1 |
282 |
jeremybenn |
/* Copyright (C) 2008, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include <spu_mfcio.h>
|
25 |
|
|
#include <spu_internals.h>
|
26 |
|
|
#include <spu_intrinsics.h>
|
27 |
|
|
#include <spu_cache.h>
|
28 |
|
|
|
29 |
|
|
extern unsigned long long __ea_local_store;
|
30 |
|
|
extern char __cache_tag_array_size;
|
31 |
|
|
|
32 |
|
|
#define LINE_SIZE 128
|
33 |
|
|
#define TAG_MASK (LINE_SIZE - 1)
|
34 |
|
|
|
35 |
|
|
#define WAYS 4
|
36 |
|
|
#define SET_MASK ((int) &__cache_tag_array_size - LINE_SIZE)
|
37 |
|
|
|
38 |
|
|
#define CACHE_LINES ((int) &__cache_tag_array_size / \
|
39 |
|
|
sizeof (struct __cache_tag_array) * WAYS)
|
40 |
|
|
|
41 |
|
|
struct __cache_tag_array
|
42 |
|
|
{
|
43 |
|
|
unsigned int tag_lo[WAYS];
|
44 |
|
|
unsigned int tag_hi[WAYS];
|
45 |
|
|
void *base[WAYS];
|
46 |
|
|
int reserved[WAYS];
|
47 |
|
|
vector unsigned short dirty_bits[WAYS];
|
48 |
|
|
};
|
49 |
|
|
|
50 |
|
|
extern struct __cache_tag_array __cache_tag_array[];
|
51 |
|
|
extern char __cache[];
|
52 |
|
|
|
53 |
|
|
/* In order to make the code seem a little cleaner, and to avoid having
|
54 |
|
|
64/32 bit ifdefs all over the place, we use macros. */
|
55 |
|
|
|
56 |
|
|
#ifdef __EA64__
|
57 |
|
|
typedef unsigned long long addr;
|
58 |
|
|
|
59 |
|
|
#define CHECK_TAG(_entry, _way, _tag) \
|
60 |
|
|
((_entry)->tag_lo[(_way)] == ((_tag) & 0xFFFFFFFF) \
|
61 |
|
|
&& (_entry)->tag_hi[(_way)] == ((_tag) >> 32))
|
62 |
|
|
|
63 |
|
|
#define GET_TAG(_entry, _way) \
|
64 |
|
|
((unsigned long long)(_entry)->tag_hi[(_way)] << 32 \
|
65 |
|
|
| (unsigned long long)(_entry)->tag_lo[(_way)])
|
66 |
|
|
|
67 |
|
|
#define SET_TAG(_entry, _way, _tag) \
|
68 |
|
|
(_entry)->tag_lo[(_way)] = (_tag) & 0xFFFFFFFF; \
|
69 |
|
|
(_entry)->tag_hi[(_way)] = (_tag) >> 32
|
70 |
|
|
|
71 |
|
|
#else /*__EA32__*/
|
72 |
|
|
typedef unsigned long addr;
|
73 |
|
|
|
74 |
|
|
#define CHECK_TAG(_entry, _way, _tag) \
|
75 |
|
|
((_entry)->tag_lo[(_way)] == (_tag))
|
76 |
|
|
|
77 |
|
|
#define GET_TAG(_entry, _way) \
|
78 |
|
|
((_entry)->tag_lo[(_way)])
|
79 |
|
|
|
80 |
|
|
#define SET_TAG(_entry, _way, _tag) \
|
81 |
|
|
(_entry)->tag_lo[(_way)] = (_tag)
|
82 |
|
|
|
83 |
|
|
#endif
|
84 |
|
|
|
85 |
|
|
/* In GET_ENTRY, we cast away the high 32 bits,
|
86 |
|
|
as the tag is only in the low 32. */
|
87 |
|
|
|
88 |
|
|
#define GET_ENTRY(_addr) \
|
89 |
|
|
((struct __cache_tag_array *) \
|
90 |
|
|
si_to_uint (si_a (si_and (si_from_uint ((unsigned int) (addr) (_addr)), \
|
91 |
|
|
si_from_uint (SET_MASK)), \
|
