1 |
283 |
jeremybenn |
/* Handle initialization things in C++.
|
2 |
|
|
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* High-level class interface. */
|
24 |
|
|
|
25 |
|
|
#include "config.h"
|
26 |
|
|
#include "system.h"
|
27 |
|
|
#include "coretypes.h"
|
28 |
|
|
#include "tm.h"
|
29 |
|
|
#include "tree.h"
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "expr.h"
|
32 |
|
|
#include "cp-tree.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "output.h"
|
35 |
|
|
#include "except.h"
|
36 |
|
|
#include "toplev.h"
|
37 |
|
|
#include "target.h"
|
38 |
|
|
|
39 |
|
|
static bool begin_init_stmts (tree *, tree *);
|
40 |
|
|
static tree finish_init_stmts (bool, tree, tree);
|
41 |
|
|
static void construct_virtual_base (tree, tree);
|
42 |
|
|
static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
|
43 |
|
|
static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
|
44 |
|
|
static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
|
45 |
|
|
static void perform_member_init (tree, tree);
|
46 |
|
|
static tree build_builtin_delete_call (tree);
|
47 |
|
|
static int member_init_ok_or_else (tree, tree, tree);
|
48 |
|
|
static void expand_virtual_init (tree, tree);
|
49 |
|
|
static tree sort_mem_initializers (tree, tree);
|
50 |
|
|
static tree initializing_context (tree);
|
51 |
|
|
static void expand_cleanup_for_base (tree, tree);
|
52 |
|
|
static tree get_temp_regvar (tree, tree);
|
53 |
|
|
static tree dfs_initialize_vtbl_ptrs (tree, void *);
|
54 |
|
|
static tree build_dtor_call (tree, special_function_kind, int);
|
55 |
|
|
static tree build_field_list (tree, tree, int *);
|
56 |
|
|
static tree build_vtbl_address (tree);
|
57 |
|
|
|
58 |
|
|
/* We are about to generate some complex initialization code.
|
59 |
|
|
Conceptually, it is all a single expression. However, we may want
|
60 |
|
|
to include conditionals, loops, and other such statement-level
|
61 |
|
|
constructs. Therefore, we build the initialization code inside a
|
62 |
|
|
statement-expression. This function starts such an expression.
|
63 |
|
|
STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
|
64 |
|
|
pass them back to finish_init_stmts when the expression is
|
65 |
|
|
complete. */
|
66 |
|
|
|
67 |
|
|
static bool
|
68 |
|
|
begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
|
69 |
|
|
{
|
70 |
|
|
bool is_global = !building_stmt_tree ();
|
71 |
|
|
|
72 |
|
|
*stmt_expr_p = begin_stmt_expr ();
|
73 |
|
|
*compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
|
74 |
|
|
|
75 |
|
|
return is_global;
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
/* Finish out the statement-expression begun by the previous call to
|
79 |
|
|
begin_init_stmts. Returns the statement-expression itself. */
|
80 |
|
|
|
81 |
|
|
static tree
|
82 |
|
|
finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
|
83 |
|
|
{
|
84 |
|
|
finish_compound_stmt (compound_stmt);
|
85 |
|
|
|
86 |
|
|
stmt_expr = finish_stmt_expr (stmt_expr, true);
|
87 |
|
|
|
88 |
|
|
gcc_assert (!building_stmt_tree () == is_global);
|
89 |
|
|
|
90 |
|
|
return stmt_expr;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
/* Constructors */
|
94 |
|
|
|
95 |
|
|
/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
|
96 |
|
|
which we want to initialize the vtable pointer for, DATA is
|
97 |
|
|
TREE_LIST whose TREE_VALUE is the this ptr expression. */
|
98 |
|
|
|
99 |
|
|
static tree
|
100 |
|
|
dfs_initialize_vtbl_ptrs (tree binfo, void *data)
|
101 |
|
|
{
|
102 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
103 |
|
|
return dfs_skip_bases;
|
104 |
|
|
|
105 |
|
|
if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
|
106 |
|
|
{
|
107 |
|
|
tree base_ptr = TREE_VALUE ((tree) data);
|
108 |
|
|
|
109 |
|
|
base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
|
110 |
|
|
|
111 |
|
|
expand_virtual_init (binfo, base_ptr);
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
return NULL_TREE;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/* Initialize all the vtable pointers in the object pointed to by
|
118 |
|
|
ADDR. */
|
119 |
|
|
|
120 |
|
|
void
|
121 |
|
|
initialize_vtbl_ptrs (tree addr)
|
122 |
|
|
{
|
123 |
|
|
tree list;
|
124 |
|
|
tree type;
|
125 |
|
|
|
126 |
|
|
type = TREE_TYPE (TREE_TYPE (addr));
|
127 |
|
|
list = build_tree_list (type, addr);
|
128 |
|
|
|
129 |
|
|
/* Walk through the hierarchy, initializing the vptr in each base
|
130 |
|
|
class. We do these in pre-order because we can't find the virtual
|
131 |
|
|
bases for a class until we've initialized the vtbl for that
|
132 |
|
|
class. */
|
133 |
|
|
dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
/* Return an expression for the zero-initialization of an object with
|
137 |
|
|
type T. This expression will either be a constant (in the case
|
138 |
|
|
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
|
139 |
|
|
aggregate), or NULL (in the case that T does not require
|
140 |
|
|
initialization). In either case, the value can be used as
|
141 |
|
|
DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
|
142 |
|
|
initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
|
143 |
|
|
is the number of elements in the array. If STATIC_STORAGE_P is
|
144 |
|
|
TRUE, initializers are only generated for entities for which
|
145 |
|
|
zero-initialization does not simply mean filling the storage with
|
146 |
|
|
zero bytes. */
|
147 |
|
|
|
148 |
|
|
tree
|
149 |
|
|
build_zero_init (tree type, tree nelts, bool static_storage_p)
|
150 |
|
|
{
|
151 |
|
|
tree init = NULL_TREE;
|
152 |
|
|
|
153 |
|
|
/* [dcl.init]
|
154 |
|
|
|
155 |
|
|
To zero-initialize an object of type T means:
|
156 |
|
|
|
157 |
|
|
-- if T is a scalar type, the storage is set to the value of zero
|
158 |
|
|
converted to T.
|
159 |
|
|
|
160 |
|
|
-- if T is a non-union class type, the storage for each nonstatic
|
161 |
|
|
data member and each base-class subobject is zero-initialized.
|
162 |
|
|
|
163 |
|
|
-- if T is a union type, the storage for its first data member is
|
164 |
|
|
zero-initialized.
|
165 |
|
|
|
166 |
|
|
-- if T is an array type, the storage for each element is
|
167 |
|
|
zero-initialized.
|
168 |
|
|
|
169 |
|
|
-- if T is a reference type, no initialization is performed. */
|
170 |
|
|
|
171 |
|
|
gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
|
172 |
|
|
|
173 |
|
|
if (type == error_mark_node)
|
174 |
|
|
;
|
175 |
|
|
else if (static_storage_p && zero_init_p (type))
|
176 |
|
|
/* In order to save space, we do not explicitly build initializers
|
177 |
|
|
for items that do not need them. GCC's semantics are that
|
178 |
|
|
items with static storage duration that are not otherwise
|
179 |
|
|
initialized are initialized to zero. */
|
180 |
|
|
;
|
181 |
|
|
else if (SCALAR_TYPE_P (type))
|
182 |
|
|
init = convert (type, integer_zero_node);
|
183 |
|
|
else if (CLASS_TYPE_P (type))
|
184 |
|
|
{
|
185 |
|
|
tree field;
|
186 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
187 |
|
|
|
188 |
|
|
/* Iterate over the fields, building initializations. */
|
189 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
190 |
|
|
{
|
191 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
192 |
|
|
continue;
|
193 |
|
|
|
194 |
|
|
/* Note that for class types there will be FIELD_DECLs
|
195 |
|
|
corresponding to base classes as well. Thus, iterating
|
196 |
|
|
over TYPE_FIELDs will result in correct initialization of
|
197 |
|
|
all of the subobjects. */
|
198 |
|
|
if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
|
199 |
|
|
{
|
200 |
|
|
tree value = build_zero_init (TREE_TYPE (field),
|
201 |
|
|
/*nelts=*/NULL_TREE,
|
202 |
|
|
static_storage_p);
|
203 |
|
|
if (value)
|
204 |
|
|
CONSTRUCTOR_APPEND_ELT(v, field, value);
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* For unions, only the first field is initialized. */
|
208 |
|
|
if (TREE_CODE (type) == UNION_TYPE)
|
209 |
|
|
break;
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
/* Build a constructor to contain the initializations. */
|
213 |
|
|
init = build_constructor (type, v);
|
214 |
|
|
}
|
215 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
216 |
|
|
{
|
217 |
|
|
tree max_index;
|
218 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
219 |
|
|
|
220 |
|
|
/* Iterate over the array elements, building initializations. */
|
221 |
|
|
if (nelts)
|
222 |
|
|
max_index = fold_build2_loc (input_location,
|
223 |
|
|
MINUS_EXPR, TREE_TYPE (nelts),
|
224 |
|
|
nelts, integer_one_node);
|
225 |
|
|
else
|
226 |
|
|
max_index = array_type_nelts (type);
|
227 |
|
|
|
228 |
|
|
/* If we have an error_mark here, we should just return error mark
|
229 |
|
|
as we don't know the size of the array yet. */
|
230 |
|
|
if (max_index == error_mark_node)
|
231 |
|
|
return error_mark_node;
|
232 |
|
|
gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
|
233 |
|
|
|
234 |
|
|
/* A zero-sized array, which is accepted as an extension, will
|
235 |
|
|
have an upper bound of -1. */
|
236 |
|
|
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
237 |
|
|
{
|
238 |
|
|
constructor_elt *ce;
|
239 |
|
|
|
240 |
|
|
v = VEC_alloc (constructor_elt, gc, 1);
|
241 |
|
|
ce = VEC_quick_push (constructor_elt, v, NULL);
|
242 |
|
|
|
243 |
|
|
/* If this is a one element array, we just use a regular init. */
|
244 |
|
|
if (tree_int_cst_equal (size_zero_node, max_index))
|
245 |
|
|
ce->index = size_zero_node;
|
246 |
|
|
else
|
247 |
|
|
ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
|
248 |
|
|
max_index);
|
249 |
|
|
|
250 |
|
|
ce->value = build_zero_init (TREE_TYPE (type),
|
251 |
|
|
/*nelts=*/NULL_TREE,
|
252 |
|
|
static_storage_p);
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
/* Build a constructor to contain the initializations. */
|
256 |
|
|
init = build_constructor (type, v);
|
257 |
|
|
}
|
258 |
|
|
else if (TREE_CODE (type) == VECTOR_TYPE)
|
259 |
|
|
init = fold_convert (type, integer_zero_node);
|
260 |
|
|
else
|
261 |
|
|
gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
|
262 |
|
|
|
263 |
|
|
/* In all cases, the initializer is a constant. */
|
264 |
|
|
if (init)
|
265 |
|
|
TREE_CONSTANT (init) = 1;
|
266 |
|
|
|
267 |
|
|
return init;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
/* Return a suitable initializer for value-initializing an object of type
|
271 |
|
|
TYPE, as described in [dcl.init]. */
|
272 |
|
|
|
273 |
|
|
tree
|
274 |
|
|
build_value_init (tree type)
|
275 |
|
|
{
|
276 |
|
|
/* [dcl.init]
|
277 |
|
|
|
278 |
|
|
To value-initialize an object of type T means:
|
279 |
|
|
|
280 |
|
|
- if T is a class type (clause 9) with a user-provided constructor
|
281 |
|
|
(12.1), then the default constructor for T is called (and the
|
282 |
|
|
initialization is ill-formed if T has no accessible default
|
283 |
|
|
constructor);
|
284 |
|
|
|
285 |
|
|
- if T is a non-union class type without a user-provided constructor,
|
286 |
|
|
then every non-static data member and base-class component of T is
|
287 |
|
|
value-initialized;92)
|
288 |
|
|
|
289 |
|
|
- if T is an array type, then each element is value-initialized;
|
290 |
|
|
|
291 |
|
|
- otherwise, the object is zero-initialized.
|
292 |
|
|
|
293 |
|
|
A program that calls for default-initialization or
|
294 |
|
|
value-initialization of an entity of reference type is ill-formed.
|
295 |
|
|
|
296 |
|
|
92) Value-initialization for such a class object may be implemented by
|
297 |
|
|
zero-initializing the object and then calling the default
|
298 |
|
|
constructor. */
|
299 |
|
|
|
300 |
|
|
if (CLASS_TYPE_P (type))
|
301 |
|
|
{
|
302 |
|
|
if (type_has_user_provided_constructor (type))
|
303 |
|
|
return build_aggr_init_expr
|
304 |
|
|
(type,
|
305 |
|
|
build_special_member_call (NULL_TREE, complete_ctor_identifier,
|
306 |
|
|
NULL, type, LOOKUP_NORMAL,
|
307 |
|
|
tf_warning_or_error));
|
308 |
|
|
else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
|
309 |
|
|
{
|
310 |
|
|
/* This is a class that needs constructing, but doesn't have
|
311 |
|
|
a user-provided constructor. So we need to zero-initialize
|
312 |
|
|
the object and then call the implicitly defined ctor.
|
313 |
|
|
This will be handled in simplify_aggr_init_expr. */
|
314 |
|
|
tree ctor = build_special_member_call
|
315 |
|
|
(NULL_TREE, complete_ctor_identifier,
|
316 |
|
|
NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
|
317 |
|
|
|
318 |
|
|
ctor = build_aggr_init_expr (type, ctor);
|
319 |
|
|
AGGR_INIT_ZERO_FIRST (ctor) = 1;
|
320 |
|
|
return ctor;
|
321 |
|
|
}
|
322 |
|
|
}
|
323 |
|
|
return build_value_init_noctor (type);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
/* Like build_value_init, but don't call the constructor for TYPE. Used
|
327 |
|
|
for base initializers. */
|
328 |
|
|
|
329 |
|
|
tree
|
330 |
|
|
build_value_init_noctor (tree type)
|
331 |
|
|
{
|
332 |
|
|
if (CLASS_TYPE_P (type))
|
333 |
|
|
{
|
334 |
|
|
gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
|
335 |
|
|
|
336 |
|
|
if (TREE_CODE (type) != UNION_TYPE)
|
337 |
|
|
{
|
338 |
|
|
tree field;
|
339 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
340 |
|
|
|
341 |
|
|
/* Iterate over the fields, building initializations. */
|
342 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
343 |
|
|
{
|
344 |
|
|
tree ftype, value;
|
345 |
|
|
|
346 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
347 |
|
|
continue;
|
348 |
|
|
|
349 |
|
|
ftype = TREE_TYPE (field);
|
350 |
|
|
|
351 |
|
|
if (TREE_CODE (ftype) == REFERENCE_TYPE)
|
352 |
|
|
error ("value-initialization of reference");
|
353 |
|
|
|
354 |
|
|
/* We could skip vfields and fields of types with
|
355 |
|
|
user-defined constructors, but I think that won't improve
|
356 |
|
|
performance at all; it should be simpler in general just
|
357 |
|
|
to zero out the entire object than try to only zero the
|
358 |
|
|
bits that actually need it. */
|
359 |
|
|
|
360 |
|
|
/* Note that for class types there will be FIELD_DECLs
|
361 |
|
|
corresponding to base classes as well. Thus, iterating
|
362 |
|
|
over TYPE_FIELDs will result in correct initialization of
|
363 |
|
|
all of the subobjects. */
|
364 |
|
|
value = build_value_init (ftype);
|
365 |
|
|
|
366 |
|
|
if (value)
|
367 |
|
|
CONSTRUCTOR_APPEND_ELT(v, field, value);
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
/* Build a constructor to contain the zero- initializations. */
|
371 |
|
|
return build_constructor (type, v);
|
372 |
|
|
}
|
373 |
|
|
}
|
374 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
375 |
|
|
{
|
376 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
377 |
|
|
|
378 |
|
|
/* Iterate over the array elements, building initializations. */
|
379 |
|
|
tree max_index = array_type_nelts (type);
|
380 |
|
|
|
381 |
|
|
/* If we have an error_mark here, we should just return error mark
|
382 |
|
|
as we don't know the size of the array yet. */
|
383 |
|
|
if (max_index == error_mark_node)
|
384 |
|
|
return error_mark_node;
|
385 |
|
|
gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
|
386 |
|
|
|
387 |
|
|
/* A zero-sized array, which is accepted as an extension, will
|
388 |
|
|
have an upper bound of -1. */
|
389 |
|
|
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
390 |
|
|
{
|
391 |
|
|
constructor_elt *ce;
|
392 |
|
|
|
393 |
|
|
v = VEC_alloc (constructor_elt, gc, 1);
|
394 |
|
|
ce = VEC_quick_push (constructor_elt, v, NULL);
|
395 |
|
|
|
396 |
|
|
/* If this is a one element array, we just use a regular init. */
|
397 |
|
|
if (tree_int_cst_equal (size_zero_node, max_index))
|
398 |
|
|
ce->index = size_zero_node;
|
399 |
|
|
else
|
400 |
|
|
ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
|
401 |
|
|
max_index);
|
402 |
|
|
|
403 |
|
|
ce->value = build_value_init (TREE_TYPE (type));
|
404 |
|
|
|
405 |
|
|
/* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
|
406 |
|
|
gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
|
407 |
|
|
&& TREE_CODE (ce->value) != AGGR_INIT_EXPR);
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
/* Build a constructor to contain the initializations. */
|
411 |
|
|
return build_constructor (type, v);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
|
418 |
|
|
arguments. If TREE_LIST is void_type_node, an empty initializer
|
419 |
|
|
list was given; if NULL_TREE no initializer was given. */
|
420 |
|
|
|
421 |
|
|
static void
|
422 |
|
|
perform_member_init (tree member, tree init)
|
423 |
|
|
{
|
424 |
|
|
tree decl;
|
425 |
|
|
tree type = TREE_TYPE (member);
|
426 |
|
|
|
427 |
|
|
/* Effective C++ rule 12 requires that all data members be
|
428 |
|
|
initialized. */
|
429 |
|
|
if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
|
430 |
|
|
warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
|
431 |
|
|
"%qD should be initialized in the member initialization list",
|
432 |
|
|
member);
|
433 |
|
|
|
434 |
|
|
/* Get an lvalue for the data member. */
|
435 |
|
|
decl = build_class_member_access_expr (current_class_ref, member,
|
436 |
|
|
/*access_path=*/NULL_TREE,
|
437 |
|
|
/*preserve_reference=*/true,
|
438 |
|
|
tf_warning_or_error);
|
439 |
|
|
if (decl == error_mark_node)
|
440 |
|
|
return;
|
441 |
|
|
|
442 |
|
|
if (init == void_type_node)
|
443 |
|
|
{
|
444 |
|
|
/* mem() means value-initialization. */
|
445 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
446 |
|
|
{
|
447 |
|
|
init = build_vec_init (decl, NULL_TREE, NULL_TREE,
|
448 |
|
|
/*explicit_value_init_p=*/true,
|
449 |
|
|
/* from_array=*/0,
|
450 |
|
|
tf_warning_or_error);
|
451 |
|
|
finish_expr_stmt (init);
|
452 |
|
|
}
|
453 |
|
|
else
|
454 |
|
|
{
|
455 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
456 |
|
|
permerror (DECL_SOURCE_LOCATION (current_function_decl),
|
457 |
|
|
"value-initialization of %q#D, which has reference type",
|
458 |
|
|
member);
|
459 |
|
|
else
|
460 |
|
|
{
|
461 |
|
|
init = build2 (INIT_EXPR, type, decl, build_value_init (type));
|
462 |
|
|
finish_expr_stmt (init);
|
463 |
|
|
}
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
/* Deal with this here, as we will get confused if we try to call the
|
467 |
|
|
assignment op for an anonymous union. This can happen in a
|
468 |
|
|
synthesized copy constructor. */
|
469 |
|
|
else if (ANON_AGGR_TYPE_P (type))
|
470 |
|
|
{
|
471 |
|
|
if (init)
|
472 |
|
|
{
|
473 |
|
|
init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
|
474 |
|
|
finish_expr_stmt (init);
|
475 |
|
|
}
|
476 |
|
|
}
|
477 |
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
478 |
|
|
{
|
479 |
|
|
if (init != NULL_TREE
|
480 |
|
|
&& TREE_CODE (type) == ARRAY_TYPE
|
481 |
|
|
&& TREE_CHAIN (init) == NULL_TREE
|
482 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
483 |
|
|
{
|
484 |
|
|
/* Initialization of one array from another. */
|
485 |
|
|
finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
|
486 |
|
|
/*explicit_value_init_p=*/false,
|
487 |
|
|
/* from_array=*/1,
|
488 |
|
|
tf_warning_or_error));
|
489 |
|
|
}
|
490 |
|
|
else
|
491 |
|
|
{
|
492 |
|
|
if (CP_TYPE_CONST_P (type)
|
493 |
|
|
&& init == NULL_TREE
|
494 |
|
|
&& !type_has_user_provided_default_constructor (type))
|
495 |
|
|
/* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
|
496 |
|
|
vtable; still give this diagnostic. */
|
497 |
|
|
permerror (DECL_SOURCE_LOCATION (current_function_decl),
|
498 |
|
|
"uninitialized member %qD with %<const%> type %qT",
|
499 |
|
|
member, type);
|
500 |
|
|
finish_expr_stmt (build_aggr_init (decl, init, 0,
|
501 |
|
|
tf_warning_or_error));
|
502 |
|
|
}
|
503 |
|
|
}
|
504 |
|
|
else
|
505 |
|
|
{
|
506 |
|
|
if (init == NULL_TREE)
|
507 |
|
|
{
|
508 |
|
|
/* member traversal: note it leaves init NULL */
|
509 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
510 |
|
|
permerror (DECL_SOURCE_LOCATION (current_function_decl),
|
511 |
|
|
"uninitialized reference member %qD",
|
512 |
|
|
member);
|
513 |
|
|
else if (CP_TYPE_CONST_P (type))
|
514 |
|
|
permerror (DECL_SOURCE_LOCATION (current_function_decl),
|
515 |
|
|
"uninitialized member %qD with %<const%> type %qT",
|
516 |
|
|
member, type);
|
517 |
|
|
}
|
518 |
|
|
else if (TREE_CODE (init) == TREE_LIST)
|
519 |
|
|
/* There was an explicit member initialization. Do some work
|
520 |
|
|
in that case. */
|
521 |
|
|
init = build_x_compound_expr_from_list (init, "member initializer");
|
522 |
|
|
|
523 |
|
|
if (init)
|
524 |
|
|
finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
|
525 |
|
|
tf_warning_or_error));
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
529 |
|
|
{
|
530 |
|
|
tree expr;
|
531 |
|
|
|
532 |
|
|
expr = build_class_member_access_expr (current_class_ref, member,
|
533 |
|
|
/*access_path=*/NULL_TREE,
|
534 |
|
|
/*preserve_reference=*/false,
|
535 |
|
|
tf_warning_or_error);
|
536 |
|
|
expr = build_delete (type, expr, sfk_complete_destructor,
|
537 |
|
|
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
538 |
|
|
|
539 |
|
|
if (expr != error_mark_node)
|
540 |
|
|
finish_eh_cleanup (expr);
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
|
545 |
|
|
the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
|
546 |
|
|
|
547 |
|
|
static tree
|
548 |
|
|
build_field_list (tree t, tree list, int *uses_unions_p)
|
549 |
|
|
{
|
550 |
|
|
tree fields;
|
551 |
|
|
|
552 |
|
|
*uses_unions_p = 0;
|
553 |
|
|
|
554 |
|
|
/* Note whether or not T is a union. */
|
555 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
556 |
|
|
*uses_unions_p = 1;
|
557 |
|
|
|
558 |
|
|
for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
|
559 |
|
|
{
|
560 |
|
|
/* Skip CONST_DECLs for enumeration constants and so forth. */
|
561 |
|
|
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
|
562 |
|
|
continue;
|
563 |
|
|
|
564 |
|
|
/* Keep track of whether or not any fields are unions. */
|
565 |
|
|
if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
566 |
|
|
*uses_unions_p = 1;
|
567 |
|
|
|
568 |
|
|
/* For an anonymous struct or union, we must recursively
|
569 |
|
|
consider the fields of the anonymous type. They can be
|
570 |
|
|
directly initialized from the constructor. */
|
571 |
|
|
if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
|
572 |
|
|
{
|
573 |
|
|
/* Add this field itself. Synthesized copy constructors
|
574 |
|
|
initialize the entire aggregate. */
|
575 |
|
|
list = tree_cons (fields, NULL_TREE, list);
|
576 |
|
|
/* And now add the fields in the anonymous aggregate. */
|
577 |
|
|
list = build_field_list (TREE_TYPE (fields), list,
|
578 |
|
|
uses_unions_p);
|
579 |
|
|
}
|
580 |
|
|
/* Add this field. */
|
581 |
|
|
else if (DECL_NAME (fields))
|
582 |
|
|
list = tree_cons (fields, NULL_TREE, list);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
return list;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
|
589 |
|
|
a FIELD_DECL or BINFO in T that needs initialization. The
|
590 |
|
|
TREE_VALUE gives the initializer, or list of initializer arguments.
