1 |
280 |
jeremybenn |
/* Utility routines for data type conversion for GCC.
|
2 |
|
|
Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
|
3 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
/* These routines are somewhat language-independent utility function
|
24 |
|
|
intended to be called by the language-specific convert () functions. */
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "convert.h"
|
33 |
|
|
#include "toplev.h"
|
34 |
|
|
#include "langhooks.h"
|
35 |
|
|
#include "real.h"
|
36 |
|
|
#include "fixed-value.h"
|
37 |
|
|
|
38 |
|
|
/* Convert EXPR to some pointer or reference type TYPE.
|
39 |
|
|
EXPR must be pointer, reference, integer, enumeral, or literal zero;
|
40 |
|
|
in other cases error is called. */
|
41 |
|
|
|
42 |
|
|
tree
|
43 |
|
|
convert_to_pointer (tree type, tree expr)
|
44 |
|
|
{
|
45 |
|
|
location_t loc = EXPR_LOCATION (expr);
|
46 |
|
|
if (TREE_TYPE (expr) == type)
|
47 |
|
|
return expr;
|
48 |
|
|
|
49 |
|
|
/* Propagate overflow to the NULL pointer. */
|
50 |
|
|
if (integer_zerop (expr))
|
51 |
|
|
return force_fit_type_double (type, 0, 0, 0, TREE_OVERFLOW (expr));
|
52 |
|
|
|
53 |
|
|
switch (TREE_CODE (TREE_TYPE (expr)))
|
54 |
|
|
{
|
55 |
|
|
case POINTER_TYPE:
|
56 |
|
|
case REFERENCE_TYPE:
|
57 |
|
|
{
|
58 |
|
|
/* If the pointers point to different address spaces, conversion needs
|
59 |
|
|
to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
|
60 |
|
|
addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
|
61 |
|
|
addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
|
62 |
|
|
|
63 |
|
|
if (to_as == from_as)
|
64 |
|
|
return fold_build1_loc (loc, NOP_EXPR, type, expr);
|
65 |
|
|
else
|
66 |
|
|
return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
case INTEGER_TYPE:
|
70 |
|
|
case ENUMERAL_TYPE:
|
71 |
|
|
case BOOLEAN_TYPE:
|
72 |
|
|
{
|
73 |
|
|
/* If the input precision differs from the target pointer type
|
74 |
|
|
precision, first convert the input expression to an integer type of
|
75 |
|
|
the target precision. Some targets, e.g. VMS, need several pointer
|
76 |
|
|
sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
|
77 |
|
|
unsigned int pprec = TYPE_PRECISION (type);
|
78 |
|
|
unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
|
79 |
|
|
|
80 |
|
|
if (eprec != pprec)
|
81 |
|
|
expr = fold_build1_loc (loc, NOP_EXPR,
|
82 |
|
|
lang_hooks.types.type_for_size (pprec, 0),
|
83 |
|
|
expr);
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
return fold_build1_loc (loc, CONVERT_EXPR, type, expr);
|
87 |
|
|
|
88 |
|
|
default:
|
89 |
|
|
error ("cannot convert to a pointer type");
|
90 |
|
|
return convert_to_pointer (type, integer_zero_node);
|
91 |
|
|
}
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
/* Avoid any floating point extensions from EXP. */
|
95 |
|
|
tree
|
96 |
|
|
strip_float_extensions (tree exp)
|
97 |
|
|
{
|
98 |
|
|
tree sub, expt, subt;
|
99 |
|
|
|
100 |
|
|
/* For floating point constant look up the narrowest type that can hold
|
101 |
|
|
it properly and handle it like (type)(narrowest_type)constant.
|
102 |
|
|
This way we can optimize for instance a=a*2.0 where "a" is float
|
103 |
|
|
but 2.0 is double constant. */
|
104 |
|
|
if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
|
105 |
|
|
{
|
106 |
|
|
REAL_VALUE_TYPE orig;
|
107 |
|
|
tree type = NULL;
|
108 |
|
|
|
109 |
|
|
orig = TREE_REAL_CST (exp);
|
110 |
|
|
if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
|
111 |
|
|
&& exact_real_truncate (TYPE_MODE (float_type_node), &orig))
|
112 |
|
|
type = float_type_node;
|
113 |
|
|
else if (TYPE_PRECISION (TREE_TYPE (exp))
|
114 |
|
|
> TYPE_PRECISION (double_type_node)
|
115 |
|
|
&& exact_real_truncate (TYPE_MODE (double_type_node), &orig))
|
116 |
|
|
type = double_type_node;
|
117 |
|
|
if (type)
|
118 |
|
|
return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
if (!CONVERT_EXPR_P (exp))
|
122 |
|
|
return exp;
|
123 |
|
|
|
124 |
|
|
sub = TREE_OPERAND (exp, 0);
|
125 |
|
|
subt = TREE_TYPE (sub);
|
126 |
|
|
expt = TREE_TYPE (exp);
|
127 |
|
|
|
128 |
|
|
if (!FLOAT_TYPE_P (subt))
|
129 |
|
|
return exp;
|
130 |
|
|
|
131 |
|
|
if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
|
132 |
|
|
return exp;
|
133 |
|
|
|
134 |
|
|
if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
|
135 |
|
|
return exp;
|
136 |
|
|
|
137 |
|
|
return strip_float_extensions (sub);
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
/* Convert EXPR to some floating-point type TYPE.
