OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [soft-fp/] [extended.h] - Blame information for rev 301

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Software floating-point emulation.
2
   Definitions for IEEE Extended Precision.
3
   Copyright (C) 1999,2006,2007 Free Software Foundation, Inc.
4
   This file is part of the GNU C Library.
5
   Contributed by Jakub Jelinek (jj@ultra.linux.cz).
6
 
7
   The GNU C Library is free software; you can redistribute it and/or
8
   modify it under the terms of the GNU Lesser General Public
9
   License as published by the Free Software Foundation; either
10
   version 2.1 of the License, or (at your option) any later version.
11
 
12
   In addition to the permissions in the GNU Lesser General Public
13
   License, the Free Software Foundation gives you unlimited
14
   permission to link the compiled version of this file into
15
   combinations with other programs, and to distribute those
16
   combinations without any restriction coming from the use of this
17
   file.  (The Lesser General Public License restrictions do apply in
18
   other respects; for example, they cover modification of the file,
19
   and distribution when not linked into a combine executable.)
20
 
21
   The GNU C Library is distributed in the hope that it will be useful,
22
   but WITHOUT ANY WARRANTY; without even the implied warranty of
23
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
24
   Lesser General Public License for more details.
25
 
26
   You should have received a copy of the GNU Lesser General Public
27
   License along with the GNU C Library; if not, write to the Free
28
   Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
29
   MA 02110-1301, USA.  */
30
 
31
#if _FP_W_TYPE_SIZE < 32
32
#error "Here's a nickel, kid. Go buy yourself a real computer."
33
#endif
34
 
35
#if _FP_W_TYPE_SIZE < 64
36
#define _FP_FRACTBITS_E         (4*_FP_W_TYPE_SIZE)
37
#else
38
#define _FP_FRACTBITS_E         (2*_FP_W_TYPE_SIZE)
39
#endif
40
 
41
#define _FP_FRACBITS_E          64
42
#define _FP_FRACXBITS_E         (_FP_FRACTBITS_E - _FP_FRACBITS_E)
43
#define _FP_WFRACBITS_E         (_FP_WORKBITS + _FP_FRACBITS_E)
44
#define _FP_WFRACXBITS_E        (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
45
#define _FP_EXPBITS_E           15
46
#define _FP_EXPBIAS_E           16383
47
#define _FP_EXPMAX_E            32767
48
 
49
#define _FP_QNANBIT_E           \
50
        ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
51
#define _FP_QNANBIT_SH_E                \
52
        ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
53
#define _FP_IMPLBIT_E           \
54
        ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
55
#define _FP_IMPLBIT_SH_E                \
56
        ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
57
#define _FP_OVERFLOW_E          \
58
        ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
59
 
60
typedef float XFtype __attribute__((mode(XF)));
61
 
62
#if _FP_W_TYPE_SIZE < 64
63
 
64
union _FP_UNION_E
65
{
66
   XFtype flt;
67
   struct
68
   {
69
#if __BYTE_ORDER == __BIG_ENDIAN
70
      unsigned long pad1 : _FP_W_TYPE_SIZE;
71
      unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
72
      unsigned long sign : 1;
73
      unsigned long exp : _FP_EXPBITS_E;
74
      unsigned long frac1 : _FP_W_TYPE_SIZE;
75
      unsigned long frac0 : _FP_W_TYPE_SIZE;
76
#else
77
      unsigned long frac0 : _FP_W_TYPE_SIZE;
78
      unsigned long frac1 : _FP_W_TYPE_SIZE;
79
      unsigned exp : _FP_EXPBITS_E;
80
      unsigned sign : 1;
81
#endif /* not bigendian */
82
   } bits __attribute__((packed));
83
};
84
 
85
 
86
#define FP_DECL_E(X)            _FP_DECL(4,X)
87
 
88
#define FP_UNPACK_RAW_E(X, val)                         \
89
  do {                                                  \
90
    union _FP_UNION_E _flo; _flo.flt = (val);           \
91
                                                        \
92
    X##_f[2] = 0; X##_f[3] = 0;                         \
93
    X##_f[0] = _flo.bits.frac0;                         \
94
    X##_f[1] = _flo.bits.frac1;                         \
95
    X##_e  = _flo.bits.exp;                             \
96
    X##_s  = _flo.bits.sign;                            \
97
  } while (0)
98
 
