1 |
282 |
jeremybenn |
;; Predicate definitions for POWER and PowerPC.
|
2 |
|
|
;; Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
3 |
|
|
;;
|
4 |
|
|
;; This file is part of GCC.
|
5 |
|
|
;;
|
6 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
7 |
|
|
;; it under the terms of the GNU General Public License as published by
|
8 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
9 |
|
|
;; any later version.
|
10 |
|
|
;;
|
11 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
12 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
;; GNU General Public License for more details.
|
15 |
|
|
;;
|
16 |
|
|
;; You should have received a copy of the GNU General Public License
|
17 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
18 |
|
|
;; .
|
19 |
|
|
|
20 |
|
|
;; Return 1 for anything except PARALLEL.
|
21 |
|
|
(define_predicate "any_operand"
|
22 |
|
|
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
|
23 |
|
|
|
24 |
|
|
;; Return 1 for any PARALLEL.
|
25 |
|
|
(define_predicate "any_parallel_operand"
|
26 |
|
|
(match_code "parallel"))
|
27 |
|
|
|
28 |
|
|
;; Return 1 if op is COUNT register.
|
29 |
|
|
(define_predicate "count_register_operand"
|
30 |
|
|
(and (match_code "reg")
|
31 |
|
|
(match_test "REGNO (op) == CTR_REGNO
|
32 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
33 |
|
|
|
34 |
|
|
;; Return 1 if op is an Altivec register.
|
35 |
|
|
(define_predicate "altivec_register_operand"
|
36 |
|
|
(and (match_operand 0 "register_operand")
|
37 |
|
|
(match_test "GET_CODE (op) != REG
|
38 |
|
|
|| ALTIVEC_REGNO_P (REGNO (op))
|
39 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
40 |
|
|
|
41 |
|
|
;; Return 1 if op is a VSX register.
|
42 |
|
|
(define_predicate "vsx_register_operand"
|
43 |
|
|
(and (match_operand 0 "register_operand")
|
44 |
|
|
(match_test "GET_CODE (op) != REG
|
45 |
|
|
|| VSX_REGNO_P (REGNO (op))
|
46 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
47 |
|
|
|
48 |
|
|
;; Return 1 if op is a vector register that operates on floating point vectors
|
49 |
|
|
;; (either altivec or VSX).
|
50 |
|
|
(define_predicate "vfloat_operand"
|
51 |
|
|
(and (match_operand 0 "register_operand")
|
52 |
|
|
(match_test "GET_CODE (op) != REG
|
53 |
|
|
|| VFLOAT_REGNO_P (REGNO (op))
|
54 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
55 |
|
|
|
56 |
|
|
;; Return 1 if op is a vector register that operates on integer vectors
|
57 |
|
|
;; (only altivec, VSX doesn't support integer vectors)
|
58 |
|
|
(define_predicate "vint_operand"
|
59 |
|
|
(and (match_operand 0 "register_operand")
|
60 |
|
|
(match_test "GET_CODE (op) != REG
|
61 |
|
|
|| VINT_REGNO_P (REGNO (op))
|
62 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
63 |
|
|
|
64 |
|
|
;; Return 1 if op is a vector register to do logical operations on (and, or,
|
65 |
|
|
;; xor, etc.)
|
66 |
|
|
(define_predicate "vlogical_operand"
|
67 |
|
|
(and (match_operand 0 "register_operand")
|
68 |
|
|
(match_test "GET_CODE (op) != REG
|
69 |
|
|
|| VLOGICAL_REGNO_P (REGNO (op))
|
70 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
71 |
|
|
|
72 |
|
|
;; Return 1 if op is XER register.
|
73 |
|
|
(define_predicate "xer_operand"
|
74 |
|
|
(and (match_code "reg")
|
75 |
|
|
(match_test "XER_REGNO_P (REGNO (op))")))
|
76 |
|
|
|
77 |
|
|
;; Return 1 if op is a signed 5-bit constant integer.
|
78 |
|
|
(define_predicate "s5bit_cint_operand"
|
79 |
|
|
(and (match_code "const_int")
|
80 |
|
|
(match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
|
81 |
|
|
|
82 |
|
|
;; Return 1 if op is a unsigned 5-bit constant integer.
|
83 |
|
|
(define_predicate "u5bit_cint_operand"
|
84 |
|
|
(and (match_code "const_int")
|
85 |
|
|
(match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
|
86 |
|
|
|
87 |
|
|
;; Return 1 if op is a signed 8-bit constant integer.
|
88 |
|
|
;; Integer multiplication complete more quickly
|
89 |
|
|
(define_predicate "s8bit_cint_operand"
|
90 |
|
|
(and (match_code "const_int")
|
91 |
|
|
(match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
|
92 |
|
|
|
93 |
|
|
;; Return 1 if op is a constant integer that can fit in a D field.
|
94 |
|
|
(define_predicate "short_cint_operand"
|
95 |
|
|
(and (match_code "const_int")
|
96 |
|
|
(match_test "satisfies_constraint_I (op)")))
|
97 |
|
|
|
98 |
|
|
;; Return 1 if op is a constant integer that can fit in an unsigned D field.
|
99 |
|
|
(define_predicate "u_short_cint_operand"
|
100 |
|
|
(and (match_code "const_int")
|
101 |
|
|
(match_test "satisfies_constraint_K (op)")))
|
102 |
|
|
|
103 |
|
|
;; Return 1 if op is a constant integer that cannot fit in a signed D field.
|
104 |
|
|
(define_predicate "non_short_cint_operand"
|
105 |
|
|
(and (match_code "const_int")
|
106 |
|
|
(match_test "(unsigned HOST_WIDE_INT)
|
107 |
|
|
(INTVAL (op) + 0x8000) >= 0x10000")))
|
108 |
|
|
|
109 |
|
|
;; Return 1 if op is a positive constant integer that is an exact power of 2.
|
110 |
|
|
(define_predicate "exact_log2_cint_operand"
|
111 |
|
|
(and (match_code "const_int")
|
112 |
|
|
(match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
|
113 |
|
|
|
114 |
|
|
;; Return 1 if op is a register that is not special.
|
115 |
|
|
(define_predicate "gpc_reg_operand"
|
116 |
|
|
(and (match_operand 0 "register_operand")
|
117 |
|
|
(match_test "(GET_CODE (op) != REG
|
118 |
|
|
|| (REGNO (op) >= ARG_POINTER_REGNUM
|
119 |
|
|
&& !XER_REGNO_P (REGNO (op)))
|
120 |
|
|
|| REGNO (op) < MQ_REGNO)
|
121 |
|
|
&& !((TARGET_E500_DOUBLE || TARGET_SPE)
|
122 |
|
|
&& invalid_e500_subreg (op, mode))")))
|
123 |
|
|
|
124 |
|
|
;; Return 1 if op is a register that is a condition register field.
|
125 |
|
|
(define_predicate "cc_reg_operand"
|
126 |
|
|
(and (match_operand 0 "register_operand")
|
127 |
|
|
(match_test "GET_CODE (op) != REG
|
128 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
129 |
|
|
|| CR_REGNO_P (REGNO (op))")))
|
130 |
|
|
|
131 |
|
|
;; Return 1 if op is a register that is a condition register field not cr0.
|
132 |
|
|
(define_predicate "cc_reg_not_cr0_operand"
|
133 |
|
|
(and (match_operand 0 "register_operand")
|
134 |
|
|
(match_test "GET_CODE (op) != REG
|
135 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
136 |
|
|
|| CR_REGNO_NOT_CR0_P (REGNO (op))")))
|
137 |
|
|
|
138 |
|
|
;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0.
|
139 |
|
|
(define_predicate "cc_reg_not_micro_cr0_operand"
|
140 |
|
|
(and (match_operand 0 "register_operand")
|
141 |
|
|
(match_test "GET_CODE (op) != REG
|
142 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
143 |
|
|
|| (rs6000_gen_cell_microcode && CR_REGNO_NOT_CR0_P (REGNO (op)))
|
144 |
|
|
|| (!rs6000_gen_cell_microcode && CR_REGNO_P (REGNO (op)))")))
|
145 |
|
|
|
146 |
|
|
;; Return 1 if op is a constant integer valid for D field
|
147 |
|
|
;; or non-special register register.
|
148 |
|
|
(define_predicate "reg_or_short_operand"
|
149 |
|
|
(if_then_else (match_code "const_int")
|
150 |
|
|
(match_operand 0 "short_cint_operand")
|
151 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
152 |
|
|
|
153 |
|
|
;; Return 1 if op is a constant integer valid whose negation is valid for
|
154 |
|
|
;; D field or non-special register register.