|
142 |
|
|
|
143 |
|
|
EXPR must be float, fixed-point, integer, or enumeral;
|
144 |
|
|
in other cases error is called. */
|
145 |
|
|
|
146 |
|
|
tree
|
147 |
|
|
convert_to_real (tree type, tree expr)
|
148 |
|
|
{
|
149 |
|
|
enum built_in_function fcode = builtin_mathfn_code (expr);
|
150 |
|
|
tree itype = TREE_TYPE (expr);
|
151 |
|
|
|
152 |
|
|
/* Disable until we figure out how to decide whether the functions are
|
153 |
|
|
present in runtime. */
|
154 |
|
|
/* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
|
155 |
|
|
if (optimize
|
156 |
|
|
&& (TYPE_MODE (type) == TYPE_MODE (double_type_node)
|
157 |
|
|
|| TYPE_MODE (type) == TYPE_MODE (float_type_node)))
|
158 |
|
|
{
|
159 |
|
|
switch (fcode)
|
160 |
|
|
{
|
161 |
|
|
#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
|
162 |
|
|
CASE_MATHFN (COSH)
|
163 |
|
|
CASE_MATHFN (EXP)
|
164 |
|
|
CASE_MATHFN (EXP10)
|
165 |
|
|
CASE_MATHFN (EXP2)
|
166 |
|
|
CASE_MATHFN (EXPM1)
|
167 |
|
|
CASE_MATHFN (GAMMA)
|
168 |
|
|
CASE_MATHFN (J0)
|
169 |
|
|
CASE_MATHFN (J1)
|
170 |
|
|
CASE_MATHFN (LGAMMA)
|
171 |
|
|
CASE_MATHFN (POW10)
|
172 |
|
|
CASE_MATHFN (SINH)
|
173 |
|
|
CASE_MATHFN (TGAMMA)
|
174 |
|
|
CASE_MATHFN (Y0)
|
175 |
|
|
CASE_MATHFN (Y1)
|
176 |
|
|
/* The above functions may set errno differently with float
|
177 |
|
|
input or output so this transformation is not safe with
|
178 |
|
|
-fmath-errno. */
|
179 |
|
|
if (flag_errno_math)
|
180 |
|
|
break;
|
181 |
|
|
CASE_MATHFN (ACOS)
|
182 |
|
|
CASE_MATHFN (ACOSH)
|
183 |
|
|
CASE_MATHFN (ASIN)
|
184 |
|
|
CASE_MATHFN (ASINH)
|
185 |
|
|
CASE_MATHFN (ATAN)
|
186 |
|
|
CASE_MATHFN (ATANH)
|
187 |
|
|
CASE_MATHFN (CBRT)
|
188 |
|
|
CASE_MATHFN (COS)
|
189 |
|
|
CASE_MATHFN (ERF)
|
190 |
|
|
CASE_MATHFN (ERFC)
|
191 |
|
|
CASE_MATHFN (FABS)
|
192 |
|
|
CASE_MATHFN (LOG)
|
193 |
|
|
CASE_MATHFN (LOG10)
|
194 |
|
|
CASE_MATHFN (LOG2)
|
195 |
|
|
CASE_MATHFN (LOG1P)
|
196 |
|
|
CASE_MATHFN (LOGB)
|
197 |
|
|
CASE_MATHFN (SIN)
|
198 |
|
|
CASE_MATHFN (SQRT)
|
199 |
|
|
CASE_MATHFN (TAN)
|
200 |
|
|
CASE_MATHFN (TANH)
|
201 |
|
|
#undef CASE_MATHFN
|
202 |
|
|
{
|
203 |
|
|
tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
|
204 |
|
|
tree newtype = type;
|
205 |
|
|
|
206 |
|
|
/* We have (outertype)sqrt((innertype)x). Choose the wider mode from
|
207 |
|
|
the both as the safe type for operation. */
|
208 |
|
|
if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
|
209 |
|
|
newtype = TREE_TYPE (arg0);
|
210 |
|
|
|
211 |
|
|
/* Be careful about integer to fp conversions.
|
212 |
|
|
These may overflow still. */
|
213 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (arg0))
|
214 |
|
|
&& TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
|
215 |
|
|
&& (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
|
216 |
|
|
|| TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
|
217 |
|
|
{
|
218 |
|
|
tree fn = mathfn_built_in (newtype, fcode);
|
219 |
|
|
|
220 |
|
|
if (fn)
|
221 |
|
|
{
|
222 |
|
|
tree arg = fold (convert_to_real (newtype, arg0));
|
223 |
|
|
expr = build_call_expr (fn, 1, arg);
|
224 |
|
|
if (newtype == type)
|
225 |
|
|
return expr;
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
}
|
229 |
|
|
default:
|
230 |
|
|
break;
|
231 |
|
|
}
|
232 |
|
|
}
|
233 |
|
|
if (optimize
|
234 |
|
|
&& (((fcode == BUILT_IN_FLOORL
|
235 |
|
|
|| fcode == BUILT_IN_CEILL
|
236 |
|
|
|| fcode == BUILT_IN_ROUNDL
|
237 |
|
|
|| fcode == BUILT_IN_RINTL
|
238 |
|
|
|| fcode == BUILT_IN_TRUNCL
|
239 |
|
|
|| fcode == BUILT_IN_NEARBYINTL)
|
240 |
|
|
&& (TYPE_MODE (type) == TYPE_MODE (double_type_node)
|
241 |
|
|
|| TYPE_MODE (type) == TYPE_MODE (float_type_node)))
|
242 |
|
|
|| ((fcode == BUILT_IN_FLOOR
|
243 |
|
|
|| fcode == BUILT_IN_CEIL
|
244 |
|
|
|| fcode == BUILT_IN_ROUND
|
245 |
|
|
|| fcode == BUILT_IN_RINT
|
246 |
|
|
|| fcode == BUILT_IN_TRUNC
|
247 |
|
|
|| fcode == BUILT_IN_NEARBYINT)
|
248 |
|
|
&& (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
|
249 |
|
|
{
|
250 |
|
|
tree fn = mathfn_built_in (type, fcode);
|
251 |
|
|
|
252 |
|
|
if (fn)
|
253 |
|
|
{
|
254 |
|
|
tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
|
255 |
|
|
|
256 |
|
|
/* Make sure (type)arg0 is an extension, otherwise we could end up
|
257 |
|
|
changing (float)floor(double d) into floorf((float)d), which is
|
258 |
|
|
incorrect because (float)d uses round-to-nearest and can round
|
259 |
|
|
up to the next integer. */
|
260 |
|
|
if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
|
261 |
|
|
return build_call_expr (fn, 1, fold (convert_to_real (type, arg)));
|
262 |
|
|
}
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* Propagate the cast into the operation. */
|
266 |
|
|
if (itype != type && FLOAT_TYPE_P (type))
|
267 |
|
|
switch (TREE_CODE (expr))
|
268 |
|
|
{
|
269 |
|
|
/* Convert (float)-x into -(float)x. This is safe for
|
270 |
|
|
round-to-nearest rounding mode. */
|
271 |
|
|
case ABS_EXPR:
|
272 |
|
|
case NEGATE_EXPR:
|
273 |
|
|
if (!flag_rounding_math
|
274 |
|
|
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
|
275 |
|
|
return build1 (TREE_CODE (expr), type,
|
276 |
|
|
fold (convert_to_real (type,
|
277 |
|
|
TREE_OPERAND (expr, 0))));
