1)
|
| 787 |
|
|
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})"
|
| 788 |
|
|
[(set_attr "type" "mem,mem")
|
| 789 |
|
|
(set_attr "longConstant" "true,false")
|
| 790 |
|
|
(set_attr "length" "4,4")])
|
| 791 |
|
|
|
| 792 |
|
|
;; movqi instructions for machines with and without byte access.
|
| 793 |
|
|
(define_insn "*movqi_byte"
|
| 794 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,a,m")
|
| 795 |
|
|
(match_operand:QI 1 "general_operand" "r,a,m,I,i,r,r"))]
|
| 796 |
|
|
"TARGET_HAS_BYTE_ACCESS"
|
| 797 |
|
|
"@
|
| 798 |
|
|
COPY.%# %1, %0\t// %0 := %1
|
| 799 |
|
|
LDB (%a1),%0\t\t// %0 = Mem(%a1)
|
| 800 |
|
|
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})
|
| 801 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (short constant)
|
| 802 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (long constant)
|
| 803 |
|
|
STB %1,(%a0)\t\t// Mem(%a0) := %1
|
| 804 |
|
|
STB %1,%a0\t\t// Mem(%M0{byte}) := %1"
|
| 805 |
|
|
[(set_attr "type" "basicAlu,mem,mem,basicAlu,basicAlu,mem,mem")
|
| 806 |
|
|
(set_attr "longConstant" "false,true,false,false,true,true,false")
|
| 807 |
|
|
(set_attr "length" "2,4,4,2,4,4,4")])
|
| 808 |
|
|
|
| 809 |
|
|
;; Machines which don't have byte access can copy registers, and load
|
| 810 |
|
|
;; constants, but can't access memory. The define_expand for movqi
|
| 811 |
|
|
;; should already have rewritten memory accesses using word
|
| 812 |
|
|
;; operations. The exception is qi reloads, which are handled using
|
| 813 |
|
|
;; the reload_? patterns.
|
| 814 |
|
|
(define_insn "*movqi_nobyte"
|
| 815 |
|
|
[(set (match_operand:QI 0 "register_operand" "=r,r")
|
| 816 |
|
|
(match_operand:QI 1 "picochip_register_or_immediate_operand" "r,i"))]
|
| 817 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
| 818 |
|
|
"@
|
| 819 |
|
|
COPY.%# %1,%0\t// %0 := %1
|
| 820 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI)")
|
| 821 |
|
|
|
| 822 |
|
|
(define_insn "movhi"
|
| 823 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,a,m,r,r")
|
| 824 |
|
|
(match_operand:HI 1 "general_operand" "r,a,m,r,r,I,i"))]
|
| 825 |
|
|
""
|
| 826 |
|
|
"@
|
| 827 |
|
|
COPY.%# %1,%0\t\t// %0 := %1
|
| 828 |
|
|
LDW (%a1),%0\t\t// %0 := Mem(%a1)
|
| 829 |
|
|
LDW %a1,%0\t\t// %0 = Mem(%M1{byte})
|
| 830 |
|
|
STW %1,(%a0)\t\t// Mem(%a0) := %1
|
| 831 |
|
|
STW %1,%a0\t\t// Mem(%M0{byte}) := %1
|
| 832 |
|
|
COPY.%# %1,%0\t// %0 := %1 (short constant)
|
| 833 |
|
|
COPY.%# %1,%0\t// %0 := %1 (long constant)"
|
| 834 |
|
|
[(set_attr "type" "basicAlu,mem,mem,mem,mem,basicAlu,basicAlu")
|
| 835 |
|
|
(set_attr "longConstant" "false,true,false,true,false,false,true")
|
| 836 |
|
|
(set_attr "length" "2,4,4,4,4,2,4")])
|
| 837 |
|
|
|
| 838 |
|
|
(define_insn "movsi"
|
| 839 |
|
|
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,a,m")
|
| 840 |
|
|
(match_operand:SI 1 "general_operand" "r,a,m,i,r,r"))]
|
| 841 |
|
|
""
|
| 842 |
|
|
"@
|
| 843 |
|
|
// %R0 := %R1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
|
| 844 |
|
|
LDL (%a1),%R0\t\t// %R0 = Mem(%a1)
|
| 845 |
|
|
LDL %a1,%R0\t\t// %R0 = Mem(%M1{byte})
|
| 846 |
|
|
// %R0 := #%1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.%# %U1,%U0
|
| 847 |
|
|
STL %R1,(%a0)\t\t// Mem(%a0) := %R1
|
| 848 |
|
|
STL %R1,%a0\t\t// Mem(%M0{byte}) := %R1"
|
| 849 |
|
|
[(set_attr "type" "unknown,mem,mem,unknown,mem,mem")
|
| 850 |
|
|
(set_attr "longConstant" "false,true,false,true,false,false")
|
| 851 |
|
|
(set_attr "length" "4,4,4,6,4,4")])
|
| 852 |
|
|
|
| 853 |
|
|
; Split an SI mode register copy into separate HI mode copies, which
|
| 854 |
|
|
; can be VLIW'd with other instructions. Only split the instruction
|
| 855 |
|
|
; when VLIW scheduling is enabled. Splitting the instruction saves
|
| 856 |
|
|
; some code space.
|
| 857 |
|
|
;
|
| 858 |
|
|
; This is predicated in reload_completed. This ensures that the
|
| 859 |
|
|
; instructions aren't broken up too early which can result in the
|
| 860 |
|
|
; SImode code being converted into inefficient HI mode code.
|
| 861 |
|
|
|
| 862 |
|
|
(define_split
|
| 863 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
| 864 |
|
|
(match_operand:SI 1 "register_operand" ""))]
|
| 865 |
|
|
"reload_completed && picochip_schedule_type == DFA_TYPE_SPEED"
|
| 866 |
|
|
[(set (match_dup 2) (match_dup 3))
|
| 867 |
|
|
(set (match_dup 4) (match_dup 5))]
|
| 868 |
|
|
"{
|
| 869 |
|
|
operands[2] = gen_lowpart (HImode, operands[0]);
|
| 870 |
|
|
operands[3] = gen_lowpart (HImode, operands[1]);
|
| 871 |
|
|
operands[4] = gen_highpart (HImode, operands[0]);
|
| 872 |
|
|
operands[5] = gen_highpart (HImode, operands[1]);
|
| 873 |
|
|
}")
|
| 874 |
|
|
|
| 875 |
|
|
; SI Mode split for load constant.
|
| 876 |
|
|
(define_split
|
| 877 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
| 878 |
|
|
(match_operand:SI 1 "const_int_operand" ""))]
|
| 879 |
|
|
""
|
| 880 |
|
|
[(set (match_dup 2) (match_dup 3))
|
| 881 |
|
|
(set (match_dup 4) (match_dup 5))]
|
| 882 |
|
|
"{
|
| 883 |
|
|
operands[2] = gen_lowpart (HImode, operands[0]);
|
| 884 |
|
|
operands[3] = picochip_get_low_const(operands[1]);
|
| 885 |
|
|
operands[4] = gen_highpart (HImode, operands[0]);
|
| 886 |
|
|
operands[5] = picochip_get_high_const(operands[1]);
|
| 887 |
|
|
}")
|
| 888 |
|
|
|
| 889 |
|
|
(define_insn "movsf"
|
| 890 |
|
|
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
|
| 891 |
|
|
(match_operand:SF 1 "general_operand" "r,m,i,r"))]
|
| 892 |
|
|
""
|
| 893 |
|
|
"@
|
| 894 |
|
|
// %R0 := %R1 (SF)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
|
| 895 |
|
|
LDL %a1,%R0\t\t// %R0 :={SF} Mem(%M1{byte})
|
| 896 |
|
|
// %R0 := #%1 (SF)\n\tCOPY.%# %L1,%L0\n\tCOPY.%# %U1,%U0
|
| 897 |
|
|
STL %R1,%a0\t\t// Mem(%M0{byte}) :={SF} %R1")
|
| 898 |
|
|
|
| 899 |
|
|
;;===========================================================================
|
| 900 |
|
|
;; NOP
|
| 901 |
|
|
;;===========================================================================
|
| 902 |
|
|
|
| 903 |
|
|
;; No-operation (NOP)
|
| 904 |
|
|
(define_insn "nop"
|
| 905 |
|
|
[(const_int 0)]
|
| 906 |
|
|
""
|
| 907 |
|
|
"NOP\t// nop"
|
| 908 |
|
|
[(set_attr "length" "1")])
|
| 909 |
|
|
|
| 910 |
|
|
;;===========================================================================
|
| 911 |
|
|
;; Function Calls. Define expands are used to ensure that the correct
|
| 912 |
|
|
;; type of pattern is emitted, and then the define_insn's match the
|
| 913 |
|
|
;; pattern using the correct types.
|
| 914 |
|
|
;;
|
| 915 |
|
|
;; Note: The comments output as part of these instructions are detected by
|
| 916 |
|
|
;; the linker. Don't change the comments!
|
| 917 |
|
|
;;===========================================================================
|
| 918 |
|
|
|
| 919 |
|
|
(define_expand "call"
|
| 920 |
|
|
[(parallel [(call (match_operand:QI 0 "memory_operand" "")
|
| 921 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 922 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
| 923 |
|
|
""
|
| 924 |
|
|
"")
|
| 925 |
|
|
|
| 926 |
|
|
(define_insn "call_for_divmod"
|
| 927 |
|
|
[(call (match_operand:QI 0 "memory_operand" "")
|
| 928 |
|
|
(match_operand 1 "const_int_operand" ""))]
|
| 929 |
|
|
""
|
| 930 |
|
|
"JL (%M0)\t// fn_call %M0%>"
|
| 931 |
|
|
[(set_attr "length" "4")
|
| 932 |
|
|
(set_attr "type" "realBranch")
|
| 933 |
|
|
(set_attr "longConstant" "true")])
|
| 934 |
|
|
|
| 935 |
|
|
(define_insn "*call_using_symbol"
|
| 936 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
| 937 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 938 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 939 |
|
|
""
|
| 940 |
|
|
"JL (%M0)\t// fn_call %M0%>"
|
| 941 |
|
|
[(set_attr "length" "4")
|
| 942 |
|
|
(set_attr "type" "realBranch")
|
| 943 |
|
|
(set_attr "longConstant" "true")])
|
| 944 |
|
|
|
| 945 |
|
|
(define_insn "*call_using_register"
|
| 946 |
|
|
[(call (mem:QI (match_operand:HI 0 "register_operand" "r"))
|
| 947 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 948 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 949 |
|
|
""
|
| 950 |
|
|
"JL (%r0)\t// fn_call_unknown %r0%>"
|
| 951 |
|
|
[(set_attr "length" "2")
|
| 952 |
|
|
(set_attr "type" "realBranch")
|
| 953 |
|
|
(set_attr "longConstant" "false")])
|
| 954 |
|
|
|
| 955 |
|
|
(define_expand "call_value"
|
| 956 |
|
|
[(parallel [(set (match_operand:HI 0 "" "")
|
| 957 |
|
|
(call:HI (match_operand:QI 1 "memory_operand" "g")
|
| 958 |
|
|
(match_operand 2 "const_int_operand" "")))
|
| 959 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
| 960 |
|
|
""
|
| 961 |
|
|
"")
|
| 962 |
|
|
|
| 963 |
|
|
(define_insn "*call_value_using_symbol"
|
| 964 |
|
|
[(set (match_operand:HI 0 "" "")
|
| 965 |
|
|
(call:HI (mem:QI (match_operand:HI 1 "immediate_operand" "i"))
|
| 966 |
|
|
(match_operand 2 "const_int_operand" "")))
|
| 967 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 968 |
|
|
""
|
| 969 |
|
|
"JL (%M1)\t// fn_call %M1 (value return)%>"
|
| 970 |
|
|
[(set_attr "length" "4")
|
| 971 |
|
|
(set_attr "type" "realBranch")
|
| 972 |
|
|
(set_attr "longConstant" "true")])
|
| 973 |
|
|
|
| 974 |
|
|
(define_insn "*call_value_using_register"
|
| 975 |
|
|
[(set (match_operand:HI 0 "" "")
|
| 976 |
|
|
(call:HI (mem:QI (match_operand:HI 1 "register_operand" "r"))
|
| 977 |
|
|
(match_operand 2 "const_int_operand" "")))
|
| 978 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 979 |
|
|
""
|
| 980 |
|
|
"JL (%r1)// fn_call_unknown %r1 (value return)%>"
|
| 981 |
|
|
[(set_attr "length" "2")
|
| 982 |
|
|
(set_attr "type" "realBranch")
|
| 983 |
|
|
(set_attr "longConstant" "false")])
|
| 984 |
|
|
|
| 985 |
|
|
;;===========================================================================
|
| 986 |
|
|
;; Addition
|
| 987 |
|
|
;;===========================================================================
|
| 988 |
|
|
|
| 989 |
|
|
;; Note that the addition of a negative value is transformed into the
|
| 990 |
|
|
;; subtraction of a positive value, so that the add/sub immediate slot
|
| 991 |
|
|
;; can make better use of the 4-bit range.