|
155 |
|
|
;; Do not allow a constant zero because all patterns that call this
|
156 |
|
|
;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
|
157 |
|
|
;; or equal to const, which does not work for zero.
|
158 |
|
|
(define_predicate "reg_or_neg_short_operand"
|
159 |
|
|
(if_then_else (match_code "const_int")
|
160 |
|
|
(match_test "satisfies_constraint_P (op)
|
161 |
|
|
&& INTVAL (op) != 0")
|
162 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
163 |
|
|
|
164 |
|
|
;; Return 1 if op is a constant integer valid for DS field
|
165 |
|
|
;; or non-special register.
|
166 |
|
|
(define_predicate "reg_or_aligned_short_operand"
|
167 |
|
|
(if_then_else (match_code "const_int")
|
168 |
|
|
(and (match_operand 0 "short_cint_operand")
|
169 |
|
|
(match_test "!(INTVAL (op) & 3)"))
|
170 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
171 |
|
|
|
172 |
|
|
;; Return 1 if op is a constant integer whose high-order 16 bits are zero
|
173 |
|
|
;; or non-special register.
|
174 |
|
|
(define_predicate "reg_or_u_short_operand"
|
175 |
|
|
(if_then_else (match_code "const_int")
|
176 |
|
|
(match_operand 0 "u_short_cint_operand")
|
177 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
178 |
|
|
|
179 |
|
|
;; Return 1 if op is any constant integer
|
180 |
|
|
;; or non-special register.
|
181 |
|
|
(define_predicate "reg_or_cint_operand"
|
182 |
|
|
(ior (match_code "const_int")
|
183 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
184 |
|
|
|
185 |
|
|
;; Return 1 if op is a constant integer valid for addition
|
186 |
|
|
;; or non-special register.
|
187 |
|
|
(define_predicate "reg_or_add_cint_operand"
|
188 |
|
|
(if_then_else (match_code "const_int")
|
189 |
|
|
(match_test "(HOST_BITS_PER_WIDE_INT == 32
|
190 |
|
|
&& (mode == SImode || INTVAL (op) < 0x7fff8000))
|
191 |
|
|
|| ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
|
192 |
|
|
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
|
193 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
194 |
|
|
|
195 |
|
|
;; Return 1 if op is a constant integer valid for subtraction
|
196 |
|
|
;; or non-special register.
|
197 |
|
|
(define_predicate "reg_or_sub_cint_operand"
|
198 |
|
|
(if_then_else (match_code "const_int")
|
199 |
|
|
(match_test "(HOST_BITS_PER_WIDE_INT == 32
|
200 |
|
|
&& (mode == SImode || - INTVAL (op) < 0x7fff8000))
|
201 |
|
|
|| ((unsigned HOST_WIDE_INT) (- INTVAL (op)
|
202 |
|
|
+ (mode == SImode
|
203 |
|
|
? 0x80000000 : 0x80008000))
|
204 |
|
|
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
|
205 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
206 |
|
|
|
207 |
|
|
;; Return 1 if op is any 32-bit unsigned constant integer
|
208 |
|
|
;; or non-special register.
|
209 |
|
|
(define_predicate "reg_or_logical_cint_operand"
|
210 |
|
|
(if_then_else (match_code "const_int")
|
211 |
|
|
(match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|
212 |
|
|
&& INTVAL (op) >= 0)
|
213 |
|
|
|| ((INTVAL (op) & GET_MODE_MASK (mode)
|
214 |
|
|
& (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
|
215 |
|
|
(if_then_else (match_code "const_double")
|
216 |
|
|
(match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|
217 |
|
|
&& mode == DImode
|
218 |
|
|
&& CONST_DOUBLE_HIGH (op) == 0")
|
219 |
|
|
(match_operand 0 "gpc_reg_operand"))))
|
220 |
|
|
|
221 |
|
|
;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
|
222 |
|
|
;; with no more than one instruction per word.
|
223 |
|
|
(define_predicate "easy_fp_constant"
|
224 |
|
|
(match_code "const_double")
|
225 |
|
|
{
|
226 |
|
|
long k[4];
|
227 |
|
|
REAL_VALUE_TYPE rv;
|
228 |
|
|
|
229 |
|
|
if (GET_MODE (op) != mode
|
230 |
|
|
|| (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
|
231 |
|
|
return 0;
|
232 |
|
|
|
233 |
|
|
/* Consider all constants with -msoft-float to be easy. */
|
234 |
|
|
if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE
|
235 |
|
|
|| (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT)))
|
236 |
|
|
&& mode != DImode)
|
237 |
|
|
return 1;
|
238 |
|
|
|
239 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode))
|
240 |
|
|
return 0;
|
241 |
|
|
|
242 |
|
|
/* If we are using V.4 style PIC, consider all constants to be hard. */
|
243 |
|
|
if (flag_pic && DEFAULT_ABI == ABI_V4)
|
244 |
|
|
return 0;
|
245 |
|
|
|
246 |
|
|
#ifdef TARGET_RELOCATABLE
|
247 |
|
|
/* Similarly if we are using -mrelocatable, consider all constants
|
248 |
|
|
to be hard. */
|
249 |
|
|
if (TARGET_RELOCATABLE)
|
250 |
|
|
return 0;
|
251 |
|
|
#endif
|
252 |
|
|
|
253 |
|
|
switch (mode)
|
254 |
|
|
{
|
255 |
|
|
case TFmode:
|
256 |
|
|
if (TARGET_E500_DOUBLE)
|
257 |
|
|
return 0;
|
258 |
|
|
|
259 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
260 |
|
|
REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
|
261 |
|
|
|
262 |
|
|
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
|
263 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
|
264 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
|
265 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
|
266 |
|
|
|
267 |
|
|
case DFmode:
|
268 |
|
|
/* The constant 0.f is easy under VSX. */
|
269 |
|
|
if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode))
|
270 |
|
|
return 1;
|
271 |
|
|
|
272 |
|
|
/* Force constants to memory before reload to utilize
|
273 |
|
|
compress_float_constant.
|
274 |
|
|
Avoid this when flag_unsafe_math_optimizations is enabled
|
275 |
|
|
because RDIV division to reciprocal optimization is not able
|
276 |
|
|
to regenerate the division. */
|
277 |
|
|
if (TARGET_E500_DOUBLE
|
278 |
|
|
|| (!reload_in_progress && !reload_completed
|
279 |
|
|
&& !flag_unsafe_math_optimizations))
|
280 |
|
|
return 0;
|
281 |
|
|
|
282 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
283 |
|
|
REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
|
284 |
|
|
|
285 |
|
|
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
|
286 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
|
287 |
|
|
|
288 |
|
|
case SFmode:
|
289 |
|
|
/* The constant 0.f is easy. */
|
290 |
|
|
if (op == CONST0_RTX (SFmode))
|
291 |
|
|
return 1;
|
292 |
|
|
|
293 |
|
|
/* Force constants to memory before reload to utilize
|
294 |
|
|
compress_float_constant.
|
295 |
|
|
Avoid this when flag_unsafe_math_optimizations is enabled
|
296 |
|
|
because RDIV division to reciprocal optimization is not able
|
297 |
|
|
to regenerate the division. */
|
298 |
|
|
if (!reload_in_progress && !reload_completed
|
299 |
|
|
&& !flag_unsafe_math_optimizations)
|
300 |
|
|
return 0;
|
301 |
|
|
|
302 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
303 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
|
304 |
|
|
|
305 |
|
|
return num_insns_constant_wide (k[0]) == 1;
|
306 |
|
|
|
307 |
|
|
case DImode:
|
308 |
|
|
return ((TARGET_POWERPC64
|
309 |
|
|
&& GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
|
310 |
|
|
|| (num_insns_constant (op, DImode) <= 2));
|
311 |
|
|
|
312 |
|
|
case SImode:
|
313 |
|
|
return 1;
|
314 |
|
|
|
315 |
|
|
default:
|
316 |
|
|
gcc_unreachable ();
|
317 |
|
|
}
|
318 |
|
|
})
|
319 |
|
|
|
320 |
|
|
;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
|
321 |
|
|
;; vector register without using memory.