92 |
|
|
si_from_uint ((unsigned int) __cache_tag_array))))
|
93 |
|
|
|
94 |
|
|
#define GET_CACHE_LINE(_addr, _way) \
|
95 |
|
|
((void *) (__cache + ((_addr) & SET_MASK) * WAYS) + ((_way) * LINE_SIZE));
|
96 |
|
|
|
97 |
|
|
#define CHECK_DIRTY(_vec) (si_to_uint (si_orx ((qword) (_vec))))
|
98 |
|
|
#define SET_EMPTY(_entry, _way) ((_entry)->tag_lo[(_way)] = 1)
|
99 |
|
|
#define CHECK_EMPTY(_entry, _way) ((_entry)->tag_lo[(_way)] == 1)
|
100 |
|
|
|
101 |
|
|
#define LS_FLAG 0x80000000
|
102 |
|
|
#define SET_IS_LS(_entry, _way) ((_entry)->reserved[(_way)] |= LS_FLAG)
|
103 |
|
|
#define CHECK_IS_LS(_entry, _way) ((_entry)->reserved[(_way)] & LS_FLAG)
|
104 |
|
|
#define GET_LRU(_entry, _way) ((_entry)->reserved[(_way)] & ~LS_FLAG)
|
105 |
|
|
|
106 |
|
|
static int dma_tag = 32;
|
107 |
|
|
|
108 |
|
|
static void
|
109 |
|
|
__cache_evict_entry (struct __cache_tag_array *entry, int way)
|
110 |
|
|
{
|
111 |
|
|
addr tag = GET_TAG (entry, way);
|
112 |
|
|
|
113 |
|
|
if (CHECK_DIRTY (entry->dirty_bits[way]) && !CHECK_IS_LS (entry, way))
|
114 |
|
|
{
|
115 |
|
|
#ifdef NONATOMIC
|
116 |
|
|
/* Non-atomic writes. */
|
117 |
|
|
unsigned int oldmask, mach_stat;
|
118 |
|
|
char *line = ((void *) 0);
|
119 |
|
|
|
120 |
|
|
/* Enter critical section. */
|
121 |
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
122 |
|
|
spu_idisable ();
|
123 |
|
|
|
124 |
|
|
/* Issue DMA request. */
|
125 |
|
|
line = GET_CACHE_LINE (entry->tag_lo[way], way);
|
126 |
|
|
mfc_put (line, tag, LINE_SIZE, dma_tag, 0, 0);
|
127 |
|
|
|
128 |
|
|
/* Wait for DMA completion. */
|
129 |
|
|
oldmask = mfc_read_tag_mask ();
|
130 |
|
|
mfc_write_tag_mask (1 << dma_tag);
|
131 |
|
|
mfc_read_tag_status_all ();
|
132 |
|
|
mfc_write_tag_mask (oldmask);
|
133 |
|
|
|
134 |
|
|
/* Leave critical section. */
|
135 |
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
136 |
|
|
spu_ienable ();
|
137 |
|
|
#else
|
138 |
|
|
/* Allocate a buffer large enough that we know it has 128 bytes
|
139 |
|
|
that are 128 byte aligned (for DMA). */
|
140 |
|
|
|
141 |
|
|
char buffer[LINE_SIZE + 127];
|
142 |
|
|
qword *buf_ptr = (qword *) (((unsigned int) (buffer) + 127) & ~127);
|
143 |
|
|
qword *line = GET_CACHE_LINE (entry->tag_lo[way], way);
|
144 |
|
|
qword bits;
|
145 |
|
|
unsigned int mach_stat;
|
146 |
|
|
|
147 |
|
|
/* Enter critical section. */
|
148 |
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
149 |
|
|
spu_idisable ();
|
150 |
|
|
|
151 |
|
|
do
|
152 |
|
|
{
|
153 |
|
|
/* We atomically read the current memory into a buffer
|
154 |
