OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [rs6000/] [rs6000.h] - Blame information for rev 301

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
 
7
   This file is part of GCC.
8
 
9
   GCC is free software; you can redistribute it and/or modify it
10
   under the terms of the GNU General Public License as published
11
   by the Free Software Foundation; either version 3, or (at your
12
   option) any later version.
13
 
14
   GCC is distributed in the hope that it will be useful, but WITHOUT
15
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
17
   License for more details.
18
 
19
   Under Section 7 of GPL version 3, you are granted additional
20
   permissions described in the GCC Runtime Library Exception, version
21
   3.1, as published by the Free Software Foundation.
22
 
23
   You should have received a copy of the GNU General Public License and
24
   a copy of the GCC Runtime Library Exception along with this program;
25
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
26
   <http://www.gnu.org/licenses/>.  */
27
 
28
/* Note that some other tm.h files include this one and then override
29
   many of the definitions.  */
30
 
31
/* Definitions for the object file format.  These are set at
32
   compile-time.  */
33
 
34
#define OBJECT_XCOFF 1
35
#define OBJECT_ELF 2
36
#define OBJECT_PEF 3
37
#define OBJECT_MACHO 4
38
 
39
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
43
 
44
#ifndef TARGET_AIX
45
#define TARGET_AIX 0
46
#endif
47
 
48
/* Control whether function entry points use a "dot" symbol when
49
   ABI_AIX.  */
50
#define DOT_SYMBOLS 1
51
 
52
/* Default string to use for cpu if not specified.  */
53
#ifndef TARGET_CPU_DEFAULT
54
#define TARGET_CPU_DEFAULT ((char *)0)
55
#endif
56
 
57
/* If configured for PPC405, support PPC405CR Erratum77.  */
58
#ifdef CONFIG_PPC405CR
59
#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60
#else
61
#define PPC405_ERRATUM77 0
62
#endif
63
 
64
#ifndef TARGET_PAIRED_FLOAT
65
#define TARGET_PAIRED_FLOAT 0
66
#endif
67
 
68
#ifdef HAVE_AS_POPCNTB
69
#define ASM_CPU_POWER5_SPEC "-mpower5"
70
#else
71
#define ASM_CPU_POWER5_SPEC "-mpower4"
72
#endif
73
 
74
#ifdef HAVE_AS_DFP
75
#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76
#else
77
#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78
#endif
79
 
80
#ifdef HAVE_AS_POPCNTD
81
#define ASM_CPU_POWER7_SPEC "-mpower7"
82
#else
83
#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84
#endif
85
 
86
#ifdef HAVE_AS_DCI
87
#define ASM_CPU_476_SPEC "-m476"
88
#else
89
#define ASM_CPU_476_SPEC "-mpower4"
90
#endif
91
 
92
/* Common ASM definitions used by ASM_SPEC among the various targets for
93
   handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
94
   provide the default assembler options if the user uses -mcpu=native, so if
95
   you make changes here, make them also there.  */
96
#define ASM_CPU_SPEC \
97
"%{!mcpu*: \
98
  %{mpower: %{!mpower2: -mpwr}} \
99
  %{mpower2: -mpwrx} \
100
  %{mpowerpc64*: -mppc64} \
101
  %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
102
  %{mno-power: %{!mpowerpc*: -mcom}} \
103
  %{!mno-power: %{!mpower*: %(asm_default)}}} \
104
%{mcpu=native: %(asm_cpu_native)} \
105
%{mcpu=common: -mcom} \
106
%{mcpu=cell: -mcell} \
107
%{mcpu=power: -mpwr} \
108
%{mcpu=power2: -mpwrx} \
109
%{mcpu=power3: -mppc64} \
110
%{mcpu=power4: -mpower4} \
111
%{mcpu=power5: %(asm_cpu_power5)} \
112
%{mcpu=power5+: %(asm_cpu_power5)} \
113
%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
114
%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
115
%{mcpu=power7: %(asm_cpu_power7)} \
116
%{mcpu=a2: -ma2} \
117
%{mcpu=powerpc: -mppc} \
118
%{mcpu=rios: -mpwr} \
119
%{mcpu=rios1: -mpwr} \
120
%{mcpu=rios2: -mpwrx} \
121
%{mcpu=rsc: -mpwr} \
122
%{mcpu=rsc1: -mpwr} \
123
%{mcpu=rs64a: -mppc64} \
124
%{mcpu=401: -mppc} \
125
%{mcpu=403: -m403} \
126
%{mcpu=405: -m405} \
127
%{mcpu=405fp: -m405} \
128
%{mcpu=440: -m440} \
129
%{mcpu=440fp: -m440} \
130
%{mcpu=464: -m440} \
131
%{mcpu=464fp: -m440} \
132
%{mcpu=476: %(asm_cpu_476)} \
133
%{mcpu=476fp: %(asm_cpu_476)} \
134
%{mcpu=505: -mppc} \
135
%{mcpu=601: -m601} \
136
%{mcpu=602: -mppc} \
137
%{mcpu=603: -mppc} \
138
%{mcpu=603e: -mppc} \
139
%{mcpu=ec603e: -mppc} \
140
%{mcpu=604: -mppc} \
141
%{mcpu=604e: -mppc} \
142
%{mcpu=620: -mppc64} \
143
%{mcpu=630: -mppc64} \
144
%{mcpu=740: -mppc} \
145
%{mcpu=750: -mppc} \
146
%{mcpu=G3: -mppc} \
147
%{mcpu=7400: -mppc -maltivec} \
148
%{mcpu=7450: -mppc -maltivec} \
149
%{mcpu=G4: -mppc -maltivec} \
150
%{mcpu=801: -mppc} \
151
%{mcpu=821: -mppc} \
152
%{mcpu=823: -mppc} \
153
%{mcpu=860: -mppc} \
154
%{mcpu=970: -mpower4 -maltivec} \
155
%{mcpu=G5: -mpower4 -maltivec} \
156
%{mcpu=8540: -me500} \
157
%{mcpu=8548: -me500} \
158
%{mcpu=e300c2: -me300} \
159
%{mcpu=e300c3: -me300} \
160
%{mcpu=e500mc: -me500mc} \
161
%{mcpu=e500mc64: -me500mc64} \
162
%{maltivec: -maltivec} \
163
-many"
164
 
165
#define CPP_DEFAULT_SPEC ""
166
 
167
#define ASM_DEFAULT_SPEC ""
168
 
169
/* This macro defines names of additional specifications to put in the specs
170
   that can be used in various specifications like CC1_SPEC.  Its definition
171
   is an initializer with a subgrouping for each command option.
172
 
173
   Each subgrouping contains a string constant, that defines the
174
   specification name, and a string constant that used by the GCC driver
175
   program.
176
 
177
   Do not define this macro if it does not need to do anything.  */
178
 
179
#define SUBTARGET_EXTRA_SPECS
180
 
181
#define EXTRA_SPECS                                                     \
182
  { "cpp_default",              CPP_DEFAULT_SPEC },                     \
183
  { "asm_cpu",                  ASM_CPU_SPEC },                         \
184
  { "asm_cpu_native",           ASM_CPU_NATIVE_SPEC },                  \
185
  { "asm_default",              ASM_DEFAULT_SPEC },                     \
186
  { "cc1_cpu",                  CC1_CPU_SPEC },                         \
187
  { "asm_cpu_power5",           ASM_CPU_POWER5_SPEC },                  \
188
  { "asm_cpu_power6",           ASM_CPU_POWER6_SPEC },                  \
189
  { "asm_cpu_power7",           ASM_CPU_POWER7_SPEC },                  \
190
  { "asm_cpu_476",              ASM_CPU_476_SPEC },                     \
191
  SUBTARGET_EXTRA_SPECS
192
 
193
/* -mcpu=native handling only makes sense with compiler running on
194
   an PowerPC chip.  If changing this condition, also change
195
   the condition in driver-rs6000.c.  */
196
#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
197
/* In driver-rs6000.c.  */
198
extern const char *host_detect_local_cpu (int argc, const char **argv);
199
#define EXTRA_SPEC_FUNCTIONS \
200
  { "local_cpu_detect", host_detect_local_cpu },
201
#define HAVE_LOCAL_CPU_DETECT
202
#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
203
 
204
#else
205
#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
206
#endif
207
 
208
#ifndef CC1_CPU_SPEC
209
#ifdef HAVE_LOCAL_CPU_DETECT
210
#define CC1_CPU_SPEC \
211
"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
212
 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
213
#else
214
#define CC1_CPU_SPEC ""
215
#endif
216
#endif
217
 
218
/* Architecture type.  */
219
 
220
/* Define TARGET_MFCRF if the target assembler does not support the
221
   optional field operand for mfcr.  */
222
 
223
#ifndef HAVE_AS_MFCRF
224
#undef  TARGET_MFCRF
225
#define TARGET_MFCRF 0
226
#endif
227
 
228
/* Define TARGET_POPCNTB if the target assembler does not support the
229
   popcount byte instruction.  */
230
 
231
#ifndef HAVE_AS_POPCNTB
232
#undef  TARGET_POPCNTB
233
#define TARGET_POPCNTB 0
234
#endif
235
 
236
/* Define TARGET_FPRND if the target assembler does not support the
237
   fp rounding instructions.  */
238
 
239
#ifndef HAVE_AS_FPRND
240
#undef  TARGET_FPRND
241
#define TARGET_FPRND 0
242
#endif
243
 
244
/* Define TARGET_CMPB if the target assembler does not support the
245
   cmpb instruction.  */
246
 
247
#ifndef HAVE_AS_CMPB
248
#undef  TARGET_CMPB
249
#define TARGET_CMPB 0
250
#endif
251
 
252
/* Define TARGET_MFPGPR if the target assembler does not support the
253
   mffpr and mftgpr instructions. */
254
 
255
#ifndef HAVE_AS_MFPGPR
256
#undef  TARGET_MFPGPR
257
#define TARGET_MFPGPR 0
258
#endif
259
 
260
/* Define TARGET_DFP if the target assembler does not support decimal
261
   floating point instructions.  */
262
#ifndef HAVE_AS_DFP
263
#undef  TARGET_DFP
264
#define TARGET_DFP 0
265
#endif
266
 
267
/* Define TARGET_POPCNTD if the target assembler does not support the
268
   popcount word and double word instructions.  */
269
 
270
#ifndef HAVE_AS_POPCNTD
271
#undef  TARGET_POPCNTD
272
#define TARGET_POPCNTD 0
273
#endif
274
 
275
/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync.  If
276
   not, generate the lwsync code as an integer constant.  */
277
#ifdef HAVE_AS_LWSYNC
278
#define TARGET_LWSYNC_INSTRUCTION 1
279
#else
280
#define TARGET_LWSYNC_INSTRUCTION 0
281
#endif
282
 
283
/* Define TARGET_TLS_MARKERS if the target assembler does not support
284
   arg markers for __tls_get_addr calls.  */
285
#ifndef HAVE_AS_TLS_MARKERS
286
#undef  TARGET_TLS_MARKERS
287
#define TARGET_TLS_MARKERS 0
288
#else
289
#define TARGET_TLS_MARKERS tls_markers
290
#endif
291
 
292
#ifndef TARGET_SECURE_PLT
293
#define TARGET_SECURE_PLT 0
294
#endif
295
 
296
#define TARGET_32BIT            (! TARGET_64BIT)
297
 
298
#ifndef HAVE_AS_TLS
299
#define HAVE_AS_TLS 0
300
#endif
301
 
302
/* Return 1 for a symbol ref for a thread-local storage symbol.  */
303
#define RS6000_SYMBOL_REF_TLS_P(RTX) \
304
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
305
 
306
#ifdef IN_LIBGCC2
307
/* For libgcc2 we make sure this is a compile time constant */
308
#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
309
#undef TARGET_POWERPC64
310
#define TARGET_POWERPC64        1
311
#else
312
#undef TARGET_POWERPC64
313
#define TARGET_POWERPC64        0
314
#endif
315
#else
316
    /* The option machinery will define this.  */
317
#endif
318
 
319
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
320
 
321
/* Processor type.  Order must match cpu attribute in MD file.  */
322
enum processor_type
323
 {
324
   PROCESSOR_RIOS1,
325
   PROCESSOR_RIOS2,
326
   PROCESSOR_RS64A,
327
   PROCESSOR_MPCCORE,
328
   PROCESSOR_PPC403,
329
   PROCESSOR_PPC405,
330
   PROCESSOR_PPC440,
331
   PROCESSOR_PPC476,
332
   PROCESSOR_PPC601,
333
   PROCESSOR_PPC603,
334
   PROCESSOR_PPC604,
335
   PROCESSOR_PPC604e,
336
   PROCESSOR_PPC620,
337
   PROCESSOR_PPC630,
338
   PROCESSOR_PPC750,
339
   PROCESSOR_PPC7400,
340
   PROCESSOR_PPC7450,
341
   PROCESSOR_PPC8540,
342
   PROCESSOR_PPCE300C2,
343
   PROCESSOR_PPCE300C3,
344
   PROCESSOR_PPCE500MC,
345
   PROCESSOR_PPCE500MC64,
346
   PROCESSOR_POWER4,
347
   PROCESSOR_POWER5,
348
   PROCESSOR_POWER6,
349
   PROCESSOR_POWER7,
350
   PROCESSOR_CELL,
351
   PROCESSOR_PPCA2
352
};
353
 