|
| 992 |
|
|
|
| 993 |
|
|
(define_insn "addhi3"
|
| 994 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
| 995 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
|
| 996 |
|
|
(match_operand:HI 2 "general_operand" "r,M,n,i")))
|
| 997 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 998 |
|
|
""
|
| 999 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
| 1000 |
|
|
INTVAL(operands[2]) > -16 &&
|
| 1001 |
|
|
INTVAL(operands[2]) < 0)
|
| 1002 |
|
|
return "SUB.%# %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
|
| 1003 |
|
|
else
|
| 1004 |
|
|
return "ADD.%# %1,%2,%0\t// %0 := %1 + %2 (HI)";
|
| 1005 |
|
|
}
|
| 1006 |
|
|
[(set_attr "type" "basicAlu,basicAlu,basicAlu,basicAlu")
|
| 1007 |
|
|
(set_attr "longConstant" "false,false,true,true")
|
| 1008 |
|
|
(set_attr "length" "2,2,4,4")]
|
| 1009 |
|
|
)
|
| 1010 |
|
|
|
| 1011 |
|
|
|
| 1012 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the add
|
| 1013 |
|
|
;; goes in slot 0. This pattern is just to accomplish that.
|
| 1014 |
|
|
|
| 1015 |
|
|
(define_insn "addhi3_with_use_clause"
|
| 1016 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
| 1017 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
|
| 1018 |
|
|
(match_operand:HI 2 "general_operand" "r,M,n,i")))
|
| 1019 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1020 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 1021 |
|
|
[(const_int 0)
|
| 1022 |
|
|
(const_int 0)]))]
|
| 1023 |
|
|
""
|
| 1024 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
| 1025 |
|
|
INTVAL(operands[2]) > -16 &&
|
| 1026 |
|
|
INTVAL(operands[2]) < 0)
|
| 1027 |
|
|
return "SUB.0 %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
|
| 1028 |
|
|
else
|
| 1029 |
|
|
return "ADD.0 %1,%2,%0\t// %0 := %1 + %2 (HI)";
|
| 1030 |
|
|
}
|
| 1031 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu,picoAlu")
|
| 1032 |
|
|
(set_attr "longConstant" "false,false,true,true")
|
| 1033 |
|
|
(set_attr "length" "2,2,4,4")]
|
| 1034 |
|
|
)
|
| 1035 |
|
|
|
| 1036 |
|
|
;; Match an addition in which the first operand has been shifted
|
| 1037 |
|
|
;; (e.g., the comms array functions can emit such instructions).
|
| 1038 |
|
|
(define_insn "*addWith1stOpShift"
|
| 1039 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1040 |
|
|
(plus:HI (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1041 |
|
|
(match_operand:HI 2 "const_int_operand" ""))
|
| 1042 |
|
|
(match_operand:HI 3 "immediate_operand" "I,i")))
|
| 1043 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1044 |
|
|
""
|
| 1045 |
|
|
"ADD.0 [LSL %1,%2],%3,%0\t// %0 := (%1 << %2) + %3"
|
| 1046 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1047 |
|
|
(set_attr "longConstant" "false,true")])
|
| 1048 |
|
|
|
| 1049 |
|
|
(define_insn_and_split "addsi3"
|
| 1050 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r")
|
| 1051 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "r,r")
|
| 1052 |
|
|
(match_operand:SI 2 "general_operand" "r,i")))
|
| 1053 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1054 |
|
|
""
|
| 1055 |
|
|
"// %0 := %1 + %2 (SI)\n\tADD.0 %L1,%L2,%L0\n\tADDC.0 %U1,%U2,%U0"
|
| 1056 |
|
|
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
| 1057 |
|
|
[(match_dup 4)
|
| 1058 |
|
|
(match_dup 5)]
|
| 1059 |
|
|
"
|
| 1060 |
|
|
{
|
| 1061 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
| 1062 |
|
|
rtx op1_high = gen_highpart (HImode, operands[1]);
|
| 1063 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
| 1064 |
|
|
rtx op1_low = gen_lowpart (HImode, operands[1]);
|
| 1065 |
|
|
rtx op2_high, op2_low;
|
| 1066 |
|
|
|
| 1067 |
|
|
if (CONST_INT == GET_CODE(operands[2]))
|
| 1068 |
|
|
{
|
| 1069 |
|
|
op2_high = picochip_get_high_const(operands[2]);
|
| 1070 |
|
|
op2_low = picochip_get_low_const(operands[2]);
|
| 1071 |
|
|
} else {
|
| 1072 |
|
|
op2_high = gen_highpart (HImode, operands[2]);
|
| 1073 |
|
|
op2_low = gen_lowpart (HImode, operands[2]);
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
operands[4] = gen_add_multi_lower (op0_low, op1_low, op2_low);
|
| 1077 |
|
|
operands[5] = gen_add_multi_upper (op0_high, op1_high, op2_high);
|
| 1078 |
|
|
|
| 1079 |
|
|
}")
|
| 1080 |
|
|
|
| 1081 |
|
|
;; Perform the lowest part of a multi-part addition (SI/DI). This sets
|
| 1082 |
|
|
;; the flags, so is an picoAlu instruction (we could use a
|
| 1083 |
|
|
;; conventional addhi, but the addhi is better off being a treated as
|
| 1084 |
|
|
;; a basicAlu instruction, rather than a picoAlu instruction).
|
| 1085 |
|
|
(define_insn "add_multi_lower"
|
| 1086 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
| 1087 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r")
|
| 1088 |
|
|
(match_operand:HI 2 "general_operand" "r,M,i")))
|
| 1089 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1090 |
|
|
(compare:CC (plus:HI (match_dup 1)
|
| 1091 |
|
|
(match_dup 2))
|
| 1092 |
|
|
(const_int 0)))]
|
| 1093 |
|
|
""
|
| 1094 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
| 1095 |
|
|
INTVAL(operands[2]) > -16 &&
|
| 1096 |
|
|
INTVAL(operands[2]) < 0)
|
| 1097 |
|
|
return "SUB.%# %1,-(%2),%0\t// %0+carry := %1 + %2 (low multi-part)";
|
| 1098 |
|
|
else
|
| 1099 |
|
|
return "ADD.%# %1,%2,%0\t// %0+carry := %1 + %2 (low multi-part)";
|
| 1100 |
|
|
}
|
| 1101 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
| 1102 |
|
|
(set_attr "longConstant" "false,false,true")
|
| 1103 |
|
|
(set_attr "length" "2,2,4")])
|
| 1104 |
|
|
|
| 1105 |
|
|
;; Perform the central part of a multi-part addition (DI). This uses
|
| 1106 |
|
|
;; the CC register, and also sets the CC register, so needs to be
|
| 1107 |
|
|
;; placed in the first ALU slot. Note that the ADDC must
|
| 1108 |
|
|
;; use the long constant to represent immediates.
|
| 1109 |
|
|
(define_insn "add_multi_mid"
|
| 1110 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1111 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1112 |
|
|
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
|
| 1113 |
|
|
(reg:CC CC_REGNUM))))
|
| 1114 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1115 |
|
|
(compare:CC (plus:HI (match_dup 1)
|
| 1116 |
|
|
(match_dup 2))
|
| 1117 |
|
|
(const_int 0)))]
|
| 1118 |
|
|
""
|
| 1119 |
|
|
"ADDC.%# %1,%2,%0\t// %0+carry := carry + %1 + %2 (mid multi-part)"
|
| 1120 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1121 |
|
|
(set_attr "longConstant" "false,true")
|
| 1122 |
|
|
(set_attr "length" "2,4")])
|
| 1123 |
|
|
|
| 1124 |
|
|
;; Perform the highest part of a multi-part addition (SI/DI). This
|
| 1125 |
|
|
;; uses the CC register, but doesn't require any registers to be set,
|
| 1126 |
|
|
;; so may be scheduled in either of the ALU's. Note that the ADDC must
|
| 1127 |
|
|
;; use the long constant to represent immediates.
|
| 1128 |
|
|
(define_insn "add_multi_upper"
|
| 1129 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1130 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1131 |
|
|
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
|
| 1132 |
|
|
(reg:CC CC_REGNUM))))
|
| 1133 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1134 |
|
|
""
|
| 1135 |
|
|
"ADDC.%# %1,%2,%0\t// %0 := carry + %1 + %2 (high multi-part)"
|
| 1136 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
| 1137 |
|
|
(set_attr "longConstant" "false,true")
|
| 1138 |
|
|
(set_attr "length" "2,4")])
|
| 1139 |
|
|
|
| 1140 |
|
|
;; The lea instruction is a special type of add operation, which looks
|
| 1141 |
|
|
;; like a movhi (reg := address). It expands into reg := fp +
|
| 1142 |
|
|
;; offset. Ideally there should be two variants, which take different
|
| 1143 |
|
|
;; sized offsets (i.e., using the long constant, or not, as
|
| 1144 |
|
|
;; appropriate). However, the address operand may have arbitrary
|
| 1145 |
|
|
;; values added to it later (i.e., the AP will be eliminated, possibly
|
| 1146 |
|
|
;; converting a small offset into a long offset), so a long offset is
|
| 1147 |
|
|
;; always assumed.
|
| 1148 |
|
|
|
| 1149 |
|
|
;; Note that the lea can use an addition, and hence may modify the CC
|
| 1150 |
|
|
;; register. This upsets scheduling, so instead the lea is placed in
|
| 1151 |
|
|
;; ALU 1 where it cannot modify CC.
|
| 1152 |
|
|
|
| 1153 |
|
|
(define_insn "*lea_add"
|
| 1154 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
|
| 1155 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r")
|
| 1156 |
|
|
(match_operand:HI 2 "immediate_operand" "i")))]
|
| 1157 |
|
|
""
|
| 1158 |
|
|
"ADD.1 %1,%2,%0\t// lea (add)")
|
| 1159 |
|
|
|
| 1160 |
|
|
;; Note that, though this instruction looks similar to movhi pattern,
|
| 1161 |
|
|
;; "p" constraint cannot be specified for operands other than
|
| 1162 |
|
|
;; address_operand, hence the extra pattern below.
|
| 1163 |
|
|
(define_insn "*lea_move"
|
| 1164 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
|
| 1165 |
|
|
(match_operand:HI 1 "address_operand" "p"))]
|
| 1166 |
|
|
""
|
| 1167 |
|
|
{
|
| 1168 |
|
|
if (REG == GET_CODE(operands[1]))
|
| 1169 |
|
|
return "COPY.1 %1,%0\t// %0 := %1 (lea)";
|
| 1170 |
|
|
else
|
| 1171 |
|
|
return "ADD.1 %b1,%o1,%0\t\t// %0 := %b1 + %o1 (lea)";
|
| 1172 |
|
|
}
|
| 1173 |
|
|
[(set_attr "type" "nonCcAlu")
|
| 1174 |
|
|
(set_attr "longConstant" "true")
|
| 1175 |
|
|
(set_attr "length" "4")])
|
| 1176 |
|
|
|
| 1177 |
|
|
|
| 1178 |
|
|
;;===========================================================================
|
| 1179 |
|
|
;; Subtraction. Note that these patterns never take immediate second
|
| 1180 |
|
|
;; operands, since those cases are handled by canonicalising the
|
| 1181 |
|
|
;; instruction into the addition of a negative costant.
|
| 1182 |
|
|
;; But, if the first operand needs to be a negative constant, it
|
| 1183 |
|
|
;; is supported here.
|
| 1184 |
|
|
;;===========================================================================
|
| 1185 |
|
|
|
| 1186 |
|
|
(define_insn "subhi3"
|
| 1187 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
| 1188 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
|
| 1189 |
|
|
(match_operand:HI 2 "register_operand" "r,r,r")))
|
| 1190 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1191 |
|
|
""
|
| 1192 |
|
|
"SUB.%# %1,%2,%0 // %0 := %1 - %2 (HI)"
|
| 1193 |
|
|
[(set_attr "type" "basicAlu,basicAlu,basicAlu")
|
| 1194 |
|
|
(set_attr "longConstant" "false,true,true")
|
| 1195 |
|
|
(set_attr "length" "2,4,4")])
|
| 1196 |
|
|
|
| 1197 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the
|
| 1198 |
|
|
;; sub goes in slot 0. This pattern is just to accomplish that.
