1 |
282 |
jeremybenn |
/* Definitions of target machine for GNU compiler, for Sun SPARC.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
|
3 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com).
|
6 |
|
|
64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
|
7 |
|
|
at Cygnus Support.
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify
|
12 |
|
|
it under the terms of the GNU General Public License as published by
|
13 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
14 |
|
|
any later version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful,
|
17 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "config/vxworks-dummy.h"
|
26 |
|
|
|
27 |
|
|
/* Note that some other tm.h files include this one and then override
|
28 |
|
|
whatever definitions are necessary. */
|
29 |
|
|
|
30 |
|
|
/* Define the specific costs for a given cpu */
|
31 |
|
|
|
32 |
|
|
struct processor_costs {
|
33 |
|
|
/* Integer load */
|
34 |
|
|
const int int_load;
|
35 |
|
|
|
36 |
|
|
/* Integer signed load */
|
37 |
|
|
const int int_sload;
|
38 |
|
|
|
39 |
|
|
/* Integer zeroed load */
|
40 |
|
|
const int int_zload;
|
41 |
|
|
|
42 |
|
|
/* Float load */
|
43 |
|
|
const int float_load;
|
44 |
|
|
|
45 |
|
|
/* fmov, fneg, fabs */
|
46 |
|
|
const int float_move;
|
47 |
|
|
|
48 |
|
|
/* fadd, fsub */
|
49 |
|
|
const int float_plusminus;
|
50 |
|
|
|
51 |
|
|
/* fcmp */
|
52 |
|
|
const int float_cmp;
|
53 |
|
|
|
54 |
|
|
/* fmov, fmovr */
|
55 |
|
|
const int float_cmove;
|
56 |
|
|
|
57 |
|
|
/* fmul */
|
58 |
|
|
const int float_mul;
|
59 |
|
|
|
60 |
|
|
/* fdivs */
|
61 |
|
|
const int float_div_sf;
|
62 |
|
|
|
63 |
|
|
/* fdivd */
|
64 |
|
|
const int float_div_df;
|
65 |
|
|
|
66 |
|
|
/* fsqrts */
|
67 |
|
|
const int float_sqrt_sf;
|
68 |
|
|
|
69 |
|
|
/* fsqrtd */
|
70 |
|
|
const int float_sqrt_df;
|
71 |
|
|
|
72 |
|
|
/* umul/smul */
|
73 |
|
|
const int int_mul;
|
74 |
|
|
|
75 |
|
|
/* mulX */
|
76 |
|
|
const int int_mulX;
|
77 |
|
|
|
78 |
|
|
/* integer multiply cost for each bit set past the most
|
79 |
|
|
significant 3, so the formula for multiply cost becomes:
|
80 |
|
|
|
81 |
|
|
if (rs1 < 0)
|
82 |
|
|
highest_bit = highest_clear_bit(rs1);
|
83 |
|
|
else
|
84 |
|
|
highest_bit = highest_set_bit(rs1);
|
85 |
|
|
if (highest_bit < 3)
|
86 |
|
|
highest_bit = 3;
|
87 |
|
|
cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
|
88 |
|
|
|
89 |
|
|
A value of zero indicates that the multiply costs is fixed,
|
90 |
|
|
and not variable. */
|
91 |
|
|
const int int_mul_bit_factor;
|
92 |
|
|
|
93 |
|
|
/* udiv/sdiv */
|
94 |
|
|
const int int_div;
|
95 |
|
|
|
96 |
|
|
/* divX */
|
97 |
|
|
const int int_divX;
|
98 |
|
|
|
99 |
|
|
/* movcc, movr */
|
100 |
|
|
const int int_cmove;
|
101 |
|
|
|
102 |
|
|
/* penalty for shifts, due to scheduling rules etc. */
|
103 |
|
|
const int shift_penalty;
|
104 |
|
|
};
|
105 |
|
|
|
106 |
|
|
extern const struct processor_costs *sparc_costs;
|
107 |
|
|
|
108 |
|
|
/* Target CPU builtins. FIXME: Defining sparc is for the benefit of
|
109 |
|
|
Solaris only; otherwise just define __sparc__. Sadly the headers
|
110 |
|
|
are such a mess there is no Solaris-specific header. */
|
111 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
112 |
|
|
do \
|
113 |
|
|
{ \
|
114 |
|
|
builtin_define_std ("sparc"); \
|
115 |
|
|
if (TARGET_64BIT) \
|
116 |
|
|
{ \
|
117 |
|
|
builtin_assert ("cpu=sparc64"); \
|
118 |
|
|
builtin_assert ("machine=sparc64"); \
|
119 |
|
|
} \
|
120 |
|
|
else \
|
121 |
|
|
{ \
|
122 |
|
|
builtin_assert ("cpu=sparc"); \
|
123 |
|
|
builtin_assert ("machine=sparc"); \
|
124 |
|
|
} \
|
125 |
|
|
} \
|
126 |
|
|
while (0)
|
127 |
|
|
|
128 |
|
|
/* Specify this in a cover file to provide bi-architecture (32/64) support. */
|
129 |
|
|
/* #define SPARC_BI_ARCH */
|
130 |
|
|
|
131 |
|
|
/* Macro used later in this file to determine default architecture. */
|
132 |
|
|
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
|
133 |
|
|
|
134 |
|
|
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
|
135 |
|
|
architectures to compile for. We allow targets to choose compile time or
|
136 |
|
|
runtime selection. */
|
137 |
|
|
#ifdef IN_LIBGCC2
|
138 |
|
|
#if defined(__sparcv9) || defined(__arch64__)
|
139 |
|
|
#define TARGET_ARCH32 0
|
140 |
|
|
#else
|
141 |
|
|
#define TARGET_ARCH32 1
|
142 |
|
|
#endif /* sparc64 */
|
143 |
|
|
#else
|
144 |
|
|
#ifdef SPARC_BI_ARCH
|
145 |
|
|
#define TARGET_ARCH32 (! TARGET_64BIT)
|
146 |
|
|
#else
|
147 |
|
|
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
|
148 |
|
|
#endif /* SPARC_BI_ARCH */
|
149 |
|
|
#endif /* IN_LIBGCC2 */
|
150 |
|
|
#define TARGET_ARCH64 (! TARGET_ARCH32)
|
151 |
|
|
|
152 |
|
|
/* Code model selection in 64-bit environment.
|
153 |
|
|
|
154 |
|
|
The machine mode used for addresses is 32-bit wide:
|
155 |
|
|
|
156 |
|
|
TARGET_CM_32: 32-bit address space.
|
157 |
|
|
It is the code model used when generating 32-bit code.
|
158 |
|
|
|
159 |
|
|
The machine mode used for addresses is 64-bit wide:
|
160 |
|
|
|
161 |
|
|
TARGET_CM_MEDLOW: 32-bit address space.
|
162 |
|
|
The executable must be in the low 32 bits of memory.
|
163 |
|
|
This avoids generating %uhi and %ulo terms. Programs
|
164 |
|
|
can be statically or dynamically linked.
|
165 |
|
|
|
166 |
|
|
TARGET_CM_MEDMID: 44-bit address space.
|
167 |
|
|
The executable must be in the low 44 bits of memory,
|
168 |
|
|
and the %[hml]44 terms are used. The text and data
|
169 |
|
|
segments have a maximum size of 2GB (31-bit span).
|
170 |
|
|
The maximum offset from any instruction to the label
|
171 |
|
|
_GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
|
172 |
|
|
|
173 |
|
|
TARGET_CM_MEDANY: 64-bit address space.
|
174 |
|
|
The text and data segments have a maximum size of 2GB
|
175 |
|
|
(31-bit span) and may be located anywhere in memory.
|
176 |
|
|
The maximum offset from any instruction to the label
|
177 |
|
|
_GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
|
178 |
|
|
|
179 |
|
|
TARGET_CM_EMBMEDANY: 64-bit address space.
|
180 |
|
|
The text and data segments have a maximum size of 2GB
|
181 |
|
|
(31-bit span) and may be located anywhere in memory.
|
182 |
|
|
The global register %g4 contains the start address of
|
183 |
|
|
the data segment. Programs are statically linked and
|
184 |
|
|
PIC is not supported.
|
185 |
|
|
|
186 |
|
|
Different code models are not supported in 32-bit environment. */
|
187 |
|
|
|
188 |
|
|
enum cmodel {
|
189 |
|
|
CM_32,
|
190 |
|
|
CM_MEDLOW,
|
191 |
|
|
CM_MEDMID,
|
192 |
|
|
CM_MEDANY,
|
193 |
|
|
CM_EMBMEDANY
|
194 |
|
|
};
|
195 |
|
|
|
196 |
|
|
/* One of CM_FOO. */
|
197 |
|
|
extern enum cmodel sparc_cmodel;
|
198 |
|
|
|
199 |
|
|
/* V9 code model selection. */
|
200 |
|
|
#define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
|
201 |
|
|
#define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
|
202 |
|
|
#define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
|
203 |
|
|
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
|
204 |
|
|
|
205 |
|
|
#define SPARC_DEFAULT_CMODEL CM_32
|
206 |
|
|
|
207 |
|
|
/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
|
208 |
|
|
which requires the following macro to be true if enabled. Prior to V9,
|
209 |
|
|
there are no instructions to even talk about memory synchronization.
|
210 |
|
|
Note that the UltraSPARC III processors don't implement RMO, unlike the
|
211 |
|
|
UltraSPARC II processors. Niagara and Niagara-2 do not implement RMO
|
212 |
|
|
either.
|
213 |
|
|
|
214 |
|
|
Default to false; for example, Solaris never enables RMO, only ever uses
|
215 |
|
|
total memory ordering (TMO). */
|
216 |
|
|
#define SPARC_RELAXED_ORDERING false
|
217 |
|
|
|
218 |
|
|
/* Do not use the .note.GNU-stack convention by default. */
|
219 |
|
|
#define NEED_INDICATE_EXEC_STACK 0
|
220 |
|
|
|
221 |
|
|
/* This is call-clobbered in the normal ABI, but is reserved in the
|
222 |
|
|
home grown (aka upward compatible) embedded ABI. */
|
223 |
|
|
#define EMBMEDANY_BASE_REG "%g4"
|
224 |
|
|
|
225 |
|
|
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
|
226 |
|
|
and specified by the user via --with-cpu=foo.
|
227 |
|
|
This specifies the cpu implementation, not the architecture size. */
|
228 |
|
|
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
|
229 |
|
|
capable cpu's. */
|
230 |
|
|
#define TARGET_CPU_sparc 0
|
231 |
|
|
#define TARGET_CPU_v7 0 /* alias for previous */
|
232 |
|
|
#define TARGET_CPU_sparclet 1
|
233 |
|
|
#define TARGET_CPU_sparclite 2
|
234 |
|
|
#define TARGET_CPU_v8 3 /* generic v8 implementation */
|
235 |
|
|
#define TARGET_CPU_supersparc 4
|
236 |
|
|
#define TARGET_CPU_hypersparc 5
|
237 |
|
|
#define TARGET_CPU_sparc86x 6
|
238 |
|
|
#define TARGET_CPU_sparclite86x 6
|
239 |
|
|
#define TARGET_CPU_v9 7 /* generic v9 implementation */
|
240 |
|
|
#define TARGET_CPU_sparcv9 7 /* alias */
|
241 |
|
|
#define TARGET_CPU_sparc64 7 /* alias */
|
242 |
|
|
#define TARGET_CPU_ultrasparc 8
|
243 |
|
|
#define TARGET_CPU_ultrasparc3 9
|
244 |
|
|
#define TARGET_CPU_niagara 10
|
245 |
|
|
#define TARGET_CPU_niagara2 11
|
246 |
|
|
|
247 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
|
248 |
|
|
|| TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
|
249 |
|
|
|| TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
|
250 |
|
|
|| TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
|
251 |
|
|
|| TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
|
252 |
|
|
|
253 |
|
|
#define CPP_CPU32_DEFAULT_SPEC ""
|
254 |
|
|
#define ASM_CPU32_DEFAULT_SPEC ""
|
255 |
|
|
|
256 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
|
257 |
|
|
/* ??? What does Sun's CC pass? */
|
258 |
|
|
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
259 |
|
|
/* ??? It's not clear how other assemblers will handle this, so by default
|
260 |
|
|
use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
|
261 |
|
|
is handled in sol2.h. */
|
262 |
|
|
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
|
263 |
|
|
#endif
|
264 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
|
265 |
|
|
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
266 |
|
|
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
|
267 |
|
|
#endif
|
268 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
|
269 |
|
|
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
270 |
|
|
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
|
271 |
|
|
#endif
|
272 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
|
273 |
|
|
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
274 |
|
|
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
|
275 |
|
|
#endif
|
276 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
|
277 |
|
|
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
278 |
|
|
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
|
279 |
|
|
#endif
|
280 |
|
|
|
281 |
|
|
#else
|
282 |
|
|
|
283 |
|
|
#define CPP_CPU64_DEFAULT_SPEC ""
|
284 |
|
|
#define ASM_CPU64_DEFAULT_SPEC ""
|
285 |
|
|
|
286 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
|
287 |
|
|
|| TARGET_CPU_DEFAULT == TARGET_CPU_v8
|
288 |
|
|
#define CPP_CPU32_DEFAULT_SPEC ""
|
289 |
|
|
#define ASM_CPU32_DEFAULT_SPEC ""
|
290 |
|
|
#endif
|
291 |
|
|
|
292 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
|
293 |
|
|
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
|
294 |
|
|
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
|
295 |
|
|
#endif
|
296 |
|
|
|
297 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
|
298 |
|
|
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
|
299 |
|
|
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
|
300 |
|
|
#endif
|
301 |
|
|
|
302 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
|
303 |
|
|
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
|
304 |
|
|
#define ASM_CPU32_DEFAULT_SPEC ""
|
305 |
|
|
#endif
|
306 |
|
|
|
307 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
|
308 |
|
|
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
|
309 |
|
|
#define ASM_CPU32_DEFAULT_SPEC ""
|
310 |
|
|
#endif
|
311 |
|
|
|
312 |
|
|
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
|
313 |
|
|
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
|
314 |
|
|
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
|
315 |
|
|
#endif
|
316 |
|
|
|
317 |
|
|
#endif
|
318 |
|
|
|
319 |
|
|
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
|
320 |
|
|
#error Unrecognized value in TARGET_CPU_DEFAULT.