|
278 |
|
|
break;
|
279 |
|
|
/* Convert (outertype)((innertype0)a+(innertype1)b)
|
280 |
|
|
into ((newtype)a+(newtype)b) where newtype
|
281 |
|
|
is the widest mode from all of these. */
|
282 |
|
|
case PLUS_EXPR:
|
283 |
|
|
case MINUS_EXPR:
|
284 |
|
|
case MULT_EXPR:
|
285 |
|
|
case RDIV_EXPR:
|
286 |
|
|
{
|
287 |
|
|
tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
|
288 |
|
|
tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
|
289 |
|
|
|
290 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (arg0))
|
291 |
|
|
&& FLOAT_TYPE_P (TREE_TYPE (arg1))
|
292 |
|
|
&& DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
|
293 |
|
|
{
|
294 |
|
|
tree newtype = type;
|
295 |
|
|
|
296 |
|
|
if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
|
297 |
|
|
|| TYPE_MODE (TREE_TYPE (arg1)) == SDmode
|
298 |
|
|
|| TYPE_MODE (type) == SDmode)
|
299 |
|
|
newtype = dfloat32_type_node;
|
300 |
|
|
if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
|
301 |
|
|
|| TYPE_MODE (TREE_TYPE (arg1)) == DDmode
|
302 |
|
|
|| TYPE_MODE (type) == DDmode)
|
303 |
|
|
newtype = dfloat64_type_node;
|
304 |
|
|
if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
|
305 |
|
|
|| TYPE_MODE (TREE_TYPE (arg1)) == TDmode
|
306 |
|
|
|| TYPE_MODE (type) == TDmode)
|
307 |
|
|
newtype = dfloat128_type_node;
|
308 |
|
|
if (newtype == dfloat32_type_node
|
309 |
|
|
|| newtype == dfloat64_type_node
|
310 |
|
|
|| newtype == dfloat128_type_node)
|
311 |
|
|
{
|
312 |
|
|
expr = build2 (TREE_CODE (expr), newtype,
|
313 |
|
|
fold (convert_to_real (newtype, arg0)),
|
314 |
|
|
fold (convert_to_real (newtype, arg1)));
|
315 |
|
|
if (newtype == type)
|
316 |
|
|
return expr;
|
317 |
|
|
break;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
|
321 |
|
|
newtype = TREE_TYPE (arg0);
|
322 |
|
|
if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
|
323 |
|
|
newtype = TREE_TYPE (arg1);
|
324 |
|
|
/* Sometimes this transformation is safe (cannot
|
325 |
|
|
change results through affecting double rounding
|
326 |
|
|
cases) and sometimes it is not. If NEWTYPE is
|
327 |
|
|
wider than TYPE, e.g. (float)((long double)double
|
328 |
|
|
+ (long double)double) converted to
|
329 |
|
|
(float)(double + double), the transformation is
|
330 |
|
|
unsafe regardless of the details of the types
|
331 |
|
|
involved; double rounding can arise if the result
|
332 |
|
|
of NEWTYPE arithmetic is a NEWTYPE value half way
|
333 |
|
|
between two representable TYPE values but the
|
334 |
|
|
exact value is sufficiently different (in the
|
335 |
|
|
right direction) for this difference to be
|
336 |
|
|
visible in ITYPE arithmetic. If NEWTYPE is the
|
337 |
|
|
same as TYPE, however, the transformation may be
|
338 |
|
|
safe depending on the types involved: it is safe
|
339 |
|
|
if the ITYPE has strictly more than twice as many
|
340 |
|
|
mantissa bits as TYPE, can represent infinities
|
341 |
|
|
and NaNs if the TYPE can, and has sufficient
|
342 |
|
|
exponent range for the product or ratio of two
|
343 |
|
|
values representable in the TYPE to be within the
|
344 |
|
|
range of normal values of ITYPE. */
|
345 |
|
|
if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
|
346 |
|
|
&& (flag_unsafe_math_optimizations
|
347 |
|
|
|| (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
|
348 |
|
|
&& real_can_shorten_arithmetic (TYPE_MODE (itype),
|
349 |
|
|
TYPE_MODE (type))
|
350 |
|
|
&& !excess_precision_type (newtype))))
|
351 |
|
|
{
|
352 |
|
|
expr = build2 (TREE_CODE (expr), newtype,
|
353 |
|
|
fold (convert_to_real (newtype, arg0)),
|
354 |
|
|
fold (convert_to_real (newtype, arg1)));
|
355 |
|
|
if (newtype == type)
|
356 |
|
|
return expr;
|
357 |
|
|
}
|
358 |
|
|
}
|
359 |
|
|
}
|
360 |
|
|
break;
|
361 |
|
|
default:
|
362 |
|
|
break;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
switch (TREE_CODE (TREE_TYPE (expr)))
|
366 |
|
|
{
|
367 |
|
|
case REAL_TYPE:
|
368 |
|
|
/* Ignore the conversion if we don't need to store intermediate
|
369 |
|
|
results and neither type is a decimal float. */
|
370 |
|
|
return build1 ((flag_float_store
|
371 |
|
|
|| DECIMAL_FLOAT_TYPE_P (type)
|
372 |
|
|
|| DECIMAL_FLOAT_TYPE_P (itype))
|
373 |
|
|
? CONVERT_EXPR : NOP_EXPR, type, expr);
|
374 |
|
|
|
375 |
|
|
case INTEGER_TYPE:
|
376 |
|
|
case ENUMERAL_TYPE:
|
377 |
|
|
case BOOLEAN_TYPE:
|
378 |
|
|
return build1 (FLOAT_EXPR, type, expr);
|
379 |
|
|
|
380 |
|
|
case FIXED_POINT_TYPE:
|
381 |
|
|
return build1 (FIXED_CONVERT_EXPR, type, expr);
|
382 |
|
|
|
383 |
|
|
case COMPLEX_TYPE:
|
384 |
|
|
return convert (type,
|
385 |
|
|
fold_build1 (REALPART_EXPR,
|
386 |
|
|
TREE_TYPE (TREE_TYPE (expr)), expr));
|
387 |
|
|
|
388 |
|
|
case POINTER_TYPE:
|
389 |
|
|
case REFERENCE_TYPE:
|
390 |
|
|
error ("pointer value used where a floating point value was expected");
|
391 |
|
|
return convert_to_real (type, integer_zero_node);
|
392 |
|
|
|
393 |
|
|
default:
|
394 |
|
|
error ("aggregate value used where a float was expected");
|
395 |
|
|
return convert_to_real (type, integer_zero_node);
|
396 |
|
|
}
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
/* Convert EXPR to some integer (or enum) type TYPE.