|
| 1199 |
|
|
|
| 1200 |
|
|
(define_insn "subhi3_with_use_clause"
|
| 1201 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
| 1202 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
|
| 1203 |
|
|
(match_operand:HI 2 "register_operand" "r,r,r")))
|
| 1204 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1205 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 1206 |
|
|
[(const_int 0)
|
| 1207 |
|
|
(const_int 0)]))]
|
| 1208 |
|
|
""
|
| 1209 |
|
|
"SUB.0 %1,%2,%0 // %0 := %1 - %2 (HI)"
|
| 1210 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
| 1211 |
|
|
(set_attr "longConstant" "false,true,true")
|
| 1212 |
|
|
(set_attr "length" "2,4,4")])
|
| 1213 |
|
|
|
| 1214 |
|
|
(define_insn_and_split "subsi3"
|
| 1215 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r")
|
| 1216 |
|
|
(minus:SI (match_operand:SI 1 "general_operand" "r,i")
|
| 1217 |
|
|
(match_operand:SI 2 "register_operand" "r,r")))
|
| 1218 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1219 |
|
|
""
|
| 1220 |
|
|
"// %0 := %1 - %2 (SI)\n\tSUB.%# %L1,%L2,%L0\n\tSUBB.%# %U1,%U2,%U0"
|
| 1221 |
|
|
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
| 1222 |
|
|
[(match_dup 4)
|
| 1223 |
|
|
(match_dup 5)]
|
| 1224 |
|
|
"
|
| 1225 |
|
|
{
|
| 1226 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
| 1227 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
| 1228 |
|
|
rtx op2_high = gen_highpart (HImode, operands[2]);
|
| 1229 |
|
|
rtx op2_low = gen_lowpart (HImode, operands[2]);
|
| 1230 |
|
|
rtx op1_high,op1_low;
|
| 1231 |
|
|
|
| 1232 |
|
|
if (CONST_INT == GET_CODE(operands[1]))
|
| 1233 |
|
|
{
|
| 1234 |
|
|
op1_high = picochip_get_high_const(operands[1]);
|
| 1235 |
|
|
op1_low = picochip_get_low_const(operands[1]);
|
| 1236 |
|
|
} else {
|
| 1237 |
|
|
op1_high = gen_highpart (HImode, operands[1]);
|
| 1238 |
|
|
op1_low = gen_lowpart (HImode, operands[1]);
|
| 1239 |
|
|
}
|
| 1240 |
|
|
|
| 1241 |
|
|
|
| 1242 |
|
|
operands[4] = gen_sub_multi_lower (op0_low, op1_low, op2_low);
|
| 1243 |
|
|
operands[5] = gen_sub_multi_upper (op0_high, op1_high, op2_high);
|
| 1244 |
|
|
|
| 1245 |
|
|
}")
|
| 1246 |
|
|
|
| 1247 |
|
|
;; Match the patterns emitted by the multi-part subtraction splitting.
|
| 1248 |
|
|
;; This sets the CC register, so it needs to go into slot 0.
|
| 1249 |
|
|
(define_insn "sub_multi_lower"
|
| 1250 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1251 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
| 1252 |
|
|
(match_operand:HI 2 "register_operand" "r,r")))
|
| 1253 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1254 |
|
|
(compare:CC (minus:HI (match_dup 1) (match_dup 2))
|
| 1255 |
|
|
(const_int 0)))]
|
| 1256 |
|
|
""
|
| 1257 |
|
|
"SUB.%# %1,%2,%0\t// %0+carry := %1 - %2 (lower SI)"
|
| 1258 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1259 |
|
|
(set_attr "longConstant" "false,true")
|
| 1260 |
|
|
(set_attr "length" "2,4")])
|
| 1261 |
|
|
|
| 1262 |
|
|
;; Perform the central part of a multi-part addition (DI). This uses
|
| 1263 |
|
|
;; the CC register, and also sets the CC register, so needs to be
|
| 1264 |
|
|
;; placed in the first ALU.
|
| 1265 |
|
|
(define_insn "sub_multi_mid"
|
| 1266 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1267 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
| 1268 |
|
|
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
|
| 1269 |
|
|
(reg:CC CC_REGNUM))))
|
| 1270 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1271 |
|
|
(compare:CC (minus:HI (match_dup 1)
|
| 1272 |
|
|
(match_dup 2))
|
| 1273 |
|
|
(const_int 0)))]
|
| 1274 |
|
|
""
|
| 1275 |
|
|
"SUBB.%# %1,%2,%0\t// %0+carry := carry - %1 - %2 (mid multi-part)"
|
| 1276 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1277 |
|
|
(set_attr "longConstant" "false,true")
|
| 1278 |
|
|
(set_attr "length" "2,4")])
|
| 1279 |
|
|
|
| 1280 |
|
|
(define_insn "sub_multi_upper"
|
| 1281 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1282 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
| 1283 |
|
|
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
|
| 1284 |
|
|
(reg:CC CC_REGNUM))))
|
| 1285 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1286 |
|
|
""
|
| 1287 |
|
|
"SUBB.%# %1,%2,%0\t// %0 := carry - %1 - %2 (upper SI)"
|
| 1288 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
| 1289 |
|
|
(set_attr "longConstant" "false,true")
|
| 1290 |
|
|
(set_attr "length" "2,4")])
|
| 1291 |
|
|
|
| 1292 |
|
|
;;===========================================================================
|
| 1293 |
|
|
;; Multiplication (signed)
|
| 1294 |
|
|
;;===========================================================================
|
| 1295 |
|
|
|
| 1296 |
|
|
(define_insn "multiply_machi"
|
| 1297 |
|
|
[(set (reg:HI ACC_REGNUM)
|
| 1298 |
|
|
(mult:HI (match_operand:HI 0 "register_operand" "r,r")
|
| 1299 |
|
|
(match_operand:HI 1
|
| 1300 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
| 1301 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1302 |
|
|
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
|
| 1303 |
|
|
[(set_attr "length" "3,5")
|
| 1304 |
|
|
(set_attr "type" "mac,mac")
|
| 1305 |
|
|
(set_attr "longConstant" "false,true")])
|
| 1306 |
|
|
|
| 1307 |
|
|
(define_expand "mulhi3"
|
| 1308 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
| 1309 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "")
|
| 1310 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")))]
|
| 1311 |
|
|
"TARGET_HAS_MULTIPLY"
|
| 1312 |
|
|
"")
|
| 1313 |
|
|
|
| 1314 |
|
|
;; Different types of mulhi, depending on the AE type. If the AE has MUL unit,
|
| 1315 |
|
|
;; use the following pattern.
|
| 1316 |
|
|
(define_insn "*mulhi3_mul"
|
| 1317 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1318 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1319 |
|
|
(match_operand:HI 2
|
| 1320 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
| 1321 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1322 |
|
|
"MULL %1,%2,%0 // %0 := %1 * %2 (HI)"
|
| 1323 |
|
|
[(set_attr "length" "3,5")
|
| 1324 |
|
|
(set_attr "type" "mul,mul")
|
| 1325 |
|
|
(set_attr "longConstant" "false,true")])
|
| 1326 |
|
|
|
| 1327 |
|
|
;; If the AE has MAC unit, instead, use the following pattern.
|
| 1328 |
|
|
(define_insn_and_split "*mulhi3_mac"
|
| 1329 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1330 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1331 |
|
|
(match_operand:HI 2
|
| 1332 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
| 1333 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1334 |
|
|
"// %0 := %1 * %2\n\tMUL %1,%2,acc0\n\tREADACC acc0,frac,%0"
|
| 1335 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
| 1336 |
|
|
[(match_dup 3)
|
| 1337 |
|
|
(match_dup 4)]
|
| 1338 |
|
|
"
|
| 1339 |
|
|
{
|
| 1340 |
|
|
rtx const_rtx = GEN_INT(0);
|
| 1341 |
|
|
operands[3] = (gen_multiply_machi(operands[1], operands[2]));
|
| 1342 |
|
|
operands[4] = (gen_movhi_mac(operands[0],const_rtx));
|
| 1343 |
|
|
} "
|
| 1344 |
|
|
)
|
| 1345 |
|
|
|
| 1346 |
|
|
(define_insn "umultiply_machisi"
|
| 1347 |
|
|
[(set (reg:SI ACC_REGNUM)
|
| 1348 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 0 "register_operand" "r"))
|
| 1349 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))))]
|
| 1350 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1351 |
|
|
"MULUU %0,%1,acc0\t// acc0 := %0 * %1 (unsigned)"
|
| 1352 |
|
|
[(set_attr "length" "3")
|
| 1353 |
|
|
(set_attr "type" "mac")
|
| 1354 |
|
|
(set_attr "longConstant" "false")])
|
| 1355 |
|
|
|
| 1356 |
|
|
(define_insn "multiply_machisi"
|
| 1357 |
|
|
[(set (reg:SI ACC_REGNUM)
|
| 1358 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 0 "register_operand" "r,r"))
|
| 1359 |
|
|
(sign_extend:SI (match_operand:HI 1
|
| 1360 |
|
|
"picochip_register_or_immediate_operand" "r,i"))))]
|
| 1361 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1362 |
|
|
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
|
| 1363 |
|
|
[(set_attr "length" "3,5")
|
| 1364 |
|
|
(set_attr "type" "mac,mac")
|
| 1365 |
|
|
(set_attr "longConstant" "false,true")])
|
| 1366 |
|
|
|
| 1367 |
|
|
;; We want to prevent GCC from thinking ACC is a normal register and using
|
| 1368 |
|
|
;; this pattern. We want it to be used only when you use MAC unit
|
| 1369 |
|
|
;; multiplication. Added a "use" clause for that sake.
|
| 1370 |
|
|
(define_insn "movsi_mac"
|
| 1371 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
| 1372 |
|
|
(reg:SI ACC_REGNUM))
|
| 1373 |
|
|
(use (match_operand:SI 1 "const_int_operand" ""))]
|
| 1374 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1375 |
|
|
"READACC32 acc0,%R0 \t// %0 := acc0 "
|
| 1376 |
|
|
[(set_attr "length" "3")
|
| 1377 |
|
|
(set_attr "type" "mac")
|
| 1378 |
|
|
(set_attr "longConstant" "false")])
|
| 1379 |
|
|
|
| 1380 |
|
|
;; We want to prevent GCC from thinking ACC is a normal register and using
|
| 1381 |
|
|
;; this pattern. We want it to be used only when you use MAC unit
|
| 1382 |
|
|
;; multiplication. Added a "use" clause for that sake.
|
| 1383 |
|
|
(define_insn "movhi_mac"
|
| 1384 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 1385 |
|
|
(reg:HI ACC_REGNUM) )
|
| 1386 |
|
|
(use (match_operand:HI 1 "const_int_operand" ""))]
|
| 1387 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1388 |
|
|
"READACC acc0,frac,%0 \t// %0 := acc0 "
|
| 1389 |
|
|
[(set_attr "length" "3")
|
| 1390 |
|
|
(set_attr "type" "mac")
|
| 1391 |
|
|
(set_attr "longConstant" "false")])
|
| 1392 |
|
|
|
| 1393 |
|
|
;; 16-bit to 32-bit widening signed multiplication.