|
322 |
|
|
(define_predicate "easy_vector_constant"
|
323 |
|
|
(match_code "const_vector")
|
324 |
|
|
{
|
325 |
|
|
/* As the paired vectors are actually FPRs it seems that there is
|
326 |
|
|
no easy way to load a CONST_VECTOR without using memory. */
|
327 |
|
|
if (TARGET_PAIRED_FLOAT)
|
328 |
|
|
return false;
|
329 |
|
|
|
330 |
|
|
if ((VSX_VECTOR_MODE (mode) || mode == TImode) && zero_constant (op, mode))
|
331 |
|
|
return true;
|
332 |
|
|
|
333 |
|
|
if (ALTIVEC_VECTOR_MODE (mode))
|
334 |
|
|
{
|
335 |
|
|
if (zero_constant (op, mode))
|
336 |
|
|
return true;
|
337 |
|
|
return easy_altivec_constant (op, mode);
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
if (SPE_VECTOR_MODE (mode))
|
341 |
|
|
{
|
342 |
|
|
int cst, cst2;
|
343 |
|
|
if (zero_constant (op, mode))
|
344 |
|
|
return true;
|
345 |
|
|
if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
|
346 |
|
|
return false;
|
347 |
|
|
|
348 |
|
|
/* Limit SPE vectors to 15 bits signed. These we can generate with:
|
349 |
|
|
li r0, CONSTANT1
|
350 |
|
|
evmergelo r0, r0, r0
|
351 |
|
|
li r0, CONSTANT2
|
352 |
|
|
|
353 |
|
|
I don't know how efficient it would be to allow bigger constants,
|
354 |
|
|
considering we'll have an extra 'ori' for every 'li'. I doubt 5
|
355 |
|
|
instructions is better than a 64-bit memory load, but I don't
|
356 |
|
|
have the e500 timing specs. */
|
357 |
|
|
if (mode == V2SImode)
|
358 |
|
|
{
|
359 |
|
|
cst = INTVAL (CONST_VECTOR_ELT (op, 0));
|
360 |
|
|
cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
|
361 |
|
|
return cst >= -0x7fff && cst <= 0x7fff
|
362 |
|
|
&& cst2 >= -0x7fff && cst2 <= 0x7fff;
|
363 |
|
|
}
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
return false;
|
367 |
|
|
})
|
368 |
|
|
|
369 |
|
|
;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
|
370 |
|
|
(define_predicate "easy_vector_constant_add_self"
|
371 |
|
|
(and (match_code "const_vector")
|
372 |
|
|
(and (match_test "TARGET_ALTIVEC")
|
373 |
|
|
(match_test "easy_altivec_constant (op, mode)")))
|
374 |
|
|
{
|
375 |
|
|
HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
|
376 |
|
|
val = ((val & 0xff) ^ 0x80) - 0x80;
|
377 |
|
|
return EASY_VECTOR_15_ADD_SELF (val);
|
378 |
|
|
})
|
379 |
|
|
|
380 |
|
|
;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
|
381 |
|
|
(define_predicate "easy_vector_constant_msb"
|
382 |
|
|
(and (match_code "const_vector")
|
383 |
|
|
(and (match_test "TARGET_ALTIVEC")
|
384 |
|
|
(match_test "easy_altivec_constant (op, mode)")))
|
385 |
|
|
{
|
386 |
|
|
HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
|
387 |
|
|
return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
|
388 |
|
|
})
|
389 |
|
|
|
390 |
|
|
;; Return 1 if operand is constant zero (scalars and vectors).
|
391 |
|
|
(define_predicate "zero_constant"
|
392 |
|
|
(and (match_code "const_int,const_double,const_vector")
|
393 |
|
|
(match_test "op == CONST0_RTX (mode)")))
|
394 |
|
|
|
395 |
|
|
;; Return 1 if operand is 0.0.
|
396 |
|
|
;; or non-special register register field no cr0
|
397 |
|
|
(define_predicate "zero_fp_constant"
|
398 |
|
|
(and (match_code "const_double")
|
399 |
|
|
(match_test "SCALAR_FLOAT_MODE_P (mode)
|
400 |
|
|
&& op == CONST0_RTX (mode)")))
|
401 |
|
|
|
402 |
|
|
;; Return 1 if the operand is in volatile memory. Note that during the
|
403 |
|
|
;; RTL generation phase, memory_operand does not return TRUE for volatile
|
404 |
|
|
;; memory references. So this function allows us to recognize volatile
|
405 |
|
|
;; references where it's safe.
|
406 |
|
|
(define_predicate "volatile_mem_operand"
|
407 |
|
|
(and (and (match_code "mem")
|
408 |
|
|
(match_test "MEM_VOLATILE_P (op)"))
|
409 |
|
|
(if_then_else (match_test "reload_completed")
|
410 |
|
|
(match_operand 0 "memory_operand")
|
411 |
|
|
(if_then_else (match_test "reload_in_progress")
|
412 |
|
|
(match_test "strict_memory_address_p (mode, XEXP (op, 0))")
|
413 |
|
|
(match_test "memory_address_p (mode, XEXP (op, 0))")))))
|
414 |
|
|
|
415 |
|
|
;; Return 1 if the operand is an offsettable memory operand.
|
416 |
|
|
(define_predicate "offsettable_mem_operand"
|
417 |
|
|
(and (match_operand 0 "memory_operand")
|
418 |
|
|
(match_test "offsettable_nonstrict_memref_p (op)")))
|
419 |
|
|
|
420 |
|
|
;; Return 1 if the operand is a memory operand with an address divisible by 4
|
421 |
|
|
(define_predicate "word_offset_memref_operand"
|
422 |
|
|
(match_operand 0 "memory_operand")
|
423 |
|
|
{
|
424 |
|
|
/* Address inside MEM. */
|
425 |
|
|
op = XEXP (op, 0);
|
426 |
|
|
|
427 |
|
|
/* Extract address from auto-inc/dec. */
|
428 |
|
|
if (GET_CODE (op) == PRE_INC
|
429 |
|
|
|| GET_CODE (op) == PRE_DEC)
|
430 |
|
|
op = XEXP (op, 0);
|
431 |
|
|
else if (GET_CODE (op) == PRE_MODIFY)
|
432 |
|
|
op = XEXP (op, 1);
|
433 |
|
|
|
434 |
|
|
return (GET_CODE (op) != PLUS
|
435 |
|
|
|| ! REG_P (XEXP (op, 0))
|
436 |
|
|
|| GET_CODE (XEXP (op, 1)) != CONST_INT
|
437 |
|
|
|| INTVAL (XEXP (op, 1)) % 4 == 0);
|
438 |
|
|
})
|
439 |
|
|
|
440 |
|
|
;; Return 1 if the operand is an indexed or indirect memory operand.
|
441 |
|
|
(define_predicate "indexed_or_indirect_operand"
|
442 |
|
|
(match_code "mem")
|
443 |
|
|
{
|
444 |
|
|
op = XEXP (op, 0);
|
445 |
|
|
if (VECTOR_MEM_ALTIVEC_P (mode)
|
446 |
|
|
&& GET_CODE (op) == AND
|
447 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
448 |
|
|
&& INTVAL (XEXP (op, 1)) == -16)
|
449 |
|
|
op = XEXP (op, 0);
|
450 |
|
|
|
451 |
|
|
return indexed_or_indirect_address (op, mode);
|
452 |
|
|
})
|
453 |
|
|
|
454 |
|
|
;; Return 1 if the operand is an indexed or indirect memory operand with an
|
455 |
|
|
;; AND -16 in it, used to recognize when we need to switch to Altivec loads
|
456 |
|
|
;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
|
457 |
|
|
;; while VSX uses the full address and traps)
|
458 |
|
|
(define_predicate "altivec_indexed_or_indirect_operand"
|
459 |
|
|
(match_code "mem")
|
460 |
|
|
{
|
461 |
|
|
op = XEXP (op, 0);
|
462 |
|
|
if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
|
463 |
|
|
&& GET_CODE (op) == AND
|
464 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
465 |
|
|
&& INTVAL (XEXP (op, 1)) == -16)
|
466 |
|
|
return indexed_or_indirect_address (XEXP (op, 0), mode);
|
467 |
|
|
|
468 |
|
|
return 0;
|
469 |
|
|
})
|
470 |
|
|
|
471 |
|
|
;; Return 1 if the operand is an indexed or indirect address.
|
472 |
|
|
(define_special_predicate "indexed_or_indirect_address"
|
473 |
|
|
(and (match_test "REG_P (op)
|
474 |
|
|
|| (GET_CODE (op) == PLUS
|
475 |
|
|
/* Omit testing REG_P (XEXP (op, 0)). */
|
476 |
|
|
&& REG_P (XEXP (op, 1)))")
|
477 |
|
|
(match_operand 0 "address_operand")))
|
478 |
|
|
|
479 |
|
|
;; Used for the destination of the fix_truncdfsi2 expander.
|
480 |
|
|
;; If stfiwx will be used, the result goes to memory; otherwise,
|
481 |
|
|
;; we're going to emit a store and a load of a subreg, so the dest is a
|
482 |
|
|
;; register.