|
400 |
|
|
|
401 |
|
|
EXPR must be pointer, integer, discrete (enum, char, or bool), float,
|
402 |
|
|
fixed-point or vector; in other cases error is called.
|
403 |
|
|
|
404 |
|
|
The result of this is always supposed to be a newly created tree node
|
405 |
|
|
not in use in any existing structure. */
|
406 |
|
|
|
407 |
|
|
tree
|
408 |
|
|
convert_to_integer (tree type, tree expr)
|
409 |
|
|
{
|
410 |
|
|
enum tree_code ex_form = TREE_CODE (expr);
|
411 |
|
|
tree intype = TREE_TYPE (expr);
|
412 |
|
|
unsigned int inprec = TYPE_PRECISION (intype);
|
413 |
|
|
unsigned int outprec = TYPE_PRECISION (type);
|
414 |
|
|
|
415 |
|
|
/* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
|
416 |
|
|
be. Consider `enum E = { a, b = (enum E) 3 };'. */
|
417 |
|
|
if (!COMPLETE_TYPE_P (type))
|
418 |
|
|
{
|
419 |
|
|
error ("conversion to incomplete type");
|
420 |
|
|
return error_mark_node;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Convert e.g. (long)round(d) -> lround(d). */
|
424 |
|
|
/* If we're converting to char, we may encounter differing behavior
|
425 |
|
|
between converting from double->char vs double->long->char.
|
426 |
|
|
We're in "undefined" territory but we prefer to be conservative,
|
427 |
|
|
so only proceed in "unsafe" math mode. */
|
428 |
|
|
if (optimize
|
429 |
|
|
&& (flag_unsafe_math_optimizations
|
430 |
|
|
|| (long_integer_type_node
|
431 |
|
|
&& outprec >= TYPE_PRECISION (long_integer_type_node))))
|
432 |
|
|
{
|
433 |
|
|
tree s_expr = strip_float_extensions (expr);
|
434 |
|
|
tree s_intype = TREE_TYPE (s_expr);
|
435 |
|
|
const enum built_in_function fcode = builtin_mathfn_code (s_expr);
|
436 |
|
|
tree fn = 0;
|
437 |
|
|
|
438 |
|
|
switch (fcode)
|
439 |
|
|
{
|
440 |
|
|
CASE_FLT_FN (BUILT_IN_CEIL):
|
441 |
|
|
/* Only convert in ISO C99 mode. */
|
442 |
|
|
if (!TARGET_C99_FUNCTIONS)
|
443 |
|
|
break;
|
444 |
|
|
if (outprec < TYPE_PRECISION (long_integer_type_node)
|
445 |
|
|
|| (outprec == TYPE_PRECISION (long_integer_type_node)
|
446 |
|
|
&& !TYPE_UNSIGNED (type)))
|
447 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
|
448 |
|
|
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
|
449 |
|
|
&& !TYPE_UNSIGNED (type))
|
450 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
|
451 |
|
|
break;
|
452 |
|
|
|
453 |
|
|
CASE_FLT_FN (BUILT_IN_FLOOR):
|
454 |
|
|
/* Only convert in ISO C99 mode. */
|
455 |
|
|
if (!TARGET_C99_FUNCTIONS)
|
456 |
|
|
break;
|
457 |
|
|
if (outprec < TYPE_PRECISION (long_integer_type_node)
|
458 |
|
|
|| (outprec == TYPE_PRECISION (long_integer_type_node)
|
459 |
|
|
&& !TYPE_UNSIGNED (type)))
|
460 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
|
461 |
|
|
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
|
462 |
|
|
&& !TYPE_UNSIGNED (type))
|
463 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
|
464 |
|
|
break;
|
465 |
|
|
|
466 |
|
|
CASE_FLT_FN (BUILT_IN_ROUND):
|
467 |
|
|
if (outprec < TYPE_PRECISION (long_integer_type_node)
|
468 |
|
|
|| (outprec == TYPE_PRECISION (long_integer_type_node)
|
469 |
|
|
&& !TYPE_UNSIGNED (type)))
|
470 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
|
471 |
|
|
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
|
472 |
|
|
&& !TYPE_UNSIGNED (type))
|
473 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
|
474 |
|
|
break;
|
475 |
|
|
|
476 |
|
|
CASE_FLT_FN (BUILT_IN_NEARBYINT):
|
477 |
|
|
/* Only convert nearbyint* if we can ignore math exceptions. */
|
478 |
|
|
if (flag_trapping_math)
|
479 |
|
|
break;
|
480 |
|
|
/* ... Fall through ... */
|
481 |
|
|
CASE_FLT_FN (BUILT_IN_RINT):
|
482 |
|
|
if (outprec < TYPE_PRECISION (long_integer_type_node)
|
483 |
|
|
|| (outprec == TYPE_PRECISION (long_integer_type_node)
|
484 |
|
|
&& !TYPE_UNSIGNED (type)))
|
485 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
|
486 |
|
|
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
|
487 |
|
|
&& !TYPE_UNSIGNED (type))
|
488 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
|
489 |
|
|
break;
|
490 |
|
|
|
491 |
|
|
CASE_FLT_FN (BUILT_IN_TRUNC):
|
492 |
|
|
return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0));
|
493 |
|
|
|
494 |
|
|
default:
|
495 |
|
|
break;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
if (fn)
|
499 |
|
|
{
|
500 |
|
|
tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
|
501 |
|
|
return convert_to_integer (type, newexpr);
|
502 |
|
|
}
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