354
/* FPU operations supported.
355
   Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
356
   also test TARGET_HARD_FLOAT.  */
357
#define TARGET_SINGLE_FLOAT 1
358
#define TARGET_DOUBLE_FLOAT 1
359
#define TARGET_SINGLE_FPU   0
360
#define TARGET_SIMPLE_FPU   0
361
#define TARGET_XILINX_FPU   0
362
 
363
extern enum processor_type rs6000_cpu;
364
 
365
/* Recast the processor type to the cpu attribute.  */
366
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
367
 
368
/* Define generic processor types based upon current deployment.  */
369
#define PROCESSOR_COMMON    PROCESSOR_PPC601
370
#define PROCESSOR_POWER     PROCESSOR_RIOS1
371
#define PROCESSOR_POWERPC   PROCESSOR_PPC604
372
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
373
 
374
/* Define the default processor.  This is overridden by other tm.h files.  */
375
#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
376
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
377
 
378
/* FP processor type.  */
379
enum fpu_type_t
380
{
381
        FPU_NONE,               /* No FPU */
382
        FPU_SF_LITE,            /* Limited Single Precision FPU */
383
        FPU_DF_LITE,            /* Limited Double Precision FPU */
384
        FPU_SF_FULL,            /* Full Single Precision FPU */
385
        FPU_DF_FULL             /* Full Double Single Precision FPU */
386
};
387
 
388
extern enum fpu_type_t fpu_type;
389
 
390
/* Specify the dialect of assembler to use.  New mnemonics is dialect one
391
   and the old mnemonics are dialect zero.  */
392
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
393
 
394
/* Types of costly dependences.  */
395
enum rs6000_dependence_cost
396
 {
397
   max_dep_latency = 1000,
398
   no_dep_costly,
399
   all_deps_costly,
400
   true_store_to_load_dep_costly,
401
   store_to_load_dep_costly
402
 };
403
 
404
/* Types of nop insertion schemes in sched target hook sched_finish.  */
405
enum rs6000_nop_insertion
406
  {
407
    sched_finish_regroup_exact = 1000,
408
    sched_finish_pad_groups,
409
    sched_finish_none
410
  };
411
 
412
/* Dispatch group termination caused by an insn.  */
413
enum group_termination
414
  {
415
    current_group,
416
    previous_group
417
  };
418
 
419
/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
420
struct rs6000_cpu_select
421
{
422
  const char *string;
423
  const char *name;
424
  int set_tune_p;
425
  int set_arch_p;
426
};
427
 
428
extern struct rs6000_cpu_select rs6000_select[];
429
 
430
/* Debug support */
431
extern const char *rs6000_debug_name;   /* Name for -mdebug-xxxx option */
432
extern int rs6000_debug_stack;          /* debug stack applications */
433
extern int rs6000_debug_arg;            /* debug argument handling */
434
extern int rs6000_debug_reg;            /* debug register handling */
435
extern int rs6000_debug_addr;           /* debug memory addressing */
436
extern int rs6000_debug_cost;           /* debug rtx_costs */
437
 
438
#define TARGET_DEBUG_STACK      rs6000_debug_stack
439
#define TARGET_DEBUG_ARG        rs6000_debug_arg
440
#define TARGET_DEBUG_REG        rs6000_debug_reg
441
#define TARGET_DEBUG_ADDR       rs6000_debug_addr
442
#define TARGET_DEBUG_COST       rs6000_debug_cost
443
 
444
extern const char *rs6000_traceback_name; /* Type of traceback table.  */
445
 
446
/* These are separate from target_flags because we've run out of bits
447
   there.  */
448
extern int rs6000_long_double_type_size;
449
extern int rs6000_ieeequad;
450
extern int rs6000_altivec_abi;
451
extern int rs6000_spe_abi;
452
extern int rs6000_spe;
453
extern int rs6000_float_gprs;
454
extern int rs6000_alignment_flags;
455
extern const char *rs6000_sched_insert_nops_str;
456
extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
457
extern int rs6000_xilinx_fpu;
458
 
459
/* Describe which vector unit to use for a given machine mode.  */
460
enum rs6000_vector {
461
  VECTOR_NONE,                  /* Type is not  a vector or not supported */
462
  VECTOR_ALTIVEC,               /* Use altivec for vector processing */
463
  VECTOR_VSX,                   /* Use VSX for vector processing */
464
  VECTOR_PAIRED,                /* Use paired floating point for vectors */
465
  VECTOR_SPE,                   /* Use SPE for vector processing */
466
  VECTOR_OTHER                  /* Some other vector unit */
467
};
468
 
469
extern enum rs6000_vector rs6000_vector_unit[];
470
 
471
#define VECTOR_UNIT_NONE_P(MODE)                        \
472
  (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
473
 
474
#define VECTOR_UNIT_VSX_P(MODE)                         \
475
  (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
476
 
477
#define VECTOR_UNIT_ALTIVEC_P(MODE)                     \
478
  (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
479
 
480
#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)              \
481
  (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC         \
482
   || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
483
 
484
/* Describe whether to use VSX loads or Altivec loads.  For now, just use the
485
   same unit as the vector unit we are using, but we may want to migrate to
486
   using VSX style loads even for types handled by altivec.  */
487
extern enum rs6000_vector rs6000_vector_mem[];
488
 
489
#define VECTOR_MEM_NONE_P(MODE)                         \
490
  (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
491
 
492
#define VECTOR_MEM_VSX_P(MODE)                          \
493
  (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
494
 
495
#define VECTOR_MEM_ALTIVEC_P(MODE)                      \
496
  (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
497
 
498
#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)               \
499
  (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC  \
500
   || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
501
 
502
/* Return the alignment of a given vector type, which is set based on the
503
   vector unit use.  VSX for instance can load 32 or 64 bit aligned words
504
   without problems, while Altivec requires 128-bit aligned vectors.  */
505
extern int rs6000_vector_align[];
506
 
507
#define VECTOR_ALIGN(MODE)                                              \
508
  ((rs6000_vector_align[(MODE)] != 0)                                    \
509
   ? rs6000_vector_align[(MODE)]                                        \
510
   : (int)GET_MODE_BITSIZE ((MODE)))
511
 
512
/* Alignment options for fields in structures for sub-targets following
513
   AIX-like ABI.
514
   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
515
   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
516
 
517
   Override the macro definitions when compiling libobjc to avoid undefined
518
   reference to rs6000_alignment_flags due to library's use of GCC alignment
519
   macros which use the macros below.  */
520
 
521
#ifndef IN_TARGET_LIBS
522
#define MASK_ALIGN_POWER   0x00000000
523
#define MASK_ALIGN_NATURAL 0x00000001
524
#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
525
#else
526
#define TARGET_ALIGN_NATURAL 0
527
#endif
528
 
529
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
530
#define TARGET_IEEEQUAD rs6000_ieeequad
531
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
532
#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
533
 
534
#define TARGET_SPE_ABI 0
535
#define TARGET_SPE 0
536
#define TARGET_E500 0
537
#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
538
#define TARGET_FPRS 1
539
#define TARGET_E500_SINGLE 0
540
#define TARGET_E500_DOUBLE 0
541
#define CHECK_E500_OPTIONS do { } while (0)
542
 
543
/* E500 processors only support plain "sync", not lwsync.  */
544
#define TARGET_NO_LWSYNC TARGET_E500
545
 
546
/* Sometimes certain combinations of command options do not make sense
547
   on a particular target machine.  You can define a macro
548
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
549
   defined, is executed once just after all the command options have
550
   been parsed.
551
 
552
   Do not use this macro to turn on various extra optimizations for
553
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
554
 
555
   On the RS/6000 this is used to define the target cpu type.  */
556
 
557
#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
558
 
559
/* Define this to change the optimizations performed by default.  */
560
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
561
 
562
/* Show we can debug even without a frame pointer.  */
563
#define CAN_DEBUG_WITHOUT_FP
564
 
565
/* Target pragma.  */
566
#define REGISTER_TARGET_PRAGMAS() do {                          \
567
  c_register_pragma (0, "longcall", rs6000_pragma_longcall);     \
568
  targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
569
} while (0)
570
 
571
/* Target #defines.  */
572
#define TARGET_CPU_CPP_BUILTINS() \
573
  rs6000_cpu_cpp_builtins (pfile)
574
 
575
/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
576
   we're compiling for.  Some configurations may need to override it.  */
577
#define RS6000_CPU_CPP_ENDIAN_BUILTINS()        \
578
  do                                            \
579
    {                                           \
580
      if (BYTES_BIG_ENDIAN)                     \
581
        {                                       \
582
          builtin_define ("__BIG_ENDIAN__");    \
583
          builtin_define ("_BIG_ENDIAN");       \
584
          builtin_assert ("machine=bigendian"); \
585
        }                                       \
586
      else                                      \
587
        {                                       \
588
          builtin_define ("__LITTLE_ENDIAN__"); \
589
          builtin_define ("_LITTLE_ENDIAN");    \
590
          builtin_assert ("machine=littleendian"); \
591
        }                                       \
592
    }                                           \
593
  while (0)
594
 
595
/* Target machine storage layout.  */
596
 
597
/* Define this macro if it is advisable to hold scalars in registers
598
   in a wider mode than that declared by the program.  In such cases,
599
   the value is constrained to be within the bounds of the declared
600
   type, but kept valid in the wider mode.  The signedness of the
601
   extension may differ from that of the type.  */
602
 
603
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)       \
604
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
605
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
606
    (MODE) = TARGET_32BIT ? SImode : DImode;
607
 
608
/* Define this if most significant bit is lowest numbered
609
   in instructions that operate on numbered bit-fields.  */
610
/* That is true on RS/6000.  */
611
#define BITS_BIG_ENDIAN 1
612
 
613
/* Define this if most significant byte of a word is the lowest numbered.  */
614
/* That is true on RS/6000.  */
615
#define BYTES_BIG_ENDIAN 1
616
 
617
/* Define this if most significant word of a multiword number is lowest
618
   numbered.
619
 
620
   For RS/6000 we can decide arbitrarily since there are no machine
621
   instructions for them.  Might as well be consistent with bits and bytes.  */
622
#define WORDS_BIG_ENDIAN 1
623
 
624
#define MAX_BITS_PER_WORD 64
625
 
626
/* Width of a word, in units (bytes).  */
627
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
628
#ifdef IN_LIBGCC2
629
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
630
#else
631
#define MIN_UNITS_PER_WORD 4
632
#endif
633
#define UNITS_PER_FP_WORD 8
634
#define UNITS_PER_ALTIVEC_WORD 16
635
#define UNITS_PER_VSX_WORD 16
636
#define UNITS_PER_SPE_WORD 8
637
#define UNITS_PER_PAIRED_WORD 8
638
 
639
/* Type used for ptrdiff_t, as a string used in a declaration.  */
640
#define PTRDIFF_TYPE "int"
641
 
642
/* Type used for size_t, as a string used in a declaration.  */
643
#define SIZE_TYPE "long unsigned int"
644
 
645
/* Type used for wchar_t, as a string used in a declaration.  */
646
#define WCHAR_TYPE "short unsigned int"
647
 
648
/* Width of wchar_t in bits.  */
649
#define WCHAR_TYPE_SIZE 16
650
 
651
/* A C expression for the size in bits of the type `short' on the
652
   target machine.  If you don't define this, the default is half a
653
   word.  (If this would be less than one storage unit, it is
654
   rounded up to one unit.)  */
655
#define SHORT_TYPE_SIZE 16
656
 
657
/* A C expression for the size in bits of the type `int' on the
658
   target machine.  If you don't define this, the default is one
659
   word.  */
660
#define INT_TYPE_SIZE 32
661
 
662
/* A C expression for the size in bits of the type `long' on the
663
   target machine.  If you don't define this, the default is one
664
   word.  */
665
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
666
 
667
/* A C expression for the size in bits of the type `long long' on the
668
   target machine.  If you don't define this, the default is two
669
   words.  */
670
#define LONG_LONG_TYPE_SIZE 64
671
 
672
/* A C expression for the size in bits of the type `float' on the
673
   target machine.  If you don't define this, the default is one
674
   word.  */
675
#define FLOAT_TYPE_SIZE 32
676
 