|
|
modify the dirty bytes in the buffer, and write it
|
155 |
|
|
back. If writeback fails, loop and try again. */
|
156 |
|
|
|
157 |
|
|
mfc_getllar (buf_ptr, tag, 0, 0);
|
158 |
|
|
mfc_read_atomic_status ();
|
159 |
|
|
|
160 |
|
|
/* The method we're using to write 16 dirty bytes into
|
161 |
|
|
the buffer at a time uses fsmb which in turn uses
|
162 |
|
|
the least significant 16 bits of word 0, so we
|
163 |
|
|
load the bits and rotate so that the first bit of
|
164 |
|
|
the bitmap is in the first bit that fsmb will use. */
|
165 |
|
|
|
166 |
|
|
bits = (qword) entry->dirty_bits[way];
|
167 |
|
|
bits = si_rotqbyi (bits, -2);
|
168 |
|
|
|
169 |
|
|
/* Si_fsmb creates the mask of dirty bytes.
|
170 |
|
|
Use selb to nab the appropriate bits. */
|
171 |
|
|
buf_ptr[0] = si_selb (buf_ptr[0], line[0], si_fsmb (bits));
|
172 |
|
|
|
173 |
|
|
/* Rotate to next 16 byte section of cache. */
|
174 |
|
|
bits = si_rotqbyi (bits, 2);
|
175 |
|
|
|
176 |
|
|
buf_ptr[1] = si_selb (buf_ptr[1], line[1], si_fsmb (bits));
|
177 |
|
|
bits = si_rotqbyi (bits, 2);
|
178 |
|
|
buf_ptr[2] = si_selb (buf_ptr[2], line[2], si_fsmb (bits));
|
179 |
|
|
bits = si_rotqbyi (bits, 2);
|
180 |
|
|
buf_ptr[3] = si_selb (buf_ptr[3], line[3], si_fsmb (bits));
|
181 |
|
|
bits = si_rotqbyi (bits, 2);
|
182 |
|
|
buf_ptr[4] = si_selb (buf_ptr[4], line[4], si_fsmb (bits));
|
183 |
|
|
bits = si_rotqbyi (bits, 2);
|
184 |
|
|
buf_ptr[5] = si_selb (buf_ptr[5], line[5], si_fsmb (bits));
|
185 |
|
|
bits = si_rotqbyi (bits, 2);
|
186 |
|
|
buf_ptr[6] = si_selb (buf_ptr[6], line[6], si_fsmb (bits));
|
187 |
|
|
bits = si_rotqbyi (bits, 2);
|
188 |
|
|
buf_ptr[7] = si_selb (buf_ptr[7], line[7], si_fsmb (bits));
|
189 |
|
|
bits = si_rotqbyi (bits, 2);
|
190 |
|
|
|
191 |
|
|
mfc_putllc (buf_ptr, tag, 0, 0);
|
192 |
|
|
}
|
193 |
|
|
while (mfc_read_atomic_status ());
|
194 |
|
|
|
195 |
|
|
/* Leave critical section. */
|
196 |
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
197 |
|
|
spu_ienable ();
|
198 |
|
|
#endif
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* In any case, marking the lo tag with 1 which denotes empty. */
|
202 |
|
|
SET_EMPTY (entry, way);
|
203 |
|
|
entry->dirty_bits[way] = (vector unsigned short) si_from_uint (0);
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
void
|
207 |
|
|
__cache_evict (__ea void *ea)
|
208 |
|
|
{
|
209 |
|
|
addr tag = (addr) ea & ~TAG_MASK;
|
210 |
|
|
struct __cache_tag_array *entry = GET_ENTRY (ea);
|
211 |
|
|
int i = 0;
|
212 |
|
|
|
213 |
|
|
/* Cycles through all the possible ways an address could be at