/* Convert (int)logb(d) -> ilogb(d). */
|
506 |
|
|
if (optimize
|
507 |
|
|
&& flag_unsafe_math_optimizations
|
508 |
|
|
&& !flag_trapping_math && !flag_errno_math && flag_finite_math_only
|
509 |
|
|
&& integer_type_node
|
510 |
|
|
&& (outprec > TYPE_PRECISION (integer_type_node)
|
511 |
|
|
|| (outprec == TYPE_PRECISION (integer_type_node)
|
512 |
|
|
&& !TYPE_UNSIGNED (type))))
|
513 |
|
|
{
|
514 |
|
|
tree s_expr = strip_float_extensions (expr);
|
515 |
|
|
tree s_intype = TREE_TYPE (s_expr);
|
516 |
|
|
const enum built_in_function fcode = builtin_mathfn_code (s_expr);
|
517 |
|
|
tree fn = 0;
|
518 |
|
|
|
519 |
|
|
switch (fcode)
|
520 |
|
|
{
|
521 |
|
|
CASE_FLT_FN (BUILT_IN_LOGB):
|
522 |
|
|
fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
|
523 |
|
|
break;
|
524 |
|
|
|
525 |
|
|
default:
|
526 |
|
|
break;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
if (fn)
|
530 |
|
|
{
|
531 |
|
|
tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
|
532 |
|
|
return convert_to_integer (type, newexpr);
|
533 |
|
|
}
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
switch (TREE_CODE (intype))
|
537 |
|
|
{
|
538 |
|
|
case POINTER_TYPE:
|
539 |
|
|
case REFERENCE_TYPE:
|
540 |
|
|
if (integer_zerop (expr))
|
541 |
|
|
return build_int_cst (type, 0);
|
542 |
|
|
|
543 |
|
|
/* Convert to an unsigned integer of the correct width first, and from
|
544 |
|
|
there widen/truncate to the required type. Some targets support the
|
545 |
|
|
coexistence of multiple valid pointer sizes, so fetch the one we need
|
546 |
|
|
from the type. */
|
547 |
|
|
expr = fold_build1 (CONVERT_EXPR,
|
548 |
|
|
lang_hooks.types.type_for_size
|
549 |
|
|
(TYPE_PRECISION (intype), 0),
|
550 |
|
|
expr);
|
551 |
|
|
return fold_convert (type, expr);
|
552 |
|
|
|
553 |
|
|
case INTEGER_TYPE:
|
554 |
|
|
case ENUMERAL_TYPE:
|
555 |
|
|
case BOOLEAN_TYPE:
|
556 |
|
|
case OFFSET_TYPE:
|
557 |
|
|
/* If this is a logical operation, which just returns 0 or 1, we can
|
558 |
|
|
change the type of the expression. */
|
559 |
|
|
|
560 |
|
|
if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
|
561 |
|
|
{
|
562 |
|
|
expr = copy_node (expr);
|
563 |
|
|
TREE_TYPE (expr) = type;
|
564 |
|
|
return expr;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* If we are widening the type, put in an explicit conversion.
|
568 |
|
|
Similarly if we are not changing the width. After this, we know
|
569 |
|
|
we are truncating EXPR. */
|
570 |
|
|
|
571 |
|
|
else if (outprec >= inprec)
|
572 |
|
|
{
|
573 |
|
|
enum tree_code code;
|
574 |
|
|
tree tem;
|
575 |
|
|
|
576 |
|
|
/* If the precision of the EXPR's type is K bits and the
|
577 |
|
|
destination mode has more bits, and the sign is changing,
|
578 |
|
|
it is not safe to use a NOP_EXPR. For example, suppose
|
579 |
|
|
that EXPR's type is a 3-bit unsigned integer type, the
|
580 |
|
|
TYPE is a 3-bit signed integer type, and the machine mode
|
581 |
|
|
for the types is 8-bit QImode. In that case, the
|
582 |
|
|
conversion necessitates an explicit sign-extension. In
|
583 |
|
|
the signed-to-unsigned case the high-order bits have to
|
584 |
|
|
be cleared. */
|
585 |
|
|
if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
|
586 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (expr))
|
587 |
|
|
!= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
|
588 |
|
|
code = CONVERT_EXPR;
|
589 |
|
|
else
|
590 |
|
|
code = NOP_EXPR;
|
591 |
|
|
|
592 |
|
|
tem = fold_unary (code, type, expr);
|
593 |
|
|
if (tem)
|
594 |
|
|
return tem;
|
595 |
|
|
|
596 |
|
|
tem = build1 (code, type, expr);
|
597 |
|
|
TREE_NO_WARNING (tem) = 1;
|
598 |
|
|
return tem;
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
/* If TYPE is an enumeral type or a type with a precision less
|
602 |
|
|
than the number of bits in its mode, do the conversion to the
|
603 |
|
|
type corresponding to its mode, then do a nop conversion
|
604 |
|
|
to TYPE. */
|
605 |
|
|
else if (TREE_CODE (type) == ENUMERAL_TYPE
|
606 |
|
|
|| outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
|
607 |
|
|
return build1 (NOP_EXPR, type,
|
608 |
|
|
convert (lang_hooks.types.type_for_mode
|
609 |
|
|
(TYPE_MODE (type), TYPE_UNSIGNED (type)),
|
610 |
|
|
expr));
|
611 |
|
|
|
612 |
|
|
/* Here detect when we can distribute the truncation down past some
|
613 |
|
|
arithmetic. For example, if adding two longs and converting to an
|
614 |
|
|
int, we can equally well convert both to ints and then add.