|
591 |
|
|
|
592 |
|
|
Return a TREE_LIST containing all of the initializations required
|
593 |
|
|
for T, in the order in which they should be performed. The output
|
594 |
|
|
list has the same format as the input. */
|
595 |
|
|
|
596 |
|
|
static tree
|
597 |
|
|
sort_mem_initializers (tree t, tree mem_inits)
|
598 |
|
|
{
|
599 |
|
|
tree init;
|
600 |
|
|
tree base, binfo, base_binfo;
|
601 |
|
|
tree sorted_inits;
|
602 |
|
|
tree next_subobject;
|
603 |
|
|
VEC(tree,gc) *vbases;
|
604 |
|
|
int i;
|
605 |
|
|
int uses_unions_p;
|
606 |
|
|
|
607 |
|
|
/* Build up a list of initializations. The TREE_PURPOSE of entry
|
608 |
|
|
will be the subobject (a FIELD_DECL or BINFO) to initialize. The
|
609 |
|
|
TREE_VALUE will be the constructor arguments, or NULL if no
|
610 |
|
|
explicit initialization was provided. */
|
611 |
|
|
sorted_inits = NULL_TREE;
|
612 |
|
|
|
613 |
|
|
/* Process the virtual bases. */
|
614 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
615 |
|
|
VEC_iterate (tree, vbases, i, base); i++)
|
616 |
|
|
sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
|
617 |
|
|
|
618 |
|
|
/* Process the direct bases. */
|
619 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
620 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
621 |
|
|
if (!BINFO_VIRTUAL_P (base_binfo))
|
622 |
|
|
sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
|
623 |
|
|
|
624 |
|
|
/* Process the non-static data members. */
|
625 |
|
|
sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
|
626 |
|
|
/* Reverse the entire list of initializations, so that they are in
|
627 |
|
|
the order that they will actually be performed. */
|
628 |
|
|
sorted_inits = nreverse (sorted_inits);
|
629 |
|
|
|
630 |
|
|
/* If the user presented the initializers in an order different from
|
631 |
|
|
that in which they will actually occur, we issue a warning. Keep
|
632 |
|
|
track of the next subobject which can be explicitly initialized
|
633 |
|
|
without issuing a warning. */
|
634 |
|
|
next_subobject = sorted_inits;
|
635 |
|
|
|
636 |
|
|
/* Go through the explicit initializers, filling in TREE_PURPOSE in
|
637 |
|
|
the SORTED_INITS. */
|
638 |
|
|
for (init = mem_inits; init; init = TREE_CHAIN (init))
|
639 |
|
|
{
|
640 |
|
|
tree subobject;
|
641 |
|
|
tree subobject_init;
|
642 |
|
|
|
643 |
|
|
subobject = TREE_PURPOSE (init);
|
644 |
|
|
|
645 |
|
|
/* If the explicit initializers are in sorted order, then
|
646 |
|
|
SUBOBJECT will be NEXT_SUBOBJECT, or something following
|
647 |
|
|
it. */
|
648 |
|
|
for (subobject_init = next_subobject;
|
649 |
|
|
subobject_init;
|
650 |
|
|
subobject_init = TREE_CHAIN (subobject_init))
|
651 |
|
|
if (TREE_PURPOSE (subobject_init) == subobject)
|
652 |
|
|
break;
|
653 |
|
|
|
654 |
|
|
/* Issue a warning if the explicit initializer order does not
|
655 |
|
|
match that which will actually occur.
|
656 |
|
|
??? Are all these on the correct lines? */
|
657 |
|
|
if (warn_reorder && !subobject_init)
|
658 |
|
|
{
|
659 |
|
|
if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
|
660 |
|
|
warning (OPT_Wreorder, "%q+D will be initialized after",
|
661 |
|
|
TREE_PURPOSE (next_subobject));
|
662 |
|
|
else
|
663 |
|
|
warning (OPT_Wreorder, "base %qT will be initialized after",
|
664 |
|
|
TREE_PURPOSE (next_subobject));
|
665 |
|
|
if (TREE_CODE (subobject) == FIELD_DECL)
|
666 |
|
|
warning (OPT_Wreorder, " %q+#D", subobject);
|
667 |
|
|
else
|
668 |
|
|
warning (OPT_Wreorder, " base %qT", subobject);
|
669 |
|
|
warning_at (DECL_SOURCE_LOCATION (current_function_decl),
|
670 |
|
|
OPT_Wreorder, " when initialized here");
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
/* Look again, from the beginning of the list. */
|
674 |
|
|
if (!subobject_init)
|
675 |
|
|
{
|
676 |
|
|
subobject_init = sorted_inits;
|
677 |
|
|
while (TREE_PURPOSE (subobject_init) != subobject)
|
678 |
|
|
subobject_init = TREE_CHAIN (subobject_init);
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/* It is invalid to initialize the same subobject more than
|
682 |
|
|
once. */
|
683 |
|
|
if (TREE_VALUE (subobject_init))
|
684 |
|
|
{
|
685 |
|
|
if (TREE_CODE (subobject) == FIELD_DECL)
|
686 |
|
|
error_at (DECL_SOURCE_LOCATION (current_function_decl),
|
687 |
|
|
"multiple initializations given for %qD",
|
688 |
|
|
subobject);
|
689 |
|
|
else
|
690 |
|
|
error_at (DECL_SOURCE_LOCATION (current_function_decl),
|
691 |
|
|
"multiple initializations given for base %qT",
|
692 |
|
|
subobject);
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* Record the initialization. */
|
696 |
|
|
TREE_VALUE (subobject_init) = TREE_VALUE (init);
|
697 |
|
|
next_subobject = subobject_init;
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
/* [class.base.init]
|
701 |
|
|
|
702 |
|
|
If a ctor-initializer specifies more than one mem-initializer for
|
703 |
|
|
multiple members of the same union (including members of
|
704 |
|
|
anonymous unions), the ctor-initializer is ill-formed. */
|
705 |
|
|
if (uses_unions_p)
|
706 |
|
|
{
|
707 |
|
|
tree last_field = NULL_TREE;
|
708 |
|
|
for (init = sorted_inits; init; init = TREE_CHAIN (init))
|
709 |
|
|
{
|
710 |
|
|
tree field;
|
711 |
|
|
tree field_type;
|
712 |
|
|
int done;
|
713 |
|
|
|
714 |
|
|
/* Skip uninitialized members and base classes. */
|
715 |
|
|
if (!TREE_VALUE (init)
|
716 |
|
|
|| TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
|
717 |
|
|
continue;
|
718 |
|
|
/* See if this field is a member of a union, or a member of a
|
719 |
|
|
structure contained in a union, etc. */
|
720 |
|
|
field = TREE_PURPOSE (init);
|
721 |
|
|
for (field_type = DECL_CONTEXT (field);
|
722 |
|
|
!same_type_p (field_type, t);
|
723 |
|
|
field_type = TYPE_CONTEXT (field_type))
|
724 |
|
|
if (TREE_CODE (field_type) == UNION_TYPE)
|
725 |
|
|
break;
|
726 |
|
|
/* If this field is not a member of a union, skip it. */
|
727 |
|
|
if (TREE_CODE (field_type) != UNION_TYPE)
|
728 |
|
|
continue;
|
729 |
|
|
|
730 |
|
|
/* It's only an error if we have two initializers for the same
|
731 |
|
|
union type. */
|
732 |
|
|
if (!last_field)
|
733 |
|
|
{
|
734 |
|
|
last_field = field;
|
735 |
|
|
continue;
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
/* See if LAST_FIELD and the field initialized by INIT are
|
739 |
|
|
members of the same union. If so, there's a problem,
|
740 |
|
|
unless they're actually members of the same structure
|
741 |
|
|
which is itself a member of a union. For example, given:
|
742 |
|
|
|
743 |
|
|
union { struct { int i; int j; }; };
|
744 |
|
|
|
745 |
|
|
initializing both `i' and `j' makes sense. */
|
746 |
|
|
field_type = DECL_CONTEXT (field);
|
747 |
|
|
done = 0;
|
748 |
|
|
do
|
749 |
|
|
{
|
750 |
|
|
tree last_field_type;
|
751 |
|
|
|
752 |
|
|
last_field_type = DECL_CONTEXT (last_field);
|
753 |
|
|
while (1)
|
754 |
|
|
{
|
755 |
|
|
if (same_type_p (last_field_type, field_type))
|
756 |
|
|
{
|
757 |
|
|
if (TREE_CODE (field_type) == UNION_TYPE)
|
758 |
|
|
error_at (DECL_SOURCE_LOCATION (current_function_decl),
|
759 |
|
|
"initializations for multiple members of %qT",
|
760 |
|
|
last_field_type);
|
761 |
|
|
done = 1;
|
762 |
|
|
break;
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
if (same_type_p (last_field_type, t))
|
766 |
|
|
break;
|
767 |
|
|
|
768 |
|
|
last_field_type = TYPE_CONTEXT (last_field_type);
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
/* If we've reached the outermost class, then we're
|
772 |
|
|
done. */
|
773 |
|
|
if (same_type_p (field_type, t))
|
774 |
|
|
break;
|
775 |
|
|
|
776 |
|
|
field_type = TYPE_CONTEXT (field_type);
|
777 |
|
|
}
|
778 |
|
|
while (!done);
|
779 |
|
|
|
780 |
|
|
last_field = field;
|
781 |
|
|
}
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
return sorted_inits;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
|
788 |
|
|
is a TREE_LIST giving the explicit mem-initializer-list for the
|
789 |
|
|
constructor. The TREE_PURPOSE of each entry is a subobject (a
|
790 |
|
|
FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
|
791 |
|
|
is a TREE_LIST giving the arguments to the constructor or
|
792 |
|
|
void_type_node for an empty list of arguments. */
|
793 |
|
|
|
794 |
|
|
void
|
795 |
|
|
emit_mem_initializers (tree mem_inits)
|
796 |
|
|
{
|
797 |
|
|
/* We will already have issued an error message about the fact that
|
798 |
|
|
the type is incomplete. */
|
799 |
|
|
if (!COMPLETE_TYPE_P (current_class_type))
|
800 |
|
|
return;
|
801 |
|
|
|
802 |
|
|
/* Sort the mem-initializers into the order in which the
|
803 |
|
|
initializations should be performed. */
|
804 |
|
|
mem_inits = sort_mem_initializers (current_class_type, mem_inits);
|
805 |
|
|
|
806 |
|
|
in_base_initializer = 1;
|
807 |
|
|
|
808 |
|
|
/* Initialize base classes. */
|
809 |
|
|
while (mem_inits
|
810 |
|
|
&& TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
|
811 |
|
|
{
|
812 |
|
|
tree subobject = TREE_PURPOSE (mem_inits);
|
813 |
|
|
tree arguments = TREE_VALUE (mem_inits);
|
814 |
|
|
|
815 |
|
|
/* If these initializations are taking place in a copy constructor,
|
816 |
|
|
the base class should probably be explicitly initialized if there
|
817 |
|
|
is a user-defined constructor in the base class (other than the
|
818 |
|
|
default constructor, which will be called anyway). */
|
819 |
|
|
if (extra_warnings && !arguments
|
820 |
|
|
&& DECL_COPY_CONSTRUCTOR_P (current_function_decl)
|
821 |
|
|
&& type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
|
822 |
|
|
warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
|
823 |
|
|
"base class %q#T should be explicitly initialized in the "
|
824 |
|
|
"copy constructor",
|
825 |
|
|
BINFO_TYPE (subobject));
|
826 |
|
|
|
827 |
|
|
/* Initialize the base. */
|
828 |
|
|
if (BINFO_VIRTUAL_P (subobject))
|
829 |
|
|
construct_virtual_base (subobject, arguments);
|
830 |
|
|
else
|
831 |
|
|
{
|
832 |
|
|
tree base_addr;
|
833 |
|
|
|
834 |
|
|
base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
|
835 |
|
|
subobject, 1);
|
836 |
|
|
expand_aggr_init_1 (subobject, NULL_TREE,
|
837 |
|
|
cp_build_indirect_ref (base_addr, RO_NULL,
|
838 |
|
|
tf_warning_or_error),
|
839 |
|
|
arguments,
|
840 |
|
|
LOOKUP_NORMAL,
|
841 |
|
|
tf_warning_or_error);
|
842 |
|
|
expand_cleanup_for_base (subobject, NULL_TREE);
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
mem_inits = TREE_CHAIN (mem_inits);
|
846 |
|
|
}
|
847 |
|
|
in_base_initializer = 0;
|
848 |
|
|
|
849 |
|
|
/* Initialize the vptrs. */
|
850 |
|
|
initialize_vtbl_ptrs (current_class_ptr);
|
851 |
|
|
|
852 |
|
|
/* Initialize the data members. */
|
853 |
|
|
while (mem_inits)
|
854 |
|
|
{
|
855 |
|
|
perform_member_init (TREE_PURPOSE (mem_inits),
|
856 |
|
|
TREE_VALUE (mem_inits));
|
857 |
|
|
mem_inits = TREE_CHAIN (mem_inits);
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
/* Returns the address of the vtable (i.e., the value that should be
|
862 |
|
|
assigned to the vptr) for BINFO. */
|
863 |
|
|
|
864 |
|
|
static tree
|
865 |
|
|
build_vtbl_address (tree binfo)
|
866 |
|
|
{
|
867 |
|
|
tree binfo_for = binfo;
|
868 |
|
|
tree vtbl;
|
869 |
|
|
|
870 |
|
|
if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
|
871 |
|
|
/* If this is a virtual primary base, then the vtable we want to store
|
872 |
|
|
is that for the base this is being used as the primary base of. We
|
873 |
|
|
can't simply skip the initialization, because we may be expanding the
|
874 |
|
|
inits of a subobject constructor where the virtual base layout
|
875 |
|
|
can be different. */
|
876 |
|
|
while (BINFO_PRIMARY_P (binfo_for))
|
877 |
|
|
binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
|
878 |
|
|
|
879 |
|
|
/* Figure out what vtable BINFO's vtable is based on, and mark it as
|
880 |
|
|
used. */
|
881 |
|
|
vtbl = get_vtbl_decl_for_binfo (binfo_for);
|
882 |
|
|
TREE_USED (vtbl) = 1;
|
883 |
|
|
|
884 |
|
|
/* Now compute the address to use when initializing the vptr. */
|
885 |
|
|
vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
|
886 |
|
|
if (TREE_CODE (vtbl) == VAR_DECL)
|
887 |
|
|
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
888 |
|
|
|
889 |
|
|
return vtbl;
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
/* This code sets up the virtual function tables appropriate for
|
893 |
|
|
the pointer DECL. It is a one-ply initialization.