|
483 |
|
|
(define_predicate "fix_trunc_dest_operand"
|
484 |
|
|
(if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
|
485 |
|
|
(match_operand 0 "memory_operand")
|
486 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
487 |
|
|
|
488 |
|
|
;; Return 1 if the operand is either a non-special register or can be used
|
489 |
|
|
;; as the operand of a `mode' add insn.
|
490 |
|
|
(define_predicate "add_operand"
|
491 |
|
|
(if_then_else (match_code "const_int")
|
492 |
|
|
(match_test "satisfies_constraint_I (op)
|
493 |
|
|
|| satisfies_constraint_L (op)")
|
494 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
495 |
|
|
|
496 |
|
|
;; Return 1 if OP is a constant but not a valid add_operand.
|
497 |
|
|
(define_predicate "non_add_cint_operand"
|
498 |
|
|
(and (match_code "const_int")
|
499 |
|
|
(match_test "!satisfies_constraint_I (op)
|
500 |
|
|
&& !satisfies_constraint_L (op)")))
|
501 |
|
|
|
502 |
|
|
;; Return 1 if the operand is a constant that can be used as the operand
|
503 |
|
|
;; of an OR or XOR.
|
504 |
|
|
(define_predicate "logical_const_operand"
|
505 |
|
|
(match_code "const_int,const_double")
|
506 |
|
|
{
|
507 |
|
|
HOST_WIDE_INT opl, oph;
|
508 |
|
|
|
509 |
|
|
if (GET_CODE (op) == CONST_INT)
|
510 |
|
|
{
|
511 |
|
|
opl = INTVAL (op) & GET_MODE_MASK (mode);
|
512 |
|
|
|
513 |
|
|
if (HOST_BITS_PER_WIDE_INT <= 32
|
514 |
|
|
&& GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
|
515 |
|
|
return 0;
|
516 |
|
|
}
|
517 |
|
|
else if (GET_CODE (op) == CONST_DOUBLE)
|
518 |
|
|
{
|
519 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
|
520 |
|
|
|
521 |
|
|
opl = CONST_DOUBLE_LOW (op);
|
522 |
|
|
oph = CONST_DOUBLE_HIGH (op);
|
523 |
|
|
if (oph != 0)
|
524 |
|
|
return 0;
|
525 |
|
|
}
|
526 |
|
|
else
|
527 |
|
|
return 0;
|
528 |
|
|
|
529 |
|
|
return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
|
530 |
|
|
|| (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
|
531 |
|
|
})
|
532 |
|
|
|
533 |
|
|
;; Return 1 if the operand is a non-special register or a constant that
|
534 |
|
|
;; can be used as the operand of an OR or XOR.
|
535 |
|
|
(define_predicate "logical_operand"
|
536 |
|
|
(ior (match_operand 0 "gpc_reg_operand")
|
537 |
|
|
(match_operand 0 "logical_const_operand")))
|
538 |
|
|
|
539 |
|
|
;; Return 1 if op is a constant that is not a logical operand, but could
|
540 |
|
|
;; be split into one.
|
541 |
|
|
(define_predicate "non_logical_cint_operand"
|
542 |
|
|
(and (match_code "const_int,const_double")
|
543 |
|
|
(and (not (match_operand 0 "logical_operand"))
|
544 |
|
|
(match_operand 0 "reg_or_logical_cint_operand"))))
|
545 |
|
|
|
546 |
|
|
;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
|
547 |
|
|
;; suitable for use with rlwinm (no more than two 1->0 or 0->1
|
548 |
|
|
;; transitions). Reject all ones and all zeros, since these should have
|
549 |
|
|
;; been optimized away and confuse the making of MB and ME.
|
550 |
|
|
(define_predicate "mask_operand"
|
551 |
|
|
(match_code "const_int")
|
552 |
|
|
{
|
553 |
|
|
HOST_WIDE_INT c, lsb;
|
554 |
|
|
|
555 |
|
|
c = INTVAL (op);
|
556 |
|
|
|
557 |
|
|
if (TARGET_POWERPC64)
|
558 |
|
|
{
|
559 |
|
|
/* Fail if the mask is not 32-bit. */
|
560 |
|
|
if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
|
561 |
|
|
return 0;
|
562 |
|
|
|
563 |
|
|
/* Fail if the mask wraps around because the upper 32-bits of the
|
564 |
|
|
mask will all be 1s, contrary to GCC's internal view. */
|
565 |
|
|
if ((c & 0x80000001) == 0x80000001)
|
566 |
|
|
return 0;
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
/* We don't change the number of transitions by inverting,
|
570 |
|
|
so make sure we start with the LS bit zero. */
|
571 |
|
|
if (c & 1)
|
572 |
|
|
c = ~c;
|
573 |
|
|
|
574 |
|
|
/* Reject all zeros or all ones. */
|
575 |
|
|
if (c == 0)
|
576 |
|
|
return 0;
|
577 |
|
|
|
578 |
|
|
/* Find the first transition. */
|
579 |
|
|
lsb = c & -c;
|
580 |
|
|
|
581 |
|
|
/* Invert to look for a second transition. */
|
582 |
|
|
c = ~c;
|
583 |
|
|
|
584 |
|
|
/* Erase first transition. */
|
585 |
|
|
c &= -lsb;
|
586 |
|
|
|
587 |
|
|
/* Find the second transition (if any). */
|
588 |
|
|
lsb = c & -c;
|
589 |
|
|
|
590 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
591 |
|
|
return c == -lsb;
|
592 |
|
|
})
|
593 |
|
|
|
594 |
|
|
;; Return 1 for the PowerPC64 rlwinm corner case.
|
595 |
|
|
(define_predicate "mask_operand_wrap"
|
596 |
|
|
(match_code "const_int")
|
597 |
|
|
{
|
598 |
|
|
HOST_WIDE_INT c, lsb;
|
599 |
|
|
|
600 |
|
|
c = INTVAL (op);
|
601 |
|
|
|
602 |
|
|
if ((c & 0x80000001) != 0x80000001)
|
603 |
|
|
return 0;
|
604 |
|
|
|
605 |
|
|
c = ~c;
|
606 |
|
|
if (c == 0)
|
607 |
|
|
return 0;
|
608 |
|
|
|
609 |
|
|
lsb = c & -c;
|
610 |
|
|
c = ~c;
|
611 |
|
|
c &= -lsb;
|
612 |
|
|
lsb = c & -c;
|
613 |
|
|
return c == -lsb;
|
614 |
|
|
})
|
615 |
|
|
|
616 |
|
|
;; Return 1 if the operand is a constant that is a PowerPC64 mask
|
617 |
|
|
;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
|
618 |
|
|
;; transition). Reject all zeros, since zero should have been
|
619 |
|
|
;; optimized away and confuses the making of MB and ME.
|
620 |
|
|
(define_predicate "mask64_operand"
|
621 |
|
|
(match_code "const_int")
|
622 |
|
|
{
|
623 |
|
|
HOST_WIDE_INT c, lsb;
|
624 |
|
|
|
625 |
|
|
c = INTVAL (op);
|
626 |
|
|
|
627 |
|
|
/* Reject all zeros. */
|
628 |
|
|
if (c == 0)
|
629 |
|
|
return 0;
|
630 |
|
|
|
631 |
|
|
/* We don't change the number of transitions by inverting,
|
632 |
|
|
so make sure we start with the LS bit zero. */
|
633 |
|
|
if (c & 1)
|
634 |
|
|
c = ~c;
|
635 |
|
|
|
636 |
|
|
/* Find the first transition. */
|
637 |
|
|
lsb = c & -c;
|
638 |
|
|
|
639 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
640 |
|
|
return c == -lsb;
|
641 |
|
|
})
|
642 |
|
|
|
643 |
|
|
;; Like mask64_operand, but allow up to three transitions. This
|
644 |
|
|
;; predicate is used by insn patterns that generate two rldicl or
|
645 |
|
|
;; rldicr machine insns.