|
321 |
|
|
#endif
|
322 |
|
|
|
323 |
|
|
#ifdef SPARC_BI_ARCH
|
324 |
|
|
|
325 |
|
|
#define CPP_CPU_DEFAULT_SPEC \
|
326 |
|
|
(DEFAULT_ARCH32_P ? "\
|
327 |
|
|
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
|
328 |
|
|
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
|
329 |
|
|
" : "\
|
330 |
|
|
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
|
331 |
|
|
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
|
332 |
|
|
")
|
333 |
|
|
#define ASM_CPU_DEFAULT_SPEC \
|
334 |
|
|
(DEFAULT_ARCH32_P ? "\
|
335 |
|
|
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
|
336 |
|
|
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
|
337 |
|
|
" : "\
|
338 |
|
|
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
|
339 |
|
|
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
|
340 |
|
|
")
|
341 |
|
|
|
342 |
|
|
#else /* !SPARC_BI_ARCH */
|
343 |
|
|
|
344 |
|
|
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
|
345 |
|
|
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
|
346 |
|
|
|
347 |
|
|
#endif /* !SPARC_BI_ARCH */
|
348 |
|
|
|
349 |
|
|
/* Define macros to distinguish architectures. */
|
350 |
|
|
|
351 |
|
|
/* Common CPP definitions used by CPP_SPEC amongst the various targets
|
352 |
|
|
for handling -mcpu=xxx switches. */
|
353 |
|
|
#define CPP_CPU_SPEC "\
|
354 |
|
|
%{msoft-float:-D_SOFT_FLOAT} \
|
355 |
|
|
%{mcypress:} \
|
356 |
|
|
%{msparclite:-D__sparclite__} \
|
357 |
|
|
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
|
358 |
|
|
%{mv8:-D__sparc_v8__} \
|
359 |
|
|
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
|
360 |
|
|
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
|
361 |
|
|
%{mcpu=sparclite:-D__sparclite__} \
|
362 |
|
|
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
|
363 |
|
|
%{mcpu=v8:-D__sparc_v8__} \
|
364 |
|
|
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
|
365 |
|
|
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
|
366 |
|
|
%{mcpu=sparclite86x:-D__sparclite86x__} \
|
367 |
|
|
%{mcpu=v9:-D__sparc_v9__} \
|
368 |
|
|
%{mcpu=ultrasparc:-D__sparc_v9__} \
|
369 |
|
|
%{mcpu=ultrasparc3:-D__sparc_v9__} \
|
370 |
|
|
%{mcpu=niagara:-D__sparc_v9__} \
|
371 |
|
|
%{mcpu=niagara2:-D__sparc_v9__} \
|
372 |
|
|
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
|
373 |
|
|
"
|
374 |
|
|
#define CPP_ARCH32_SPEC ""
|
375 |
|
|
#define CPP_ARCH64_SPEC "-D__arch64__"
|
376 |
|
|
|
377 |
|
|
#define CPP_ARCH_DEFAULT_SPEC \
|
378 |
|
|
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
|
379 |
|
|
|
380 |
|
|
#define CPP_ARCH_SPEC "\
|
381 |
|
|
%{m32:%(cpp_arch32)} \
|
382 |
|
|
%{m64:%(cpp_arch64)} \
|
383 |
|
|
%{!m32:%{!m64:%(cpp_arch_default)}} \
|
384 |
|
|
"
|
385 |
|
|
|
386 |
|
|
/* Macros to distinguish endianness. */
|
387 |
|
|
#define CPP_ENDIAN_SPEC "\
|
388 |
|
|
%{mlittle-endian:-D__LITTLE_ENDIAN__} \
|
389 |
|
|
%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
|
390 |
|
|
|
391 |
|
|
/* Macros to distinguish the particular subtarget. */
|
392 |
|
|
#define CPP_SUBTARGET_SPEC ""
|
393 |
|
|
|
394 |
|
|
#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
|
395 |
|
|
|
396 |
|
|
/* Prevent error on `-sun4' and `-target sun4' options. */
|
397 |
|
|
/* This used to translate -dalign to -malign, but that is no good
|
398 |
|
|
because it can't turn off the usual meaning of making debugging dumps. */
|
399 |
|
|
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
|
400 |
|
|
??? Delete support for -m<cpu> for 2.9. */
|
401 |
|
|
|
402 |
|
|
#define CC1_SPEC "\
|
403 |
|
|
%{sun4:} %{target:} \
|
404 |
|
|
%{mcypress:-mcpu=cypress} \
|
405 |
|
|
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
|
406 |
|
|
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
|
407 |
|
|
"
|
408 |
|
|
|
409 |
|
|
/* Override in target specific files. */
|
410 |
|
|
#define ASM_CPU_SPEC "\
|
411 |
|
|
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
|
412 |
|
|
%{msparclite:-Asparclite} \
|
413 |
|
|
%{mf930:-Asparclite} %{mf934:-Asparclite} \
|
414 |
|
|
%{mcpu=sparclite:-Asparclite} \
|
415 |
|
|
%{mcpu=sparclite86x:-Asparclite} \
|
416 |
|
|
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
|
417 |
|
|
%{mv8plus:-Av8plus} \
|
418 |
|
|
%{mcpu=v9:-Av9} \
|
419 |
|
|
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
|
420 |
|
|
%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
|
421 |
|
|
%{mcpu=niagara:%{!mv8plus:-Av9b}} \
|
422 |
|
|
%{mcpu=niagara2:%{!mv8plus:-Av9b}} \
|
423 |
|
|
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
|
424 |
|
|
"
|
425 |
|
|
|
426 |
|
|
/* Word size selection, among other things.
|
427 |
|
|
This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
|
428 |
|
|
|
429 |
|
|
#define ASM_ARCH32_SPEC "-32"
|
430 |
|
|
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
|
431 |
|
|
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
|
432 |
|
|
#else
|
433 |
|
|
#define ASM_ARCH64_SPEC "-64"
|
434 |
|
|
#endif
|
435 |
|
|
#define ASM_ARCH_DEFAULT_SPEC \
|
436 |
|
|
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
|
437 |
|
|
|
438 |
|
|
#define ASM_ARCH_SPEC "\
|
439 |
|
|
%{m32:%(asm_arch32)} \
|
440 |
|
|
%{m64:%(asm_arch64)} \
|
441 |
|
|
%{!m32:%{!m64:%(asm_arch_default)}} \
|
442 |
|
|
"
|
443 |
|
|
|
444 |
|
|
#ifdef HAVE_AS_RELAX_OPTION
|
445 |
|
|
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
|
446 |
|
|
#else
|
447 |
|
|
#define ASM_RELAX_SPEC ""
|
448 |
|
|
#endif
|
449 |
|
|
|
450 |
|
|
/* Special flags to the Sun-4 assembler when using pipe for input. */
|
451 |
|
|
|
452 |
|
|
#define ASM_SPEC "\
|
453 |
|
|
%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
|
454 |
|
|
%(asm_cpu) %(asm_relax)"
|
455 |
|
|
|
456 |
|
|
#define AS_NEEDS_DASH_FOR_PIPED_INPUT
|
457 |
|
|
|
458 |
|
|
/* This macro defines names of additional specifications to put in the specs
|
459 |
|
|
that can be used in various specifications like CC1_SPEC. Its definition
|
460 |
|
|
is an initializer with a subgrouping for each command option.
|
461 |
|
|
|
462 |
|
|
Each subgrouping contains a string constant, that defines the
|
463 |
|
|
specification name, and a string constant that used by the GCC driver
|
464 |
|
|
program.
|
465 |
|
|
|
466 |
|
|
Do not define this macro if it does not need to do anything. */
|
467 |
|
|
|
468 |
|
|
#define EXTRA_SPECS \
|
469 |
|
|
{ "cpp_cpu", CPP_CPU_SPEC }, \
|
470 |
|
|
{ "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
|
471 |
|
|
{ "cpp_arch32", CPP_ARCH32_SPEC }, \
|
472 |
|
|
{ "cpp_arch64", CPP_ARCH64_SPEC }, \
|
473 |
|
|
{ "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
|
474 |
|
|
{ "cpp_arch", CPP_ARCH_SPEC }, \
|
475 |
|
|
{ "cpp_endian", CPP_ENDIAN_SPEC }, \
|
476 |
|
|
{ "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
|
477 |
|
|
{ "asm_cpu", ASM_CPU_SPEC }, \
|
478 |
|
|
{ "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
|
479 |
|
|
{ "asm_arch32", ASM_ARCH32_SPEC }, \
|
480 |
|
|
{ "asm_arch64", ASM_ARCH64_SPEC }, \
|
481 |
|
|
{ "asm_relax", ASM_RELAX_SPEC }, \
|
482 |
|
|
{ "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
|
483 |
|
|
{ "asm_arch", ASM_ARCH_SPEC }, \
|
484 |
|
|
SUBTARGET_EXTRA_SPECS
|
485 |
|
|
|
486 |
|
|
#define SUBTARGET_EXTRA_SPECS
|
487 |
|
|
|
488 |
|
|
/* Because libgcc can generate references back to libc (via .umul etc.) we have
|
489 |
|
|
to list libc again after the second libgcc. */
|
490 |
|
|
#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
|
494 |
|
|
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
|
495 |
|
|
|
496 |
|
|
/* ??? This should be 32 bits for v9 but what can we do? */
|
497 |
|
|
#define WCHAR_TYPE "short unsigned int"
|
498 |
|
|
#define WCHAR_TYPE_SIZE 16
|
499 |
|
|
|
500 |
|
|
/* Show we can debug even without a frame pointer. */
|
501 |
|
|
#define CAN_DEBUG_WITHOUT_FP
|
502 |
|
|
|
503 |
|
|
/* Option handling. */
|
504 |
|
|
|
505 |
|
|
#define OVERRIDE_OPTIONS sparc_override_options ()
|
506 |
|
|
|
507 |
|
|
/* Mask of all CPU selection flags. */
|
508 |
|
|
#define MASK_ISA \
|
509 |
|
|
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
|
510 |
|
|
|
511 |
|
|
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
|
512 |
|
|
TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
|
513 |
|
|
to get high 32 bits. False in V8+ or V9 because multiply stores
|
514 |
|
|
a 64-bit result in a register. */
|
515 |
|
|
|
516 |
|
|
#define TARGET_HARD_MUL32 \
|
517 |
|
|
((TARGET_V8 || TARGET_SPARCLITE \
|
518 |
|
|
|| TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
|
519 |
|
|
&& ! TARGET_V8PLUS && TARGET_ARCH32)
|
520 |
|
|
|
521 |
|
|
#define TARGET_HARD_MUL \
|
522 |
|
|
(TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
|
523 |
|
|
|| TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
|
524 |
|
|
|
525 |
|
|
/* MASK_APP_REGS must always be the default because that's what
|
526 |
|
|
FIXED_REGISTERS is set to and -ffixed- is processed before
|
527 |
|
|
CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
|
528 |
|
|
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
|
529 |
|
|
|
530 |
|
|
/* Processor type.
|
531 |
|
|
These must match the values for the cpu attribute in sparc.md. */
|
532 |
|
|
enum processor_type {
|
533 |
|
|
PROCESSOR_V7,
|
534 |
|
|
PROCESSOR_CYPRESS,
|
535 |
|
|
PROCESSOR_V8,
|
536 |
|
|
PROCESSOR_SUPERSPARC,
|
537 |
|
|
PROCESSOR_SPARCLITE,
|
538 |
|
|
PROCESSOR_F930,
|
539 |
|
|
PROCESSOR_F934,
|
540 |
|
|
PROCESSOR_HYPERSPARC,
|
541 |
|
|
PROCESSOR_SPARCLITE86X,
|
542 |
|
|
PROCESSOR_SPARCLET,
|
543 |
|
|
PROCESSOR_TSC701,
|
544 |
|
|
PROCESSOR_V9,
|
545 |
|
|
PROCESSOR_ULTRASPARC,
|
546 |
|
|
PROCESSOR_ULTRASPARC3,
|
547 |
|
|
PROCESSOR_NIAGARA,
|
548 |
|
|
PROCESSOR_NIAGARA2
|
549 |
|
|
};
|
550 |
|
|
|
551 |
|
|
/* This is set from -m{cpu,tune}=xxx. */
|
552 |
|
|
extern enum processor_type sparc_cpu;
|
553 |
|
|
|
554 |
|
|
/* Recast the cpu class to be the cpu attribute.
|
555 |
|
|
Every file includes us, but not every file includes insn-attr.h. */
|
556 |
|
|
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
|
557 |
|
|
|
558 |
|
|
/* Support for a compile-time default CPU, et cetera. The rules are:
|
559 |
|
|
--with-cpu is ignored if -mcpu is specified.
|
560 |
|
|
--with-tune is ignored if -mtune is specified.