|
894 |
|
|
|
895 |
|
|
BINFO is the exact type that DECL is supposed to be. In
|
896 |
|
|
multiple inheritance, this might mean "C's A" if C : A, B. */
|
897 |
|
|
|
898 |
|
|
static void
|
899 |
|
|
expand_virtual_init (tree binfo, tree decl)
|
900 |
|
|
{
|
901 |
|
|
tree vtbl, vtbl_ptr;
|
902 |
|
|
tree vtt_index;
|
903 |
|
|
|
904 |
|
|
/* Compute the initializer for vptr. */
|
905 |
|
|
vtbl = build_vtbl_address (binfo);
|
906 |
|
|
|
907 |
|
|
/* We may get this vptr from a VTT, if this is a subobject
|
908 |
|
|
constructor or subobject destructor. */
|
909 |
|
|
vtt_index = BINFO_VPTR_INDEX (binfo);
|
910 |
|
|
if (vtt_index)
|
911 |
|
|
{
|
912 |
|
|
tree vtbl2;
|
913 |
|
|
tree vtt_parm;
|
914 |
|
|
|
915 |
|
|
/* Compute the value to use, when there's a VTT. */
|
916 |
|
|
vtt_parm = current_vtt_parm;
|
917 |
|
|
vtbl2 = build2 (POINTER_PLUS_EXPR,
|
918 |
|
|
TREE_TYPE (vtt_parm),
|
919 |
|
|
vtt_parm,
|
920 |
|
|
vtt_index);
|
921 |
|
|
vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
|
922 |
|
|
vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
|
923 |
|
|
|
924 |
|
|
/* The actual initializer is the VTT value only in the subobject
|
925 |
|
|
constructor. In maybe_clone_body we'll substitute NULL for
|
926 |
|
|
the vtt_parm in the case of the non-subobject constructor. */
|
927 |
|
|
vtbl = build3 (COND_EXPR,
|
928 |
|
|
TREE_TYPE (vtbl),
|
929 |
|
|
build2 (EQ_EXPR, boolean_type_node,
|
930 |
|
|
current_in_charge_parm, integer_zero_node),
|
931 |
|
|
vtbl2,
|
932 |
|
|
vtbl);
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
/* Compute the location of the vtpr. */
|
936 |
|
|
vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
|
937 |
|
|
tf_warning_or_error),
|
938 |
|
|
TREE_TYPE (binfo));
|
939 |
|
|
gcc_assert (vtbl_ptr != error_mark_node);
|
940 |
|
|
|
941 |
|
|
/* Assign the vtable to the vptr. */
|
942 |
|
|
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
943 |
|
|
finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
|
944 |
|
|
tf_warning_or_error));
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/* If an exception is thrown in a constructor, those base classes already
|
948 |
|
|
constructed must be destroyed. This function creates the cleanup
|
949 |
|
|
for BINFO, which has just been constructed. If FLAG is non-NULL,
|
950 |
|
|
it is a DECL which is nonzero when this base needs to be
|
951 |
|
|
destroyed. */
|
952 |
|
|
|
953 |
|
|
static void
|
954 |
|
|
expand_cleanup_for_base (tree binfo, tree flag)
|
955 |
|
|
{
|
956 |
|
|
tree expr;
|
957 |
|
|
|
958 |
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
|
959 |
|
|
return;
|
960 |
|
|
|
961 |
|
|
/* Call the destructor. */
|
962 |
|
|
expr = build_special_member_call (current_class_ref,
|
963 |
|
|
base_dtor_identifier,
|
964 |
|
|
NULL,
|
965 |
|
|
binfo,
|
966 |
|
|
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
|
967 |
|
|
tf_warning_or_error);
|
968 |
|
|
if (flag)
|
969 |
|
|
expr = fold_build3_loc (input_location,
|
970 |
|
|
COND_EXPR, void_type_node,
|
971 |
|
|
c_common_truthvalue_conversion (input_location, flag),
|
972 |
|
|
expr, integer_zero_node);
|
973 |
|
|
|
974 |
|
|
finish_eh_cleanup (expr);
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
|
978 |
|
|
constructor. */
|
979 |
|
|
|
980 |
|
|
static void
|
981 |
|
|
construct_virtual_base (tree vbase, tree arguments)
|
982 |
|
|
{
|
983 |
|
|
tree inner_if_stmt;
|
984 |
|
|
tree exp;
|
985 |
|
|
tree flag;
|
986 |
|
|
|
987 |
|
|
/* If there are virtual base classes with destructors, we need to
|
988 |
|
|
emit cleanups to destroy them if an exception is thrown during
|
989 |
|
|
the construction process. These exception regions (i.e., the
|
990 |
|
|
period during which the cleanups must occur) begin from the time
|
991 |
|
|
the construction is complete to the end of the function. If we
|
992 |
|
|
create a conditional block in which to initialize the
|
993 |
|
|
base-classes, then the cleanup region for the virtual base begins
|
994 |
|
|
inside a block, and ends outside of that block. This situation
|
995 |
|
|
confuses the sjlj exception-handling code. Therefore, we do not
|
996 |
|
|
create a single conditional block, but one for each
|
997 |
|
|
initialization. (That way the cleanup regions always begin
|
998 |
|
|
in the outer block.) We trust the back end to figure out
|
999 |
|
|
that the FLAG will not change across initializations, and
|
1000 |
|
|
avoid doing multiple tests. */
|
1001 |
|
|
flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
1002 |
|
|
inner_if_stmt = begin_if_stmt ();
|
1003 |
|
|
finish_if_stmt_cond (flag, inner_if_stmt);
|
1004 |
|
|
|
1005 |
|
|
/* Compute the location of the virtual base. If we're
|
1006 |
|
|
constructing virtual bases, then we must be the most derived
|
1007 |
|
|
class. Therefore, we don't have to look up the virtual base;
|
1008 |
|
|
we already know where it is. */
|
1009 |
|
|
exp = convert_to_base_statically (current_class_ref, vbase);
|
1010 |
|
|
|
1011 |
|
|
expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
|
1012 |
|
|
LOOKUP_COMPLAIN, tf_warning_or_error);
|
1013 |
|
|
finish_then_clause (inner_if_stmt);
|
1014 |
|
|
finish_if_stmt (inner_if_stmt);
|
1015 |
|
|
|
1016 |
|
|
expand_cleanup_for_base (vbase, flag);
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
/* Find the context in which this FIELD can be initialized. */
|
1020 |
|
|
|
1021 |
|
|
static tree
|
1022 |
|
|
initializing_context (tree field)
|
1023 |
|
|
{
|
1024 |
|
|
tree t = DECL_CONTEXT (field);
|
1025 |
|
|
|
1026 |
|
|
/* Anonymous union members can be initialized in the first enclosing
|
1027 |
|
|
non-anonymous union context. */
|
1028 |
|
|
while (t && ANON_AGGR_TYPE_P (t))
|
1029 |
|
|
t = TYPE_CONTEXT (t);
|
1030 |
|
|
return t;
|
1031 |
|
|
}
|
1032 |
|
|
|
1033 |
|
|
/* Function to give error message if member initialization specification
|
1034 |
|
|
is erroneous. FIELD is the member we decided to initialize.
|
1035 |
|
|
TYPE is the type for which the initialization is being performed.
|
1036 |
|
|
FIELD must be a member of TYPE.
|
1037 |
|
|
|
1038 |
|
|
MEMBER_NAME is the name of the member. */
|
1039 |
|
|
|
1040 |
|
|
static int
|
1041 |
|
|
member_init_ok_or_else (tree field, tree type, tree member_name)
|
1042 |
|
|
{
|
1043 |
|
|
if (field == error_mark_node)
|
1044 |
|
|
return 0;
|
1045 |
|
|
if (!field)
|
1046 |
|
|
{
|
1047 |
|
|
error ("class %qT does not have any field named %qD", type,
|
1048 |
|
|
member_name);
|
1049 |
|
|
return 0;
|
1050 |
|
|
}
|
1051 |
|
|
if (TREE_CODE (field) == VAR_DECL)
|
1052 |
|
|
{
|
1053 |
|
|
error ("%q#D is a static data member; it can only be "
|
1054 |
|
|
"initialized at its definition",
|
1055 |
|
|
field);
|
1056 |
|
|
return 0;
|
1057 |
|
|
}
|
1058 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
1059 |
|
|
{
|
1060 |
|
|
error ("%q#D is not a non-static data member of %qT",
|
1061 |
|
|
field, type);
|
1062 |
|
|
return 0;
|
1063 |
|
|
}
|
1064 |
|
|
if (initializing_context (field) != type)
|
1065 |
|
|
{
|
1066 |
|
|
error ("class %qT does not have any field named %qD", type,
|
1067 |
|
|
member_name);
|
1068 |
|
|
return 0;
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
return 1;
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
|
1075 |
|
|
is a _TYPE node or TYPE_DECL which names a base for that type.
|
1076 |
|
|
Check the validity of NAME, and return either the base _TYPE, base
|
1077 |
|
|
binfo, or the FIELD_DECL of the member. If NAME is invalid, return
|
1078 |
|
|
NULL_TREE and issue a diagnostic.
|
1079 |
|
|
|
1080 |
|
|
An old style unnamed direct single base construction is permitted,
|
1081 |
|
|
where NAME is NULL. */
|
1082 |
|
|
|
1083 |
|
|
tree
|
1084 |
|
|
expand_member_init (tree name)
|
1085 |
|
|
{
|
1086 |
|
|
tree basetype;
|
1087 |
|
|
tree field;
|
1088 |
|
|
|
1089 |
|
|
if (!current_class_ref)
|
1090 |
|
|
return NULL_TREE;
|
1091 |
|
|
|
1092 |
|
|
if (!name)
|
1093 |
|
|
{
|
1094 |
|
|
/* This is an obsolete unnamed base class initializer. The
|
1095 |
|
|
parser will already have warned about its use. */
|
1096 |
|
|
switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
|
1097 |
|
|
{
|
1098 |
|
|
case 0:
|
1099 |
|
|
error ("unnamed initializer for %qT, which has no base classes",
|
1100 |
|
|
current_class_type);
|
1101 |
|
|
return NULL_TREE;
|
1102 |
|
|
case 1:
|
1103 |
|
|
basetype = BINFO_TYPE
|
1104 |
|
|
(BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
|
1105 |
|
|
break;
|
1106 |
|
|
default:
|
1107 |
|
|
error ("unnamed initializer for %qT, which uses multiple inheritance",
|
1108 |
|
|
current_class_type);
|
1109 |
|
|
return NULL_TREE;
|
1110 |
|
|
}
|
1111 |
|
|
}
|
1112 |
|
|
else if (TYPE_P (name))
|
1113 |
|
|
{
|
1114 |
|
|
basetype = TYPE_MAIN_VARIANT (name);
|
1115 |
|
|
name = TYPE_NAME (name);
|
1116 |
|
|
}
|
1117 |
|
|
else if (TREE_CODE (name) == TYPE_DECL)
|
1118 |
|
|
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
|
1119 |
|
|
else
|
1120 |
|
|
basetype = NULL_TREE;
|
1121 |
|
|
|
1122 |
|
|
if (basetype)
|
1123 |
|
|
{
|
1124 |
|
|
tree class_binfo;
|
1125 |
|
|
tree direct_binfo;
|
1126 |
|
|
tree virtual_binfo;
|
1127 |
|
|
int i;
|
1128 |
|
|
|
1129 |
|
|
if (current_template_parms)
|
1130 |
|
|
return basetype;
|
1131 |
|
|
|
1132 |
|
|
class_binfo = TYPE_BINFO (current_class_type);
|
1133 |
|
|
direct_binfo = NULL_TREE;
|
1134 |
|
|
virtual_binfo = NULL_TREE;
|
1135 |
|
|
|
1136 |
|
|
/* Look for a direct base. */
|
1137 |
|
|
for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
|
1138 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
|
1139 |
|
|
break;
|
1140 |
|
|
|
1141 |
|
|
/* Look for a virtual base -- unless the direct base is itself
|
1142 |
|
|
virtual. */
|
1143 |
|
|
if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
|
1144 |
|
|
virtual_binfo = binfo_for_vbase (basetype, current_class_type);
|
1145 |
|
|
|
1146 |
|
|
/* [class.base.init]
|
1147 |
|
|
|
1148 |
|
|
If a mem-initializer-id is ambiguous because it designates
|
1149 |
|
|
both a direct non-virtual base class and an inherited virtual
|
1150 |
|
|
base class, the mem-initializer is ill-formed. */
|
1151 |
|
|
if (direct_binfo && virtual_binfo)
|
1152 |
|
|
{
|
1153 |
|
|
error ("%qD is both a direct base and an indirect virtual base",
|
1154 |
|
|
basetype);
|
1155 |
|
|
return NULL_TREE;
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
if (!direct_binfo && !virtual_binfo)
|
1159 |
|
|
{
|
1160 |
|
|
if (CLASSTYPE_VBASECLASSES (current_class_type))
|
1161 |
|
|
error ("type %qT is not a direct or virtual base of %qT",
|
1162 |
|
|
basetype, current_class_type);
|
1163 |
|
|
else
|
1164 |
|
|
error ("type %qT is not a direct base of %qT",
|
1165 |
|
|
basetype, current_class_type);
|
1166 |
|
|
return NULL_TREE;
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
return direct_binfo ? direct_binfo : virtual_binfo;
|
1170 |
|
|
}
|
1171 |
|
|
else
|
1172 |
|
|
{
|
1173 |
|
|
if (TREE_CODE (name) == IDENTIFIER_NODE)
|
1174 |
|
|
field = lookup_field (current_class_type, name, 1, false);
|
1175 |
|
|
else
|
1176 |
|
|
field = name;
|
1177 |
|
|
|
1178 |
|
|
if (member_init_ok_or_else (field, current_class_type, name))
|
1179 |
|
|
return field;
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
return NULL_TREE;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
/* This is like `expand_member_init', only it stores one aggregate
|
1186 |
|
|
value into another.
|
1187 |
|
|
|
1188 |
|
|
INIT comes in two flavors: it is either a value which
|
1189 |
|
|
is to be stored in EXP, or it is a parameter list
|
1190 |
|
|
to go to a constructor, which will operate on EXP.
|
1191 |
|
|
If INIT is not a parameter list for a constructor, then set
|
1192 |
|
|
LOOKUP_ONLYCONVERTING.
|
1193 |
|
|
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
1194 |
|
|
the initializer, if FLAGS is 0, then it is the (init) form.
|
1195 |
|
|
If `init' is a CONSTRUCTOR, then we emit a warning message,
|
1196 |
|
|
explaining that such initializations are invalid.
|
1197 |
|
|
|
1198 |
|
|
If INIT resolves to a CALL_EXPR which happens to return
|
1199 |
|
|
something of the type we are looking for, then we know
|
1200 |
|
|
that we can safely use that call to perform the
|
1201 |
|
|
initialization.
|
1202 |
|
|
|
1203 |
|
|
The virtual function table pointer cannot be set up here, because
|
1204 |
|
|
we do not really know its type.
|
1205 |
|
|
|
1206 |
|
|
This never calls operator=().
|
1207 |
|
|
|
1208 |
|
|
When initializing, nothing is CONST.
|
1209 |
|
|
|
1210 |
|
|
A default copy constructor may have to be used to perform the
|
1211 |
|
|
initialization.
|
1212 |
|
|
|
1213 |
|
|
A constructor or a conversion operator may have to be used to
|
1214 |
|
|
perform the initialization, but not both, as it would be ambiguous. */
|
1215 |
|
|
|
1216 |
|
|
tree
|
1217 |
|
|
build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
|
1218 |
|
|
{
|
1219 |
|
|
tree stmt_expr;
|
1220 |
|
|
tree compound_stmt;
|
1221 |
|
|
int destroy_temps;
|
1222 |
|
|
tree type = TREE_TYPE (exp);
|
1223 |
|
|
int was_const = TREE_READONLY (exp);
|
1224 |
|
|
int was_volatile = TREE_THIS_VOLATILE (exp);
|
1225 |
|
|
int is_global;
|
1226 |
|
|
|
1227 |
|
|
if (init == error_mark_node)
|
1228 |
|
|
return error_mark_node;
|
1229 |
|
|
|
1230 |
|
|
TREE_READONLY (exp) = 0;
|
1231 |
|
|
TREE_THIS_VOLATILE (exp) = 0;
|
1232 |
|
|
|
1233 |
|
|
if (init && TREE_CODE (init) != TREE_LIST
|
1234 |
|
|
&& !(BRACE_ENCLOSED_INITIALIZER_P (init)
|
1235 |
|
|
&& CONSTRUCTOR_IS_DIRECT_INIT (init)))
|
1236 |
|
|
flags |= LOOKUP_ONLYCONVERTING;
|
1237 |
|
|
|
1238 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
1239 |
|
|
{
|
1240 |
|
|
tree itype;
|
1241 |
|
|
|
1242 |
|
|
/* An array may not be initialized use the parenthesized
|
1243 |
|
|
initialization form -- unless the initializer is "()". */
|
1244 |
|
|
if (init && TREE_CODE (init) == TREE_LIST)
|
1245 |
|
|
{
|
1246 |
|
|
if (complain & tf_error)
|
1247 |
|
|
error ("bad array initializer");
|
1248 |
|
|
return error_mark_node;
|
1249 |
|
|
}
|
1250 |
|
|
/* Must arrange to initialize each element of EXP
|
1251 |
|
|
from elements of INIT. */
|
1252 |
|
|
itype = init ? TREE_TYPE (init) : NULL_TREE;
|
1253 |
|
|
if (cv_qualified_p (type))
|
1254 |
|
|
TREE_TYPE (exp) = cv_unqualified (type);
|
1255 |
|
|
if (itype && cv_qualified_p (itype))
|
1256 |
|
|
TREE_TYPE (init) = cv_unqualified (itype);
|
1257 |
|
|
stmt_expr = build_vec_init (exp, NULL_TREE, init,
|
1258 |
|
|
/*explicit_value_init_p=*/false,
|
1259 |
|
|
itype && same_type_p (TREE_TYPE (init),
|
1260 |
|
|
TREE_TYPE (exp)),
|
1261 |
|
|
complain);
|
1262 |
|
|
TREE_READONLY (exp) = was_const;
|
1263 |
|
|
TREE_THIS_VOLATILE (exp) = was_volatile;
|
1264 |
|
|
TREE_TYPE (exp) = type;
|
1265 |
|
|
if (init)
|
1266 |
|
|
TREE_TYPE (init) = itype;
|
1267 |
|
|
return stmt_expr;
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
1271 |
|
|
/* Just know that we've seen something for this node. */
|
1272 |
|
|
TREE_USED (exp) = 1;
|
1273 |
|
|
|
1274 |
|
|
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
1275 |
|
|
destroy_temps = stmts_are_full_exprs_p ();
|
1276 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
1277 |
|
|
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
1278 |
|
|
init, LOOKUP_NORMAL|flags, complain);
|
1279 |
|
|
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
1280 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
1281 |
|
|
TREE_READONLY (exp) = was_const;
|
1282 |
|
|
TREE_THIS_VOLATILE (exp) = was_volatile;
|
1283 |
|
|
|
1284 |
|
|
return stmt_expr;
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
static void
|
1288 |
|
|
expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
|
1289 |
|
|
tsubst_flags_t complain)
|
1290 |
|
|
{
|
1291 |
|
|
tree type = TREE_TYPE (exp);
|
1292 |
|
|
tree ctor_name;
|
1293 |
|
|
|
1294 |
|
|
/* It fails because there may not be a constructor which takes
|
1295 |
|
|
its own type as the first (or only parameter), but which does
|
1296 |
|
|
take other types via a conversion. So, if the thing initializing
|
1297 |
|
|
the expression is a unit element of type X, first try X(X&),
|
1298 |
|
|
followed by initialization by X. If neither of these work
|
1299 |
|
|
out, then look hard. */
|
1300 |
|
|
tree rval;
|
1301 |
|
|
VEC(tree,gc) *parms;
|
1302 |
|
|
|
1303 |
|
|
if (init && TREE_CODE (init) != TREE_LIST
|
1304 |
|
|
&& (flags & LOOKUP_ONLYCONVERTING))
|
1305 |
|
|
{
|
1306 |
|
|
/* Base subobjects should only get direct-initialization. */
|
1307 |
|
|
gcc_assert (true_exp == exp);
|
1308 |
|
|
|
1309 |
|
|
if (flags & DIRECT_BIND)
|
1310 |
|
|
/* Do nothing. We hit this in two cases: Reference initialization,
|
1311 |
|
|
where we aren't initializing a real variable, so we don't want
|
1312 |
|
|
to run a new constructor; and catching an exception, where we
|
1313 |
|
|
have already built up the constructor call so we could wrap it
|
1314 |
|
|
in an exception region. */;
|
1315 |
|
|
else if (BRACE_ENCLOSED_INITIALIZER_P (init)
|
1316 |
|
|
&& CP_AGGREGATE_TYPE_P (type))
|
1317 |
|
|
{
|
1318 |
|
|
/* A brace-enclosed initializer for an aggregate. */
|
1319 |
|
|
init = digest_init (type, init);
|
1320 |
|
|
}
|
1321 |
|
|
else
|
1322 |
|
|
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
|
1323 |
|
|
|
1324 |
|
|
if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
|
1325 |
|
|
/* We need to protect the initialization of a catch parm with a
|
1326 |
|
|
call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
|
1327 |
|
|
around the TARGET_EXPR for the copy constructor. See
|
1328 |
|
|
initialize_handler_parm. */
|
1329 |
|
|
{
|
1330 |
|
|
TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
|
1331 |
|
|
TREE_OPERAND (init, 0));
|
1332 |
|
|
TREE_TYPE (init) = void_type_node;
|
1333 |
|
|
}
|
1334 |
|
|
else
|
1335 |
|
|
init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
|
1336 |
|
|
TREE_SIDE_EFFECTS (init) = 1;
|
1337 |
|
|
finish_expr_stmt (init);
|
1338 |
|
|
return;
|
1339 |
|
|
}
|
1340 |
|
|
|
1341 |
|
|
if (init == NULL_TREE)
|
1342 |
|
|
parms = NULL;
|
1343 |
|
|
else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
|
1344 |
|
|
{
|
1345 |
|
|
parms = make_tree_vector ();
|
1346 |
|
|
for (; init != NULL_TREE; init = TREE_CHAIN (init))
|
1347 |
|
|
VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
|
1348 |
|
|
}
|
1349 |
|
|
else
|
1350 |
|
|
parms = make_tree_vector_single (init);
|
1351 |
|
|
|
1352 |
|
|
if (true_exp == exp)
|
1353 |
|
|
ctor_name = complete_ctor_identifier;
|
1354 |
|
|
else
|
1355 |
|
|
ctor_name = base_ctor_identifier;
|
1356 |
|
|
|
1357 |
|
|
rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
|
1358 |
|
|
complain);
|
1359 |
|
|
|
1360 |
|
|
if (parms != NULL)
|
1361 |
|
|
release_tree_vector (parms);
|
1362 |
|
|
|
1363 |
|
|
if (TREE_SIDE_EFFECTS (rval))
|
1364 |
|
|
finish_expr_stmt (convert_to_void (rval, NULL, complain));
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
/* This function is responsible for initializing EXP with INIT
|
1368 |
|
|
(if any).