|
214 |
|
|
and evicts the way if found. */
|
215 |
|
|
|
216 |
|
|
for (i = 0; i < WAYS; i++)
|
217 |
|
|
if (CHECK_TAG (entry, i, tag))
|
218 |
|
|
__cache_evict_entry (entry, i);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
static void *
|
222 |
|
|
__cache_fill (int way, addr tag)
|
223 |
|
|
{
|
224 |
|
|
unsigned int oldmask, mach_stat;
|
225 |
|
|
char *line = ((void *) 0);
|
226 |
|
|
|
227 |
|
|
/* Reserve our DMA tag. */
|
228 |
|
|
if (dma_tag == 32)
|
229 |
|
|
dma_tag = mfc_tag_reserve ();
|
230 |
|
|
|
231 |
|
|
/* Enter critical section. */
|
232 |
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
233 |
|
|
spu_idisable ();
|
234 |
|
|
|
235 |
|
|
/* Issue DMA request. */
|
236 |
|
|
line = GET_CACHE_LINE (tag, way);
|
237 |
|
|
mfc_get (line, tag, LINE_SIZE, dma_tag, 0, 0);
|
238 |
|
|
|
239 |
|
|
/* Wait for DMA completion. */
|
240 |
|
|
oldmask = mfc_read_tag_mask ();
|
241 |
|
|
mfc_write_tag_mask (1 << dma_tag);
|
242 |
|
|
mfc_read_tag_status_all ();
|
243 |
|
|
mfc_write_tag_mask (oldmask);
|
244 |
|
|
|
245 |
|
|
/* Leave critical section. */
|
246 |
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
247 |
|
|
spu_ienable ();
|
248 |
|
|
|
249 |
|
|
return (void *) line;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
static void
|
253 |
|
|
__cache_miss (__ea void *ea, struct __cache_tag_array *entry, int way)
|
254 |
|
|
{
|
255 |
|
|
|
256 |
|
|
addr tag = (addr) ea & ~TAG_MASK;
|
257 |
|
|
unsigned int lru = 0;
|
258 |
|
|
int i = 0;
|
259 |
|
|
int idx = 0;
|
260 |
|
|
|
261 |
|
|
/* If way > 4, then there are no empty slots, so we must evict
|
262 |
|
|
the least recently used entry. */
|
263 |
|
|
if (way >= 4)
|
264 |
|
|
{
|
265 |
|
|
for (i = 0; i < WAYS; i++)
|
266 |
|
|
{
|
267 |
|
|
if (GET_LRU (entry, i) > lru)
|
268 |
|
|
{
|
269 |
|
|
lru = GET_LRU (entry, i);
|
270 |
|
|
idx = i;
|
271 |
|
|
}
|
272 |
|
|
}
|
273 |
|
|
__cache_evict_entry (entry, idx);
|
274 |
|
|
way = idx;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
/* Set the empty entry's tag and fill it's cache line. */
|
278 |
|
|
|
279 |
|
|
SET_TAG (entry, way, tag);
|
280 |
|
|
entry->reserved[way] = 0;
|
281 |
|
|
|
282 |
|
|
/* Check if the address is just an effective address within the
|
283 |
|
|
SPU's local store. */
|
284 |
|
|
|
285 |
|
|
/* Because the LS is not 256k aligned, we can't do a nice and mask
|
286 |
|
|
here to compare, so we must check the whole range. */
|
287 |
|
|
|
288 |
|
|
if ((addr) ea >= (addr) __ea_local_store
|
289 |
|
|