|
561 |
|
|
--with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
|
562 |
|
|
are specified. */
|
563 |
|
|
#define OPTION_DEFAULT_SPECS \
|
564 |
|
|
{"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
|
565 |
|
|
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
|
566 |
|
|
{"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
|
567 |
|
|
|
568 |
|
|
/* sparc_select[0] is reserved for the default cpu. */
|
569 |
|
|
struct sparc_cpu_select
|
570 |
|
|
{
|
571 |
|
|
const char *string;
|
572 |
|
|
const char *const name;
|
573 |
|
|
const int set_tune_p;
|
574 |
|
|
const int set_arch_p;
|
575 |
|
|
};
|
576 |
|
|
|
577 |
|
|
extern struct sparc_cpu_select sparc_select[];
|
578 |
|
|
|
579 |
|
|
/* target machine storage layout */
|
580 |
|
|
|
581 |
|
|
/* Define this if most significant bit is lowest numbered
|
582 |
|
|
in instructions that operate on numbered bit-fields. */
|
583 |
|
|
#define BITS_BIG_ENDIAN 1
|
584 |
|
|
|
585 |
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
586 |
|
|
#define BYTES_BIG_ENDIAN 1
|
587 |
|
|
|
588 |
|
|
/* Define this if most significant word of a multiword number is the lowest
|
589 |
|
|
numbered. */
|
590 |
|
|
#define WORDS_BIG_ENDIAN 1
|
591 |
|
|
|
592 |
|
|
/* Define this to set the endianness to use in libgcc2.c, which can
|
593 |
|
|
not depend on target_flags. */
|
594 |
|
|
#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
|
595 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
596 |
|
|
#else
|
597 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
598 |
|
|
#endif
|
599 |
|
|
|
600 |
|
|
#define MAX_BITS_PER_WORD 64
|
601 |
|
|
|
602 |
|
|
/* Width of a word, in units (bytes). */
|
603 |
|
|
#define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
|
604 |
|
|
#ifdef IN_LIBGCC2
|
605 |
|
|
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
|
606 |
|
|
#else
|
607 |
|
|
#define MIN_UNITS_PER_WORD 4
|
608 |
|
|
#endif
|
609 |
|
|
|
610 |
|
|
#define UNITS_PER_SIMD_WORD(MODE) (TARGET_VIS ? 8 : UNITS_PER_WORD)
|
611 |
|
|
|
612 |
|
|
/* Now define the sizes of the C data types. */
|
613 |
|
|
|
614 |
|
|
#define SHORT_TYPE_SIZE 16
|
615 |
|
|
#define INT_TYPE_SIZE 32
|
616 |
|
|
#define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
|
617 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
618 |
|
|
#define FLOAT_TYPE_SIZE 32
|
619 |
|
|
#define DOUBLE_TYPE_SIZE 64
|
620 |
|
|
|
621 |
|
|
/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
|
622 |
|
|
SPARC ABI says that it is 128-bit wide. */
|
623 |
|
|
/* #define LONG_DOUBLE_TYPE_SIZE 128 */
|
624 |
|
|
|
625 |
|
|
/* The widest floating-point format really supported by the hardware. */
|
626 |
|
|
#define WIDEST_HARDWARE_FP_SIZE 64
|
627 |
|
|
|
628 |
|
|
/* Width in bits of a pointer. This is the size of ptr_mode. */
|
629 |
|
|
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
|
630 |
|
|
|
631 |
|
|
/* This is the machine mode used for addresses. */
|
632 |
|
|
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
|
633 |
|
|
|
634 |
|
|
/* If we have to extend pointers (only when TARGET_ARCH64 and not
|
635 |
|
|
TARGET_PTR64), we want to do it unsigned. This macro does nothing
|
636 |
|
|
if ptr_mode and Pmode are the same. */
|
637 |
|
|
#define POINTERS_EXTEND_UNSIGNED 1
|
638 |
|
|
|
639 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
640 |
|
|
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
|
641 |
|
|
|
642 |
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
643 |
|
|
/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
|
644 |
|
|
then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
|
645 |
|
|
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
|
646 |
|
|
/* Temporary hack until the FIXME above is fixed. */
|
647 |
|
|
#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
|
648 |
|
|
|
649 |
|
|
/* ALIGN FRAMES on double word boundaries */
|
650 |
|
|
|
651 |
|
|
#define SPARC_STACK_ALIGN(LOC) \
|
652 |
|
|
(TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
|
653 |
|
|
|
654 |
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
655 |
|
|
#define FUNCTION_BOUNDARY 32
|
656 |
|
|
|
657 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
658 |
|
|
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
|
659 |
|
|
|
660 |
|
|
/* Every structure's size must be a multiple of this. */
|
661 |
|
|
#define STRUCTURE_SIZE_BOUNDARY 8
|
662 |
|
|
|
663 |
|
|
/* A bit-field declared as `int' forces `int' alignment for the struct. */
|
664 |
|
|
#define PCC_BITFIELD_TYPE_MATTERS 1
|
665 |
|
|
|
666 |
|
|
/* No data type wants to be aligned rounder than this. */
|
667 |
|
|
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
|
668 |
|
|
|
669 |
|
|
/* The best alignment to use in cases where we have a choice. */
|
670 |
|
|
#define FASTEST_ALIGNMENT 64
|
671 |
|
|
|
672 |
|
|
/* Define this macro as an expression for the alignment of a structure
|
673 |
|
|
(given by STRUCT as a tree node) if the alignment computed in the
|
674 |
|
|
usual way is COMPUTED and the alignment explicitly specified was
|
675 |
|
|
SPECIFIED.
|
676 |
|
|
|
677 |
|
|
The default is to use SPECIFIED if it is larger; otherwise, use
|
678 |
|
|
the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
|
679 |
|
|
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
|
680 |
|
|
(TARGET_FASTER_STRUCTS ? \
|
681 |
|
|
((TREE_CODE (STRUCT) == RECORD_TYPE \
|
682 |
|
|
|| TREE_CODE (STRUCT) == UNION_TYPE \
|
683 |
|
|
|| TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
|
684 |
|
|
&& TYPE_FIELDS (STRUCT) != 0 \
|
685 |
|
|
? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
|
686 |
|
|
: MAX ((COMPUTED), (SPECIFIED))) \
|
687 |
|
|
: MAX ((COMPUTED), (SPECIFIED)))
|
688 |
|
|
|
689 |
|
|
/* Make strings word-aligned so strcpy from constants will be faster. */
|
690 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
691 |
|
|
((TREE_CODE (EXP) == STRING_CST \
|
692 |
|
|
&& (ALIGN) < FASTEST_ALIGNMENT) \
|
693 |
|
|
? FASTEST_ALIGNMENT : (ALIGN))
|
694 |
|
|
|
695 |
|
|
/* Make arrays of chars word-aligned for the same reasons. */
|
696 |
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
697 |
|
|
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
698 |
|
|
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
699 |
|
|
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
|
700 |
|
|
|
701 |
|
|
/* Make local arrays of chars word-aligned for the same reasons. */
|
702 |
|
|
#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
|
703 |
|
|
|
704 |
|
|
/* Set this nonzero if move instructions will actually fail to work
|
705 |
|
|
when given unaligned data. */
|
706 |
|
|
#define STRICT_ALIGNMENT 1
|
707 |
|
|
|
708 |
|
|
/* Things that must be doubleword aligned cannot go in the text section,
|
709 |
|
|
because the linker fails to align the text section enough!
|
710 |
|
|
Put them in the data section. This macro is only used in this file. */
|
711 |
|
|
#define MAX_TEXT_ALIGN 32
|
712 |
|
|
|
713 |
|
|
/* Standard register usage. */
|
714 |
|
|
|
715 |
|
|
/* Number of actual hardware registers.
|
716 |
|
|
The hardware registers are assigned numbers for the compiler
|
717 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
718 |
|
|
All registers that the compiler knows about must be given numbers,
|
719 |
|
|
even those that are not normally considered general registers.
|
720 |
|
|
|
721 |
|
|
SPARC has 32 integer registers and 32 floating point registers.
|
722 |
|
|
64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
|
723 |
|
|
accessible. We still account for them to simplify register computations
|
724 |
|
|
(e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
|
725 |
|
|
32+32+32+4 == 100.
|
726 |
|
|
Register 100 is used as the integer condition code register.
|
727 |
|
|
Register 101 is used as the soft frame pointer register. */
|
728 |
|
|
|
729 |
|
|
#define FIRST_PSEUDO_REGISTER 102
|
730 |
|
|
|
731 |
|
|
#define SPARC_FIRST_FP_REG 32
|
732 |
|
|
/* Additional V9 fp regs. */
|
733 |
|
|
#define SPARC_FIRST_V9_FP_REG 64
|
734 |
|
|
#define SPARC_LAST_V9_FP_REG 95
|
735 |
|
|
/* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
|
736 |
|
|
#define SPARC_FIRST_V9_FCC_REG 96
|
737 |
|
|
#define SPARC_LAST_V9_FCC_REG 99
|
738 |
|
|
/* V8 fcc reg. */
|
739 |
|
|
#define SPARC_FCC_REG 96
|
740 |
|
|
/* Integer CC reg. We don't distinguish %icc from %xcc. */
|
741 |
|
|
#define SPARC_ICC_REG 100
|
742 |
|
|
|
743 |
|
|
/* Nonzero if REGNO is an fp reg. */
|
744 |
|
|
#define SPARC_FP_REG_P(REGNO) \
|
745 |
|
|
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
|
746 |
|
|
|
747 |
|
|
/* Argument passing regs. */
|
748 |
|
|
#define SPARC_OUTGOING_INT_ARG_FIRST 8
|
749 |
|
|
#define SPARC_INCOMING_INT_ARG_FIRST 24
|
750 |
|
|
#define SPARC_FP_ARG_FIRST 32
|
751 |
|
|
|
752 |
|
|
/* 1 for registers that have pervasive standard uses
|
753 |
|
|
and are not available for the register allocator.
|
754 |
|
|
|
755 |
|
|
On non-v9 systems:
|
756 |
|
|
g1 is free to use as temporary.
|
757 |
|
|
g2-g4 are reserved for applications. Gcc normally uses them as
|
758 |
|
|
temporaries, but this can be disabled via the -mno-app-regs option.
|
759 |
|
|
g5 through g7 are reserved for the operating system.
|
760 |
|
|
|
761 |
|
|
On v9 systems:
|
762 |
|
|
g1,g5 are free to use as temporaries, and are free to use between calls
|
763 |
|
|
if the call is to an external function via the PLT.
|
764 |
|
|
g4 is free to use as a temporary in the non-embedded case.
|
765 |
|
|
g4 is reserved in the embedded case.
|
766 |
|
|
g2-g3 are reserved for applications. Gcc normally uses them as
|
767 |
|
|
temporaries, but this can be disabled via the -mno-app-regs option.
|
768 |
|
|
g6-g7 are reserved for the operating system (or application in
|
769 |
|
|
embedded case).
|
770 |
|
|
??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
|
771 |
|
|
currently be a fixed register until this pattern is rewritten.
|
772 |
|
|
Register 1 is also used when restoring call-preserved registers in large
|
773 |
|
|
stack frames.
|
774 |
|
|
|
775 |
|
|
Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
|
776 |
|
|
CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
|
777 |
|
|
*/
|
778 |
|
|
|
779 |
|
|
#define FIXED_REGISTERS \
|
780 |
|
|
{1, 0, 2, 2, 2, 2, 1, 1, \
|
781 |
|
|
0, 0, 0, 0, 0, 0, 1, 0, \
|
782 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
783 |
|
|
0, 0, 0, 0, 0, 0, 1, 1, \
|
784 |
|
|
\
|
785 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
786 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
787 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
788 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
789 |
|
|
\
|
790 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
791 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
792 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
793 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
794 |
|
|
\
|
795 |
|
|
0, 0, 0, 0, 0, 1}
|
796 |
|
|
|
797 |
|
|
/* 1 for registers not available across function calls.
|
798 |
|
|
These must include the FIXED_REGISTERS and also any
|
799 |
|
|
registers that can be used without being saved.
|
800 |
|
|
The latter must include the registers where values are returned
|
801 |
|
|
and the register where structure-value addresses are passed.
|
802 |
|
|
Aside from that, you can include as many other registers as you like. */
|
803 |
|
|
|
804 |
|
|
#define CALL_USED_REGISTERS \
|
805 |
|
|
{1, 1, 1, 1, 1, 1, 1, 1, \
|
806 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
807 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
808 |
|
|
0, 0, 0, 0, 0, 0, 1, 1, \
|
809 |
|
|
\
|
810 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
811 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
812 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
813 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
814 |
|
|
\
|
815 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
816 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
817 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
818 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
819 |
|
|
\
|
820 |
|
|
1, 1, 1, 1, 1, 1}
|
821 |
|
|
|
822 |
|
|
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
|
823 |
|
|
they won't be allocated. */
|
824 |
|
|
|
825 |
|
|
#define CONDITIONAL_REGISTER_USAGE \
|
826 |
|
|
do \
|
827 |
|
|
{ \
|
828 |
|
|
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
|
829 |
|
|
{ \
|
830 |
|
|
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
831 |
|
|
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
832 |
|
|
} \
|
833 |
|
|
/* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
|
834 |
|
|
/* then honor it. */ \
|
835 |
|
|
if (TARGET_ARCH32 && fixed_regs[5]) \
|
836 |
|
|
fixed_regs[5] = 1; \
|
837 |
|
|
else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
|
838 |
|
|
fixed_regs[5] = 0; \
|
839 |
|
|
if (! TARGET_V9) \
|
840 |
|
|
{ \
|
841 |
|
|
int regno; \
|
842 |
|
|
for (regno = SPARC_FIRST_V9_FP_REG; \
|
843 |
|
|
regno <= SPARC_LAST_V9_FP_REG; \
|
844 |
|
|
regno++) \
|
845 |
|
|
fixed_regs[regno] = 1; \
|
846 |
|
|
/* %fcc0 is used by v8 and v9. */ \
|
847 |
|
|
for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
|
848 |
|
|
regno <= SPARC_LAST_V9_FCC_REG; \
|
849 |
|
|
regno++) \
|
850 |
|
|
fixed_regs[regno] = 1; \
|
851 |
|
|
} \
|
852 |
|
|
if (! TARGET_FPU) \
|
853 |
|
|
{ \
|
854 |
|
|
int regno; \
|
855 |
|
|
for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
|
856 |
|
|
fixed_regs[regno] = 1; \
|
857 |
|
|
} \
|
858 |
|
|
/* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
|
859 |
|
|
/* then honor it. Likewise with g3 and g4. */ \
|
860 |
|
|
if (fixed_regs[2] == 2) \
|
861 |
|
|
fixed_regs[2] = ! TARGET_APP_REGS; \
|
862 |
|
|
if (fixed_regs[3] == 2) \
|
863 |
|
|
fixed_regs[3] = ! TARGET_APP_REGS; \
|
864 |
|
|
if (TARGET_ARCH32 && fixed_regs[4] == 2) \
|
865 |
|
|
fixed_regs[4] = ! TARGET_APP_REGS; \
|
866 |
|
|
else if (TARGET_CM_EMBMEDANY) \
|
867 |
|
|
fixed_regs[4] = 1; \
|
868 |
|
|
else if (fixed_regs[4] == 2) \
|
869 |
|
|
fixed_regs[4] = 0; \
|
870 |
|
|
} \
|
871 |
|
|
while (0)
|
872 |
|
|
|
873 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
874 |
|
|
to hold something of mode MODE.
|
875 |
|
|
This is ordinarily the length in words of a value of mode MODE
|
876 |
|
|
but can be less for certain modes in special long registers.
|
877 |
|
|
|
878 |
|
|
On SPARC, ordinary registers hold 32 bits worth;
|
879 |
|
|
this means both integer and floating point registers.
|
880 |
|
|
On v9, integer regs hold 64 bits worth; floating point regs hold
|
881 |
|
|
32 bits worth (this includes the new fp regs as even the odd ones are
|
882 |
|
|
included in the hard register count). */
|
883 |
|
|
|
884 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
885 |
|
|
(TARGET_ARCH64 \
|
886 |
|
|
? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
|
887 |
|
|
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
|
888 |
|
|
: (GET_MODE_SIZE (MODE) + 3) / 4) \
|
889 |
|
|
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
890 |
|
|
|
891 |
|
|
/* Due to the ARCH64 discrepancy above we must override this next
|
892 |
|
|
macro too. */
|
893 |
|
|
#define REGMODE_NATURAL_SIZE(MODE) \
|
894 |
|
|
((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
|
895 |
|
|
|
896 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
897 |
|
|
See sparc.c for how we initialize this. */
|
898 |
|
|
extern const int *hard_regno_mode_classes;
|
899 |
|
|
extern int sparc_mode_class[];
|
900 |
|
|
|
901 |
|
|
/* ??? Because of the funny way we pass parameters we should allow certain
|
902 |
|
|
??? types of float/complex values to be in integer registers during
|
903 |
|
|
??? RTL generation. This only matters on arch32. */
|
904 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
905 |
|
|
((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
|
906 |
|
|
|
907 |
|
|
/* Value is 1 if it is OK to rename a hard register FROM to another hard
|
908 |
|
|
register TO. We cannot rename %g1 as it may be used before the save
|
909 |
|
|
register window instruction in the prologue. */
|
910 |
|
|
#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
|
911 |
|
|
|
912 |
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
913 |
|
|
when one has mode MODE1 and one has mode MODE2.