|
| 1394 |
|
|
(define_expand "mulhisi3"
|
| 1395 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1396 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1397 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1398 |
|
|
"TARGET_HAS_MULTIPLY"
|
| 1399 |
|
|
""
|
| 1400 |
|
|
)
|
| 1401 |
|
|
|
| 1402 |
|
|
(define_insn_and_split "*mulhisi3_mul"
|
| 1403 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1404 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1405 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1406 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1407 |
|
|
"// %0 := %1 * %2 (HI->SI)\;MULL %1,%2,%L0\;MULH %1,%2,%U0";
|
| 1408 |
|
|
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
| 1409 |
|
|
[(match_dup 3)
|
| 1410 |
|
|
(match_dup 4)]
|
| 1411 |
|
|
"
|
| 1412 |
|
|
{
|
| 1413 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
| 1414 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
| 1415 |
|
|
operands[3] = gen_mulhisi3_mul_lower(op0_low,operands[1],operands[2]);
|
| 1416 |
|
|
operands[4] = gen_mulhisi3_mul_higher(op0_high,operands[1],operands[2]);
|
| 1417 |
|
|
}
|
| 1418 |
|
|
"
|
| 1419 |
|
|
)
|
| 1420 |
|
|
|
| 1421 |
|
|
(define_insn "mulhisi3_mul_lower"
|
| 1422 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1423 |
|
|
(subreg:HI
|
| 1424 |
|
|
(mult:SI
|
| 1425 |
|
|
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1426 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
|
| 1427 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1428 |
|
|
"MULL %1,%2,%0"
|
| 1429 |
|
|
[(set_attr "length" "3")
|
| 1430 |
|
|
(set_attr "type" "mul")
|
| 1431 |
|
|
(set_attr "longConstant" "false")])
|
| 1432 |
|
|
|
| 1433 |
|
|
(define_insn "mulhisi3_mul_higher"
|
| 1434 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1435 |
|
|
(subreg:HI
|
| 1436 |
|
|
(mult:SI
|
| 1437 |
|
|
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1438 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
|
| 1439 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1440 |
|
|
"MULH %1,%2,%0"
|
| 1441 |
|
|
[(set_attr "length" "3")
|
| 1442 |
|
|
(set_attr "type" "mul")
|
| 1443 |
|
|
(set_attr "longConstant" "false")])
|
| 1444 |
|
|
|
| 1445 |
|
|
(define_insn_and_split "*mulhisi3_mac"
|
| 1446 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1447 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1448 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1449 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1450 |
|
|
"// %0 := %1 * %2 (HI->SI) STAN2\;MUL %1,%2,acc0\;READACC32 acc0,%R0";
|
| 1451 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
| 1452 |
|
|
[(match_dup 3)
|
| 1453 |
|
|
(match_dup 4)]
|
| 1454 |
|
|
"
|
| 1455 |
|
|
{
|
| 1456 |
|
|
rtx const_rtx = gen_int_mode(0,SImode);
|
| 1457 |
|
|
operands[3] = (gen_multiply_machisi(operands[1], operands[2]));
|
| 1458 |
|
|
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
|
| 1459 |
|
|
} "
|
| 1460 |
|
|
)
|
| 1461 |
|
|
|
| 1462 |
|
|
;;===========================================================================
|
| 1463 |
|
|
;; Widening multiplication (unsigned)
|
| 1464 |
|
|
;;===========================================================================
|
| 1465 |
|
|
|
| 1466 |
|
|
(define_expand "umulhisi3"
|
| 1467 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1468 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1469 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1470 |
|
|
"TARGET_HAS_MULTIPLY"
|
| 1471 |
|
|
""
|
| 1472 |
|
|
)
|
| 1473 |
|
|
|
| 1474 |
|
|
(define_insn_and_split "*umulhisi3_mul"
|
| 1475 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1476 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1477 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1478 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1479 |
|
|
"// %0 := %1 * %2 (uHI->uSI Type 1)\;MULUL %1,%2,%L0\n\tMULUH %1,%2,%U0";
|
| 1480 |
|
|
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
| 1481 |
|
|
[(match_dup 3)
|
| 1482 |
|
|
(match_dup 4)]
|
| 1483 |
|
|
"
|
| 1484 |
|
|
{
|
| 1485 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
| 1486 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
| 1487 |
|
|
operands[3] = gen_umulhisi3_mul_lower(op0_low,operands[1],operands[2]);
|
| 1488 |
|
|
operands[4] = gen_umulhisi3_mul_higher(op0_high,operands[1],operands[2]);
|
| 1489 |
|
|
}
|
| 1490 |
|
|
"
|
| 1491 |
|
|
)
|
| 1492 |
|
|
|
| 1493 |
|
|
(define_insn "umulhisi3_mul_lower"
|
| 1494 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1495 |
|
|
(subreg:HI
|
| 1496 |
|
|
(mult:SI
|
| 1497 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1498 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
|
| 1499 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1500 |
|
|
"MULUL %1,%2,%0"
|
| 1501 |
|
|
[(set_attr "length" "3")
|
| 1502 |
|
|
(set_attr "type" "mul")
|
| 1503 |
|
|
(set_attr "longConstant" "false")])
|
| 1504 |
|
|
|
| 1505 |
|
|
(define_insn "umulhisi3_mul_higher"
|
| 1506 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1507 |
|
|
(subreg:HI
|
| 1508 |
|
|
(mult:SI
|
| 1509 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1510 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
|
| 1511 |
|
|
"TARGET_HAS_MUL_UNIT"
|
| 1512 |
|
|
"MULUH %1,%2,%0"
|
| 1513 |
|
|
[(set_attr "length" "3")
|
| 1514 |
|
|
(set_attr "type" "mul")
|
| 1515 |
|
|
(set_attr "longConstant" "false")])
|
| 1516 |
|
|
|
| 1517 |
|
|
(define_insn_and_split "*umulhisi3_mac"
|
| 1518 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
| 1519 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
| 1520 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
| 1521 |
|
|
"TARGET_HAS_MAC_UNIT"
|
| 1522 |
|
|
"// %0 := %1 * %2 (uHI->uSI Type 3)\;MULUU %1,%2,acc0\;READACC32 acc0,%R0";
|
| 1523 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
| 1524 |
|
|
[(match_dup 3)
|
| 1525 |
|
|
(match_dup 4)]
|
| 1526 |
|
|
"
|
| 1527 |
|
|
{
|
| 1528 |
|
|
rtx const_rtx = gen_int_mode(0,SImode);
|
| 1529 |
|
|
operands[3] = (gen_umultiply_machisi(operands[1], operands[2]));
|
| 1530 |
|
|
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
|
| 1531 |
|
|
} "
|
| 1532 |
|
|
)
|
| 1533 |
|
|
|
| 1534 |
|
|
;;===========================================================================
|
| 1535 |
|
|
;; Division (signed)
|
| 1536 |
|
|
;;===========================================================================
|
| 1537 |
|
|
|
| 1538 |
|
|
;; Perform a divmod operation as a function call. This results in some
|
| 1539 |
|
|
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
|
| 1540 |
|
|
;; known not to be affected).
|
| 1541 |
|
|
(define_expand "divmodhi4"
|
| 1542 |
|
|
[
|
| 1543 |
|
|
; Copy the inputs to r0 and r1.
|
| 1544 |
|
|
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
|
| 1545 |
|
|
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
|
| 1546 |
|
|
; Make the function call - note that r12 (link) is clobbered. Note also
|
| 1547 |
|
|
; that an explicit call is generated. This ensures that gcc notices that
|
| 1548 |
|
|
; any function containing a div/mod is not a leaf function.
|
| 1549 |
|
|
(parallel [(match_dup 4)
|
| 1550 |
|
|
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
|
| 1551 |
|
|
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
|
| 1552 |
|
|
(clobber (reg:HI 2))
|
| 1553 |
|
|
(clobber (reg:HI 3))
|
| 1554 |
|
|
(clobber (reg:HI 4))
|
| 1555 |
|
|
(clobber (reg:HI 5))
|
| 1556 |
|
|
(clobber (reg:HI 12))
|
| 1557 |
|
|
(clobber (reg:CC CC_REGNUM))
|
| 1558 |
|
|
])
|
| 1559 |
|
|
; Set the quotient (returned in register 0)
|
| 1560 |
|
|
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
|
| 1561 |
|
|
; Set the remainder (returned in register 1)
|
| 1562 |
|
|
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
|
| 1563 |
|
|
""
|
| 1564 |
|
|
{
|
| 1565 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodhi4");
|
| 1566 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
| 1567 |
|
|
})
|
| 1568 |
|
|
|
| 1569 |
|
|
; Match a call to divmodhi4. As this is a call, the link register
|
| 1570 |
|
|
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
|
| 1571 |
|
|
; r13/4 as these aren't used by the divide function).
|
| 1572 |
|
|
(define_insn "*divmodhi4_call"
|
| 1573 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
| 1574 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 1575 |
|
|
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
|
| 1576 |
|
|
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
|
| 1577 |
|
|
(clobber (reg:HI 2))
|
| 1578 |
|
|
(clobber (reg:HI 3))
|
| 1579 |
|
|
(clobber (reg:HI 4))
|
| 1580 |
|
|
(clobber (reg:HI 5))
|
| 1581 |
|
|
(clobber (reg:HI 12))
|
| 1582 |
|
|
(clobber (reg:CC CC_REGNUM))
|
| 1583 |
|
|
]
|
| 1584 |
|
|
""
|
| 1585 |
|
|
"JL (%0)\t// call %0%>"
|
| 1586 |
|
|
[(set_attr "length" "4")
|
| 1587 |
|
|
(set_attr "longConstant" "true")
|
| 1588 |
|
|
(set_attr "type" "call")])
|
| 1589 |
|
|
|
| 1590 |
|
|
;; Perform a udivmod operation as a function call. This results in some
|
| 1591 |
|
|
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
|
| 1592 |
|
|
;; known not to be affected).
|
| 1593 |
|
|
(define_expand "udivmodhi4"
|
| 1594 |
|
|
[
|
| 1595 |
|
|
; Copy the inputs to r0 and r1.
|
| 1596 |
|
|
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
|
| 1597 |
|
|
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
|
| 1598 |
|
|
; Make the function call - note that r12 (link) is clobbered. Note also
|
| 1599 |
|
|
; that an explicit call is generated. This ensures that gcc notices that
|
| 1600 |
|
|
; any function containing a div/mod is not a leaf function.
|
| 1601 |
|
|
(parallel [(match_dup 4)
|
| 1602 |
|
|
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
|
| 1603 |
|
|
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
|
| 1604 |
|
|
(clobber (reg:HI 2))
|
| 1605 |
|
|
(clobber (reg:HI 3))
|
| 1606 |
|
|
(clobber (reg:HI 4))
|
| 1607 |
|
|
(clobber (reg:HI 5))
|
| 1608 |
|
|
(clobber (reg:HI 12))
|
| 1609 |
|
|
(clobber (reg:CC CC_REGNUM))
|
| 1610 |
|
|
])
|
| 1611 |
|
|
; Set the quotient (returned in register 0)
|
| 1612 |
|
|
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
|
| 1613 |
|
|
; Set the remainder (returned in register 1)
|
| 1614 |
|
|
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
|
| 1615 |
|
|
""
|
| 1616 |
|
|
{
|
| 1617 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodhi4");
|
| 1618 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
| 1619 |
|
|
})
|
| 1620 |
|
|
|
| 1621 |
|
|
; Match a call to udivmodhi4. As this is a call, the link register
|
| 1622 |
|
|
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
|
| 1623 |
|
|
; r13/4 as these aren't used by the divide function).
|
| 1624 |
|
|
(define_insn "*udivmodhi4_call"
|
| 1625 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
| 1626 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 1627 |
|
|
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
|
| 1628 |
|
|
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
|
| 1629 |
|
|
(clobber (reg:HI 2))
|
| 1630 |
|
|
(clobber (reg:HI 3))
|
| 1631 |
|
|
(clobber (reg:HI 4))
|
| 1632 |
|
|
(clobber (reg:HI 5))
|
| 1633 |
|
|
(clobber (reg:HI 12))
|
| 1634 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1635 |
|
|
""
|
| 1636 |
|
|
"JL (%0)\t// call %0%>"
|
| 1637 |
|
|
[(set_attr "length" "4")
|
| 1638 |
|
|
(set_attr "longConstant" "true")
|
| 1639 |
|
|
(set_attr "type" "call")])
|
| 1640 |
|
|
|
| 1641 |
|
|
(define_expand "udivmodsi4"
|
| 1642 |
|
|
[
|
| 1643 |
|
|
; Make the function call
|
| 1644 |
|
|
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
|
| 1645 |
|
|
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
|
| 1646 |
|
|
(parallel [
|
| 1647 |
|
|
(match_dup 4)
|
| 1648 |
|
|
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
|
| 1649 |
|
|
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
|
| 1650 |
|
|
(clobber (reg:SI 0))
|
| 1651 |
|
|
(clobber (reg:SI 2))
|
| 1652 |
|
|
(clobber (reg:HI 12))
|
| 1653 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 1654 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
|
| 1655 |
|
|
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
|
| 1656 |
|
|
""
|
| 1657 |
|
|
{
|
| 1658 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodsi4");
|
| 1659 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
| 1660 |
|
|
})
|
| 1661 |
|
|
|
| 1662 |
|
|
(define_insn "*udivmodsi4_call"
|
| 1663 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
| 1664 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 1665 |
|
|
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
|
| 1666 |
|
|
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
|
| 1667 |
|
|
(clobber (reg:SI 0))
|
| 1668 |
|
|
(clobber (reg:SI 2))
|
| 1669 |
|
|
(clobber (reg:HI 12))
|
| 1670 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1671 |
|
|
""
|
| 1672 |
|
|
"JL (%0)\t// call %0%>"
|
| 1673 |
|
|
[(set_attr "length" "4")
|
| 1674 |
|
|
(set_attr "longConstant" "true")
|
| 1675 |
|
|
(set_attr "type" "call")])
|
| 1676 |
|
|
|
| 1677 |
|
|
(define_expand "divmodsi4"
|
| 1678 |
|
|
[
|
| 1679 |
|
|
; Make the function call
|
| 1680 |
|
|
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
|
| 1681 |
|
|
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
|
| 1682 |
|
|
(parallel [
|
| 1683 |
|
|
(match_dup 4)
|
| 1684 |
|
|
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
|
| 1685 |
|
|
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
|
| 1686 |
|
|
(clobber (reg:SI 0))
|
| 1687 |
|
|
(clobber (reg:SI 2))
|
| 1688 |
|
|
(clobber (reg:HI 12))
|
| 1689 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 1690 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
|
| 1691 |
|
|
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
|
| 1692 |
|
|
""
|
| 1693 |
|
|
{
|
| 1694 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodsi4");
|
| 1695 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
| 1696 |
|
|
})
|
| 1697 |
|
|
|
| 1698 |
|
|
(define_insn "*divmodsi4_call"
|
| 1699 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
| 1700 |
|
|
(match_operand 1 "const_int_operand" ""))
|
| 1701 |
|
|
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
|
| 1702 |
|
|
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
|
| 1703 |
|
|
(clobber (reg:SI 0))
|
| 1704 |
|
|
(clobber (reg:SI 2))
|
| 1705 |
|
|
(clobber (reg:HI 12))
|
| 1706 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1707 |
|
|
""
|
| 1708 |
|
|
"JL (%0)\t// call %0%>"
|
| 1709 |
|
|
[(set_attr "length" "4")
|
| 1710 |
|
|
(set_attr "longConstant" "true")
|
| 1711 |
|
|
(set_attr "type" "call")])
|
| 1712 |
|
|
|
| 1713 |
|
|
;;===========================================================================
|
| 1714 |
|
|
;; Bitwise AND. The QI/SI mode instructions are automatically
|
| 1715 |
|
|
;; synthesised from the HI mode instruction.