|
646 |
|
|
(define_predicate "mask64_2_operand"
|
647 |
|
|
(match_code "const_int")
|
648 |
|
|
{
|
649 |
|
|
HOST_WIDE_INT c, lsb;
|
650 |
|
|
|
651 |
|
|
c = INTVAL (op);
|
652 |
|
|
|
653 |
|
|
/* Disallow all zeros. */
|
654 |
|
|
if (c == 0)
|
655 |
|
|
return 0;
|
656 |
|
|
|
657 |
|
|
/* We don't change the number of transitions by inverting,
|
658 |
|
|
so make sure we start with the LS bit zero. */
|
659 |
|
|
if (c & 1)
|
660 |
|
|
c = ~c;
|
661 |
|
|
|
662 |
|
|
/* Find the first transition. */
|
663 |
|
|
lsb = c & -c;
|
664 |
|
|
|
665 |
|
|
/* Invert to look for a second transition. */
|
666 |
|
|
c = ~c;
|
667 |
|
|
|
668 |
|
|
/* Erase first transition. */
|
669 |
|
|
c &= -lsb;
|
670 |
|
|
|
671 |
|
|
/* Find the second transition. */
|
672 |
|
|
lsb = c & -c;
|
673 |
|
|
|
674 |
|
|
/* Invert to look for a third transition. */
|
675 |
|
|
c = ~c;
|
676 |
|
|
|
677 |
|
|
/* Erase second transition. */
|
678 |
|
|
c &= -lsb;
|
679 |
|
|
|
680 |
|
|
/* Find the third transition (if any). */
|
681 |
|
|
lsb = c & -c;
|
682 |
|
|
|
683 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
684 |
|
|
return c == -lsb;
|
685 |
|
|
})
|
686 |
|
|
|
687 |
|
|
;; Like and_operand, but also match constants that can be implemented
|
688 |
|
|
;; with two rldicl or rldicr insns.
|
689 |
|
|
(define_predicate "and64_2_operand"
|
690 |
|
|
(ior (match_operand 0 "mask64_2_operand")
|
691 |
|
|
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
|
692 |
|
|
(match_operand 0 "gpc_reg_operand")
|
693 |
|
|
(match_operand 0 "logical_operand"))))
|
694 |
|
|
|
695 |
|
|
;; Return 1 if the operand is either a non-special register or a
|
696 |
|
|
;; constant that can be used as the operand of a logical AND.
|
697 |
|
|
(define_predicate "and_operand"
|
698 |
|
|
(ior (match_operand 0 "mask_operand")
|
699 |
|
|
(ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
|
700 |
|
|
(match_operand 0 "mask64_operand"))
|
701 |
|
|
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
|
702 |
|
|
(match_operand 0 "gpc_reg_operand")
|
703 |
|
|
(match_operand 0 "logical_operand")))))
|
704 |
|
|
|
705 |
|
|
;; Return 1 if the operand is either a logical operand or a short cint operand.
|
706 |
|
|
(define_predicate "scc_eq_operand"
|
707 |
|
|
(ior (match_operand 0 "logical_operand")
|
708 |
|
|
(match_operand 0 "short_cint_operand")))
|
709 |
|
|
|
710 |
|
|
;; Return 1 if the operand is a general non-special register or memory operand.
|
711 |
|
|
(define_predicate "reg_or_mem_operand"
|
712 |
|
|
(ior (match_operand 0 "memory_operand")
|
713 |
|
|
(ior (and (match_code "mem")
|
714 |
|
|
(match_test "macho_lo_sum_memory_operand (op, mode)"))
|
715 |
|
|
(ior (match_operand 0 "volatile_mem_operand")
|
716 |
|
|
(match_operand 0 "gpc_reg_operand")))))
|
717 |
|
|
|
718 |
|
|
;; Return 1 if the operand is either an easy FP constant or memory or reg.
|
719 |
|
|
(define_predicate "reg_or_none500mem_operand"
|
720 |
|
|
(if_then_else (match_code "mem")
|
721 |
|
|
(and (match_test "!TARGET_E500_DOUBLE")
|
722 |
|
|
(ior (match_operand 0 "memory_operand")
|
723 |
|
|
(ior (match_test "macho_lo_sum_memory_operand (op, mode)")
|
724 |
|
|
(match_operand 0 "volatile_mem_operand"))))
|
725 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
726 |
|
|
|
727 |
|
|
;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
|
728 |
|
|
(define_predicate "zero_reg_mem_operand"
|
729 |
|
|
(ior (match_operand 0 "zero_fp_constant")
|
730 |
|
|
(match_operand 0 "reg_or_mem_operand")))
|
731 |
|
|
|
732 |
|
|
;; Return 1 if the operand is a general register or memory operand without
|
733 |
|
|
;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
|
734 |
|
|
;; lwa instruction.
|
735 |
|
|
(define_predicate "lwa_operand"
|
736 |
|
|
(match_code "reg,subreg,mem")
|
737 |
|
|
{
|
738 |
|
|
rtx inner = op;
|
739 |
|
|
|
740 |
|
|
if (reload_completed && GET_CODE (inner) == SUBREG)
|
741 |
|
|
inner = SUBREG_REG (inner);
|
742 |
|
|
|
743 |
|
|
return gpc_reg_operand (inner, mode)
|
744 |
|
|
|| (memory_operand (inner, mode)
|
745 |
|
|
&& GET_CODE (XEXP (inner, 0)) != PRE_INC
|
746 |
|
|
&& GET_CODE (XEXP (inner, 0)) != PRE_DEC
|
747 |
|
|
&& (GET_CODE (XEXP (inner, 0)) != PRE_MODIFY
|
748 |
|
|
|| legitimate_indexed_address_p (XEXP (XEXP (inner, 0), 1), 0))
|
749 |
|
|
&& (GET_CODE (XEXP (inner, 0)) != PLUS
|
750 |
|
|
|| GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT
|
751 |
|
|
|| INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0));
|
752 |
|
|
})
|
753 |
|
|
|
754 |
|
|
;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
|
755 |
|
|
(define_predicate "symbol_ref_operand"
|
756 |
|
|
(and (match_code "symbol_ref")
|
757 |
|
|
(match_test "(mode == VOIDmode || GET_MODE (op) == mode)
|
758 |
|
|
&& (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
|
759 |
|
|
|
760 |
|
|
;; Return 1 if op is an operand that can be loaded via the GOT.
|
761 |
|
|
;; or non-special register register field no cr0
|
762 |
|
|
(define_predicate "got_operand"
|
763 |
|
|
(match_code "symbol_ref,const,label_ref"))
|
764 |
|
|
|
765 |
|
|
;; Return 1 if op is a simple reference that can be loaded via the GOT,
|
766 |
|
|
;; excluding labels involving addition.
|
767 |
|
|
(define_predicate "got_no_const_operand"
|
768 |
|
|
(match_code "symbol_ref,label_ref"))
|
769 |
|
|
|
770 |
|
|
;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
|
771 |
|
|
(define_predicate "rs6000_tls_symbol_ref"
|
772 |
|
|
(and (match_code "symbol_ref")
|
773 |
|
|
(match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
|
774 |
|
|
|
775 |
|
|
;; Return 1 if the operand, used inside a MEM, is a valid first argument
|
776 |
|
|
;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR.
|
777 |
|
|
(define_predicate "call_operand"
|
778 |
|
|
(if_then_else (match_code "reg")
|
779 |
|
|
(match_test "REGNO (op) == LR_REGNO
|
780 |
|
|
|| REGNO (op) == CTR_REGNO
|
781 |
|
|
|| REGNO (op) >= FIRST_PSEUDO_REGISTER")
|
782 |
|
|
(match_code "symbol_ref")))
|
783 |
|
|
|
784 |
|
|
;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
|
785 |
|
|
;; this file.
|
786 |
|
|
(define_predicate "current_file_function_operand"
|
787 |
|
|
(and (match_code "symbol_ref")
|
788 |
|
|
(match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
|
789 |
|
|
&& ((SYMBOL_REF_LOCAL_P (op)
|
790 |
|
|
&& (DEFAULT_ABI != ABI_AIX
|
791 |
|
|
|| !SYMBOL_REF_EXTERNAL_P (op)))
|
792 |
|
|
|| (op == XEXP (DECL_RTL (current_function_decl),
|
793 |
|
|
0)))")))
|
794 |
|
|
|
795 |
|
|
;; Return 1 if this operand is a valid input for a move insn.