|
914 |
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
915 |
|
|
for any hard reg, then this must be 0 for correct output.
|
916 |
|
|
|
917 |
|
|
For V9: SFmode can't be combined with other float modes, because they can't
|
918 |
|
|
be allocated to the %d registers. Also, DFmode won't fit in odd %f
|
919 |
|
|
registers, but SFmode will. */
|
920 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
921 |
|
|
((MODE1) == (MODE2) \
|
922 |
|
|
|| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
|
923 |
|
|
&& (! TARGET_V9 \
|
924 |
|
|
|| (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
|
925 |
|
|
|| (MODE1 != SFmode && MODE2 != SFmode)))))
|
926 |
|
|
|
927 |
|
|
/* Specify the registers used for certain standard purposes.
|
928 |
|
|
The values of these macros are register numbers. */
|
929 |
|
|
|
930 |
|
|
/* Register to use for pushing function arguments. */
|
931 |
|
|
#define STACK_POINTER_REGNUM 14
|
932 |
|
|
|
933 |
|
|
/* The stack bias (amount by which the hardware register is offset by). */
|
934 |
|
|
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
|
935 |
|
|
|
936 |
|
|
/* Actual top-of-stack address is 92/176 greater than the contents of the
|
937 |
|
|
stack pointer register for !v9/v9. That is:
|
938 |
|
|
- !v9: 64 bytes for the in and local registers, 4 bytes for structure return
|
939 |
|
|
address, and 6*4 bytes for the 6 register parameters.
|
940 |
|
|
- v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
|
941 |
|
|
parameter regs. */
|
942 |
|
|
#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
|
943 |
|
|
|
944 |
|
|
/* Base register for access to local variables of the function. */
|
945 |
|
|
#define HARD_FRAME_POINTER_REGNUM 30
|
946 |
|
|
|
947 |
|
|
/* The soft frame pointer does not have the stack bias applied. */
|
948 |
|
|
#define FRAME_POINTER_REGNUM 101
|
949 |
|
|
|
950 |
|
|
/* Given the stack bias, the stack pointer isn't actually aligned. */
|
951 |
|
|
#define INIT_EXPANDERS \
|
952 |
|
|
do { \
|
953 |
|
|
if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
|
954 |
|
|
{ \
|
955 |
|
|
REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
|
956 |
|
|
REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
|
957 |
|
|
} \
|
958 |
|
|
} while (0)
|
959 |
|
|
|
960 |
|
|
/* Base register for access to arguments of the function. */
|
961 |
|
|
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
|
962 |
|
|
|
963 |
|
|
/* Register in which static-chain is passed to a function. This must
|
964 |
|
|
not be a register used by the prologue. */
|
965 |
|
|
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
|
966 |
|
|
|
967 |
|
|
/* Register which holds offset table for position-independent
|
968 |
|
|
data references. */
|
969 |
|
|
|
970 |
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
|
971 |
|
|
|
972 |
|
|
/* Pick a default value we can notice from override_options:
|
973 |
|
|
!v9: Default is on.
|
974 |
|
|
v9: Default is off.
|
975 |
|
|
Originally it was -1, but later on the container of options changed to
|
976 |
|
|
unsigned byte, so we decided to pick 127 as default value, which does
|
977 |
|
|
reflect an undefined default value in case of 0/1. */
|
978 |
|
|
|
979 |
|
|
#define DEFAULT_PCC_STRUCT_RETURN 127
|
980 |
|
|
|
981 |
|
|
/* Functions which return large structures get the address
|
982 |
|
|
to place the wanted value at offset 64 from the frame.
|
983 |
|
|
Must reserve 64 bytes for the in and local registers.
|
984 |
|
|
v9: Functions which return large structures get the address to place the
|
985 |
|
|
wanted value from an invisible first argument. */
|
986 |
|
|
#define STRUCT_VALUE_OFFSET 64
|
987 |
|
|
|
988 |
|
|
/* Define the classes of registers for register constraints in the
|
989 |
|
|
machine description. Also define ranges of constants.
|
990 |
|
|
|
991 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
992 |
|
|
If there is more than one class, another class must be named NO_REGS
|
993 |
|
|
and contain no registers.
|
994 |
|
|
|
995 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
996 |
|
|
another name such as ALL_REGS). This is the class of registers
|
997 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
998 |
|
|
Also, registers outside this class are allocated only when
|
999 |
|
|
instructions express preferences for them.
|
1000 |
|
|
|
1001 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
1002 |
|
|
a larger-numbered class must never be contained completely
|
1003 |
|
|
in a smaller-numbered class.
|
1004 |
|
|
|
1005 |
|
|
For any two classes, it is very desirable that there be another
|
1006 |
|
|
class that represents their union. */
|
1007 |
|
|
|
1008 |
|
|
/* The SPARC has various kinds of registers: general, floating point,
|
1009 |
|
|
and condition codes [well, it has others as well, but none that we
|
1010 |
|
|
care directly about].
|
1011 |
|
|
|
1012 |
|
|
For v9 we must distinguish between the upper and lower floating point
|
1013 |
|
|
registers because the upper ones can't hold SFmode values.
|
1014 |
|
|
HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
|
1015 |
|
|
satisfying a group need for a class will also satisfy a single need for
|
1016 |
|
|
that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
|
1017 |
|
|
regs.
|
1018 |
|
|
|
1019 |
|
|
It is important that one class contains all the general and all the standard
|
1020 |
|
|
fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
|
1021 |
|
|
because reg_class_record() will bias the selection in favor of fp regs,
|
1022 |
|
|
because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
|
1023 |
|
|
because FP_REGS > GENERAL_REGS.
|
1024 |
|
|
|
1025 |
|
|
It is also important that one class contain all the general and all
|
1026 |
|
|
the fp regs. Otherwise when spilling a DFmode reg, it may be from
|
1027 |
|
|
EXTRA_FP_REGS but find_reloads() may use class
|
1028 |
|
|
GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
|
1029 |
|
|
because the compiler thinks it doesn't have a spill reg when in
|
1030 |
|
|
fact it does.
|
1031 |
|
|
|
1032 |
|
|
v9 also has 4 floating point condition code registers. Since we don't
|
1033 |
|
|
have a class that is the union of FPCC_REGS with either of the others,
|
1034 |
|
|
it is important that it appear first. Otherwise the compiler will die
|
1035 |
|
|
trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
|
1036 |
|
|
constraints.
|
1037 |
|
|
|
1038 |
|
|
It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
|
1039 |
|
|
may try to use it to hold an SImode value. See register_operand.
|
1040 |
|
|
??? Should %fcc[0123] be handled similarly?
|
1041 |
|
|
*/
|
1042 |
|
|
|
1043 |
|
|
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
|
1044 |
|
|
EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
|
1045 |
|
|
ALL_REGS, LIM_REG_CLASSES };
|
1046 |
|
|
|
1047 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
1048 |
|
|
|
1049 |
|
|
/* Give names of register classes as strings for dump file. */
|
1050 |
|
|
|
1051 |
|
|
#define REG_CLASS_NAMES \
|
1052 |
|
|
{ "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
|
1053 |
|
|
"EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
|
1054 |
|
|
"ALL_REGS" }
|
1055 |
|
|
|
1056 |
|
|
/* Define which registers fit in which classes.
|
1057 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
1058 |
|
|
of length N_REG_CLASSES. */
|
1059 |
|
|
|
1060 |
|
|
#define REG_CLASS_CONTENTS \
|
1061 |
|
|
{{0, 0, 0, 0}, /* NO_REGS */ \
|
1062 |
|
|
{0, 0, 0, 0xf}, /* FPCC_REGS */ \
|
1063 |
|
|
{0xffff, 0, 0, 0}, /* I64_REGS */ \
|
1064 |
|
|
{-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
|
1065 |
|
|
{0, -1, 0, 0}, /* FP_REGS */ \
|
1066 |
|
|
{0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
|
1067 |
|
|
{-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
|
1068 |
|
|
{-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
|
1069 |
|
|
{-1, -1, -1, 0x3f}} /* ALL_REGS */
|
1070 |
|
|
|
1071 |
|
|
/* The same information, inverted:
|
1072 |
|
|
Return the class number of the smallest class containing
|
1073 |
|
|
reg number REGNO. This could be a conditional expression
|
1074 |
|
|
or could index an array. */
|
1075 |
|
|
|
1076 |
|
|
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
|
1077 |
|
|
|
1078 |
|
|
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
|
1079 |
|
|
|
1080 |
|
|
/* The following macro defines cover classes for Integrated Register
|
1081 |
|
|
Allocator. Cover classes is a set of non-intersected register
|
1082 |
|
|
classes covering all hard registers used for register allocation
|
1083 |
|
|
purpose. Any move between two registers of a cover class should be
|
1084 |
|
|
cheaper than load or store of the registers. The macro value is
|
1085 |
|
|
array of register classes with LIM_REG_CLASSES used as the end
|
1086 |
|
|
marker. */
|
1087 |
|
|
|
1088 |
|
|
#define IRA_COVER_CLASSES \
|
1089 |
|
|
{ \
|
1090 |
|
|
GENERAL_REGS, EXTRA_FP_REGS, FPCC_REGS, LIM_REG_CLASSES \
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* Defines invalid mode changes. Borrowed from pa64-regs.h.
|
1094 |
|
|
|
1095 |
|
|
SImode loads to floating-point registers are not zero-extended.
|
1096 |
|
|
The definition for LOAD_EXTEND_OP specifies that integer loads
|
1097 |
|
|
narrower than BITS_PER_WORD will be zero-extended. As a result,
|
1098 |
|
|
we inhibit changes from SImode unless they are to a mode that is
|
1099 |
|
|
identical in size. */
|
1100 |
|
|
|
1101 |
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
1102 |
|
|
(TARGET_ARCH64 \
|
1103 |
|
|
&& (FROM) == SImode \
|
1104 |
|
|
&& GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
|
1105 |
|
|
? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
|
1106 |
|
|
|
1107 |
|
|
/* This is the order in which to allocate registers normally.
|
1108 |
|
|
|
1109 |
|
|
We put %f0-%f7 last among the float registers, so as to make it more
|
1110 |
|
|
likely that a pseudo-register which dies in the float return register
|
1111 |
|
|
area will get allocated to the float return register, thus saving a move
|
1112 |
|
|
instruction at the end of the function.
|
1113 |
|
|
|
1114 |
|
|
Similarly for integer return value registers.
|
1115 |
|
|
|
1116 |
|
|
We know in this case that we will not end up with a leaf function.
|
1117 |
|
|
|
1118 |
|
|
The register allocator is given the global and out registers first
|
1119 |
|
|
because these registers are call clobbered and thus less useful to
|
1120 |
|
|
global register allocation.
|
1121 |
|
|
|
1122 |
|
|
Next we list the local and in registers. They are not call clobbered
|
1123 |
|
|
and thus very useful for global register allocation. We list the input
|
1124 |
|
|
registers before the locals so that it is more likely the incoming
|
1125 |
|
|
arguments received in those registers can just stay there and not be
|
1126 |
|
|
reloaded. */
|
1127 |
|
|
|
1128 |
|
|
#define REG_ALLOC_ORDER \
|
1129 |
|
|
{ 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
|
1130 |
|
|
13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
|
1131 |
|
|
15, /* %o7 */ \
|
1132 |
|
|
16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
|
1133 |
|
|
29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
|
1134 |
|
|
40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
|
1135 |
|
|
48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
|
1136 |
|
|
56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
|
1137 |
|
|
64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
|
1138 |
|
|
72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
|
1139 |
|
|
80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
|
1140 |
|
|
88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
|
1141 |
|
|
39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
|
1142 |
|
|
96, 97, 98, 99, /* %fcc0-3 */ \
|
1143 |
|
|
100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
|
1144 |
|
|
|
1145 |
|
|
/* This is the order in which to allocate registers for
|
1146 |
|
|
leaf functions. If all registers can fit in the global and
|
1147 |
|
|
output registers, then we have the possibility of having a leaf
|
1148 |
|
|
function.
|
1149 |
|
|
|
1150 |
|
|
The macro actually mentioned the input registers first,
|
1151 |
|
|
because they get renumbered into the output registers once
|
1152 |
|
|
we know really do have a leaf function.
|
1153 |
|
|
|
1154 |
|
|
To be more precise, this register allocation order is used
|
1155 |
|
|
when %o7 is found to not be clobbered right before register
|
1156 |
|
|
allocation. Normally, the reason %o7 would be clobbered is
|
1157 |
|
|
due to a call which could not be transformed into a sibling
|
1158 |
|
|
call.
|
1159 |
|
|
|
1160 |
|
|
As a consequence, it is possible to use the leaf register
|
1161 |
|
|
allocation order and not end up with a leaf function. We will
|
1162 |
|
|
not get suboptimal register allocation in that case because by
|
1163 |
|
|
definition of being potentially leaf, there were no function
|
1164 |
|
|
calls. Therefore, allocation order within the local register
|
1165 |
|
|
window is not critical like it is when we do have function calls. */
|
1166 |
|
|
|
1167 |
|
|
#define REG_LEAF_ALLOC_ORDER \
|
1168 |
|
|
{ 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
|
1169 |
|
|
29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
|
1170 |
|
|
15, /* %o7 */ \
|
1171 |
|
|
13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
|
1172 |
|
|
16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
|
1173 |
|
|
40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
|
1174 |
|
|
48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
|
1175 |
|
|
56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
|
1176 |
|
|
64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
|
1177 |
|
|
72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
|
1178 |
|
|
80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
|
1179 |
|
|
88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
|
1180 |
|
|
39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
|
1181 |
|
|
96, 97, 98, 99, /* %fcc0-3 */ \
|
1182 |
|
|
100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
|
1183 |
|
|
|
1184 |
|
|
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
|
1185 |
|
|
|
1186 |
|
|
extern char sparc_leaf_regs[];
|
1187 |
|
|
#define LEAF_REGISTERS sparc_leaf_regs
|
1188 |
|
|
|
1189 |
|
|
extern char leaf_reg_remap[];
|
1190 |
|
|
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
|
1191 |
|
|
|
1192 |
|
|
/* The class value for index registers, and the one for base regs. */
|
1193 |
|
|
#define INDEX_REG_CLASS GENERAL_REGS
|
1194 |
|
|
#define BASE_REG_CLASS GENERAL_REGS
|
1195 |
|
|
|
1196 |
|
|
/* Local macro to handle the two v9 classes of FP regs. */
|
1197 |
|
|
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
|
1198 |
|
|
|
1199 |
|
|
/* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
|
1200 |
|
|
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
|
1201 |
|
|
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
|
1202 |
|
|
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
|
1203 |
|
|
|
1204 |
|
|
/* 10- and 11-bit immediates are only used for a few specific insns.
|
1205 |
|
|
SMALL_INT is used throughout the port so we continue to use it. */
|
1206 |
|
|
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
|
1207 |
|
|
|
1208 |
|
|
/* Predicate for constants that can be loaded with a sethi instruction.