|
1369 |
|
|
|
1370 |
|
|
BINFO is the binfo of the type for who we are performing the
|
1371 |
|
|
initialization. For example, if W is a virtual base class of A and B,
|
1372 |
|
|
and C : A, B.
|
1373 |
|
|
If we are initializing B, then W must contain B's W vtable, whereas
|
1374 |
|
|
were we initializing C, W must contain C's W vtable.
|
1375 |
|
|
|
1376 |
|
|
TRUE_EXP is nonzero if it is the true expression being initialized.
|
1377 |
|
|
In this case, it may be EXP, or may just contain EXP. The reason we
|
1378 |
|
|
need this is because if EXP is a base element of TRUE_EXP, we
|
1379 |
|
|
don't necessarily know by looking at EXP where its virtual
|
1380 |
|
|
baseclass fields should really be pointing. But we do know
|
1381 |
|
|
from TRUE_EXP. In constructors, we don't know anything about
|
1382 |
|
|
the value being initialized.
|
1383 |
|
|
|
1384 |
|
|
FLAGS is just passed to `build_new_method_call'. See that function
|
1385 |
|
|
for its description. */
|
1386 |
|
|
|
1387 |
|
|
static void
|
1388 |
|
|
expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
|
1389 |
|
|
tsubst_flags_t complain)
|
1390 |
|
|
{
|
1391 |
|
|
tree type = TREE_TYPE (exp);
|
1392 |
|
|
|
1393 |
|
|
gcc_assert (init != error_mark_node && type != error_mark_node);
|
1394 |
|
|
gcc_assert (building_stmt_tree ());
|
1395 |
|
|
|
1396 |
|
|
/* Use a function returning the desired type to initialize EXP for us.
|
1397 |
|
|
If the function is a constructor, and its first argument is
|
1398 |
|
|
NULL_TREE, know that it was meant for us--just slide exp on
|
1399 |
|
|
in and expand the constructor. Constructors now come
|
1400 |
|
|
as TARGET_EXPRs. */
|
1401 |
|
|
|
1402 |
|
|
if (init && TREE_CODE (exp) == VAR_DECL
|
1403 |
|
|
&& COMPOUND_LITERAL_P (init))
|
1404 |
|
|
{
|
1405 |
|
|
/* If store_init_value returns NULL_TREE, the INIT has been
|
1406 |
|
|
recorded as the DECL_INITIAL for EXP. That means there's
|
1407 |
|
|
nothing more we have to do. */
|
1408 |
|
|
init = store_init_value (exp, init, flags);
|
1409 |
|
|
if (init)
|
1410 |
|
|
finish_expr_stmt (init);
|
1411 |
|
|
return;
|
1412 |
|
|
}
|
1413 |
|
|
|
1414 |
|
|
/* If an explicit -- but empty -- initializer list was present,
|
1415 |
|
|
that's value-initialization. */
|
1416 |
|
|
if (init == void_type_node)
|
1417 |
|
|
{
|
1418 |
|
|
/* If there's a user-provided constructor, we just call that. */
|
1419 |
|
|
if (type_has_user_provided_constructor (type))
|
1420 |
|
|
/* Fall through. */;
|
1421 |
|
|
/* If there isn't, but we still need to call the constructor,
|
1422 |
|
|
zero out the object first. */
|
1423 |
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
1424 |
|
|
{
|
1425 |
|
|
init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
|
1426 |
|
|
init = build2 (INIT_EXPR, type, exp, init);
|
1427 |
|
|
finish_expr_stmt (init);
|
1428 |
|
|
/* And then call the constructor. */
|
1429 |
|
|
}
|
1430 |
|
|
/* If we don't need to mess with the constructor at all,
|
1431 |
|
|
then just zero out the object and we're done. */
|
1432 |
|
|
else
|
1433 |
|
|
{
|
1434 |
|
|
init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
|
1435 |
|
|
finish_expr_stmt (init);
|
1436 |
|
|
return;
|
1437 |
|
|
}
|
1438 |
|
|
init = NULL_TREE;
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
/* We know that expand_default_init can handle everything we want
|
1442 |
|
|
at this point. */
|
1443 |
|
|
expand_default_init (binfo, true_exp, exp, init, flags, complain);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/* Report an error if TYPE is not a user-defined, class type. If
|
1447 |
|
|
OR_ELSE is nonzero, give an error message. */
|
1448 |
|
|
|
1449 |
|
|
int
|
1450 |
|
|
is_class_type (tree type, int or_else)
|
1451 |
|
|
{
|
1452 |
|
|
if (type == error_mark_node)
|
1453 |
|
|
return 0;
|
1454 |
|
|
|
1455 |
|
|
if (! CLASS_TYPE_P (type))
|
1456 |
|
|
{
|
1457 |
|
|
if (or_else)
|
1458 |
|
|
error ("%qT is not a class type", type);
|
1459 |
|
|
return 0;
|
1460 |
|
|
}
|
1461 |
|
|
return 1;
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
tree
|
1465 |
|
|
get_type_value (tree name)
|
1466 |
|
|
{
|
1467 |
|
|
if (name == error_mark_node)
|
1468 |
|
|
return NULL_TREE;
|
1469 |
|
|
|
1470 |
|
|
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
1471 |
|
|
return IDENTIFIER_TYPE_VALUE (name);
|
1472 |
|
|
else
|
1473 |
|
|
return NULL_TREE;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
/* Build a reference to a member of an aggregate. This is not a C++
|
1477 |
|
|
`&', but really something which can have its address taken, and
|
1478 |
|
|
then act as a pointer to member, for example TYPE :: FIELD can have
|
1479 |
|
|
its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
|
1480 |
|
|
this expression is the operand of "&".
|
1481 |
|
|
|
1482 |
|
|
@@ Prints out lousy diagnostics for operator <typename>
|
1483 |
|
|
@@ fields.
|
1484 |
|
|
|
1485 |
|
|
@@ This function should be rewritten and placed in search.c. */
|
1486 |
|
|
|
1487 |
|
|
tree
|
1488 |
|
|
build_offset_ref (tree type, tree member, bool address_p)
|
1489 |
|
|
{
|
1490 |
|
|
tree decl;
|
1491 |
|
|
tree basebinfo = NULL_TREE;
|
1492 |
|
|
|
1493 |
|
|
/* class templates can come in as TEMPLATE_DECLs here. */
|
1494 |
|
|
if (TREE_CODE (member) == TEMPLATE_DECL)
|
1495 |
|
|
return member;
|
1496 |
|
|
|
1497 |
|
|
if (dependent_type_p (type) || type_dependent_expression_p (member))
|
1498 |
|
|
return build_qualified_name (NULL_TREE, type, member,
|
1499 |
|
|
/*template_p=*/false);
|
1500 |
|
|
|
1501 |
|
|
gcc_assert (TYPE_P (type));
|
1502 |
|
|
if (! is_class_type (type, 1))
|
1503 |
|
|
return error_mark_node;
|
1504 |
|
|
|
1505 |
|
|
gcc_assert (DECL_P (member) || BASELINK_P (member));
|
1506 |
|
|
/* Callers should call mark_used before this point. */
|
1507 |
|
|
gcc_assert (!DECL_P (member) || TREE_USED (member));
|
1508 |
|
|
|
1509 |
|
|
if (!COMPLETE_TYPE_P (complete_type (type))
|
1510 |
|
|
&& !TYPE_BEING_DEFINED (type))
|
1511 |
|
|
{
|
1512 |
|
|
error ("incomplete type %qT does not have member %qD", type, member);
|
1513 |
|
|
return error_mark_node;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* Entities other than non-static members need no further
|
1517 |
|
|
processing. */
|
1518 |
|
|
if (TREE_CODE (member) == TYPE_DECL)
|
1519 |
|
|
return member;
|
1520 |
|
|
if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
|
1521 |
|
|
return convert_from_reference (member);
|
1522 |
|
|
|
1523 |
|
|
if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
|
1524 |
|
|
{
|
1525 |
|
|
error ("invalid pointer to bit-field %qD", member);
|
1526 |
|
|
return error_mark_node;
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* Set up BASEBINFO for member lookup. */
|
1530 |
|
|
decl = maybe_dummy_object (type, &basebinfo);
|
1531 |
|
|
|
1532 |
|
|
/* A lot of this logic is now handled in lookup_member. */
|
1533 |
|
|
if (BASELINK_P (member))
|
1534 |
|
|
{
|
1535 |
|
|
/* Go from the TREE_BASELINK to the member function info. */
|
1536 |
|
|
tree t = BASELINK_FUNCTIONS (member);
|
1537 |
|
|
|
1538 |
|
|
if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
|
1539 |
|
|
{
|
1540 |
|
|
/* Get rid of a potential OVERLOAD around it. */
|
1541 |
|
|
t = OVL_CURRENT (t);
|
1542 |
|
|
|
1543 |
|
|
/* Unique functions are handled easily. */
|
1544 |
|
|
|
1545 |
|
|
/* For non-static member of base class, we need a special rule
|
1546 |
|
|
for access checking [class.protected]:
|
1547 |
|
|
|
1548 |
|
|
If the access is to form a pointer to member, the
|
1549 |
|
|
nested-name-specifier shall name the derived class
|
1550 |
|
|
(or any class derived from that class). */
|
1551 |
|
|
if (address_p && DECL_P (t)
|
1552 |
|
|
&& DECL_NONSTATIC_MEMBER_P (t))
|
1553 |
|
|
perform_or_defer_access_check (TYPE_BINFO (type), t, t);
|
1554 |
|
|
else
|
1555 |
|
|
perform_or_defer_access_check (basebinfo, t, t);
|
1556 |
|
|
|
1557 |
|
|
if (DECL_STATIC_FUNCTION_P (t))
|
1558 |
|
|
return t;
|
1559 |
|
|
member = t;
|
1560 |
|
|
}
|
1561 |
|
|
else
|
1562 |
|
|
TREE_TYPE (member) = unknown_type_node;
|
1563 |
|
|
}
|
1564 |
|
|
else if (address_p && TREE_CODE (member) == FIELD_DECL)
|
1565 |
|
|
/* We need additional test besides the one in
|
1566 |
|
|
check_accessibility_of_qualified_id in case it is
|
1567 |
|
|
a pointer to non-static member. */
|
1568 |
|
|
perform_or_defer_access_check (TYPE_BINFO (type), member, member);
|
1569 |
|
|
|
1570 |
|
|
if (!address_p)
|
1571 |
|
|
{
|
1572 |
|
|
/* If MEMBER is non-static, then the program has fallen afoul of
|
1573 |
|
|
[expr.prim]:
|
1574 |
|
|
|
1575 |
|
|
An id-expression that denotes a nonstatic data member or
|
1576 |
|
|
nonstatic member function of a class can only be used:
|
1577 |
|
|
|
1578 |
|
|
-- as part of a class member access (_expr.ref_) in which the
|
1579 |
|
|
object-expression refers to the member's class or a class
|
1580 |
|
|
derived from that class, or
|
1581 |
|
|
|
1582 |
|
|
-- to form a pointer to member (_expr.unary.op_), or
|
1583 |
|
|
|
1584 |
|
|
-- in the body of a nonstatic member function of that class or
|
1585 |
|
|
of a class derived from that class (_class.mfct.nonstatic_), or
|
1586 |
|
|
|
1587 |
|
|
-- in a mem-initializer for a constructor for that class or for
|
1588 |
|
|
a class derived from that class (_class.base.init_). */
|
1589 |
|
|
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
|
1590 |
|
|
{
|
1591 |
|
|
/* Build a representation of the qualified name suitable
|
1592 |
|
|
for use as the operand to "&" -- even though the "&" is
|
1593 |
|
|
not actually present. */
|
1594 |
|
|
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
1595 |
|
|
/* In Microsoft mode, treat a non-static member function as if
|
1596 |
|
|
it were a pointer-to-member. */
|
1597 |
|
|
if (flag_ms_extensions)
|
1598 |
|
|
{
|
1599 |
|
|
PTRMEM_OK_P (member) = 1;
|
1600 |
|
|
return cp_build_unary_op (ADDR_EXPR, member, 0,
|
1601 |
|
|
tf_warning_or_error);
|
1602 |
|
|
}
|
1603 |
|
|
error ("invalid use of non-static member function %qD",
|
1604 |
|
|
TREE_OPERAND (member, 1));
|
1605 |
|
|
return error_mark_node;
|
1606 |
|
|
}
|
1607 |
|
|
else if (TREE_CODE (member) == FIELD_DECL)
|
1608 |
|
|
{
|
1609 |
|
|
error ("invalid use of non-static data member %qD", member);
|
1610 |
|
|
return error_mark_node;
|
1611 |
|
|
}
|
1612 |
|
|
return member;
|
1613 |
|
|
}
|
1614 |
|
|
|
1615 |
|
|
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
1616 |
|
|
PTRMEM_OK_P (member) = 1;
|
1617 |
|
|
return member;
|
1618 |
|
|
}
|
1619 |
|
|
|
1620 |
|
|
/* If DECL is a scalar enumeration constant or variable with a
|
1621 |
|
|
constant initializer, return the initializer (or, its initializers,
|
1622 |
|
|
recursively); otherwise, return DECL. If INTEGRAL_P, the
|
1623 |
|
|
initializer is only returned if DECL is an integral
|
1624 |
|
|
constant-expression. */
|
1625 |
|
|
|
1626 |
|
|
static tree
|
1627 |
|
|
constant_value_1 (tree decl, bool integral_p)
|
1628 |
|
|
{
|
1629 |
|
|
while (TREE_CODE (decl) == CONST_DECL
|
1630 |
|
|
|| (integral_p
|
1631 |
|
|
? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
|
1632 |
|
|
: (TREE_CODE (decl) == VAR_DECL
|
1633 |
|
|
&& CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
|
1634 |
|
|
{
|
1635 |
|
|
tree init;
|
1636 |
|
|
/* Static data members in template classes may have
|
1637 |
|
|
non-dependent initializers. References to such non-static
|
1638 |
|
|
data members are not value-dependent, so we must retrieve the
|
1639 |
|
|
initializer here. The DECL_INITIAL will have the right type,
|
1640 |
|
|
but will not have been folded because that would prevent us
|
1641 |
|
|
from performing all appropriate semantic checks at
|
1642 |
|
|
instantiation time. */
|
1643 |
|
|
if (DECL_CLASS_SCOPE_P (decl)
|
1644 |
|
|
&& CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
|
1645 |
|
|
&& uses_template_parms (CLASSTYPE_TI_ARGS
|
1646 |
|
|
(DECL_CONTEXT (decl))))
|
1647 |
|
|
{
|
1648 |
|
|
++processing_template_decl;
|
1649 |
|
|
init = fold_non_dependent_expr (DECL_INITIAL (decl));
|
1650 |
|
|
--processing_template_decl;
|
1651 |
|
|
}
|
1652 |
|
|
else
|
1653 |
|
|
{
|
1654 |
|
|
/* If DECL is a static data member in a template
|
1655 |
|
|
specialization, we must instantiate it here. The
|
1656 |
|
|
initializer for the static data member is not processed
|
1657 |
|
|
until needed; we need it now. */
|
1658 |
|
|
mark_used (decl);
|
1659 |
|
|
init = DECL_INITIAL (decl);
|
1660 |
|
|
}
|
1661 |
|
|
if (init == error_mark_node)
|
1662 |
|
|
return decl;
|
1663 |
|
|
/* Initializers in templates are generally expanded during
|
1664 |
|
|
instantiation, so before that for const int i(2)
|
1665 |
|
|
INIT is a TREE_LIST with the actual initializer as
|
1666 |
|
|
TREE_VALUE. */
|
1667 |
|
|
if (processing_template_decl
|
1668 |
|
|
&& init
|
1669 |
|
|
&& TREE_CODE (init) == TREE_LIST
|
1670 |
|
|
&& TREE_CHAIN (init) == NULL_TREE)
|
1671 |
|
|
init = TREE_VALUE (init);
|
1672 |
|
|
if (!init
|
1673 |
|
|
|| !TREE_TYPE (init)
|
1674 |
|
|
|| (integral_p
|
1675 |
|
|
? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
|
1676 |
|
|
: (!TREE_CONSTANT (init)
|
1677 |
|
|
/* Do not return an aggregate constant (of which
|
1678 |
|
|
string literals are a special case), as we do not
|
1679 |
|
|
want to make inadvertent copies of such entities,
|
1680 |
|
|
and we must be sure that their addresses are the
|
1681 |
|
|
same everywhere. */
|
1682 |
|
|
|| TREE_CODE (init) == CONSTRUCTOR
|
1683 |
|
|
|| TREE_CODE (init) == STRING_CST)))
|
1684 |
|
|
break;
|
1685 |
|
|
decl = unshare_expr (init);
|
1686 |
|
|
}
|
1687 |
|
|
return decl;
|
1688 |
|
|
}
|
1689 |
|
|
|
1690 |
|
|
/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
|
1691 |
|
|
constant of integral or enumeration type, then return that value.
|
1692 |
|
|
These are those variables permitted in constant expressions by
|
1693 |
|
|
[5.19/1]. */
|
1694 |
|
|
|
1695 |
|
|
tree
|
1696 |
|
|
integral_constant_value (tree decl)
|
1697 |
|
|
{
|
1698 |
|
|
return constant_value_1 (decl, /*integral_p=*/true);
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
/* A more relaxed version of integral_constant_value, used by the
|
1702 |
|
|
common C/C++ code and by the C++ front end for optimization
|
1703 |
|
|
purposes. */
|
1704 |
|
|
|
1705 |
|
|
tree
|
1706 |
|
|
decl_constant_value (tree decl)
|
1707 |
|
|
{
|
1708 |
|
|
return constant_value_1 (decl,
|
1709 |
|
|
/*integral_p=*/processing_template_decl);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/* Common subroutines of build_new and build_vec_delete. */
|
1713 |
|
|
|
1714 |
|
|
/* Call the global __builtin_delete to delete ADDR. */
|
1715 |
|
|
|
1716 |
|
|
static tree
|
1717 |
|
|
build_builtin_delete_call (tree addr)
|
1718 |
|
|
{
|
1719 |
|
|
mark_used (global_delete_fndecl);
|
1720 |
|
|
return build_call_n (global_delete_fndecl, 1, addr);
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
|
1724 |
|
|
the type of the object being allocated; otherwise, it's just TYPE.