|
| 1716 |
|
|
;;===========================================================================
|
| 1717 |
|
|
|
| 1718 |
|
|
(define_insn "andhi3"
|
| 1719 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1720 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1721 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
| 1722 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1723 |
|
|
""
|
| 1724 |
|
|
"AND.%# %1,%2,%0 // %0 := %1 AND %2 (HI)"
|
| 1725 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
| 1726 |
|
|
(set_attr "longConstant" "false,true")
|
| 1727 |
|
|
(set_attr "length" "3,5")])
|
| 1728 |
|
|
|
| 1729 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the
|
| 1730 |
|
|
;; "and" goes in slot 0. This pattern is just to accomplish that.
|
| 1731 |
|
|
|
| 1732 |
|
|
(define_insn "andhi3_with_use_clause"
|
| 1733 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1734 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1735 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
| 1736 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1737 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 1738 |
|
|
[(const_int 0)
|
| 1739 |
|
|
(const_int 0)]))]
|
| 1740 |
|
|
""
|
| 1741 |
|
|
"AND.0 %1,%2,%0 // %0 := %1 AND %2 (HI)"
|
| 1742 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1743 |
|
|
(set_attr "longConstant" "false,true")
|
| 1744 |
|
|
(set_attr "length" "3,5")])
|
| 1745 |
|
|
|
| 1746 |
|
|
;;===========================================================================
|
| 1747 |
|
|
;; Bitwise inclusive-OR. The QI mode instruction is automatically
|
| 1748 |
|
|
;; synthesised from the HI mode instruction.
|
| 1749 |
|
|
;;===========================================================================
|
| 1750 |
|
|
|
| 1751 |
|
|
(define_insn "iorhi3"
|
| 1752 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1753 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1754 |
|
|
(match_operand:HI 2 "register_operand" "r,n")))
|
| 1755 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1756 |
|
|
""
|
| 1757 |
|
|
"OR.%# %1,%2,%0 // %0 := %1 IOR %2 (HI)"
|
| 1758 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
| 1759 |
|
|
(set_attr "longConstant" "false,true")
|
| 1760 |
|
|
(set_attr "length" "3,5")])
|
| 1761 |
|
|
|
| 1762 |
|
|
(define_insn "iorhi3_with_use_clause"
|
| 1763 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1764 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1765 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
| 1766 |
|
|
(set (reg:CC CC_REGNUM)
|
| 1767 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
| 1768 |
|
|
[(const_int 0)
|
| 1769 |
|
|
(const_int 0)]))]
|
| 1770 |
|
|
""
|
| 1771 |
|
|
"OR.0 %1,%2,%0 // %0 := %1 IOR %2 (HI)"
|
| 1772 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
| 1773 |
|
|
(set_attr "longConstant" "false,true")
|
| 1774 |
|
|
(set_attr "length" "3,5")])
|
| 1775 |
|
|
|
| 1776 |
|
|
;;===========================================================================
|
| 1777 |
|
|
;; Bitwise exclusive-OR. The QI/SI mode instructions are automatically
|
| 1778 |
|
|
;; synthesised from the HI mode instruction.
|
| 1779 |
|
|
;;===========================================================================
|
| 1780 |
|
|
|
| 1781 |
|
|
(define_insn "xorhi3"
|
| 1782 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1783 |
|
|
(xor:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1784 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,n")))
|
| 1785 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1786 |
|
|
""
|
| 1787 |
|
|
"XOR.%# %1,%2,%0 // %0 := %1 XOR %2 (HI)"
|
| 1788 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
| 1789 |
|
|
(set_attr "longConstant" "false,true")
|
| 1790 |
|
|
(set_attr "length" "3,5")])
|
| 1791 |
|
|
|
| 1792 |
|
|
;;===========================================================================
|
| 1793 |
|
|
;; Arithmetic shift left.
|
| 1794 |
|
|
;;===========================================================================
|
| 1795 |
|
|
|
| 1796 |
|
|
(define_insn "ashlhi3"
|
| 1797 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1798 |
|
|
(ashift:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1799 |
|
|
(match_operand:HI 2 "general_operand" "r,J")))]
|
| 1800 |
|
|
""
|
| 1801 |
|
|
"LSL.%# %1,%2,%0 // %0 := %1 << %2"
|
| 1802 |
|
|
[(set_attr "type" "picoAlu,basicAlu")
|
| 1803 |
|
|
(set_attr "length" "3,3")])
|
| 1804 |
|
|
|
| 1805 |
|
|
;;===========================================================================
|
| 1806 |
|
|
;; Arithmetic shift right.
|
| 1807 |
|
|
;;===========================================================================
|
| 1808 |
|
|
|
| 1809 |
|
|
(define_insn "builtin_asri"
|
| 1810 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 1811 |
|
|
(ashiftrt:HI (match_operand:HI 1 "register_operand" "r")
|
| 1812 |
|
|
(match_operand:HI 2 "immediate_operand" "")))
|
| 1813 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1814 |
|
|
""
|
| 1815 |
|
|
"ASR.%# %1,%2,%0\t// %0 = %1 >>{arith} %2"
|
| 1816 |
|
|
[(set_attr "type" "basicAlu")
|
| 1817 |
|
|
(set_attr "length" "3")])
|
| 1818 |
|
|
|
| 1819 |
|
|
;; The picoChip ISA doesn't have a variable arithmetic shift right, so
|
| 1820 |
|
|
;; synthesise it. Shifts by constants are directly supported.
|
| 1821 |
|
|
|
| 1822 |
|
|
(define_expand "ashrhi3"
|
| 1823 |
|
|
[(match_operand:HI 0 "register_operand" "")
|
| 1824 |
|
|
(match_operand:HI 1 "register_operand" "")
|
| 1825 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")]
|
| 1826 |
|
|
""
|
| 1827 |
|
|
{
|
| 1828 |
|
|
if (GET_CODE(operands[2]) == CONST_INT)
|
| 1829 |
|
|
/* Shift by constant is easy. */
|
| 1830 |
|
|
emit_insn (gen_builtin_asri (operands[0], operands[1], operands[2]));
|
| 1831 |
|
|
else
|
| 1832 |
|
|
{
|
| 1833 |
|
|
/* Synthesise a variable shift. */
|
| 1834 |
|
|
|
| 1835 |
|
|
/* Fill a temporary with the sign bits. */
|
| 1836 |
|
|
rtx tmp1 = gen_reg_rtx (HImode);
|
| 1837 |
|
|
emit_insn (gen_builtin_asri (tmp1, operands[1], GEN_INT(15)));
|
| 1838 |
|
|
|
| 1839 |
|
|
/* Shift the unsigned value. */
|
| 1840 |
|
|
rtx tmp2 = gen_reg_rtx (HImode);
|
| 1841 |
|
|
emit_insn (gen_lshrhi3 (tmp2, operands[1], operands[2]));
|
| 1842 |
|
|
|
| 1843 |
|
|
/* The word of sign bits must be shifted back to the left, to zero
|
| 1844 |
|
|
* out the unwanted lower bits. The amount to shift left by is (15 -
|
| 1845 |
|
|
* count). Since the shifts are computed modulo 16 (i.e., only the
|
| 1846 |
|
|
* lower 4 bits of the count are used), the shift amount (15 - count)
|
| 1847 |
|
|
* is equivalent to !count. */
|
| 1848 |
|
|
rtx tmp3 = gen_reg_rtx (HImode);
|
| 1849 |
|
|
rtx tmp3_1 = GEN_INT (-1);
|
| 1850 |
|
|
emit_insn (gen_xorhi3 (tmp3, operands[2], tmp3_1));
|
| 1851 |
|
|
rtx tmp4 = gen_reg_rtx (HImode);
|
| 1852 |
|
|
emit_insn (gen_ashlhi3 (tmp4, tmp1, tmp3));
|
| 1853 |
|
|
|
| 1854 |
|
|
/* Combine the sign bits with the shifted value. */
|
| 1855 |
|
|
emit_insn (gen_iorhi3 (operands[0], tmp2, tmp4));
|
| 1856 |
|
|
|
| 1857 |
|
|
}
|
| 1858 |
|
|
DONE;
|
| 1859 |
|
|
})
|
| 1860 |
|
|
|
| 1861 |
|
|
;;===========================================================================
|
| 1862 |
|
|
;; Logical shift right.
|
| 1863 |
|
|
;;===========================================================================
|
| 1864 |
|
|
|
| 1865 |
|
|
(define_insn "lshrhi3"
|
| 1866 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 1867 |
|
|
(lshiftrt:HI (match_operand:HI 1 "register_operand" "r,r")
|
| 1868 |
|
|
(match_operand:HI 2 "general_operand" "r,J")))]
|
| 1869 |
|
|
""
|
| 1870 |
|
|
"LSR.%# %1,%2,%0 // %0 := %1 >> %2"
|
| 1871 |
|
|
[(set_attr "type" "picoAlu,basicAlu")
|
| 1872 |
|
|
(set_attr "length" "3,3")])
|
| 1873 |
|
|
|
| 1874 |
|
|
;;===========================================================================
|
| 1875 |
|
|
;; Negate.
|
| 1876 |
|
|
;;===========================================================================
|
| 1877 |
|
|
|
| 1878 |
|
|
;; Negations are performed by subtracting from the constant 0, which
|
| 1879 |
|
|
;; is loaded into a register. By using a register containing 0, the
|
| 1880 |
|
|
;; chances of being able to CSE with another 0 value are increased.
|
| 1881 |
|
|
|
| 1882 |
|
|
(define_expand "neghi2"
|
| 1883 |
|
|
[(set (match_dup 2) (match_dup 3))
|
| 1884 |
|
|
(parallel [(set (match_operand:HI 0 "register_operand" "=r")
|
| 1885 |
|
|
(minus:HI (match_dup 2)
|
| 1886 |
|
|
(match_operand:HI 1 "register_operand" "r")))
|
| 1887 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 1888 |
|
|
""
|
| 1889 |
|
|
"operands[2] = gen_reg_rtx(HImode);
|
| 1890 |
|
|
operands[3] = GEN_INT(0x00000000);")
|
| 1891 |
|
|
|
| 1892 |
|
|
(define_expand "negsi2"
|
| 1893 |
|
|
[(set (match_dup 2) (match_dup 3))
|
| 1894 |
|
|
(parallel [(set (match_operand:SI 0 "register_operand" "=r")
|
| 1895 |
|
|
(minus:SI (match_dup 2)
|
| 1896 |
|
|
(match_operand:SI 1 "register_operand" "r")))
|
| 1897 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 1898 |
|
|
""
|
| 1899 |
|
|
"operands[2] = gen_reg_rtx(SImode);
|
| 1900 |
|
|
operands[3] = GEN_INT(0x00000000);")
|
| 1901 |
|
|
|
| 1902 |
|
|
;;===========================================================================
|
| 1903 |
|
|
;; Absolute value. Taken from the Hacker's Delight, page 17. The second of the
|
| 1904 |
|
|
;; four options given there produces the smallest, fastest code.
|
| 1905 |
|
|
;;===========================================================================
|
| 1906 |
|
|
|
| 1907 |
|
|
(define_insn_and_split "abshi2"
|
| 1908 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
| 1909 |
|
|
(abs:HI (match_operand:HI 1 "register_operand" "")))]
|
| 1910 |
|
|
""
|
| 1911 |
|
|
"#"
|
| 1912 |
|
|
""
|
| 1913 |
|
|
[(parallel [(set (match_dup 2)
|
| 1914 |
|
|
(plus:HI (ashiftrt:HI (match_dup 1) (const_int 15))
|
| 1915 |
|
|
(match_dup 1)))
|
| 1916 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 1917 |
|
|
(parallel [(set (match_dup 0)
|
| 1918 |
|
|
(xor:HI (ashiftrt:HI (match_dup 1) (const_int 15))
|
| 1919 |
|
|
(match_dup 2)))
|
| 1920 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
| 1921 |
|
|
{
|
| 1922 |
|
|
operands[2] = gen_reg_rtx (HImode);
|
| 1923 |
|
|
})
|
| 1924 |
|
|
|
| 1925 |
|
|
;;===========================================================================
|
| 1926 |
|
|
;; Bitwise complement. Use auto-synthesised variant for SI mode. Though this
|
| 1927 |
|
|
;; internally uses xor, the compiler doesnt automatically synthesize it using
|
| 1928 |
|
|
;; xor, if this pattern was removed.
|
| 1929 |
|
|
;;===========================================================================
|
| 1930 |
|
|
|
| 1931 |
|
|
(define_insn "one_cmplhi2"
|
| 1932 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 1933 |
|
|
(not:HI (match_operand:HI 1 "register_operand" "0")))
|
| 1934 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 1935 |
|
|
""
|
| 1936 |
|
|
"XOR.%# %1,-1,%0 // %0 := ~%1"
|
| 1937 |
|
|
[(set_attr "type" "basicAlu")
|
| 1938 |
|
|
(set_attr "longConstant" "true")
|
| 1939 |
|
|
(set_attr "length" "5")])
|
| 1940 |
|
|
|
| 1941 |
|
|
;;===========================================================================
|
| 1942 |
|
|
;; Count leading zeros. The special sign-bit-count instruction can be used
|
| 1943 |
|
|
;; to help us here.