99
#define FP_UNPACK_RAW_EP(X, val)                        \
100
  do {                                                  \
101
    union _FP_UNION_E *_flo =                           \
102
    (union _FP_UNION_E *)(val);                         \
103
                                                        \
104
    X##_f[2] = 0; X##_f[3] = 0;                         \
105
    X##_f[0] = _flo->bits.frac0;                        \
106
    X##_f[1] = _flo->bits.frac1;                        \
107
    X##_e  = _flo->bits.exp;                            \
108
    X##_s  = _flo->bits.sign;                           \
109
  } while (0)
110
 
111
#define FP_PACK_RAW_E(val, X)                           \
112
  do {                                                  \
113
    union _FP_UNION_E _flo;                             \
114
                                                        \
115
    if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;               \
116
    else X##_f[1] &= ~(_FP_IMPLBIT_E);                  \
117
    _flo.bits.frac0 = X##_f[0];                         \
118
    _flo.bits.frac1 = X##_f[1];                         \
119
    _flo.bits.exp   = X##_e;                            \
120
    _flo.bits.sign  = X##_s;                            \
121
                                                        \
122
    (val) = _flo.flt;                                   \
123
  } while (0)
124
 
125
#define FP_PACK_RAW_EP(val, X)                          \
126
  do {                                                  \
127
    if (!FP_INHIBIT_RESULTS)                            \
128
      {                                                 \
129
        union _FP_UNION_E *_flo =                       \
130
          (union _FP_UNION_E *)(val);                   \
131
                                                        \
132
        if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;           \
133
        else X##_f[1] &= ~(_FP_IMPLBIT_E);              \
134
        _flo->bits.frac0 = X##_f[0];                    \
135
        _flo->bits.frac1 = X##_f[1];                    \
136
        _flo->bits.exp   = X##_e;                       \
137
        _flo->bits.sign  = X##_s;                       \
138
      }                                                 \
139
  } while (0)
140
 
141
#define FP_UNPACK_E(X,val)              \
142
  do {                                  \
143
    FP_UNPACK_RAW_E(X,val);             \
144
    _FP_UNPACK_CANONICAL(E,4,X);        \
145
  } while (0)
146
 
147
#define FP_UNPACK_EP(X,val)             \
148
  do {                                  \
149
    FP_UNPACK_RAW_EP(X,val);            \
150
    _FP_UNPACK_CANONICAL(E,4,X);        \
151
  } while (0)
152
 
153
#define FP_UNPACK_SEMIRAW_E(X,val)      \
154
  do {                                  \
155
    FP_UNPACK_RAW_E(X,val);             \
156
    _FP_UNPACK_SEMIRAW(E,4,X);          \
157
  } while (0)
158
 
159
#define FP_UNPACK_SEMIRAW_EP(X,val)     \
160
  do {                                  \
161
    FP_UNPACK_RAW_EP(X,val);            \
162
    _FP_UNPACK_SEMIRAW(E,4,X);          \
163
  } while (0)
164
 
165
#define FP_PACK_E(val,X)                \
166
  do {                                  \
167
    _FP_PACK_CANONICAL(E,4,X);          \
168
    FP_PACK_RAW_E(val,X);               \
169
  } while (0)
170
 
171
#define FP_PACK_EP(val,X)               \
172
  do {                                  \
173
    _FP_PACK_CANONICAL(E,4,X);          \
174
    FP_PACK_RAW_EP(val,X);              \
175
  } while (0)
176
 
177
#define FP_PACK_SEMIRAW_E(val,X)        \
178
  do {                                  \
179
    _FP_PACK_SEMIRAW(E,4,X);            \
180
    FP_PACK_RAW_E(val,X);               \
181
  } while (0)
182
 