|
1725 |
|
|
INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
|
1726 |
|
|
user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
|
1727 |
|
|
a vector of arguments to be provided as arguments to a placement
|
1728 |
|
|
new operator. This routine performs no semantic checks; it just
|
1729 |
|
|
creates and returns a NEW_EXPR. */
|
1730 |
|
|
|
1731 |
|
|
static tree
|
1732 |
|
|
build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
|
1733 |
|
|
VEC(tree,gc) *init, int use_global_new)
|
1734 |
|
|
{
|
1735 |
|
|
tree init_list;
|
1736 |
|
|
tree new_expr;
|
1737 |
|
|
|
1738 |
|
|
/* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
|
1739 |
|
|
If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
|
1740 |
|
|
permits us to distinguish the case of a missing initializer "new
|
1741 |
|
|
int" from an empty initializer "new int()". */
|
1742 |
|
|
if (init == NULL)
|
1743 |
|
|
init_list = NULL_TREE;
|
1744 |
|
|
else if (VEC_empty (tree, init))
|
1745 |
|
|
init_list = void_zero_node;
|
1746 |
|
|
else
|
1747 |
|
|
init_list = build_tree_list_vec (init);
|
1748 |
|
|
|
1749 |
|
|
new_expr = build4 (NEW_EXPR, build_pointer_type (type),
|
1750 |
|
|
build_tree_list_vec (placement), type, nelts,
|
1751 |
|
|
init_list);
|
1752 |
|
|
NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
|
1753 |
|
|
TREE_SIDE_EFFECTS (new_expr) = 1;
|
1754 |
|
|
|
1755 |
|
|
return new_expr;
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
/* Generate code for a new-expression, including calling the "operator
|
1759 |
|
|
new" function, initializing the object, and, if an exception occurs
|
1760 |
|
|
during construction, cleaning up. The arguments are as for
|
1761 |
|
|
build_raw_new_expr. This may change PLACEMENT and INIT. */
|
1762 |
|
|
|
1763 |
|
|
static tree
|
1764 |
|
|
build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
|
1765 |
|
|
VEC(tree,gc) **init, bool globally_qualified_p,
|
1766 |
|
|
tsubst_flags_t complain)
|
1767 |
|
|
{
|
1768 |
|
|
tree size, rval;
|
1769 |
|
|
/* True iff this is a call to "operator new[]" instead of just
|
1770 |
|
|
"operator new". */
|
1771 |
|
|
bool array_p = false;
|
1772 |
|
|
/* If ARRAY_P is true, the element type of the array. This is never
|
1773 |
|
|
an ARRAY_TYPE; for something like "new int[3][4]", the
|
1774 |
|
|
ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
|
1775 |
|
|
TYPE. */
|
1776 |
|
|
tree elt_type;
|
1777 |
|
|
/* The type of the new-expression. (This type is always a pointer
|
1778 |
|
|
type.) */
|
1779 |
|
|
tree pointer_type;
|
1780 |
|
|
tree non_const_pointer_type;
|
1781 |
|
|
tree outer_nelts = NULL_TREE;
|
1782 |
|
|
tree alloc_call, alloc_expr;
|
1783 |
|
|
/* The address returned by the call to "operator new". This node is
|
1784 |
|
|
a VAR_DECL and is therefore reusable. */
|
1785 |
|
|
tree alloc_node;
|
1786 |
|
|
tree alloc_fn;
|
1787 |
|
|
tree cookie_expr, init_expr;
|
1788 |
|
|
int nothrow, check_new;
|
1789 |
|
|
int use_java_new = 0;
|
1790 |
|
|
/* If non-NULL, the number of extra bytes to allocate at the
|
1791 |
|
|
beginning of the storage allocated for an array-new expression in
|
1792 |
|
|
order to store the number of elements. */
|
1793 |
|
|
tree cookie_size = NULL_TREE;
|
1794 |
|
|
tree placement_first;
|
1795 |
|
|
tree placement_expr = NULL_TREE;
|
1796 |
|
|
/* True if the function we are calling is a placement allocation
|
1797 |
|
|
function. */
|
1798 |
|
|
bool placement_allocation_fn_p;
|
1799 |
|
|
/* True if the storage must be initialized, either by a constructor
|
1800 |
|
|
or due to an explicit new-initializer. */
|
1801 |
|
|
bool is_initialized;
|
1802 |
|
|
/* The address of the thing allocated, not including any cookie. In
|
1803 |
|
|
particular, if an array cookie is in use, DATA_ADDR is the
|
1804 |
|
|
address of the first array element. This node is a VAR_DECL, and
|
1805 |
|
|
is therefore reusable. */
|
1806 |
|
|
tree data_addr;
|
1807 |
|
|
tree init_preeval_expr = NULL_TREE;
|
1808 |
|
|
|
1809 |
|
|
if (nelts)
|
1810 |
|
|
{
|
1811 |
|
|
outer_nelts = nelts;
|
1812 |
|
|
array_p = true;
|
1813 |
|
|
}
|
1814 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
1815 |
|
|
{
|
1816 |
|
|
array_p = true;
|
1817 |
|
|
nelts = array_type_nelts_top (type);
|
1818 |
|
|
outer_nelts = nelts;
|
1819 |
|
|
type = TREE_TYPE (type);
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
/* If our base type is an array, then make sure we know how many elements
|
1823 |
|
|
it has. */
|
1824 |
|
|
for (elt_type = type;
|
1825 |
|
|
TREE_CODE (elt_type) == ARRAY_TYPE;
|
1826 |
|
|
elt_type = TREE_TYPE (elt_type))
|
1827 |
|
|
nelts = cp_build_binary_op (input_location,
|
1828 |
|
|
MULT_EXPR, nelts,
|
1829 |
|
|
array_type_nelts_top (elt_type),
|
1830 |
|
|
complain);
|
1831 |
|
|
|
1832 |
|
|
if (TREE_CODE (elt_type) == VOID_TYPE)
|
1833 |
|
|
{
|
1834 |
|
|
if (complain & tf_error)
|
1835 |
|
|
error ("invalid type %<void%> for new");
|
1836 |
|
|
return error_mark_node;
|
1837 |
|
|
}
|
1838 |
|
|
|
1839 |
|
|
if (abstract_virtuals_error (NULL_TREE, elt_type))
|
1840 |
|
|
return error_mark_node;
|
1841 |
|
|
|
1842 |
|
|
is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
|
1843 |
|
|
|
1844 |
|
|
if (CP_TYPE_CONST_P (elt_type) && *init == NULL
|
1845 |
|
|
&& !type_has_user_provided_default_constructor (elt_type))
|
1846 |
|
|
{
|
1847 |
|
|
if (complain & tf_error)
|
1848 |
|
|
error ("uninitialized const in %<new%> of %q#T", elt_type);
|
1849 |
|
|
return error_mark_node;
|
1850 |
|
|
}
|
1851 |
|
|
|
1852 |
|
|
size = size_in_bytes (elt_type);
|
1853 |
|
|
if (array_p)
|
1854 |
|
|
size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
|
1855 |
|
|
|
1856 |
|
|
alloc_fn = NULL_TREE;
|
1857 |
|
|
|
1858 |
|
|
/* If PLACEMENT is a single simple pointer type not passed by
|
1859 |
|
|
reference, prepare to capture it in a temporary variable. Do
|
1860 |
|
|
this now, since PLACEMENT will change in the calls below. */
|
1861 |
|
|
placement_first = NULL_TREE;
|
1862 |
|
|
if (VEC_length (tree, *placement) == 1
|
1863 |
|
|
&& (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
|
1864 |
|
|
== POINTER_TYPE))
|
1865 |
|
|
placement_first = VEC_index (tree, *placement, 0);
|
1866 |
|
|
|
1867 |
|
|
/* Allocate the object. */
|
1868 |
|
|
if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
|
1869 |
|
|
{
|
1870 |
|
|
tree class_addr;
|
1871 |
|
|
tree class_decl = build_java_class_ref (elt_type);
|
1872 |
|
|
static const char alloc_name[] = "_Jv_AllocObject";
|
1873 |
|
|
|
1874 |
|
|
if (class_decl == error_mark_node)
|
1875 |
|
|
return error_mark_node;
|
1876 |
|
|
|
1877 |
|
|
use_java_new = 1;
|
1878 |
|
|
if (!get_global_value_if_present (get_identifier (alloc_name),
|
1879 |
|
|
&alloc_fn))
|
1880 |
|
|
{
|
1881 |
|
|
if (complain & tf_error)
|
1882 |
|
|
error ("call to Java constructor with %qs undefined", alloc_name);
|
1883 |
|
|
return error_mark_node;
|
1884 |
|
|
}
|
1885 |
|
|
else if (really_overloaded_fn (alloc_fn))
|
1886 |
|
|
{
|
1887 |
|
|
if (complain & tf_error)
|
1888 |
|
|
error ("%qD should never be overloaded", alloc_fn);
|
1889 |
|
|
return error_mark_node;
|
1890 |
|
|
}
|
1891 |
|
|
alloc_fn = OVL_CURRENT (alloc_fn);
|
1892 |
|
|
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
|
1893 |
|
|
alloc_call = (cp_build_function_call
|
1894 |
|
|
(alloc_fn,
|
1895 |
|
|
build_tree_list (NULL_TREE, class_addr),
|
1896 |
|
|
complain));
|
1897 |
|
|
}
|
1898 |
|
|
else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
|
1899 |
|
|
{
|
1900 |
|
|
error ("Java class %q#T object allocated using placement new", elt_type);
|
1901 |
|
|
return error_mark_node;
|
1902 |
|
|
}
|
1903 |
|
|
else
|
1904 |
|
|
{
|
1905 |
|
|
tree fnname;
|
1906 |
|
|
tree fns;
|
1907 |
|
|
|
1908 |
|
|
fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
|
1909 |
|
|
|
1910 |
|
|
if (!globally_qualified_p
|
1911 |
|
|
&& CLASS_TYPE_P (elt_type)
|
1912 |
|
|
&& (array_p
|
1913 |
|
|
? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
|
1914 |
|
|
: TYPE_HAS_NEW_OPERATOR (elt_type)))
|
1915 |
|
|
{
|
1916 |
|
|
/* Use a class-specific operator new. */
|
1917 |
|
|
/* If a cookie is required, add some extra space. */
|
1918 |
|
|
if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
1919 |
|
|
{
|
1920 |
|
|
cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
1921 |
|
|
size = size_binop (PLUS_EXPR, size, cookie_size);
|
1922 |
|
|
}
|
1923 |
|
|
/* Create the argument list. */
|
1924 |
|
|
VEC_safe_insert (tree, gc, *placement, 0, size);
|
1925 |
|
|
/* Do name-lookup to find the appropriate operator. */
|
1926 |
|
|
fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
|
1927 |
|
|
if (fns == NULL_TREE)
|
1928 |
|
|
{
|
1929 |
|
|
if (complain & tf_error)
|
1930 |
|
|
error ("no suitable %qD found in class %qT", fnname, elt_type);
|
1931 |
|
|
return error_mark_node;
|
1932 |
|
|
}
|
1933 |
|
|
if (TREE_CODE (fns) == TREE_LIST)
|
1934 |
|
|
{
|
1935 |
|
|
if (complain & tf_error)
|
1936 |
|
|
{
|
1937 |
|
|
error ("request for member %qD is ambiguous", fnname);
|
1938 |
|
|
print_candidates (fns);
|
1939 |
|
|
}
|
1940 |
|
|
return error_mark_node;
|
1941 |
|
|
}
|
1942 |
|
|
alloc_call = build_new_method_call (build_dummy_object (elt_type),
|
1943 |
|
|
fns, placement,
|
1944 |
|
|
/*conversion_path=*/NULL_TREE,
|
1945 |
|
|
LOOKUP_NORMAL,
|
1946 |
|
|
&alloc_fn,
|
1947 |
|
|
complain);
|
1948 |
|
|
}
|
1949 |
|
|
else
|
1950 |
|
|
{
|
1951 |
|
|
/* Use a global operator new. */
|
1952 |
|
|
/* See if a cookie might be required. */
|
1953 |
|
|
if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
1954 |
|
|
cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
1955 |
|
|
else
|
1956 |
|
|
cookie_size = NULL_TREE;
|
1957 |
|
|
|
1958 |
|
|
alloc_call = build_operator_new_call (fnname, placement,
|
1959 |
|
|
&size, &cookie_size,
|
1960 |
|
|
&alloc_fn);
|
1961 |
|
|
}
|
1962 |
|
|
}
|
1963 |
|
|
|
1964 |
|
|
if (alloc_call == error_mark_node)
|
1965 |
|
|
return error_mark_node;
|
1966 |
|
|
|
1967 |
|
|
gcc_assert (alloc_fn != NULL_TREE);
|
1968 |
|
|
|
1969 |
|
|
/* If we found a simple case of PLACEMENT_EXPR above, then copy it
|
1970 |
|
|
into a temporary variable. */
|
1971 |
|
|
if (!processing_template_decl
|
1972 |
|
|
&& placement_first != NULL_TREE
|
1973 |
|
|
&& TREE_CODE (alloc_call) == CALL_EXPR
|
1974 |
|
|
&& call_expr_nargs (alloc_call) == 2
|
1975 |
|
|
&& TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
|
1976 |
|
|
&& TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
|
1977 |
|
|
{
|
1978 |
|
|
tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
|
1979 |
|
|
|
1980 |
|
|
if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
|
1981 |
|
|
|| VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
|
1982 |
|
|
{
|
1983 |
|
|
placement_expr = get_target_expr (placement_first);
|
1984 |
|
|
CALL_EXPR_ARG (alloc_call, 1)
|
1985 |
|
|
= convert (TREE_TYPE (placement_arg), placement_expr);
|
1986 |
|
|
}
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
/* In the simple case, we can stop now. */
|
1990 |
|
|
pointer_type = build_pointer_type (type);
|
1991 |
|
|
if (!cookie_size && !is_initialized)
|
1992 |
|
|
return build_nop (pointer_type, alloc_call);
|
1993 |
|
|
|
1994 |
|
|
/* Store the result of the allocation call in a variable so that we can
|
1995 |
|
|
use it more than once. */
|
1996 |
|
|
alloc_expr = get_target_expr (alloc_call);
|
1997 |
|
|
alloc_node = TARGET_EXPR_SLOT (alloc_expr);
|
1998 |
|
|
|
1999 |
|
|
/* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
|
2000 |
|
|
while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
|
2001 |
|
|
alloc_call = TREE_OPERAND (alloc_call, 1);
|
2002 |
|
|
|
2003 |
|
|
/* Now, check to see if this function is actually a placement
|
2004 |
|
|
allocation function. This can happen even when PLACEMENT is NULL
|
2005 |
|
|
because we might have something like:
|
2006 |
|
|
|
2007 |
|
|
struct S { void* operator new (size_t, int i = 0); };
|
2008 |
|
|
|
2009 |
|
|
A call to `new S' will get this allocation function, even though
|
2010 |
|
|
there is no explicit placement argument. If there is more than
|
2011 |
|
|
one argument, or there are variable arguments, then this is a
|
2012 |
|
|
placement allocation function. */
|
2013 |
|
|
placement_allocation_fn_p
|
2014 |
|
|
= (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|
2015 |
|
|
|| varargs_function_p (alloc_fn));
|
2016 |
|
|
|
2017 |
|
|
/* Preevaluate the placement args so that we don't reevaluate them for a
|
2018 |
|
|
placement delete. */
|
2019 |
|
|
if (placement_allocation_fn_p)
|
2020 |
|
|
{
|
2021 |
|
|
tree inits;
|
2022 |
|
|
stabilize_call (alloc_call, &inits);
|
2023 |
|
|
if (inits)
|
2024 |
|
|
alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
|
2025 |
|
|
alloc_expr);
|
2026 |
|
|
}
|
2027 |
|
|
|
2028 |
|
|
/* unless an allocation function is declared with an empty excep-
|
2029 |
|
|
tion-specification (_except.spec_), throw(), it indicates failure to
|
2030 |
|
|
allocate storage by throwing a bad_alloc exception (clause _except_,
|
2031 |
|
|
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
|
2032 |
|
|
cation function is declared with an empty exception-specification,
|
2033 |
|
|
throw(), it returns null to indicate failure to allocate storage and a
|
2034 |
|
|
non-null pointer otherwise.