|
796 |
|
|
(define_predicate "input_operand"
|
797 |
|
|
(match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
|
798 |
|
|
const_double,const_vector,const_int,plus")
|
799 |
|
|
{
|
800 |
|
|
/* Memory is always valid. */
|
801 |
|
|
if (memory_operand (op, mode))
|
802 |
|
|
return 1;
|
803 |
|
|
|
804 |
|
|
/* For floating-point, easy constants are valid. */
|
805 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
806 |
|
|
&& CONSTANT_P (op)
|
807 |
|
|
&& easy_fp_constant (op, mode))
|
808 |
|
|
return 1;
|
809 |
|
|
|
810 |
|
|
/* Allow any integer constant. */
|
811 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
812 |
|
|
&& (GET_CODE (op) == CONST_INT
|
813 |
|
|
|| GET_CODE (op) == CONST_DOUBLE))
|
814 |
|
|
return 1;
|
815 |
|
|
|
816 |
|
|
/* Allow easy vector constants. */
|
817 |
|
|
if (GET_CODE (op) == CONST_VECTOR
|
818 |
|
|
&& easy_vector_constant (op, mode))
|
819 |
|
|
return 1;
|
820 |
|
|
|
821 |
|
|
/* Do not allow invalid E500 subregs. */
|
822 |
|
|
if ((TARGET_E500_DOUBLE || TARGET_SPE)
|
823 |
|
|
&& GET_CODE (op) == SUBREG
|
824 |
|
|
&& invalid_e500_subreg (op, mode))
|
825 |
|
|
return 0;
|
826 |
|
|
|
827 |
|
|
/* For floating-point or multi-word mode, the only remaining valid type
|
828 |
|
|
is a register. */
|
829 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
830 |
|
|
|| GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
831 |
|
|
return register_operand (op, mode);
|
832 |
|
|
|
833 |
|
|
/* The only cases left are integral modes one word or smaller (we
|
834 |
|
|
do not get called for MODE_CC values). These can be in any
|
835 |
|
|
register. */
|
836 |
|
|
if (register_operand (op, mode))
|
837 |
|
|
return 1;
|
838 |
|
|
|
839 |
|
|
/* A SYMBOL_REF referring to the TOC is valid. */
|
840 |
|
|
if (legitimate_constant_pool_address_p (op))
|
841 |
|
|
return 1;
|
842 |
|
|
|
843 |
|
|
/* A constant pool expression (relative to the TOC) is valid */
|
844 |
|
|
if (toc_relative_expr_p (op))
|
845 |
|
|
return 1;
|
846 |
|
|
|
847 |
|
|
/* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
|
848 |
|
|
to be valid. */
|
849 |
|
|
if (DEFAULT_ABI == ABI_V4
|
850 |
|
|
&& (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
|
851 |
|
|
&& small_data_operand (op, Pmode))
|
852 |
|
|
return 1;
|
853 |
|
|
|
854 |
|
|
return 0;
|
855 |
|
|
})
|
856 |
|
|
|
857 |
|
|
;; Return true if OP is an invalid SUBREG operation on the e500.
|
858 |
|
|
(define_predicate "rs6000_nonimmediate_operand"
|
859 |
|
|
(match_code "reg,subreg,mem")
|
860 |
|
|
{
|
861 |
|
|
if ((TARGET_E500_DOUBLE || TARGET_SPE)
|
862 |
|
|
&& GET_CODE (op) == SUBREG
|
863 |
|
|
&& invalid_e500_subreg (op, mode))
|
864 |
|
|
return 0;
|
865 |
|
|
|
866 |
|
|
return nonimmediate_operand (op, mode);
|
867 |
|
|
})
|
868 |
|
|
|
869 |
|
|
;; Return true if operand is boolean operator.
|
870 |
|
|
(define_predicate "boolean_operator"
|
871 |
|
|
(match_code "and,ior,xor"))
|
872 |
|
|
|
873 |
|
|
;; Return true if operand is OR-form of boolean operator.
|
874 |
|
|
(define_predicate "boolean_or_operator"
|
875 |
|
|
(match_code "ior,xor"))
|
876 |
|
|
|
877 |
|
|
;; Return true if operand is an equality operator.
|
878 |
|
|
(define_special_predicate "equality_operator"
|
879 |
|
|
(match_code "eq,ne"))
|
880 |
|
|
|
881 |
|
|
;; Return true if operand is MIN or MAX operator.
|
882 |
|
|
(define_predicate "min_max_operator"
|
883 |
|
|
(match_code "smin,smax,umin,umax"))
|
884 |
|
|
|
885 |
|
|
;; Return 1 if OP is a comparison operation that is valid for a branch
|
886 |
|
|
;; instruction. We check the opcode against the mode of the CC value.
|
887 |
|
|
;; validate_condition_mode is an assertion.
|
888 |
|
|
(define_predicate "branch_comparison_operator"
|
889 |
|
|
(and (match_operand 0 "comparison_operator")
|
890 |
|
|
(and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
|
891 |
|
|
(match_test "validate_condition_mode (GET_CODE (op),
|
892 |
|
|
GET_MODE (XEXP (op, 0))),
|
893 |
|
|
1"))))
|
894 |
|
|
|
895 |
|
|
(define_predicate "rs6000_cbranch_operator"
|
896 |
|
|
(if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS")
|
897 |
|
|
(match_operand 0 "ordered_comparison_operator")
|
898 |
|
|
(match_operand 0 "comparison_operator")))
|
899 |
|
|
|
900 |
|
|
;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
|
901 |
|
|
;; it must be a positive comparison.
|
902 |
|
|
(define_predicate "scc_comparison_operator"
|
903 |
|
|
(and (match_operand 0 "branch_comparison_operator")
|
904 |
|
|
(match_code "eq,lt,gt,ltu,gtu,unordered")))
|
905 |
|
|
|
906 |
|
|
;; Return 1 if OP is a comparison operation that is valid for a branch
|
907 |
|
|
;; insn, which is true if the corresponding bit in the CC register is set.
|
908 |
|
|
(define_predicate "branch_positive_comparison_operator"
|
909 |
|
|
(and (match_operand 0 "branch_comparison_operator")
|
910 |
|
|
(match_code "eq,lt,gt,ltu,gtu,unordered")))
|
911 |
|
|
|
912 |
|
|
;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
|
913 |
|
|
(define_predicate "load_multiple_operation"
|
914 |
|
|
(match_code "parallel")
|
915 |
|
|
{
|
916 |
|
|
int count = XVECLEN (op, 0);
|
917 |
|
|
unsigned int dest_regno;
|
918 |
|
|
rtx src_addr;
|
919 |
|
|
int i;
|
920 |
|
|
|
921 |
|
|
/* Perform a quick check so we don't blow up below. */
|
922 |
|
|
if (count <= 1
|
923 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
924 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
925 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
|
926 |
|
|
return 0;
|
927 |
|
|
|
928 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
929 |
|
|
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
|
930 |
|
|
|
931 |
|
|
for (i = 1; i < count; i++)
|
932 |
|
|
{
|
933 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
934 |
|
|
|
935 |
|
|
if (GET_CODE (elt) != SET
|
936 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
937 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
938 |
|
|
|| REGNO (SET_DEST (elt)) != dest_regno + i
|
939 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
940 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
941 |
|
|
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|
942 |
|
|
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|
943 |
|
|
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|
944 |
|
|
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
|
945 |
|
|
return 0;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
return 1;
|
949 |
|
|
})
|
950 |
|
|
|
951 |
|
|
;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
|
952 |
|
|
;; The second vector element is a CLOBBER.
|
953 |
|
|
(define_predicate "store_multiple_operation"
|
954 |
|
|
(match_code "parallel")
|
955 |
|
|
{
|
956 |
|
|
int count = XVECLEN (op, 0) - 1;
|
957 |
|
|
unsigned int src_regno;
|
958 |
|
|
rtx dest_addr;
|
959 |
|
|
int i;
|
960 |
|
|
|
961 |
|
|
/* Perform a quick check so we don't blow up below. */
|
962 |
|
|
if (count <= 1
|
963 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
964 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|
965 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
|
966 |
|
|
return 0;
|
967 |
|
|
|
968 |
|
|
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
|
969 |
|
|
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
|
970 |
|
|
|
971 |
|
|
for (i = 1; i < count; i++)
|
972 |
|
|
{
|
973 |
|
|
rtx elt = XVECEXP (op, 0, i + 1);
|
974 |
|
|
|
975 |
|
|
if (GET_CODE (elt) != SET
|
976 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
977 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
978 |
|
|
|| REGNO (SET_SRC (elt)) != src_regno + i
|
979 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
980 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
981 |
|
|
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|
982 |
|
|
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|
983 |
|
|
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|
984 |
|
|
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
|
985 |
|
|
return 0;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
return 1;
|
989 |
|
|
})
|
990 |
|
|
|
991 |
|
|
;; Return 1 if OP is valid for a save_world call in prologue, known to be
|
992 |
|
|
;; a PARLLEL.