183
#define FP_PACK_SEMIRAW_EP(val,X)       \
184
  do {                                  \
185
    _FP_PACK_SEMIRAW(E,4,X);            \
186
    FP_PACK_RAW_EP(val,X);              \
187
  } while (0)
188
 
189
#define FP_ISSIGNAN_E(X)        _FP_ISSIGNAN(E,4,X)
190
#define FP_NEG_E(R,X)           _FP_NEG(E,4,R,X)
191
#define FP_ADD_E(R,X,Y)         _FP_ADD(E,4,R,X,Y)
192
#define FP_SUB_E(R,X,Y)         _FP_SUB(E,4,R,X,Y)
193
#define FP_MUL_E(R,X,Y)         _FP_MUL(E,4,R,X,Y)
194
#define FP_DIV_E(R,X,Y)         _FP_DIV(E,4,R,X,Y)
195
#define FP_SQRT_E(R,X)          _FP_SQRT(E,4,R,X)
196
 
197
/*
198
 * Square root algorithms:
199
 * We have just one right now, maybe Newton approximation
200
 * should be added for those machines where division is fast.
201
 * This has special _E version because standard _4 square
202
 * root would not work (it has to start normally with the
203
 * second word and not the first), but as we have to do it
204
 * anyway, we optimize it by doing most of the calculations
205
 * in two UWtype registers instead of four.
206
 */
207
 
208
#define _FP_SQRT_MEAT_E(R, S, T, X, q)                  \
209
  do {                                                  \
210
    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
211
    _FP_FRAC_SRL_4(X, (_FP_WORKBITS));                  \
212
    while (q)                                           \
213
      {                                                 \
214
        T##_f[1] = S##_f[1] + q;                        \
215
        if (T##_f[1] <= X##_f[1])                       \
216
          {                                             \
217
            S##_f[1] = T##_f[1] + q;                    \
218
            X##_f[1] -= T##_f[1];                       \
219
            R##_f[1] += q;                              \
220
          }                                             \
221
        _FP_FRAC_SLL_2(X, 1);                           \
222
        q >>= 1;                                        \
223
      }                                                 \
224
    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
225
    while (q)                                           \
226
      {                                                 \
227
        T##_f[0] = S##_f[0] + q;                        \
228
        T##_f[1] = S##_f[1];                            \
229
        if (T##_f[1] < X##_f[1] ||                      \
230
            (T##_f[1] == X##_f[1] &&                    \
231
             T##_f[0] <= X##_f[0]))                     \
232
          {                                             \
233
            S##_f[0] = T##_f[0] + q;                    \
234
            S##_f[1] += (T##_f[0] > S##_f[0]);          \
235
            _FP_FRAC_DEC_2(X, T);                       \
236
            R##_f[0] += q;                              \
237
          }                                             \
238
        _FP_FRAC_SLL_2(X, 1);                           \
239
        q >>= 1;                                        \
240
      }                                                 \
241
    _FP_FRAC_SLL_4(R, (_FP_WORKBITS));                  \
242
    if (X##_f[0] | X##_f[1])                            \
243
      {                                                 \
244
        if (S##_f[1] < X##_f[1] ||                      \
245
            (S##_f[1] == X##_f[1] &&                    \
246
             S##_f[0] < X##_f[0]))                      \
247
          R##_f[0] |= _FP_WORK_ROUND;                   \
248
        R##_f[0] |= _FP_WORK_STICKY;                    \
249
      }                                                 \
250
  } while (0)
251
 
252
#define FP_CMP_E(r,X,Y,un)      _FP_CMP(E,4,r,X,Y,un)
253
#define FP_CMP_EQ_E(r,X,Y)      _FP_CMP_EQ(E,4,r,X,Y)
254
#define FP_CMP_UNORD_E(r,X,Y)   _FP_CMP_UNORD(E,4,r,X,Y)
255
 
256
#define FP_TO_INT_E(r,X,rsz,rsg)        _FP_TO_INT(E,4,r,X,rsz,rsg)
257
#define FP_FROM_INT_E(X,r,rs,rt)        _FP_FROM_INT(E,4,X,r,rs,rt)
258
 