&& (addr) ea < (addr) (__ea_local_store + 0x40000))
|
290 |
|
|
{
|
291 |
|
|
SET_IS_LS (entry, way);
|
292 |
|
|
entry->base[way] =
|
293 |
|
|
(void *) ((unsigned int) ((addr) ea -
|
294 |
|
|
(addr) __ea_local_store) & ~0x7f);
|
295 |
|
|
}
|
296 |
|
|
else
|
297 |
|
|
{
|
298 |
|
|
entry->base[way] = __cache_fill (way, tag);
|
299 |
|
|
}
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
void *
|
303 |
|
|
__cache_fetch_dirty (__ea void *ea, int n_bytes_dirty)
|
304 |
|
|
{
|
305 |
|
|
#ifdef __EA64__
|
306 |
|
|
unsigned int tag_hi;
|
307 |
|
|
qword etag_hi;
|
308 |
|
|
#endif
|
309 |
|
|
unsigned int tag_lo;
|
310 |
|
|
struct __cache_tag_array *entry;
|
311 |
|
|
|
312 |
|
|
qword etag_lo;
|
313 |
|
|
qword equal;
|
314 |
|
|
qword bit_mask;
|
315 |
|
|
qword way;
|
316 |
|
|
|
317 |
|
|
/* This first chunk, we merely fill the pointer and tag. */
|
318 |
|
|
|
319 |
|
|
entry = GET_ENTRY (ea);
|
320 |
|
|
|
321 |
|
|
#ifndef __EA64__
|
322 |
|
|
tag_lo =
|
323 |
|
|
si_to_uint (si_andc
|
324 |
|
|
(si_shufb
|
325 |
|
|
(si_from_uint ((addr) ea), si_from_uint (0),
|
326 |
|
|
si_from_uint (0x00010203)), si_from_uint (TAG_MASK)));
|
327 |
|
|
#else
|
328 |
|
|
tag_lo =
|
329 |
|
|
si_to_uint (si_andc
|
330 |
|
|
(si_shufb
|
331 |
|
|
(si_from_ullong ((addr) ea), si_from_uint (0),
|
332 |
|
|
si_from_uint (0x04050607)), si_from_uint (TAG_MASK)));
|
333 |
|
|
|
334 |
|
|
tag_hi =
|
335 |
|
|
si_to_uint (si_shufb
|
336 |
|
|
(si_from_ullong ((addr) ea), si_from_uint (0),
|
337 |
|
|
si_from_uint (0x00010203)));
|
338 |
|
|
#endif
|
339 |
|
|
|
340 |
|
|
/* Increment LRU in reserved bytes. */
|
341 |
|
|
si_stqd (si_ai (si_lqd (si_from_ptr (entry), 48), 1),
|
342 |
|
|
si_from_ptr (entry), 48);
|
343 |
|
|
|
344 |
|
|
missreturn:
|
345 |
|
|
/* Check if the entry's lo_tag is equal to the address' lo_tag. */
|
346 |
|
|
etag_lo = si_lqd (si_from_ptr (entry), 0);
|
347 |
|
|
equal = si_ceq (etag_lo, si_from_uint (tag_lo));
|
348 |
|
|
#ifdef __EA64__
|
349 |
|
|
/* And the high tag too. */
|
350 |
|
|
etag_hi = si_lqd (si_from_ptr (entry), 16);
|
351 |
|
|
equal = si_and (equal, (si_ceq (etag_hi, si_from_uint (tag_hi))));
|
352 |
|
|
#endif
|
353 |
|
|
|
354 |
|
|
if ((si_to_uint (si_orx (equal)) == 0))
|
355 |
|
|
goto misshandler;
|
356 |
|
|
|
357 |
|
|
if (n_bytes_dirty)
|
358 |
|
|
{
|
359 |
|
|
/* way = 0x40,0x50,0x60,0x70 for each way, which is also the
|
360 |
|
|
offset of the appropriate dirty bits. */
|
361 |
|
|
way = si_shli (si_clz (si_gbb (equal)), 2);
|
362 |
|
|
|
363 |
|
|
/* To create the bit_mask, we set it to all 1s (uint -1), then we