677
/* A C expression for the size in bits of the type `double' on the
678
   target machine.  If you don't define this, the default is two
679
   words.  */
680
#define DOUBLE_TYPE_SIZE 64
681
 
682
/* A C expression for the size in bits of the type `long double' on
683
   the target machine.  If you don't define this, the default is two
684
   words.  */
685
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
686
 
687
/* Define this to set long double type size to use in libgcc2.c, which can
688
   not depend on target_flags.  */
689
#ifdef __LONG_DOUBLE_128__
690
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
691
#else
692
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
693
#endif
694
 
695
/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
696
#define WIDEST_HARDWARE_FP_SIZE 64
697
 
698
/* Width in bits of a pointer.
699
   See also the macro `Pmode' defined below.  */
700
extern unsigned rs6000_pointer_size;
701
#define POINTER_SIZE rs6000_pointer_size
702
 
703
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
704
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
705
 
706
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
707
#define STACK_BOUNDARY  \
708
  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
709
    ? 64 : 128)
710
 
711
/* Allocation boundary (in *bits*) for the code of a function.  */
712
#define FUNCTION_BOUNDARY 32
713
 
714
/* No data type wants to be aligned rounder than this.  */
715
#define BIGGEST_ALIGNMENT 128
716
 
717
/* A C expression to compute the alignment for a variables in the
718
   local store.  TYPE is the data type, and ALIGN is the alignment
719
   that the object would ordinarily have.  */
720
#define LOCAL_ALIGNMENT(TYPE, ALIGN)                            \
721
  DATA_ALIGNMENT (TYPE, ALIGN)
722
 
723
/* Alignment of field after `int : 0' in a structure.  */
724
#define EMPTY_FIELD_BOUNDARY 32
725
 
726
/* Every structure's size must be a multiple of this.  */
727
#define STRUCTURE_SIZE_BOUNDARY 8
728
 
729
/* Return 1 if a structure or array containing FIELD should be
730
   accessed using `BLKMODE'.
731
 
732
   For the SPE, simd types are V2SI, and gcc can be tempted to put the
733
   entire thing in a DI and use subregs to access the internals.
734
   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
735
   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
736
   best thing to do is set structs to BLKmode and avoid Severe Tire
737
   Damage.
738
 
739
   On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
740
   fit into 1, whereas DI still needs two.  */
741
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
742
  ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
743
   || (TARGET_E500_DOUBLE && (MODE) == DFmode))
744
 
745
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
746
#define PCC_BITFIELD_TYPE_MATTERS 1
747
 
748
/* Make strings word-aligned so strcpy from constants will be faster.
749
   Make vector constants quadword aligned.  */
750
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
751
  (TREE_CODE (EXP) == STRING_CST                                 \
752
   && (STRICT_ALIGNMENT || !optimize_size)                       \
753
   && (ALIGN) < BITS_PER_WORD                                    \
754
   ? BITS_PER_WORD                                               \
755
   : (ALIGN))
756
 
757
/* Make arrays of chars word-aligned for the same reasons.
758
   Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
759
   64 bits.  */
760
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
761
  (TREE_CODE (TYPE) == VECTOR_TYPE                                      \
762
   ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE)))               \
763
       || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
764
      ? 64 : 128)                                                       \
765
   : ((TARGET_E500_DOUBLE                                               \
766
       && TREE_CODE (TYPE) == REAL_TYPE                                 \
767
       && TYPE_MODE (TYPE) == DFmode)                                   \
768
      ? 64                                                              \
769
      : (TREE_CODE (TYPE) == ARRAY_TYPE                                 \
770
         && TYPE_MODE (TREE_TYPE (TYPE)) == QImode                      \
771
         && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
772
 
773
/* Nonzero if move instructions will actually fail to work
774
   when given unaligned data.  */
775
#define STRICT_ALIGNMENT 0
776
 
777
/* Define this macro to be the value 1 if unaligned accesses have a cost
778
   many times greater than aligned accesses, for example if they are
779
   emulated in a trap handler.  */
780
/* Altivec vector memory instructions simply ignore the low bits; SPE vector
781
   memory instructions trap on unaligned accesses; VSX memory instructions are
782
   aligned to 4 or 8 bytes.  */
783
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)                              \
784
  (STRICT_ALIGNMENT                                                     \
785
   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode        \
786
        || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode     \
787
        || (MODE) == DImode)                                            \
788
       && (ALIGN) < 32)                                                 \
789
   || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
790
 
791
 
792
/* Standard register usage.  */
793
 
794
/* Number of actual hardware registers.
795
   The hardware registers are assigned numbers for the compiler
796
   from 0 to just below FIRST_PSEUDO_REGISTER.
797
   All registers that the compiler knows about must be given numbers,
798
   even those that are not normally considered general registers.
799
 
800
   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
801
   an MQ register, a count register, a link register, and 8 condition
802
   register fields, which we view here as separate registers.  AltiVec
803
   adds 32 vector registers and a VRsave register.
804
 
805
   In addition, the difference between the frame and argument pointers is
806
   a function of the number of registers saved, so we need to have a
807
   register for AP that will later be eliminated in favor of SP or FP.
808
   This is a normal register, but it is fixed.
809
 
810
   We also create a pseudo register for float/int conversions, that will
811
   really represent the memory location used.  It is represented here as
812
   a register, in order to work around problems in allocating stack storage
813
   in inline functions.
814
 
815
   Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
816
   pointer, which is eventually eliminated in favor of SP or FP.  */
817
 
818
#define FIRST_PSEUDO_REGISTER 114
819
 
820
/* This must be included for pre gcc 3.0 glibc compatibility.  */
821
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
822
 
823
/* Add 32 dwarf columns for synthetic SPE registers.  */
824
#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
825
 
826
/* The SPE has an additional 32 synthetic registers, with DWARF debug
827
   info numbering for these registers starting at 1200.  While eh_frame
828
   register numbering need not be the same as the debug info numbering,
829
   we choose to number these regs for eh_frame at 1200 too.  This allows
830
   future versions of the rs6000 backend to add hard registers and
831
   continue to use the gcc hard register numbering for eh_frame.  If the
832
   extra SPE registers in eh_frame were numbered starting from the
833
   current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
834
   changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
835
   avoid invalidating older SPE eh_frame info.
836
 
837
   We must map them here to avoid huge unwinder tables mostly consisting
838
   of unused space.  */
839
#define DWARF_REG_TO_UNWIND_COLUMN(r) \
840
  ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
841
 
842
/* Use standard DWARF numbering for DWARF debugging information.  */
843
#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
844
 
845
/* Use gcc hard register numbering for eh_frame.  */
846
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
847
 
848
/* Map register numbers held in the call frame info that gcc has
849
   collected using DWARF_FRAME_REGNUM to those that should be output in
850
   .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
851
   for .eh_frame, but use the numbers mandated by the various ABIs for
852
   .debug_frame.  rs6000_emit_prologue has translated any combination of
853
   CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
854
   the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
855
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)     \
856
  ((FOR_EH) ? (REGNO)                           \
857
   : (REGNO) == CR2_REGNO ? 64                  \
858
   : DBX_REGISTER_NUMBER (REGNO))
859
 
860
/* 1 for registers that have pervasive standard uses
861
   and are not available for the register allocator.
862
 
863
   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
864
   as a local register; for all other OS's r2 is the TOC pointer.
865
 
866
   cr5 is not supposed to be used.
867
 
868
   On System V implementations, r13 is fixed and not available for use.  */
869
 
870
#define FIXED_REGISTERS  \
871
  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
872
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
873
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
874
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
875
   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,    \
876
   /* AltiVec registers.  */                       \
877
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
878
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879
   1, 1                                            \
880
   , 1, 1, 1                                       \
881
}
882
 
883
/* 1 for registers not available across function calls.
884
   These must include the FIXED_REGISTERS and also any
885
   registers that can be used without being saved.
886
   The latter must include the registers where values are returned
887
   and the register where structure-value addresses are passed.
888
   Aside from that, you can include as many other registers as you like.  */
889
 
890
#define CALL_USED_REGISTERS  \
891
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
892
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
893
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
894
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
895
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
896
   /* AltiVec registers.  */                       \
897
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
899
   1, 1                                            \
900
   , 1, 1, 1                                       \
901
}
902
 
903
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
904
   the entire set of `FIXED_REGISTERS' be included.
905
   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
906
   This macro is optional.  If not specified, it defaults to the value
907
   of `CALL_USED_REGISTERS'.  */
908
 
909
#define CALL_REALLY_USED_REGISTERS  \
910
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
911
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
912
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
913
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
914
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
915
   /* AltiVec registers.  */                       \
916
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
917
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
918
   0, 0                                              \
919
   , 0, 0, 0                                       \
920
}
921
 
922
#define TOTAL_ALTIVEC_REGS      (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
923
 
924
#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
925
#define FIRST_SAVED_FP_REGNO    (14+32)
926
#define FIRST_SAVED_GP_REGNO 13
927
 
928
/* List the order in which to allocate registers.  Each register must be
929
   listed once, even those in FIXED_REGISTERS.
930
 
931
   We allocate in the following order:
932
        fp0             (not saved or used for anything)
933
        fp13 - fp2      (not saved; incoming fp arg registers)
934
        fp1             (not saved; return value)
935
        fp31 - fp14     (saved; order given to save least number)
936
        cr7, cr6        (not saved or special)
937
        cr1             (not saved, but used for FP operations)
938
        cr0             (not saved, but used for arithmetic operations)
939
        cr4, cr3, cr2   (saved)
940
        r0              (not saved; cannot be base reg)
941
        r9              (not saved; best for TImode)
942
        r11, r10, r8-r4 (not saved; highest used first to make less conflict)
943
        r3              (not saved; return value register)
944
        r31 - r13       (saved; order given to save least number)
945
        r12             (not saved; if used for DImode or DFmode would use r13)
946
        mq              (not saved; best to use it if we can)
947
        ctr             (not saved; when we have the choice ctr is better)
948
        lr              (saved)
949
        cr5, r1, r2, ap, xer (fixed)
950
        v0 - v1         (not saved or used for anything)
951
        v13 - v3        (not saved; incoming vector arg registers)
952
        v2              (not saved; incoming vector arg reg; return value)
953
        v19 - v14       (not saved or used for anything)
954
        v31 - v20       (saved; order given to save least number)
955
        vrsave, vscr    (fixed)
956
        spe_acc, spefscr (fixed)
957
        sfp             (fixed)
958
*/
959
 
960
#if FIXED_R2 == 1
961
#define MAYBE_R2_AVAILABLE
962
#define MAYBE_R2_FIXED 2,
963
#else
964
#define MAYBE_R2_AVAILABLE 2,
965
#define MAYBE_R2_FIXED
966
#endif
967
 
968
#define REG_ALLOC_ORDER                                         \
969
  {32,                                                          \
970
   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,              \
971
   33,                                                          \
972
   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,          \
973
   50, 49, 48, 47, 46,                                          \
974
   75, 74, 69, 68, 72, 71, 70,                                  \
975
   0, MAYBE_R2_AVAILABLE                                 \
976
   9, 11, 10, 8, 7, 6, 5, 4,                                    \
977
   3,                                                           \
978
   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,          \
979
   18, 17, 16, 15, 14, 13, 12,                                  \
980
   64, 66, 65,                                                  \
981
   73, 1, MAYBE_R2_FIXED 67, 76,                                \
982
   /* AltiVec registers.  */                                    \
983
   77, 78,                                                      \
984
   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,                  \
985
   79,                                                          \
986
   96, 95, 94, 93, 92, 91,                                      \
987
   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,     \
988
   109, 110,                                                    \
989
   111, 112, 113                                                \
990
}
991
 
992
/* True if register is floating-point.  */
993
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
994
 
995
/* True if register is a condition register.  */
996
#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
997
 
998
/* True if register is a condition register, but not cr0.  */
999
#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1000
 
1001
/* True if register is an integer register.  */
1002
#define INT_REGNO_P(N) \
1003
  ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1004
 
1005
/* SPE SIMD registers are just the GPRs.  */
1006
#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1007
 
1008
/* PAIRED SIMD registers are just the FPRs.  */
1009
#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1010
 
1011
/* True if register is the XER register.  */
1012
#define XER_REGNO_P(N) ((N) == XER_REGNO)
1013
 
1014
/* True if register is an AltiVec register.  */
1015
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1016
 
1017
/* True if register is a VSX register.  */
1018
#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1019
 
1020
/* Alternate name for any vector register supporting floating point, no matter
1021
   which instruction set(s) are available.  */
1022
#define VFLOAT_REGNO_P(N) \
1023
  (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1024
 
1025
/* Alternate name for any vector register supporting integer, no matter which
1026
   instruction set(s) are available.  */
1027
#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1028
 