259
#define _FP_FRAC_HIGH_E(X)      (X##_f[2])
260
#define _FP_FRAC_HIGH_RAW_E(X)  (X##_f[1])
261
 
262
#else   /* not _FP_W_TYPE_SIZE < 64 */
263
union _FP_UNION_E
264
{
265
  XFtype flt;
266
  struct {
267
#if __BYTE_ORDER == __BIG_ENDIAN
268
    _FP_W_TYPE pad  : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
269
    unsigned sign   : 1;
270
    unsigned exp    : _FP_EXPBITS_E;
271
    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
272
#else
273
    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
274
    unsigned exp    : _FP_EXPBITS_E;
275
    unsigned sign   : 1;
276
#endif
277
  } bits;
278
};
279
 
280
#define FP_DECL_E(X)            _FP_DECL(2,X)
281
 
282
#define FP_UNPACK_RAW_E(X, val)                                 \
283
  do {                                                          \
284
    union _FP_UNION_E _flo; _flo.flt = (val);                   \
285
                                                                \
286
    X##_f0 = _flo.bits.frac;                                    \
287
    X##_f1 = 0;                                                 \
288
    X##_e = _flo.bits.exp;                                      \
289
    X##_s = _flo.bits.sign;                                     \
290
  } while (0)
291
 
292
#define FP_UNPACK_RAW_EP(X, val)                                \
293
  do {                                                          \
294
    union _FP_UNION_E *_flo =                                   \
295
      (union _FP_UNION_E *)(val);                               \
296
                                                                \
297
    X##_f0 = _flo->bits.frac;                                   \
298
    X##_f1 = 0;                                                 \
299
    X##_e = _flo->bits.exp;                                     \
300
    X##_s = _flo->bits.sign;                                    \
301
  } while (0)
302
 
303
#define FP_PACK_RAW_E(val, X)                                   \
304
  do {                                                          \
305
    union _FP_UNION_E _flo;                                     \
306
                                                                \
307
    if (X##_e) X##_f0 |= _FP_IMPLBIT_E;                         \
308
    else X##_f0 &= ~(_FP_IMPLBIT_E);                            \
309
    _flo.bits.frac = X##_f0;                                    \
310
    _flo.bits.exp  = X##_e;                                     \
311
    _flo.bits.sign = X##_s;                                     \
312
                                                                \
313
    (val) = _flo.flt;                                           \
314
  } while (0)
315
 
316
#define FP_PACK_RAW_EP(fs, val, X)                              \
317
  do {                                                          \
318
    if (!FP_INHIBIT_RESULTS)                                    \
319
      {                                                         \
320
        union _FP_UNION_E *_flo =                               \
321
          (union _FP_UNION_E *)(val);                           \
322
                                                                \
323
        if (X##_e) X##_f0 |= _FP_IMPLBIT_E;                     \
324
        else X##_f0 &= ~(_FP_IMPLBIT_E);                        \
325
        _flo->bits.frac = X##_f0;                               \
326
        _flo->bits.exp  = X##_e;                                \
327
        _flo->bits.sign = X##_s;                                \
328
      }                                                         \
329
  } while (0)
330
 
331
 
332
#define FP_UNPACK_E(X,val)              \
333
  do {                                  \
334
    FP_UNPACK_RAW_E(X,val);             \
335
    _FP_UNPACK_CANONICAL(E,2,X);        \
336
  } while (0)
337
 
338
#define FP_UNPACK_EP(X,val)             \
339
  do {                                  \
340
    FP_UNPACK_RAW_EP(X,val);            \
341
    _FP_UNPACK_CANONICAL(E,2,X);        \
342
  } while (0)
343
 
344
#define FP_UNPACK_SEMIRAW_E(X,val)      \
345
  do {                                  \
346
    FP_UNPACK_RAW_E(X,val);             \
347
    _FP_UNPACK_SEMIRAW(E,2,X);          \
348
  } while (0)
349
 
350
#define FP_UNPACK_SEMIRAW_EP(X,val)     \
351
  do {                                  \
352
    FP_UNPACK_RAW_EP(X,val);            \
353
    _FP_UNPACK_SEMIRAW(E,2,X);          \
354
  } while (0)
355
 