|
1209 |
|
|
This is the general, 64-bit aware, bitwise version that ensures that
|
1210 |
|
|
only constants whose representation fits in the mask
|
1211 |
|
|
|
1212 |
|
|
0x00000000fffffc00
|
1213 |
|
|
|
1214 |
|
|
are accepted. It will reject, for example, negative SImode constants
|
1215 |
|
|
on 64-bit hosts, so correct handling is to mask the value beforehand
|
1216 |
|
|
according to the mode of the instruction. */
|
1217 |
|
|
#define SPARC_SETHI_P(X) \
|
1218 |
|
|
(((unsigned HOST_WIDE_INT) (X) \
|
1219 |
|
|
& ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
|
1220 |
|
|
|
1221 |
|
|
/* Version of the above predicate for SImode constants and below. */
|
1222 |
|
|
#define SPARC_SETHI32_P(X) \
|
1223 |
|
|
(SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
|
1224 |
|
|
|
1225 |
|
|
/* Given an rtx X being reloaded into a reg required to be
|
1226 |
|
|
in class CLASS, return the class of reg to actually use.
|
1227 |
|
|
In general this is just CLASS; but on some machines
|
1228 |
|
|
in some cases it is preferable to use a more restrictive class. */
|
1229 |
|
|
/* - We can't load constants into FP registers.
|
1230 |
|
|
- We can't load FP constants into integer registers when soft-float,
|
1231 |
|
|
because there is no soft-float pattern with a r/F constraint.
|
1232 |
|
|
- We can't load FP constants into integer registers for TFmode unless
|
1233 |
|
|
it is 0.0L, because there is no movtf pattern with a r/F constraint.
|
1234 |
|
|
- Try and reload integer constants (symbolic or otherwise) back into
|
1235 |
|
|
registers directly, rather than having them dumped to memory. */
|
1236 |
|
|
|
1237 |
|
|
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
1238 |
|
|
(CONSTANT_P (X) \
|
1239 |
|
|
? ((FP_REG_CLASS_P (CLASS) \
|
1240 |
|
|
|| (CLASS) == GENERAL_OR_FP_REGS \
|
1241 |
|
|
|| (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
|
1242 |
|
|
|| (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
1243 |
|
|
&& ! TARGET_FPU) \
|
1244 |
|
|
|| (GET_MODE (X) == TFmode \
|
1245 |
|
|
&& ! const_zero_operand (X, TFmode))) \
|
1246 |
|
|
? NO_REGS \
|
1247 |
|
|
: (!FP_REG_CLASS_P (CLASS) \
|
1248 |
|
|
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
|
1249 |
|
|
? GENERAL_REGS \
|
1250 |
|
|
: (CLASS)) \
|
1251 |
|
|
: (CLASS))
|
1252 |
|
|
|
1253 |
|
|
/* Return the register class of a scratch register needed to load IN into
|
1254 |
|
|
a register of class CLASS in MODE.
|
1255 |
|
|
|
1256 |
|
|
We need a temporary when loading/storing a HImode/QImode value
|
1257 |
|
|
between memory and the FPU registers. This can happen when combine puts
|
1258 |
|
|
a paradoxical subreg in a float/fix conversion insn.
|
1259 |
|
|
|
1260 |
|
|
We need a temporary when loading/storing a DFmode value between
|
1261 |
|
|
unaligned memory and the upper FPU registers. */
|
1262 |
|
|
|
1263 |
|
|
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
1264 |
|
|
((FP_REG_CLASS_P (CLASS) \
|
1265 |
|
|
&& ((MODE) == HImode || (MODE) == QImode) \
|
1266 |
|
|
&& (GET_CODE (IN) == MEM \
|
1267 |
|
|
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
1268 |
|
|
&& true_regnum (IN) == -1))) \
|
1269 |
|
|
? GENERAL_REGS \
|
1270 |
|
|
: ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
|
1271 |
|
|
&& GET_CODE (IN) == MEM && TARGET_ARCH32 \
|
1272 |
|
|
&& ! mem_min_alignment ((IN), 8)) \
|
1273 |
|
|
? FP_REGS \
|
1274 |
|
|
: (((TARGET_CM_MEDANY \
|
1275 |
|
|
&& symbolic_operand ((IN), (MODE))) \
|
1276 |
|
|
|| (TARGET_CM_EMBMEDANY \
|
1277 |
|
|
&& text_segment_operand ((IN), (MODE)))) \
|
1278 |
|
|
&& !flag_pic) \
|
1279 |
|
|
? GENERAL_REGS \
|
1280 |
|
|
: NO_REGS)
|
1281 |
|
|
|
1282 |
|
|
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
1283 |
|
|
((FP_REG_CLASS_P (CLASS) \
|
1284 |
|
|
&& ((MODE) == HImode || (MODE) == QImode) \
|
1285 |
|
|
&& (GET_CODE (IN) == MEM \
|
1286 |
|
|
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
1287 |
|
|
&& true_regnum (IN) == -1))) \
|
1288 |
|
|
? GENERAL_REGS \
|
1289 |
|
|
: ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
|
1290 |
|
|
&& GET_CODE (IN) == MEM && TARGET_ARCH32 \
|
1291 |
|
|
&& ! mem_min_alignment ((IN), 8)) \
|
1292 |
|
|
? FP_REGS \
|
1293 |
|
|
: (((TARGET_CM_MEDANY \
|
1294 |
|
|
&& symbolic_operand ((IN), (MODE))) \
|
1295 |
|
|
|| (TARGET_CM_EMBMEDANY \
|
1296 |
|
|
&& text_segment_operand ((IN), (MODE)))) \
|
1297 |
|
|
&& !flag_pic) \
|
1298 |
|
|
? GENERAL_REGS \
|
1299 |
|
|
: NO_REGS)
|
1300 |
|
|
|
1301 |
|
|
/* On SPARC it is not possible to directly move data between
|
1302 |
|
|
GENERAL_REGS and FP_REGS. */
|
1303 |
|
|
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
1304 |
|
|
(FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
|
1305 |
|
|
|
1306 |
|
|
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
|
1307 |
|
|
because the movsi and movsf patterns don't handle r/f moves.
|
1308 |
|
|
For v8 we copy the default definition. */
|
1309 |
|
|
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
|
1310 |
|
|
(TARGET_ARCH64 \
|
1311 |
|
|
? (GET_MODE_BITSIZE (MODE) < 32 \
|
1312 |
|
|
? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
|
1313 |
|
|
: MODE) \
|
1314 |
|
|
: (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
|
1315 |
|
|
? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
|
1316 |
|
|
: MODE))
|
1317 |
|
|
|
1318 |
|
|
/* Return the maximum number of consecutive registers
|
1319 |
|
|
needed to represent mode MODE in a register of class CLASS. */
|
1320 |
|
|
/* On SPARC, this is the size of MODE in words. */
|
1321 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
1322 |
|
|
(FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
|
1323 |
|
|
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
1324 |
|
|
|
1325 |
|
|
/* Stack layout; function entry, exit and calling. */
|
1326 |
|
|
|
1327 |
|
|
/* Define this if pushing a word on the stack
|
1328 |
|
|
makes the stack pointer a smaller address. */
|
1329 |
|
|
#define STACK_GROWS_DOWNWARD
|
1330 |
|
|
|
1331 |
|
|
/* Define this to nonzero if the nominal address of the stack frame
|
1332 |
|
|
is at the high-address end of the local variables;
|
1333 |
|
|
that is, each additional local variable allocated
|
1334 |
|
|
goes at a more negative offset in the frame. */
|
1335 |
|
|
#define FRAME_GROWS_DOWNWARD 1
|
1336 |
|
|
|
1337 |
|
|
/* Offset within stack frame to start allocating local variables at.
|
1338 |
|
|
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
1339 |
|
|
first local allocated. Otherwise, it is the offset to the BEGINNING
|
1340 |
|
|
of the first local allocated. */
|
1341 |
|
|
#define STARTING_FRAME_OFFSET 0
|
1342 |
|
|
|
1343 |
|
|
/* Offset of first parameter from the argument pointer register value.
|
1344 |
|
|
!v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
|
1345 |
|
|
even if this function isn't going to use it.
|
1346 |
|
|
v9: This is 128 for the ins and locals. */
|
1347 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) \
|
1348 |
|
|
(TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
|
1349 |
|
|
|
1350 |
|
|
/* Offset from the argument pointer register value to the CFA.
|
1351 |
|
|
This is different from FIRST_PARM_OFFSET because the register window
|
1352 |
|
|
comes between the CFA and the arguments. */
|
1353 |
|
|
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
|
1354 |
|
|
|
1355 |
|
|
/* When a parameter is passed in a register, stack space is still
|
1356 |
|
|
allocated for it.
|
1357 |
|
|
!v9: All 6 possible integer registers have backing store allocated.
|
1358 |
|
|
v9: Only space for the arguments passed is allocated. */
|
1359 |
|
|
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
|
1360 |
|
|
meaning to the backend. Further, we need to be able to detect if a
|
1361 |
|
|
varargs/unprototyped function is called, as they may want to spill more
|
1362 |
|
|
registers than we've provided space. Ugly, ugly. So for now we retain
|
1363 |
|
|
all 6 slots even for v9. */
|
1364 |
|
|
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
|
1365 |
|
|
|
1366 |
|
|
/* Definitions for register elimination. */
|
1367 |
|
|
|
1368 |
|
|
#define ELIMINABLE_REGS \
|
1369 |
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
1370 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
|
1371 |
|
|
|
1372 |
|
|
/* We always pretend that this is a leaf function because if it's not,
|
1373 |
|
|
there's no point in trying to eliminate the frame pointer. If it
|
1374 |
|
|
is a leaf function, we guessed right! */
|
1375 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
1376 |
|
|
do { \
|
1377 |
|
|
if ((TO) == STACK_POINTER_REGNUM) \
|
1378 |
|
|
(OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
|
1379 |
|
|
else \
|
1380 |
|
|
(OFFSET) = 0; \
|
1381 |
|
|
(OFFSET) += SPARC_STACK_BIAS; \
|
1382 |
|
|
} while (0)
|
1383 |
|
|
|
1384 |
|
|
/* Keep the stack pointer constant throughout the function.
|
1385 |
|
|
This is both an optimization and a necessity: longjmp
|
1386 |
|
|
doesn't behave itself when the stack pointer moves within
|
1387 |
|
|
the function! */
|
1388 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
1389 |
|
|
|
1390 |
|
|
/* Value is the number of bytes of arguments automatically
|
1391 |
|
|
popped when returning from a subroutine call.
|
1392 |
|
|
FUNDECL is the declaration node of the function (as a tree),
|
1393 |
|
|
FUNTYPE is the data type of the function (as a tree),
|
1394 |
|
|
or for a library call it is an identifier node for the subroutine name.
|
1395 |
|
|
SIZE is the number of bytes of arguments passed on the stack. */
|
1396 |
|
|
|
1397 |
|
|
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
1398 |
|
|
|
1399 |
|
|
/* Define this macro if the target machine has "register windows". This
|
1400 |
|
|
C expression returns the register number as seen by the called function
|
1401 |
|
|
corresponding to register number OUT as seen by the calling function.
|
1402 |
|
|
Return OUT if register number OUT is not an outbound register. */
|
1403 |
|
|
|
1404 |
|
|
#define INCOMING_REGNO(OUT) \
|
1405 |
|
|
(((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
|
1406 |
|
|
|
1407 |
|
|
/* Define this macro if the target machine has "register windows". This
|
1408 |
|
|
C expression returns the register number as seen by the calling function
|
1409 |
|
|
corresponding to register number IN as seen by the called function.
|
1410 |
|
|
Return IN if register number IN is not an inbound register. */
|
1411 |
|
|
|
1412 |
|
|
#define OUTGOING_REGNO(IN) \
|
1413 |
|
|
(((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
|
1414 |
|
|
|
1415 |
|
|
/* Define this macro if the target machine has register windows. This
|
1416 |
|
|
C expression returns true if the register is call-saved but is in the
|
1417 |
|
|
register window. */
|
1418 |
|
|
|
1419 |
|
|
#define LOCAL_REGNO(REGNO) \
|
1420 |
|
|
((REGNO) >= 16 && (REGNO) <= 31)
|
1421 |
|
|
|
1422 |
|
|
/* Define how to find the value returned by a function.
|
1423 |
|
|
VALTYPE is the data type of the value (as a tree).
|
1424 |
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
1425 |
|
|
otherwise, FUNC is 0. */
|
1426 |
|
|
|
1427 |
|
|
/* On SPARC the value is found in the first "output" register. */
|
1428 |
|
|
|
1429 |
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
1430 |
|
|
function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
|
1431 |
|
|
|
1432 |
|
|
/* But the called function leaves it in the first "input" register. */
|
1433 |
|
|
|
1434 |
|
|
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
|
1435 |
|
|
function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
|
1436 |
|
|
|
1437 |
|
|
/* Define how to find the value returned by a library function
|
1438 |
|
|
assuming the value has mode MODE. */
|
1439 |
|
|
|
1440 |
|
|
#define LIBCALL_VALUE(MODE) \
|
1441 |
|
|
function_value (NULL_TREE, (MODE), 1)
|
1442 |
|
|
|
1443 |
|
|
/* 1 if N is a possible register number for a function value
|
1444 |
|
|
as seen by the caller.
|
1445 |
|
|
On SPARC, the first "output" reg is used for integer values,
|
1446 |
|
|
and the first floating point register is used for floating point values. */
|
1447 |
|
|
|
1448 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
|
1449 |
|
|
|
1450 |
|
|
/* Define the size of space to allocate for the return value of an
|
1451 |
|
|
untyped_call. */
|
1452 |
|
|
|
1453 |
|
|
#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
|
1454 |
|
|
|
1455 |
|
|
/* 1 if N is a possible register number for function argument passing.
|
1456 |
|
|
On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
|
1457 |
|
|
|
1458 |
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
1459 |
|
|
(TARGET_ARCH64 \
|
1460 |
|
|
? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
|
1461 |
|
|
: ((N) >= 8 && (N) <= 13))
|
1462 |
|
|
|
1463 |
|
|
/* Define a data type for recording info about an argument list
|
1464 |
|
|
during the scan of that argument list. This data type should
|
1465 |
|
|
hold all necessary information about the function itself
|
1466 |
|
|
and about the args processed so far, enough to enable macros
|
1467 |
|
|
such as FUNCTION_ARG to determine where the next arg should go.
|
1468 |
|
|
|
1469 |
|
|
On SPARC (!v9), this is a single integer, which is a number of words
|
1470 |
|
|
of arguments scanned so far (including the invisible argument,
|
1471 |
|
|
if any, which holds the structure-value-address).
|
1472 |
|
|
Thus 7 or more means all following args should go on the stack.