|
2035 |
|
|
|
2036 |
|
|
So check for a null exception spec on the op new we just called. */
|
2037 |
|
|
|
2038 |
|
|
nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
|
2039 |
|
|
check_new = (flag_check_new || nothrow) && ! use_java_new;
|
2040 |
|
|
|
2041 |
|
|
if (cookie_size)
|
2042 |
|
|
{
|
2043 |
|
|
tree cookie;
|
2044 |
|
|
tree cookie_ptr;
|
2045 |
|
|
tree size_ptr_type;
|
2046 |
|
|
|
2047 |
|
|
/* Adjust so we're pointing to the start of the object. */
|
2048 |
|
|
data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
|
2049 |
|
|
alloc_node, cookie_size);
|
2050 |
|
|
|
2051 |
|
|
/* Store the number of bytes allocated so that we can know how
|
2052 |
|
|
many elements to destroy later. We use the last sizeof
|
2053 |
|
|
(size_t) bytes to store the number of elements. */
|
2054 |
|
|
cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
|
2055 |
|
|
cookie_ptr = fold_build2_loc (input_location,
|
2056 |
|
|
POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
|
2057 |
|
|
alloc_node, cookie_ptr);
|
2058 |
|
|
size_ptr_type = build_pointer_type (sizetype);
|
2059 |
|
|
cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
|
2060 |
|
|
cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
|
2061 |
|
|
|
2062 |
|
|
cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
|
2063 |
|
|
|
2064 |
|
|
if (targetm.cxx.cookie_has_size ())
|
2065 |
|
|
{
|
2066 |
|
|
/* Also store the element size. */
|
2067 |
|
|
cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
|
2068 |
|
|
fold_build1_loc (input_location,
|
2069 |
|
|
NEGATE_EXPR, sizetype,
|
2070 |
|
|
size_in_bytes (sizetype)));
|
2071 |
|
|
|
2072 |
|
|
cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
|
2073 |
|
|
cookie = build2 (MODIFY_EXPR, sizetype, cookie,
|
2074 |
|
|
size_in_bytes (elt_type));
|
2075 |
|
|
cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
|
2076 |
|
|
cookie, cookie_expr);
|
2077 |
|
|
}
|
2078 |
|
|
}
|
2079 |
|
|
else
|
2080 |
|
|
{
|
2081 |
|
|
cookie_expr = NULL_TREE;
|
2082 |
|
|
data_addr = alloc_node;
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
/* Now use a pointer to the type we've actually allocated. */
|
2086 |
|
|
|
2087 |
|
|
/* But we want to operate on a non-const version to start with,
|
2088 |
|
|
since we'll be modifying the elements. */
|
2089 |
|
|
non_const_pointer_type = build_pointer_type
|
2090 |
|
|
(cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
|
2091 |
|
|
|
2092 |
|
|
data_addr = fold_convert (non_const_pointer_type, data_addr);
|
2093 |
|
|
/* Any further uses of alloc_node will want this type, too. */
|
2094 |
|
|
alloc_node = fold_convert (non_const_pointer_type, alloc_node);
|
2095 |
|
|
|
2096 |
|
|
/* Now initialize the allocated object. Note that we preevaluate the
|
2097 |
|
|
initialization expression, apart from the actual constructor call or
|
2098 |
|
|
assignment--we do this because we want to delay the allocation as long
|
2099 |
|
|
as possible in order to minimize the size of the exception region for
|
2100 |
|
|
placement delete. */
|
2101 |
|
|
if (is_initialized)
|
2102 |
|
|
{
|
2103 |
|
|
bool stable;
|
2104 |
|
|
bool explicit_value_init_p = false;
|
2105 |
|
|
|
2106 |
|
|
if (*init != NULL && VEC_empty (tree, *init))
|
2107 |
|
|
{
|
2108 |
|
|
*init = NULL;
|
2109 |
|
|
explicit_value_init_p = true;
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
if (array_p)
|
2113 |
|
|
{
|
2114 |
|
|
tree vecinit = NULL_TREE;
|
2115 |
|
|
if (*init && VEC_length (tree, *init) == 1
|
2116 |
|
|
&& BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
|
2117 |
|
|
&& CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
|
2118 |
|
|
{
|
2119 |
|
|
tree arraytype, domain;
|
2120 |
|
|
vecinit = VEC_index (tree, *init, 0);
|
2121 |
|
|
if (TREE_CONSTANT (nelts))
|
2122 |
|
|
domain = compute_array_index_type (NULL_TREE, nelts);
|
2123 |
|
|
else
|
2124 |
|
|
{
|
2125 |
|
|
domain = NULL_TREE;
|
2126 |
|
|
if (CONSTRUCTOR_NELTS (vecinit) > 0)
|
2127 |
|
|
warning (0, "non-constant array size in new, unable to "
|
2128 |
|
|
"verify length of initializer-list");
|
2129 |
|
|
}
|
2130 |
|
|
arraytype = build_cplus_array_type (type, domain);
|
2131 |
|
|
vecinit = digest_init (arraytype, vecinit);
|
2132 |
|
|
}
|
2133 |
|
|
else if (*init)
|
2134 |
|
|
{
|
2135 |
|
|
if (complain & tf_error)
|
2136 |
|
|
permerror (input_location, "ISO C++ forbids initialization in array new");
|
2137 |
|
|
else
|
2138 |
|
|
return error_mark_node;
|
2139 |
|
|
vecinit = build_tree_list_vec (*init);
|
2140 |
|
|
}
|
2141 |
|
|
init_expr
|
2142 |
|
|
= build_vec_init (data_addr,
|
2143 |
|
|
cp_build_binary_op (input_location,
|
2144 |
|
|
MINUS_EXPR, outer_nelts,
|
2145 |
|
|
integer_one_node,
|
2146 |
|
|
complain),
|
2147 |
|
|
vecinit,
|
2148 |
|
|
explicit_value_init_p,
|
2149 |
|
|
/*from_array=*/0,
|
2150 |
|
|
complain);
|
2151 |
|
|
|
2152 |
|
|
/* An array initialization is stable because the initialization
|
2153 |
|
|
of each element is a full-expression, so the temporaries don't
|
2154 |
|
|
leak out. */
|
2155 |
|
|
stable = true;
|
2156 |
|
|
}
|
2157 |
|
|
else
|
2158 |
|
|
{
|
2159 |
|
|
init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
|
2160 |
|
|
|
2161 |
|
|
if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
|
2162 |
|
|
{
|
2163 |
|
|
init_expr = build_special_member_call (init_expr,
|
2164 |
|
|
complete_ctor_identifier,
|
2165 |
|
|
init, elt_type,
|
2166 |
|
|
LOOKUP_NORMAL,
|
2167 |
|
|
complain);
|
2168 |
|
|
}
|
2169 |
|
|
else if (explicit_value_init_p)
|
2170 |
|
|
{
|
2171 |
|
|
/* Something like `new int()'. */
|
2172 |
|
|
init_expr = build2 (INIT_EXPR, type,
|
2173 |
|
|
init_expr, build_value_init (type));
|
2174 |
|
|
}
|
2175 |
|
|
else
|
2176 |
|
|
{
|
2177 |
|
|
tree ie;
|
2178 |
|
|
|
2179 |
|
|
/* We are processing something like `new int (10)', which
|
2180 |
|
|
means allocate an int, and initialize it with 10. */
|
2181 |
|
|
|
2182 |
|
|
ie = build_x_compound_expr_from_vec (*init, "new initializer");
|
2183 |
|
|
init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
|
2184 |
|
|
complain);
|
2185 |
|
|
}
|
2186 |
|
|
stable = stabilize_init (init_expr, &init_preeval_expr);
|
2187 |
|
|
}
|
2188 |
|
|
|
2189 |
|
|
if (init_expr == error_mark_node)
|
2190 |
|
|
return error_mark_node;
|
2191 |
|
|
|
2192 |
|
|
/* If any part of the object initialization terminates by throwing an
|
2193 |
|
|
exception and a suitable deallocation function can be found, the
|
2194 |
|
|
deallocation function is called to free the memory in which the
|
2195 |
|
|
object was being constructed, after which the exception continues
|
2196 |
|
|
to propagate in the context of the new-expression. If no
|
2197 |
|
|
unambiguous matching deallocation function can be found,
|
2198 |
|
|
propagating the exception does not cause the object's memory to be
|
2199 |
|
|
freed. */
|
2200 |
|
|
if (flag_exceptions && ! use_java_new)
|
2201 |
|
|
{
|
2202 |
|
|
enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
|
2203 |
|
|
tree cleanup;
|
2204 |
|
|
|
2205 |
|
|
/* The Standard is unclear here, but the right thing to do
|
2206 |
|
|
is to use the same method for finding deallocation
|
2207 |
|
|
functions that we use for finding allocation functions. */
|
2208 |
|
|
cleanup = (build_op_delete_call
|
2209 |
|
|
(dcode,
|
2210 |
|
|
alloc_node,
|
2211 |
|
|
size,
|
2212 |
|
|
globally_qualified_p,
|
2213 |
|
|
placement_allocation_fn_p ? alloc_call : NULL_TREE,
|
2214 |
|
|
alloc_fn));
|
2215 |
|
|
|
2216 |
|
|
if (!cleanup)
|
2217 |
|
|
/* We're done. */;
|
2218 |
|
|
else if (stable)
|
2219 |
|
|
/* This is much simpler if we were able to preevaluate all of
|
2220 |
|
|
the arguments to the constructor call. */
|
2221 |
|
|
{
|
2222 |
|
|
/* CLEANUP is compiler-generated, so no diagnostics. */
|
2223 |
|
|
TREE_NO_WARNING (cleanup) = true;
|
2224 |
|
|
init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
|
2225 |
|
|
init_expr, cleanup);
|
2226 |
|
|
/* Likewise, this try-catch is compiler-generated. */
|
2227 |
|
|
TREE_NO_WARNING (init_expr) = true;
|
2228 |
|
|
}
|
2229 |
|
|
else
|
2230 |
|
|
/* Ack! First we allocate the memory. Then we set our sentry
|
2231 |
|
|
variable to true, and expand a cleanup that deletes the
|
2232 |
|
|
memory if sentry is true. Then we run the constructor, and
|
2233 |
|
|
finally clear the sentry.
|
2234 |
|
|
|
2235 |
|
|
We need to do this because we allocate the space first, so
|
2236 |
|
|
if there are any temporaries with cleanups in the
|
2237 |
|
|
constructor args and we weren't able to preevaluate them, we
|
2238 |
|
|
need this EH region to extend until end of full-expression
|
2239 |
|
|
to preserve nesting. */
|
2240 |
|
|
{
|
2241 |
|
|
tree end, sentry, begin;
|
2242 |
|
|
|
2243 |
|
|
begin = get_target_expr (boolean_true_node);
|
2244 |
|
|
CLEANUP_EH_ONLY (begin) = 1;
|
2245 |
|
|
|
2246 |
|
|
sentry = TARGET_EXPR_SLOT (begin);
|
2247 |
|
|
|
2248 |
|
|
/* CLEANUP is compiler-generated, so no diagnostics. */
|
2249 |
|
|
TREE_NO_WARNING (cleanup) = true;
|
2250 |
|
|
|
2251 |
|
|
TARGET_EXPR_CLEANUP (begin)
|
2252 |
|
|
= build3 (COND_EXPR, void_type_node, sentry,
|
2253 |
|
|
cleanup, void_zero_node);
|
2254 |
|
|
|
2255 |
|
|
end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
|
2256 |
|
|
sentry, boolean_false_node);
|
2257 |
|
|
|
2258 |
|
|
init_expr
|
2259 |
|
|
= build2 (COMPOUND_EXPR, void_type_node, begin,
|
2260 |
|
|
build2 (COMPOUND_EXPR, void_type_node, init_expr,
|
2261 |
|
|
end));
|
2262 |
|
|
/* Likewise, this is compiler-generated. */
|
2263 |
|
|
TREE_NO_WARNING (init_expr) = true;
|
2264 |
|
|
}
|
2265 |
|
|
}
|
2266 |
|
|
}
|
2267 |
|
|
else
|
2268 |
|
|
init_expr = NULL_TREE;
|
2269 |
|
|
|
2270 |
|
|
/* Now build up the return value in reverse order. */
|
2271 |
|
|
|
2272 |
|
|
rval = data_addr;
|
2273 |
|
|
|
2274 |
|
|
if (init_expr)
|
2275 |
|
|
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
|
2276 |
|
|
if (cookie_expr)
|
2277 |
|
|
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
|
2278 |
|
|
|
2279 |
|
|
if (rval == data_addr)
|
2280 |
|
|
/* If we don't have an initializer or a cookie, strip the TARGET_EXPR
|
2281 |
|
|
and return the call (which doesn't need to be adjusted). */
|
2282 |
|
|
rval = TARGET_EXPR_INITIAL (alloc_expr);
|
2283 |
|
|
else
|
2284 |
|
|
{
|
2285 |
|
|
if (check_new)
|
2286 |
|
|
{
|
2287 |
|
|
tree ifexp = cp_build_binary_op (input_location,
|
2288 |
|
|
NE_EXPR, alloc_node,
|
2289 |
|
|
integer_zero_node,
|
2290 |
|
|
complain);
|
2291 |
|
|
rval = build_conditional_expr (ifexp, rval, alloc_node,
|
2292 |
|
|
complain);
|
2293 |
|
|
}
|
2294 |
|
|
|
2295 |
|
|
/* Perform the allocation before anything else, so that ALLOC_NODE
|
2296 |
|
|
has been initialized before we start using it. */
|
2297 |
|
|
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
if (init_preeval_expr)
|
2301 |
|
|
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
|
2302 |
|
|
|
2303 |
|
|
/* A new-expression is never an lvalue. */
|
2304 |
|
|
gcc_assert (!lvalue_p (rval));
|
2305 |
|
|
|
2306 |
|
|
return convert (pointer_type, rval);
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
/* Generate a representation for a C++ "new" expression. *PLACEMENT
|
2310 |
|
|
is a vector of placement-new arguments (or NULL if none). If NELTS
|
2311 |
|
|
is NULL, TYPE is the type of the storage to be allocated. If NELTS
|
2312 |
|
|
is not NULL, then this is an array-new allocation; TYPE is the type
|
2313 |
|
|
of the elements in the array and NELTS is the number of elements in
|
2314 |
|
|
the array. *INIT, if non-NULL, is the initializer for the new
|
2315 |
|
|
object, or an empty vector to indicate an initializer of "()". If
|
2316 |
|
|
USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
|
2317 |
|
|
rather than just "new". This may change PLACEMENT and INIT. */
|
2318 |
|
|
|
2319 |
|
|
tree
|
2320 |
|
|
build_new (VEC(tree,gc) **placement, tree type, tree nelts,
|
2321 |
|
|
VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
|
2322 |
|
|
{
|
2323 |
|
|
tree rval;
|
2324 |
|
|
VEC(tree,gc) *orig_placement = NULL;
|
2325 |
|
|
tree orig_nelts = NULL_TREE;
|
2326 |
|
|
VEC(tree,gc) *orig_init = NULL;
|
2327 |
|
|
|
2328 |
|
|
if (type == error_mark_node)
|
2329 |
|
|
return error_mark_node;
|
2330 |
|
|
|
2331 |
|
|
if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
|
2332 |
|
|
{
|
2333 |
|
|
tree auto_node = type_uses_auto (type);
|
2334 |
|
|
if (auto_node && describable_type (VEC_index (tree, *init, 0)))
|
2335 |
|
|
type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
if (processing_template_decl)
|
2339 |
|
|
{
|
2340 |
|
|
if (dependent_type_p (type)
|
2341 |
|
|
|| any_type_dependent_arguments_p (*placement)
|
2342 |
|
|
|| (nelts && type_dependent_expression_p (nelts))
|
2343 |
|
|
|| any_type_dependent_arguments_p (*init))
|
2344 |
|
|
return build_raw_new_expr (*placement, type, nelts, *init,
|
2345 |
|
|
use_global_new);
|
2346 |
|
|
|
2347 |
|
|
orig_placement = make_tree_vector_copy (*placement);
|
2348 |
|
|
orig_nelts = nelts;
|
2349 |
|
|
orig_init = make_tree_vector_copy (*init);
|
2350 |
|
|
|
2351 |
|
|
make_args_non_dependent (*placement);
|
2352 |
|
|
if (nelts)
|
2353 |
|
|
nelts = build_non_dependent_expr (nelts);
|
2354 |
|
|
make_args_non_dependent (*init);
|
2355 |
|
|
}
|
2356 |
|
|
|
2357 |
|
|
if (nelts)
|
2358 |
|
|
{
|
2359 |
|
|
if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
|
2360 |
|
|
{
|
2361 |
|
|
if (complain & tf_error)
|
2362 |
|
|
permerror (input_location, "size in array new must have integral type");
|
2363 |
|
|
else
|
2364 |
|
|
return error_mark_node;
|
2365 |
|
|
}
|
2366 |
|
|
nelts = cp_save_expr (cp_convert (sizetype, nelts));
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
/* ``A reference cannot be created by the new operator. A reference
|
2370 |
|
|
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
2371 |
|
|
returned by new.'' ARM 5.3.3 */
|
2372 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
2373 |
|
|
{
|
2374 |
|
|
if (complain & tf_error)
|
2375 |
|
|
error ("new cannot be applied to a reference type");
|
2376 |
|
|
else
|
2377 |
|
|
return error_mark_node;
|
2378 |
|
|
type = TREE_TYPE (type);
|
2379 |
|
|
}
|
2380 |
|
|
|
2381 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
2382 |
|
|
{
|
2383 |
|
|
if (complain & tf_error)
|
2384 |
|
|
error ("new cannot be applied to a function type");
|
2385 |
|
|
return error_mark_node;
|
2386 |
|
|
}
|
2387 |
|
|
|
2388 |
|
|
/* The type allocated must be complete. If the new-type-id was
|
2389 |
|
|
"T[N]" then we are just checking that "T" is complete here, but
|
2390 |
|
|
that is equivalent, since the value of "N" doesn't matter. */
|
2391 |
|
|
if (!complete_type_or_else (type, NULL_TREE))
|
2392 |
|
|
return error_mark_node;
|
2393 |
|
|
|
2394 |
|
|
rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
|
2395 |
|
|
if (rval == error_mark_node)
|
2396 |
|
|
return error_mark_node;
|
2397 |
|
|
|
2398 |
|
|
if (processing_template_decl)
|
2399 |
|
|
{
|
2400 |
|
|
tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
|
2401 |
|
|
orig_init, use_global_new);
|
2402 |
|
|
release_tree_vector (orig_placement);
|
2403 |
|
|
release_tree_vector (orig_init);
|
2404 |
|
|
return ret;
|
2405 |
|
|
}
|
2406 |
|
|
|
2407 |
|
|
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
|
2408 |
|
|
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
|
2409 |
|
|
TREE_NO_WARNING (rval) = 1;
|
2410 |
|
|
|
2411 |
|
|
return rval;
|
2412 |
|
|
}
|
2413 |
|
|
|
2414 |
|
|
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
|
2415 |
|
|
|
2416 |
|
|
tree
|
2417 |
|
|
build_java_class_ref (tree type)
|
2418 |
|
|
{
|
2419 |
|
|
tree name = NULL_TREE, class_decl;
|
2420 |
|
|
static tree CL_suffix = NULL_TREE;
|
2421 |
|
|
if (CL_suffix == NULL_TREE)
|
2422 |
|
|
CL_suffix = get_identifier("class$");
|
2423 |
|
|
if (jclass_node == NULL_TREE)
|
2424 |
|
|
{
|
2425 |
|
|
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
|
2426 |
|
|
if (jclass_node == NULL_TREE)
|
2427 |
|
|
{
|
2428 |
|
|
error ("call to Java constructor, while %<jclass%> undefined");
|
2429 |
|
|
return error_mark_node;
|
2430 |
|
|
}
|
2431 |
|
|
jclass_node = TREE_TYPE (jclass_node);
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
/* Mangle the class$ field. */
|
2435 |
|
|
{
|
2436 |
|
|
tree field;
|
2437 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
2438 |
|
|
if (DECL_NAME (field) == CL_suffix)
|
2439 |
|
|
{
|
2440 |
|
|
mangle_decl (field);
|
2441 |
|
|
name = DECL_ASSEMBLER_NAME (field);
|
2442 |
|
|
break;
|
2443 |
|
|
}
|
2444 |
|
|
if (!field)
|
2445 |
|
|
{
|
2446 |
|
|
error ("can't find %<class$%> in %qT", type);
|
2447 |
|
|
return error_mark_node;
|
2448 |
|
|
}
|
2449 |
|
|
}
|
2450 |
|
|
|
2451 |
|
|
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
|
2452 |
|
|
if (class_decl == NULL_TREE)
|
2453 |
|
|
{
|
2454 |
|
|
class_decl = build_decl (input_location,
|
2455 |
|
|
VAR_DECL, name, TREE_TYPE (jclass_node));
|
2456 |
|
|
TREE_STATIC (class_decl) = 1;
|
2457 |
|
|
DECL_EXTERNAL (class_decl) = 1;
|
2458 |
|
|
TREE_PUBLIC (class_decl) = 1;
|
2459 |
|
|
DECL_ARTIFICIAL (class_decl) = 1;
|
2460 |
|
|
DECL_IGNORED_P (class_decl) = 1;
|
2461 |
|
|
pushdecl_top_level (class_decl);
|
2462 |
|
|
make_decl_rtl (class_decl);
|
2463 |
|
|
}
|
2464 |
|
|
return class_decl;
|
2465 |
|
|
}
|
2466 |
|
|
|
2467 |
|
|
static tree
|
2468 |
|
|
build_vec_delete_1 (tree base, tree maxindex, tree type,
|
2469 |
|
|
special_function_kind auto_delete_vec, int use_global_delete)
|
2470 |
|
|
{
|
2471 |
|
|
tree virtual_size;
|
2472 |
|
|
tree ptype = build_pointer_type (type = complete_type (type));
|
2473 |
|
|
tree size_exp = size_in_bytes (type);
|
2474 |
|
|
|
2475 |
|
|
/* Temporary variables used by the loop. */
|
2476 |
|
|
tree tbase, tbase_init;
|
2477 |
|
|
|
2478 |
|
|
/* This is the body of the loop that implements the deletion of a
|
2479 |
|
|
single element, and moves temp variables to next elements. */
|
2480 |
|
|
tree body;
|
2481 |
|
|
|
2482 |
|
|
/* This is the LOOP_EXPR that governs the deletion of the elements. */
|
2483 |
|
|
tree loop = 0;
|
2484 |
|
|
|
2485 |
|
|
/* This is the thing that governs what to do after the loop has run. */
|
2486 |
|
|
tree deallocate_expr = 0;
|
2487 |
|
|
|
2488 |
|
|
/* This is the BIND_EXPR which holds the outermost iterator of the
|
2489 |
|
|
loop. It is convenient to set this variable up and test it before
|
2490 |
|
|
executing any other code in the loop.