1029
/* Alternate name for any vector register supporting logical operations, no
1030
   matter which instruction set(s) are available.  */
1031
#define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1032
 
1033
/* Return number of consecutive hard regs needed starting at reg REGNO
1034
   to hold something of mode MODE.  */
1035
 
1036
#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1037
 
1038
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)                     \
1039
  (((TARGET_32BIT && TARGET_POWERPC64                                   \
1040
     && (GET_MODE_SIZE (MODE) > 4)                                      \
1041
     && INT_REGNO_P (REGNO)) ? 1 : 0)                                    \
1042
   || (TARGET_VSX && FP_REGNO_P (REGNO)                                 \
1043
       && GET_MODE_SIZE (MODE) > 8))
1044
 
1045
#define VSX_VECTOR_MODE(MODE)           \
1046
         ((MODE) == V4SFmode            \
1047
          || (MODE) == V2DFmode)        \
1048
 
1049
#define VSX_SCALAR_MODE(MODE)           \
1050
        ((MODE) == DFmode)
1051
 
1052
#define VSX_MODE(MODE)                  \
1053
        (VSX_VECTOR_MODE (MODE)         \
1054
         || VSX_SCALAR_MODE (MODE))
1055
 
1056
#define VSX_MOVE_MODE(MODE)             \
1057
        (VSX_VECTOR_MODE (MODE)         \
1058
         || VSX_SCALAR_MODE (MODE)      \
1059
         || ALTIVEC_VECTOR_MODE (MODE)  \
1060
         || (MODE) == TImode)
1061
 
1062
#define ALTIVEC_VECTOR_MODE(MODE)       \
1063
         ((MODE) == V16QImode           \
1064
          || (MODE) == V8HImode         \
1065
          || (MODE) == V4SFmode         \
1066
          || (MODE) == V4SImode)
1067
 
1068
#define SPE_VECTOR_MODE(MODE)           \
1069
        ((MODE) == V4HImode             \
1070
         || (MODE) == V2SFmode          \
1071
         || (MODE) == V1DImode          \
1072
         || (MODE) == V2SImode)
1073
 
1074
#define PAIRED_VECTOR_MODE(MODE)        \
1075
         ((MODE) == V2SFmode)
1076
 
1077
#define UNITS_PER_SIMD_WORD(MODE)                                       \
1078
        (TARGET_VSX ? UNITS_PER_VSX_WORD                                \
1079
         : (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD                     \
1080
         : (TARGET_SPE ? UNITS_PER_SPE_WORD                             \
1081
         : (TARGET_PAIRED_FLOAT ? UNITS_PER_PAIRED_WORD                 \
1082
         : UNITS_PER_WORD))))
1083
 
1084
/* Value is TRUE if hard register REGNO can hold a value of
1085
   machine-mode MODE.  */
1086
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1087
  rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1088
 
1089
/* Value is 1 if it is a good idea to tie two pseudo registers
1090
   when one has mode MODE1 and one has mode MODE2.
1091
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1092
   for any hard reg, then this must be 0 for correct output.  */
1093
#define MODES_TIEABLE_P(MODE1, MODE2) \
1094
  (SCALAR_FLOAT_MODE_P (MODE1)                  \
1095
   ? SCALAR_FLOAT_MODE_P (MODE2)                \
1096
   : SCALAR_FLOAT_MODE_P (MODE2)                \
1097
   ? SCALAR_FLOAT_MODE_P (MODE1)                \
1098
   : GET_MODE_CLASS (MODE1) == MODE_CC          \
1099
   ? GET_MODE_CLASS (MODE2) == MODE_CC          \
1100
   : GET_MODE_CLASS (MODE2) == MODE_CC          \
1101
   ? GET_MODE_CLASS (MODE1) == MODE_CC          \
1102
   : SPE_VECTOR_MODE (MODE1)                    \
1103
   ? SPE_VECTOR_MODE (MODE2)                    \
1104
   : SPE_VECTOR_MODE (MODE2)                    \
1105
   ? SPE_VECTOR_MODE (MODE1)                    \
1106
   : ALTIVEC_VECTOR_MODE (MODE1)                \
1107
   ? ALTIVEC_VECTOR_MODE (MODE2)                \
1108
   : ALTIVEC_VECTOR_MODE (MODE2)                \
1109
   ? ALTIVEC_VECTOR_MODE (MODE1)                \
1110
   : VSX_VECTOR_MODE (MODE1)                    \
1111
   ? VSX_VECTOR_MODE (MODE2)                    \
1112
   : VSX_VECTOR_MODE (MODE2)                    \
1113
   ? VSX_VECTOR_MODE (MODE1)                    \
1114
   : 1)
1115
 
1116
/* Post-reload, we can't use any new AltiVec registers, as we already
1117
   emitted the vrsave mask.  */
1118
 
1119
#define HARD_REGNO_RENAME_OK(SRC, DST) \
1120
  (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1121
 
1122
/* A C expression returning the cost of moving data from a register of class
1123
   CLASS1 to one of CLASS2.  */
1124
 
1125
#define REGISTER_MOVE_COST rs6000_register_move_cost
1126
 
1127
/* A C expressions returning the cost of moving data of MODE from a register to
1128
   or from memory.  */
1129
 
1130
#define MEMORY_MOVE_COST rs6000_memory_move_cost
1131
 
1132
/* Specify the cost of a branch insn; roughly the number of extra insns that
1133
   should be added to avoid a branch.
1134
 
1135
   Set this to 3 on the RS/6000 since that is roughly the average cost of an
1136
   unscheduled conditional branch.  */
1137
 
1138
#define BRANCH_COST(speed_p, predictable_p) 3
1139
 
1140
/* Override BRANCH_COST heuristic which empirically produces worse
1141
   performance for removing short circuiting from the logical ops.  */
1142
 
1143
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1144
 
1145
/* A fixed register used at epilogue generation to address SPE registers
1146
   with negative offsets.  The 64-bit load/store instructions on the SPE
1147
   only take positive offsets (and small ones at that), so we need to
1148
   reserve a register for consing up negative offsets.  */
1149
 
1150
#define FIXED_SCRATCH 0
1151
 
1152
/* Define this macro to change register usage conditional on target
1153
   flags.  */
1154
 
1155
#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1156
 
1157
/* Specify the registers used for certain standard purposes.
1158
   The values of these macros are register numbers.  */
1159
 
1160
/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1161
/* #define PC_REGNUM  */
1162
 
1163
/* Register to use for pushing function arguments.  */
1164
#define STACK_POINTER_REGNUM 1
1165
 
1166
/* Base register for access to local variables of the function.  */
1167
#define HARD_FRAME_POINTER_REGNUM 31
1168
 
1169
/* Base register for access to local variables of the function.  */
1170
#define FRAME_POINTER_REGNUM 113
1171
 
1172
/* Base register for access to arguments of the function.  */
1173
#define ARG_POINTER_REGNUM 67
1174
 
1175
/* Place to put static chain when calling a function that requires it.  */
1176
#define STATIC_CHAIN_REGNUM 11
1177
 
1178
 
1179
/* Define the classes of registers for register constraints in the
1180
   machine description.  Also define ranges of constants.
1181
 
1182
   One of the classes must always be named ALL_REGS and include all hard regs.
1183
   If there is more than one class, another class must be named NO_REGS
1184
   and contain no registers.
1185
 
1186
   The name GENERAL_REGS must be the name of a class (or an alias for
1187
   another name such as ALL_REGS).  This is the class of registers
1188
   that is allowed by "g" or "r" in a register constraint.
1189
   Also, registers outside this class are allocated only when
1190
   instructions express preferences for them.
1191
 
1192
   The classes must be numbered in nondecreasing order; that is,
1193
   a larger-numbered class must never be contained completely
1194
   in a smaller-numbered class.
1195
 
1196
   For any two classes, it is very desirable that there be another
1197
   class that represents their union.  */
1198
 
1199
/* The RS/6000 has three types of registers, fixed-point, floating-point, and
1200
   condition registers, plus three special registers, MQ, CTR, and the link
1201
   register.  AltiVec adds a vector register class.  VSX registers overlap the
1202
   FPR registers and the Altivec registers.
1203
 
1204
   However, r0 is special in that it cannot be used as a base register.
1205
   So make a class for registers valid as base registers.
1206
 
1207
   Also, cr0 is the only condition code register that can be used in
1208
   arithmetic insns, so make a separate class for it.  */
1209
 
1210
enum reg_class
1211
{
1212
  NO_REGS,
1213
  BASE_REGS,
1214
  GENERAL_REGS,
1215
  FLOAT_REGS,
1216
  ALTIVEC_REGS,
1217
  VSX_REGS,
1218
  VRSAVE_REGS,
1219
  VSCR_REGS,
1220
  SPE_ACC_REGS,
1221
  SPEFSCR_REGS,
1222
  NON_SPECIAL_REGS,
1223
  MQ_REGS,
1224
  LINK_REGS,
1225
  CTR_REGS,
1226
  LINK_OR_CTR_REGS,
1227
  SPECIAL_REGS,
1228
  SPEC_OR_GEN_REGS,
1229
  CR0_REGS,
1230
  CR_REGS,
1231
  NON_FLOAT_REGS,
1232
  XER_REGS,
1233
  ALL_REGS,
1234
  LIM_REG_CLASSES
1235
};
1236
 
1237
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1238
 
1239
/* Give names of register classes as strings for dump file.  */
1240
 
1241
#define REG_CLASS_NAMES                                                 \
1242
{                                                                       \
1243
  "NO_REGS",                                                            \
1244
  "BASE_REGS",                                                          \
1245
  "GENERAL_REGS",                                                       \
1246
  "FLOAT_REGS",                                                         \
1247
  "ALTIVEC_REGS",                                                       \
1248
  "VSX_REGS",                                                           \
1249
  "VRSAVE_REGS",                                                        \
1250
  "VSCR_REGS",                                                          \
1251
  "SPE_ACC_REGS",                                                       \
1252
  "SPEFSCR_REGS",                                                       \
1253
  "NON_SPECIAL_REGS",                                                   \
1254
  "MQ_REGS",                                                            \
1255
  "LINK_REGS",                                                          \
1256
  "CTR_REGS",                                                           \
1257
  "LINK_OR_CTR_REGS",                                                   \
1258
  "SPECIAL_REGS",                                                       \
1259
  "SPEC_OR_GEN_REGS",                                                   \
1260
  "CR0_REGS",                                                           \
1261
  "CR_REGS",                                                            \
1262
  "NON_FLOAT_REGS",                                                     \
1263
  "XER_REGS",                                                           \
1264
  "ALL_REGS"                                                            \
1265
}
1266
 
1267
/* Define which registers fit in which classes.
1268
   This is an initializer for a vector of HARD_REG_SET
1269
   of length N_REG_CLASSES.  */
1270
 
1271
#define REG_CLASS_CONTENTS                                                   \
1272
{                                                                            \
1273
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */          \
1274
  { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */        \
1275
  { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1276
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1277
  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1278
  { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */         \
1279
  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */      \
1280
  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */        \
1281
  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1282
  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1283
  { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1284
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */          \
1285
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */        \
1286
  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */         \
1287
  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1288
  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1289
  { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1290
  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */         \
1291
  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */          \
1292
  { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */   \
1293
  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */         \
1294
  { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */         \
1295
}
1296
 
1297
/* The following macro defines cover classes for Integrated Register
1298
   Allocator.  Cover classes is a set of non-intersected register
1299
   classes covering all hard registers used for register allocation
1300
   purpose.  Any move between two registers of a cover class should be
1301
   cheaper than load or store of the registers.  The macro value is
1302
   array of register classes with LIM_REG_CLASSES used as the end
1303
   marker.
1304
 
1305
   We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to
1306
   account for the Altivec and Floating registers being subsets of the VSX
1307
   register set.  */
1308
 
1309
#define IRA_COVER_CLASSES_PRE_VSX                                            \
1310
{                                                                            \
1311
  GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, /* VSX_REGS, */      \
1312
  /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS,                   \
1313
  /* MQ_REGS, LINK_REGS, CTR_REGS, */                                        \
1314
  CR_REGS, XER_REGS, LIM_REG_CLASSES                                         \
1315
}
1316
 
1317
#define IRA_COVER_CLASSES_VSX                                                \
1318
{                                                                            \
1319
  GENERAL_REGS, SPECIAL_REGS, /* FLOAT_REGS, ALTIVEC_REGS, */ VSX_REGS,      \
1320
  /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS,                   \
1321
  /* MQ_REGS, LINK_REGS, CTR_REGS, */                                        \
1322
  CR_REGS, XER_REGS, LIM_REG_CLASSES                                         \
1323
}
1324
 
1325
/* The same information, inverted:
1326
   Return the class number of the smallest class containing
1327
   reg number REGNO.  This could be a conditional expression
1328
   or could index an array.  */
1329
 