|
1473 |
|
|
|
1474 |
|
|
For v9, we also need to know whether a prototype is present. */
|
1475 |
|
|
|
1476 |
|
|
struct sparc_args {
|
1477 |
|
|
int words; /* number of words passed so far */
|
1478 |
|
|
int prototype_p; /* nonzero if a prototype is present */
|
1479 |
|
|
int libcall_p; /* nonzero if a library call */
|
1480 |
|
|
};
|
1481 |
|
|
#define CUMULATIVE_ARGS struct sparc_args
|
1482 |
|
|
|
1483 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
1484 |
|
|
for a call to a function whose data type is FNTYPE.
|
1485 |
|
|
For a library call, FNTYPE is 0. */
|
1486 |
|
|
|
1487 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
1488 |
|
|
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
|
1489 |
|
|
|
1490 |
|
|
/* Update the data in CUM to advance over an argument
|
1491 |
|
|
of mode MODE and data type TYPE.
|
1492 |
|
|
TYPE is null for libcalls where that information may not be available. */
|
1493 |
|
|
|
1494 |
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
1495 |
|
|
function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
|
1496 |
|
|
|
1497 |
|
|
/* Determine where to put an argument to a function.
|
1498 |
|
|
Value is zero to push the argument on the stack,
|
1499 |
|
|
or a hard register in which to store the argument.
|
1500 |
|
|
|
1501 |
|
|
MODE is the argument's machine mode.
|
1502 |
|
|
TYPE is the data type of the argument (as a tree).
|
1503 |
|
|
This is null for libcalls where that information may
|
1504 |
|
|
not be available.
|
1505 |
|
|
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
1506 |
|
|
the preceding args and about the function being called.
|
1507 |
|
|
NAMED is nonzero if this argument is a named parameter
|
1508 |
|
|
(otherwise it is an extra parameter matching an ellipsis). */
|
1509 |
|
|
|
1510 |
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
1511 |
|
|
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
|
1512 |
|
|
|
1513 |
|
|
/* Define where a function finds its arguments.
|
1514 |
|
|
This is different from FUNCTION_ARG because of register windows. */
|
1515 |
|
|
|
1516 |
|
|
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
1517 |
|
|
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
|
1518 |
|
|
|
1519 |
|
|
/* If defined, a C expression which determines whether, and in which direction,
|
1520 |
|
|
to pad out an argument with extra space. The value should be of type
|
1521 |
|
|
`enum direction': either `upward' to pad above the argument,
|
1522 |
|
|
`downward' to pad below, or `none' to inhibit padding. */
|
1523 |
|
|
|
1524 |
|
|
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
|
1525 |
|
|
function_arg_padding ((MODE), (TYPE))
|
1526 |
|
|
|
1527 |
|
|
/* If defined, a C expression that gives the alignment boundary, in bits,
|
1528 |
|
|
of an argument with the specified mode and type. If it is not defined,
|
1529 |
|
|
PARM_BOUNDARY is used for all arguments.
|
1530 |
|
|
For sparc64, objects requiring 16 byte alignment are passed that way. */
|
1531 |
|
|
|
1532 |
|
|
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
1533 |
|
|
((TARGET_ARCH64 \
|
1534 |
|
|
&& (GET_MODE_ALIGNMENT (MODE) == 128 \
|
1535 |
|
|
|| ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
|
1536 |
|
|
? 128 : PARM_BOUNDARY)
|
1537 |
|
|
|
1538 |
|
|
|
1539 |
|
|
/* Generate the special assembly code needed to tell the assembler whatever
|
1540 |
|
|
it might need to know about the return value of a function.
|
1541 |
|
|
|
1542 |
|
|
For SPARC assemblers, we need to output a .proc pseudo-op which conveys
|
1543 |
|
|
information to the assembler relating to peephole optimization (done in
|
1544 |
|
|
the assembler). */
|
1545 |
|
|
|
1546 |
|
|
#define ASM_DECLARE_RESULT(FILE, RESULT) \
|
1547 |
|
|
fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
|
1548 |
|
|
|
1549 |
|
|
/* Output the special assembly code needed to tell the assembler some
|
1550 |
|
|
register is used as global register variable.
|
1551 |
|
|
|
1552 |
|
|
SPARC 64bit psABI declares registers %g2 and %g3 as application
|
1553 |
|
|
registers and %g6 and %g7 as OS registers. Any object using them
|
1554 |
|
|
should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
|
1555 |
|
|
and how they are used (scratch or some global variable).
|
1556 |
|
|
Linker will then refuse to link together objects which use those
|
1557 |
|
|
registers incompatibly.
|
1558 |
|
|
|
1559 |
|
|
Unless the registers are used for scratch, two different global
|
1560 |
|
|
registers cannot be declared to the same name, so in the unlikely
|
1561 |
|
|
case of a global register variable occupying more than one register
|
1562 |
|
|
we prefix the second and following registers with .gnu.part1. etc. */
|
1563 |
|
|
|
1564 |
|
|
extern GTY(()) char sparc_hard_reg_printed[8];
|
1565 |
|
|
|
1566 |
|
|
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
|
1567 |
|
|
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
|
1568 |
|
|
do { \
|
1569 |
|
|
if (TARGET_ARCH64) \
|
1570 |
|
|
{ \
|
1571 |
|
|
int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
|
1572 |
|
|
int reg; \
|
1573 |
|
|
for (reg = (REGNO); reg < 8 && reg < end; reg++) \
|
1574 |
|
|
if ((reg & ~1) == 2 || (reg & ~1) == 6) \
|
1575 |
|
|
{ \
|
1576 |
|
|
if (reg == (REGNO)) \
|
1577 |
|
|
fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
|
1578 |
|
|
else \
|
1579 |
|
|
fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
|
1580 |
|
|
reg, reg - (REGNO), (NAME)); \
|
1581 |
|
|
sparc_hard_reg_printed[reg] = 1; \
|
1582 |
|
|
} \
|
1583 |
|
|
} \
|
1584 |
|
|
} while (0)
|
1585 |
|
|
#endif
|
1586 |
|
|
|
1587 |
|
|
|
1588 |
|
|
/* Emit rtl for profiling. */
|
1589 |
|
|
#define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
|
1590 |
|
|
|
1591 |
|
|
/* All the work done in PROFILE_HOOK, but still required. */
|
1592 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
|
1593 |
|
|
|
1594 |
|
|
/* Set the name of the mcount function for the system. */
|
1595 |
|
|
#define MCOUNT_FUNCTION "*mcount"
|
1596 |
|
|
|
1597 |
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
1598 |
|
|
the stack pointer does not matter. The value is tested only in
|
1599 |
|
|
functions that have frame pointers.
|
1600 |
|
|
No definition is equivalent to always zero. */
|
1601 |
|
|
|
1602 |
|
|
#define EXIT_IGNORE_STACK \
|
1603 |
|
|
(get_frame_size () != 0 \
|
1604 |
|
|
|| cfun->calls_alloca || crtl->outgoing_args_size)
|
1605 |
|
|
|
1606 |
|
|
/* Define registers used by the epilogue and return instruction. */
|
1607 |
|
|
#define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
|
1608 |
|
|
|| (crtl->calls_eh_return && (REGNO) == 1))
|
1609 |
|
|
|
1610 |
|
|
/* Length in units of the trampoline for entering a nested function. */
|
1611 |
|
|
|
1612 |
|
|
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
|
1613 |
|
|
|
1614 |
|
|
#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
|
1615 |
|
|
|
1616 |
|
|
/* Generate RTL to flush the register windows so as to make arbitrary frames
|
1617 |
|
|
available. */
|
1618 |
|
|
#define SETUP_FRAME_ADDRESSES() \
|
1619 |
|
|
emit_insn (gen_flush_register_windows ())
|
1620 |
|
|
|
1621 |
|
|
/* Given an rtx for the address of a frame,
|
1622 |
|
|
return an rtx for the address of the word in the frame
|
1623 |
|
|
that holds the dynamic chain--the previous frame's address. */
|
1624 |
|
|
#define DYNAMIC_CHAIN_ADDRESS(frame) \
|
1625 |
|
|
plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
|
1626 |
|
|
|
1627 |
|
|
/* Given an rtx for the frame pointer,
|
1628 |
|
|
return an rtx for the address of the frame. */
|
1629 |
|
|
#define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
|
1630 |
|
|
|
1631 |
|
|
/* The return address isn't on the stack, it is in a register, so we can't
|
1632 |
|
|
access it from the current frame pointer. We can access it from the
|
1633 |
|
|
previous frame pointer though by reading a value from the register window
|
1634 |
|
|
save area. */
|
1635 |
|
|
#define RETURN_ADDR_IN_PREVIOUS_FRAME
|
1636 |
|
|
|
1637 |
|
|
/* This is the offset of the return address to the true next instruction to be
|
1638 |
|
|
executed for the current function. */
|
1639 |
|
|
#define RETURN_ADDR_OFFSET \
|
1640 |
|
|
(8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
|
1641 |
|
|
|
1642 |
|
|
/* The current return address is in %i7. The return address of anything
|
1643 |
|
|
farther back is in the register window save area at [%fp+60]. */
|
1644 |
|
|
/* ??? This ignores the fact that the actual return address is +8 for normal
|
1645 |
|
|
returns, and +12 for structure returns. */
|
1646 |
|
|
#define RETURN_ADDR_RTX(count, frame) \
|
1647 |
|
|
((count == -1) \
|
1648 |
|
|
? gen_rtx_REG (Pmode, 31) \
|
1649 |
|
|
: gen_rtx_MEM (Pmode, \
|
1650 |
|
|
memory_address (Pmode, plus_constant (frame, \
|
1651 |
|
|
15 * UNITS_PER_WORD \
|
1652 |
|
|
+ SPARC_STACK_BIAS))))
|
1653 |
|
|
|
1654 |
|
|
/* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
|
1655 |
|
|
+12, but always using +8 is close enough for frame unwind purposes.
|
1656 |
|
|
Actually, just using %o7 is close enough for unwinding, but %o7+8
|
1657 |
|
|
is something you can return to. */
|
1658 |
|
|
#define INCOMING_RETURN_ADDR_RTX \
|
1659 |
|
|
plus_constant (gen_rtx_REG (word_mode, 15), 8)
|
1660 |
|
|
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
|
1661 |
|
|
|
1662 |
|
|
/* The offset from the incoming value of %sp to the top of the stack frame
|
1663 |
|
|
for the current function. On sparc64, we have to account for the stack
|
1664 |
|
|
bias if present. */
|
1665 |
|
|
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
|
1666 |
|
|
|
1667 |
|
|
/* Describe how we implement __builtin_eh_return. */
|
1668 |
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
|
1669 |
|
|
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
|
1670 |
|
|
#define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
|
1671 |
|
|
|
1672 |
|
|
/* Select a format to encode pointers in exception handling data. CODE
|
1673 |
|
|
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
|
1674 |
|
|
true if the symbol may be affected by dynamic relocations.
|
1675 |
|
|
|
1676 |
|
|
If assembler and linker properly support .uaword %r_disp32(foo),
|
1677 |
|
|
then use PC relative 32-bit relocations instead of absolute relocs
|
1678 |
|
|
for shared libraries. On sparc64, use pc relative 32-bit relocs even
|
1679 |
|
|
for binaries, to save memory.
|
1680 |
|
|
|
1681 |
|
|
binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
|
1682 |
|
|
symbol %r_disp32() is against was not local, but .hidden. In that
|
1683 |
|
|
case, we have to use DW_EH_PE_absptr for pic personality. */
|
1684 |
|
|
#ifdef HAVE_AS_SPARC_UA_PCREL
|
1685 |
|
|
#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
|
1686 |
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
|
1687 |
|
|
(flag_pic \
|
1688 |
|
|
? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
|
1689 |
|
|
: ((TARGET_ARCH64 && ! GLOBAL) \
|
1690 |
|
|
? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
|
1691 |
|
|
: DW_EH_PE_absptr))
|
1692 |
|
|
#else
|
1693 |
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
|
1694 |
|
|
(flag_pic \
|
1695 |
|
|
? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
|
1696 |
|
|
: ((TARGET_ARCH64 && ! GLOBAL) \
|
1697 |
|
|
? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
|
1698 |
|
|
: DW_EH_PE_absptr))
|
1699 |
|
|
#endif
|
1700 |
|
|
|
1701 |
|
|
/* Emit a PC-relative relocation. */
|
1702 |
|
|
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
|
1703 |
|
|
do { \
|
1704 |
|
|
fputs (integer_asm_op (SIZE, FALSE), FILE); \
|
1705 |
|
|
fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
|
1706 |
|
|
assemble_name (FILE, LABEL); \
|
1707 |
|
|
fputc (')', FILE); \
|
1708 |
|
|
} while (0)
|
1709 |
|
|
#endif
|
1710 |
|
|
|
1711 |
|
|
/* Addressing modes, and classification of registers for them. */
|
1712 |
|
|
|
1713 |
|
|
/* Macros to check register numbers against specific register classes. */
|
1714 |
|
|
|
1715 |
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
1716 |
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
1717 |
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
1718 |
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
1719 |
|
|
has been allocated, which happens in local-alloc.c. */
|
1720 |
|
|
|
1721 |
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
1722 |
|
|
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
|
1723 |
|
|
|| (REGNO) == FRAME_POINTER_REGNUM \
|
1724 |
|
|
|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
|
1725 |
|
|
|
1726 |
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
|
1727 |
|
|
|
1728 |
|
|
#define REGNO_OK_FOR_FP_P(REGNO) \
|
1729 |
|
|
(((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
|
1730 |
|
|
|| ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
|
1731 |
|
|
#define REGNO_OK_FOR_CCFP_P(REGNO) \
|
1732 |
|
|
(TARGET_V9 \
|
1733 |
|
|
&& (((unsigned) (REGNO) - 96 < (unsigned)4) \
|
1734 |
|
|
|| ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
|
1735 |
|
|
|
1736 |
|
|
/* Now macros that check whether X is a register and also,
|
1737 |
|
|
strictly, whether it is in a specified class.
|
1738 |
|
|
|
1739 |
|
|
These macros are specific to the SPARC, and may be used only
|
1740 |
|
|
in code for printing assembler insns and in conditions for
|
1741 |
|
|
define_optimization. */
|
1742 |
|
|
|
1743 |
|
|
/* 1 if X is an fp register. */
|
1744 |
|
|
|
1745 |
|
|
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
|
1746 |
|
|
|
1747 |
|
|
/* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
|
1748 |
|
|
#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
|
1749 |
|
|
|
1750 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
1751 |
|
|
|
1752 |
|
|
#define MAX_REGS_PER_ADDRESS 2
|
1753 |
|
|
|
1754 |
|
|
/* Recognize any constant value that is a valid address.