|
| 1944 |
|
|
;; op1:=clz(op1)
|
| 1945 |
|
|
;; The code works by checking to see if the top bit is set. If it is,
|
| 1946 |
|
|
;; then there are no leading zeros. If the top bit is cleared, then
|
| 1947 |
|
|
;; the SBC instruction is used to determine how many more leading
|
| 1948 |
|
|
;; zeros are present, and adding one more for the initial zero.
|
| 1949 |
|
|
;;===========================================================================
|
| 1950 |
|
|
|
| 1951 |
|
|
(define_insn "clzhi2"
|
| 1952 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1953 |
|
|
(clz:HI (match_operand:HI 1 "register_operand" "r")))]
|
| 1954 |
|
|
""
|
| 1955 |
|
|
"// Count leading zeros\;SBC %1,%0\;ASR.0 %1,15,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
|
| 1956 |
|
|
[(set_attr "length" "11")])
|
| 1957 |
|
|
|
| 1958 |
|
|
;;===========================================================================
|
| 1959 |
|
|
;; Count trailing zeros. This can be achieved efficiently by reversing
|
| 1960 |
|
|
;; using the bitrev instruction, and then counting the leading zeros as
|
| 1961 |
|
|
;; described above.
|
| 1962 |
|
|
;;===========================================================================
|
| 1963 |
|
|
|
| 1964 |
|
|
(define_insn "ctzhi2"
|
| 1965 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1966 |
|
|
(ctz:HI (match_operand:HI 1 "register_operand" "r")))]
|
| 1967 |
|
|
""
|
| 1968 |
|
|
"// Count trailing zeros\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
|
| 1969 |
|
|
[(set_attr "length" "15")])
|
| 1970 |
|
|
|
| 1971 |
|
|
;;===========================================================================
|
| 1972 |
|
|
;; Find the first set bit, starting from the least significant bit position.
|
| 1973 |
|
|
;; This is very similar to the ctz function, except that the bit index is one
|
| 1974 |
|
|
;; greater than the number of trailing zeros (i.e., SBC + 2), and the
|
| 1975 |
|
|
;; result of ffs on the zero value is defined.
|
| 1976 |
|
|
;;===========================================================================
|
| 1977 |
|
|
|
| 1978 |
|
|
(define_insn "ffshi2"
|
| 1979 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
| 1980 |
|
|
(ffs:HI (match_operand:HI 1 "register_operand" "r")))]
|
| 1981 |
|
|
""
|
| 1982 |
|
|
"// First first bit\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,2,%0\;COPYNE 1,%0\;SUB.0 %1,0x0000,r15\;COPYEQ 0,%0"
|
| 1983 |
|
|
[(set_attr "length" "20")])
|
| 1984 |
|
|
|
| 1985 |
|
|
;;===========================================================================
|
| 1986 |
|
|
;; Tablejump Instruction. Jump to an absolute address.
|
| 1987 |
|
|
;;===========================================================================
|
| 1988 |
|
|
|
| 1989 |
|
|
(define_insn "tablejump"
|
| 1990 |
|
|
[(set (pc) (unspec:HI [(match_operand:HI 0 "register_operand" "r")] 1))
|
| 1991 |
|
|
(use (label_ref (match_operand 1 "" "")))
|
| 1992 |
|
|
(clobber (match_dup 0))]
|
| 1993 |
|
|
""
|
| 1994 |
|
|
"JR (%0)\t // Table jump to %0 %>"
|
| 1995 |
|
|
[(set_attr "length" "2")
|
| 1996 |
|
|
(set_attr "type" "realBranch")])
|
| 1997 |
|
|
|
| 1998 |
|
|
;; Given the memory address of a QImode value, and a scratch register,
|
| 1999 |
|
|
;; store the memory operand into the given output operand. The scratch
|
| 2000 |
|
|
;; operand will not conflict with either of the operands. The other
|
| 2001 |
|
|
;; two operands may conflict with each other.
|
| 2002 |
|
|
|
| 2003 |
|
|
(define_insn "synthesised_loadqi_unaligned"
|
| 2004 |
|
|
[(set (match_operand:QI 0 "register_operand" "=r")
|
| 2005 |
|
|
(match_operand:QI 1 "memory_operand" "m"))
|
| 2006 |
|
|
(clobber (match_operand:HI 2 "register_operand" "=&r"))
|
| 2007 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 2008 |
|
|
""
|
| 2009 |
|
|
"// Synthesised loadqi %0 = Mem(%1) (Scratch %2)\n\tAND.0 %1,-2,%2\n\tLDW (%2)0,%0 %| AND.0 %1,1,%2\n\tLSL.0 %2,3,%2\n\tSUB.0 8,%2,%2\n\tLSL.0 %0,%2,%0\n\tASR.0 %0,8,%0"
|
| 2010 |
|
|
; Approximate length only. Probably a little shorter than this.
|
| 2011 |
|
|
[(set_attr "length" "40")])
|
| 2012 |
|
|
|
| 2013 |
|
|
;; Given a memory operand whose alignment is known (the HImode aligned
|
| 2014 |
|
|
;; base is operand 0, and the number of bits by which to shift is in
|
| 2015 |
|
|
;; operand 5),
|
| 2016 |
|
|
(define_expand "synthesised_storeqi_aligned"
|
| 2017 |
|
|
[; s1 = mem_op
|
| 2018 |
|
|
(set (match_operand:HI 2 "register_operand" "")
|
| 2019 |
|
|
(match_operand:HI 0 "memory_operand" ""))
|
| 2020 |
|
|
; s1 = s1 and mask
|
| 2021 |
|
|
(parallel [(set (match_dup 2) (and:HI (match_dup 2) (match_dup 5)))
|
| 2022 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 2023 |
|
|
; s2 = source << bitShift
|
| 2024 |
|
|
(set (match_dup 3)
|
| 2025 |
|
|
(ashift:HI (subreg:HI (match_operand:QI 1 "register_operand" "") 0)
|
| 2026 |
|
|
(match_operand:HI 4 "const_int_operand" "")))
|
| 2027 |
|
|
; s1 = s1 or s2
|
| 2028 |
|
|
(parallel [(set (match_dup 2) (ior:HI (match_dup 2) (match_dup 3)))
|
| 2029 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 2030 |
|
|
; mem_op = s1
|
| 2031 |
|
|
(set (match_dup 0) (match_dup 2))]
|
| 2032 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
| 2033 |
|
|
{
|
| 2034 |
|
|
/* Create the byte mask 0xFF00. */
|
| 2035 |
|
|
operands[5] = gen_int_mode(((~0xFF) >> INTVAL (operands[4])), HImode);
|
| 2036 |
|
|
})
|
| 2037 |
|
|
|
| 2038 |
|
|
;; Reload instructions. See picochip_secondary_reload for an
|
| 2039 |
|
|
;; explanation of why an SI mode register is used as a scratch. The
|
| 2040 |
|
|
;; memory operand must be stored in a register (i.e., it can't be an
|
| 2041 |
|
|
;; offset to another register - this would require another scratch
|
| 2042 |
|
|
;; register into which the address of the offset could be computed).
|
| 2043 |
|
|
|
| 2044 |
|
|
(define_expand "reload_inqi"
|
| 2045 |
|
|
[(parallel [(match_operand:QI 0 "register_operand" "=&r")
|
| 2046 |
|
|
(match_operand:QI 1 "memory_operand" "m")
|
| 2047 |
|
|
(match_operand:SI 2 "register_operand" "=&r")])]
|
| 2048 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
| 2049 |
|
|
{
|
| 2050 |
|
|
rtx scratch, seq;
|
| 2051 |
|
|
|
| 2052 |
|
|
/* Get the scratch register. Given an SI mode value, we have a
|
| 2053 |
|
|
choice of two HI mode scratch registers, so we can be sure that at
|
| 2054 |
|
|
least one of the scratch registers will be different to the output
|
| 2055 |
|
|
register, operand[0]. */
|
| 2056 |
|
|
|
| 2057 |
|
|
if (REGNO (operands[0]) == REGNO (operands[2]))
|
| 2058 |
|
|
scratch = gen_rtx_REG (HImode, REGNO (operands[2]) + 1);
|
| 2059 |
|
|
else
|
| 2060 |
|
|
scratch = gen_rtx_REG (HImode, REGNO (operands[2]));
|
| 2061 |
|
|
|
| 2062 |
|
|
/* Ensure that the scratch doesn't overlap either of the other
|
| 2063 |
|
|
two operands - however, the other two may overlap each
|
| 2064 |
|
|
other. */
|
| 2065 |
|
|
gcc_assert (REGNO(scratch) != REGNO(operands[0]));
|
| 2066 |
|
|
gcc_assert (REGNO(scratch) != REGNO(operands[1]));
|
| 2067 |
|
|
|
| 2068 |
|
|
gcc_assert (GET_CODE (operands[1]) == MEM);
|
| 2069 |
|
|
|
| 2070 |
|
|
if (picochip_word_aligned_memory_reference(XEXP(operands[1], 0)))
|
| 2071 |
|
|
{
|
| 2072 |
|
|
/* Aligned reloads are easy, since they can use word-loads. */
|
| 2073 |
|
|
seq = gen_synthesised_loadqi_aligned(operands[0], operands[1], scratch);
|
| 2074 |
|
|
}
|
| 2075 |
|
|
else
|
| 2076 |
|
|
{
|
| 2077 |
|
|
/* Emit the instruction using a define_insn. */
|
| 2078 |
|
|
seq = gen_synthesised_loadqi_unaligned(operands[0], operands[1], scratch);
|
| 2079 |
|
|
}
|
| 2080 |
|
|
emit_insn (seq);
|
| 2081 |
|
|
|
| 2082 |
|
|
DONE;
|
| 2083 |
|
|
|
| 2084 |
|
|
})
|
| 2085 |
|
|
|
| 2086 |
|
|
(define_expand "reload_outqi"
|
| 2087 |
|
|
[(parallel [(match_operand 0 "memory_operand" "=m")
|
| 2088 |
|
|
(match_operand:QI 1 "register_operand" "r")
|
| 2089 |
|
|
(match_operand:SI 2 "register_operand" "=&r")])]
|
| 2090 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
| 2091 |
|
|
{
|
| 2092 |
|
|
rtx scratch1 = gen_rtx_REG(HImode, REGNO(operands[2]));
|
| 2093 |
|
|
rtx scratch2 = gen_rtx_REG(HImode, REGNO(operands[2]) + 1);
|
| 2094 |
|
|
rtx seq;
|
| 2095 |
|
|
|
| 2096 |
|
|
gcc_assert (GET_CODE (operands[0]) == MEM);
|
| 2097 |
|
|
|
| 2098 |
|
|
if (picochip_word_aligned_memory_reference(XEXP(operands[0], 0)))
|
| 2099 |
|
|
{
|
| 2100 |
|
|
rtx alignedAddr, bitShift;
|
| 2101 |
|
|
|
| 2102 |
|
|
/* Convert the address of the known alignment into two operands
|
| 2103 |
|
|
* representing the aligned base address, and the number of shift bits
|
| 2104 |
|
|
* required to access the required value. */
|
| 2105 |
|
|
picochip_get_hi_aligned_mem(operands[0], &alignedAddr, &bitShift);
|
| 2106 |
|
|
|
| 2107 |
|
|
/* Emit an aligned store of the source, with the given bit offset. */
|
| 2108 |
|
|
seq = gen_synthesised_storeqi_aligned(alignedAddr, operands[1], scratch1, scratch2, bitShift);
|
| 2109 |
|
|
|
| 2110 |
|
|
}
|
| 2111 |
|
|
else
|
| 2112 |
|
|
{
|
| 2113 |
|
|
/* This isnt exercised at all. Moreover, with new devices, byte access
|
| 2114 |
|
|
is available in all variants. */
|
| 2115 |
|
|
gcc_unreachable();
|
| 2116 |
|
|
}
|
| 2117 |
|
|
|
| 2118 |
|
|
emit_insn (seq);
|
| 2119 |
|
|
DONE;
|
| 2120 |
|
|
|
| 2121 |
|
|
})
|
| 2122 |
|
|
|
| 2123 |
|
|
;; Perform a byte load of an alignable memory operand.
|
| 2124 |
|
|
; op0 = register to load. op1 = memory operand from which to load
|
| 2125 |
|
|
; op2 = op1, aligned to HI, op3 = const bit shift required to extract byte,
|
| 2126 |
|
|
; op4 = INTVAL(8 - op3)
|
| 2127 |
|
|
(define_expand "synthesised_loadqi_aligned"
|
| 2128 |
|
|
[; Load memory operand into register
|
| 2129 |
|
|
(set (match_operand:HI 2 "register_operand" "=r")
|
| 2130 |
|
|
(match_dup 3))
|
| 2131 |
|
|
; Shift required byte into top byte of word.
|
| 2132 |
|
|
(set (match_dup 2)
|
| 2133 |
|
|
(ashift:HI (match_dup 2)
|
| 2134 |
|
|
(match_dup 4)))
|
| 2135 |
|
|
; Arithmetic shift of byte to sign extend, and move to lowest register.