|
615 |
|
|
For the operations handled here, such truncation distribution
|
616 |
|
|
is always safe.
|
617 |
|
|
It is desirable in these cases:
|
618 |
|
|
1) when truncating down to full-word from a larger size
|
619 |
|
|
2) when truncating takes no work.
|
620 |
|
|
3) when at least one operand of the arithmetic has been extended
|
621 |
|
|
(as by C's default conversions). In this case we need two conversions
|
622 |
|
|
if we do the arithmetic as already requested, so we might as well
|
623 |
|
|
truncate both and then combine. Perhaps that way we need only one.
|
624 |
|
|
|
625 |
|
|
Note that in general we cannot do the arithmetic in a type
|
626 |
|
|
shorter than the desired result of conversion, even if the operands
|
627 |
|
|
are both extended from a shorter type, because they might overflow
|
628 |
|
|
if combined in that type. The exceptions to this--the times when
|
629 |
|
|
two narrow values can be combined in their narrow type even to
|
630 |
|
|
make a wider result--are handled by "shorten" in build_binary_op. */
|
631 |
|
|
|
632 |
|
|
switch (ex_form)
|
633 |
|
|
{
|
634 |
|
|
case RSHIFT_EXPR:
|
635 |
|
|
/* We can pass truncation down through right shifting
|
636 |
|
|
when the shift count is a nonpositive constant. */
|
637 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
|
638 |
|
|
&& tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
|
639 |
|
|
goto trunc1;
|
640 |
|
|
break;
|
641 |
|
|
|
642 |
|
|
case LSHIFT_EXPR:
|
643 |
|
|
/* We can pass truncation down through left shifting
|
644 |
|
|
when the shift count is a nonnegative constant and
|
645 |
|
|
the target type is unsigned. */
|
646 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
|
647 |
|
|
&& tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
|
648 |
|
|
&& TYPE_UNSIGNED (type)
|
649 |
|
|
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
|
650 |
|
|
{
|
651 |
|
|
/* If shift count is less than the width of the truncated type,
|
652 |
|
|
really shift. */
|
653 |
|
|
if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
|
654 |
|
|
/* In this case, shifting is like multiplication. */
|
655 |
|
|
goto trunc1;
|
656 |
|
|
else
|
657 |
|
|
{
|
658 |
|
|
/* If it is >= that width, result is zero.
|
659 |
|
|
Handling this with trunc1 would give the wrong result:
|
660 |
|
|
(int) ((long long) a << 32) is well defined (as 0)
|
661 |
|
|
but (int) a << 32 is undefined and would get a
|
662 |
|
|
warning. */
|
663 |
|
|
|
664 |
|
|
tree t = build_int_cst (type, 0);
|
665 |
|
|
|
666 |
|
|
/* If the original expression had side-effects, we must
|
667 |
|
|
preserve it. */
|
668 |
|
|
if (TREE_SIDE_EFFECTS (expr))
|
669 |
|
|
return build2 (COMPOUND_EXPR, type, expr, t);
|
670 |
|
|
else
|
671 |
|
|
return t;
|
672 |
|
|
}
|
673 |
|
|
}
|
674 |
|
|
break;
|
675 |
|
|
|
676 |
|
|
case TRUNC_DIV_EXPR:
|
677 |
|
|
{
|
678 |
|
|
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
679 |
|
|
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
|
680 |
|
|
|
681 |
|
|
/* Don't distribute unless the output precision is at least as big
|
682 |
|
|
as the actual inputs and it has the same signedness. */
|
683 |
|
|
if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
|
684 |
|
|
&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
|
685 |
|
|
/* If signedness of arg0 and arg1 don't match,
|
686 |
|
|
we can't necessarily find a type to compare them in. */
|
687 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
|
688 |
|
|
== TYPE_UNSIGNED (TREE_TYPE (arg1)))
|
689 |
|
|
/* Do not change the sign of the division. */
|
690 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (expr))
|
691 |
|
|
== TYPE_UNSIGNED (TREE_TYPE (arg0)))
|
692 |
|
|
/* Either require unsigned division or a division by
|
693 |
|
|
a constant that is not -1. */
|
694 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
|
695 |
|
|
|| (TREE_CODE (arg1) == INTEGER_CST
|
696 |
|
|
&& !integer_all_onesp (arg1))))
|
697 |
|
|
goto trunc1;
|
698 |
|
|
break;
|
699 |
|
|
}
|
700 |
|
|
|
701 |
|
|
case MAX_EXPR:
|
702 |
|
|
case MIN_EXPR:
|
703 |
|
|
case MULT_EXPR:
|
704 |
|
|
{
|
705 |
|
|
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
706 |
|
|
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
|
707 |
|
|
|
708 |
|
|
/* Don't distribute unless the output precision is at least as big
|
709 |
|
|
as the actual inputs. Otherwise, the comparison of the
|
710 |
|
|
truncated values will be wrong. */
|
711 |
|
|
if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
|
712 |
|
|
&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
|
713 |
|
|
/* If signedness of arg0 and arg1 don't match,
|
714 |
|
|
we can't necessarily find a type to compare them in. */
|
715 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
|
716 |
|
|
== TYPE_UNSIGNED (TREE_TYPE (arg1))))
|
717 |
|
|
goto trunc1;
|
718 |
|
|
break;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
case PLUS_EXPR:
|
722 |
|
|
case MINUS_EXPR:
|
723 |
|
|
case BIT_AND_EXPR:
|
724 |
|
|
case BIT_IOR_EXPR:
|
725 |
|
|
case BIT_XOR_EXPR:
|
726 |
|
|
trunc1:
|
727 |
|
|
{
|
728 |
|
|
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
729 |
|
|
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
|
730 |
|
|
|
731 |
|
|
if (outprec >= BITS_PER_WORD
|
732 |
|
|
|| TRULY_NOOP_TRUNCATION (outprec, inprec)
|
733 |
|
|
|| inprec > TYPE_PRECISION (TREE_TYPE (arg0))
|
734 |
|
|
|| inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
|
735 |
|
|
{
|
736 |
|
|
/* Do the arithmetic in type TYPEX,
|
737 |
|
|
then convert result to TYPE. */
|
738 |
|
|
tree typex = type;
|
739 |
|
|
|
740 |
|
|
/* Can't do arithmetic in enumeral types
|
741 |
|
|
so use an integer type that will hold the values. */
|
742 |
|
|
if (TREE_CODE (typex) == ENUMERAL_TYPE)
|
743 |
|
|
typex = lang_hooks.types.type_for_size
|
744 |
|
|
(TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
|
745 |
|
|
|
746 |
|
|
/* But now perhaps TYPEX is as wide as INPREC.