|
1755 |
|
|
When PIC, we do not accept an address that would require a scratch reg
|
1756 |
|
|
to load into a register. */
|
1757 |
|
|
|
1758 |
|
|
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
|
1759 |
|
|
|
1760 |
|
|
/* Define this, so that when PIC, reload won't try to reload invalid
|
1761 |
|
|
addresses which require two reload registers. */
|
1762 |
|
|
|
1763 |
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
|
1764 |
|
|
|
1765 |
|
|
/* Nonzero if the constant value X is a legitimate general operand.
|
1766 |
|
|
Anything can be made to work except floating point constants.
|
1767 |
|
|
If TARGET_VIS, 0.0 can be made to work as well. */
|
1768 |
|
|
|
1769 |
|
|
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
|
1770 |
|
|
|
1771 |
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
1772 |
|
|
and check its validity for a certain class.
|
1773 |
|
|
We have two alternate definitions for each of them.
|
1774 |
|
|
The usual definition accepts all pseudo regs; the other rejects
|
1775 |
|
|
them unless they have been allocated suitable hard regs.
|
1776 |
|
|
The symbol REG_OK_STRICT causes the latter definition to be used.
|
1777 |
|
|
|
1778 |
|
|
Most source files want to accept pseudo regs in the hope that
|
1779 |
|
|
they will get allocated to the class that the insn wants them to be in.
|
1780 |
|
|
Source files for reload pass need to be strict.
|
1781 |
|
|
After reload, it makes no difference, since pseudo regs have
|
1782 |
|
|
been eliminated by then. */
|
1783 |
|
|
|
1784 |
|
|
#ifndef REG_OK_STRICT
|
1785 |
|
|
|
1786 |
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
1787 |
|
|
or if it is a pseudo reg. */
|
1788 |
|
|
#define REG_OK_FOR_INDEX_P(X) \
|
1789 |
|
|
(REGNO (X) < 32 \
|
1790 |
|
|
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
1791 |
|
|
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
1792 |
|
|
|
1793 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
1794 |
|
|
or if it is a pseudo reg. */
|
1795 |
|
|
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
|
1796 |
|
|
|
1797 |
|
|
#else
|
1798 |
|
|
|
1799 |
|
|
/* Nonzero if X is a hard reg that can be used as an index. */
|
1800 |
|
|
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
1801 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
1802 |
|
|
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
1803 |
|
|
|
1804 |
|
|
#endif
|
1805 |
|
|
|
1806 |
|
|
/* Should gcc use [%reg+%lo(xx)+offset] addresses? */
|
1807 |
|
|
|
1808 |
|
|
#ifdef HAVE_AS_OFFSETABLE_LO10
|
1809 |
|
|
#define USE_AS_OFFSETABLE_LO10 1
|
1810 |
|
|
#else
|
1811 |
|
|
#define USE_AS_OFFSETABLE_LO10 0
|
1812 |
|
|
#endif
|
1813 |
|
|
|
1814 |
|
|
/* On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
|
1815 |
|
|
ordinarily. This changes a bit when generating PIC. The details are
|
1816 |
|
|
in sparc.c's implementation of TARGET_LEGITIMATE_ADDRESS_P. */
|
1817 |
|
|
|
1818 |
|
|
#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
|
1819 |
|
|
|
1820 |
|
|
#define RTX_OK_FOR_BASE_P(X) \
|
1821 |
|
|
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
1822 |
|
|
|| (GET_CODE (X) == SUBREG \
|
1823 |
|
|
&& GET_CODE (SUBREG_REG (X)) == REG \
|
1824 |
|
|
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
1825 |
|
|
|
1826 |
|
|
#define RTX_OK_FOR_INDEX_P(X) \
|
1827 |
|
|
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|
1828 |
|
|
|| (GET_CODE (X) == SUBREG \
|
1829 |
|
|
&& GET_CODE (SUBREG_REG (X)) == REG \
|
1830 |
|
|
&& REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
|
1831 |
|
|
|
1832 |
|
|
#define RTX_OK_FOR_OFFSET_P(X) \
|
1833 |
|
|
(GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
|
1834 |
|
|
|
1835 |
|
|
#define RTX_OK_FOR_OLO10_P(X) \
|
1836 |
|
|
(GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
|
1837 |
|
|
|
1838 |
|
|
/* Go to LABEL if ADDR (a legitimate address expression)
|
1839 |
|
|
has an effect that depends on the machine mode it is used for.
|
1840 |
|
|
|
1841 |
|
|
In PIC mode,
|
1842 |
|
|
|
1843 |
|
|
(mem:HI [%l7+a])
|
1844 |
|
|
|
1845 |
|
|
is not equivalent to
|
1846 |
|
|
|
1847 |
|
|
(mem:QI [%l7+a]) (mem:QI [%l7+a+1])
|
1848 |
|
|
|
1849 |
|
|
because [%l7+a+1] is interpreted as the address of (a+1). */
|
1850 |
|
|
|
1851 |
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
1852 |
|
|
{ \
|
1853 |
|
|
if (flag_pic == 1) \
|
1854 |
|
|
{ \
|
1855 |
|
|
if (GET_CODE (ADDR) == PLUS) \
|
1856 |
|
|
{ \
|
1857 |
|
|
rtx op0 = XEXP (ADDR, 0); \
|
1858 |
|
|
rtx op1 = XEXP (ADDR, 1); \
|
1859 |
|
|
if (op0 == pic_offset_table_rtx \
|
1860 |
|
|
&& SYMBOLIC_CONST (op1)) \
|
1861 |
|
|
goto LABEL; \
|
1862 |
|
|
} \
|
1863 |
|
|
} \
|
1864 |
|
|
}
|
1865 |
|
|
|
1866 |
|
|
/* Try a machine-dependent way of reloading an illegitimate address
|
1867 |
|
|
operand. If we find one, push the reload and jump to WIN. This
|
1868 |
|
|
macro is used in only one place: `find_reloads_address' in reload.c.
|
1869 |
|
|
|
1870 |
|
|
For SPARC 32, we wish to handle addresses by splitting them into
|
1871 |
|
|
HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
|
1872 |
|
|
This cuts the number of extra insns by one.
|
1873 |
|
|
|
1874 |
|
|
Do nothing when generating PIC code and the address is a
|
1875 |
|
|
symbolic operand or requires a scratch register. */
|
1876 |
|
|
|
1877 |
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
|
1878 |
|
|
do { \
|
1879 |
|
|
/* Decompose SImode constants into hi+lo_sum. We do have to \
|
1880 |
|
|
rerecognize what we produce, so be careful. */ \
|
1881 |
|
|
if (CONSTANT_P (X) \
|
1882 |
|
|
&& (MODE != TFmode || TARGET_ARCH64) \
|
1883 |
|
|
&& GET_MODE (X) == SImode \
|
1884 |
|
|
&& GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
|
1885 |
|
|
&& ! (flag_pic \
|
1886 |
|
|
&& (symbolic_operand (X, Pmode) \
|
1887 |
|
|
|| pic_address_needs_scratch (X))) \
|
1888 |
|
|
&& sparc_cmodel <= CM_MEDLOW) \
|
1889 |
|
|
{ \
|
1890 |
|
|
X = gen_rtx_LO_SUM (GET_MODE (X), \
|
1891 |
|
|
gen_rtx_HIGH (GET_MODE (X), X), X); \
|
1892 |
|
|
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
|
1893 |
|
|
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
|
1894 |
|
|
OPNUM, TYPE); \
|
1895 |
|
|
goto WIN; \
|
1896 |
|
|
} \
|
1897 |
|
|
/* ??? 64-bit reloads. */ \
|
1898 |
|
|
} while (0)
|
1899 |
|
|
|
1900 |
|
|
/* Specify the machine mode that this machine uses
|
1901 |
|
|
for the index in the tablejump instruction. */
|
1902 |
|
|
/* If we ever implement any of the full models (such as CM_FULLANY),
|
1903 |
|
|
this has to be DImode in that case */
|
1904 |
|
|
#ifdef HAVE_GAS_SUBSECTION_ORDERING
|
1905 |
|
|
#define CASE_VECTOR_MODE \
|
1906 |
|
|
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
|
1907 |
|
|
#else
|
1908 |
|
|
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
|
1909 |
|
|
we have to sign extend which slows things down. */
|
1910 |
|
|
#define CASE_VECTOR_MODE \
|
1911 |
|
|
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
|
1912 |
|
|
#endif
|
1913 |
|
|
|
1914 |
|
|
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
1915 |
|
|
#define DEFAULT_SIGNED_CHAR 1
|
1916 |
|
|
|
1917 |
|
|
/* Max number of bytes we can move from memory to memory
|
1918 |
|
|
in one reasonably fast instruction. */
|
1919 |
|
|
#define MOVE_MAX 8
|
1920 |
|
|
|
1921 |
|
|
/* If a memory-to-memory move would take MOVE_RATIO or more simple
|
1922 |
|
|
move-instruction pairs, we will do a movmem or libcall instead. */
|
1923 |
|
|
|
1924 |
|
|
#define MOVE_RATIO(speed) ((speed) ? 8 : 3)
|
1925 |
|
|
|
1926 |
|
|
/* Define if operations between registers always perform the operation
|
1927 |
|
|
on the full register even if a narrower mode is specified. */
|
1928 |
|
|
#define WORD_REGISTER_OPERATIONS
|
1929 |
|
|
|
1930 |
|
|
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
1931 |
|
|
will either zero-extend or sign-extend. The value of this macro should
|
1932 |
|
|
be the code that says which one of the two operations is implicitly
|
1933 |
|
|
done, UNKNOWN if none. */
|
1934 |
|
|
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
1935 |
|
|
|
1936 |
|
|
/* Nonzero if access to memory by bytes is slow and undesirable.
|
1937 |
|
|
For RISC chips, it means that access to memory by bytes is no
|
1938 |
|
|
better than access by words when possible, so grab a whole word
|
1939 |
|
|
and maybe make use of that. */
|
1940 |
|
|
#define SLOW_BYTE_ACCESS 1
|
1941 |
|
|
|
1942 |
|
|
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
1943 |
|
|
few bits. */
|
1944 |
|
|
#define SHIFT_COUNT_TRUNCATED 1
|
1945 |
|
|
|
1946 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
1947 |
|
|
is done just by pretending it is already truncated. */
|
1948 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
1949 |
|
|
|
1950 |
|
|
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
1951 |
|
|
return the mode to be used for the comparison. For floating-point,
|
1952 |
|
|
CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
|
1953 |
|
|
is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
|
1954 |
|
|
processing is needed. */
|
1955 |
|
|
#define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
|
1956 |
|
|
|
1957 |
|
|
/* Return nonzero if MODE implies a floating point inequality can be
|
1958 |
|
|
reversed. For SPARC this is always true because we have a full
|
1959 |
|
|
compliment of ordered and unordered comparisons, but until generic
|
1960 |
|
|
code knows how to reverse it correctly we keep the old definition. */
|
1961 |
|
|
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
|
1962 |
|
|
|
1963 |
|
|
/* A function address in a call instruction for indexing purposes. */
|
1964 |
|
|
#define FUNCTION_MODE Pmode
|
1965 |
|
|
|
1966 |
|
|
/* Define this if addresses of constant functions
|
1967 |
|
|
shouldn't be put through pseudo regs where they can be cse'd.
|
1968 |
|
|
Desirable on machines where ordinary constants are expensive
|
1969 |
|
|
but a CALL with constant address is cheap. */
|
1970 |
|
|
#define NO_FUNCTION_CSE
|
1971 |
|
|
|
1972 |
|
|
/* alloca should avoid clobbering the old register save area. */
|
1973 |
|
|
#define SETJMP_VIA_SAVE_AREA
|
1974 |
|
|
|
1975 |
|
|
/* The _Q_* comparison libcalls return booleans. */
|
1976 |
|
|
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
|
1977 |
|
|
|
1978 |
|
|
/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
|
1979 |
|
|
that the inputs are fully consumed before the output memory is clobbered. */
|
1980 |
|
|
|
1981 |
|
|
#define TARGET_BUGGY_QP_LIB 0
|
1982 |
|
|
|
1983 |
|
|
/* Assume by default that we do not have the Solaris-specific conversion
|
1984 |
|
|
routines nor 64-bit integer multiply and divide routines. */
|
1985 |
|
|
|
1986 |
|
|
#define SUN_CONVERSION_LIBFUNCS 0
|
1987 |
|
|
#define DITF_CONVERSION_LIBFUNCS 0
|
1988 |
|
|
#define SUN_INTEGER_MULTIPLY_64 0
|
1989 |
|
|
|
1990 |
|
|
/* Compute extra cost of moving data between one register class
|
1991 |
|
|
and another. */
|
1992 |
|
|
#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
|
1993 |
|
|
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
1994 |
|
|
(((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
|
1995 |
|
|
|| (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
|
1996 |
|
|
|| (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
|
1997 |
|
|
? ((sparc_cpu == PROCESSOR_ULTRASPARC \
|
1998 |
|
|
|| sparc_cpu == PROCESSOR_ULTRASPARC3 \
|
1999 |
|
|
|| sparc_cpu == PROCESSOR_NIAGARA \
|
2000 |
|
|
|| sparc_cpu == PROCESSOR_NIAGARA2) ? 12 : 6) : 2)
|
2001 |
|
|
|
2002 |
|
|
/* Provide the cost of a branch. For pre-v9 processors we use
|
2003 |
|
|
a value of 3 to take into account the potential annulling of
|
2004 |
|
|
the delay slot (which ends up being a bubble in the pipeline slot)
|
2005 |
|
|
plus a cycle to take into consideration the instruction cache
|
2006 |
|
|
effects.
|
2007 |
|
|
|
2008 |
|
|
On v9 and later, which have branch prediction facilities, we set
|
2009 |
|
|
it to the depth of the pipeline as that is the cost of a
|
2010 |
|
|
mispredicted branch.
|
2011 |
|
|
|
2012 |
|
|
On Niagara, normal branches insert 3 bubbles into the pipe
|
2013 |
|
|
and annulled branches insert 4 bubbles.
|
2014 |
|
|
|
2015 |
|
|
On Niagara-2, a not-taken branch costs 1 cycle whereas a taken
|
2016 |
|
|
branch costs 6 cycles. */
|
2017 |
|
|
|
2018 |
|
|
#define BRANCH_COST(speed_p, predictable_p) \
|
2019 |
|
|
((sparc_cpu == PROCESSOR_V9 \
|
2020 |
|
|
|| sparc_cpu == PROCESSOR_ULTRASPARC) \
|
2021 |
|
|
? 7 \
|
2022 |
|
|
: (sparc_cpu == PROCESSOR_ULTRASPARC3 \
|
2023 |
|
|
? 9 \
|
2024 |
|
|
: (sparc_cpu == PROCESSOR_NIAGARA \
|
2025 |
|
|
? 4 \
|
2026 |
|
|
: (sparc_cpu == PROCESSOR_NIAGARA2 \
|
2027 |
|
|
? 5 \
|
2028 |
|
|
: 3))))
|
2029 |
|
|
|
2030 |
|
|
/* Control the assembler format that we output. */
|
2031 |
|
|
|
2032 |
|
|
/* A C string constant describing how to begin a comment in the target
|
2033 |
|
|
assembler language. The compiler assumes that the comment will end at
|
2034 |
|
|
the end of the line. */
|
2035 |
|
|
|
2036 |
|
|
#define ASM_COMMENT_START "!"