1330
extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1331
 
1332
#if ENABLE_CHECKING
1333
#define REGNO_REG_CLASS(REGNO)                                          \
1334
  (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),          \
1335
   rs6000_regno_regclass[(REGNO)])
1336
 
1337
#else
1338
#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1339
#endif
1340
 
1341
/* Register classes for various constraints that are based on the target
1342
   switches.  */
1343
enum r6000_reg_class_enum {
1344
  RS6000_CONSTRAINT_d,          /* fpr registers for double values */
1345
  RS6000_CONSTRAINT_f,          /* fpr registers for single values */
1346
  RS6000_CONSTRAINT_v,          /* Altivec registers */
1347
  RS6000_CONSTRAINT_wa,         /* Any VSX register */
1348
  RS6000_CONSTRAINT_wd,         /* VSX register for V2DF */
1349
  RS6000_CONSTRAINT_wf,         /* VSX register for V4SF */
1350
  RS6000_CONSTRAINT_ws,         /* VSX register for DF */
1351
  RS6000_CONSTRAINT_MAX
1352
};
1353
 
1354
extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1355
 
1356
/* The class value for index registers, and the one for base regs.  */
1357
#define INDEX_REG_CLASS GENERAL_REGS
1358
#define BASE_REG_CLASS BASE_REGS
1359
 
1360
/* Return whether a given register class can hold VSX objects.  */
1361
#define VSX_REG_CLASS_P(CLASS)                  \
1362
  ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1363
 
1364
/* Given an rtx X being reloaded into a reg required to be
1365
   in class CLASS, return the class of reg to actually use.
1366
   In general this is just CLASS; but on some machines
1367
   in some cases it is preferable to use a more restrictive class.
1368
 
1369
   On the RS/6000, we have to return NO_REGS when we want to reload a
1370
   floating-point CONST_DOUBLE to force it to be copied to memory.
1371
 
1372
   We also don't want to reload integer values into floating-point
1373
   registers if we can at all help it.  In fact, this can
1374
   cause reload to die, if it tries to generate a reload of CTR
1375
   into a FP register and discovers it doesn't have the memory location
1376
   required.
1377
 
1378
   ??? Would it be a good idea to have reload do the converse, that is
1379
   try to reload floating modes into FP registers if possible?
1380
 */
1381
 
1382
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1383
  rs6000_preferred_reload_class_ptr (X, CLASS)
1384
 
1385
/* Return the register class of a scratch register needed to copy IN into
1386
   or out of a register in CLASS in MODE.  If it can be done directly,
1387
   NO_REGS is returned.  */
1388
 
1389
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1390
  rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1391
 
1392
/* If we are copying between FP or AltiVec registers and anything
1393
   else, we need a memory location.  The exception is when we are
1394
   targeting ppc64 and the move to/from fpr to gpr instructions
1395
   are available.*/
1396
 
1397
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE)                     \
1398
  rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1399
 
1400
/* For cpus that cannot load/store SDmode values from the 64-bit
1401
   FP registers without using a full 64-bit load/store, we need
1402
   to allocate a full 64-bit stack slot for them.  */
1403
 
1404
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1405
  rs6000_secondary_memory_needed_rtx (MODE)
1406
 
1407
/* Return the maximum number of consecutive registers
1408
   needed to represent mode MODE in a register of class CLASS.
1409
 
1410
   On RS/6000, this is the size of MODE in words, except in the FP regs, where
1411
   a single reg is enough for two words, unless we have VSX, where the FP
1412
   registers can hold 128 bits.  */
1413
#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1414
 
1415
/* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1416
 
1417
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
1418
  rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1419
 
1420
/* Stack layout; function entry, exit and calling.  */
1421
 
1422
/* Enumeration to give which calling sequence to use.  */
1423
enum rs6000_abi {
1424
  ABI_NONE,
1425
  ABI_AIX,                      /* IBM's AIX */
1426
  ABI_V4,                       /* System V.4/eabi */
1427
  ABI_DARWIN                    /* Apple's Darwin (OS X kernel) */
1428
};
1429
 
1430
extern enum rs6000_abi rs6000_current_abi;      /* available for use by subtarget */
1431
 
1432
/* Define this if pushing a word on the stack
1433
   makes the stack pointer a smaller address.  */
1434
#define STACK_GROWS_DOWNWARD
1435
 
1436
/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1437
#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1438
 
1439
/* Define this to nonzero if the nominal address of the stack frame
1440
   is at the high-address end of the local variables;
1441
   that is, each additional local variable allocated
1442
   goes at a more negative offset in the frame.
1443
 
1444
   On the RS/6000, we grow upwards, from the area after the outgoing
1445
   arguments.  */
1446
#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1447
 
1448
/* Size of the outgoing register save area */
1449
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX                        \
1450
                          || DEFAULT_ABI == ABI_DARWIN)                 \
1451
                         ? (TARGET_64BIT ? 64 : 32)                     \
1452
                         : 0)
1453
 
1454
/* Size of the fixed area on the stack */
1455
#define RS6000_SAVE_AREA \
1456
  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)     \
1457
   << (TARGET_64BIT ? 1 : 0))
1458
 
1459
/* MEM representing address to save the TOC register */
1460
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1461
                                     plus_constant (stack_pointer_rtx, \
1462
                                                    (TARGET_32BIT ? 20 : 40)))
1463
 
1464
/* Align an address */
1465
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1466
 
1467
/* Offset within stack frame to start allocating local variables at.
1468
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1469
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1470
   of the first local allocated.
1471
 
1472
   On the RS/6000, the frame pointer is the same as the stack pointer,
1473
   except for dynamic allocations.  So we start after the fixed area and
1474
   outgoing parameter area.  */
1475
 
1476
#define STARTING_FRAME_OFFSET                                           \
1477
  (FRAME_GROWS_DOWNWARD                                                 \
1478
   ? 0                                                                   \
1479
   : (RS6000_ALIGN (crtl->outgoing_args_size,                           \
1480
                    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)            \
1481
      + RS6000_SAVE_AREA))
1482
 
1483
/* Offset from the stack pointer register to an item dynamically
1484
   allocated on the stack, e.g., by `alloca'.
1485
 
1486
   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1487
   length of the outgoing arguments.  The default is correct for most
1488
   machines.  See `function.c' for details.  */
1489
#define STACK_DYNAMIC_OFFSET(FUNDECL)                                   \
1490
  (RS6000_ALIGN (crtl->outgoing_args_size,                              \
1491
                 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)               \
1492
   + (STACK_POINTER_OFFSET))
1493
 
1494
/* If we generate an insn to push BYTES bytes,
1495
   this says how many the stack pointer really advances by.
1496
   On RS/6000, don't define this because there are no push insns.  */
1497
/*  #define PUSH_ROUNDING(BYTES) */
1498
 
1499
/* Offset of first parameter from the argument pointer register value.
1500
   On the RS/6000, we define the argument pointer to the start of the fixed
1501
   area.  */
1502
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1503
 
1504
/* Offset from the argument pointer register value to the top of
1505
   stack.  This is different from FIRST_PARM_OFFSET because of the
1506
   register save area.  */
1507
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1508
 
1509
/* Define this if stack space is still allocated for a parameter passed
1510
   in a register.  The value is the number of bytes allocated to this
1511
   area.  */
1512
#define REG_PARM_STACK_SPACE(FNDECL)    RS6000_REG_SAVE
1513
 
1514
/* Define this if the above stack space is to be considered part of the
1515
   space allocated by the caller.  */
1516
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1517
 
1518
/* This is the difference between the logical top of stack and the actual sp.
1519
 
1520
   For the RS/6000, sp points past the fixed area.  */
1521
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1522
 
1523
/* Define this if the maximum size of all the outgoing args is to be
1524
   accumulated and pushed during the prologue.  The amount can be
1525
   found in the variable crtl->outgoing_args_size.  */
1526
#define ACCUMULATE_OUTGOING_ARGS 1
1527
 
1528
/* Value is the number of bytes of arguments automatically
1529
   popped when returning from a subroutine call.
1530
   FUNDECL is the declaration node of the function (as a tree),
1531
   FUNTYPE is the data type of the function (as a tree),
1532
   or for a library call it is an identifier node for the subroutine name.
1533
   SIZE is the number of bytes of arguments passed on the stack.  */
1534
 
1535
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1536
 
1537
/* Define how to find the value returned by a library function
1538
   assuming the value has mode MODE.  */
1539
 
1540
#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1541
 
1542
/* DRAFT_V4_STRUCT_RET defaults off.  */
1543
#define DRAFT_V4_STRUCT_RET 0
1544
 
1545
/* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1546
#define DEFAULT_PCC_STRUCT_RETURN 0
1547
 
1548
/* Mode of stack savearea.
1549
   FUNCTION is VOIDmode because calling convention maintains SP.
1550
   BLOCK needs Pmode for SP.
1551
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1552
#define STACK_SAVEAREA_MODE(LEVEL)      \
1553
  (LEVEL == SAVE_FUNCTION ? VOIDmode    \
1554
  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1555
 
1556
/* Minimum and maximum general purpose registers used to hold arguments.  */
1557
#define GP_ARG_MIN_REG 3
1558
#define GP_ARG_MAX_REG 10
1559
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1560
 
1561
/* Minimum and maximum floating point registers used to hold arguments.  */
1562
#define FP_ARG_MIN_REG 33
1563
#define FP_ARG_AIX_MAX_REG 45
1564
#define FP_ARG_V4_MAX_REG  40
1565
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX                         \
1566
                         || DEFAULT_ABI == ABI_DARWIN)                  \
1567
                        ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1568
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1569
 
1570
/* Minimum and maximum AltiVec registers used to hold arguments.  */
1571
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1572
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1573
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1574
 
1575
/* Return registers */
1576
#define GP_ARG_RETURN GP_ARG_MIN_REG
1577
#define FP_ARG_RETURN FP_ARG_MIN_REG
1578
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1579
 
1580
/* Flags for the call/call_value rtl operations set up by function_arg */
1581
#define CALL_NORMAL             0x00000000      /* no special processing */
1582
/* Bits in 0x00000001 are unused.  */
1583
#define CALL_V4_CLEAR_FP_ARGS   0x00000002      /* V.4, no FP args passed */
1584
#define CALL_V4_SET_FP_ARGS     0x00000004      /* V.4, FP args were passed */
1585
#define CALL_LONG               0x00000008      /* always call indirect */
1586
#define CALL_LIBCALL            0x00000010      /* libcall */
1587
 
1588
/* We don't have prologue and epilogue functions to save/restore
1589
   everything for most ABIs.  */
1590
#define WORLD_SAVE_P(INFO) 0
1591
 
1592
/* 1 if N is a possible register number for a function value
1593
   as seen by the caller.
1594
 
1595
   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1596
#define FUNCTION_VALUE_REGNO_P(N)                                       \
1597
  ((N) == GP_ARG_RETURN                                                 \
1598
   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)        \
1599
   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1600
 
1601
/* 1 if N is a possible register number for function argument passing.
1602
   On RS/6000, these are r3-r10 and fp1-fp13.
1603
   On AltiVec, v2 - v13 are used for passing vectors.  */
1604
#define FUNCTION_ARG_REGNO_P(N)                                         \
1605
  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG                     \
1606
   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG       \
1607
       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)                         \
1608
   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG                 \
1609
       && TARGET_HARD_FLOAT && TARGET_FPRS))
1610
 
1611
/* Define a data type for recording info about an argument list
1612
   during the scan of that argument list.  This data type should
1613
   hold all necessary information about the function itself
1614
   and about the args processed so far, enough to enable macros
1615
   such as FUNCTION_ARG to determine where the next arg should go.
1616
 
1617
   On the RS/6000, this is a structure.  The first element is the number of
1618
   total argument words, the second is used to store the next
1619
   floating-point register number, and the third says how many more args we
1620
   have prototype types for.
1621
 
1622
   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1623
   the next available GP register, `fregno' is the next available FP
1624
   register, and `words' is the number of words used on the stack.
1625
 
1626
   The varargs/stdarg support requires that this structure's size
1627
   be a multiple of sizeof(int).  */
1628
 
1629
typedef struct rs6000_args
1630
{
1631
  int words;                    /* # words used for passing GP registers */
1632
  int fregno;                   /* next available FP register */
1633
  int vregno;                   /* next available AltiVec register */
1634
  int nargs_prototype;          /* # args left in the current prototype */
1635
  int prototype;                /* Whether a prototype was defined */
1636
  int stdarg;                   /* Whether function is a stdarg function.  */
1637
  int call_cookie;              /* Do special things for this call */
1638
  int sysv_gregno;              /* next available GP register */
1639
  int intoffset;                /* running offset in struct (darwin64) */
1640
  int use_stack;                /* any part of struct on stack (darwin64) */
1641
  int named;                    /* false for varargs params */
1642
} CUMULATIVE_ARGS;
1643
 