|
747 |
|
|
In that case, do nothing special here.
|
748 |
|
|
(Otherwise would recurse infinitely in convert. */
|
749 |
|
|
if (TYPE_PRECISION (typex) != inprec)
|
750 |
|
|
{
|
751 |
|
|
/* Don't do unsigned arithmetic where signed was wanted,
|
752 |
|
|
or vice versa.
|
753 |
|
|
Exception: if both of the original operands were
|
754 |
|
|
unsigned then we can safely do the work as unsigned.
|
755 |
|
|
Exception: shift operations take their type solely
|
756 |
|
|
from the first argument.
|
757 |
|
|
Exception: the LSHIFT_EXPR case above requires that
|
758 |
|
|
we perform this operation unsigned lest we produce
|
759 |
|
|
signed-overflow undefinedness.
|
760 |
|
|
And we may need to do it as unsigned
|
761 |
|
|
if we truncate to the original size. */
|
762 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (expr))
|
763 |
|
|
|| (TYPE_UNSIGNED (TREE_TYPE (arg0))
|
764 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (arg1))
|
765 |
|
|
|| ex_form == LSHIFT_EXPR
|
766 |
|
|
|| ex_form == RSHIFT_EXPR
|
767 |
|
|
|| ex_form == LROTATE_EXPR
|
768 |
|
|
|| ex_form == RROTATE_EXPR))
|
769 |
|
|
|| ex_form == LSHIFT_EXPR
|
770 |
|
|
/* If we have !flag_wrapv, and either ARG0 or
|
771 |
|
|
ARG1 is of a signed type, we have to do
|
772 |
|
|
PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
|
773 |
|
|
type in case the operation in outprec precision
|
774 |
|
|
could overflow. Otherwise, we would introduce
|
775 |
|
|
signed-overflow undefinedness. */
|
776 |
|
|
|| ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
|
777 |
|
|
|| !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
|
778 |
|
|
&& ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
|
779 |
|
|
> outprec)
|
780 |
|
|
|| (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
|
781 |
|
|
> outprec))
|
782 |
|
|
&& (ex_form == PLUS_EXPR
|
783 |
|
|
|| ex_form == MINUS_EXPR
|
784 |
|
|
|| ex_form == MULT_EXPR)))
|
785 |
|
|
typex = unsigned_type_for (typex);
|
786 |
|
|
else
|
787 |
|
|
typex = signed_type_for (typex);
|
788 |
|
|
return convert (type,
|
789 |
|
|
fold_build2 (ex_form, typex,
|
790 |
|
|
convert (typex, arg0),
|
791 |
|
|
convert (typex, arg1)));
|
792 |
|
|
}
|
793 |
|
|
}
|
794 |
|
|
}
|
795 |
|
|
break;
|
796 |
|
|
|
797 |
|
|
case NEGATE_EXPR:
|
798 |
|
|
case BIT_NOT_EXPR:
|
799 |
|
|
/* This is not correct for ABS_EXPR,
|
800 |
|
|
since we must test the sign before truncation. */
|
801 |
|
|
{
|
802 |
|
|
tree typex;
|
803 |
|
|
|
804 |
|
|
/* Don't do unsigned arithmetic where signed was wanted,
|
805 |
|
|
or vice versa. */
|
806 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (expr)))
|
807 |
|
|
typex = unsigned_type_for (type);
|
808 |
|
|
else
|
809 |
|
|
typex = signed_type_for (type);
|
810 |
|
|
return convert (type,
|
811 |
|
|
fold_build1 (ex_form, typex,
|
812 |
|
|
convert (typex,
|
813 |
|
|
TREE_OPERAND (expr, 0))));
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
case NOP_EXPR:
|
817 |
|
|
/* Don't introduce a
|
818 |
|
|
"can't convert between vector values of different size" error. */
|
819 |
|
|
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
|
820 |
|
|
&& (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
821 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (type))))
|
822 |
|
|
break;
|
823 |
|
|
/* If truncating after truncating, might as well do all at once.