|
2491 |
|
|
This is also the containing expression returned by this function. */
|
2492 |
|
|
tree controller = NULL_TREE;
|
2493 |
|
|
tree tmp;
|
2494 |
|
|
|
2495 |
|
|
/* We should only have 1-D arrays here. */
|
2496 |
|
|
gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
|
2497 |
|
|
|
2498 |
|
|
if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
2499 |
|
|
goto no_destructor;
|
2500 |
|
|
|
2501 |
|
|
/* The below is short by the cookie size. */
|
2502 |
|
|
virtual_size = size_binop (MULT_EXPR, size_exp,
|
2503 |
|
|
convert (sizetype, maxindex));
|
2504 |
|
|
|
2505 |
|
|
tbase = create_temporary_var (ptype);
|
2506 |
|
|
tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
|
2507 |
|
|
fold_build2_loc (input_location,
|
2508 |
|
|
POINTER_PLUS_EXPR, ptype,
|
2509 |
|
|
fold_convert (ptype, base),
|
2510 |
|
|
virtual_size),
|
2511 |
|
|
tf_warning_or_error);
|
2512 |
|
|
controller = build3 (BIND_EXPR, void_type_node, tbase,
|
2513 |
|
|
NULL_TREE, NULL_TREE);
|
2514 |
|
|
TREE_SIDE_EFFECTS (controller) = 1;
|
2515 |
|
|
|
2516 |
|
|
body = build1 (EXIT_EXPR, void_type_node,
|
2517 |
|
|
build2 (EQ_EXPR, boolean_type_node, tbase,
|
2518 |
|
|
fold_convert (ptype, base)));
|
2519 |
|
|
tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
|
2520 |
|
|
body = build_compound_expr
|
2521 |
|
|
(input_location,
|
2522 |
|
|
body, cp_build_modify_expr (tbase, NOP_EXPR,
|
2523 |
|
|
build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
|
2524 |
|
|
tf_warning_or_error));
|
2525 |
|
|
body = build_compound_expr
|
2526 |
|
|
(input_location,
|
2527 |
|
|
body, build_delete (ptype, tbase, sfk_complete_destructor,
|
2528 |
|
|
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
|
2529 |
|
|
|
2530 |
|
|
loop = build1 (LOOP_EXPR, void_type_node, body);
|
2531 |
|
|
loop = build_compound_expr (input_location, tbase_init, loop);
|
2532 |
|
|
|
2533 |
|
|
no_destructor:
|
2534 |
|
|
/* If the delete flag is one, or anything else with the low bit set,
|
2535 |
|
|
delete the storage. */
|
2536 |
|
|
if (auto_delete_vec != sfk_base_destructor)
|
2537 |
|
|
{
|
2538 |
|
|
tree base_tbd;
|
2539 |
|
|
|
2540 |
|
|
/* The below is short by the cookie size. */
|
2541 |
|
|
virtual_size = size_binop (MULT_EXPR, size_exp,
|
2542 |
|
|
convert (sizetype, maxindex));
|
2543 |
|
|
|
2544 |
|
|
if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
2545 |
|
|
/* no header */
|
2546 |
|
|
base_tbd = base;
|
2547 |
|
|
else
|
2548 |
|
|
{
|
2549 |
|
|
tree cookie_size;
|
2550 |
|
|
|
2551 |
|
|
cookie_size = targetm.cxx.get_cookie_size (type);
|
2552 |
|
|
base_tbd
|
2553 |
|
|
= cp_convert (ptype,
|
2554 |
|
|
cp_build_binary_op (input_location,
|
2555 |
|
|
MINUS_EXPR,
|
2556 |
|
|
cp_convert (string_type_node,
|
2557 |
|
|
base),
|
2558 |
|
|
cookie_size,
|
2559 |
|
|
tf_warning_or_error));
|
2560 |
|
|
/* True size with header. */
|
2561 |
|
|
virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
|
2562 |
|
|
}
|
2563 |
|
|
|
2564 |
|
|
if (auto_delete_vec == sfk_deleting_destructor)
|
2565 |
|
|
deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
|
2566 |
|
|
base_tbd, virtual_size,
|
2567 |
|
|
use_global_delete & 1,
|
2568 |
|
|
/*placement=*/NULL_TREE,
|
2569 |
|
|
/*alloc_fn=*/NULL_TREE);
|
2570 |
|
|
}
|
2571 |
|
|
|
2572 |
|
|
body = loop;
|
2573 |
|
|
if (!deallocate_expr)
|
2574 |
|
|
;
|
2575 |
|
|
else if (!body)
|
2576 |
|
|
body = deallocate_expr;
|
2577 |
|
|
else
|
2578 |
|
|
body = build_compound_expr (input_location, body, deallocate_expr);
|
2579 |
|
|
|
2580 |
|
|
if (!body)
|
2581 |
|
|
body = integer_zero_node;
|
2582 |
|
|
|
2583 |
|
|
/* Outermost wrapper: If pointer is null, punt. */
|
2584 |
|
|
body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
2585 |
|
|
fold_build2_loc (input_location,
|
2586 |
|
|
NE_EXPR, boolean_type_node, base,
|
2587 |
|
|
convert (TREE_TYPE (base),
|
2588 |
|
|
integer_zero_node)),
|
2589 |
|
|
body, integer_zero_node);
|
2590 |
|
|
body = build1 (NOP_EXPR, void_type_node, body);
|
2591 |
|
|
|
2592 |
|
|
if (controller)
|
2593 |
|
|
{
|
2594 |
|
|
TREE_OPERAND (controller, 1) = body;
|
2595 |
|
|
body = controller;
|
2596 |
|
|
}
|
2597 |
|
|
|
2598 |
|
|
if (TREE_CODE (base) == SAVE_EXPR)
|
2599 |
|
|
/* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
|
2600 |
|
|
body = build2 (COMPOUND_EXPR, void_type_node, base, body);
|
2601 |
|
|
|
2602 |
|
|
return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
|
2603 |
|
|
}
|
2604 |
|
|
|
2605 |
|
|
/* Create an unnamed variable of the indicated TYPE. */
|
2606 |
|
|
|
2607 |
|
|
tree
|
2608 |
|
|
create_temporary_var (tree type)
|
2609 |
|
|
{
|
2610 |
|
|
tree decl;
|
2611 |
|
|
|
2612 |
|
|
decl = build_decl (input_location,
|
2613 |
|
|
VAR_DECL, NULL_TREE, type);
|
2614 |
|
|
TREE_USED (decl) = 1;
|
2615 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
2616 |
|
|
DECL_IGNORED_P (decl) = 1;
|
2617 |
|
|
DECL_CONTEXT (decl) = current_function_decl;
|
2618 |
|
|
|
2619 |
|
|
return decl;
|
2620 |
|
|
}
|
2621 |
|
|
|
2622 |
|
|
/* Create a new temporary variable of the indicated TYPE, initialized
|
2623 |
|
|
to INIT.
|
2624 |
|
|
|
2625 |
|
|
It is not entered into current_binding_level, because that breaks
|
2626 |
|
|
things when it comes time to do final cleanups (which take place
|
2627 |
|
|
"outside" the binding contour of the function). */
|
2628 |
|
|
|
2629 |
|
|
static tree
|
2630 |
|
|
get_temp_regvar (tree type, tree init)
|
2631 |
|
|
{
|
2632 |
|
|
tree decl;
|
2633 |
|
|
|
2634 |
|
|
decl = create_temporary_var (type);
|
2635 |
|
|
add_decl_expr (decl);
|
2636 |
|
|
|
2637 |
|
|
finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
|
2638 |
|
|
tf_warning_or_error));
|
2639 |
|
|
|
2640 |
|
|
return decl;
|
2641 |
|
|
}
|
2642 |
|
|
|
2643 |
|
|
/* `build_vec_init' returns tree structure that performs
|
2644 |
|
|
initialization of a vector of aggregate types.
|
2645 |
|
|
|
2646 |
|
|
BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
|
2647 |
|
|
to the first element, of POINTER_TYPE.
|
2648 |
|
|
MAXINDEX is the maximum index of the array (one less than the
|
2649 |
|
|
number of elements). It is only used if BASE is a pointer or
|
2650 |
|
|
TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
|
2651 |
|
|
|
2652 |
|
|
INIT is the (possibly NULL) initializer.
|
2653 |
|
|
|
2654 |
|
|
If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
|
2655 |
|
|
elements in the array are value-initialized.
|
2656 |
|
|
|
2657 |
|
|
FROM_ARRAY is 0 if we should init everything with INIT
|
2658 |
|
|
(i.e., every element initialized from INIT).
|
2659 |
|
|
FROM_ARRAY is 1 if we should index into INIT in parallel
|
2660 |
|
|
with initialization of DECL.
|
2661 |
|
|
FROM_ARRAY is 2 if we should index into INIT in parallel,
|
2662 |
|
|
but use assignment instead of initialization. */
|
2663 |
|
|
|
2664 |
|
|
tree
|
2665 |
|
|
build_vec_init (tree base, tree maxindex, tree init,
|
2666 |
|
|
bool explicit_value_init_p,
|
2667 |
|
|
int from_array, tsubst_flags_t complain)
|
2668 |
|
|
{
|
2669 |
|
|
tree rval;
|
2670 |
|
|
tree base2 = NULL_TREE;
|
2671 |
|
|
tree itype = NULL_TREE;
|
2672 |
|
|
tree iterator;
|
2673 |
|
|
/* The type of BASE. */
|
2674 |
|
|
tree atype = TREE_TYPE (base);
|
2675 |
|
|
/* The type of an element in the array. */
|
2676 |
|
|
tree type = TREE_TYPE (atype);
|
2677 |
|
|
/* The element type reached after removing all outer array
|
2678 |
|
|
types. */
|
2679 |
|
|
tree inner_elt_type;
|
2680 |
|
|
/* The type of a pointer to an element in the array. */
|
2681 |
|
|
tree ptype;
|
2682 |
|
|
tree stmt_expr;
|
2683 |
|
|
tree compound_stmt;
|
2684 |
|
|
int destroy_temps;
|
2685 |
|
|
tree try_block = NULL_TREE;
|
2686 |
|
|
int num_initialized_elts = 0;
|
2687 |
|
|
bool is_global;
|
2688 |
|
|
|
2689 |
|
|
if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
|
2690 |
|
|
maxindex = array_type_nelts (atype);
|
2691 |
|
|
|
2692 |
|
|
if (maxindex == NULL_TREE || maxindex == error_mark_node)
|
2693 |
|
|
return error_mark_node;
|
2694 |
|
|
|
2695 |
|
|
if (explicit_value_init_p)
|
2696 |
|
|
gcc_assert (!init);
|
2697 |
|
|
|
2698 |
|
|
inner_elt_type = strip_array_types (type);
|
2699 |
|
|
|
2700 |
|
|
/* Look through the TARGET_EXPR around a compound literal. */
|
2701 |
|
|
if (init && TREE_CODE (init) == TARGET_EXPR
|
2702 |
|
|
&& TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
|
2703 |
|
|
&& from_array != 2)
|
2704 |
|
|
init = TARGET_EXPR_INITIAL (init);
|
2705 |
|
|
|
2706 |
|
|
if (init
|
2707 |
|
|
&& TREE_CODE (atype) == ARRAY_TYPE
|
2708 |
|
|
&& (from_array == 2
|
2709 |
|
|
? (!CLASS_TYPE_P (inner_elt_type)
|
2710 |
|
|
|| !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
|
2711 |
|
|
: !TYPE_NEEDS_CONSTRUCTING (type))
|
2712 |
|
|
&& ((TREE_CODE (init) == CONSTRUCTOR
|
2713 |
|
|
/* Don't do this if the CONSTRUCTOR might contain something
|
2714 |
|
|
that might throw and require us to clean up. */
|
2715 |
|
|
&& (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
|
2716 |
|
|
|| ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|
2717 |
|
|
|| from_array))
|
2718 |
|
|
{
|
2719 |
|
|
/* Do non-default initialization of trivial arrays resulting from
|
2720 |
|
|
brace-enclosed initializers. In this case, digest_init and
|
2721 |
|
|
store_constructor will handle the semantics for us. */
|
2722 |
|
|
|
2723 |
|
|
stmt_expr = build2 (INIT_EXPR, atype, base, init);
|
2724 |
|
|
return stmt_expr;
|
2725 |
|
|
}
|
2726 |
|
|
|
2727 |
|
|
maxindex = cp_convert (ptrdiff_type_node, maxindex);
|
2728 |
|
|
if (TREE_CODE (atype) == ARRAY_TYPE)
|
2729 |
|
|
{
|
2730 |
|
|
ptype = build_pointer_type (type);
|
2731 |
|
|
base = cp_convert (ptype, decay_conversion (base));
|
2732 |
|
|
}
|
2733 |
|
|
else
|
2734 |
|
|
ptype = atype;
|
2735 |
|
|
|
2736 |
|
|
/* The code we are generating looks like:
|
2737 |
|
|
({
|
2738 |
|
|
T* t1 = (T*) base;
|
2739 |
|
|
T* rval = t1;
|
2740 |
|
|
ptrdiff_t iterator = maxindex;
|
2741 |
|
|
try {
|
2742 |
|
|
for (; iterator != -1; --iterator) {
|
2743 |
|
|
... initialize *t1 ...
|
2744 |
|
|
++t1;
|
2745 |
|
|
}
|
2746 |
|
|
} catch (...) {
|
2747 |
|
|
... destroy elements that were constructed ...
|
2748 |
|
|
}
|
2749 |
|
|
rval;
|
2750 |
|
|
})
|
2751 |
|
|
|
2752 |
|
|
We can omit the try and catch blocks if we know that the
|
2753 |
|
|
initialization will never throw an exception, or if the array
|
2754 |
|
|
elements do not have destructors. We can omit the loop completely if
|
2755 |
|
|
the elements of the array do not have constructors.
|
2756 |
|
|
|
2757 |
|
|
We actually wrap the entire body of the above in a STMT_EXPR, for
|
2758 |
|
|
tidiness.
|
2759 |
|
|
|
2760 |
|
|
When copying from array to another, when the array elements have
|
2761 |
|
|
only trivial copy constructors, we should use __builtin_memcpy
|
2762 |
|
|
rather than generating a loop. That way, we could take advantage
|
2763 |
|
|
of whatever cleverness the back end has for dealing with copies
|
2764 |
|
|
of blocks of memory. */
|
2765 |
|
|
|
2766 |
|
|
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
2767 |
|
|
destroy_temps = stmts_are_full_exprs_p ();
|
2768 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
2769 |
|
|
rval = get_temp_regvar (ptype, base);
|
2770 |
|
|
base = get_temp_regvar (ptype, rval);
|
2771 |
|
|
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
|
2772 |
|
|
|
2773 |
|
|
/* If initializing one array from another, initialize element by
|
2774 |
|
|
element. We rely upon the below calls to do the argument
|
2775 |
|
|
checking. Evaluate the initializer before entering the try block. */
|
2776 |
|
|
if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
|
2777 |
|
|
{
|
2778 |
|
|
base2 = decay_conversion (init);
|
2779 |
|
|
itype = TREE_TYPE (base2);
|
2780 |
|
|
base2 = get_temp_regvar (itype, base2);
|
2781 |
|
|
itype = TREE_TYPE (itype);
|
2782 |
|
|
}
|
2783 |
|
|
|
2784 |
|
|
/* Protect the entire array initialization so that we can destroy
|
2785 |
|
|
the partially constructed array if an exception is thrown.
|
2786 |
|
|
But don't do this if we're assigning. */
|
2787 |
|
|
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
2788 |
|
|
&& from_array != 2)
|
2789 |
|
|
{
|
2790 |
|
|
try_block = begin_try_block ();
|
2791 |
|
|
}
|
2792 |
|
|
|
2793 |
|
|
if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
|
2794 |
|
|
{
|
2795 |
|
|
/* Do non-default initialization of non-trivial arrays resulting from
|
2796 |
|
|
brace-enclosed initializers. */
|
2797 |
|
|
unsigned HOST_WIDE_INT idx;
|
2798 |
|
|
tree elt;
|
2799 |
|
|
from_array = 0;
|
2800 |
|
|
|
2801 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
|
2802 |
|
|
{
|
2803 |
|
|
tree baseref = build1 (INDIRECT_REF, type, base);
|
2804 |
|
|
|
2805 |
|
|
num_initialized_elts++;
|
2806 |
|
|
|
2807 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
2808 |
|
|
if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
|
2809 |
|
|
finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
|
2810 |
|
|
else
|
2811 |
|
|
finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
|
2812 |
|
|
elt, complain));
|
2813 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
2814 |
|
|
|
2815 |
|
|
finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
|
2816 |
|
|
complain));
|
2817 |
|
|
finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
|
2818 |
|
|
complain));
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
/* Clear out INIT so that we don't get confused below. */
|
2822 |
|
|
init = NULL_TREE;
|
2823 |
|
|
}
|
2824 |
|
|
else if (from_array)
|
2825 |
|
|
{
|
2826 |
|
|
if (init)
|
2827 |
|
|
/* OK, we set base2 above. */;
|
2828 |
|
|
else if (TYPE_LANG_SPECIFIC (type)
|
2829 |
|
|
&& TYPE_NEEDS_CONSTRUCTING (type)
|
2830 |
|
|
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
2831 |
|
|
{
|
2832 |
|
|
if (complain & tf_error)
|
2833 |
|
|
error ("initializer ends prematurely");
|
2834 |
|
|
return error_mark_node;
|
2835 |
|
|
}
|
2836 |
|
|
}
|
2837 |
|
|
|
2838 |
|
|
/* Now, default-initialize any remaining elements. We don't need to
|
2839 |
|
|
do that if a) the type does not need constructing, or b) we've
|
2840 |
|
|
already initialized all the elements.
|
2841 |
|
|
|
2842 |
|
|
We do need to keep going if we're copying an array. */
|
2843 |
|
|
|
2844 |
|
|
if (from_array
|
2845 |
|
|
|| ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
|
2846 |
|
|
&& ! (host_integerp (maxindex, 0)
|
2847 |
|
|
&& (num_initialized_elts
|
2848 |
|
|
== tree_low_cst (maxindex, 0) + 1))))
|
2849 |
|
|
{
|
2850 |
|
|
/* If the ITERATOR is equal to -1, then we don't have to loop;
|
2851 |
|
|
we've already initialized all the elements. */
|
2852 |
|
|
tree for_stmt;
|
2853 |
|
|
tree elt_init;
|
2854 |
|
|
tree to;
|
2855 |
|
|
|
2856 |
|
|
for_stmt = begin_for_stmt ();
|
2857 |
|
|
finish_for_init_stmt (for_stmt);
|
2858 |
|
|
finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
|
2859 |
|
|
build_int_cst (TREE_TYPE (iterator), -1)),
|
2860 |
|
|
for_stmt);
|
2861 |
|
|
finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
|
2862 |
|
|
complain),
|
2863 |
|
|
for_stmt);
|
2864 |
|
|
|
2865 |
|
|
to = build1 (INDIRECT_REF, type, base);
|
2866 |
|
|
|
2867 |
|
|
if (from_array)
|
2868 |
|
|
{
|
2869 |
|
|
tree from;
|
2870 |
|
|
|
2871 |
|
|
if (base2)
|
2872 |
|
|
from = build1 (INDIRECT_REF, itype, base2);
|
2873 |
|
|
else
|
2874 |
|
|
from = NULL_TREE;
|
2875 |
|
|
|
2876 |
|
|
if (from_array == 2)
|
2877 |
|
|
elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
|
2878 |
|
|
complain);
|
2879 |
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
2880 |
|
|
elt_init = build_aggr_init (to, from, 0, complain);
|
2881 |
|
|
else if (from)
|
2882 |
|
|
elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
|
2883 |
|
|
complain);
|
2884 |
|
|
else
|
2885 |
|
|
gcc_unreachable ();
|
2886 |
|
|
}
|
2887 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
2888 |
|
|
{
|
2889 |
|
|
if (init != 0)
|
2890 |
|
|
sorry
|
2891 |
|
|
("cannot initialize multi-dimensional array with initializer");
|
2892 |
|
|
elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
|
2893 |
|
|
0, 0,
|
2894 |
|
|
explicit_value_init_p,
|
2895 |
|
|
0, complain);
|
2896 |
|
|
}
|
2897 |
|
|
else if (explicit_value_init_p)
|
2898 |
|
|
elt_init = build2 (INIT_EXPR, type, to,
|
2899 |
|
|
build_value_init (type));
|
2900 |
|
|
else
|
2901 |
|
|
{
|
2902 |
|
|
gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
|
2903 |
|
|
elt_init = build_aggr_init (to, init, 0, complain);
|
2904 |
|
|
}
|
2905 |
|
|
|
2906 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
2907 |
|
|
finish_expr_stmt (elt_init);
|
2908 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
2909 |
|
|
|
2910 |
|
|
finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
|
2911 |
|
|
complain));
|
2912 |
|
|
if (base2)
|
2913 |
|
|
finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
|
2914 |
|
|
complain));
|
2915 |
|
|
|
2916 |
|
|
finish_for_stmt (for_stmt);
|
2917 |
|
|
}
|
2918 |
|
|
|
2919 |
|
|
/* Make sure to cleanup any partially constructed elements. */
|
2920 |
|
|
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
2921 |
|
|
&& from_array != 2)
|
2922 |
|
|
{
|
2923 |
|
|
tree e;
|
2924 |
|
|
tree m = cp_build_binary_op (input_location,
|
2925 |
|
|
MINUS_EXPR, maxindex, iterator,
|
2926 |
|
|
complain);
|
2927 |
|
|
|
2928 |
|
|
/* Flatten multi-dimensional array since build_vec_delete only
|
2929 |
|
|
expects one-dimensional array. */
|
2930 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
2931 |
|
|
m = cp_build_binary_op (input_location,
|
2932 |
|
|
MULT_EXPR, m,
|
2933 |
|
|
array_type_nelts_total (type),
|
2934 |
|
|
complain);
|
2935 |
|
|
|
2936 |
|
|
finish_cleanup_try_block (try_block);
|
2937 |
|
|
e = build_vec_delete_1 (rval, m,
|
2938 |
|
|
inner_elt_type, sfk_base_destructor,
|
2939 |
|
|
/*use_global_delete=*/0);
|
2940 |
|
|
finish_cleanup (e, try_block);
|
2941 |
|
|
}
|
2942 |
|
|
|
2943 |
|
|
/* The value of the array initialization is the array itself, RVAL
|
2944 |
|
|
is a pointer to the first element. */
|
2945 |
|
|
finish_stmt_expr_expr (rval, stmt_expr);
|
2946 |
|
|
|
2947 |
|
|
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
2948 |
|
|
|
2949 |
|
|
/* Now make the result have the correct type. */
|
2950 |
|
|
if (TREE_CODE (atype) == ARRAY_TYPE)
|
2951 |
|
|
{
|
2952 |
|
|
atype = build_pointer_type (atype);
|
2953 |
|
|
stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
|
2954 |
|
|
stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
|
2955 |
|
|
TREE_NO_WARNING (stmt_expr) = 1;
|
2956 |
|
|
}
|
2957 |
|
|
|
2958 |
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
2959 |
|
|
return stmt_expr;
|
2960 |
|
|
}
|
2961 |
|
|
|
2962 |
|
|
/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
|
2963 |
|
|
build_delete. */
|
2964 |
|
|
|
2965 |
|
|
static tree
|
2966 |
|
|
build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
|
2967 |
|
|
{
|
2968 |
|
|
tree name;
|
2969 |
|
|
tree fn;
|
2970 |
|
|
switch (dtor_kind)
|
2971 |
|
|
{
|
2972 |
|
|
case sfk_complete_destructor:
|
2973 |
|
|
name = complete_dtor_identifier;
|
2974 |
|
|
break;
|
2975 |
|
|
|
2976 |
|
|
case sfk_base_destructor:
|
2977 |
|
|
name = base_dtor_identifier;
|
2978 |
|
|
break;
|
2979 |
|
|
|
2980 |
|
|
case sfk_deleting_destructor:
|
2981 |
|
|
name = deleting_dtor_identifier;
|
2982 |
|
|
break;
|
2983 |
|
|
|
2984 |
|
|
default:
|
2985 |
|
|
gcc_unreachable ();
|
2986 |
|
|
}
|
2987 |
|
|
fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
|
2988 |
|
|
return build_new_method_call (exp, fn,
|
2989 |
|
|
/*args=*/NULL,
|
2990 |
|
|
/*conversion_path=*/NULL_TREE,
|
2991 |
|
|
flags,
|
2992 |
|
|
/*fn_p=*/NULL,
|
2993 |
|
|
tf_warning_or_error);
|
2994 |
|
|
}
|
2995 |
|
|
|
2996 |
|
|
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
2997 |
|
|
ADDR is an expression which yields the store to be destroyed.