|
993 |
|
|
(define_predicate "save_world_operation"
|
994 |
|
|
(match_code "parallel")
|
995 |
|
|
{
|
996 |
|
|
int index;
|
997 |
|
|
int i;
|
998 |
|
|
rtx elt;
|
999 |
|
|
int count = XVECLEN (op, 0);
|
1000 |
|
|
|
1001 |
|
|
if (count != 54)
|
1002 |
|
|
return 0;
|
1003 |
|
|
|
1004 |
|
|
index = 0;
|
1005 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
1006 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
|
1007 |
|
|
return 0;
|
1008 |
|
|
|
1009 |
|
|
for (i=1; i <= 18; i++)
|
1010 |
|
|
{
|
1011 |
|
|
elt = XVECEXP (op, 0, index++);
|
1012 |
|
|
if (GET_CODE (elt) != SET
|
1013 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
1014 |
|
|
|| ! memory_operand (SET_DEST (elt), DFmode)
|
1015 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
1016 |
|
|
|| GET_MODE (SET_SRC (elt)) != DFmode)
|
1017 |
|
|
return 0;
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
for (i=1; i <= 12; i++)
|
1021 |
|
|
{
|
1022 |
|
|
elt = XVECEXP (op, 0, index++);
|
1023 |
|
|
if (GET_CODE (elt) != SET
|
1024 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
1025 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
1026 |
|
|
|| GET_MODE (SET_SRC (elt)) != V4SImode)
|
1027 |
|
|
return 0;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
for (i=1; i <= 19; i++)
|
1031 |
|
|
{
|
1032 |
|
|
elt = XVECEXP (op, 0, index++);
|
1033 |
|
|
if (GET_CODE (elt) != SET
|
1034 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
1035 |
|
|
|| ! memory_operand (SET_DEST (elt), Pmode)
|
1036 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
1037 |
|
|
|| GET_MODE (SET_SRC (elt)) != Pmode)
|
1038 |
|
|
return 0;
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
elt = XVECEXP (op, 0, index++);
|
1042 |
|
|
if (GET_CODE (elt) != SET
|
1043 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
1044 |
|
|
|| ! memory_operand (SET_DEST (elt), Pmode)
|
1045 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
1046 |
|
|
|| REGNO (SET_SRC (elt)) != CR2_REGNO
|
1047 |
|
|
|| GET_MODE (SET_SRC (elt)) != Pmode)
|
1048 |
|
|
return 0;
|
1049 |
|
|
|
1050 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != SET
|
1051 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != SET)
|
1052 |
|
|
return 0;
|
1053 |
|
|
return 1;
|
1054 |
|
|
})
|
1055 |
|
|
|
1056 |
|
|
;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
|
1057 |
|
|
;; a PARLLEL.
|
1058 |
|
|
(define_predicate "restore_world_operation"
|
1059 |
|
|
(match_code "parallel")
|
1060 |
|
|
{
|
1061 |
|
|
int index;
|
1062 |
|
|
int i;
|
1063 |
|
|
rtx elt;
|
1064 |
|
|
int count = XVECLEN (op, 0);
|
1065 |
|
|
|
1066 |
|
|
if (count != 59)
|
1067 |
|
|
return 0;
|
1068 |
|
|
|
1069 |
|
|
index = 0;
|
1070 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
|
1071 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|
1072 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|
1073 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
|
1074 |
|
|
return 0;
|
1075 |
|
|
|
1076 |
|
|
elt = XVECEXP (op, 0, index++);
|
1077 |
|
|
if (GET_CODE (elt) != SET
|
1078 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
1079 |
|
|
|| ! memory_operand (SET_SRC (elt), Pmode)
|
1080 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
1081 |
|
|
|| REGNO (SET_DEST (elt)) != CR2_REGNO
|
1082 |
|
|
|| GET_MODE (SET_DEST (elt)) != Pmode)
|
1083 |
|
|
return 0;
|
1084 |
|
|
|
1085 |
|
|
for (i=1; i <= 19; i++)
|
1086 |
|
|
{
|
1087 |
|
|
elt = XVECEXP (op, 0, index++);
|
1088 |
|
|
if (GET_CODE (elt) != SET
|
1089 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
1090 |
|
|
|| ! memory_operand (SET_SRC (elt), Pmode)
|
1091 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
1092 |
|
|
|| GET_MODE (SET_DEST (elt)) != Pmode)
|
1093 |
|
|
return 0;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
for (i=1; i <= 12; i++)
|
1097 |
|
|
{
|
1098 |
|
|
elt = XVECEXP (op, 0, index++);
|
1099 |
|
|
if (GET_CODE (elt) != SET
|
1100 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
1101 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
1102 |
|
|
|| GET_MODE (SET_DEST (elt)) != V4SImode)
|
1103 |
|
|
return 0;
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
for (i=1; i <= 18; i++)
|
1107 |
|
|
{
|
1108 |
|
|
elt = XVECEXP (op, 0, index++);
|
1109 |
|
|
if (GET_CODE (elt) != SET
|
1110 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
1111 |
|
|
|| ! memory_operand (SET_SRC (elt), DFmode)
|
1112 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
1113 |
|
|
|| GET_MODE (SET_DEST (elt)) != DFmode)
|
1114 |
|
|
return 0;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
1118 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
1119 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
1120 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
1121 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
|
1122 |
|
|
return 0;
|
1123 |
|
|
return 1;
|
1124 |
|
|
})
|
1125 |
|
|
|
1126 |
|
|
;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
|
1127 |
|
|
(define_predicate "vrsave_operation"
|
1128 |
|
|
(match_code "parallel")
|
1129 |
|
|
{
|
1130 |
|
|
int count = XVECLEN (op, 0);
|
1131 |
|
|
unsigned int dest_regno, src_regno;
|
1132 |
|
|
int i;
|
1133 |
|
|
|
1134 |
|
|
if (count <= 1
|
1135 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
1136 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
1137 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
|
1138 |
|
|
|| XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
|
1139 |
|
|
return 0;
|
1140 |
|
|
|
1141 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
1142 |
|
|
src_regno = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));
|
1143 |
|
|
|
1144 |
|
|
if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
|
1145 |
|
|
return 0;
|
1146 |
|
|
|
1147 |
|
|
for (i = 1; i < count; i++)
|
1148 |
|
|
{
|
1149 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
1150 |
|
|
|
1151 |
|
|
if (GET_CODE (elt) != CLOBBER
|
1152 |
|
|
&& GET_CODE (elt) != SET)
|
1153 |
|
|
return 0;
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
return 1;
|
1157 |
|
|
})
|
1158 |
|
|
|
1159 |
|
|
;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
|
1160 |
|
|
(define_predicate "mfcr_operation"
|
1161 |
|
|
(match_code "parallel")
|
1162 |
|
|
{
|
1163 |
|
|
int count = XVECLEN (op, 0);
|
1164 |
|
|
int i;
|
1165 |
|
|
|
1166 |
|
|
/* Perform a quick check so we don't blow up below. */
|
1167 |
|
|
if (count < 1
|
1168 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
1169 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|
1170 |
|
|
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
|
1171 |
|
|
return 0;
|
1172 |
|
|
|
1173 |
|
|
for (i = 0; i < count; i++)
|
1174 |
|
|
{
|
1175 |
|
|
rtx exp = XVECEXP (op, 0, i);
|
1176 |
|
|
rtx unspec;
|
1177 |
|
|
int maskval;
|
1178 |
|
|
rtx src_reg;
|
1179 |
|
|
|
1180 |
|
|
src_reg = XVECEXP (SET_SRC (exp), 0, 0);
|
1181 |
|
|
|
1182 |
|
|
if (GET_CODE (src_reg) != REG
|
1183 |
|
|
|| GET_MODE (src_reg) != CCmode
|
1184 |
|
|
|| ! CR_REGNO_P (REGNO (src_reg)))
|
1185 |
|
|
return 0;
|
1186 |
|
|
|
1187 |
|
|
if (GET_CODE (exp) != SET
|
1188 |
|
|
|| GET_CODE (SET_DEST (exp)) != REG
|
1189 |
|
|
|| GET_MODE (SET_DEST (exp)) != SImode
|
1190 |
|
|
|| ! INT_REGNO_P (REGNO (SET_DEST (exp))))
|
1191 |
|
|
return 0;
|
1192 |
|
|
unspec = SET_SRC (exp);
|
1193 |
|
|
maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
|
1194 |
|