|
824 |
|
|
If truncating after extending, we may get rid of wasted work. */
|
825 |
|
|
return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
|
826 |
|
|
|
827 |
|
|
case COND_EXPR:
|
828 |
|
|
/* It is sometimes worthwhile to push the narrowing down through
|
829 |
|
|
the conditional and never loses. A COND_EXPR may have a throw
|
830 |
|
|
as one operand, which then has void type. Just leave void
|
831 |
|
|
operands as they are. */
|
832 |
|
|
return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
|
833 |
|
|
VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
|
834 |
|
|
? TREE_OPERAND (expr, 1)
|
835 |
|
|
: convert (type, TREE_OPERAND (expr, 1)),
|
836 |
|
|
VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
|
837 |
|
|
? TREE_OPERAND (expr, 2)
|
838 |
|
|
: convert (type, TREE_OPERAND (expr, 2)));
|
839 |
|
|
|
840 |
|
|
default:
|
841 |
|
|
break;
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
return build1 (CONVERT_EXPR, type, expr);
|
845 |
|
|
|
846 |
|
|
case REAL_TYPE:
|
847 |
|
|
return build1 (FIX_TRUNC_EXPR, type, expr);
|
848 |
|
|
|
849 |
|
|
case FIXED_POINT_TYPE:
|
850 |
|
|
return build1 (FIXED_CONVERT_EXPR, type, expr);
|
851 |
|
|
|
852 |
|
|
case COMPLEX_TYPE:
|
853 |
|
|
return convert (type,
|
854 |
|
|
fold_build1 (REALPART_EXPR,
|
855 |
|
|
TREE_TYPE (TREE_TYPE (expr)), expr));
|
856 |
|
|
|
857 |
|
|
case VECTOR_TYPE:
|
858 |
|
|
if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
|
859 |
|
|
{
|
860 |
|
|
error ("can't convert between vector values of different size");
|
861 |
|
|
return error_mark_node;
|
862 |
|
|
}
|
863 |
|
|
return build1 (VIEW_CONVERT_EXPR, type, expr);
|
864 |
|
|
|
865 |
|
|
default:
|
866 |
|
|
error ("aggregate value used where an integer was expected");
|
867 |
|
|
return convert (type, integer_zero_node);
|
868 |
|
|
}
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
/* Convert EXPR to the complex type TYPE in the usual ways. */
|
872 |
|
|
|
873 |
|
|
tree
|
874 |
|
|
convert_to_complex (tree type, tree expr)
|
875 |
|
|
{
|
876 |
|
|
tree subtype = TREE_TYPE (type);
|
877 |
|
|
|
878 |
|
|
switch (TREE_CODE (TREE_TYPE (expr)))
|
879 |
|
|
{
|
880 |
|
|
case REAL_TYPE:
|
881 |
|
|
case FIXED_POINT_TYPE:
|
882 |
|
|
case INTEGER_TYPE:
|
883 |
|
|
case ENUMERAL_TYPE:
|
884 |
|
|
case BOOLEAN_TYPE:
|
885 |
|
|
return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
|
886 |
|
|
convert (subtype, integer_zero_node));
|
887 |
|
|
|
888 |
|
|
case COMPLEX_TYPE:
|
889 |
|
|
{
|
890 |
|
|
tree elt_type = TREE_TYPE (TREE_TYPE (expr));
|
891 |
|
|
|
892 |
|
|
if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
|
893 |
|
|
return expr;
|
894 |
|
|
else if (TREE_CODE (expr) == COMPLEX_EXPR)
|
895 |
|
|
return fold_build2 (COMPLEX_EXPR, type,
|
896 |
|
|
convert (subtype, TREE_OPERAND (expr, 0)),
|
897 |
|
|
convert (subtype, TREE_OPERAND (expr, 1)));
|
898 |
|
|
else
|
899 |
|
|
{
|
900 |
|
|
expr = save_expr (expr);
|
901 |
|
|
return
|
902 |
|
|
fold_build2 (COMPLEX_EXPR, type,
|
903 |
|
|
convert (subtype,
|
904 |
|
|
fold_build1 (REALPART_EXPR,
|
905 |
|
|
TREE_TYPE (TREE_TYPE (expr)),
|
906 |
|
|
expr)),
|
907 |
|
|
convert (subtype,
|
908 |
|
|
fold_build1 (IMAGPART_EXPR,
|
909 |
|
|
TREE_TYPE (TREE_TYPE (expr)),
|
910 |
|
|
expr)));
|
911 |
|
|
}
|
912 |
|
|
}
|
913 |
|
|
|
914 |
|
|
case POINTER_TYPE:
|
915 |
|
|
case REFERENCE_TYPE:
|
916 |
|
|
error ("pointer value used where a complex was expected");
|
917 |
|
|
return convert_to_complex (type, integer_zero_node);
|
918 |
|
|
|
919 |
|
|
default:
|
920 |
|
|
error ("aggregate value used where a complex was expected");
|
921 |
|
|
return convert_to_complex (type, integer_zero_node);
|
922 |
|
|
}
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
/* Convert EXPR to the vector type TYPE in the usual ways. */
|
926 |
|
|
|
927 |
|
|
tree
|
928 |
|
|
convert_to_vector (tree type, tree expr)
|
929 |
|
|
{
|
930 |
|
|
switch (TREE_CODE (TREE_TYPE (expr)))
|
931 |
|
|
{
|
932 |
|
|
case INTEGER_TYPE:
|
933 |
|
|
case VECTOR_TYPE:
|
934 |
|
|
if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
|
935 |
|
|
{
|
936 |
|
|
error ("can't convert between vector values of different size");
|
937 |
|
|
return error_mark_node;
|
938 |
|
|
}
|
939 |
|
|
return build1 (VIEW_CONVERT_EXPR, type, expr);
|
940 |
|
|
|
941 |
|
|
default:
|
942 |
|
|
error ("can't convert value to a vector");
|
943 |
|
|
return error_mark_node;
|
944 |
|
|
}
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/* Convert EXPR to some fixed-point type TYPE.
|
948 |
|
|
|
949 |
|
|
EXPR must be fixed-point, float, integer, or enumeral;
|
950 |
|
|
in other cases error is called. */
|
951 |
|
|
|
952 |
|
|
tree
|
953 |
|
|
convert_to_fixed (tree type, tree expr)
|
954 |
|
|
{
|
955 |
|
|
if (integer_zerop (expr))
|
956 |
|
|
{
|
957 |
|
|
tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
|
958 |
|
|
return fixed_zero_node;
|
959 |
|
|
}
|
960 |
|
|
else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
|
961 |
|
|
{
|
962 |
|
|
tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
|
963 |
|
|
return fixed_one_node;
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
switch (TREE_CODE (TREE_TYPE (expr)))
|
967 |
|
|
{
|
968 |
|
|
case FIXED_POINT_TYPE:
|
969 |
|
|
case INTEGER_TYPE:
|
970 |
|
|
case ENUMERAL_TYPE:
|
971 |
|
|
case BOOLEAN_TYPE:
|
972 |
|
|
case REAL_TYPE:
|
973 |
|
|
return build1 (FIXED_CONVERT_EXPR, type, expr);
|
974 |
|
|
|
975 |
|
|
case COMPLEX_TYPE:
|
976 |
|
|
return convert (type,
|
977 |
|
|
fold_build1 (REALPART_EXPR,
|
978 |
|
|
TREE_TYPE (TREE_TYPE (expr)), expr));
|
979 |
|
|
|
980 |
|
|
default:
|
981 |
|
|
error ("aggregate value used where a fixed-point was expected");
|
982 |
|
|
return error_mark_node;
|
983 |
|
|
}
|
984 |
|
|
}
|