|
2998 |
|
|
AUTO_DELETE is the name of the destructor to call, i.e., either
|
2999 |
|
|
sfk_complete_destructor, sfk_base_destructor, or
|
3000 |
|
|
sfk_deleting_destructor.
|
3001 |
|
|
|
3002 |
|
|
FLAGS is the logical disjunction of zero or more LOOKUP_
|
3003 |
|
|
flags. See cp-tree.h for more info. */
|
3004 |
|
|
|
3005 |
|
|
tree
|
3006 |
|
|
build_delete (tree type, tree addr, special_function_kind auto_delete,
|
3007 |
|
|
int flags, int use_global_delete)
|
3008 |
|
|
{
|
3009 |
|
|
tree expr;
|
3010 |
|
|
|
3011 |
|
|
if (addr == error_mark_node)
|
3012 |
|
|
return error_mark_node;
|
3013 |
|
|
|
3014 |
|
|
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
3015 |
|
|
set to `error_mark_node' before it gets properly cleaned up. */
|
3016 |
|
|
if (type == error_mark_node)
|
3017 |
|
|
return error_mark_node;
|
3018 |
|
|
|
3019 |
|
|
type = TYPE_MAIN_VARIANT (type);
|
3020 |
|
|
|
3021 |
|
|
if (TREE_CODE (type) == POINTER_TYPE)
|
3022 |
|
|
{
|
3023 |
|
|
bool complete_p = true;
|
3024 |
|
|
|
3025 |
|
|
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
3026 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
3027 |
|
|
goto handle_array;
|
3028 |
|
|
|
3029 |
|
|
/* We don't want to warn about delete of void*, only other
|
3030 |
|
|
incomplete types. Deleting other incomplete types
|
3031 |
|
|
invokes undefined behavior, but it is not ill-formed, so
|
3032 |
|
|
compile to something that would even do The Right Thing
|
3033 |
|
|
(TM) should the type have a trivial dtor and no delete
|
3034 |
|
|
operator. */
|
3035 |
|
|
if (!VOID_TYPE_P (type))
|
3036 |
|
|
{
|
3037 |
|
|
complete_type (type);
|
3038 |
|
|
if (!COMPLETE_TYPE_P (type))
|
3039 |
|
|
{
|
3040 |
|
|
if (warning (0, "possible problem detected in invocation of "
|
3041 |
|
|
"delete operator:"))
|
3042 |
|
|
{
|
3043 |
|
|
cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
|
3044 |
|
|
inform (input_location, "neither the destructor nor the class-specific "
|
3045 |
|
|
"operator delete will be called, even if they are "
|
3046 |
|
|
"declared when the class is defined.");
|
3047 |
|
|
}
|
3048 |
|
|
complete_p = false;
|
3049 |
|
|
}
|
3050 |
|
|
}
|
3051 |
|
|
if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
|
3052 |
|
|
/* Call the builtin operator delete. */
|
3053 |
|
|
return build_builtin_delete_call (addr);
|
3054 |
|
|
if (TREE_SIDE_EFFECTS (addr))
|
3055 |
|
|
addr = save_expr (addr);
|
3056 |
|
|
|
3057 |
|
|
/* Throw away const and volatile on target type of addr. */
|
3058 |
|
|
addr = convert_force (build_pointer_type (type), addr, 0);
|
3059 |
|
|
}
|
3060 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
3061 |
|
|
{
|
3062 |
|
|
handle_array:
|
3063 |
|
|
|
3064 |
|
|
if (TYPE_DOMAIN (type) == NULL_TREE)
|
3065 |
|
|
{
|
3066 |
|
|
error ("unknown array size in delete");
|
3067 |
|
|
return error_mark_node;
|
3068 |
|
|
}
|
3069 |
|
|
return build_vec_delete (addr, array_type_nelts (type),
|
3070 |
|
|
auto_delete, use_global_delete);
|
3071 |
|
|
}
|
3072 |
|
|
else
|
3073 |
|
|
{
|
3074 |
|
|
/* Don't check PROTECT here; leave that decision to the
|
3075 |
|
|
destructor. If the destructor is accessible, call it,
|
3076 |
|
|
else report error. */
|
3077 |
|
|
addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
|
3078 |
|
|
if (TREE_SIDE_EFFECTS (addr))
|
3079 |
|
|
addr = save_expr (addr);
|
3080 |
|
|
|
3081 |
|
|
addr = convert_force (build_pointer_type (type), addr, 0);
|
3082 |
|
|
}
|
3083 |
|
|
|
3084 |
|
|
gcc_assert (MAYBE_CLASS_TYPE_P (type));
|
3085 |
|
|
|
3086 |
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
3087 |
|
|
{
|
3088 |
|
|
if (auto_delete != sfk_deleting_destructor)
|
3089 |
|
|
return void_zero_node;
|
3090 |
|
|
|
3091 |
|
|
return build_op_delete_call (DELETE_EXPR, addr,
|
3092 |
|
|
cxx_sizeof_nowarn (type),
|
3093 |
|
|
use_global_delete,
|
3094 |
|
|
/*placement=*/NULL_TREE,
|
3095 |
|
|
/*alloc_fn=*/NULL_TREE);
|
3096 |
|
|
}
|
3097 |
|
|
else
|
3098 |
|
|
{
|
3099 |
|
|
tree head = NULL_TREE;
|
3100 |
|
|
tree do_delete = NULL_TREE;
|
3101 |
|
|
tree ifexp;
|
3102 |
|
|
|
3103 |
|
|
if (CLASSTYPE_LAZY_DESTRUCTOR (type))
|
3104 |
|
|
lazily_declare_fn (sfk_destructor, type);
|
3105 |
|
|
|
3106 |
|
|
/* For `::delete x', we must not use the deleting destructor
|
3107 |
|
|
since then we would not be sure to get the global `operator
|
3108 |
|
|
delete'. */
|
3109 |
|
|
if (use_global_delete && auto_delete == sfk_deleting_destructor)
|
3110 |
|
|
{
|
3111 |
|
|
/* We will use ADDR multiple times so we must save it. */
|
3112 |
|
|
addr = save_expr (addr);
|
3113 |
|
|
head = get_target_expr (build_headof (addr));
|
3114 |
|
|
/* Delete the object. */
|
3115 |
|
|
do_delete = build_builtin_delete_call (head);
|
3116 |
|
|
/* Otherwise, treat this like a complete object destructor
|
3117 |
|
|
call. */
|
3118 |
|
|
auto_delete = sfk_complete_destructor;
|
3119 |
|
|
}
|
3120 |
|
|
/* If the destructor is non-virtual, there is no deleting
|
3121 |
|
|
variant. Instead, we must explicitly call the appropriate
|
3122 |
|
|
`operator delete' here. */
|
3123 |
|
|
else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
|
3124 |
|
|
&& auto_delete == sfk_deleting_destructor)
|
3125 |
|
|
{
|
3126 |
|
|
/* We will use ADDR multiple times so we must save it. */
|
3127 |
|
|
addr = save_expr (addr);
|
3128 |
|
|
/* Build the call. */
|
3129 |
|
|
do_delete = build_op_delete_call (DELETE_EXPR,
|
3130 |
|
|
addr,
|
3131 |
|
|
cxx_sizeof_nowarn (type),
|
3132 |
|
|
/*global_p=*/false,
|
3133 |
|
|
/*placement=*/NULL_TREE,
|
3134 |
|
|
/*alloc_fn=*/NULL_TREE);
|
3135 |
|
|
/* Call the complete object destructor. */
|
3136 |
|
|
auto_delete = sfk_complete_destructor;
|
3137 |
|
|
}
|
3138 |
|
|
else if (auto_delete == sfk_deleting_destructor
|
3139 |
|
|
&& TYPE_GETS_REG_DELETE (type))
|
3140 |
|
|
{
|
3141 |
|
|
/* Make sure we have access to the member op delete, even though
|
3142 |
|
|
we'll actually be calling it from the destructor. */
|
3143 |
|
|
build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
|
3144 |
|
|
/*global_p=*/false,
|
3145 |
|
|
/*placement=*/NULL_TREE,
|
3146 |
|
|
/*alloc_fn=*/NULL_TREE);
|
3147 |
|
|
}
|
3148 |
|
|
|
3149 |
|
|
expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
|
3150 |
|
|
tf_warning_or_error),
|
3151 |
|
|
auto_delete, flags);
|
3152 |
|
|
if (do_delete)
|
3153 |
|
|
expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
3154 |
|
|
|
3155 |
|
|
/* We need to calculate this before the dtor changes the vptr. */
|
3156 |
|
|
if (head)
|
3157 |
|
|
expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
|
3158 |
|
|
|
3159 |
|
|
if (flags & LOOKUP_DESTRUCTOR)
|
3160 |
|
|
/* Explicit destructor call; don't check for null pointer. */
|
3161 |
|
|
ifexp = integer_one_node;
|
3162 |
|
|
else
|
3163 |
|
|
/* Handle deleting a null pointer. */
|
3164 |
|
|
ifexp = fold (cp_build_binary_op (input_location,
|
3165 |
|
|
NE_EXPR, addr, integer_zero_node,
|
3166 |
|
|
tf_warning_or_error));
|
3167 |
|
|
|
3168 |
|
|
if (ifexp != integer_one_node)
|
3169 |
|
|
expr = build3 (COND_EXPR, void_type_node,
|
3170 |
|
|
ifexp, expr, void_zero_node);
|
3171 |
|
|
|
3172 |
|
|
return expr;
|
3173 |
|
|
}
|
3174 |
|
|
}
|
3175 |
|
|
|
3176 |
|
|
/* At the beginning of a destructor, push cleanups that will call the
|
3177 |
|
|
destructors for our base classes and members.
|
3178 |
|
|
|
3179 |
|
|
Called from begin_destructor_body. */
|
3180 |
|
|
|
3181 |
|
|
void
|
3182 |
|
|
push_base_cleanups (void)
|
3183 |
|
|
{
|
3184 |
|
|
tree binfo, base_binfo;
|
3185 |
|
|
int i;
|
3186 |
|
|
tree member;
|
3187 |
|
|
tree expr;
|
3188 |
|
|
VEC(tree,gc) *vbases;
|
3189 |
|
|
|
3190 |
|
|
/* Run destructors for all virtual baseclasses. */
|
3191 |
|
|
if (CLASSTYPE_VBASECLASSES (current_class_type))
|
3192 |
|
|
{
|
3193 |
|
|
tree cond = (condition_conversion
|
3194 |
|
|
(build2 (BIT_AND_EXPR, integer_type_node,
|
3195 |
|
|
current_in_charge_parm,
|
3196 |
|
|
integer_two_node)));
|
3197 |
|
|
|
3198 |
|
|
/* The CLASSTYPE_VBASECLASSES vector is in initialization
|
3199 |
|
|
order, which is also the right order for pushing cleanups. */
|
3200 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
|
3201 |
|
|
VEC_iterate (tree, vbases, i, base_binfo); i++)
|
3202 |
|
|
{
|
3203 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
3204 |
|
|
{
|
3205 |
|
|
expr = build_special_member_call (current_class_ref,
|
3206 |
|
|
base_dtor_identifier,
|
3207 |
|
|
NULL,
|
3208 |
|
|
base_binfo,
|
3209 |
|
|
(LOOKUP_NORMAL
|
3210 |
|
|
| LOOKUP_NONVIRTUAL),
|
3211 |
|
|
tf_warning_or_error);
|
3212 |
|
|
expr = build3 (COND_EXPR, void_type_node, cond,
|
3213 |
|
|
expr, void_zero_node);
|
3214 |
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
3215 |
|
|
}
|
3216 |
|
|
}
|
3217 |
|
|
}
|
3218 |
|
|
|
3219 |
|
|
/* Take care of the remaining baseclasses. */
|
3220 |
|
|
for (binfo = TYPE_BINFO (current_class_type), i = 0;
|
3221 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
3222 |
|
|
{
|
3223 |
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
3224 |
|
|
|| BINFO_VIRTUAL_P (base_binfo))
|
3225 |
|
|
continue;
|
3226 |
|
|
|
3227 |
|
|
expr = build_special_member_call (current_class_ref,
|
3228 |
|
|
base_dtor_identifier,
|
3229 |
|
|
NULL, base_binfo,
|
3230 |
|
|
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
|
3231 |
|
|
tf_warning_or_error);
|
3232 |
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
3233 |
|
|
}
|
3234 |
|
|
|
3235 |
|
|
for (member = TYPE_FIELDS (current_class_type); member;
|
3236 |
|
|
member = TREE_CHAIN (member))
|
3237 |
|
|
{
|
3238 |
|
|
if (TREE_TYPE (member) == error_mark_node
|
3239 |
|
|
|| TREE_CODE (member) != FIELD_DECL
|
3240 |
|
|
|| DECL_ARTIFICIAL (member))
|
3241 |
|
|
continue;
|
3242 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
|
3243 |
|
|
{
|
3244 |
|
|
tree this_member = (build_class_member_access_expr
|
3245 |
|
|
(current_class_ref, member,
|
3246 |
|
|
/*access_path=*/NULL_TREE,
|
3247 |
|
|
/*preserve_reference=*/false,
|
3248 |
|
|
tf_warning_or_error));
|
3249 |
|
|
tree this_type = TREE_TYPE (member);
|
3250 |
|
|
expr = build_delete (this_type, this_member,
|
3251 |
|
|
sfk_complete_destructor,
|
3252 |
|
|
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
|
3253 |
|
|
0);
|
3254 |
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
3255 |
|
|
}
|
3256 |
|
|
}
|
3257 |
|
|
}
|
3258 |
|
|
|
3259 |
|
|
/* Build a C++ vector delete expression.
|
3260 |
|
|
MAXINDEX is the number of elements to be deleted.
|
3261 |
|
|
ELT_SIZE is the nominal size of each element in the vector.
|
3262 |
|
|
BASE is the expression that should yield the store to be deleted.
|
3263 |
|
|
This function expands (or synthesizes) these calls itself.
|
3264 |
|
|
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
3265 |
|
|
|
3266 |
|
|
This also calls delete for virtual baseclasses of elements of the vector.
|
3267 |
|
|
|
3268 |
|
|
Update: MAXINDEX is no longer needed. The size can be extracted from the
|
3269 |
|
|
start of the vector for pointers, and from the type for arrays. We still
|
3270 |
|
|
use MAXINDEX for arrays because it happens to already have one of the
|
3271 |
|
|
values we'd have to extract. (We could use MAXINDEX with pointers to
|
3272 |
|
|
confirm the size, and trap if the numbers differ; not clear that it'd
|
3273 |
|
|
be worth bothering.) */
|
3274 |
|
|
|
3275 |
|
|
tree
|
3276 |
|
|
build_vec_delete (tree base, tree maxindex,
|
3277 |
|
|
special_function_kind auto_delete_vec, int use_global_delete)
|
3278 |
|
|
{
|
3279 |
|
|
tree type;
|
3280 |
|
|
tree rval;
|
3281 |
|
|
tree base_init = NULL_TREE;
|
3282 |
|
|
|
3283 |
|
|
type = TREE_TYPE (base);
|
3284 |
|
|
|
3285 |
|
|
if (TREE_CODE (type) == POINTER_TYPE)
|
3286 |
|
|
{
|
3287 |
|
|
/* Step back one from start of vector, and read dimension. */
|
3288 |
|
|
tree cookie_addr;
|
3289 |
|
|
tree size_ptr_type = build_pointer_type (sizetype);
|
3290 |
|
|
|
3291 |
|
|
if (TREE_SIDE_EFFECTS (base))
|
3292 |
|
|
{
|
3293 |
|
|
base_init = get_target_expr (base);
|
3294 |
|
|
base = TARGET_EXPR_SLOT (base_init);
|
3295 |
|
|
}
|
3296 |
|
|
type = strip_array_types (TREE_TYPE (type));
|
3297 |
|
|
cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
|
3298 |
|
|
sizetype, TYPE_SIZE_UNIT (sizetype));
|
3299 |
|
|
cookie_addr = build2 (POINTER_PLUS_EXPR,
|
3300 |
|
|
size_ptr_type,
|
3301 |
|
|
fold_convert (size_ptr_type, base),
|
3302 |
|
|
cookie_addr);
|
3303 |
|
|
maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
|
3304 |
|
|
}
|
3305 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
3306 |
|
|
{
|
3307 |
|
|
/* Get the total number of things in the array, maxindex is a
|
3308 |
|
|
bad name. */
|
3309 |
|
|
maxindex = array_type_nelts_total (type);
|
3310 |
|
|
type = strip_array_types (type);
|
3311 |
|
|
base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
|
3312 |
|
|
if (TREE_SIDE_EFFECTS (base))
|
3313 |
|
|
{
|
3314 |
|
|
base_init = get_target_expr (base);
|
3315 |
|
|
base = TARGET_EXPR_SLOT (base_init);
|
3316 |
|
|
}
|
3317 |
|
|
}
|
3318 |
|
|
else
|
3319 |
|
|
{
|
3320 |
|
|
if (base != error_mark_node)
|
3321 |
|
|
error ("type to vector delete is neither pointer or array type");
|
3322 |
|
|
return error_mark_node;
|
3323 |
|
|
}
|
3324 |
|
|
|
3325 |
|
|
rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
|
3326 |
|
|
use_global_delete);
|
3327 |
|
|
if (base_init)
|
3328 |
|
|
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
|
3329 |
|
|
|
3330 |
|
|
return rval;
|
3331 |
|
|
}
|