356
#define FP_PACK_E(val,X)                \
357
  do {                                  \
358
    _FP_PACK_CANONICAL(E,2,X);          \
359
    FP_PACK_RAW_E(val,X);               \
360
  } while (0)
361
 
362
#define FP_PACK_EP(val,X)               \
363
  do {                                  \
364
    _FP_PACK_CANONICAL(E,2,X);          \
365
    FP_PACK_RAW_EP(val,X);              \
366
  } while (0)
367
 
368
#define FP_PACK_SEMIRAW_E(val,X)        \
369
  do {                                  \
370
    _FP_PACK_SEMIRAW(E,2,X);            \
371
    FP_PACK_RAW_E(val,X);               \
372
  } while (0)
373
 
374
#define FP_PACK_SEMIRAW_EP(val,X)       \
375
  do {                                  \
376
    _FP_PACK_SEMIRAW(E,2,X);            \
377
    FP_PACK_RAW_EP(val,X);              \
378
  } while (0)
379
 
380
#define FP_ISSIGNAN_E(X)        _FP_ISSIGNAN(E,2,X)
381
#define FP_NEG_E(R,X)           _FP_NEG(E,2,R,X)
382
#define FP_ADD_E(R,X,Y)         _FP_ADD(E,2,R,X,Y)
383
#define FP_SUB_E(R,X,Y)         _FP_SUB(E,2,R,X,Y)
384
#define FP_MUL_E(R,X,Y)         _FP_MUL(E,2,R,X,Y)
385
#define FP_DIV_E(R,X,Y)         _FP_DIV(E,2,R,X,Y)
386
#define FP_SQRT_E(R,X)          _FP_SQRT(E,2,R,X)
387
 
388
/*
389
 * Square root algorithms:
390
 * We have just one right now, maybe Newton approximation
391
 * should be added for those machines where division is fast.
392
 * We optimize it by doing most of the calculations
393
 * in one UWtype registers instead of two, although we don't
394
 * have to.
395
 */
396
#define _FP_SQRT_MEAT_E(R, S, T, X, q)                  \
397
  do {                                                  \
398
    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
399
    _FP_FRAC_SRL_2(X, (_FP_WORKBITS));                  \
400
    while (q)                                           \
401
      {                                                 \
402
        T##_f0 = S##_f0 + q;                            \
403
        if (T##_f0 <= X##_f0)                           \
404
          {                                             \
405
            S##_f0 = T##_f0 + q;                        \
406
            X##_f0 -= T##_f0;                           \
407
            R##_f0 += q;                                \
408
          }                                             \
409
        _FP_FRAC_SLL_1(X, 1);                           \
410
        q >>= 1;                                        \
411
      }                                                 \
412
    _FP_FRAC_SLL_2(R, (_FP_WORKBITS));                  \
413
    if (X##_f0)                                         \
414
      {                                                 \
415
        if (S##_f0 < X##_f0)                            \
416
          R##_f0 |= _FP_WORK_ROUND;                     \
417
        R##_f0 |= _FP_WORK_STICKY;                      \
418
      }                                                 \
419
  } while (0)
420
 
421
#define FP_CMP_E(r,X,Y,un)      _FP_CMP(E,2,r,X,Y,un)
422
#define FP_CMP_EQ_E(r,X,Y)      _FP_CMP_EQ(E,2,r,X,Y)
423
#define FP_CMP_UNORD_E(r,X,Y)   _FP_CMP_UNORD(E,2,r,X,Y)
424
 
425
#define FP_TO_INT_E(r,X,rsz,rsg)        _FP_TO_INT(E,2,r,X,rsz,rsg)
426
#define FP_FROM_INT_E(X,r,rs,rt)        _FP_FROM_INT(E,2,X,r,rs,rt)
427
 
428
#define _FP_FRAC_HIGH_E(X)      (X##_f1)
429
#define _FP_FRAC_HIGH_RAW_E(X)  (X##_f0)
430
 
431
#endif /* not _FP_W_TYPE_SIZE < 64 */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.