1644
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1645
   for a call to a function whose data type is FNTYPE.
1646
   For a library call, FNTYPE is 0.  */
1647
 
1648
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1649
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1650
 
1651
/* Similar, but when scanning the definition of a procedure.  We always
1652
   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1653
 
1654
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1655
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1656
 
1657
/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1658
 
1659
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1660
  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1661
 
1662
/* Update the data in CUM to advance over an argument
1663
   of mode MODE and data type TYPE.
1664
   (TYPE is null for libcalls where that information may not be available.)  */
1665
 
1666
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
1667
  function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1668
 
1669
/* Determine where to put an argument to a function.
1670
   Value is zero to push the argument on the stack,
1671
   or a hard register in which to store the argument.
1672
 
1673
   MODE is the argument's machine mode.
1674
   TYPE is the data type of the argument (as a tree).
1675
    This is null for libcalls where that information may
1676
    not be available.
1677
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1678
    the preceding args and about the function being called.
1679
   NAMED is nonzero if this argument is a named parameter
1680
    (otherwise it is an extra parameter matching an ellipsis).
1681
 
1682
   On RS/6000 the first eight words of non-FP are normally in registers
1683
   and the rest are pushed.  The first 13 FP args are in registers.
1684
 
1685
   If this is floating-point and no prototype is specified, we use
1686
   both an FP and integer register (or possibly FP reg and stack).  Library
1687
   functions (when TYPE is zero) always have the proper types for args,
1688
   so we can pass the FP value just in one register.  emit_library_function
1689
   doesn't support EXPR_LIST anyway.  */
1690
 
1691
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1692
  function_arg (&CUM, MODE, TYPE, NAMED)
1693
 
1694
/* If defined, a C expression which determines whether, and in which
1695
   direction, to pad out an argument with extra space.  The value
1696
   should be of type `enum direction': either `upward' to pad above
1697
   the argument, `downward' to pad below, or `none' to inhibit
1698
   padding.  */
1699
 
1700
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1701
 
1702
/* If defined, a C expression that gives the alignment boundary, in bits,
1703
   of an argument with the specified mode and type.  If it is not defined,
1704
   PARM_BOUNDARY is used for all arguments.  */
1705
 
1706
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1707
  function_arg_boundary (MODE, TYPE)
1708
 
1709
#define PAD_VARARGS_DOWN \
1710
   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1711
 
1712
/* Output assembler code to FILE to increment profiler label # LABELNO
1713
   for profiling a function entry.  */
1714
 
1715
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1716
  output_function_profiler ((FILE), (LABELNO));
1717
 
1718
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1719
   the stack pointer does not matter. No definition is equivalent to
1720
   always zero.
1721
 
1722
   On the RS/6000, this is nonzero because we can restore the stack from
1723
   its backpointer, which we maintain.  */
1724
#define EXIT_IGNORE_STACK       1
1725
 
1726
/* Define this macro as a C expression that is nonzero for registers
1727
   that are used by the epilogue or the return' pattern.  The stack
1728
   and frame pointer registers are already be assumed to be used as
1729
   needed.  */
1730
 
1731
#define EPILOGUE_USES(REGNO)                                    \
1732
  ((reload_completed && (REGNO) == LR_REGNO)                    \
1733
   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)               \
1734
   || (crtl->calls_eh_return                                    \
1735
       && TARGET_AIX                                            \
1736
       && (REGNO) == 2))
1737
 
1738
 
1739
/* Length in units of the trampoline for entering a nested function.  */
1740
 
1741
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1742
 
1743
/* Definitions for __builtin_return_address and __builtin_frame_address.
1744
   __builtin_return_address (0) should give link register (65), enable
1745
   this.  */
1746
/* This should be uncommented, so that the link register is used, but
1747
   currently this would result in unmatched insns and spilling fixed
1748
   registers so we'll leave it for another day.  When these problems are
1749
   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1750
   (mrs) */
1751
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1752
 
1753
/* Number of bytes into the frame return addresses can be found.  See
1754
   rs6000_stack_info in rs6000.c for more information on how the different
1755
   abi's store the return address.  */
1756
#define RETURN_ADDRESS_OFFSET                                           \
1757
 ((DEFAULT_ABI == ABI_AIX                                               \
1758
   || DEFAULT_ABI == ABI_DARWIN)        ? (TARGET_32BIT ? 8 : 16) :     \
1759
  (DEFAULT_ABI == ABI_V4)               ? 4 :                           \
1760
  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1761
 
1762
/* The current return address is in link register (65).  The return address
1763
   of anything farther back is accessed normally at an offset of 8 from the
1764
   frame pointer.  */
1765
#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1766
  (rs6000_return_addr (COUNT, FRAME))
1767
 
1768
 
1769
/* Definitions for register eliminations.
1770
 
1771
   We have two registers that can be eliminated on the RS/6000.  First, the
1772
   frame pointer register can often be eliminated in favor of the stack
1773
   pointer register.  Secondly, the argument pointer register can always be
1774
   eliminated; it is replaced with either the stack or frame pointer.
1775
 
1776
   In addition, we use the elimination mechanism to see if r30 is needed
1777
   Initially we assume that it isn't.  If it is, we spill it.  This is done
1778
   by making it an eliminable register.  We replace it with itself so that
1779
   if it isn't needed, then existing uses won't be modified.  */
1780
 
1781
/* This is an array of structures.  Each structure initializes one pair
1782
   of eliminable registers.  The "from" register number is given first,
1783
   followed by "to".  Eliminations of the same "from" register are listed
1784
   in order of preference.  */
1785
#define ELIMINABLE_REGS                                 \
1786
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
1787
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
1788
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},    \
1789
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
1790
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
1791
 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1792
 
1793
/* Define the offset between two registers, one to be eliminated, and the other
1794
   its replacement, at the start of a routine.  */
1795
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1796
  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1797
 
1798
/* Addressing modes, and classification of registers for them.  */
1799
 
1800
#define HAVE_PRE_DECREMENT 1
1801
#define HAVE_PRE_INCREMENT 1
1802
#define HAVE_PRE_MODIFY_DISP 1
1803
#define HAVE_PRE_MODIFY_REG 1
1804
 
1805
/* Macros to check register numbers against specific register classes.  */
1806
 
1807
/* These assume that REGNO is a hard or pseudo reg number.
1808
   They give nonzero only if REGNO is a hard reg of the suitable class
1809
   or a pseudo reg currently allocated to a suitable hard reg.
1810
   Since they use reg_renumber, they are safe only once reg_renumber
1811
   has been allocated, which happens in local-alloc.c.  */
1812
 
1813
#define REGNO_OK_FOR_INDEX_P(REGNO)                             \
1814
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1815
 ? (REGNO) <= 31 || (REGNO) == 67                               \
1816
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1817
 : (reg_renumber[REGNO] >= 0                                     \
1818
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1819
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1820
 
1821
#define REGNO_OK_FOR_BASE_P(REGNO)                              \
1822
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1823
 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67               \
1824
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1825
 : (reg_renumber[REGNO] > 0                                      \
1826
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1827
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1828
 
1829
/* Nonzero if X is a hard reg that can be used as an index
1830
   or if it is a pseudo reg in the non-strict case.  */
1831
#define INT_REG_OK_FOR_INDEX_P(X, STRICT)                       \
1832
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1833
   || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1834
 
1835
/* Nonzero if X is a hard reg that can be used as a base reg
1836
   or if it is a pseudo reg in the non-strict case.  */
1837
#define INT_REG_OK_FOR_BASE_P(X, STRICT)                        \
1838
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1839
   || REGNO_OK_FOR_BASE_P (REGNO (X)))
1840
 
1841
 
1842
/* Maximum number of registers that can appear in a valid memory address.  */
1843
 
1844
#define MAX_REGS_PER_ADDRESS 2
1845
 
1846
/* Recognize any constant value that is a valid address.  */
1847
 
1848
#define CONSTANT_ADDRESS_P(X)   \
1849
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF              \
1850
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
1851
   || GET_CODE (X) == HIGH)
1852
 
1853
/* Nonzero if the constant value X is a legitimate general operand.
1854
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1855
 
1856
   On the RS/6000, all integer constants are acceptable, most won't be valid
1857
   for particular insns, though.  Only easy FP constants are
1858
   acceptable.  */
1859
 
1860
#define LEGITIMATE_CONSTANT_P(X)                                \
1861
  (((GET_CODE (X) != CONST_DOUBLE                               \
1862
     && GET_CODE (X) != CONST_VECTOR)                           \
1863
    || GET_MODE (X) == VOIDmode                                 \
1864
    || (TARGET_POWERPC64 && GET_MODE (X) == DImode)             \
1865
    || easy_fp_constant (X, GET_MODE (X))                       \
1866
    || easy_vector_constant (X, GET_MODE (X)))                  \
1867
   && !rs6000_tls_referenced_p (X))
1868
 
1869
#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1870
#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))        \
1871
                                    && EASY_VECTOR_15((n) >> 1) \
1872
                                    && ((n) & 1) == 0)
1873
 
1874
#define EASY_VECTOR_MSB(n,mode)                                         \
1875
  (((unsigned HOST_WIDE_INT)n) ==                                       \
1876
   ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1877
 
1878
 
1879
/* Try a machine-dependent way of reloading an illegitimate address
1880
   operand.  If we find one, push the reload and jump to WIN.  This
1881
   macro is used in only one place: `find_reloads_address' in reload.c.
1882
 
1883
   Implemented on rs6000 by rs6000_legitimize_reload_address.
1884
   Note that (X) is evaluated twice; this is safe in current usage.  */
1885
 
1886
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)          \
1887
do {                                                                         \
1888
  int win;                                                                   \
1889
  (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM),          \
1890
                        (int)(TYPE), (IND_LEVELS), &win);                    \
1891
  if ( win )                                                                 \
1892
    goto WIN;                                                                \
1893
} while (0)
1894
 
1895
/* Go to LABEL if ADDR (a legitimate address expression)
1896
   has an effect that depends on the machine mode it is used for.  */
1897
 
1898
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)                \
1899
do {                                                            \
1900
  if (rs6000_mode_dependent_address_ptr (ADDR))                 \
1901
    goto LABEL;                                                 \
1902
} while (0)
1903
 
1904
#define FIND_BASE_TERM rs6000_find_base_term
1905
 
1906
/* The register number of the register used to address a table of
1907
   static data addresses in memory.  In some cases this register is
1908
   defined by a processor's "application binary interface" (ABI).
1909
   When this macro is defined, RTL is generated for this register
1910
   once, as with the stack pointer and frame pointer registers.  If
1911
   this macro is not defined, it is up to the machine-dependent files
1912
   to allocate such a register (if necessary).  */
1913
 
1914
#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1915
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1916
 
1917
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1918
 
1919
/* Define this macro if the register defined by
1920
   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1921
   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1922
 
1923
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1924
 
1925
/* A C expression that is nonzero if X is a legitimate immediate
1926
   operand on the target machine when generating position independent
1927
   code.  You can assume that X satisfies `CONSTANT_P', so you need
1928
   not check this.  You can also assume FLAG_PIC is true, so you need
1929
   not check it either.  You need not define this macro if all
1930
   constants (including `SYMBOL_REF') can be immediate operands when
1931
   generating position independent code.  */
1932
 
1933
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1934
 
1935
/* Define this if some processing needs to be done immediately before
1936
   emitting code for an insn.  */
1937
 
1938
#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1939
  rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1940
 
1941
/* Specify the machine mode that this machine uses
1942
   for the index in the tablejump instruction.  */
1943
#define CASE_VECTOR_MODE SImode
1944
 
1945
/* Define as C expression which evaluates to nonzero if the tablejump
1946
   instruction expects the table to contain offsets from the address of the
1947
   table.
1948
   Do not define this if the table should contain absolute addresses.  */
1949
#define CASE_VECTOR_PC_RELATIVE 1
1950
 
1951
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1952
#define DEFAULT_SIGNED_CHAR 0
1953
 
1954
/* This flag, if defined, says the same insns that convert to a signed fixnum
1955
   also convert validly to an unsigned one.  */
1956
 
1957
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1958
 
1959
/* An integer expression for the size in bits of the largest integer machine
1960
   mode that should actually be used.  */
1961
 
1962
/* Allow pairs of registers to be used, which is the intent of the default.  */
1963
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1964
 
1965
/* Max number of bytes we can move from memory to memory
1966
   in one reasonably fast instruction.  */
1967
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1968
#define MAX_MOVE_MAX 8
1969
 
1970
/* Nonzero if access to memory by bytes is no faster than for words.
1971
   Also nonzero if doing byte operations (specifically shifts) in registers
1972
   is undesirable.  */
1973
#define SLOW_BYTE_ACCESS 1
1974
 