|
|
1195 |
|
|
if (GET_CODE (unspec) != UNSPEC
|
1196 |
|
|
|| XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
|
1197 |
|
|
|| XVECLEN (unspec, 0) != 2
|
1198 |
|
|
|| XVECEXP (unspec, 0, 0) != src_reg
|
1199 |
|
|
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|
1200 |
|
|
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
|
1201 |
|
|
return 0;
|
1202 |
|
|
}
|
1203 |
|
|
return 1;
|
1204 |
|
|
})
|
1205 |
|
|
|
1206 |
|
|
;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
|
1207 |
|
|
(define_predicate "mtcrf_operation"
|
1208 |
|
|
(match_code "parallel")
|
1209 |
|
|
{
|
1210 |
|
|
int count = XVECLEN (op, 0);
|
1211 |
|
|
int i;
|
1212 |
|
|
rtx src_reg;
|
1213 |
|
|
|
1214 |
|
|
/* Perform a quick check so we don't blow up below. */
|
1215 |
|
|
if (count < 1
|
1216 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
1217 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|
1218 |
|
|
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
|
1219 |
|
|
return 0;
|
1220 |
|
|
src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
|
1221 |
|
|
|
1222 |
|
|
if (GET_CODE (src_reg) != REG
|
1223 |
|
|
|| GET_MODE (src_reg) != SImode
|
1224 |
|
|
|| ! INT_REGNO_P (REGNO (src_reg)))
|
1225 |
|
|
return 0;
|
1226 |
|
|
|
1227 |
|
|
for (i = 0; i < count; i++)
|
1228 |
|
|
{
|
1229 |
|
|
rtx exp = XVECEXP (op, 0, i);
|
1230 |
|
|
rtx unspec;
|
1231 |
|
|
int maskval;
|
1232 |
|
|
|
1233 |
|
|
if (GET_CODE (exp) != SET
|
1234 |
|
|
|| GET_CODE (SET_DEST (exp)) != REG
|
1235 |
|
|
|| GET_MODE (SET_DEST (exp)) != CCmode
|
1236 |
|
|
|| ! CR_REGNO_P (REGNO (SET_DEST (exp))))
|
1237 |
|
|
return 0;
|
1238 |
|
|
unspec = SET_SRC (exp);
|
1239 |
|
|
maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
|
1240 |
|
|
|
1241 |
|
|
if (GET_CODE (unspec) != UNSPEC
|
1242 |
|
|
|| XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
|
1243 |
|
|
|| XVECLEN (unspec, 0) != 2
|
1244 |
|
|
|| XVECEXP (unspec, 0, 0) != src_reg
|
1245 |
|
|
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|
1246 |
|
|
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
|
1247 |
|
|
return 0;
|
1248 |
|
|
}
|
1249 |
|
|
return 1;
|
1250 |
|
|
})
|
1251 |
|
|
|
1252 |
|
|
;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
|
1253 |
|
|
(define_predicate "lmw_operation"
|
1254 |
|
|
(match_code "parallel")
|
1255 |
|
|
{
|
1256 |
|
|
int count = XVECLEN (op, 0);
|
1257 |
|
|
unsigned int dest_regno;
|
1258 |
|
|
rtx src_addr;
|
1259 |
|
|
unsigned int base_regno;
|
1260 |
|
|
HOST_WIDE_INT offset;
|
1261 |
|
|
int i;
|
1262 |
|
|
|
1263 |
|
|
/* Perform a quick check so we don't blow up below. */
|
1264 |
|
|
if (count <= 1
|
1265 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
1266 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
1267 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
|
1268 |
|
|
return 0;
|
1269 |
|
|
|
1270 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
1271 |
|
|
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
|
1272 |
|
|
|
1273 |
|
|
if (dest_regno > 31
|
1274 |
|
|
|| count != 32 - (int) dest_regno)
|
1275 |
|
|
return 0;
|
1276 |
|
|
|
1277 |
|
|
if (legitimate_indirect_address_p (src_addr, 0))
|
1278 |
|
|
{
|
1279 |
|
|
offset = 0;
|
1280 |
|
|
base_regno = REGNO (src_addr);
|
1281 |
|
|
if (base_regno == 0)
|
1282 |
|
|
return 0;
|
1283 |
|
|
}
|
1284 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
|
1285 |
|
|
{
|
1286 |
|
|
offset = INTVAL (XEXP (src_addr, 1));
|
1287 |
|
|
base_regno = REGNO (XEXP (src_addr, 0));
|
1288 |
|
|
}
|
1289 |
|
|
else
|
1290 |
|
|
return 0;
|
1291 |
|
|
|
1292 |
|
|
for (i = 0; i < count; i++)
|
1293 |
|
|
{
|
1294 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
1295 |
|
|
rtx newaddr;
|
1296 |
|
|
rtx addr_reg;
|
1297 |
|
|
HOST_WIDE_INT newoffset;
|
1298 |
|
|
|
1299 |
|
|
if (GET_CODE (elt) != SET
|
1300 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
1301 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
1302 |
|
|
|| REGNO (SET_DEST (elt)) != dest_regno + i
|
1303 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
1304 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode)
|
1305 |
|
|
return 0;
|
1306 |
|
|
newaddr = XEXP (SET_SRC (elt), 0);
|
1307 |
|
|
if (legitimate_indirect_address_p (newaddr, 0))
|
1308 |
|
|
{
|
1309 |
|
|
newoffset = 0;
|
1310 |
|
|
addr_reg = newaddr;
|
1311 |
|
|
}
|
1312 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
|
1313 |
|
|
{
|
1314 |
|
|
addr_reg = XEXP (newaddr, 0);
|
1315 |
|
|
newoffset = INTVAL (XEXP (newaddr, 1));
|
1316 |
|
|
}
|
1317 |
|
|
else
|
1318 |
|
|
return 0;
|
1319 |
|
|
if (REGNO (addr_reg) != base_regno
|
1320 |
|
|
|| newoffset != offset + 4 * i)
|
1321 |
|
|
return 0;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
return 1;
|
1325 |
|
|
})
|
1326 |
|
|
|
1327 |
|
|
;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
|
1328 |
|
|
(define_predicate "stmw_operation"
|
1329 |
|
|
(match_code "parallel")
|
1330 |
|
|
{
|
1331 |
|
|
int count = XVECLEN (op, 0);
|
1332 |
|
|
unsigned int src_regno;
|
1333 |
|
|
rtx dest_addr;
|
1334 |
|
|
unsigned int base_regno;
|
1335 |
|
|
HOST_WIDE_INT offset;
|
1336 |
|
|
int i;
|
1337 |
|
|
|
1338 |
|
|
/* Perform a quick check so we don't blow up below. */
|
1339 |
|
|
if (count <= 1
|
1340 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
1341 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|
1342 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
|
1343 |
|
|
return 0;
|
1344 |
|
|
|
1345 |
|
|
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
|
1346 |
|
|
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
|
1347 |
|
|
|
1348 |
|
|
if (src_regno > 31
|
1349 |
|
|
|| count != 32 - (int) src_regno)
|
1350 |
|
|
return 0;
|
1351 |
|
|
|
1352 |
|
|
if (legitimate_indirect_address_p (dest_addr, 0))
|
1353 |
|
|
{
|
1354 |
|
|
offset = 0;
|
1355 |
|
|
base_regno = REGNO (dest_addr);
|
1356 |
|
|
if (base_regno == 0)
|
1357 |
|
|
return 0;
|
1358 |
|
|
}
|
1359 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
|
1360 |
|
|
{
|
1361 |
|
|
offset = INTVAL (XEXP (dest_addr, 1));
|
1362 |
|
|
base_regno = REGNO (XEXP (dest_addr, 0));
|
1363 |
|
|
}
|
1364 |
|
|
else
|
1365 |
|
|
return 0;
|
1366 |
|
|
|
1367 |
|
|
for (i = 0; i < count; i++)
|
1368 |
|
|
{
|
1369 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
1370 |
|
|
rtx newaddr;
|
1371 |
|
|
rtx addr_reg;
|
1372 |
|
|
HOST_WIDE_INT newoffset;
|
1373 |
|
|
|
1374 |
|
|
if (GET_CODE (elt) != SET
|
1375 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
1376 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
1377 |
|
|
|| REGNO (SET_SRC (elt)) != src_regno + i
|
1378 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
1379 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode)
|
1380 |
|
|
return 0;
|
1381 |
|
|
newaddr = XEXP (SET_DEST (elt), 0);
|
1382 |
|
|
if (legitimate_indirect_address_p (newaddr, 0))
|
1383 |
|
|
{
|
1384 |
|
|
newoffset = 0;
|
1385 |
|
|
addr_reg = newaddr;
|
1386 |
|
|
}
|
1387 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
|
1388 |
|
|
{
|
1389 |
|
|
addr_reg = XEXP (newaddr, 0);
|
1390 |
|
|
newoffset = INTVAL (XEXP (newaddr, 1));
|
1391 |
|
|
}
|
1392 |
|
|
else
|
1393 |
|
|
return 0;
|
1394 |
|
|
if (REGNO (addr_reg) != base_regno
|
1395 |
|
|
|| newoffset != offset + 4 * i)
|
1396 |
|
|
return 0;
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
return 1;
|
1400 |
|
|
})
|