|
2037 |
|
|
|
2038 |
|
|
/* Output to assembler file text saying following lines
|
2039 |
|
|
may contain character constants, extra white space, comments, etc. */
|
2040 |
|
|
|
2041 |
|
|
#define ASM_APP_ON ""
|
2042 |
|
|
|
2043 |
|
|
/* Output to assembler file text saying following lines
|
2044 |
|
|
no longer contain unusual constructs. */
|
2045 |
|
|
|
2046 |
|
|
#define ASM_APP_OFF ""
|
2047 |
|
|
|
2048 |
|
|
/* How to refer to registers in assembler output.
|
2049 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
2050 |
|
|
|
2051 |
|
|
#define REGISTER_NAMES \
|
2052 |
|
|
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
|
2053 |
|
|
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
|
2054 |
|
|
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
|
2055 |
|
|
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
|
2056 |
|
|
"%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
|
2057 |
|
|
"%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
|
2058 |
|
|
"%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
|
2059 |
|
|
"%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
|
2060 |
|
|
"%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
|
2061 |
|
|
"%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
|
2062 |
|
|
"%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
|
2063 |
|
|
"%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
|
2064 |
|
|
"%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
|
2065 |
|
|
|
2066 |
|
|
/* Define additional names for use in asm clobbers and asm declarations. */
|
2067 |
|
|
|
2068 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
2069 |
|
|
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
|
2070 |
|
|
|
2071 |
|
|
/* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
|
2072 |
|
|
can run past this up to a continuation point. Once we used 1500, but
|
2073 |
|
|
a single entry in C++ can run more than 500 bytes, due to the length of
|
2074 |
|
|
mangled symbol names. dbxout.c should really be fixed to do
|
2075 |
|
|
continuations when they are actually needed instead of trying to
|
2076 |
|
|
guess... */
|
2077 |
|
|
#define DBX_CONTIN_LENGTH 1000
|
2078 |
|
|
|
2079 |
|
|
/* This is how to output a command to make the user-level label named NAME
|
2080 |
|
|
defined for reference from other files. */
|
2081 |
|
|
|
2082 |
|
|
/* Globalizing directive for a label. */
|
2083 |
|
|
#define GLOBAL_ASM_OP "\t.global "
|
2084 |
|
|
|
2085 |
|
|
/* The prefix to add to user-visible assembler symbols. */
|
2086 |
|
|
|
2087 |
|
|
#define USER_LABEL_PREFIX "_"
|
2088 |
|
|
|
2089 |
|
|
/* This is how to store into the string LABEL
|
2090 |
|
|
the symbol_ref name of an internal numbered label where
|
2091 |
|
|
PREFIX is the class of label and NUM is the number within the class.
|
2092 |
|
|
This is suitable for output with `assemble_name'. */
|
2093 |
|
|
|
2094 |
|
|
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
2095 |
|
|
sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
|
2096 |
|
|
|
2097 |
|
|
/* This is how we hook in and defer the case-vector until the end of
|
2098 |
|
|
the function. */
|
2099 |
|
|
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
|
2100 |
|
|
sparc_defer_case_vector ((LAB),(VEC), 0)
|
2101 |
|
|
|
2102 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
|
2103 |
|
|
sparc_defer_case_vector ((LAB),(VEC), 1)
|
2104 |
|
|
|
2105 |
|
|
/* This is how to output an element of a case-vector that is absolute. */
|
2106 |
|
|
|
2107 |
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
2108 |
|
|
do { \
|
2109 |
|
|
char label[30]; \
|
2110 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
|
2111 |
|
|
if (CASE_VECTOR_MODE == SImode) \
|
2112 |
|
|
fprintf (FILE, "\t.word\t"); \
|
2113 |
|
|
else \
|
2114 |
|
|
fprintf (FILE, "\t.xword\t"); \
|
2115 |
|
|
assemble_name (FILE, label); \
|
2116 |
|
|
fputc ('\n', FILE); \
|
2117 |
|
|
} while (0)
|
2118 |
|
|
|
2119 |
|
|
/* This is how to output an element of a case-vector that is relative.
|
2120 |
|
|
(SPARC uses such vectors only when generating PIC.) */
|
2121 |
|
|
|
2122 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
2123 |
|
|
do { \
|
2124 |
|
|
char label[30]; \
|
2125 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
|
2126 |
|
|
if (CASE_VECTOR_MODE == SImode) \
|
2127 |
|
|
fprintf (FILE, "\t.word\t"); \
|
2128 |
|
|
else \
|
2129 |
|
|
fprintf (FILE, "\t.xword\t"); \
|
2130 |
|
|
assemble_name (FILE, label); \
|
2131 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
|
2132 |
|
|
fputc ('-', FILE); \
|
2133 |
|
|
assemble_name (FILE, label); \
|
2134 |
|
|
fputc ('\n', FILE); \
|
2135 |
|
|
} while (0)
|
2136 |
|
|
|
2137 |
|
|
/* This is what to output before and after case-vector (both
|
2138 |
|
|
relative and absolute). If .subsection -1 works, we put case-vectors
|
2139 |
|
|
at the beginning of the current section. */
|
2140 |
|
|
|
2141 |
|
|
#ifdef HAVE_GAS_SUBSECTION_ORDERING
|
2142 |
|
|
|
2143 |
|
|
#define ASM_OUTPUT_ADDR_VEC_START(FILE) \
|
2144 |
|
|
fprintf(FILE, "\t.subsection\t-1\n")
|
2145 |
|
|
|
2146 |
|
|
#define ASM_OUTPUT_ADDR_VEC_END(FILE) \
|
2147 |
|
|
fprintf(FILE, "\t.previous\n")
|
2148 |
|
|
|
2149 |
|
|
#endif
|
2150 |
|
|
|
2151 |
|
|
/* This is how to output an assembler line
|
2152 |
|
|
that says to advance the location counter
|
2153 |
|
|
to a multiple of 2**LOG bytes. */
|
2154 |
|
|
|
2155 |
|
|
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
2156 |
|
|
if ((LOG) != 0) \
|
2157 |
|
|
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
|
2158 |
|
|
|
2159 |
|
|
/* This is how to output an assembler line that says to advance
|
2160 |
|
|
the location counter to a multiple of 2**LOG bytes using the
|
2161 |
|
|
"nop" instruction as padding. */
|
2162 |
|
|
#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
|
2163 |
|
|
if ((LOG) != 0) \
|
2164 |
|
|
fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
|
2165 |
|
|
|
2166 |
|
|
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
2167 |
|
|
fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
|
2168 |
|
|
|
2169 |
|
|
/* This says how to output an assembler line
|
2170 |
|
|
to define a global common symbol. */
|
2171 |
|
|
|
2172 |
|
|
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
2173 |
|
|
( fputs ("\t.common ", (FILE)), \
|
2174 |
|
|
assemble_name ((FILE), (NAME)), \
|
2175 |
|
|
fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
|
2176 |
|
|
|
2177 |
|
|
/* This says how to output an assembler line to define a local common
|
2178 |
|
|
symbol. */
|
2179 |
|
|
|
2180 |
|
|
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
|
2181 |
|
|
( fputs ("\t.reserve ", (FILE)), \
|
2182 |
|
|
assemble_name ((FILE), (NAME)), \
|
2183 |
|
|
fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
|
2184 |
|
|
(SIZE), ((ALIGNED) / BITS_PER_UNIT)))
|
2185 |
|
|
|
2186 |
|
|
/* A C statement (sans semicolon) to output to the stdio stream
|
2187 |
|
|
FILE the assembler definition of uninitialized global DECL named
|
2188 |
|
|
NAME whose size is SIZE bytes and alignment is ALIGN bytes.
|
2189 |
|
|
Try to use asm_output_aligned_bss to implement this macro. */
|
2190 |
|
|
|
2191 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
2192 |
|
|
do { \
|
2193 |
|
|
ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
|
2194 |
|
|
} while (0)
|
2195 |
|
|
|
2196 |
|
|
#define IDENT_ASM_OP "\t.ident\t"
|
2197 |
|
|
|
2198 |
|
|
/* Output #ident as a .ident. */
|
2199 |
|
|
|
2200 |
|
|
#define ASM_OUTPUT_IDENT(FILE, NAME) \
|
2201 |
|
|
fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
|
2202 |
|
|
|
2203 |
|
|
/* Prettify the assembly. */
|
2204 |
|
|
|
2205 |
|
|
extern int sparc_indent_opcode;
|
2206 |
|
|
|
2207 |
|
|
#define ASM_OUTPUT_OPCODE(FILE, PTR) \
|
2208 |
|
|
do { \
|
2209 |
|
|
if (sparc_indent_opcode) \
|
2210 |
|
|
{ \
|
2211 |
|
|
putc (' ', FILE); \
|
2212 |
|
|
sparc_indent_opcode = 0; \
|
2213 |
|
|
} \
|
2214 |
|
|
} while (0)
|
2215 |
|
|
|
2216 |
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
2217 |
|
|
((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
|
2218 |
|
|
|| (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
|
2219 |
|
|
|
2220 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
2221 |
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
2222 |
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
2223 |
|
|
|
2224 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
2225 |
|
|
|
2226 |
|
|
/* Print a memory address as an operand to reference that memory location. */
|
2227 |
|
|
|
2228 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
2229 |
|
|
{ register rtx base, index = 0; \
|
2230 |
|
|
int offset = 0; \
|
2231 |
|
|
register rtx addr = ADDR; \
|
2232 |
|
|
if (GET_CODE (addr) == REG) \
|
2233 |
|
|
fputs (reg_names[REGNO (addr)], FILE); \
|
2234 |
|
|
else if (GET_CODE (addr) == PLUS) \
|
2235 |
|
|
{ \
|
2236 |
|
|
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
|
2237 |
|
|
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
|
2238 |
|
|
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
|
2239 |
|
|
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
|
2240 |
|
|
else \
|
2241 |
|
|
base = XEXP (addr, 0), index = XEXP (addr, 1); \
|
2242 |
|
|
if (GET_CODE (base) == LO_SUM) \
|
2243 |
|
|
{ \
|
2244 |
|
|
gcc_assert (USE_AS_OFFSETABLE_LO10 \
|
2245 |
|
|
&& TARGET_ARCH64 \
|
2246 |
|
|
&& ! TARGET_CM_MEDMID); \
|
2247 |
|
|
output_operand (XEXP (base, 0), 0); \
|
2248 |
|
|
fputs ("+%lo(", FILE); \
|
2249 |
|
|
output_address (XEXP (base, 1)); \
|
2250 |
|
|
fprintf (FILE, ")+%d", offset); \
|
2251 |
|
|
} \
|
2252 |
|
|
else \
|
2253 |
|
|
{ \
|
2254 |
|
|
fputs (reg_names[REGNO (base)], FILE); \
|
2255 |
|
|
if (index == 0) \
|
2256 |
|
|
fprintf (FILE, "%+d", offset); \
|
2257 |
|
|
else if (GET_CODE (index) == REG) \
|
2258 |
|
|
fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
|
2259 |
|
|
else if (GET_CODE (index) == SYMBOL_REF \
|
2260 |
|
|
|| GET_CODE (index) == LABEL_REF \
|
2261 |
|
|
|| GET_CODE (index) == CONST) \
|
2262 |
|
|
fputc ('+', FILE), output_addr_const (FILE, index); \
|
2263 |
|
|
else gcc_unreachable (); \
|
2264 |
|
|
} \
|
2265 |
|
|
} \
|
2266 |
|
|
else if (GET_CODE (addr) == MINUS \
|
2267 |
|
|
&& GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
|
2268 |
|
|
{ \
|
2269 |
|
|
output_addr_const (FILE, XEXP (addr, 0)); \
|
2270 |
|
|
fputs ("-(", FILE); \
|
2271 |
|
|
output_addr_const (FILE, XEXP (addr, 1)); \
|
2272 |
|
|
fputs ("-.)", FILE); \
|
2273 |
|
|
} \
|
2274 |
|
|
else if (GET_CODE (addr) == LO_SUM) \
|
2275 |
|
|
{ \
|
2276 |
|
|
output_operand (XEXP (addr, 0), 0); \
|
2277 |
|
|
if (TARGET_CM_MEDMID) \
|
2278 |
|
|
fputs ("+%l44(", FILE); \
|
2279 |
|
|
else \
|
2280 |
|
|
fputs ("+%lo(", FILE); \
|
2281 |
|
|
output_address (XEXP (addr, 1)); \
|
2282 |
|
|
fputc (')', FILE); \
|
2283 |
|
|
} \
|
2284 |
|
|
else if (flag_pic && GET_CODE (addr) == CONST \
|
2285 |
|
|
&& GET_CODE (XEXP (addr, 0)) == MINUS \
|
2286 |
|
|
&& GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
|
2287 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
|
2288 |
|
|
&& XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
|
2289 |
|
|
{ \
|
2290 |
|
|
addr = XEXP (addr, 0); \
|
2291 |
|
|
output_addr_const (FILE, XEXP (addr, 0)); \
|
2292 |
|
|
/* Group the args of the second CONST in parenthesis. */ \
|
2293 |
|
|
fputs ("-(", FILE); \
|
2294 |
|
|
/* Skip past the second CONST--it does nothing for us. */\
|
2295 |
|
|
output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
|
2296 |
|
|
/* Close the parenthesis. */ \
|
2297 |
|
|
fputc (')', FILE); \
|
2298 |
|
|
} \
|
2299 |
|
|
else \
|
2300 |
|
|
{ \
|
2301 |
|
|
output_addr_const (FILE, addr); \
|
2302 |
|
|
} \
|
2303 |
|
|
}
|
2304 |
|
|
|
2305 |
|
|
/* TLS support defaulting to original Sun flavor. GNU extensions
|
2306 |
|
|
must be activated in separate configuration files. */
|
2307 |
|
|
#ifdef HAVE_AS_TLS
|
2308 |
|
|
#define TARGET_TLS 1
|
2309 |
|
|
#else
|
2310 |
|
|
#define TARGET_TLS 0
|
2311 |
|
|
#endif
|
2312 |
|
|
|
2313 |
|
|
#define TARGET_SUN_TLS TARGET_TLS
|
2314 |
|
|
#define TARGET_GNU_TLS 0
|
2315 |
|
|
|
2316 |
|
|
/* The number of Pmode words for the setjmp buffer. */
|
2317 |
|
|
#define JMP_BUF_SIZE 12
|
2318 |
|
|
|
2319 |
|
|
/* We use gcc _mcount for profiling. */
|
2320 |
|
|
#define NO_PROFILE_COUNTERS 0
|