1975
/* Define if operations between registers always perform the operation
1976
   on the full register even if a narrower mode is specified.  */
1977
#define WORD_REGISTER_OPERATIONS
1978
 
1979
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1980
   will either zero-extend or sign-extend.  The value of this macro should
1981
   be the code that says which one of the two operations is implicitly
1982
   done, UNKNOWN if none.  */
1983
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1984
 
1985
/* Define if loading short immediate values into registers sign extends.  */
1986
#define SHORT_IMMEDIATES_SIGN_EXTEND
1987
 
1988
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1989
   is done just by pretending it is already truncated.  */
1990
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1991
 
1992
/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1993
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1994
  ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1995
 
1996
/* The CTZ patterns return -1 for input of zero.  */
1997
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1998
 
1999
/* Specify the machine mode that pointers have.
2000
   After generation of rtl, the compiler makes no further distinction
2001
   between pointers and any other objects of this machine mode.  */
2002
extern unsigned rs6000_pmode;
2003
#define Pmode ((enum machine_mode)rs6000_pmode)
2004
 
2005
/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2006
#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2007
 
2008
/* Mode of a function address in a call instruction (for indexing purposes).
2009
   Doesn't matter on RS/6000.  */
2010
#define FUNCTION_MODE SImode
2011
 
2012
/* Define this if addresses of constant functions
2013
   shouldn't be put through pseudo regs where they can be cse'd.
2014
   Desirable on machines where ordinary constants are expensive
2015
   but a CALL with constant address is cheap.  */
2016
#define NO_FUNCTION_CSE
2017
 
2018
/* Define this to be nonzero if shift instructions ignore all but the low-order
2019
   few bits.
2020
 
2021
   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2022
   have been dropped from the PowerPC architecture.  */
2023
 
2024
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2025
 
2026
/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2027
   should be adjusted to reflect any required changes.  This macro is used when
2028
   there is some systematic length adjustment required that would be difficult
2029
   to express in the length attribute.  */
2030
 
2031
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2032
 
2033
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2034
   COMPARE, return the mode to be used for the comparison.  For
2035
   floating-point, CCFPmode should be used.  CCUNSmode should be used
2036
   for unsigned comparisons.  CCEQmode should be used when we are
2037
   doing an inequality comparison on the result of a
2038
   comparison.  CCmode should be used in all other cases.  */
2039
 
2040
#define SELECT_CC_MODE(OP,X,Y) \
2041
  (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode        \
2042
   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2043
   : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)                      \
2044
      ? CCEQmode : CCmode))
2045
 
2046
/* Can the condition code MODE be safely reversed?  This is safe in
2047
   all cases on this port, because at present it doesn't use the
2048
   trapping FP comparisons (fcmpo).  */
2049
#define REVERSIBLE_CC_MODE(MODE) 1
2050
 
2051
/* Given a condition code and a mode, return the inverse condition.  */
2052
#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2053
 
2054
 
2055
/* Control the assembler format that we output.  */
2056
 
2057
/* A C string constant describing how to begin a comment in the target
2058
   assembler language.  The compiler assumes that the comment will end at
2059
   the end of the line.  */
2060
#define ASM_COMMENT_START " #"
2061
 
2062
/* Flag to say the TOC is initialized */
2063
extern int toc_initialized;
2064
 
2065
/* Macro to output a special constant pool entry.  Go to WIN if we output
2066
   it.  Otherwise, it is written the usual way.
2067
 
2068
   On the RS/6000, toc entries are handled this way.  */
2069
 
2070
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2071
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))                          \
2072
    {                                                                     \
2073
      output_toc (FILE, X, LABELNO, MODE);                                \
2074
      goto WIN;                                                           \
2075
    }                                                                     \
2076
}
2077
 
2078
#ifdef HAVE_GAS_WEAK
2079
#define RS6000_WEAK 1
2080
#else
2081
#define RS6000_WEAK 0
2082
#endif
2083
 
2084
#if RS6000_WEAK
2085
/* Used in lieu of ASM_WEAKEN_LABEL.  */
2086
#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)                          \
2087
  do                                                                    \
2088
    {                                                                   \
2089
      fputs ("\t.weak\t", (FILE));                                      \
2090
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
2091
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
2092
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
2093
        {                                                               \
2094
          if (TARGET_XCOFF)                                             \
2095
            fputs ("[DS]", (FILE));                                     \
2096
          fputs ("\n\t.weak\t.", (FILE));                               \
2097
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
2098
        }                                                               \
2099
      fputc ('\n', (FILE));                                             \
2100
      if (VAL)                                                          \
2101
        {                                                               \
2102
          ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));                       \
2103
          if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL               \
2104
              && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                 \
2105
            {                                                           \
2106
              fputs ("\t.set\t.", (FILE));                              \
2107
              RS6000_OUTPUT_BASENAME ((FILE), (NAME));                  \
2108
              fputs (",.", (FILE));                                     \
2109
              RS6000_OUTPUT_BASENAME ((FILE), (VAL));                   \
2110
              fputc ('\n', (FILE));                                     \
2111
            }                                                           \
2112
        }                                                               \
2113
    }                                                                   \
2114
  while (0)
2115
#endif
2116
 
2117
#if HAVE_GAS_WEAKREF
2118
#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)                     \
2119
  do                                                                    \
2120
    {                                                                   \
2121
      fputs ("\t.weakref\t", (FILE));                                   \
2122
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
2123
      fputs (", ", (FILE));                                             \
2124
      RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                         \
2125
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
2126
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
2127
        {                                                               \
2128
          fputs ("\n\t.weakref\t.", (FILE));                            \
2129
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
2130
          fputs (", .", (FILE));                                        \
2131
          RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                     \
2132
        }                                                               \
2133
      fputc ('\n', (FILE));                                             \
2134
    } while (0)
2135
#endif
2136
 
2137
/* This implements the `alias' attribute.  */
2138
#undef  ASM_OUTPUT_DEF_FROM_DECLS
2139
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)                   \
2140
  do                                                                    \
2141
    {                                                                   \
2142
      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);            \
2143
      const char *name = IDENTIFIER_POINTER (TARGET);                   \
2144
      if (TREE_CODE (DECL) == FUNCTION_DECL                             \
2145
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
2146
        {                                                               \
2147
          if (TREE_PUBLIC (DECL))                                       \
2148
            {                                                           \
2149
              if (!RS6000_WEAK || !DECL_WEAK (DECL))                    \
2150
                {                                                       \
2151
                  fputs ("\t.globl\t.", FILE);                          \
2152
                  RS6000_OUTPUT_BASENAME (FILE, alias);                 \
2153
                  putc ('\n', FILE);                                    \
2154
                }                                                       \
2155
            }                                                           \
2156
          else if (TARGET_XCOFF)                                        \
2157
            {                                                           \
2158
              fputs ("\t.lglobl\t.", FILE);                             \
2159
              RS6000_OUTPUT_BASENAME (FILE, alias);                     \
2160
              putc ('\n', FILE);                                        \
2161
            }                                                           \
2162
          fputs ("\t.set\t.", FILE);                                    \
2163
          RS6000_OUTPUT_BASENAME (FILE, alias);                         \
2164
          fputs (",.", FILE);                                           \
2165
          RS6000_OUTPUT_BASENAME (FILE, name);                          \
2166
          fputc ('\n', FILE);                                           \
2167
        }                                                               \
2168
      ASM_OUTPUT_DEF (FILE, alias, name);                               \
2169
    }                                                                   \
2170
   while (0)
2171
 
2172
#define TARGET_ASM_FILE_START rs6000_file_start
2173
 
2174
/* Output to assembler file text saying following lines
2175
   may contain character constants, extra white space, comments, etc.  */
2176
 
2177
#define ASM_APP_ON ""
2178
 
2179
/* Output to assembler file text saying following lines
2180
   no longer contain unusual constructs.  */
2181
 
2182
#define ASM_APP_OFF ""
2183
 
2184
/* How to refer to registers in assembler output.
2185
   This sequence is indexed by compiler's hard-register-number (see above).  */
2186
 
2187
extern char rs6000_reg_names[][8];      /* register names (0 vs. %r0).  */
2188
 
2189
#define REGISTER_NAMES                                                  \
2190
{                                                                       \
2191
  &rs6000_reg_names[ 0][0],       /* r0   */                              \
2192
  &rs6000_reg_names[ 1][0],      /* r1   */                              \
2193
  &rs6000_reg_names[ 2][0],     /* r2    */                              \
2194
  &rs6000_reg_names[ 3][0],      /* r3   */                              \
2195
  &rs6000_reg_names[ 4][0],      /* r4   */                              \
2196
  &rs6000_reg_names[ 5][0],      /* r5   */                              \
2197
  &rs6000_reg_names[ 6][0],      /* r6   */                              \
2198
  &rs6000_reg_names[ 7][0],      /* r7   */                              \
2199
  &rs6000_reg_names[ 8][0],      /* r8   */                              \
2200
  &rs6000_reg_names[ 9][0],      /* r9   */                              \
2201
  &rs6000_reg_names[10][0],      /* r10  */                              \
2202
  &rs6000_reg_names[11][0],      /* r11  */                              \
2203
  &rs6000_reg_names[12][0],      /* r12  */                              \
2204
  &rs6000_reg_names[13][0],      /* r13  */                              \
2205
  &rs6000_reg_names[14][0],      /* r14  */                              \
2206
  &rs6000_reg_names[15][0],      /* r15  */                              \
2207
  &rs6000_reg_names[16][0],      /* r16  */                              \
2208
  &rs6000_reg_names[17][0],      /* r17  */                              \
2209
  &rs6000_reg_names[18][0],      /* r18  */                              \
2210
  &rs6000_reg_names[19][0],      /* r19  */                              \
2211
  &rs6000_reg_names[20][0],      /* r20  */                              \
2212
  &rs6000_reg_names[21][0],      /* r21  */                              \
2213
  &rs6000_reg_names[22][0],      /* r22  */                              \
2214
  &rs6000_reg_names[23][0],      /* r23  */                              \
2215
  &rs6000_reg_names[24][0],      /* r24  */                              \
2216
  &rs6000_reg_names[25][0],      /* r25  */                              \
2217
  &rs6000_reg_names[26][0],      /* r26  */                              \
2218
  &rs6000_reg_names[27][0],      /* r27  */                              \
2219
  &rs6000_reg_names[28][0],      /* r28  */                              \
2220
  &rs6000_reg_names[29][0],      /* r29  */                              \
2221
  &rs6000_reg_names[30][0],      /* r30  */                              \
2222
  &rs6000_reg_names[31][0],      /* r31  */                              \
2223
                                                                        \
2224
  &rs6000_reg_names[32][0],     /* fr0  */                               \
2225
  &rs6000_reg_names[33][0],      /* fr1  */                              \
2226
  &rs6000_reg_names[34][0],      /* fr2  */                              \
2227
  &rs6000_reg_names[35][0],      /* fr3  */                              \
2228
  &rs6000_reg_names[36][0],      /* fr4  */                              \
2229
  &rs6000_reg_names[37][0],      /* fr5  */                              \
2230
  &rs6000_reg_names[38][0],      /* fr6  */                              \
2231
  &rs6000_reg_names[39][0],      /* fr7  */                              \
2232
  &rs6000_reg_names[40][0],      /* fr8  */                              \
2233
  &rs6000_reg_names[41][0],      /* fr9  */                              \
2234
  &rs6000_reg_names[42][0],      /* fr10 */                              \
2235
  &rs6000_reg_names[43][0],      /* fr11 */                              \
2236
  &rs6000_reg_names[44][0],      /* fr12 */                              \
2237
  &rs6000_reg_names[45][0],      /* fr13 */                              \
2238
  &rs6000_reg_names[46][0],      /* fr14 */                              \
2239
  &rs6000_reg_names[47][0],      /* fr15 */                              \
2240
  &rs6000_reg_names[48][0],      /* fr16 */                              \
2241
  &rs6000_reg_names[49][0],      /* fr17 */                              \
2242
  &rs6000_reg_names[50][0],      /* fr18 */                              \
2243
  &rs6000_reg_names[51][0],      /* fr19 */                              \
2244
  &rs6000_reg_names[52][0],      /* fr20 */                              \
2245
  &rs6000_reg_names[53][0],      /* fr21 */                              \
2246
  &rs6000_reg_names[54][0],      /* fr22 */                              \
2247
  &rs6000_reg_names[55][0],      /* fr23 */                              \
2248
  &rs6000_reg_names[56][0],      /* fr24 */                              \
2249
  &rs6000_reg_names[57][0],      /* fr25 */                              \
2250
  &rs6000_reg_names[58][0],      /* fr26 */                              \
2251
  &rs6000_reg_names[59][0],      /* fr27 */                              \
2252
  &rs6000_reg_names[60][0],      /* fr28 */                              \
2253
  &rs6000_reg_names[61][0],      /* fr29 */                              \
2254
  &rs6000_reg_names[62][0],      /* fr30 */                              \
2255
  &rs6000_reg_names[63][0],      /* fr31 */                              \
2256
                                                                        \
2257
  &rs6000_reg_names[64][0],     /* mq   */                               \
2258
  &rs6000_reg_names[65][0],      /* lr   */                              \
2259
  &rs6000_reg_names[66][0],      /* ctr  */                              \
2260
  &rs6000_reg_names[67][0],      /* ap   */                              \
2261
                                                                        \
2262
  &rs6000_reg_names[68][0],      /* cr0  */                              \
2263
  &rs6000_reg_names[69][0],      /* cr1  */                              \
2264
  &rs6000_reg_names[70][0],      /* cr2  */                              \
2265
  &rs6000_reg_names[71][0],      /* cr3  */                              \
2266
  &rs6000_reg_names[72][0],      /* cr4  */                              \
2267
  &rs6000_reg_names[73][0],      /* cr5  */                              \
2268
  &rs6000_reg_names[74][0],      /* cr6  */                              \
2269
  &rs6000_reg_names[75][0],      /* cr7  */                              \
2270
                                                                        \
2271
  &rs6000_reg_names[76][0],      /* xer  */                              \
2272
                                                                        \
2273
  &rs6000_reg_names[77][0],      /* v0  */                               \
2274
  &rs6000_reg_names[78][0],      /* v1  */                               \
2275
  &rs6000_reg_names[79][0],      /* v2  */                               \
2276
  &rs6000_reg_names[80][0],      /* v3  */                               \
2277
  &rs6000_reg_names[81][0],      /* v4  */                               \
2278
  &rs6000_reg_names[82][0],      /* v5  */                               \
2279
  &rs6000_reg_names[83][0],      /* v6  */                               \
2280
  &rs6000_reg_names[84][0],      /* v7  */                               \
2281
  &rs6000_reg_names[85][0],      /* v8  */                               \
2282
  &rs6000_reg_names[86][0],      /* v9  */                               \
2283
  &rs6000_reg_names[87][0],      /* v10  */                              \
2284
  &rs6000_reg_names[88][0],      /* v11  */                              \
2285
  &rs6000_reg_names[89][0],      /* v12  */                              \
2286
  &rs6000_reg_names[90][0],      /* v13  */                              \
2287
  &rs6000_reg_names[91][0],      /* v14  */                              \
2288
  &rs6000_reg_names[92][0],      /* v15  */                              \
2289
  &rs6000_reg_names[93][0],      /* v16  */                              \
2290
  &rs6000_reg_names[94][0],      /* v17  */                              \
2291
  &rs6000_reg_names[95][0],      /* v18  */                              \
2292
  &rs6000_reg_names[96][0],      /* v19  */                              \
2293
  &rs6000_reg_names[97][0],      /* v20  */                              \
2294
  &rs6000_reg_names[98][0],      /* v21  */                              \
2295
  &rs6000_reg_names[99][0],      /* v22  */                              \
2296
  &rs6000_reg_names[100][0],     /* v23  */                              \
2297
  &rs6000_reg_names[101][0],     /* v24  */                              \
2298
  &rs6000_reg_names[102][0],     /* v25  */                              \
2299
  &rs6000_reg_names[103][0],     /* v26  */                              \
2300
  &rs6000_reg_names[104][0],     /* v27  */                              \
2301
  &rs6000_reg_names[105][0],     /* v28  */                              \
2302
  &rs6000_reg_names[106][0],     /* v29  */                              \
2303
  &rs6000_reg_names[107][0],     /* v30  */                              \
2304
  &rs6000_reg_names[108][0],     /* v31  */                              \
2305
  &rs6000_reg_names[109][0],     /* vrsave  */                           \
2306
  &rs6000_reg_names[110][0],     /* vscr  */                             \
2307
  &rs6000_reg_names[111][0],     /* spe_acc */                           \
2308
  &rs6000_reg_names[112][0],     /* spefscr */                           \
2309
  &rs6000_reg_names[113][0],     /* sfp  */                              \
2310
}
2311
 