|
| 2136 |
|
|
(parallel[(set (subreg:HI (match_dup 0) 0)
|
| 2137 |
|
|
(ashiftrt:HI (match_dup 2)
|
| 2138 |
|
|
(const_int 8)))
|
| 2139 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
| 2140 |
|
|
(use (match_operand:QI 1 "picochip_alignable_memory_operand" "g"))]
|
| 2141 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
| 2142 |
|
|
{
|
| 2143 |
|
|
rtx alignedAddr, bitShift;
|
| 2144 |
|
|
|
| 2145 |
|
|
/* Convert the address of the known alignment into two operands
|
| 2146 |
|
|
* representing the aligned base address, and the number of shift bits
|
| 2147 |
|
|
* required to access the required value. */
|
| 2148 |
|
|
picochip_get_hi_aligned_mem(operands[1], &alignedAddr, &bitShift);
|
| 2149 |
|
|
|
| 2150 |
|
|
operands[3] = alignedAddr;
|
| 2151 |
|
|
operands[4] = GEN_INT(8 - INTVAL(bitShift));
|
| 2152 |
|
|
})
|
| 2153 |
|
|
|
| 2154 |
|
|
;;============================================================================
|
| 2155 |
|
|
;; Special instructions.
|
| 2156 |
|
|
;;============================================================================
|
| 2157 |
|
|
|
| 2158 |
|
|
; Count sign-bits.
|
| 2159 |
|
|
(define_insn "sbc"
|
| 2160 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2161 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
|
| 2162 |
|
|
UNSPEC_SBC))]
|
| 2163 |
|
|
""
|
| 2164 |
|
|
"SBC %1,%0\t\t// %0 := SBC(%1)"
|
| 2165 |
|
|
[(set_attr "type" "picoAlu")
|
| 2166 |
|
|
(set_attr "length" "2")])
|
| 2167 |
|
|
|
| 2168 |
|
|
; Bit reversal.
|
| 2169 |
|
|
(define_insn "brev"
|
| 2170 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2171 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
|
| 2172 |
|
|
UNSPEC_BREV))]
|
| 2173 |
|
|
""
|
| 2174 |
|
|
"BREV %1,%0\t\t// %0 := BREV(%1)"
|
| 2175 |
|
|
[(set_attr "length" "2")
|
| 2176 |
|
|
(set_attr "type" "picoAlu")])
|
| 2177 |
|
|
|
| 2178 |
|
|
; Byte swap.
|
| 2179 |
|
|
(define_insn "bswaphi2"
|
| 2180 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2181 |
|
|
(bswap:HI (match_operand:HI 1 "register_operand" "r")))]
|
| 2182 |
|
|
""
|
| 2183 |
|
|
"BYTESWAP %1,%0\t\t// %0 := ByteSwap(%1)"
|
| 2184 |
|
|
[(set_attr "length" "2")
|
| 2185 |
|
|
(set_attr "type" "picoAlu")])
|
| 2186 |
|
|
|
| 2187 |
|
|
; Read status word.
|
| 2188 |
|
|
(define_insn "copysw"
|
| 2189 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2190 |
|
|
(unspec_volatile:HI [(reg:CC CC_REGNUM)] UNSPEC_COPYSW))]
|
| 2191 |
|
|
""
|
| 2192 |
|
|
"COPYSW.%# %0\t// %0 := Flags"
|
| 2193 |
|
|
[(set_attr "type" "basicAlu")
|
| 2194 |
|
|
(set_attr "length" "2")])
|
| 2195 |
|
|
|
| 2196 |
|
|
; Saturating addition.
|
| 2197 |
|
|
(define_insn "sataddhi3"
|
| 2198 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2199 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
|
| 2200 |
|
|
(match_operand:HI 2 "register_operand" "r")]
|
| 2201 |
|
|
UNSPEC_ADDS))
|
| 2202 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 2203 |
|
|
""
|
| 2204 |
|
|
"ADDS %1,%2,%0\t// %0 := sat(%1 + %2)"
|
| 2205 |
|
|
[(set_attr "type" "picoAlu")
|
| 2206 |
|
|
(set_attr "length" "3")])
|
| 2207 |
|
|
|
| 2208 |
|
|
; Saturating subtraction.
|
| 2209 |
|
|
(define_insn "satsubhi3"
|
| 2210 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2211 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
|
| 2212 |
|
|
(match_operand:HI 2 "register_operand" "r")]
|
| 2213 |
|
|
UNSPEC_SUBS))
|
| 2214 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 2215 |
|
|
""
|
| 2216 |
|
|
"SUBS %1,%2,%0\t// %0 := sat(%1 - %2)"
|
| 2217 |
|
|
[(set_attr "type" "picoAlu")
|
| 2218 |
|
|
(set_attr "length" "3")])
|
| 2219 |
|
|
|
| 2220 |
|
|
(define_insn "halt"
|
| 2221 |
|
|
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "i")]
|
| 2222 |
|
|
UNSPEC_HALT)]
|
| 2223 |
|
|
""
|
| 2224 |
|
|
"HALT\t// (id %0)"
|
| 2225 |
|
|
[(set_attr "length" "1")
|
| 2226 |
|
|
(set_attr "type" "unknown")])
|
| 2227 |
|
|
|
| 2228 |
|
|
(define_insn "internal_testport"
|
| 2229 |
|
|
[(set (reg:CC CC_REGNUM)
|
| 2230 |
|
|
(unspec_volatile:CC [(match_operand:HI 0 "const_int_operand" "i")]
|
| 2231 |
|
|
UNSPEC_INTERNAL_TESTPORT))]
|
| 2232 |
|
|
""
|
| 2233 |
|
|
"TSTPORT %0"
|
| 2234 |
|
|
[(set_attr "length" "2")
|
| 2235 |
|
|
(set_attr "longConstant" "false")
|
| 2236 |
|
|
(set_attr "type" "picoAlu")])
|
| 2237 |
|
|
|
| 2238 |
|
|
;;============================================================================
|
| 2239 |
|
|
;; Communications builtins.
|
| 2240 |
|
|
;;
|
| 2241 |
|
|
;; Each builtin comes in two forms: a single port version, which maps
|
| 2242 |
|
|
;; to a single instruction, and an array port version. The array port
|
| 2243 |
|
|
;; version is treated as a special type of instruction, which is then
|
| 2244 |
|
|
;; split into a number of smaller instructions, if the index of the
|
| 2245 |
|
|
;; port can't be converted into a constant. When the RTL split is
|
| 2246 |
|
|
;; performed, a function call is emitted, in which the index of the
|
| 2247 |
|
|
;; port to use is used to compute the address of the function to call
|
| 2248 |
|
|
;; (i.e., each array port is a function in its own right, and the
|
| 2249 |
|
|
;; functions are stored as an array which is then indexed to determine
|
| 2250 |
|
|
;; the correct function). The communication function port array is
|
| 2251 |
|
|
;; created by the linker if and only if it is required (in a
|
| 2252 |
|
|
;; collect2-like manner).
|
| 2253 |
|
|
;;============================================================================
|
| 2254 |
|
|
|
| 2255 |
|
|
; Simple scalar get.
|
| 2256 |
|
|
(define_insn "commsGet"
|
| 2257 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
| 2258 |
|
|
(unspec_volatile:SI
|
| 2259 |
|
|
[(match_operand:HI 1 "immediate_operand" "n")]
|
| 2260 |
|
|
UNSPEC_GET))]
|
| 2261 |
|
|
""
|
| 2262 |
|
|
"GET %1,%R0\t// %R0 := PORT(%1)"
|
| 2263 |
|
|
[(set_attr "type" "comms")
|
| 2264 |
|
|
(set_attr "length" "2")])
|
| 2265 |
|
|
|
| 2266 |
|
|
; Entry point for array get (the actual port index is computed as the
|
| 2267 |
|
|
; sum of the index, and the base).
|
| 2268 |
|
|
;
|
| 2269 |
|
|
; op0 - Destination
|
| 2270 |
|
|
; op1 - Requested port index
|
| 2271 |
|
|
; op2 - size of port array (constant)
|
| 2272 |
|
|
; op3 - base index of port array (constant)
|
| 2273 |
|
|
|
| 2274 |
|
|
(define_expand "commsArrayGet"
|
| 2275 |
|
|
[(parallel
|
| 2276 |
|
|
[(set (reg:SI 0)
|
| 2277 |
|
|
(unspec_volatile:SI [(match_operand:HI 1 "general_operand" "")
|
| 2278 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
| 2279 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
| 2280 |
|
|
UNSPEC_CALL_GET_ARRAY))
|
| 2281 |
|
|
(clobber (reg:HI LINK_REGNUM))])
|
| 2282 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 0))]
|
| 2283 |
|
|
""
|
| 2284 |
|
|
"")
|
| 2285 |
|
|
|
| 2286 |
|
|
;; The actual array get instruction. When the array index is a constant,
|
| 2287 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
| 2288 |
|
|
;; a call to a special function is generated. This code could be
|
| 2289 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
| 2290 |
|
|
;; used, that we won't bother.
|
| 2291 |
|
|
(define_insn "*commsArrayGetInstruction"
|
| 2292 |
|
|
[(set (reg:SI 0)
|
| 2293 |
|
|
(unspec_volatile:SI [(match_operand:HI 0 "general_operand" "r,i")
|
| 2294 |
|
|
(match_operand:HI 1 "immediate_operand" "")
|
| 2295 |
|
|
(match_operand:HI 2 "immediate_operand" "")]
|
| 2296 |
|
|
UNSPEC_CALL_GET_ARRAY))
|
| 2297 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 2298 |
|
|
""
|
| 2299 |
|
|
{
|
| 2300 |
|
|
return picochip_output_get_array (which_alternative, operands);
|
| 2301 |
|
|
})
|
| 2302 |
|
|
|
| 2303 |
|
|
; Scalar Put instruction.
|
| 2304 |
|
|
(define_insn "commsPut"
|
| 2305 |
|
|
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "")
|
| 2306 |
|
|
(match_operand:SI 1 "register_operand" "r")]
|
| 2307 |
|
|
UNSPEC_PUT)]
|
| 2308 |
|
|
""
|
| 2309 |
|
|
"PUT %R1,%0\t// PORT(%0) := %R1"
|
| 2310 |
|
|
[(set_attr "type" "comms")
|
| 2311 |
|
|
(set_attr "length" "2")])
|
| 2312 |
|
|
|
| 2313 |
|
|
; Entry point for array put. The operands accepted are:
|
| 2314 |
|
|
; op0 - Value to put
|
| 2315 |
|
|
; op1 - Requested port index
|
| 2316 |
|
|
; op2 - size of port array
|
| 2317 |
|
|
; op3 - base index of port array
|
| 2318 |
|
|
; The arguments are marshalled into the fixed registers, so that
|
| 2319 |
|
|
; the actual put instruction can expand into a call if necessary
|
| 2320 |
|
|
; (e.g., if the index is variable at run-time).
|
| 2321 |
|
|
|
| 2322 |
|
|
(define_expand "commsArrayPut"
|
| 2323 |
|
|
[(set (reg:SI 0) (match_operand:SI 0 "general_operand" ""))
|
| 2324 |
|
|
(parallel
|
| 2325 |
|
|
[(unspec_volatile [(match_operand:HI 1 "general_operand" "")
|
| 2326 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
| 2327 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
| 2328 |
|
|
UNSPEC_CALL_PUT_ARRAY)
|
| 2329 |
|
|
(use (reg:SI 0))
|
| 2330 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
| 2331 |
|
|
""
|
| 2332 |
|
|
"")
|
| 2333 |
|
|
|
| 2334 |
|
|
;; The actual array put instruction. When the array index is a constant,
|
| 2335 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
| 2336 |
|
|
;; a call to a special function is generated. This code could be
|
| 2337 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
| 2338 |
|
|
;; used, that we won't bother.
|
| 2339 |
|
|
(define_insn "*commsArrayPutInstruction"
|
| 2340 |
|
|
[(unspec_volatile [(match_operand:HI 0 "general_operand" "r,i")
|
| 2341 |
|
|
(match_operand:HI 1 "immediate_operand" "")
|
| 2342 |
|
|
(match_operand:HI 2 "immediate_operand" "")]
|
| 2343 |
|
|
UNSPEC_CALL_PUT_ARRAY)
|
| 2344 |
|
|
(use (reg:SI 0))
|
| 2345 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 2346 |
|
|
""
|
| 2347 |
|
|
{
|
| 2348 |
|
|
return picochip_output_put_array (which_alternative, operands);
|
| 2349 |
|
|
})
|
| 2350 |
|
|
|
| 2351 |
|
|
;; Scalar test port instruction.
|
| 2352 |
|
|
(define_insn "commsTestPort"
|
| 2353 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
| 2354 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "const_int_operand" "")]
|
| 2355 |
|
|
UNSPEC_TESTPORT))
|
| 2356 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 2357 |
|
|
""
|
| 2358 |
|
|
"// %0 := TestPort(%1)\;TSTPORT %1\;COPYSW.0 %0\;AND.0 %0,8,%0"
|
| 2359 |
|
|
[(set_attr "length" "9")])
|
| 2360 |
|
|
|
| 2361 |
|
|
; Entry point for array tstport (the actual port index is computed as the
|
| 2362 |
|
|
; sum of the index, and the base).