|
364 |
|
|
shift it over (128 - n_bytes_dirty) times. */
|
365 |
|
|
|
366 |
|
|
bit_mask = si_from_uint (-1);
|
367 |
|
|
|
368 |
|
|
bit_mask =
|
369 |
|
|
si_shlqby (bit_mask, si_from_uint ((LINE_SIZE - n_bytes_dirty) / 8));
|
370 |
|
|
|
371 |
|
|
bit_mask =
|
372 |
|
|
si_shlqbi (bit_mask, si_from_uint ((LINE_SIZE - n_bytes_dirty) % 8));
|
373 |
|
|
|
374 |
|
|
/* Rotate it around to the correct offset. */
|
375 |
|
|
bit_mask =
|
376 |
|
|
si_rotqby (bit_mask,
|
377 |
|
|
si_from_uint (-1 * ((addr) ea & TAG_MASK) / 8));
|
378 |
|
|
|
379 |
|
|
bit_mask =
|
380 |
|
|
si_rotqbi (bit_mask,
|
381 |
|
|
si_from_uint (-1 * ((addr) ea & TAG_MASK) % 8));
|
382 |
|
|
|
383 |
|
|
/* Update the dirty bits. */
|
384 |
|
|
si_stqx (si_or (si_lqx (si_from_ptr (entry), way), bit_mask),
|
385 |
|
|
si_from_ptr (entry), way);
|
386 |
|
|
};
|
387 |
|
|
|
388 |
|
|
/* We've definitely found the right entry, set LRU (reserved) to 0
|
389 |
|
|
maintaining the LS flag (MSB). */
|
390 |
|
|
|
391 |
|
|
si_stqd (si_andc
|
392 |
|
|
(si_lqd (si_from_ptr (entry), 48),
|
393 |
|
|
si_and (equal, si_from_uint (~(LS_FLAG)))),
|
394 |
|
|
si_from_ptr (entry), 48);
|
395 |
|
|
|
396 |
|
|
return (void *)
|
397 |
|
|
si_to_uint (si_a
|
398 |
|
|
(si_orx
|
399 |
|
|
(si_and (si_lqd (si_from_ptr (entry), 32), equal)),
|
400 |
|
|
si_from_uint (((unsigned int) (addr) ea) & TAG_MASK)));
|
401 |
|
|
|
402 |
|
|
misshandler:
|
403 |
|
|
equal = si_ceqi (etag_lo, 1);
|
404 |
|
|
__cache_miss (ea, entry, (si_to_uint (si_clz (si_gbb (equal))) - 16) >> 2);
|
405 |
|
|
goto missreturn;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
void *
|
409 |
|
|
__cache_fetch (__ea void *ea)
|
410 |
|
|
{
|
411 |
|
|
return __cache_fetch_dirty (ea, 0);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
void
|
415 |
|
|
__cache_touch (__ea void *ea __attribute__ ((unused)))
|
416 |
|
|
{
|
417 |
|
|
/* NO-OP for now. */
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
void __cache_flush (void) __attribute__ ((destructor));
|
421 |
|
|
void
|
422 |
|
|
__cache_flush (void)
|
423 |
|
|
{
|
424 |
|
|
struct __cache_tag_array *entry = __cache_tag_array;
|
425 |
|
|
unsigned int i;
|
426 |
|
|
int j;
|
427 |
|
|
|
428 |
|
|
/* Cycle through each cache entry and evict all used ways. */
|
429 |
|
|
|
430 |
|
|
for (i = 0; i < CACHE_LINES / WAYS; i++)
|
431 |
|
|
{
|
432 |
|
|
for (j = 0; j < WAYS; j++)
|
433 |
|
|
if (!CHECK_EMPTY (entry, j))
|
434 |
|
|
__cache_evict_entry (entry, j);
|
435 |
|
|
|
436 |
|
|
entry++;
|
437 |
|
|
}
|
438 |
|
|
}
|