2312
/* Table of additional register names to use in user input.  */
2313
 
2314
#define ADDITIONAL_REGISTER_NAMES \
2315
 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},        \
2316
  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},       \
2317
  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},       \
2318
  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},       \
2319
  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},       \
2320
  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},       \
2321
  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},       \
2322
  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},       \
2323
  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},       \
2324
  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},       \
2325
  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},       \
2326
  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},       \
2327
  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},       \
2328
  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},       \
2329
  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},       \
2330
  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},       \
2331
  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2332
  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2333
  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2334
  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2335
  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2336
  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},      \
2337
  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2338
  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2339
  {"vrsave", 109}, {"vscr", 110},                               \
2340
  {"spe_acc", 111}, {"spefscr", 112},                           \
2341
  /* no additional names for: mq, lr, ctr, ap */                \
2342
  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},       \
2343
  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},       \
2344
  {"cc",   68}, {"sp",    1}, {"toc",   2},                     \
2345
  /* VSX registers overlaid on top of FR, Altivec registers */  \
2346
  {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},       \
2347
  {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},       \
2348
  {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},       \
2349
  {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},       \
2350
  {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},       \
2351
  {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},       \
2352
  {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},       \
2353
  {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},       \
2354
  {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80},       \
2355
  {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84},       \
2356
  {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88},       \
2357
  {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92},       \
2358
  {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96},       \
2359
  {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100},      \
2360
  {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104},      \
2361
  {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2362
 
2363
/* Text to write out after a CALL that may be replaced by glue code by
2364
   the loader.  This depends on the AIX version.  */
2365
#define RS6000_CALL_GLUE "cror 31,31,31"
2366
 
2367
/* This is how to output an element of a case-vector that is relative.  */
2368
 
2369
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2370
  do { char buf[100];                                   \
2371
       fputs ("\t.long ", FILE);                        \
2372
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);   \
2373
       assemble_name (FILE, buf);                       \
2374
       putc ('-', FILE);                                \
2375
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);     \
2376
       assemble_name (FILE, buf);                       \
2377
       putc ('\n', FILE);                               \
2378
     } while (0)
2379
 
2380
/* This is how to output an assembler line
2381
   that says to advance the location counter
2382
   to a multiple of 2**LOG bytes.  */
2383
 
2384
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2385
  if ((LOG) != 0)                        \
2386
    fprintf (FILE, "\t.align %d\n", (LOG))
2387
 
2388
/* Pick up the return address upon entry to a procedure. Used for
2389
   dwarf2 unwind information.  This also enables the table driven
2390
   mechanism.  */
2391
 
2392
#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2393
#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2394
 
2395
/* Describe how we implement __builtin_eh_return.  */
2396
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2397
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2398
 
2399
/* Print operand X (an rtx) in assembler syntax to file FILE.
2400
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2401
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2402
 
2403
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2404
 
2405
/* Define which CODE values are valid.  */
2406
 
2407
#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2408
  ((CODE) == '.' || (CODE) == '&')
2409
 
2410
/* Print a memory address as an operand to reference that memory location.  */
2411
 
2412
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2413
 
2414
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL)                \
2415
  do                                                            \
2416
    if (!rs6000_output_addr_const_extra (STREAM, X))            \
2417
      goto FAIL;                                                \
2418
  while (0)
2419
 
2420
/* uncomment for disabling the corresponding default options */
2421
/* #define  MACHINE_no_sched_interblock */
2422
/* #define  MACHINE_no_sched_speculative */
2423
/* #define  MACHINE_no_sched_speculative_load */
2424
 
2425
/* General flags.  */
2426
extern int flag_pic;
2427
extern int optimize;
2428
extern int flag_expensive_optimizations;
2429
extern int frame_pointer_needed;
2430
 
2431
/* Classification of the builtin functions to properly set the declaration tree
2432
   flags.  */
2433
enum rs6000_btc
2434
{
2435
  RS6000_BTC_MISC,              /* assume builtin can do anything */
2436
  RS6000_BTC_CONST,             /* builtin is a 'const' function.  */
2437
  RS6000_BTC_PURE,              /* builtin is a 'pure' function.  */
2438
  RS6000_BTC_FP_PURE            /* builtin is 'pure' if rounding math.  */
2439
};
2440
 
2441
/* Convenience macros to document the instruction type.  */
2442
#define RS6000_BTC_MEM  RS6000_BTC_MISC /* load/store touches memory */
2443
#define RS6000_BTC_SAT  RS6000_BTC_MISC /* VMX saturate sets VSCR register */
2444
 
2445
#undef RS6000_BUILTIN
2446
#undef RS6000_BUILTIN_EQUATE
2447
#define RS6000_BUILTIN(NAME, TYPE) NAME,
2448
#define RS6000_BUILTIN_EQUATE(NAME, VALUE) NAME = VALUE,
2449
 
2450
enum rs6000_builtins
2451
{
2452
#include "rs6000-builtin.def"
2453
 
2454
  RS6000_BUILTIN_COUNT
2455
};
2456
 
2457
#undef RS6000_BUILTIN
2458
#undef RS6000_BUILTIN_EQUATE
2459
 
2460
enum rs6000_builtin_type_index
2461
{
2462
  RS6000_BTI_NOT_OPAQUE,
2463
  RS6000_BTI_opaque_V2SI,
2464
  RS6000_BTI_opaque_V2SF,
2465
  RS6000_BTI_opaque_p_V2SI,
2466
  RS6000_BTI_opaque_V4SI,
2467
  RS6000_BTI_V16QI,
2468
  RS6000_BTI_V2SI,
2469
  RS6000_BTI_V2SF,
2470
  RS6000_BTI_V2DI,
2471
  RS6000_BTI_V2DF,
2472
  RS6000_BTI_V4HI,
2473
  RS6000_BTI_V4SI,
2474
  RS6000_BTI_V4SF,
2475
  RS6000_BTI_V8HI,
2476
  RS6000_BTI_unsigned_V16QI,
2477
  RS6000_BTI_unsigned_V8HI,
2478
  RS6000_BTI_unsigned_V4SI,
2479
  RS6000_BTI_unsigned_V2DI,
2480
  RS6000_BTI_bool_char,          /* __bool char */
2481
  RS6000_BTI_bool_short,         /* __bool short */
2482
  RS6000_BTI_bool_int,           /* __bool int */
2483
  RS6000_BTI_bool_long,          /* __bool long */
2484
  RS6000_BTI_pixel,              /* __pixel */
2485
  RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2486
  RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2487
  RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2488
  RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2489
  RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2490
  RS6000_BTI_long,               /* long_integer_type_node */
2491
  RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2492
  RS6000_BTI_INTQI,              /* intQI_type_node */
2493
  RS6000_BTI_UINTQI,             /* unsigned_intQI_type_node */
2494
  RS6000_BTI_INTHI,              /* intHI_type_node */
2495
  RS6000_BTI_UINTHI,             /* unsigned_intHI_type_node */
2496
  RS6000_BTI_INTSI,              /* intSI_type_node */
2497
  RS6000_BTI_UINTSI,             /* unsigned_intSI_type_node */
2498
  RS6000_BTI_INTDI,              /* intDI_type_node */
2499
  RS6000_BTI_UINTDI,             /* unsigned_intDI_type_node */
2500
  RS6000_BTI_float,              /* float_type_node */
2501
  RS6000_BTI_double,             /* double_type_node */
2502
  RS6000_BTI_void,               /* void_type_node */
2503
  RS6000_BTI_MAX
2504
};
2505
 
2506
 
2507
#define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2508
#define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2509
#define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2510
#define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2511
#define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2512
#define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2513
#define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2514
#define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2515
#define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2516
#define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2517
#define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2518
#define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2519
#define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2520
#define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2521
#define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2522
#define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2523
#define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2524
#define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2525
#define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2526
#define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2527
#define bool_long_type_node           (rs6000_builtin_types[RS6000_BTI_bool_long])
2528
#define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2529
#define bool_V16QI_type_node          (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2530
#define bool_V8HI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2531
#define bool_V4SI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2532
#define bool_V2DI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2533
#define pixel_V8HI_type_node          (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2534
 
2535
#define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2536
#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2537
#define intQI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTQI])
2538
#define uintQI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTQI])
2539
#define intHI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTHI])
2540
#define uintHI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTHI])
2541
#define intSI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTSI])
2542
#define uintSI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTSI])
2543
#define intDI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTDI])
2544
#define uintDI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTDI])
2545
#define float_type_internal_node         (rs6000_builtin_types[RS6000_BTI_float])
2546
#define double_type_internal_node        (rs6000_builtin_types[RS6000_BTI_double])
2547
#define void_type_internal_node          (rs6000_builtin_types[RS6000_BTI_void])
2548
 
2549
extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2550
extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2551
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.