|
| 2363 |
|
|
;
|
| 2364 |
|
|
; op0 - Test value.
|
| 2365 |
|
|
; op1 - Requested port index
|
| 2366 |
|
|
; op2 - size of port array (constant)
|
| 2367 |
|
|
; op3 - base index of port array (constant)
|
| 2368 |
|
|
|
| 2369 |
|
|
(define_expand "commsArrayTestPort"
|
| 2370 |
|
|
[(parallel
|
| 2371 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
| 2372 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "")
|
| 2373 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
| 2374 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
| 2375 |
|
|
UNSPEC_CALL_TESTPORT_ARRAY))
|
| 2376 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
| 2377 |
|
|
""
|
| 2378 |
|
|
"")
|
| 2379 |
|
|
|
| 2380 |
|
|
;; The actual array testport instruction. When the array index is a constant,
|
| 2381 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
| 2382 |
|
|
;; a call to a special function is generated. This code could be
|
| 2383 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
| 2384 |
|
|
;; used, that we won't bother.
|
| 2385 |
|
|
(define_insn "*commsArrayTestportInstruction"
|
| 2386 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 2387 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "r,i")
|
| 2388 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
| 2389 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
| 2390 |
|
|
UNSPEC_CALL_TESTPORT_ARRAY))
|
| 2391 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
| 2392 |
|
|
""
|
| 2393 |
|
|
{
|
| 2394 |
|
|
return picochip_output_testport_array (which_alternative, operands);
|
| 2395 |
|
|
})
|
| 2396 |
|
|
|
| 2397 |
|
|
;; Merge a TSTPORT instruction with the branch to which it
|
| 2398 |
|
|
;; relates. Often the TSTPORT function (generated by a built-in), is
|
| 2399 |
|
|
;; used to control conditional execution. The normal sequence of
|
| 2400 |
|
|
;; instructions would be:
|
| 2401 |
|
|
;; TSTPORT p
|
| 2402 |
|
|
;; COPYSW temp
|
| 2403 |
|
|
;; AND temp, 0x0008, temp
|
| 2404 |
|
|
;; SUB temp,0,discard
|
| 2405 |
|
|
;; BEQ label
|
| 2406 |
|
|
;; This can be made more efficient by detecting the special case where
|
| 2407 |
|
|
;; the result of a TSTPORT is used to branch, to allow the following
|
| 2408 |
|
|
;; RTL sequence to be generated instead:
|
| 2409 |
|
|
;; TSTPORT p
|
| 2410 |
|
|
;; BEQ label
|
| 2411 |
|
|
;; A big saving in cycles and bytes!
|
| 2412 |
|
|
|
| 2413 |
|
|
(define_insn_and_split "tstport_branch"
|
| 2414 |
|
|
[(set (pc)
|
| 2415 |
|
|
(if_then_else
|
| 2416 |
|
|
(match_operator 0 "comparison_operator"
|
| 2417 |
|
|
[(unspec_volatile:HI
|
| 2418 |
|
|
[(match_operand:HI 1 "const_int_operand" "")]
|
| 2419 |
|
|
UNSPEC_TESTPORT)
|
| 2420 |
|
|
(const_int 0)])
|
| 2421 |
|
|
(label_ref (match_operand 2 "" ""))
|
| 2422 |
|
|
(pc)))
|
| 2423 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
| 2424 |
|
|
""
|
| 2425 |
|
|
"#"
|
| 2426 |
|
|
""
|
| 2427 |
|
|
[(set (reg:CC CC_REGNUM)
|
| 2428 |
|
|
(unspec_volatile:CC [(match_dup 1)] UNSPEC_INTERNAL_TESTPORT))
|
| 2429 |
|
|
(parallel [(set (pc)
|
| 2430 |
|
|
(if_then_else
|
| 2431 |
|
|
(match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 2432 |
|
|
(label_ref (match_dup 2))
|
| 2433 |
|
|
(pc)))
|
| 2434 |
|
|
(use (match_dup 3))])]
|
| 2435 |
|
|
"{
|
| 2436 |
|
|
/* Note that the sense of the branch is reversed, since we are
|
| 2437 |
|
|
* comparing flag != 0. */
|
| 2438 |
|
|
gcc_assert (GET_CODE(operands[0]) == NE || GET_CODE(operands[0]) == EQ);
|
| 2439 |
|
|
operands[4] = gen_rtx_fmt_ee(reverse_condition(GET_CODE(operands[0])),
|
| 2440 |
|
|
GET_MODE(operands[0]), XEXP(operands[0], 0), XEXP(operands[0], 1));
|
| 2441 |
|
|
operands[3] = GEN_INT (0);
|
| 2442 |
|
|
}")
|
| 2443 |
|
|
|
| 2444 |
|
|
;;============================================================================
|
| 2445 |
|
|
;; Epilogue/Epilogue expansion.
|
| 2446 |
|
|
;;============================================================================
|
| 2447 |
|
|
|
| 2448 |
|
|
(define_expand "prologue"
|
| 2449 |
|
|
[(clobber (const_int 0))]
|
| 2450 |
|
|
""
|
| 2451 |
|
|
{
|
| 2452 |
|
|
picochip_expand_prologue ();
|
| 2453 |
|
|
DONE;
|
| 2454 |
|
|
})
|
| 2455 |
|
|
|
| 2456 |
|
|
(define_expand "epilogue"
|
| 2457 |
|
|
[(use (const_int 0))]
|
| 2458 |
|
|
""
|
| 2459 |
|
|
{
|
| 2460 |
|
|
picochip_expand_epilogue (FALSE);
|
| 2461 |
|
|
DONE;
|
| 2462 |
|
|
})
|
| 2463 |
|
|
|
| 2464 |
|
|
;;============================================================================
|
| 2465 |
|
|
;; Trap instruction. This is used to indicate an error. For the
|
| 2466 |
|
|
;; picoChip processors this is handled by calling a HALT instruction,
|
| 2467 |
|
|
;; which stops the processor.
|
| 2468 |
|
|
;;============================================================================
|
| 2469 |
|
|
|
| 2470 |
|
|
(define_insn "trap"
|
| 2471 |
|
|
[(trap_if (const_int 1) (const_int 6))]
|
| 2472 |
|
|
""
|
| 2473 |
|
|
"HALT\t// (Trap)"
|
| 2474 |
|
|
[(set_attr "length" "2")])
|
| 2475 |
|
|
|
| 2476 |
|
|
;;============================================================================
|
| 2477 |
|
|
;; Conditional copy instructions. Only equal/not-equal comparisons are
|
| 2478 |
|
|
;; supported. All other types of comparison remain as branch
|
| 2479 |
|
|
;; sequences.
|
| 2480 |
|
|
;;============================================================================
|
| 2481 |
|
|
|
| 2482 |
|
|
;; Define expand seems to consider the resulting two instructions to be
|
| 2483 |
|
|
;; independent. It was moving the actual copy instruction further down
|
| 2484 |
|
|
;; with a call instruction in between. The call was clobbering the CC
|
| 2485 |
|
|
;; and hence the cond_copy was wrong. With a split, it works correctly.
|
| 2486 |
|
|
(define_expand "movhicc"
|
| 2487 |
|
|
[(set (reg:CC CC_REGNUM) (match_operand 1 "comparison_operator" ""))
|
| 2488 |
|
|
(parallel [(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 2489 |
|
|
(if_then_else:HI (match_op_dup:HI 1 [(reg:CC CC_REGNUM) (const_int 0)])
|
| 2490 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "0,0")
|
| 2491 |
|
|
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))
|
| 2492 |
|
|
(use (match_dup 4))])]
|
| 2493 |
|
|
""
|
| 2494 |
|
|
{if (!picochip_check_conditional_copy (operands))
|
| 2495 |
|
|
FAIL;
|
| 2496 |
|
|
operands[4] = GEN_INT(GET_CODE(operands[1]));
|
| 2497 |
|
|
})
|
| 2498 |
|
|
|
| 2499 |
|
|
;; We dont do any checks here. But this pattern is used only when movhicc
|
| 2500 |
|
|
;; was checked. Put a "use" clause to make sure.
|
| 2501 |
|
|
(define_insn "*conditional_copy"
|
| 2502 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
| 2503 |
|
|
(if_then_else:HI
|
| 2504 |
|
|
(match_operator:HI 4 "picochip_peephole_comparison_operator"
|
| 2505 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
| 2506 |
|
|
(match_operand:HI 1 "picochip_register_or_immediate_operand" "0,0")
|
| 2507 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,i")))
|
| 2508 |
|
|
(use (match_operand:HI 3 "const_int_operand" ""))]
|
| 2509 |
|
|
""
|
| 2510 |
|
|
{
|
| 2511 |
|
|
|
| 2512 |
|
|
gcc_assert (GET_CODE(operands[4]) == EQ || GET_CODE(operands[4]) == NE);
|
| 2513 |
|
|
/* Note that the comparison is reversed as the pattern matches
|
| 2514 |
|
|
the *else* part of the if_then_else */
|
| 2515 |
|
|
switch (GET_CODE(operands[4]))
|
| 2516 |
|
|
{
|
| 2517 |
|
|
case EQ: return "COPYNE %2,%0\t// if (NE) %0 := %2";
|
| 2518 |
|
|
case NE: return "COPYEQ %2,%0\t// if (EQ) %0 := %2";
|
| 2519 |
|
|
default:
|
| 2520 |
|
|
gcc_unreachable();
|
| 2521 |
|
|
}
|
| 2522 |
|
|
}
|
| 2523 |
|
|
[(set_attr "length" "2")
|
| 2524 |
|
|
(set_attr "type" "picoAlu,picoAlu")
|
| 2525 |
|
|
(set_attr "longConstant" "false,true")])
|
| 2526 |
|
|
|
| 2527 |
|
|
;;============================================================================
|
| 2528 |
|
|
;; Scheduling, including delay slot scheduling.
|
| 2529 |
|
|
;;============================================================================
|
| 2530 |
|
|
|
| 2531 |
|
|
(automata_option "v")
|
| 2532 |
|
|
(automata_option "ndfa")
|
| 2533 |
|
|
|
| 2534 |
|
|
;; Define each VLIW slot as a CPU resource. Note the three flavours of
|
| 2535 |
|
|
;; branch. `realBranch' is an actual branch instruction. `macroBranch'
|
| 2536 |
|
|
;; is a directive to the assembler, which may expand into multiple
|
| 2537 |
|
|
;; instructions. `call' is an actual branch instruction, but one which
|
| 2538 |
|
|
;; sets the link register, and hence can't be scheduled alongside
|
| 2539 |
|
|
;; other instructions which set the link register. When the DFA
|
| 2540 |
|
|
;; scheduler is fixed to prevent it scheduling a JL with an R12
|
| 2541 |
|
|
;; setting register, the call type branches can be replaced by
|
| 2542 |
|
|
;; realBranch types instead.
|
| 2543 |
|
|
|
| 2544 |
|
|
(define_attr "type"
|
| 2545 |
|
|
"picoAlu,basicAlu,nonCcAlu,mem,call,realBranch,macroBranch,mul,mac,app,comms,unknown"
|
| 2546 |
|
|
(const_string "unknown"))
|
| 2547 |
|
|
|
| 2548 |
|
|
(define_attr "schedType" "none,space,speed"
|
| 2549 |
|
|
(const (symbol_ref "picochip_schedule_type")))
|
| 2550 |
|
|
|
| 2551 |
|
|
;; Define whether an instruction uses a long constant.
|
| 2552 |
|
|
|
| 2553 |
|
|
(define_attr "longConstant"
|
| 2554 |
|
|
"true,false" (const_string "false"))
|
| 2555 |
|
|
|
| 2556 |
|
|
;; Define three EU slots.
|
| 2557 |
|
|
(define_query_cpu_unit "slot0,slot1,slot2")
|
| 2558 |
|
|
|
| 2559 |
|
|
;; Pull in the pipeline descriptions for speed or space scheduling.
|
| 2560 |
|
|
(include "dfa_speed.md")
|
| 2561 |
|
|
(include "dfa_space.md")
|
| 2562 |
|
|
|
| 2563 |
|
|
; Unknown instructions are assumed to take a single cycle, and use all
|
| 2564 |
|
|
; slots. This enables them to actually output a sequence of
|
| 2565 |
|
|
; instructions without any limitation. For the purposes of
|
| 2566 |
|
|
; scheduling, unknown instructions are a pain, and should be removed
|
| 2567 |
|
|
; completely. This means that RTL patterns should always be used to
|
| 2568 |
|
|
; reduce complex sequences of instructions to individual instructions.
|
| 2569 |
|
|
(define_insn_reservation "unknownInsn" 1
|
| 2570 |
|
|
(eq_attr "type" "unknown")
|
| 2571 |
|
|
"(slot0+slot1+slot2)")
|
| 2572 |
|
|
|
| 2573 |
|
|
; Allow any non-branch instructions to be placed in the branch
|
| 2574 |
|
|
; slot. Branch slots are always executed.
|
| 2575 |
|
|
(define_delay (eq_attr "type" "realBranch,call")
|
| 2576 |
|
|
[(eq_attr "type" "!realBranch,macroBranch,call,unknown") (nil) (nil)])
|